Volatile Organic Compound Determinations Using Surrogate-Based Correction
for Method and Matrix Effects
Table 1. Experimental Relative
Volatility
Values (a)
Compound
Normalized a
Derived b
benzene
0.60 ± 0.10
toluene
0.75 ± 0.01
chlorobenzene
0.78 ± 0.03
1,3-and 1,4-dichlorobenzene
0.78 ± 0.05
2-and 4-chlorotoluene
0.79 ± 0.03
styrene
0.80 ± 0.03
bromobenzene
0.81 ± 0.05
1,2,4-trimethylbenzene
0.82 ± 0.62
isopropyl benzene
0.84 ± 0.03
ortho-xylene
0.84 ± 0.03
acrolein
0.85 ± 0.16
1,2-dichlorobenzene
0.86 ± 0.05
tert-butylbenzene
0.91 ± 0.08
n-propyl benzene
0.92 ± 0.08
1,2,4-trichlorobenzene
1.10 ± 0.20
1,2,3-trichlorobenzene
1.30 ± 0.20
naphthalene
1.30 ± 0.10
acrylonitrile
1.51 ± 0.12
ethyl methacrylate
1.70 ± 0.40
1.55 ± 0.07
methacrylonitrile
1.67 ± 0.12
2-pentanone
2.10 ± 0.50
2.63 ± 0.05
4-methyl-2-pentanone
2.20 ± 0.50
acetonitrile
2.64 ± 0.08
acetone
3.26 ± 0.23
isobutyl alcohol
7.32 ± 0.24
pyridine
7.80 ± 3.10
8.54 ± 0.13
2-picoline
8.40 ± 3.60
n-butanol
10.10 ± 0.33
n-propanol
11.46 ± 0.44
1,4-dioxane
12.51 ± 0.55
|
Table 1. Experimental Relative
Volatility Values (a) |
||
| Compound | Normalized a | Derived b |
| benzene | 0.60 ± 0.10 | |
| toluene | 0.75 ± 0.01 | |
| chlorobenzene | 0.78 ± 0.03 | |
| 1,3-and 1,4-dichlorobenzene | 0.78 ± 0.05 | |
| 2-and 4-chlorotoluene | 0.79 ± 0.03 | |
| styrene | 0.80 ± 0.03 | |
| bromobenzene | 0.81 ± 0.05 | |
| 1,2,4-trimethylbenzene | 0.82 ± 0.62 | |
| isopropyl benzene | 0.84 ± 0.03 | |
| ortho-xylene | 0.84 ± 0.03 | |
| acrolein | 0.85 ± 0.16 | |
| 1,2-dichlorobenzene | 0.86 ± 0.05 | |
| tert-butylbenzene | 0.91 ± 0.08 | |
| n-propyl benzene | 0.92 ± 0.08 | |
| 1,2,4-trichlorobenzene | 1.10 ± 0.20 | |
| 1,2,3-trichlorobenzene | 1.30 ± 0.20 | |
| naphthalene | 1.30 ± 0.10 | |
| acrylonitrile | 1.51 ± 0.12 | |
| ethyl methacrylate | 1.70 ± 0.40 | 1.55 ± 0.07 |
| methacrylonitrile | 1.67 ± 0.12 | |
| 2-pentanone | 2.10 ± 0.50 | 2.63 ± 0.05 |
| 4-methyl-2-pentanone | 2.20 ± 0.50 | |
| acetonitrile | 2.64 ± 0.08 | |
| acetone | 3.26 ± 0.23 | |
| isobutyl alcohol | 7.32 ± 0.24 | |
| pyridine | 7.80 ± 3.10 | 8.54 ± 0.13 |
| 2-picoline | 8.40 ± 3.60 | |
| n-butanol | 10.10 ± 0.33 | |
| n-propanol | 11.46 ± 0.44 | |
| 1,4-dioxane | 12.51 ± 0.55 | |
a Values (± one standard deviation) were generated by normalizing and averaging data from six vacuum distillation analyses.
b Using 4-methyl-2-pentanone and 2-picoline as the two reference points, the derived 's were experimentally found. Derived 's (± one standard deviation) were calculated using determinations from ten vacuum distillations.
|
Table 2. Comparisons of Relative Volatility
Values |
||
| Average ± Standard Deviation | ||
| Analyte | a | K |
| benzene | 0.60 ± 0.10 |
4.0 ± 1.07,8 |
| toluene | 0.75 ± 0.01 | 3.6 ± 0.27,8 |
| ortho-xylene | 0.84 ± 0.03 | 5.119 |
| isopropyl benzene | 0.84 ± 0.03 | 2.259 |
| acrolein | 0.85 ± 0.16 | 180.10 |
| acetonitrile | 2.64 ± 0.08 | 1200.10 |
| acetone | 3.26 ± 0.23 | 580. ± 45.7 |
| isobutyl alcohol | 7.32 ± 0.24 | 2500.10 |
| n-propanol | 11.46 ± 0.44 | 4090. ± 390.7 |
| 1,4-dioxane | 12.51 ± 0.55 | 5750. ± 450.7 |
|
Table 3. Condenser Trapping Efficiencies |
||
| Compound | Boiling Point11 (°C) | Efficiencya (%) |
| benzene | 80 | 4.3 ± 1.8 |
| 2-pentanone | 102 | 28.9 ± 14.6 |
| toluene | 111 | 4.8 ± 2.1 |
| pyridine | 115 | 82.5 ± 24.0 |
| 4-methyl-2-pentanone | 116 | 20.7 ± 9.8 |
| ethyl methacrylate | 119 | 9.9 ± 6.2 |
| 2-picoline | 129 | 84.5 ± 23.8 |
| chlorobenzene | 132 | 5.8 ± 2.1 |
| ortho-xylene | 144 | 6.4 ± 2.4 |
| styrene | 145 | 7.0 ± 2.7 |
| isopropyl benzene | 153 | 7.0 ± 2.9 |
| bromobenzene | 156 | 8.8 ± 3.4 |
| n-propyl benzene | 159 | 7.4 ± 4.1 |
| 2-and 4-chlorotoluene | 162 | 9.6 ± 3.1 |
| tert-butylbenzene | 169 | 10.5 ± 4.2 |
| 1,2,4-trimethylbenzene | 169 | 11.3 ± 4.4 |
| 1,3-and 1,4-dichloromethane | 173 | 15.9 ± 5.5 |
| 1,2-dichlorobenzene | 179 | 22.2 ± 6.8 |
| 1,2,4-trichlorobenzene | 213 | 71.5 ± 7.5 |
| naphthalene | 218 | 76.4 ± 6.6 |
| 1,2,3-trichlorobenzene | 219 | 83.3 ± 4.4 |
a Calculated as the percent of compound vacuum distilled from the sample chamber and trapped on the condenser column. Six vacuum distillations of 5 mL water samples were used to generate the experimental data.
|
Table 4. Accuracy of Surrogate-Based Correctionsa |
||||
| Surrogate-Pairc | Multi-Surrogated | |||
|
Analyteb |
Water | Soil | Water | Soil |
| ratio (%) | ratio (%) | ratio (%) | ratio (%) | |
| benzene (a-surrogate)e | ||||
| toluene | 95.4 ± 3.1 | 97.1 ± 2.3 | 92.6 ± 1.1 | 98.8 ± 4.2 |
| 1,3-and 1,4-dichlorobenzene | 90.9 ± 1.8 | 92.8 ± 1.9 | 90.1 ± 1.9 | 90.9 ± 1.2 |
| chlorobenzene (a-surrogate) | ||||
| 2-and 4-chlorotoluenes | 95.6 ± 3.3 | 101.1 ± 2.9 | 93.1 ± 1.3 | 103.0 ± 3.3 |
| styrene | 101.9 ± 3.2 | 103.1 ± 1.9 | 99.8 ± 1.2 | 106.0 ± 2.8 |
| bromobenzene | 96.8 ± 2.3 | 102.6 ± 1.7 | 95.0 ± 0.3 | 105.5 ± 2.7 |
| 1,2,4-trimethylbenzene | 94.2 ± 2.4 | 96.5 ± 2.9 | 94.8 ± 0.8 | 95.4 ± 1.0 |
| isopropyl benzene | 93.4 ± 2.7 | 102.0 ± 4.0 | 94.3 ± 0.8 | 104.4 ± 4.2 |
| ortho-xylene (a-surrogate) | ||||
| 1,2-dichlorobenzene (b-surrogate)f | ||||
| tert-butylbenzene | 95.1 ± 3.0 | 102.9 ± 2.9 | 98.0 ± 1.6 | 100.7 ± 1.5 |
| n-propylbenzene | 97.7 ± 4.7 | 99.1 ± 12.3 | 96.3 ± 0.6 | 100.8 ± 14.2 |
| 1,2,4-trichlorobenzene | 113.7 ± 8.1 | 99.3 ± 5.2 | 113.5 ± 5.8 | 91.6 ± 14.9 |
| 1,2,3-trichlorobenzene | 165.8 ± 29.9 | 147.2 ± 20.5 | 162.2 ± 14.2 | 134.6 ± 32.5 |
| naphthalene (b-surrogate) | ||||
| ethyl methacrylate | 109.2 ± 2.4 | 101.3 ± 8.9 | 110.9 ± 0.2 | 101.2 ± 9.0 |
| 2-pentanone | 84.2 ± 1.8 | 94.6 ± 6.5 | 85.6 ± 0.9 | 94.2 ± 7.4 |
| 4-methyl-2-pentanone (a-surrogate) | ||||
| pyridine | 109.2 ± 5.4 | 103.8 ± 5.7 | 102.7 ± 4.6 | 132.6 ± 14.9 |
| 2-picoline (a-surrogate) | ||||
a Ratio (as a percent ± one standard deviation) of predicted
recovery to the experimentally obtained analyte recovery using test samples.
b Analyte list sorted by increasing .
c Percent comparison data generated using bracketing -surrogates
and the two -surrogates. Averages reflect the same-day vacuum distillations
of four water samples and three soil samples.
d Percent comparison data generated using all -surrogates and the
two -surrogates. The same samples used to generate the surrogate-pair
were used to generate multi-surrogate data.
e Compound selected to predict only effects.
f Compound selected to predict condenser column trapping efficiencies
related to after compensating for effects.
![[logo] US EPA](../gif/logo_epaseal.gif)