Nitrogen News

Issue 14, August/September 2010

Nitrogen News is a summary of recent publications, news and reports related to the cycling, effects and management of nitrogen. Prepared by Mary O’Brien and Jana Compton. Contact Jana Compton with any questions (Compton.jana@epa.gov)

Please note: Most of these links are available to EPA staff through library access – not all links will be available to folks outside EPA, depending on your access to specific journals and websites.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Issues</td>
<td>1</td>
</tr>
<tr>
<td>Articles</td>
<td>1</td>
</tr>
<tr>
<td>News</td>
<td>17</td>
</tr>
<tr>
<td>Reports</td>
<td>21</td>
</tr>
<tr>
<td>Web Pages</td>
<td>21</td>
</tr>
</tbody>
</table>

Special Issues

Nitrogen and greenhouse gas exchange

Articles

http://dx.doi.org/10.1016/j.atmosenv.2010.05.018

http://dx.doi.org/10.1016/j.jaridenv.2010.05.001

Augustaitis, A., D. Sopauskiene, and I. Bauziene. **Direct and indirect effects of regional air pollution on tree crown defoliation** *Baltic Forestry*, 16(1): 23-34, 2010. ISSN .1392-1355

http://dx.doi.org/10.2134/jeq2009.0082
Soil calcium, nitrogen, and water are correlated with aboveground net primary production in northern hardwood forests
http://dx.doi.org/10.1016/j.foreco.2010.05.029

Bazhin, N.
Theory of methane emission from wetlands
http://dx.doi.org/10.1039/b923456j

High functional diversity is related to high nitrogen availability in a deciduous forest - evidence from a functional trait approach
http://dx.doi.org/10.1007/s12224-010-9058-5

Inter-regional comparison of land-use effects on stream metabolism
Freshwater Biology, 55(9): 1874-1890, 2010. ISSN 0046-5070.
http://dx.doi.org/10.1111/j.1365-2427.2010.02422.x

Contrasting effects of wood ash application on microbial community structure, biomass and processes in drained forested peatlands
http://dx.doi.org/10.1111/j.1574-6941.2010.00911.x

Blanco, A. C., K. Nadaoka, T. Yamamoto, and K. Kinjo.
Dynamic evolution of nutrient discharge under stormflow and baseflow conditions in a coastal agricultural watershed in Ishigaki Island, Okinawa, Japan
http://dx.doi.org/10.1002/hyp.7685

Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest
http://dx.doi.org/10.1890/08-2295.1

Stochastic modeling of nutrient losses in streams: Interactions of climatic, hydrologic, and biogeochemical controls
http://dx.doi.org/10.1029/2009WR008758

Boutton, T. W., J. D. Liao.
Changes in soil nitrogen storage and delta N-15 with woody plant encroachment in a subtropical savanna parkland landscape
http://dx.doi.org/10.1029/2009JG001184

Sources of suspended-sediment flux in streams of the Chesapeake Bay Watershed: A regional application of the SPARROW Model
http://dx.doi.org/10.1111/j.1752-1688.2010.00450.x

High value crops in coarse-textured soil and nitrate leaching - How risky is it?
http://dx.doi.org/10.4141/CJPS10007

Ecohydrology Bearings-Invited Commentary What do we still need to know about the ecohydrology of riparian zones?
http://dx.doi.org/10.1002/eco.140

Campos, A.
Response of soil inorganic nitrogen to land use and topographic position in the Cofre de Perote Volcano (Mexico)
Environmental Management, 46(2): 213-224, 2010. ISSN 0364-152X.
http://dx.doi.org/10.1007/s00267-010-9517-z

Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agricultural landscape
http://dx.doi.org/10.1111/j.1365-2486.2009.02116.x

Soil nitrous oxide emissions following band-incorporation of fertilizer nitrogen and swine manure
http://dx.doi.org/10.2134/jeq2009.0482
Moisture effects on carbon and nitrogen emission from burning of wildland biomass
http://dx.doi.org/10.5194/acp-10-6617-2010

Seasonal changes in the concentrations of nitrogen and phosphorus in farmland drainage and groundwater of the Taihu Lake region of China
http://dx.doi.org/10.1007/s10661-009-1159-3

Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie
http://dx.doi.org/10.1016/j.agee.2010.04.019

Churchland, C., L. Mayo-Bruinsma, A. Ronson, and P. Grogan.
Soil microbial and plant community responses to single large carbon and nitrogen additions in low arctic tundra
Plant and Soil, 334(1-2): 409-421, 2010. ISSN 0032-079X.
http://dx.doi.org/10.1007/s11104-010-0392-4

A nitrogen balance model for environmental accountability in cropping systems
http://dx.doi.org/10.1080/01140671.2010.498401

Clapcott, J. E., R. G. Young, E. O. Goodwin, and J. R. Leathwick.
Exploring the response of functional indicators of stream health to land-use gradients
http://dx.doi.org/10.1111/j.1365-2427.2010.02463.x

An assessment of the atmospheric nitrogen budget on the South African Highveld
http://dx.doi.org/10.4102/sajs.v106i5.6.220

Comte, L. S. Lek, E. de Deckere, D. de Zwart, and M. Gevrey.
Assessment of stream biological responses under multiple-stress conditions
http://dx.doi.org/10.1007/s11356-010-0333-z
Cox, F., N. Barsoum, E. A. Lilleskov, and M. I. Bidartondo.
Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients
Ecology Letters, 13(9): 1103-1113, 2010. ISSN 1461-023X
http://dx.doi.org/10.1111/j.1461-0248.2010.01494.x

Dissolved inorganic nitrogen dynamics in the hyporheic zone of reference and human-altered southwestern U. S. streams
http://dx.doi.org/10.1127/1863-9135/2010/0176-0391

The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils
Global Change Biology, 16(9): 2555-2572, 2010. ISSN 1354-1013.
http://dx.doi.org/10.1111/j.1365-2486.2009.02131.x

Controls on dissolved organic matter concentrations in soils and streams from a forested wetland and sloping bog in southeast Alaska
http://dx.doi.org/10.1002/eco.101

Microbial performance under increasing nitrogen availability in a Mediterranean forest soil
Soil Biology & Biochemistry, 42(9): 1596-1606, 2010. ISSN 0038-0717.
http://dx.doi.org/10.1016/j.soilbio.2010.05.034

Danevcic, T., I. Mandic-Mulec, B. Stres, D. Stopar, and J. Hacin.
Emissions of CO2, CH4 and N2O from Southern European peatlands
Soil Biology & Biochemistry, 42(9): 1437-1446, 2010. ISSN 0038-0717
http://dx.doi.org/10.1016/j.soilbio.2010.05.004

Sources of nitrate yields in the Mississippi River Basin
http://dx.doi.org/10.2134/jeq2010.0115

Edwards, P. J., and K. W. J. Williard.
Efficiencies of forestry best management practices for reducing sediment and nutrient losses in the Eastern United States
http://saf.publisher.ingentaconnect.com/content/saf/jof/2010/00000108/00000005/art00005

Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton

http://dx.doi.org/10.1111/j.1461-0248.2010.01519.x

Short-term soil inorganic N pulse after experimental fire alters invasive and native annual plant production in a Mojave Desert shrubland

http://dx.doi.org/10.1007/s00442-010-1617-1

Fan, J., M. D. Hao, and S. S. Malhi.

Accumulation of nitrate-N in the soil profile and its implications for the environment under dryland agriculture in northern China: A review

http://dx.doi.org/10.4141/CJSS09105

The Irish Agricultural Catchments Programme: catchment selection using spatial multi-criteria decision analysis

Conference on Soil Quality - Does It Equal Environmental Quality, September, Johnstown Castle, Ireland

http://dx.doi.org/10.1111/j.1475-2743.2010.00291.x

Local recharge processes in glacial and alluvial deposits of a temperate catchment

http://dx.doi.org/10.1016/j.jhydrol.2010.05.025

The relative influence of nutrients and habitat on stream metabolism in agricultural streams

Environmental Monitoring and Assessment, 168(1-4): 461-479, 2010. ISSN 0167-6369.

http://dx.doi.org/10.1007/s10661-009-1127-y

Soil-atmosphere exchange of CH4, CO, N2O and NOx and the effects of land-use change in the semiarid Mallee system in Southeastern Australia

Global Change Biology, 16(9): 2407-2419, 2010. ISSN 1354-1013.

http://dx.doi.org/10.1111/j.1365-2486.2010.02161.x

Gewin, V.
Nitrogen pollution alters soil microbial community
http://dx.doi.org/10.1890/1540-9295-8.7.340

An analysis of the relationship between land use and arsenic, vanadium, nitrate and boron contamination in the Gulf Coast aquifer of Texas
http://dx.doi.org/10.1016/j.jhydrol.2010.06.002

Individual-based modeling of carbon and nitrogen dynamics in soils: parameterization and sensitivity analysis of abiotic components
Soil Science, 175(8): 363-374, 2010. ISSN 0038-075X.
http://dx.doi.org/10.1097/SS.0b013e3181eda507

Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance
http://dx.doi.org/10.1016/j.pedobi.2010.02.001

Water quality trends at inflows to Everglades National Park, 1977-2005
http://dx.doi.org/10.2134/jeq2009.0488

Intracellular conversion of environmental nitrate and nitrite to nitric oxide with resulting developmental toxicity to the crustacean Daphnia magna
http://dx.doi.org/10.1371/journal.pone.0012453

Ammonia emissions from broiler production in the San Joaquin Valley
http://dx.doi.org/10.3382/ps.2010-00718

Weighted regressions on time, discharge, and season (wrtds), with an application to Chesapeake Bay river inputs
http://dx.doi.org/10.1111/j.1752-1688.2010.00482.x

Nitrate concentrations and fluxes in the River Thames over 140 years (1868-2008): are increases irreversible?
http://dx.doi.org/10.1002/hyp.7835

Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization
http://dx.doi.org/10.5194/acp-10-6645-2010

Soil soluble organic carbon and nitrogen pools under mono- and mixed species forest ecosystems in subtropical China
http://dx.doi.org/10.1007/s11368-010-0191-9

Jing, Q., H. van Keulen, and H. Hengsdijk.
Modeling biomass, nitrogen and water dynamics in rice-wheat rotations
Agricultural Systems, 103(7): 433-443, 2010. ISSN 0308-521X.
http://dx.doi.org/10.1016/j.agsy.2010.04.001

Karaoglu, H., B. Kutrup, and H. Ogut.
Intraspecific differences in responses of marsh frog (Pelophylax ridibundus) tadpoles exposed to environmentally relevant and acute levels of ammonium nitrate fertilizer

Kennedy, N., and K. N. Egger.
Impact of wildfire intensity and logging on fungal and nitrogen-cycling bacterial communities in British Columbia forest soils
http://dx.doi.org/10.1016/j.foreco.2010.05.037

Klanderud, K.
Species recruitment in alpine plant communities: the role of species interactions and productivity
http://dx.doi.org/10.1111/j.1365-2745.2010.01703.x

Knotters, M., and D. J. Brus.
Estimating space-time mean concentrations of nutrients in surface waters of variable depth
http://dx.doi.org/10.1029/2009WR008350

Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments
http://dx.doi.org/10.1016/j.soilbio.2010.05.021

Composition of Norway spruce litter and foliage in atmospherically acidified and nitrogen-saturated Bohemian Forest stands, Czech Republic
http://www.borenv.net/BER/pdfs/ber15/ber15-413.pdf

Kurganova, I. N., and V. O. L. de Gerenyu.
Effect of the temperature and moisture on the N2O emission from some arable soils
http://dx.doi.org/10.1134/S1064229310080090

Lajtha, K., and J. Jones.
http://dx.doi.org/10.1002/eco.97

Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils
http://dx.doi.org/10.1007/s11104-010-0389-z

Lassaletta, L., H. Garcia-Gomez, B. S. Gimeno, and J. V. Rovira.
Headwater streams: neglected ecosystems in the EU Water Framework Directive. Implications for nitrogen pollution control
http://dx.doi.org/10.1016/j.envsci.2010.04.005

Latimer, J. S., and M. A. Charpentier.
Nitrogen inputs to seventy-four southern New England estuaries: Application of a watershed nitrogen loading model
http://dx.doi.org/10.1016/j.ecss.2010.06.006

Empirical relationship between eelgrass extent and watershed-derived nitrogen loading for shallow New England estuaries
Estuarine Coastal and Shelf Science, In Press, Corrected Proof, Available online 29 September 2010. ISSN 0272-7714.
Lewandowski, J., and G. Nutzmann.
Nutrient retention and release in a floodplain's aquifer and in the hyporheic zone of a lowland river
Ecological Engineering, 36(9): 1156-1166, 2010. ISSN 0925-8574.
http://dx.doi.org/10.1016/j.ecoleng.2010.01.005

Lewis, W. M., and J. H. McCutchan.
Ecological responses to nutrients in streams and rivers of the Colorado mountains and foothills
http://dx.doi.org/10.1111/j.1365-2427.2010.02431.x

Li, Q., B. H. Li, H. J. Kronzucker, and W. M. Shi.
Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity
http://dx.doi.org/10.1111/j.1365-3040.2010.02162.x

Li, H. F., S. L. Fu, H. T. Zhao, and H. P. Xia.
Effects of understory removal and N-fixing species seeding on soil N2O fluxes in four forest plantations in southern China
http://dx.doi.org/10.1111/j.1747-0765.2010.00498.x

Analysis of spatial-temporal distributions of nitrate-N concentration in Shitoukoumen catchment in northeast China
Environmental Monitoring and Assessment, 169(1-4): 335-345, 2010. ISSN 0167-6369.
http://dx.doi.org/10.1007/s10661-009-1174-4

Lim, J. W., G. O. Bae, D. Kaown, and K. K. Lee.
Prediction of groundwater contamination with multivariate regression and probabilistic capture zones
http://dx.doi.org/10.2134/jeq2009.0336

The abundance of microbial functional genes in grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or livestock exclusion
http://dx.doi.org/10.1128/AEM.03054-09

Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest
http://dx.doi.org/10.1111/j.1365-2486.2010.02174.x

Lukac, M., C. Calfapietra, A. Lagomarsino, and F. Loreto.
Global climate change and tree nutrition: effects of elevated CO2 and temperature
Tree Physiology, 30(9): 1209-1220, 2010. ISSN 0829-318X.
http://dx.doi.org/10.1093/treephys/tpq040

Influence of antecedent hydrologic conditions on patterns of hydrochemical export from a first-order agricultural watershed in Southern Ontario, Canada
http://dx.doi.org/10.1016/j.jhydrol.2010.05.034

Maier, C., M. G. Weinbauer, and J. Patzold.
Stable isotopes reveal limitations in C and N assimilation in the Caribbean reef corals Madracis auretenra, M. carmabi and M. formosa
http://dx.doi.org/10.3354/meps08674

Miscanthus and switchgrass production in central illinois: impacts on hydrology and inorganic nitrogen leaching
http://dx.doi.org/10.2134/jeq2009.0497

McLauchlan, K. K., C. J. Ferguson, I. E. Wilson, T. W. Ocheltree, and J. M. Craine.
Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands
http://dx.doi.org/10.1111/j.1469-8137.2010.03322.x

Long-term and recent changes in southern Lake Michigan water quality with implications for present trophic status
http://dx.doi.org/10.1016/j.jglr.2010.03.010

Millard, P., G. A. Grelet.
Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world
Tree Physiology, 30(9): 1083-1095, 2010. ISSN 0829-318X.
http://dx.doi.org/10.1093/treephys/tpq042
Measurements of nitrogen oxides from Hudson Bay: Implications for NOx release from snow and ice covered surfaces
http://dx.doi.org/10.1016/j.atmosenv.2010.05.015

Wetland response to sedimentation and nitrogen loading: diversification and inhibition of nitrogen-fixing microbes
http://dx.doi.org/10.1890/08-1881.1

Marine hypoxia/anoxia as a source of CH4 and N2O
http://dx.doi.org/10.5194/bg-7-2159-2010

Nash, D., M. Hannah, F. Robertson, and P. Rifkin.
A Bayesian network for comparing dissolved nitrogen exports from high rainfall cropping in Southeastern Australia
http://dx.doi.org/10.2134/jeq2009.0348

Ng, T. L., J. W. Eheart, X. M. Cai, and F. Miguez.
Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop
Environmental Science & Technology, 44(18): 7138-7144, 2010. ISSN 0013-936X.
http://dx.doi.org/10.1021/es9039677

Nyerges, G., S. K. Han, and L. Y. Stein.
Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria
http://dx.doi.org/10.1128/AEM.00747-10

Ochoa-Hueso, R., and E. Manrique.
Nitrogen fertilization and water supply affect germination and plant establishment of the soil seed bank present in a semi-arid Mediterranean scrubland
http://dx.doi.org/10.1007/s11258-010-9755-4

Long-term vegetation landscape pattern with non-point source nutrient pollution in upper stream of Yellow River basin
http://dx.doi.org/10.1016/j.jhydrol.2010.06.020

Effects of nitrate and labile carbon on denitrification of southern temperate forest soils

Influence of vegetation and seasonal flow patterns on parafluvial nitrogen retention in a
7(th)-order river
http://dx.doi.org/10.1899/09-049.1

VIHMA-A tool for allocation of measures to control erosion and nutrient loading from
Finnish agricultural catchments
http://dx.doi.org/10.1016/j.agee.2010.06.003

Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone
http://dx.doi.org/10.1890/08-0680.1

Ramakrishnan, B., M. Megharaj, K. Venkateswarlu, R. Naidu, and N. Sethunathan.
The impacts of environmental pollutants on microalgae and cyanobacteria
http://dx.doi.org/10.1080/10643380802471068

The importance of the riparian zone and in-stream processes in nitrate attenuation in
undisturbed and agricultural watersheds - A review of the scientific literature
http://dx.doi.org/10.1016/j.jhydrol.2010.05.045

Reef, R., I. C. Feller, and C. E. Lovelock.
Nutrition of mangroves
Tree Physiology, 30(9): 1148-1160, 2010. ISSN 0829-318X.
http://dx.doi.org/10.1093/treephys/tpq048

Regina, K., and L. Alakukku.
Greenhouse gas fluxes in varying soils types under conventional and no-tillage practices
http://dx.doi.org/10.1016/j.still.2010.05.009
Atmospheric Chemistry and Physics, 10(14): 6501, 2010. ISSN 1680-7316.
http://dx.doi.org/10.5194/acp-10-6501-2010

Rex, J. F., and E. L. Petticrew.
Salmon-derived nitrogen delivery and storage within a gravel bed: Sediment and water interactions
Ecological Engineering, 36(9): 1167-1173, 2010. ISSN 0925-8574.
http://dx.doi.org/10.1016/j.ecoleng.2010.02.001

Proactive screening approach for detecting groundwater contaminants along urban streams at the reach-scale
Environmental Science & Technology, 44(16): 6088-6094, 2010. ISSN 0013-936X.
http://dx.doi.org/10.1021/es101492x

Improving load estimates for NO3 and P in surface waters by characterizing the concentration response to rainfall events
Environmental Science & Technology, 44(16): 6305-6312, 2010. ISSN 0013-936X.
http://dx.doi.org/10.1021/es101252e

Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture
Global Change Biology, 16(9): 2530-2542, 2010. ISSN 1354-1013.
http://dx.doi.org/10.1111/j.1365-2486.2009.02089.x

Dynamics of the nitrous oxide reducing community during adaptation to Zn stress in soil
Soil Biology & Biochemistry, 42(9): 1581-1587, 2010. ISSN 0038-0717.
http://dx.doi.org/10.1016/j.soilbio.2010.05.036

First Europe-wide correlation analysis identifying factors best explaining the total nitrogen concentration in mosses
http://dx.doi.org/10.1016/j.atmosenv.2010.06.024
Seaver, G. A.
Estuary response to an abrupt, large increase in groundwater nitrate input
Applied Geochemistry, 25(9): 1453-1460, 2010. ISSN 0883-2927.
http://dx.doi.org/10.1016/j.apgeochem.2010.07.003

Competitive interactions between the alien invasive annual grass Avena fatua and
indigenous herbaceous plants in South African Renosterveld: the role of nitrogen enriche
Biological Invasions, 12(9): 3371-3378, 2010. ISSN 1387-3547.
http://dx.doi.org/10.1007/s10530-010-9730-y

Smith, A. J., and C. P. Tran.
A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers
http://dx.doi.org/10.1899/09-076.1

Smythe-Wright, D., C. Peckett, S. Boswell, and R. Harrison.
Controls on the production of organohalogens by phytoplankton: Effect of nitrate concentration and grazing
http://dx.doi.org/10.1029/2009JG001036

Management intensity - not biodiversity - the driver of ecosystem services in a long-term row crop experiment
http://dx.doi.org/10.1016/j.agee.2010.05.005

Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp.
Global Change Biology, 16(9): 2624-2637, 2010. ISSN 1354-1013.
http://dx.doi.org/10.1111/j.1365-2486.2009.02108.x

Effects of environmental factors on temporal variation in annual carbon dioxide and nitrous oxide emissions from an unfertilized bare field on Gray Lowland soil in Mikasa, Hokkaido, Japan
http://dx.doi.org/10.1111/j.1747-0765.2010.00486.x
Trepel, M.
Assessing the cost-effectiveness of the water purification function of wetlands for environmental planning
International Workshop on Ecosystems Services - Solution for Problems of a Problem that needs Solution, May, 2008, Salzau, Germany
Ecological Complexity, 7(3): 320-326, 2010. ISSN 1476-945X.
http://dx.doi.org/10.1016/j.ecocom.2010.02.006

Simulation of agricultural management alternatives for watershed protection
http://dx.doi.org/10.1007/s11269-010-9598-8

Tutmez, B., and Z. Hatipoglu.
Comparing two data driven interpolation methods for modeling nitrate distribution in aquifer
http://dx.doi.org/10.1016/j.ecoinf.2009.08.001

van Verseveld, W. J., E. S. Kane, D. J. Sobota, I. H. Myers-Smith, and J. B. Fellman.
Ecohydrology 1: 105-117'
http://dx.doi.org/10.1002/eco.107

Vilain, G., J. Garnier, G. Tallec, and P. Cellier.
Effect of slope position and land use on nitrous oxide (N2O) emissions (Seine Basin, France)
Agricultural and Forest Meteorology, 150(9): 1192-1202, 2010. ISSN 0168-1923.
http://dx.doi.org/10.1016/j.agrformet.2010.05.004

A carbon cycle science update since IPCC AR-4
http://dx.doi.org/10.1007/s13280-010-0035-2

Nitrogen mass flow in China’s animal production system and environmental implications
http://dx.doi.org/10.2134/jeq2010.0090

A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere
Biogeosciences, 7(7): 2261-2282, 2010. ISSN 1726-4170.
http://dx.doi.org/10.5194/bg-7-2261-2010

News

There’s more than one way to save the bay. *Agricultural Research*, August 2010
Switchgrass lessens soil nitrate loss into waterways, ISU researcher says
Iowa State University News Service, August 12, 2010

Paving slabs that clean the air
Fraunhofer Research News, August 2010

Tennesen, Michael.
Sour showers: Acid rain is back—this time triggered by nitrogen emissions
http://dx.doi.org/10.1038/scientificamerican0910-23

Elevated nitrogen and phosphorus still widespread in much of the nation's streams and groundwater
USGS Newsroom, September 23, 2010

For BNA subscribers (including EPA staff):

Gulf of Mexico: Gulf's 2010 ‘dead zone’ among largest; researchers find no specific link to oil spill
Daily Environment Report, August 3, 2010

Water data and monitoring as indispensable tools to manage water quality
Daily Environment Report, August 4, 2010

Air pollution: Chinese ministries draft pilot project to tax nitrogen oxide, ammonia nitrogen emissions
Daily Environment Report, August 12, 2010

Chesapeake Bay: Waterborne copper, nitrates polluting bay tributary's ecosystem, USDA study finds
Daily Environment Report, August 23, 2010
Water pollution: Report urges better nutrient management to combat rising hypoxia in coastal waters
Daily Environment Report, September 7, 2010
http://news.bna.com/deln/DELNW/split_display.adp?fedfid=17718641&vname=dennotallissues&wsn=501844000&searchid=12633162&doctypeid=1&type=date&mode=doc&split=0&scm=DELNW&pg=1

Chesapeake Bay: USGS unveils nutrient monitoring system to guide bay restoration, assess remedies
Daily Environment Report, September 20, 2010
http://news.bna.com/deln/DELNW/split_display.adp?fedfid=17802984&vname=dennotallissues&wsn=500674000&searchid=12633162&doctypeid=1&type=date&mode=doc&split=0&scm=DELNW&pg=1

Air pollution: Report urges EPA to consider standards for nitrogen, sulfur based on acidification
Daily Environment Report, September 21, 2010
http://news.bna.com/deln/DELNW/split_display.adp?fedfid=17806886&vname=dennotallissues&wsn=500554000&searchid=12633162&doctypeid=1&type=date&mode=doc&split=0&scm=DELNW&pg=1

Water pollution: nutrient pollution plagues streams, aquifers despite regulatory efforts, USGS study finds
Daily Environment Report, September 28, 2010
http://news.bna.com/deln/DELNW/split_display.adp?fedfid=17839836&vname=dennotallissues&wsn=500062000&searchid=12633162&doctypeid=1&type=date&mode=doc&split=0&scm=DELNW&pg=0

For Greenwire subscribers (including EPA staff):

California: Elite science panel wades into water war
Greenwire, August 2, 2010
http://www.eenews.net/Greenwire/2010/08/02/2/

Water pollution: Gulf 'dead zone' among largest ever
Greenwire, August 3, 2010
http://www.eenews.net/Greenwire/2010/08/03/4/

Water pollution: Nitrogen chokes sea life and industry in Cape Cod
Greenwire, August 18, 2010
http://www.eenews.net/Greenwire/2010/08/18/14/

Air pollution: EPA cement kiln rules should benefit public lands, wildlife
Land Letter, August 26, 2010
http://www.eenews.net/Landletter/2010/08/26/6/
Water: Vegetation returns to Potomac River after decades of muck
Greenwire, September 8, 2010
http://www.eenews.net/Greenwire/2010/09/08/19

Agriculture: USDA finds basis for cutting emissions in existing farm programs
ClimateWire, September 13, 2010
http://www.eenews.net/climatewire/2010/09/13/6

Chesapeake Bay: Cleanup efforts netting mixed results, USGS finds
Greenwire, September 17, 2010
http://www.eenews.net/Greenwire/2010/09/17/11

Air pollution: SO2, NOx standards fail to protect environment -- EPA
Greenwire, September 20, 2010
http://www.eenews.net/Greenwire/2010/09/20/3

Water pollution: Nutrients continue to choke waterways, groundwater – USGS
Greenwire, September 24, 2010
http://www.eenews.net/Greenwire/2010/09/24/18

Chesapeake Bay: EPA unveils 'pollution diet,' threatens crackdown on lax states
E&ENews PM, September 24, 2010
http://www.eenews.net/eenewspm/2010/09/24/2

Chesapeake Bay: Algae could scrub away bay's water quality problems
Greenwire, September 27, 2010
http://www.eenews.net/Greenwire/2010/09/27/18

For Inside EPA subscribers (including EPA staff):

Environmentalists' Report Shows Public Health Benefits of SO2, NOx Controls
Text Document, September 9, 2010

New EPA Data On Paved Areas Puts Focus On Suburban, Rural Runoff
Inside EPA, September 24, 2010

USGS Study May Boost EPA Bid To Curb Drinking Water Nutrient Pollution
Inside EPA Water Policy Report, September 27, 2010

EPA Criticizes States' Chesapeake Bay Cleanup Plans, Releases TMDL
Reports

The quality of our Nation’s waters—Nutrients in the Nation’s streams and groundwater, 1992–2004
http://pubs.usgs.gov/circ/1350/

Policy Assessment for the Review of the Secondary National Ambient Air Quality Standards for NOx and SOx: Second External Review Draft
http://www.epa.gov/ttn/naaqs/standards/no2so2sec/data/20100915padraft.pdf

Horowitz, John, and Jessica Gottlieb.
The Role of Agriculture in Reducing Greenhouse Gas Emissions
Economic Brief Number 15, September 2010.

Scientific Assessment of Hypoxia in U.S. Coastal Waters
http://www.whitehouse.gov/sites/default/files/microsites/ostp/hypoxia-report.pdf

Web Pages

Meteorological and Oceanographic Observations in the Coastal Gulf of Mexico
http://www.cengoos.org/
Source: Central Gulf Ocean Observing System (CenGOOS)

WaterQualityWatch – Continuous Real-Time Water Quality of Surface Water in the United States
http://waterwatch.usgs.gov/wqwatch/
Source: USGS

National Water Information System: Web Interface
http://waterdata.usgs.gov/nwis/
Source: USGS