Nitrogen News

Nitrogen News is a summary of recent publications, news and reports related to the cycling, effects and management of nitrogen. Prepared by Mary O’Brien and Jana Compton. Contact Jana Compton with any questions (Compton.jana@epa.gov)

Issue 4/5, July-August 2009

News

NOAA study shows nitrous oxide now top ozone-depleting emission
EurekAlert!, August 27, 2009

Water Pollution: EPA Agrees to Set Numeric Standards For Nutrient Pollution in Florida Waters
http://news.bna.com/deln/DENWB/split_display.adp?fedfid=14814475&vname=dennotallissues&wsn=495455000&searchid=8979062&doctypeid=1&type=date&mode=doc&split=0&scm=DENWB&pg=0

Climate Change: Scientists Say Cutting Black Carbon, Ozone Would Bring Immediate Climate Benefits
BNA Daily Environment Report, August 21, 2009
http://news.bna.com/deln/DENWB/split_display.adp?fedfid=14768012&vname=dennotallissues&wsn=495507500&searchid=8979062&doctypeid=1&type=date&mode=doc&split=0&scm=DENWB&pg=1

USDA eyeing targeted program to reduce Gulf of Mexico 'dead zone'
InsideEPA.com Daily News, August 21, 2009

MSU research supports calls to study health benefits of nitrate, nitrite
MSU News, August 19, 2009
http://news.msu.edu/story/6714/

USDA eyeing targeted program to reduce Gulf of Mexico ‘dead zone’
Water Policy Report, August 17, 2009

AIR POLLUTION: Carper looks to slash SOx, NOx and mercury in climate bill
Environment & Energy Daily, August 7, 2009
http://www.eenews.net/EEDaily/2009/08/07/archive/4?terms=nitrogen

Carper bid to set clean air limits in climate bill faces steep hurdles
Earth's biogeochemical cycles, once in concert, falling out of sync
EurekAlert!, August 4, 2009

CHESAPEAKE BAY: Cardin eyes EPA enforcement, nutrient trading program
Environment & Energy Daily, August 4, 2009
http://www.eenews.net/EEDaily/2009/08/04/archive/3?terms=nitrogen

CHESAPEAKE BAY: Senate panel to look at improving restoration program
Environment & Energy Daily, August 3, 2009
http://www.eenews.net/EEDaily/2009/08/03/archive/8?terms=nitrogen

Industry calls EPA plan to prevent ecosystem acidification illegal
Water Policy Report, August 3, 2009

Passing grade for NO2
InsideEPA.com, July 31, 2009

Smaller than expected, but severe, dead zone in Gulf of Mexico
EurekAlert!, July 27, 2009

Ozone, nitrogen change the way rising CO2 affects Earth's water
EurekAlert!, July 9, 2009

Fighting ‘acute’ NO2 proposal, industry decries inadequate EPA review
Daily News from Insideepa.Com, July 21, 2009

World’s waters choking from meat consumption and other human activities
World Resources Institute Pressroom, July 21, 2009

Ozone, nitrogen change the way rising CO2 affects earth's water
NASA News & Features, July 6, 2009
http://www.nasa.gov/topics/earth/features/nitrogen_ozonestress.html

Special Issues
Biogeochemistry, 95(1), August 2009
White on Green: Under-snow microbial processes and trace gas fluxes through snow, Niwot Ridge, Colorado Front Range.
Guest Edited by M. Williams, D. Helming and P. Blanken.
http://www.springerlink.com/content/g35v24380181/?p=6c89a43ea3d64c3eb0fcef29fe52255&p i=0

Articles

Anderson, Laurence A.
The seasonal nitrogen cycle in Wilkinson Basin, Gulf of Maine, as estimated by 1-D biological model optimization
http://dx.doi.org/10.1016/j.jmarsys.2009.04.001

Baeta, Alexandra, Ivan Valiela, Francesca Rossi, Rute Pinto, Pierre Richard, Nathalie Niquil, Joao C. Marques.
Eutrophication and trophic structure in response to the presence of the eelgrass Zostera noltii
Marine Biology, 156(10): 2107-2120, September 2009. ISSN 0025-3162.
http://dx.doi.org/10.1007/s00227-009-1241-y

Effects of long-term flooding on biogeochemistry and vegetation development in floodplains; a mesocosm experiment to study interacting effects of land use and water quality
Biogeosciences, 6(7): 1325-1339, 2009. ISSN 1726-4170.
http://www.biogeosciences.net/6/1325/2009/

Atmospheric nitrogen fluxes at the Belgian coast: 2004-2006
http://dx.doi.org/10.1016/j.atmosenv.2009.04.002

Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem
Ecology, 90(9): 2556-2566, September 2009. ISSN 0012-9658.
http://dx.doi.org/10.1890/08-0862.1

Biodiversity gains and losses: Evidence for homogenisation of Scottish alpine vegetation
http://dx.doi.org/10.1016/j.biocon.2009.03.010
*A century of changing land-use and water-quality relationships in the continental US*  
[http://dx.doi.org/10.1890/080085](http://dx.doi.org/10.1890/080085)

*Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: a review*  
Environmental Management, 44(2): 205-217, August 2009.  ISSN 0364-152X.  
[http://dx.doi.org/10.1007/s00267-009-9309-5](http://dx.doi.org/10.1007/s00267-009-9309-5)

*Ecosystem modeling applied to nutrient criteria development in rivers*  
Environmental Management, 44(3): 485-492, September 2009.  ISSN 0364-152X.  
[http://dx.doi.org/10.1007/s00267-009-9344-2](http://dx.doi.org/10.1007/s00267-009-9344-2)

Carstensen, Jacob, and Peter Henriksen.  
*Phytoplankton biomass response to nitrogen inputs: a method for WFD boundary setting applied to Danish coastal waters*  
[http://dx.doi.org/10.1007/s10750-009-9867-9](http://dx.doi.org/10.1007/s10750-009-9867-9)

Chiu, Yung-Chia, Ne-Zheng Sun, Tracy Nishikawa, and William W. –G. Yeh,  
*Development of an objective-oriented groundwater model for conjunctive-use planning of surface water and groundwater*  
Water Resources Research, 45: W00B17, July 31, 2009.  ISSN 0043-1397.  
[http://dx.doi.org/10.1029/2007WR006662](http://dx.doi.org/10.1029/2007WR006662)

Clement, Lieven, and Olivier Thas.  
*Testing for trends in the violation frequency of an environmental threshold in rivers*  
[http://dx.doi.org/10.1002/env.911](http://dx.doi.org/10.1002/env.911)

Clement, Lieven, and Olivier Thas.  
*Nonparametric trend detection in river monitoring network data: a spatio-temporal approach*  
[http://dx.doi.org/10.1002/env.929](http://dx.doi.org/10.1002/env.929)

Conrad, Y., and N. Fohrer.  
*Modelling of nitrogen leaching under a complex winter wheat and red clover crop rotation in a drained agricultural field*  
Physics and Chemistry of the Earth, 34(8-9): 530-540.  ISSN 1474-7065.  
[http://dx.doi.org/10.1016/j.pce.2008.08.003](http://dx.doi.org/10.1016/j.pce.2008.08.003)
Cornelisen, Christopher D., and Florence I. M. Thomas.  
**Prediction and validation of flow-dependent uptake of ammonium over a seagrass-hardbottom community in Florida Bay**  
*Marine Ecology-Progress Series*, 386: 71-81, 2009. ISSN 0171-8630.  
[http://dx.doi.org/10.3354/meps08065](http://dx.doi.org/10.3354/meps08065)

DeCatanzaro, Rachel, Maja Cvetkovic, and Patricia Chow-Fraser.  
**The relative importance of road density and physical watershed features in determining coastal marsh water quality in Georgian Bay**  
*Environmental Management*, 44(3): 456-467, September 2009. ISSN 0364-152X.  
[http://dx.doi.org/10.1007/s00267-009-9338-0](http://dx.doi.org/10.1007/s00267-009-9338-0)

**Risk of water contamination by nitrogen in Canada as estimated by the IROWC-N model**  
[http://dx.doi.org/10.1016/j.jenvman.2009.05.034](http://dx.doi.org/10.1016/j.jenvman.2009.05.034)

Deutsch, Barbara, Maren Voss, and Helmut Fischer.  
**Nitrogen transformation processes in the Elbe River: Distinguishing between assimilation and denitrification by means of stable isotope ratios in nitrate**  
*Aquatic Sciences*, 71(2): 228-237, June 2009. ISSN 1015-1621.  
[http://dx.doi.org/10.1007/s00027-009-9147-9](http://dx.doi.org/10.1007/s00027-009-9147-9)

**Salt marsh ecosystem biogeochemical responses to nutrient enrichment: a paired N-15 tracer study**  
[http://dx.doi.org/10.1890/08-1051.1](http://dx.doi.org/10.1890/08-1051.1)

**Phosphorus and nitrogen legacy in a restoration wetland, Upper Klamath Lake, Oregon**  
[http://dx.doi.org/10.1672/08-129.1](http://dx.doi.org/10.1672/08-129.1)

**Uptake of allochthonous dissolved organic matter from soil and salmon in coastal temperate rainforest streams**  
[http://dx.doi.org/10.1016/s10021-009-9254-4](http://dx.doi.org/10.1016/s10021-009-9254-4)

Gardner, Kristin K., and Brian L. McGlynn.  
**Seasonality in spatial variability and influence of land use/land cover and watershed characteristics on stream water nitrate concentrations in a developing watershed in the Rocky Mountain West**
Gioda, Adriana, Olga L. Mayol-Bracero, Gabriel J. Reyes-Rodriguez, Gilmarie Santos-Figueroa, and Jeffrey L. Collett, Jr.
**Water-soluble organic and nitrogen levels in cloud and rainwater in a background marine environment under influence of different air masses**
[http://dx.doi.org/10.1007/s10874-009-9125-6](http://dx.doi.org/10.1007/s10874-009-9125-6)

Golden, Heather E., and Elizabeth W. Boyer.
**Contemporary estimates of atmospheric nitrogen deposition to the watersheds of New York State, USA**
[http://dx.doi.org/10.1007/s10661-008-0438-8](http://dx.doi.org/10.1007/s10661-008-0438-8)

**Spatial variability of nitrate concentrations under diverse conditions in tributaries to a lake watershed**
*Journal of the American Water Resources Association*, 45(4): 945-962, August 2009. ISSN 1093-474X.
[http://dx.doi.org/10.1111/j.1752-1688.2009.00338.x](http://dx.doi.org/10.1111/j.1752-1688.2009.00338.x)

Gorman, Daniel, Beyden D. Russell, and Sean D. Connell.
**Land-to-sea connectivity: linking human-derived terrestrial subsidies to subtidal habitat change on open rocky coasts**
[http://dx.doi.org/10.1890/08-0831.1](http://dx.doi.org/10.1890/08-0831.1)

Granath, Gustaf, Magdalena M. Wiedermann, and Joachim Strengbom.
**Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum**
[http://dx.doi.org/10.1007/s00442-009-1406-x](http://dx.doi.org/10.1007/s00442-009-1406-x)

Greene, Richard M., John C. Lehrter, and James D. Hagy III.
**Multiple regression models for hindcasting and forecasting midsummer hypoxia in the Gulf of Mexico**
[http://dx.doi.org/10.1890/08-0035.1](http://dx.doi.org/10.1890/08-0035.1)

**Comparative study of nitrogen dynamics of three wetlands in the Higashi-Hiroshima area, Western Japan**
He, Bin, Taikan Oki, Shinjiro Kanae, Goro Mouri, Ken Kodama, Daisuke Komori, and Shinta Seto.
Integrated biogeochemical modelling of nitrogen load from anthropogenic and natural sources in Japan
http://dx.doi.org/10.1016/j.ecolmodel.2009.05.018

HilleRisLambers, J., W. S. Harpole, S. Schnitzer, D. Tilman, and P. B. Reich.
CO2, nitrogen, and diversity differentially affect seed production of prairie plants
http://dx.doi.org/10.1890/07-1351.1

Hoos, Anne B., and Gerard McMahon.
Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks
http://dx.doi.org/10.1002/hyp.7323

Hutchins, Mike, Carlo Fezzi, Ian Bateman, Paulette Posen, and Amelie Deflandre-Vlandas.
Cost-effective mitigation of diffuse pollution: setting criteria for river basin management at multiple locations
Environmental Management, 44(2): 256-267, August 2009. ISSN 0364-152X.
http://dx.doi.org/10.1007/s00267-009-9306-8

Long-term recovery of macroinvertebrate biota in grossly polluted streams: Re-colonisation as a constraint to ecological quality
Ecological Indicators, 9(6): 1064-1077, November 2009. ISSN 1470-160X.
http://dx.doi.org/10.1016/j.ecolind.2008.12.012

Laungani, Ramesh and Johannes M. H. Knops.
Species-driven changes in nitrogen cycling can provide a mechanism for plant invasions
http://dx.doi.org/10.1073/pnas.0900921106

Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models
http://dx.doi.org/10.1016/j.jenvman.2007.08.009

Liess, A., S. Drakare, and M. Kahler.
Atmospheric nitrogen-deposition may intensify phosphorus limitation of shallow epilithic periphyton in unproductive lakes

*Freshwater Biology, 54(8): 1759-1773, August 2009. ISSN 0046-5070.
http://dx.doi.org/10.1111/j.1365-2427.2009.02222.x*

Lilly, A., B. C. Ball, I. P. McTaggart, and J. DeGroote.

Spatial modelling of nitrous oxide emissions at the national scale using soil, climate and land use information

http://dx.doi.org/10.1111/j.1365-2486.2009.01904.x*


Water quality assessment of coastal Caloosahatchee River watershed, Florida

http://dx.doi.org/10.1080/10934520902996872*


Nutrient limitation along eutrophic rivers? Roles of N, P and K input in a species-rich floodplain hay meadow

http://dx.doi.org/10.1111/j.1654-109X.2009.01034.x*

Maier, Gerald, Gillian A. Glegg, Alan D. Tappin, and Paul J. Worsfold.

The use of monitoring data for identifying factors influencing phytoplankton bloom dynamics in the eutrophic Taw Estuary, SW England

http://dx.doi.org/10.1016/j.marpolbul.2009.02.014*

Marquard, Elisabeth, Alexandra Weigelt, Christiane Roscher, Marlen Gubsch, Annett Lipowsky, and Bernhard Schmid.

Positive biodiversity-productivity relationship due to increased plant density

http://dx.doi.org/10.1111/j.1365-2745.2009.01521.x*

Matsumoto, Kiyoshi, Hideki Minami, Yukiko Uyama, and Mitsuo Uematsu.

Size partitioning of particulate inorganic nitrogen species between the fine and coarse mode ranges and its implication to their deposition on the surface ocean

http://dx.doi.org/10.1016/j.atmosenv.2009.06.014*

Middelburg, J. J. and L. A. Levin.

Coastal hypoxia and sediment biogeochemistry

*Biogeoosciences, 6(7): 1273-1293, 2009. ISSN 1726-4170.
http://www.biogeoosciences.net/6/1273/2009/*
Noe, Gregory B. and Cliff R. Hupp.  
**Retention of riverine sediment and nutrient loads by coastal plain floodplains**  
[http://dx.doi.org/10.1007/s10021-009-9253-5](http://dx.doi.org/10.1007/s10021-009-9253-5)

**Defensive compound concentration in boreal lichens in response to simulated nitrogen deposition**  
[http://dx.doi.org/10.1111/j.1365-2486.2009.01853.x](http://dx.doi.org/10.1111/j.1365-2486.2009.01853.x)

**New nitrogen uptake strategy: specialized snow roots**  

Phillips, Rebecca L., Donald L. Tanaka, David W. Archer, and Jon D. Hanson.  
**Fertilizer application timing influences greenhouse gas fluxes over a growing season**  
[http://dx.doi.org/10.2134/jeq2008.0483](http://dx.doi.org/10.2134/jeq2008.0483)

Porter, John, Robert Costanza, Harpinder Sandhu, Lene Sigsgaard, and Steve Wratten.  
**The value of producing food, energy, and ecosystem services within an agro-ecosystem**  
[http://dx.doi.org/10.1579/0044-7447-38.4.186](http://dx.doi.org/10.1579/0044-7447-38.4.186)

**Benthic metabolism and the fate of dissolved inorganic nitrogen in intertidal sediments**  
[http://dx.doi.org/10.1016/j.ecss.2009.04.012](http://dx.doi.org/10.1016/j.ecss.2009.04.012)

Rabalais, Nancy N., R. Eugene Turner, Robert J. Diaz, and Dubravko Justic.  
**Global change and eutrophication of coastal waters**  
[http://dx.doi.org/10.1093/icesjms/fsp047](http://dx.doi.org/10.1093/icesjms/fsp047)

**Nitrogen mineralization across an atmospheric nitrogen deposition gradient in Southern California deserts**  
[http://dx.doi.org/10.1016/j.jaridenv.2009.04.007](http://dx.doi.org/10.1016/j.jaridenv.2009.04.007)

Ravishankara, A. R., John S. Daniel, and Robert W. Portmann
Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century
Science, published online August 27, 2009. ISSN 1095-9203.
http://dx.doi.org/10.1126/science.1176985

Reiche, Marco, Anke Haedrich, Gunnar Lischeid, and Kirsten Kuesel.
Impact of manipulated drought and heavy rainfall events on peat mineralization processes
and source-sink functions of an acidic fen
http://dx.doi.org/10.1029/2008JG000853

Rothenberger, Meghan B., JoAnn M. Burkholder, and Cavell Brownie.
Long-term effects of changing land use practices on surface water quality in a coastal river
and lagoonal estuary
Environmental Management, 44(3): 505-523, September 2009. ISSN 0364-152X.
http://dx.doi.org/10.1007/s00267-009-9330-8

Schoch, Andrea L., Keith E. Schilling, and Kung-Sik Chan.
Time-series modeling of reservoir effects on river nitrate concentrations
Advances in Water Resources, 32(8): 1197-1205, August 2009. ISSN 0309-1708.
http://dx.doi.org/10.1016/j.advwatres.2009.04.002

Schramm, Harold L., Jr., Michael S. Cox, Todd E. Tietjen, and Andrew W. Ezell.
Nutrient dynamics in the lower Mississippi River floodplain: comparing present and
historic hydrologic conditions
http://dx.doi.org/10.1672/08-62.1

Schwede, Donna B., Robin L. Dennis, and Mary Ann Bitz.
The watershed deposition tool: a tool for incorporating atmospheric deposition in water-
quality analyses
1093-474X.
http://dx.doi.org/10.1111/j.1752-1688.2009.00340.x

Smithwick, Erica A. H., Daniel M. Kashian, Michael G. Ryan, and Monica G. Turner.
Long-term nitrogen storage and soil nitrogen availability in post-fire lodgepole pine
ecosystems
Ecosystems, 12(5): 792-806, August 2009. ISSN 1435-0629.
http://dx.doi.org/10.1007/s10021-009-9257-1

Taguchi, Koichi, and Kisaburo Nakata.
Evaluation of biological water purification functions of inland lakes using an aquatic
ecosystem model
http://dx.doi.org/10.1016/j.ecolmodel.2009.05.007
Tian, Yong Q., Jianjun Wang, John A. Duff, Brian L. Howes, and Angeliki Evgenidou. 
Spatial patterns of macrobenthic communities in shallow-water tidal embayments and 
their association with environmental factors 
[http://dx.doi.org/10.1007/s00267-009-9287-7](http://dx.doi.org/10.1007/s00267-009-9287-7)

Separating physical disturbance and nutrient enrichment caused by Pacific salmon in stream ecosystems 
*Freshwater Biology*, 54(9): 1864-1875, September 2009. ISSN 0046-5070. 
[http://dx.doi.org/10.1111/j.1365-2427.2009.02232.x](http://dx.doi.org/10.1111/j.1365-2427.2009.02232.x)

Vicca, S., I. A. Janssens, H. Flessa, S. Fiedler, and H. F. Jungkunst. 
Temperature dependence of greenhouse gas emissions from three hydromorphic soils at different groundwater levels 
[http://dx.doi.org/10.1111/j.1472-4669.2009.00205.x](http://dx.doi.org/10.1111/j.1472-4669.2009.00205.x)

Walker, John T., James M. Vose, Jennifer Knoepp, and Christopher D. Geron. 
Recovery of nitrogen pools and processes in degraded riparian zones in the southern Appalachians 
[http://dx.doi.org/10.2134/jeq2008.0259](http://dx.doi.org/10.2134/jeq2008.0259)

Wallack, Jessica Seddon, and Veerabhadran Ramanathan. 
The other climate changers: why black carbon and ozone also matter 

Whigham, Dennis F., Jos T. A. Verhoeven, Vladimir Samarkin, and Patrick J. Megonigal. 
Responses of Avicennia germinans (Black Mangrove) and the soil microbial community to nitrogen addition in a hypersaline wetland 
[http://dx.doi.org/10.1007/s12237-009-9184-6](http://dx.doi.org/10.1007/s12237-009-9184-6)

Wooldridge, Scott A., and Terence J. Done. 
Improved water quality can ameliorate effects of climate change on corals 
[http://dx.doi.org/10.1890/08-0963.1](http://dx.doi.org/10.1890/08-0963.1)

Emissions of greenhouse gases from a North American megacity 
[http://dx.doi.org/10.1029/2009GL039825](http://dx.doi.org/10.1029/2009GL039825)
Xu, Xingkai, Lin Han, Xianbao Luo, Zirui Liu, and Shijie Han. Effects of nitrogen addition on dissolved N2O and CO2, dissolved organic matter, and inorganic nitrogen in soil solution under a temperate old-growth forest Geoderma, 151(3-4): 370-377, July 15, 2009. ISSN 0016-7061. http://dx.doi.org/10.1016/j.geoderma.2009.05.008


Reports


Ecological Impacts of Economic Activities http://www.esa.org/pao/economic_activities.php Source: Ecological Society of America

Web Sites