

Presented by: Jim Bredin Michigan Office of the Great Lakes

The Main Basins of Lake Huron

Volume: 23,000 mi³ / 59,600 km³

Drainage Area: 51,700 mi² / 134,000 km²

Retention Time: 22 years

A Diversity of Ecosystems

A Diversity of Ecosystems

Status of Lake Huron

- Historical sources of pollution, but relatively low pollution levels.
- Abundance of shoreline habitat, but increasing development pressure and hardening of shoreline.
- High diversity of aquatic and riparian species, yet continuing threat and spread of invasive species.
- Overall Status: Mixed

Impacts to Lake Huron Ecosystem Integrity

- Chemical:
 - Fish Consumption Advisories
 - Wildlife Health
- Biological:
 - Impaired Benthic Communities
 - Fish Community Alteration
- Physical:
 - Habitat Restoration/Protection

Chemical Integrity

- Fish Consumption Advisories
- Wildlife Contaminants

Chemical Integrity

- Main SOLEC Indicators
 - Contaminants in Edible Fish Tissue
 - Contaminants in Young-of-the-Year Spottail Shiners
 - Contaminants in Colonial Nesting Waterbirds
 - Atmospheric Deposition of Toxic Chemicals
 - Toxic Chemical Concentrations in Offshore Waters
 - Phosphorus Concentrations and Loadings

PCBs in Huron Lake Trout (ug/g wet weight)

(1974-79 values based on two sites, Chantry and Double Islands; 1980-present values include Saginaw Bay site as well.)

1254:1260

Total Phosphorus

Biological Ecosystem Integrity

- Changes in Lower Food Web
- Fish Community Alteration

Biological Integrity – Lower Food Web

- Main SOLEC Indicators
 - Benthos Diversity and Abundance
 - Diporeia (as part of Lake Trout and Scud indicator)
 - Preyfish Population
 - Zooplankton
 - E. coli and Fecal Coliform Levels in Nearshore Recreational Waters

Benthic Communities

- Invasion of zebra mussel and other species
- Studies to investigate changes in benthic species and biomass, especially Diporeia
- Fish communities respond by altering food sources or face declining populations

Preyfish Population

Source: USGS

Biomass of Major Prey Fishes

Zooplankton

Lake Huron,
Lake St.Clair,
St. Clair River
and
Detroit River

Beach Closings 2001

Biological Integrity - Fish Community Indicators

Main SOLEC Indicators:

- Walleye and Hexagenia
- Exotic Species
- Fish Habitat
- Sea Lamprey
- Salmon and Trout

Fish Community Alteration

- Improvements in fishery over last several decades
- Decreased contaminant levels
- Good habitat, some tributaries are stressed

Number of Trout and Salmon Caught per 100 hours of Angler Effort

Walleye Yield (Catch) thought to be attributable to Natural Reproduction

Round Goby Abundance in Thunder Bay

Physical Integrity

- Main SOLEC Indicators:
 - Habitat fragmentation
 - Sediment flowing into coastal wetlands
 - Coastal wetland area by type
 - Extent of hardened shoreline
 - Protected nearshore areas

Habitat Fragmentation

- Dams impound highest-gradient rapids and block migrations of Lake Huron fishes
 - Species affected include trout, salmon, lake sturgeon, whitefish, walleye
- Dams disrupt sediment transport needed to maintain delta wetlands at river mouths
 - Species affected include yellow perch, northern pike, muskellunge

Habitat Fragmentation

- Inundate rare, high quality habitats
- Disrupt woody debris transport
- Increase summer temperatures and prevent night-time cooling
- Reduce aquatic insect diversity and density
- Also prevents non-native species, including lamprey from reaching upstream areas

Lake sturgeon potential

Yellow= high Red= medium

Source: Lake Sturgeon Rehabilitation Strategy (MDNR Fish Division)

Au Sable River Gradient Distribution

from South Branch Au Sable River to river mouth

Biological potential of Lake Huron Streams

- Biological potential of existing highgradient habitats between Mio and Foote dams: 14,440 Adult lake sturgeon.
- The Lake Huron watershed has a great, untapped biological potential.

Actions Needed to Restore Ecosystem Integrity

- Complete on-going sediment cleanups (Saginaw River/Pine River)
- Provide support to AOCs
- Monitor atmospheric inputs
- Lakewide monitoring coordination
- Minimizing the impact of non-native species

Additional Actions Needed...

- Provide fish passage to high quality areas
- Develop alternatives to activities that harden the shoreline
- Identify important coastal wetland areas
- Control nonpoint source of pollution
- Improve coordination between Great Lakes agencies and community partnerships

On-going Lake Huron Efforts

- Lake Huron GIS System development.
- Working closely with the GLFC Lake Huron Committee on Environmental Objectives development.
- Combining effort towards implementation of the Lake Huron Binational Partnership.

Lake Huron Binational Partnership

For additional information contact:

Jim Bredin, Michigan Office of the Great Lakes

James Schardt, USEPA
Great Lakes National Program Office

Janette Anderson, Environment Canada

