

Niagara River

Brad Hill Environment Canada

Background

- Created by Wisconsin glaciation, about 10,000 years ago
- Approximately 56 km (35 mi) long
- Peak season flow ~ 5,720 m³/s (200,000 ft³/s)
- Total drainage area ~ 684,000 sq km (264,000 sq mi)
- Empties approx. 2/5^{ths} of the fresh water in North America
- Currently divert 50% 75% of flow for power generation

Historical Context

- 1950s: IJC reports on pollution problems
- 1973: IJC designates Niagara River as "Problem Area"
- Late 1970s: Love Canal
- 1980 & 1981: Canada/Ontario Review Board Baseline Reports summarize environmental conditions in the Niagara River
- 1981: IJC Special Report on Pollution of the Niagara River
- 1981 1983: Niagara River Toxics Committee report
- 1987: Niagara River Declaration of Intent NRTMP
- 1996: "Letter of Support"

Star Sea our concease a such Deankait) in Sportfelt and Gam

Programs

• 3 main components:

- Upstream/Downstream

• Water and suspended sediment

Mussels and fish

- Tributary screening & trackdown

• Sediment investigations in tributaries

Additional components:
 – Point & Non-point Sources
 Landfills, STPs, HWS

Objectives

- Establish the existence and relative concentrations of contaminants
- Distinguish between Niagara River contaminant sources and upstream sources
- Identify exceedences to existing criteria
- Examine long term trends
- Quantify loadings to Lake Ontario
- Measure concentrations in fish, mussels and other wildlife

1,3-Dichlorobenzene 1,3,5-Trichlorobenzene 1,2,3,4-Tetrachlorobenzene **Hexachlorobutadiene** Aldrin p,p'-DDD **DDT** Total α-BHC **Total Chlordane** Dieldrin **Methoxychlor 1-Methyl Naphthalene** Fluorene **Beta-Chloronaphthalene Fluoranthene Chrysene/Triphenylene** Indeno(1,2,3-c,d)pyrene Aluminum **Barium** Cadmium Copper Iron Molybdenum Rubidium Strontium Vanadium

1,4-Dichlorobenzene 1,2,4-Trichlorobenzene Pentachlorobenzene Hexachlorocyclopetadiene Octachlorosytrene o,p'-DDT **Photomirex** v-BHC α-Endosulfan Endrin TCPCB **Naphthalene** Phenanthrene Atrazine **Pyrene** Benzo(b+k)fluoranthene Dibenzo(a,h)anthracene Antimony **Boron** Cobalt Gallium Lithium Nickel Selenium Tellurium Zinc

1,2-Dichlorobenzene 1,2,3-Trichlorobenzene Hexachlorobenzene **Heptachlor** p,p'-DDE p,p'-DDT Mirex **Heptachlor Epoxide** β-Endosulfan **Endrin Aldehyde** 2-Methyl Naphthalene Acenaphthylene Anthracene **Metolachlor** Benz(a)anthracene Benzo(a)pyrene Benzo(g,h,i)perylene Arsenic **Beryllium** Chromium Lanthanum Manganese Lead Silver Uranium Mercury

DDT Total

Total Chlordane Dieldrin

TCPCB

Hexachlorobenzene

p,p'-DDE p,p'-DDT Mirex

Chrysene/Triphenylene Indeno(1,2,3-c,d)pyrene Aluminum Benzo(b+k)fluoranthene

Benz(a)anthracene Benzo(a)pyrene Benzo(g,h,i)perylene

Iron

Mercury

Hexachlorobenzene

Mirex

Chrysene/Triphenylene

Benzo(a)pyrene

Iron

Niagara River Hexachlorobenzene (RWW)

Niagara River Benzo(a)Pyrene (RWW)

Year

Niagara River Dieldrin (RWW)

Year

Biomonitoring

- Contaminant sources within the River as well as basin-wide
- Potential watershed sources for:
 HCB, PAHs, Dioxins/Furans
- Wildlife criteria exceedences of:
 BCB_DDT_Mirox and Photomir
 - PCB, DDT, Mirex and Photomirex
 - Most likely related to residual sediment contamination

- Fish consumption advisories continue
 - Species and location specific (PCBs, Dioxins/Furans, Mirex, Mercury)
- Total PCBs and total DDT levels are declining
- Mercury was detected at concentrations similar to other sites in the Great Lakes

Tributary Screening

- DEC/EPA study of 4 tributaries in 2004
- No "hot spots" found that trigger immediate action
- Certain areas may deserve further attention

 Guideline exceedences of PCBs, Mercury, Lindane and Zinc
 - Low levels and non-detects validate effectiveness of remediation
- On going monitoring by MOE and assessment by RAP show some tributaries may no longer be sources of contaminants

Monitoring Summary

- Significant decreases in concentrations for most compounds between 1986 and 2005
- Some compounds still exceed strictest agency criteria
- Local sources continue to contribute contaminants to the Niagara River
- Upstream and/or basin-wide sources may be more significant for certain chemicals

Niagara's Influence On Lake Ontario

- >80% input water budget
- ~50% incoming fine grain sediment
- a primary source of contaminants

Lake Ontario Circulation

Lake Ontario Circulation

Lake Ontario Bathymetry

Phase Distribution

Compound	% in dissolved phase	% in particulate phase
Mirex	0	100
Benzo(a)pyrene	6	94
1,2,4-TCB	90	10
Dieldrin	94	6
1,2,3,4-TTCB	95	5
Atrazine	100	0
Metolachlor	100	0

Current Knowledge

Hexachlorobenzene (ng/L)

Metolachlor (ng/L)

Dieldrin (ng/L)

Dieldrin (ng/g)

Benzo(a)pyrene (ng/g)

Benzo(a)pyrene (ng/g)

Conclusions

- Niagara River is the primary source of water and a significant source of fine grain sediment for Lake Ontario
- Niagara River has been significantly impacted by contaminants
- Contamination levels in the Niagara River have been reduced over the past two decades
- There is insufficient data to establish a firm influence of the Niagara River on nearshore contaminant levels
- Dissolved phase contaminants appear to show higher concentrations in the nearshore zone
- Evidence suggests majority of sediment bound contaminants are found in offshore depositional areas

Future Directions

- More analysis with existing data sources
- Nearshore monitoring
- Current suite of compounds
- New & emerging compounds
- Future of the NRTMP

Acknowledgements

- Water Quality Monitoring & Surveillance
- EC, OMOE, NYSDEC, USEPA, DFO
- Niagara River Secretariat
- River Monitoring Committee