US ERA ARCHIVE DOCUMENT

Water Level Fluctuations Natural Factors

Water Level Fluctuations Anthropogenic Factors

Water Level Fluctuations

International Upper Great Lakes Study

- What is causing the declining head difference between Lakes Michigan/Huron-Erie?
- Has the St. Clair River flow regime changed with time and if so, why?
- Have the velocity patterns in the St.
 Clair River been modified and if so, what are the implications?
- Is the St. Clair River bed stable or eroding?
- If the bed of the St. Clair is eroding, what initiated it and when?
- Has the sediment budget for the St.
 Clair River changed and if so, what are the implications?

Order and Plan 2007

IJC has proposed a one-year process to resolve outstanding issues and obtain concurrence of the two Federal governments

Hardened Shoreline

		LANGE OF B
Lake/ Connecting Channel	70 -100% Hardened	40 -70% Hardened
St. Clair River	69.3	24.9
Detroit River	47.2	22.6
Niagara River	44.3	8.8
St. Lawrence Seaway	12.6	9.3
St. Marys River	2.9	1.6
Lake Erie	20.4	11.3
Lake St. Clair	11.3	25.8
Lake Ontario	10.2	6.3
Lake Michigan	8.6	2.9
Lake Superior	3.1	1.1
Lake Huron	1.5	1.0

217,000 Hectares of Great Lakes Coastal Wetlands

Alvars

Cobble Beaches

Sand Dunes

Phosphorus Concentrations and Loadings

Ohio Lake Erie P Task Force draft Summary Conclusions

- Soluble Reactive Phosphorus (SRP) is a primary cause of algal blooms
- SRP is stratifying in the top 2" of the soil profile
- SRP loadings are driven by runoff events
- Dreissinids are a factor

Ohio Lake Erie P Task Force draft Recommendations

- Manage P inputs
 - Land application of fertilizer
 - Land application of manure
- Amount, timing and incorporation are critical factors
- Management options include:
 - Increase use of soil tests
 - Update screening tools that account for agronomic need and environmental risk
 - Align with application recommendations

The Grand River Watershed ONTARIO, CANADA &

Grand River Watershed

Coastal Zones Management Challenges

- Water levels—learn the lessons and apply basinwide
- Protect and restore wetlands and associated uplands, islands, alvars, cobble beaches, sand dunes
- Support and implement new wetland monitoring protocols
- Develop remote sensing technologies
- Project by project and landscape level

Aquatic Habitats Management Challenges

- Develop indicators for all aquatic habitats
- Establish the connection of soluble P and nuisance algal blooms
- Collaborate and coordinate across jurisdictions

