US ERA ARCHIVE DOCUMENT

Laying the Groundwork for EMS Background and Exhibits

What is an **Environmental Management System (EMS)**?

An EMS is a continual cycle of planning, implementing, reviewing, and improving the processes and actions that a facility undertakes to meet its environmental obligations.

Does my shipyard need an EMS?

Ask yourself the following questions:

- Is your shipyard required to comply with environmental laws and regulations?
- Are you looking for ways to improve your environmental performance?
- Is the state of your shipyard's environmental affairs a significant liability?
- Does a lack of time or resources prevent your shipyard from managing its environmental obligations effectively?
- Is the relationship between your shipyard's environmental goals and other goals unclear?

If you answered YES to one or more of the above questions, an EMS can help your shipyard—and so will this EMS Guide!

This module provides you with the information you need to get started. It is divided into the following sections:

- Frequently Asked Questions about EMS
- EMS Costs and Benefits
- Keys to a Successful EMS
- Elements of an EMS
- Integration of Quality and Safety Systems
- Laying the Groundwork for an EMS

Frequently Asked

Questions about EMS

1. We already have a compliance program—why do we need an EMS?

An EMS can help you comply with regulations with consistency and effectiveness. It also can help you identify and capitalize on environmental and business opportunities that go beyond compliance.

2. How big does a facility need to be to successfully implement an EMS?

EMS has been implemented by facilities ranging in size from a couple of dozen employees to many thousands of employees. The elements of an EMS (as described in this EMS Guide) are flexible to accommodate a wide range of facility types and sizes.

3. To implement an EMS, do we have to start from scratch?

Much of what you have in place now for environmental management probably can be incorporated into the EMS. There is no need to "start over."

4. How will an EMS affect my existing compliance requirements?

An EMS may result in more flexibility or less stringent legal compliance requirements, but will in all cases result in more robust compliance assurance. (Learn more about EPA's National Environmental Performance Track by visiting **www.epa.gov/performancetrack**. You may also want to contact your state environmental agency to inquire whether it has a recognition and reward program for facilities that implement an EMS.)

5. Do we need to be in 100% compliance in order to have an EMS?

No. The concept of continual improvement assumes that no facility is perfect. While an EMS should help your facility improve compliance and other measures of performance, problems may still arise. However, an effective EMS should help you find and fix these problems and prevent their recurrence.

EMS Costs and Benefits

Potential Costs

Internal

• Staff time (manager and other employees) (Note: Internal labor costs represent the bulk of the EMS resources expended by most facilities)

External

- Possible consulting assistance
- Possible outside training of personnel

Potential **Benefits**

- Improved environmental performance
- Enhanced compliance assurance
- Prevention of pollution and resource conservation
- New customers/markets
- Increased efficiency/reduced costs
- Enhanced employee morale
- Enhanced image with public, regulators, lenders, investors
- Employee awareness of environmental issues and responsibilities
- · Reduced risk

A recent U.S. National Aeronautics & Space Administration (NASA) study established a gold standard for measuring EMS implementation costs. NASA compiled implementation cost information at three centers piloting EMS, including estimates on in-house civil servant and contractor support. Though costs may be slightly different for a shipbuilding facility, the NASA costs range between \$111 and \$138 per capita with a range of hours spent from 1.3 to 2.3 per capita. The returns on such investments tend to have two-year paybacks and can generate savings of about \$3.50 for every dollar invested. These returns drive the savings and break-even points illustrated in *Exhibit 1-1: EMS Program Costs* and *Exhibit 1-2: EMS Program Savings*. These exhibits show the decrease in program costs following the initial start-up of the program, while the savings resulting from the program increase over time.

Exhibit 1-1: EMS Program Costs

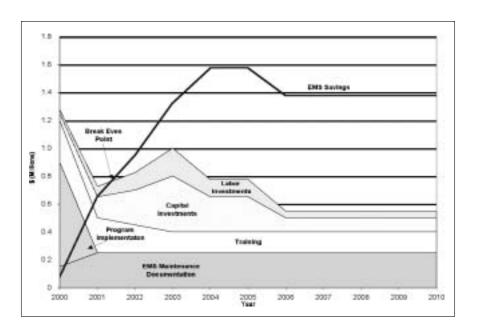
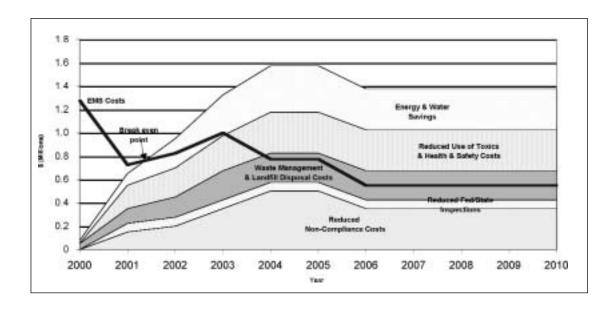
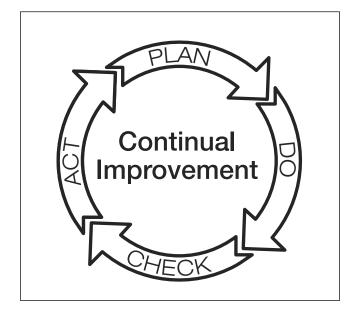



Exhibit 1-2: EMS Program Savings


Keys to a Successful EMS

You have probably heard of Total Quality Management (TQM). Shipyards may apply TQM principles to some of their operations and activities.

An effective EMS is built on TQM concepts. Most EMS models (including the ISO 14001 standard) are built on the "Plan, Do, Check, Act" model used in TQM and illustrated in *Exhibit 1-3: "Plan, Do, Check, Act" Model*. This model endorses the concept of continual improvement.

To improve environmental management, your facility needs to focus not only on what things happen but also on why they happen. Over time, the systematic identification and correction of system deficiencies leads to better environmental (and overall organizational) performance.

Exhibit 1-3: "Plan, Do, Check, Act" Model

Some of the keys to a successful EMS include:

Top Management Commitment

Applying TQM principles to the environmental area and providing adequate resources are the job of top management. A sample presentation for briefing top management on EMS, including a discussion of cost and benefits, is provided in Appendix E—Additional Tools. To initiate and sustain the EMS effort, top management must communicate to all employees the importance of:

- Making the environment an organizational priority (thinking of effective environmental management as fundamental to the facility's survival);
- Integrating environmental management throughout the facility (thinking about the environment as part of product/service and process development and delivery, among other activities); and
- Looking at problems as opportunities to improve (identifying problems, determining root causes, and preventing problem recurrence).

Focus on Continual Improvement

No facility is perfect. The concept of continual improvement recognizes that problems will occur. A committed facility learns from its mistakes and prevents similar problems from recurring.

Flexibility and Simplicity

An effective EMS must be dynamic to allow your facility to adapt to a quickly changing environment. For this reason, you should keep your EMS flexible and simple. This also helps make your EMS understandable for the people who must implement it your facility's managers and other employees.

Compatibility with Organizational Culture

The EMS approach and a facility's culture should be compatible. For some facilities, this involves a choice: (1) tailoring the EMS to the culture or (2) changing the culture to be compatible with the EMS approach. Bear in mind that changing an facility's culture can be a long-term process. Keeping this

compatibility issue in mind will help you ensure that the EMS meets your facility's needs.

Employee Awareness and Involvement

As you design and implement an EMS, you may encounter roadblocks. Some people may view an EMS as bureaucracy or extra expense. There also may be resistance to change or fear of new responsibilities. To overcome possible roadblocks, make sure that everybody understands why the facility needs an effective EMS, what their role will be, and how an EMS will help to control environmental impacts in a cost-effective manner. Employee involvement helps to demonstrate the facility's commitment to the environment and helps to ensure that the EMS is realistic and practical, and that it adds value.

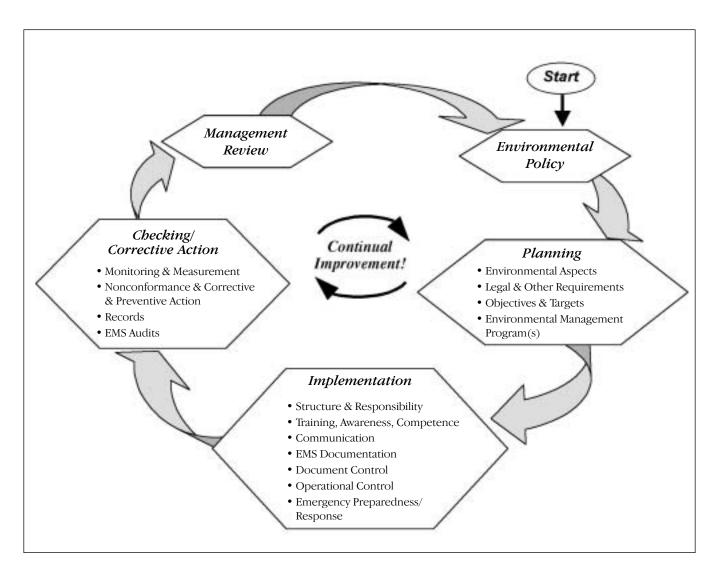
Building or improving an EMS (with the help of this EMS Guide) is an opportunity to assess how your shipyard manages environmental obligations and to find better (and more cost-effective) solutions. While you will probably identify some areas where your current EMS can be improved, this does not mean that you should change things that are working well! By reviewing what your facility does and how well it works, you can ensure that your EMS will be viable and effective, both now and in the future.

Finally, don't get discouraged if your system has some bugs at first - the focus is on continual improvement!

Here are some things to think about to expedite your EMS design and implementation process:

- *Pace yourself*—move quickly enough that employees stay interested and engaged, but not so fast that those involved are overloaded or that the effort becomes superficial.
- Don't re-invent the wheel—existing management practices should help address many EMS requirements.
- *Help is available*—don't hesitate to use it. Sources of help include the EPA, state & local governments, public assistance providers (such as universities), and consultants.
- Make efficient use of consultants—they can help you evaluate your EMS and suggest approaches used successfully elsewhere. Explore ways to hold consulting costs down. You may be able to join forces with other facilities to hire a consultant or sponsor a training course. Remember that an EMS developed by consultants "in isolation" will not work. Your own people need to be involved in the EMS development process.

Elements of an EMS


As mentioned earlier, your EMS should be built on the "Plan, Do, Check, Act" model to ensure that environmental matters are systematically identified, controlled, and monitored. Using this approach will help to ensure that performance of your EMS improves over time.

This section describes the 17 EMS elements that are common to most EMS models and notes the key linkages among these elements (see *Exhibit 1-4: EMS Model*). While several good EMS models are available, this EMS Guide uses the ISO 14001

standard as a starting point for describing EMS elements. This has been done for several reasons:

- ISO 14001 is a widely accepted international standard for EMS that focuses on continual improvement;
- Companies may be asked to demonstrate conformance with ISO 14001 as a condition of doing business in some markets; and
- The ISO 14001 standard is consistent with the key principles found in many EMS-based programs, including the EPA's Performance Track and many state environmental programs.

Exhibit 1-4: EMS Model

The elements of an EMS are listed below in the order in which they are discussed in this document. Note that these are not necessarily arranged in the order presented in the ISO 14001 Standard.

- 1. *Structure and responsibility*—Establish roles and responsibilities for environmental management and provide appropriate resources.
- 2. *Environmental policy*—Develop a statement of your facility's commitment to the environment. Use this policy as a framework for planning and action.
- 3. Legal and other requirements—Identify and ensure access to relevant laws and regulations, as well as other requirements to which your facility adheres.
- 4. *Environmental aspects*—Identify environmental attributes of your products, activities, and services. Determine those that could have significant impacts on the environment.
- 5. Objectives and targets—Establish environmental goals for your facility, in line with your policy, environmental impacts, the views of interested parties, and other factors.
- 6. *Environmental management program(s)*—Plan actions necessary to achieve your objectives and targets.
- 7. *Training, awareness, and competence*—Ensure that your employees are trained and capable of carrying out their environmental responsibilities.
- 8. *Communication*—Establish processes for internal and external communications on environmental management issues.

- 9. *EMS documentation*—Maintain information on your EMS and related documents.
- 10. *Document control*—Ensure effective management of procedures and other system documents.
- 11. *Operational control*—Identify, plan, and manage your operations and activities in line with your policy, objectives, and targets.
- 12. *Emergency preparedness and response* Identify possible emergencies and develop procedures for preventing and responding to them.
- 13. *Monitoring and measurement*—Monitor key activities and track performance. Conduct periodic assessments of compliance with legal requirements.
- 14. *Nonconformance and corrective and preventive action*—Identify and correct problems and prevent their recurrence.
- 15. *Records*—Maintain and manage records of EMS performance.
- 16. *EMS audits*—Periodically verify that your EMS is operating as intended.
- 17. *Management review*—Periodically review your EMS with an eye to continual improvement.

Integration of **Quality** and **Safety Systems**

Integration of Quality Management System (QMS) and EMS

If your facility already has, or is considering, a quality management system (based on ISO 9001: 1994, for example)—you will find significant synergy between what you need for quality management and for environmental management (see next page). A thorough discussion of quality and environmental management systems integration is provided in Appendix B—Integration of Environmental Management Systems and Quality Management Systems.

Aspects of Health and Safety in EMS

Your Health and Safety (H&S) program can play a significant role in EMS because it reflects how your facility currently handles human health concerns; in many areas, H&S and environmental concerns and requirements may be similar, and some requirements may be addressed concurrently. Therefore, some companies find that integrating H&S and EMS efforts can achieve improved compliance and/or cost savings. A questionnaire about integrating H&S into your EMS is in Appendix C—Health and Safety Integration Questionnaire.

Some **Common Aspects** of

Quality and Environmental Management Systems

QMS	EMS
Quality Policy	• Environmental Policy
Adequate Resources	Adequate Resources
Responsibilities and Authorities	 Responsibilities and Authorities
Training	Training
System Documentation	System Documentation
Process Controls	Operational Controls
Document Control	Document Control
System Audits	System Audits
Management Review	Management Review

Laying the Groundwork for an EMS

Below are the 10 key steps for laying the groundwork for an EMS.

A first step in EMS planning is to decide why

you are pursuing the development of an EMS. Are you trying to improve your environmental performance (for example, reducing risk associated with regulatory noncompliance or increasing pollution prevention)? Are you trying to promote involvement throughout the facility? Write down your goals and refer to them frequently as you move forward. As you design and implement the EMS, ask: How is this task going to help us achieve our goals? This also is a good time to define your EMS scope or "fenceline" (i.e., what is the "facility" that the EMS will cover? One location? Multiple locations? Should you "pilot" the EMS at one location then implement the system at other locations later?). See Defining an Appropriate EMS Scope at the end of this section.

One of the most crucial steps in the planning process is gaining top management's commitment to support EMS development and implementation.

Management must first understand the benefits of an EMS and what it will take to put an EMS in place. Explain the strengths and limitations of your current approach and how those limitations can affect your financial and business performance. Then explain how an EMS can help address these limitations. Management also has a role in ensuring that the goals for the EMS (see above) are clear and consistent with other organizational goals. Management's commitment should be communicated across the facility.

Small facilities may only have a single EMS "champion," but larger ones will usually have two levels of EMS leadership.

An Environmental Management Representative (EMR) should be chosen from the facility's top management group to be responsible

for the functioning of the EMS (i.e., making sure that all tasks relating to the EMS are identified and completed in a timely manner). The EMR is responsible for reporting periodically to the top facility management group on the progress and results of the EMS. An EMS Coordinator should have time to commit to the EMS-building process because his or her responsibility will be to work closely with the EMR and with the cross functional team (see below) to identify, assign, schedule, provide the necessary support for, and ensure completion of all tasks relating to the EMS.

A Cross Functional Team (CFT) with representatives from key management functions (such as engineering, finance, human resources, produc-

tion and/or service) can identify and assess issues, opportunities, and existing processes. Consider including contractors, suppliers, or other external parties as part of the CFT, where appropriate. The CFT will need to meet regularly, especially in the early stages of your EMS efforts. A CFT can help to ensure that procedures are practical and effective and can build commitment to and "ownership" of the EMS. See *Module 2* for more information.

Once the team has been selected, hold a kick-off meeting to discuss the facility's goals in implementing an EMS, the steps that need to be taken initially,

and the roles of team members, among other topics. If possible, get top management to describe its commitment to the EMS at this meeting. The kick-off meeting also is a good opportunity to provide some EMS training for CFT members. Follow this meeting with a communication to all employees.

The next step is for the CFT to conduct a gap analysis of your current compliance and other environmental programs/

systems and to compare these against the criteria for your EMS (such as ISO 14001). Evaluate your facility's structure, procedures, policies, environmental impacts, training programs, and other factors. Determine which parts of your current EMS are in good shape and which need additional work. See Conducting an Effective Gap Analysis at the end of this section and *Exhibit 1-5: Gap Analysis Tool/Self-Assessment Checklist*.

Based on the results of the preliminary review, prepare an implementation plan with a budget and schedule.

The plan should identify what key actions are needed, who will be responsible, what resources are needed, and when actions will be completed. Keep the plan flexible, but set some environmental performance improvement goals. Think about how you will maintain project focus and momentum over time. Look for possible "early successes" that can help to build momentum and reinforce the benefits of the EMS. Background, exhibits, and examples in *Module 2* will help you in planning the necessary human and financial resources.

The plan and budget should be reviewed and approved by top management. In some cases, there may be outside funding or

other types of assistance available (from a trade association, a state technical assistance office, etc.).

Employees are a great source of knowledge on environmental and health & safety issues related to their work areas as well as

on the effectiveness of current processes and procedures. They also can help the project team in drafting procedures. Ownership of the EMS will be greatly enhanced by meaningful employee involvement in the EMS development process.

As you build the EMS, be sure to regularly monitor your progress against the plan and communicate this progress within the fa-

cility. Be sure to communicate the accomplishments that have been made and describe what happens next. Build on small successes. Be sure to keep top management informed and engaged, especially if you might need additional resources.

Defining an Appropriate EMS Scope

Part of laying the groundwork for you EMS involves defining its scope. To define the scope, define boundaries around your facility's activities and determine the areas that your management can control and over which it has influence. Your facility should consider items such as the following:

- The boundaries of environmental licenses, permits or approvals;
- The extent of authority to determine how the environmental policy is implemented; and
- The extent of authority to allocate appropriate resources.

For initial development of its EMS, your facility may find that it is most effective to limit the scope of your EMS to any activities that occur within the facility's physical property limits or that occur on adjacent property as a direct result of your operations (for example, wastewater discharges or storm water run-off).

At a later time you might wish to expand the scope to include such things as:

- Transportation to and from your facility;
- Post consumer disposal, and other life-cycle considerations; and
- Purchasing of resources.

Temporary activities, such as construction sites, should be covered by the EMS if the facility has management control over them. A scope example is provided below.

Conducting an Effective Gap Analysis

One important component of laying the groundwork for an EMS is conducting an initial review or "gap analysis" to evaluate your current program and specific needs. Although the gap analysis is very important, it can be counter-productive if you only focus on what it is missing. It is also important to recognize what your facility is already doing and to evaluate ways to improve and build on existing programs and activities. Some facilities may find

that they already perform many of the suggested activities. This is good; there is no need to rebuild a program from scratch. Looking outside the environmental arena can provide inspiration. An area such as a quality management system may not be strictly environmental, but may help with your EMS. If an activity you already perform helps you manage important facility activities, it can probably help in environmental management as well.

A gap analysis is designed to answer the following questions:

- How well are the facility and its environmental programs performing?
- Has the facility defined the environmental goals it hopes to achieve?
- What are the gaps between existing programs and the elements and criteria for an EMS?
- What existing programs and activities can serve as the best foundation for improved environmental performance?

Building on existing programs becomes even more important when facilities are faced with diminishing resources and are being asked to "do more with less." Through careful analysis, facilities will probably find ways to address some EMS elements at little or no cost. For example, developing a policy statement on environmental protection does not require large investments in personnel or

Scope of ABC Facility's EMS

The ABC Company has ship repair facilities in California, Louisiana, and Virginia. The Company is committed to improving environmental performance through the use of innovative techniques, such as EMS, which it is implementing through a phased, facility-by-facility approach. Thus, while the Company's EMS currently covers only its New Orleans, Louisiana, facility, it has plans to address its other facilities through EMSs over time.

The EMS for ABC Company's New Orleans facility includes all on-site operations that support ship repair and related operations (e.g., equipment maintenance, ship transport and storage, shipyard maintenance, administrative functions,

and contractors working on the property). The EMS also addresses emissions and discharges regulated through environmental permits and other legal requirements. However, the EMS includes only those environmental aspects over which the facility has control or influence. For example, the EMS addresses waste disposal even though the facility is not the final waste disposal site. Rather, the facility will influence the safe disposition of wastes through research and periodic audits of its waste transport and disposal contractors. In this way, the facility will support environmental protection and risk-reduction goals associated with its EMS.

equipment, yet it can carry facility-wide visibility and impact. Ultimately, facilities that are able to invest in the implementation of EMS elements are likely to realize a high return on that investment through an improved "risk profile" at their facilities; this can lower costs associated with regulatory compliance, health and safety, incident response, and

the cleanup of contaminated sites. Non-monetary benefits, such as improved public opinion and employee satisfaction, can also be achieved.

Use *Exhibit 1-5: Gap Analysis Tool/Self- Assessment Checklist* to assess your current programs and specific needs and to help you get started with the development of an EMS.

Facility Name: Date: Assessor(s):

Environmental Management System (EMS)					Closed
Requirement	Yes	No	NA	Findings/Remarks	(Complete)
Module 2: Structure and Responsibility					
Facility has defined the roles, responsibilities,					
and authorities to facilitate an effective EMS.					
Facility management has appointed an					
Environmental Management Representative					
(EMR) with defined roles and responsibilities					
to implement the EMS.					
Facility EMR reports on the performance of the					
EMS to top management for review and					
continuous improvement.					
Module 3: Environmental Policy					
Top management has defined the facility's					
environmental policy.					
Policy is specific to facility and is appropriate					
to the nature, scale, and environmental impacts					
of its activities, products, or services.					
Policy includes a commitment to continuous					
improvement in environmental performance					
and the prevention of pollution.					
Policy includes a commitment to sharing					
information on EMS performance with the					
community.					
Policy includes a commitment to comply with					
relevant environmental legislation and					
regulations.					
Policy includes a commitment to meeting other					
requirements to which the facility subscribes.					
Policy provides the framework for setting and					
reviewing environmental objectives and					
targets.					
Policy is implemented and maintained.					
Policy is communicated to all employees.					
Policy is made available to the public.	<u> </u>				

EMS Implementation Guide for the Shipbuilding and Ship Repair Industry

Exhibit 1-5: Gap Analysis Tool/Self-Assessment Checklist

Module 4: Legal and Other Requirements		
Facility has a procedure to identify and have		
access to legal and other requirements.		
Facility maintains access to all current Federal,		
State, and local regulations and ordinances		
(e.g., by contacting the appropriate authorities		
or subscribing to a regulatory update service).		
Module 5: Environmental Aspects		
Facility has established and maintains a		
procedure to identify the environmental aspects		
that it can control or over which it can be		
expected to have an influence in order to		
determine those that have or can have		
significant impacts.		
In its significant environmental aspect (SEA)		
determination facility has considered the		
aspects associated with on-site contractor		
activities.		
SEAs form the basis for establishing process		
and management controls, environmental		
improvement programs, and SEAs for further		
investigation and study.		
Module 6: Objectives and Targets		
Facility has considered technological options,		
and financial, operational, and business		
requirements in establishing its objectives and		
targets.		
Facility has considering legal and other		
requirements in establishing objectives and		
targets.		
Facility has considered the views of interested		
parties in establishing objectives and targets.		
Facility objectives and targets are consistent		
with environmental policy and its commitment		
to prevention of pollution.		

Laying the Groundwork for EMS

US EPA ARCHIVE DOCUMENT

Module 7: Environmental Management Prog	rams		
Facility has established and maintained EMPs			
that include the means and time-frame for			
achieving its objectives and targets.			
New activities, products, or services are			
reviewed for potential EMPs, plans, and			
controls.			
Facility has defined roles and responsibilities			
for environmental review of new projects.			
Project originator reviews and characterizes the			
environmental and energy aspects of a new			
project.			
Module 8: Training, Awareness, and Compet	ence		
The facility has performed a comprehensive			
environmental training needs analysis.			
Personnel whose work may create a significant			
impact or is associated with an SEA have			
received appropriate training.			
Facility has a procedure to make its employees			
aware of the importance of conformance with			
policy and procedures, the significant impacts			
associated with their work, and their roles and			
responsibilities as these pertain to the			
environmental policy.			
Facility has a procedure to make its employees			
aware of: requirements of the EMS, the			
possible consequences of departure from			
operating procedures, and emergency			
preparedness and response.			
Facility personnel performing tasks that can			
cause significant environmental impact are			
competent on the basis of education, training,			
and/or experience.			

Module 9: Communication			
Facility has a procedure for internal			
communication among the various levels and			
functions of the facility.			
Internal communications procedures are used			
to facilitate implementation of regulatory,			
facility policy, and other requirements.			
Facility has a procedure to log external			
communications and record the responses to			
external communications that concern			
environmental issues.			
EMR or designee responds to inquiries from			
the community and regulatory agencies.			
A designated person (for example, an			
Employee Relations Manager or Corporate			
Communications Officer), in consultation with			
the EMR, is responsible for responding to			
media communications.			
Where the external communication relates to			
an environmental incident, appropriate			
emergency response procedures are identified			
(see Module 13) and followed. The facility has			
considered processes for informal			
communication of its SEAs and recorded its			
decision.			
Module 10: EMS Documentation	 1		
Facility has information in paper or electronic			
form to describe the core elements of the EMS			
and their interactions.			
Facility has information in paper or electronic			
form to provide direction to related			
documentation.			

_
ayi.
aying
the
ð
5
Groundwork
₹
웃
rk for EMS
Ē
S

US EPA ARCHIVE DOCUMENT

Module 11: Document Control			
Facility has a procedure for controlling all			
documents required by the EMS.			
Authorized personnel review documents and			
forms for adequacy before use or release.			
The EMR or designee maintains a master list of			
documents and records.			
Relevant documents are available at the			
locations where they are needed.			
Obsolete documents are promptly removed			
from all points of use or otherwise assured			
against unintended use.			
Obsolete documents retained for legal or			
preservation purposes are properly identified.			
Facility has a procedure for defining			
responsibility concerning the creation and			
modification of documents.			
Documentation is legible, dated and readily			
identifiable, maintained in an orderly manner,			
and retained for a specified period.			
Module 12: Operational Control	1		
Facility has identified operations associated			
with SEAs.			
Facility has planned maintenance activities to			
ensure that they are carried out under specified			
conditions.			
Operations associated with SEAs have			
documented procedures to cover situations			
where their absence could lead to deviations			
from the policy, objectives, and/or targets.			
Procedures stipulate operating conditions.			
Facility has a procedure related to the			
identifiable SEAs of goods and services			
provided by contractors and vendors and			
communicates procedures and requirements to			
suppliers and contractors.			

Facility or initiating activity communicates	
relevant facility-specific environmental	
procedures, work practices, and requirements	
to affected contractors prior to the	
commencement of requested work.	
Module 13: Emergency Preparedness and Response	
Environmental incidents and emergencies	
likely to occur at the facility have been	
identified.	
Methods for preventing, mitigating, and	
responding to likely releases that require	
emergency response have been established and	
maintained at the facility and involve the	
appropriate response personnel.	
Roles and responsibilities for communications	
within the facility and for obtaining outside	
support services (e.g., police, fire) have been	
established and are maintained at the facility.	
The EP&R procedures at the facility are	
reviewed and revised on an annual basis or as	
necessary.	
EP&R methods and communications are tested	
as practicable.	
The facility emergency response leader records	
information necessary to determine corrective	
and preventive actions and any improvements	
to existing procedures that may be needed.	
Module 14: Monitoring and Measurement	
Facility has documented procedures for	
monitoring and measuring key characteristics	
of operations associated with SEAs.	
Facility has established metrics to track	
performance, relevant operational controls, and	
conformance with objectives and targets.	
Monitoring and measuring equipment is	
calibrated and maintained as evidenced by	
appropriate records.	

US EPA ARCHIVE DOCUMENT

,	2	٥	
(2	2	
	=	5	:
)
	2	2	
	2	Š	
		7.	

Facility has documented procedures for				
periodically evaluating compliance with				
relevant environmental legislation and				
regulations.				
EMR or designee is responsible for planning,				
scheduling, and implementing internal				
environmental regulatory compliance				
assessments, including the identification of				
required resources.				
The assessment team records audit information				
and issues a Corrective and Preventive Action				
Notice (CAPAN) when appropriate. Upon				
completion of corrective and/or preventative				
actions, the responsible staff person furnishes				
the EMR or designee with a signed or				
acknowledged CAPAN (see Module 15).				
Module 15: Nonconformance and Corrective	and Pro	eventive A	ction	
Facility has a procedure for nonconformance				
and corrective and preventive actions defining				
responsibility and authority for investigating				
and mitigating environmental impacts.				
Each activity within the facility is responsible				
for identifying specific techniques to: identify				
the root cause(s); take appropriate corrective or				
preventive action; and verify effectiveness and				
prevent recurrence where possible.				
Facility records and makes changes in				
documented procedures resulting from				
corrective and preventive actions.				
Module 16: Records				
Facility has a procedure to identify, maintain,	1			
and dispose of environmental records.				
Each activity responsible for maintaining a	1			
record has the responsibility for establishing	1			
the method for filing and indexing the records	1			
for accessibility.				

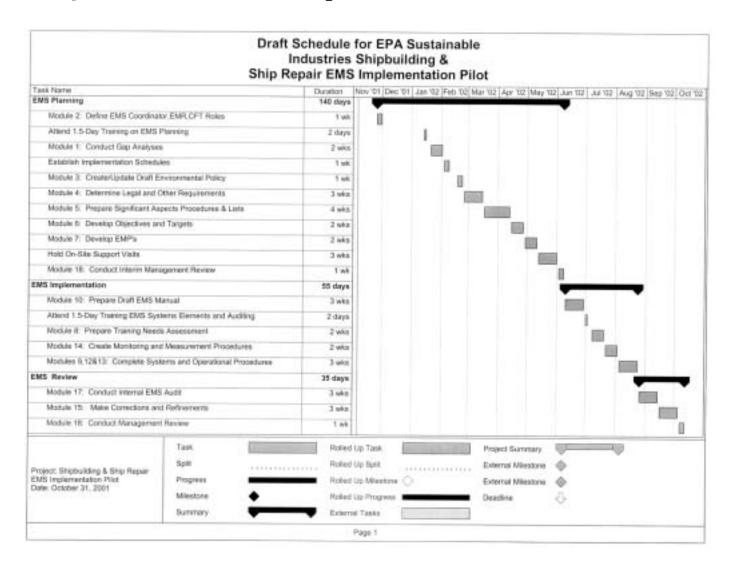
FF1 11 11 11 11 1 1 C.1	1 1 1	
The responsible activity is the generator of the		
record.		
Facility records procedure is consistent with		
corporate record retention procedures.		
Module 17: EMS Audits		
Facility has a program and procedure for		
periodic EMS audits.		
The EMR or designee is responsible for		
planning, scheduling, and implementing		
internal EMS audits.		
An EMS audit team will be formed whose		
membership has no responsibility within the		
activity to be audited.		
An EMS audit schedule will be developed for		
each activity to be audited. Audit frequency is		
determined on priority basis that accounts for		
previous audit results and the environmental		
importance of the activity, and is not to be less		
than the interval that the facility determines.		
The EMS audit team has established a checklist		
of questions relating to the EMS. These		
questions are reviewed and amended as		
necessary based on audit findings and other		
factors.		
During the audit, the EMS audit team records		
audit observations, indicating items checked,		
individuals interviewed, any concerns		
identified and any corrective or preventive		
actions completed during the audit.		
The audit team documents its findings using an		
audit findings form.		
The area representatives address the corrective		
and preventive action sections within the		
specified time limit and return the information		
to the audit team and the EMR.		
The EMR notifies facility management of		
likely regulatory non-compliance.		

DOCUMENT **EPA ARCHIVE** The audit team reviews corrective actions and confirms proper implementation either by a subsequent check or during the next audit.

The EMR or designee submits audit summaries for management review.

Module 18: Management Review

Management reviews are conducted by the EMR and the management committee.


The EMR schedules these reviews at intervals that the facility determines.

The management review addresses the possible need for changes to policy, objectives, and other elements of the EMS, in light of EMS audit results, changing circumstances, and the commitment to continuous improvement.

Examples

The following example, *Example 1-1: Schedule for EMS Implementation*, is a schedule that you can use to develop your own EMS implementation timeline.

Example 1-1: Schedule for EMS Implementation

