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Benchmark Objectives of the AHETF Monitoring Program 

The AHETF monitoring program is not an experimental study whose purpose is 
to test hypotheses about the distribution of exposure or about potential determinants of 
exposure. Rather, its purpose is to collect sufficient data to meet specific minimum or 
‘benchmark’ adequacy requirements.  These data, possibly augmented by additional 
exposure data from other sources, will then be used for a variety of regulatory purposes 
by numerous organizations.  The benchmark data objective(s) for the AHETF program 
will be of the form: 

The number (and configuration) of sampled monitoring units (MUs) 
should be adequate so that selected measures of the dermal exposure 
distribution (e.g., means, percentiles) are accurate to within K-fold when 
exposures are normalized by (i.e., divided by) the amount of active 
ingredient (ai) handled. 

The desired relative accuracy, K, can be scenario dependent.  For example, less accuracy 
(i.e., a larger value of K) might be tolerated for scenarios that are expected to have lower 
exposures. Such considerations are often necessary to better allocate limited resources 
and avoid unnecessary human exposure monitoring. 

Using K-fold accuracy for exposure normalized by amount of ai handled as a 
benchmark does not necessarily imply that other types of exposure distribution will be 
estimated less accurately.  Because many potential normalizing factors (e.g., time, 
concentration) are usually correlated with the amount of ai handled, similar accuracies 
are likely in those cases as well.  However, for design purposes, the AHETF monitoring 
program only uses the distribution of exposure normalized by amount of ai handled as a 
data adequacy benchmark. 

A secondary benchmark objective is sometimes considered for scenarios for 
which the practical range of amount of ai handled is sufficiently large.  In such cases it is 
also desired that: 

The number (and configuration) of monitoring units (MUs) should be 
adequate so that it is possible to distinguish between complete 
proportionality and complete independence of dermal exposure and 
amount of ai handled. 

It is not the objective of the AHETF monitoring program to guarantee that the 
data will be able to discern more complicated relationships between exposure and amount 
of ai handled. Nor is it the intent to guarantee that future analyses of the data will be able 
to choose between several potential normalizing factors or combinations of factors. 
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It must be emphasized that the use of amount of ai handled in these benchmark 
objectives is both reasonable and based on considerable historical precedent. This does 
not mean, however, that a proportional relationship between dermal exposure and amount 
of ai handled is assumed to be always the case.  In fact, the AHETF monitoring data 
(assembled in a database called AHED™) will always include measured exposures 
(generally µg of ai for the entire monitoring period) and the values of many potential 
normalizing factors, including amount of ai handled.  Users of the data are free to 
consider any (or no) normalization. 

Assumptions and Sampling Model for MU Exposures 

The AHETF monitoring program uses purposive diversity sampling (a type of 
non-random sampling) to select a sample of individuals and conditions (i.e., monitoring 
units). This reflects very complex logistical limitations.   For the purposes of determining 
data adequacy, however, a surrogate cluster-sampling model is used.  This surrogate 
sampling model has the following characteristics: 

•	 Observed exposures can be viewed as arising (at least approximately) from a 
random sample of clusters and then from a random sample of monitoring units 
within each cluster. These clusters are merely artifacts of the sampling process 
and are usually associated with separate studies in geographically separated 
locations (e.g., different states or regions).  Clusters could also be viewed as 
studies separated by sizeable time periods (e.g., different years). 

•	 The sampling distribution of normalized exposures within and between clusters is, 
at least approximately, lognormal. 

Thus, for determining sample sizes, normalized exposures, Q, are assumed to follow the 
nested variance component model  

(1) 	 Log ( Eij / Hij ) = Log Qij = Log GMQ + Ci + Wij 

where 
Eij = the exposure obtained for MU j in cluster i 
Hij = the amount of ai handled by worker for MU j in cluster i 
Qij = the exposure for MU j in cluster i normalized by amount of ai handled 
GMQ = the population geometric mean for normalized exposure 
Ci = a random effect of cluster i 
Wij = a random effect of MU j within cluster i  

The random effects Ci and Wij are normally distributed with means 0 and variances Vc 
and Vw, respectively. 
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The population variance of log Q is then equal to V = Vc + Vw and the square root 
of V is the population standard deviation, SD. The quantity GSDQ = antilog (SD) is the 
population geometric standard deviation of normalized exposure. The intra-cluster 
correlation (i.e., the intraclass correlation due to clusters) is defined as 

(2) ICC = Vc / V 

Under this sampling model, the only quantities needed to determine relative accuracy of 
population parameter estimates are reasonable values for GSDQ and ICC. 

Estimates of GSD and ICC from Existing Data 

Estimates of the GSDQ and ICC were obtained from existing AHETF monitoring 
data. Although these data are incomplete, they are sufficient to provide reasonable values 
for normalized exposure variation and the intra-cluster correlation.  The scenarios and 
clusters for which data were available are listed in Table 1. 

For each scenario in Table 1, both GSDQ and ICC were estimated by fitting the 
variance-component sampling model (1) to the available data. The estimates obtained for 
total dermal exposure are given in Table 2.  For completeness, the estimates obtained for 
inhalation exposure are shown in Table 3. Two scenarios, closed granular ML and 
hopper box seed treatment MLAP contain only a single cluster and therefore the ICC 
cannot be estimated.  For these scenarios the GSDQ is only an estimate of the within-
cluster variation. The confidence intervals for GSDQ and ICC are parametric bootstrap 
percentile intervals based on N=1000 bootstrap replications.  Also shown in both tables 
are various summary measures of these estimates over all scenarios. 

For normalized dermal exposure (Table 2) the GSDQ estimates range from about 
2 to 5 with a typical value slightly less than 4.  The ICC estimates range from 0 to 0.66.  
As the confidence intervals indicate, however, uncertainties in the individual ICC 
estimates are very large.  This is not unusual when the number of clusters is small.  The 
mean ICC is slightly less than 0.3.  Table 2 also gives the estimates of GSDQ and ICC 
obtained from the fit of a mixed model using all the scenario data together.  In this case, 
the geometric mean was allowed to differ for each scenario but common values of GSDQ 
and ICC were required. These common values of GSDQ and ICC were 3.8 and 0.26, 
respectively. 

Normalized inhalation exposures (Table 3) appear only slightly more variable 
than dermal exposures. The GSDQ estimates range from about 2 to 6 with a typical value 
being slightly greater than 4. The ICC estimates range from 0 to 0.71 with a mean 
around 0.36. For the combined model, the common GSDQ and ICC estimates are 4.2 and 
0.37, respectively. 
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 From this analysis it appears that a GSDQ of 4 and an ICC of 0.3 are reasonable 
values of variability and within-cluster correlation to use for planning purposes.  
Although the benchmark objectives apply only to dermal exposure, these two values 
should be satisfactory for inhalation exposure as well. The normalized inhalation 
exposure, at least on the average, appears to be only slightly more variable than dermal 
exposure. 

Determining Sample Sizes Necessary to Meet the Primary Benchmark Objective 

As stated above, the primary objective of the AHETF monitoring program is to 
achieve adequate relative accuracy of selected parameters of the normalized exposure 
distribution. Given the sampling model (1), this benchmark target can be stated more 
precisely as: 

Estimates of the geometric mean, arithmetic mean, and 95th percentile of 
an underlying lognormal distribution should be within K-fold of the true 
values at least 95% of the time.  

Thus, if θ denotes the distribution parameter of interest and T is the estimate of that 
parameter obtained from the monitoring data then we would like there to be at least a 
95% chance that T/θ is between 1/K and K. If we denote the 2.5th and 97.5th percentiles 
of the sampling distribution of T by T2.5 and T97.5, respectively, then this benchmark 
objective just says that 

(3) 	RAθ = Max ( T97.5 / θ, θ / T2.5 ) ≤  3 

The quantity RAθ in (3) is defined as the relative accuracy of the estimate for the 
distributional parameter θ. 

A straightforward simulation approach can be used to determine relative accuracy 
of T relative to the parameter θ: 

1.	 Simulate a set of normalized exposure data for Nc clusters and Nm 
monitoring units per cluster using the sampling model defined in (1) 
above. 

2.	 From each set of simulated data, calculate T, the estimate of θ 

3.	 Repeat steps 1 and 2 above M times to get M values of the estimate T 

4.	 From these M T-values calculate T2.5 and T97.5, the 2.5th and 97.5th 

percentiles, respectively. 

5.	 Calculate the relative accuracy RAθ from definition (3) above. 
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The number of simulations, M, should be some large number such as 1,000 or 10,000.  

Relative accuracy can be computed once the samples sizes and the method for 
computing the various T from the data are specified.  This raises the question of which 
types of estimates of the geometric mean, arithmetic mean, and 95th percentile to use. 
For example, one must choose between: 

• Empirical or lognormal estimates, and 

• Simple random sampling versus cluster random sampling estimates. 

The relative accuracies could differ depending on the particular estimates used.  At first 
glance it might seem best to use the estimation method that is most closely aligned with 
the sampling model used.  In this case one should probably use the fit to the variance 
component model described in (1) above to get estimates for the geometric mean (GMQ) 
and the total geometric standard deviation (GSDQ). To get the arithmetic mean (AMQ) 
and 95th percentile (Q95) one could then use the lognormal relationships: 

AMQ = GMQ × Exp { ½ (logeGSDQ)2 } 
(4) 

Q95 = GMQ × Exp { Z95 logeGSDQ } 

where Z95 is the 95th percentile of the standard normal distribution.  For simplicity these 
will be labeled the ‘cluster sampling estimates’. 

Alternatively, it can be argued that few if any users of the AHETF monitoring 
data will choose to (or be able to) fit variance component models to the data.  They will 
probably ignore the sampling model and use more conventional estimates.  In this case 
empirical estimates of GMQ and AMQ would be used (e.g., the standard formulas used in 
spreadsheet programs such as Excel).  The 95th percentile could also be calculated 
empirically as if the data were a simple random sample from an arbitrary distribution.  
But data users might be less inclined to do this, especially with smaller sample sizes.  The 
lognormal percentile estimate in (4) above would then still be used but with the mixed 
model GSDQ estimate replaced with the more conventional GSDQ (i.e., the back-
transformed simple standard deviation of log exposures.)  For convenience, these will be 
labeled the ‘simple random sampling estimates’. 

Example: Determination of Sample Sizes when K=3 

As an example, consider the case where an approximate 3-fold relative accuracy 
is desired. It is assumed that the true GSDQ and ICC are 4 and 0.3, respectively.  The 
simulation method above was implemented in SAS with M=10,000 and relative 
accuracies were calculated for different combinations of Nc and Nm. These results are 
listed in Table 4. Both simple random sampling and cluster random sampling estimates 
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were computed.  However, since both types of estimates gave very similar relative 
accuracies, only the simple random sampling results are presented. 

From these results it appears that, on balance, a sample of 5 clusters with 5 MUs 
per cluster (a total of N=25 monitoring units) will achieve around 3-fold relative accuracy 
under sampling model (1).  The geometric mean will be the most accurate since it is in 
the center of the lognormal distribution.  The 95th percentile and, usually, the arithmetic 
mean estimates tend to be the least accurate for any sample size.  Lower percentiles (e.g. 
75th, 90th) will have greater accuracy than the 95th percentile and higher percentiles will 
be less accurate. 

Increasing either Nc or Nm will improve the accuracy, but adding clusters is more 
effective than increasing the number of MUs per cluster. With just 4 clusters it takes 10 
MUs per cluster (N=40) to achieve about the same level of accuracy as with Nc=5 and 
Nm=5. A configuration of 6 clusters with 4 MUs/cluster is slightly better than (Nc, Nm) = 
(5, 5). 

It is important to consider how sensitive the relative accuracy with (Nc, Nm) = (5, 
5) is to the assumed values of GSDQ and ICC. Table 5 gives the results of simulations 
varying ICC from 0.1 to 0.5 while GSDQ is kept at 4. As would be expected, increasing 
ICC reduces the relative accuracy slightly and decreasing the within-cluster correlation 
improves it.  These changes are modest, however. 

Table 6 shows the effect of changes in GSDQ on relative accuracy.  As was the 
case with ICC, increasing GSDQ when ICC is fixed at 0.3 makes relative accuracy worse 
and decreasing GSDQ improves accuracy.  Overall, however, the effects of changes in 
the GSD of ±1 do not appear substantial. 

Table 7 shows more extreme situations in which both GSDQ and ICC are 
perturbed together. As would be expected the worse case is seen when both GSDQ and 
ICC increase.  Relative accuracy for the arithmetic mean and 95th percentile can be nearly 
5-fold when GSDQ=5 and ICC=0.5. On the other hand, when these two variation 
parameters vary in opposite directions, little change in accuracy will occur.  Of course, if 
both parameters decrease, great improvements in accuracy can occur. 

Table 8 demonstrates what configurations of (Nc, Nm) would be necessary to 
achieve 3-fold accuracy for the worst-case situation shown in Table 7.  It appears that 
with 5 MUs/cluster, approximately 9-10 clusters (45-50 MUs total) would be necessary.  
With 3 MUs/cluster it would take about 11 clusters (N=33) to achieve the same degree of 
accuracy. 

In this example, a configuration consisting of 5 clusters with 5 MUs/cluster seems 
to be a reasonable compromise given the existing variation seen in the current exposure 
data. Obviously, fewer resources would be necessary when it is felt that the GSD and 
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ICC for normalized exposure can be less than the assumed values of 4 and 0.3, 
respectively.  Smaller sample sizes could also be used when K>3 is considered 
acceptable. For tighter accuracy requirements additional samples would be needed.  In 
this case, greater gains can be achieved by focusing on more clusters with fewer 
MUs/cluster. 

Investigating the Secondary Benchmark Objective 

A more precise characterization of the secondary goal first requires the sampling 
model (1) be recast in a more general form assuming that log exposure is linearly related 
to log amount of ai handled: 

(5) Log Eij  = α + β Log Hij + Ci + Wij 

When exposure is proportional to amount of ai handled, then β=1, α = Log GMQ and 
equation (5) reduces to (1). That is, 

(6) Log Eij  - Log Hij = Log Qij = Log GMQ + Ci + Wij 

If β=0 in (5), then exposure is unrelated to amount of ai handled.  In this case (5) 
simplifies to: 

(7) Log Eij  = LogeGME + Ci + Wij 

Thus, the difference between a proportional relationship and independence can be 
reduced simply to whether β=1 or β=0, respectively. In this context, then, the secondary 
goal can be stated more precisely as: 

The data should be adequate so that, if the sampling model (5) is 
approximately true, the null hypothesis H0: β=0 will be rejected ( in 
favor of HA: β>0) at least 80% of the time when β=1. Because of 
symmetry, this is equivalent to saying that the null hypothesis H0: β=1 
will be rejected (in favor of HA: β<1) at least 80% of the time when β=0. 

In addition to the number of clusters (Nc) and the number of MUs/cluster (Nm), the 
power to discriminate proportionally from independence also depends on the specific 
values of ai handled, Hij. This ai-configuration has several different aspects that need to 
be considered. Namely: 

• the range in the amount of ai handled and 

• the degree of confounding of the amount of ai handled with clusters 
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In general, the wider the range in ai amount the higher the power.  Power is also 
increased when there is a large range in ai amount within clusters. When clusters have 
non-overlapping ranges of ai handled, then cluster effects become confounded with the 
effects of ai and power is reduced. 

For any given scenario, the relative range in the amount of ai handled, RH, is 
defined to be the ratio of the maximum to the minimum amounts.  Obviously there are an 
infinite variety of Hij levels that can be specified for any given RH. For the purposes of 
investigating power under sampling model (5), however, it is sufficient to consider just 
two standardized configurations of amount of ai handled. 

For both of these configurations it is assumed each of the N=Nc×Nm MUs have 
unique amounts of ai handled and that these levels are equally spaced on a logarithmic 
scale. That is, if Hmin and Hmax are the minimum and maximum amounts of ai handled in 
the scenario, then RH = Hmax / Hmin and the N different ai levels are: 

(8) Hmin, Hmin×∆, Hmin×∆2, Hmin×∆3, …, Hmin×∆N-1 = Hmax 

where 

(9) ∆ = ( Hmax/Hmin)1/(N-1) 

The difference between these two configurations is how the N ai amounts are 
allocated among the Nc clusters. If H1, H2, H3, …, HN denote the ordered values of 
amount of ai handled then the two configurations are defined as follows:  

Configuration A (minimum within-cluster variation) 
In this configuration the smallest Nm ai amounts are assumed to be in 

cluster 1, the next smallest Nm ai amounts are in cluster 2, and so forth.  For 
example, if Nc=3 and Nm=4 then configuration A would be: 

Cluster 1 = (H1, H2, H3, H4)

Cluster 2 = (H5, H6, H7, H8)

Cluster 3 = (H9, H10, H11, H12)


Configuration B (maximum within-cluster variation) 
In this configuration, cluster 1 is allocated ai level 1, Nc+1, 2Nc+1, etc. 

Cluster 2 then gets ai level 2, Nc+2, 2Nc+2, etc. Again, if Nc=3 and Nm=4 then 
configuration B would be: 

Cluster 1 = (H1, H4, H7, H10)

Cluster 2 = (H2, H5, H8, H11)

Cluster 3 = (H3, H6, H9, H12)
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In practice, exact control over the amount of ai handled is difficult.  Consequently, the 
spacing of amount of ai handled will only be approximately logarithmic and 
configurations will be intermediate between A and B. 

A simulation method for determining the power for rejecting the null hypothesis 
H0: β=0 when β=1 is as follows: 

1.	 For each of the two configurations of amount of  ai handled, simulate a set 
of exposure data for Nc clusters and Nm monitoring units per cluster using 
the sampling model defined by (5) above with β=1. 

2.	 For each set of simulated data, perform a mixed-model regression analysis 
using model (5) above.  Determine if the slope is significantly greater than 
zero at the 5% level. Do this for both configurations A and B 

3.	 Repeat steps 1 and 2 above for M times and tally the proportion of time 
that a significant result is obtained. This proportion is the estimated power 
to reject β=0 when β=1 is true. 

Example: Power to Distinguish Proportionality from Independence  

As an example, it is again assumed that the residual GSD (i.e., GSDQ) is equal to 
4 and the ICC=0.3.  The simulation method above was implemented in SAS using 
M=1,000. Table 9 lists the powers obtained for different values of RH when Nc=5 and 
Nm=5. When the range of ai handled is only 5-fold there is insufficient power to 
discriminate between proportionality and independence.  The power for configuration B 
is considerably better (0.63) but still does not reach 0.8, a conventionally accepted 
minimum power.  As the range of amount of ai handled increases, the power obtained for 
both configurations increases as well. It is clear, however, that configuration A always 
has the lower power. Configuration B has a power of 0.82 when RH is only 8. But the 
range in ai handled must be nearly 50-fold before acceptable power is obtained with 
configuration A. The reason for this disparity is straightforward: when clusters have non-
overlapping ranges of ai handled, the cluster differences will tend to mask the 
relationship between amount of ai handled and exposure.  

Table 10 gives the results of additional simulations varying Nc and Nm while 
assuming an order of magnitude range in the amount of ai handled (i.e., RH=10). These 
results show that the masking effect of clusters reflected in configuration A can be 
overcome by increasing the number of clusters.  As Nc increases from 5 to 12 the power 
for configuration A increases from 0.42 to 0.8.  The power for configuration B increases 
with Nc as well, but it was already quite large. Thus, with RH=10, it would take 60 
monitoring units in 12 clusters to achieve 80% power for both configurations.   
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The simulation results in Table 10 also show that the power can be improved by 
increasing the number of MUs per cluster (Nm) in lieu of the number of clusters (Nc). 
However, this approach to improving power is very inefficient.  With 5 clusters, it takes 
Nm=60 monitoring units per cluster to achieve 80% power for configuration A.  
Obviously, devoting a total of N=5×60=300 monitoring units to a single scenario is quite 
impractical.  This is especially true when only N=60 MUs in 12 clusters would achieve 
the same power. 

The efficiency of Nc over Nm raises the possibility of reducing the total N by 
using more clusters with few MUs per cluster.  Table 10 shows that when RH=10 
adequate power can be obtained for configuration A with N=36 monitoring units if there 
are 18 clusters with only 2 MUs/cluster. Note, however, that when the size of the cluster 
(Nm) decreases, the power for configuration B also decreases, albeit only slightly.  

This example illustrates that acceptable power to discriminate between 
proportionality and independence can be attained with Nc=5 and Nm=5 if RH is 
sufficiently wide or if the ai-configuration is closer to B than to A.  Increasing the 
number of clusters will improve power, but little advantage is realized by increasing the 
number of MUs/cluster. 

Summary 

Nested lognormal variance component assumptions can be used in a surrogate-
sampling model to determine the sample sizes necessary to achieve any desired level of 
accuracy of distribution parameter estimates.  The only requirements are reasonable 
values for the geometric standard deviation of normalized exposure (GSDQ) and the 
within-cluster correlation (ICC). Analyses of both dermal and inhalation exposures from 
several scenarios suggests that GSDQ=4 and ICC=0.3 are reasonable for both dermal and 
inhalation exposure. An example analysis using a 3-fold accuracy requirement suggests 
that 5 clusters with 5 monitoring units per cluster achieve this benchmark goal. 

The same model, along with two assumed configurations for amounts of ai 
handled, can be used to investigate the power for distinguishing between proportionality 
and independence between exposure and amount of ai handled.  An example analysis 
using GSDQ=4 and ICC=0.3 indicates that adequate power is possible with 5 clusters 
with 5 MUs/cluster if (1) the range in amount of ai handled is greater than an order of 
magnitude or (2) there is strong overlap between the ai levels in different clusters.  

Page 12 of 19 



Procedures for Determining the Required Number of Clusters and Monitoring Units 
per Cluster to Achieve Benchmark Adequacy 

Table 1. 	 Scenarios and Clusters with Available Monitoring Unit (MU) 
Exposure Results 

Scenario Clusters 
Monitoring 

Dates # MUs 

Closed Granular ML AH516-M, 5 towns in NE Apr-May 1998 15 

Airblast Application AHE07-A, GA 
AHE07-A, ID 
AHE07-A, FL 

Oct 2003 
Oct 2003 
Dec 2003 

5 
6 
4 

Granular Backpack MLA AH207-MLA, Spain 
AH208-MLA, Martinique 

May 1998 
Aug 1998 

16 
11 

Dry Flowable ML AHE17 + AHE19, IL 
AHE18, OR/WA 
AHE20, GA 
AHE21, FL 

Apr 2005 
May 2005 
Jul 2005 

May-Jun 2005 

10 
5 
5 
5 

Aerial Application AH501-A-1, CA, CV 
AHE18-A, WA, CV 
AHE13-A, TX, ULV 

Oct 1991 
May 2005 
Oct 2004 

8 
2 

16 

Open-Pour ML Liquids AH204-M, France 
AH501-M-2, MS 
AHE30, OR 
AHE31, CA 
AHE32, FL/GA 

Mar 1997 
Sep 1991 
Oct 2005 
Nov 2005 
Dec 2005 

16 
8 
2 
3 
6 

Closed Liquid ML 
(bulk/minibulk) 

AHE13-M, TX, ULV 
AH501-M-1, CA, CV 

Oct 2004 
Oct 1991 

15 
7 

Hopper-box Seed Trt 
MLAP 

AHE10, AR/TX Apr-May 2004 16 

Open Cab Groundboom 
App 

AHE18, OR/WA 
AHE20, GA 
AHE21, FL 
AHE30, OR 
AHE31, CA 
AHE32, FL/GA 

May 2005 
Jul 2005 

May 2005 
Oct 2005 
Nov 2005 
Dec 2005 

2 
1 
2 
5 
5 
6 
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Table 2. Dermal Exposure Variability Estimates for Each Scenario 

Scenario GSD 95% CI ICC 95% CI 

Aerial Application 4.2 2.1 – 12.0 0.62 0 – 0.89 
Airblast Application 

With Headgear 3.2 2.1 – 4.9 0.00 0 – 0.49 
No Headgear 

Closed Granular ML 
2.9 
2.11 

2.0 – 4.3 
1.6 – 2.8 

0.00 
– 

0 – 0.47 
– 

Closed Liquid ML 4.2 2.7 – 7.8 0.11 0 – 0.59 
Dry Flowable ML 2.5 1.8 – 3.8 0.41 0 – 0.75 
Granular Backpack MLA 
Hopper-box Seed Trt MLAP 

4.2 
3.31 

2.0 – 16.3 
2.2 – 5.0 

0.66 
– 

0 – 0.92 
– 

Open Cab Groundboom App 3.9 2.4 – 6.3 0.24 0 – 0.65 
Open-Pour ML Liquids 5.0 3.5 – 7.8 0.00 0 – 0.30 

Mean2 3.8 0.29 
Median2 4.0 0.24 
Geometric Mean2 3.3 – 
Combined Model3 3.8 0.26 

1Only a single cluster: ICC cannot be calculated and GSD estimates only within-cluster 
variation 
2Closed granular ML excluded from calculation of mean, median, and geometric mean 
GSD; only airblast with headgear values are used
3Estimates from a mixed linear model allowing different scenario geometric means but 
assuming a common GSD and ICC 
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Procedures for Determining the Required Number of Clusters and Monitoring Units 
per Cluster to Achieve Benchmark Adequacy 

Table 3. Inhalation Exposure Variability Estimates for Each Scenario 

Scenario GSD 95% CI ICC 95% CI 

Aerial Application 4.4 2.1 – 12.8 0.71 0 – 0.91 
Airblast Application 
Closed Granular ML 

2.6 
4.51 

1.9 – 3.8 
2.6 – 7.6 

0.00 
– 

0 – 0.45 
– 

Closed Liquid ML 6.0 2.4 – 28.8 0.62 0 – 0.92 
Dry Flowable ML 4.6 2.9 – 7.4 0.16 0 – 0.55 
Granular Backpack MLA 
Hopper-box Seed Trt MLAP 

1.8 
3.81 

1.5 – 2.4 
2.4 – 6.2 

0.23 
– 

0 – 0.67 
– 

Open Cab Groundboom App 5.9 3.1 – 13.3 0.43 0 – 0.78 
Open-Pour ML 4.3 2.8 – 7.2 0.38 0 – 0.71 

Mean2 4.1 0.36 
Median2 4.3 0.38 
Geometric Mean2 4.2 – 
Combined Model3 4.2 0.37 

1Only a single cluster: ICC cannot be calculated and GSD estimates only within-cluster 
variation 
2Closed granular ML excluded from calculation of mean, median, and geometric mean 
GSD 
3Estimates from a mixed linear model allowing different scenario geometric means but 
assuming a common GSD and ICC 
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Procedures for Determining the Required Number of Clusters and Monitoring Units 
per Cluster to Achieve Benchmark Adequacy 

Table 4. 	 Relative Accuracies of Lognormal Distribution Parameter Estimates 
When GSD = 4 and ICC = 0.3. 

# Clusters # MUs per 
Cluster 

Total # 
MUs 

Relative Accuracy for 
Geometric 

Mean 
Arithmetic 

Mean 
95th 

Percentile 

3 
4 
5 
6 
7 

5 
5 
5 
5 
5 

15 
20 
25 
30 
35 

2.8 
2.4 
2.2 
2.1 
2.0 

3.9 
3.3 
2.9 
2.7 
2.5 

4.3 
3.5 
3.1 
2.8 
2.6 

4 
4 
4 
4 

5 
6 
8 
10 

20 
24 
32 
40 

2.4 
2.4 
2.3 
2.3 

3.3 
3.1 
3.0 
2.9 

3.5 
3.3 
3.2 
3.0 

4 
5 
6 

4 
4 
4 

16 
20 
24 

2.6 
2.4 
2.2 

3.5 
3.1 
2.8 

3.7 
3.3 
2.9 

Table 5. Relative Accuracies of Lognormal Distribution Parameter Estimates 
Obtained by Varying ICC when GSD = 4, Nc = 5 and Nm = 5. 

Relative Accuracy forGeometric 
Standard 
Deviation, 

GSD 

Intracluster 
Correlation, 

ICC 
Geometric 

Mean 
Arithmetic 

Mean 
95th 

Percentile 

4 0.5 2.5 3.5 3.8 
4 0.4 2.4 3.2 3.4 
4 0.3 2.2 2.9 3.1 
4 0.2 2.1 2.6 2.8 
4 0.1 1.9 2.4 2.5 
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Procedures for Determining the Required Number of Clusters and Monitoring Units 
per Cluster to Achieve Benchmark Adequacy 

Table 6. 	 Relative Accuracies of Lognormal Distribution Parameter Estimates 
Obtained by Varying GSD when ICC=0.3, Nc = 5 and Nm = 5. 

Geometric Intracluster Relative Accuracy for 
Standard Correlation Geometric Arithmetic 95th 

Deviation Mean Mean Percentile 

5 0.3 2.5 3.7 3.7 
4.5 0.3 2.4 3.3 3.4 
4 0.3 2.2 2.9 3.1 

3.5 0.3 2.1 2.5 2.8 
3 0.3 1.9 2.2 2.4 

Table 7. Relative Accuracies of Lognormal Distribution Parameter Estimates 
Obtained by Varying Both GSD and ICC when Nc = 5 and Nm = 5. 

Geometric Intracluster Relative Accuracy for 
Standard Correlation Geometric Arithmetic 95th 

Deviation Mean Mean Percentile 

5 0.5 2.9 4.7 4.7 
5 0.1 2.1 3.0 2.9 
4 0.3 2.2 2.9 3.1 
3 0.5 2.1 2.5 2.9 
3 0.1 1.7 1.9 2.1 
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Procedures for Determining the Required Number of Clusters and Monitoring Units 
per Cluster to Achieve Benchmark Adequacy 

Table 8. 	 Relative Accuracies of Lognormal Distribution Parameter Estimates 
When GSD = 5 and ICC = 0.5. 

# MUs per Total # Relative Accuracy for 
# Clusters Cluster MUs Geometric Arithmetic 95th 

Mean Mean Percentile 

5 5 25 2.9 4.7 4.7 
7 5 35 2.5 3.8 3.8 
8 5 40 2.4 3.5 3.4 
9 5 45 2.2 3.3 3.2 
10 5 50 2.1 3.1 3.0 
10 4 40 2.2 3.1 3.1 
10 3 30 2.3 3.3 3.2 
11 3 33 2.2 3.1 3.1 

Table 9. 	 Estimated Power for Discriminating a Proportional from an 
Independence Relationship between Exposure and Amount of AI 
Handled for Different RH when Nc=5 and Nm=5. 

# Clusters, 
Nc 

# MUs 
per 

Cluster, 
Nm 

Power when the Configuration of 
AI Levels isTotal 

# 
MUs, 

N 

Relative 
Range in 

Amount of 
AI Handled, 

RH 

A: Minimum 
within-cluster 

differences 

B: Maximum 
within-cluster 

differences 

5 
5 
5 
5 
5 

5 
5 
5 
5 
5 

25 5 0.26 0.63 
25 8 0.37 0.82 
25 10 0.41 0.89 
25 50 0.76 >0.99 
25 100 0.87 >0.99 

Page 18 of 19 



Procedures for Determining the Required Number of Clusters and Monitoring Units 
per Cluster to Achieve Benchmark Adequacy 

Table 10. 	 Estimated Power for Discriminating a Proportional from and 
Independence Relationship between Exposure and Amount of AI 
Handled For Various Combinations of Nc and Nm when RH=10. 

# Clusters, 
Nc 

# MUs 
per 

Cluster, 
Nm 

Total 
# 

MUs, 
N 

Relative 
Range in 

Amount of 
AI Handled, 

RH 

Power when the Configuration of 
AI Levels is 

A: Minimum 
within-cluster 

differences 

B: Maximum 
within-cluster 

differences 

7 
10 
12 

5 
5 
5 

35 
50 
60 

10 
10 
10 

0.55 
0.70 
0.80 

0.96 
0.99 

>0.99 

5 
5 
5 
5 
5 

7 
10 
12 
50 
60 

35 
50 
60 
250 
300 

10 
10 
10 
10 
10 

0.42 
0.48 
0.50 
0.75 
0.80 

0.95 
0.99 

>0.99 
>0.99 
>0.99 

15 
18 

3 
2 

45 
36 

10 
10 

0.79 
0.79 

0.98 
0.95 
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