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1.0 INTRODUCTION 

The need for the use of quantitative methods for characterizing variability and uncertainty 

in exposure and risk assessment has received increasing attention in recent years (e.g., Bogen 

and Spear, 1997; Morgan and Henrion, 1990; Frey, 1992; Hoffman and Hammonds, 1994; Frey 

and Rhodes, 1996; Helton, 1996; NCRP, 1996; EPA, 1997). This report documents the technical 

basis for a new software tool, AuvTool, that enables an analyst to quantify variability in a data 

set and to quantify uncertainty in key statistics of the data set. The software was developed 

specifically to support the Stochastic Human Exposure and Dose Simulation (SHEDS) model 

that is being developed by the U.S. Environmental Protection Agency (EPA). However, 

AuvTool was developed as a stand-alone module. Therefore, it can be used for other analyses as 

well. 

In the next section, the concepts of variability and uncertainty are presented. A brief 

review of some illustrative examples of probabilistic analyses, in which the distinction between 

variability and uncertainty was made, is provided in Section 1.2. Key insights and benefits that 

accrue as a result of probabilistic analysis are identified in Section 1.3. The SHEDS model is 

briefly described in Section 1.4, including the need for a new software tool to quantify both 

variability and uncertainty in the inputs to the model. Available software tools are reviewed in 

Section 1.5, including both commercial and research programs. The need for new software to 

support SHEDS is established in Section 1.6. The objectives of this project, and an overview of 

this report, are given in Sections 1.7 and 1.8, respectively. 

1.1 Variability and Uncertainty 

The distinction between variability and uncertainty in the context of human exposure and 

risk assessment has been described by Bogen and Spear (1987), Frey (1992), Hoffman and 
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Hammonds (1994), NAS (1994), Frey and Rhodes (1996), NCRP (1996), EPA (1996, 1997), 

Cullen and Frey (1999), and others. 

Variability refers to real differences in the values of a quantity from one individual to 

another or over some other population. For example, a given human individual has a body 

weight, intake rate, lifetime, exposure duration, and activity patterns that are different from that 

of other individuals. Uncertainty refers to lack of knowledge regarding the true value of a 

quantity. As noted in NAS (1994), the implication of variability in risk assessment is captured 

by the notion that there is a certainty that different people have different exposures and different 

risks. Therefore, in developing risk management strategies that are intended to be protective of a 

substantial portion of the population, it is important to understand the variability of risk within 

the population. For example, the notion of a high end exposure as embodied in the 1992 

Exposure Assessment Guidelines (EPA, 1992), implies the need to quantify exposures to the 

90th percentile or higher of the population. In order to quantify exposures for a given percentile 

of the population, one must account for inter-individual variability. 

In contrast to the notion of variability as defined in the exposure and risk assessment 

community, uncertainty refers to lack of knowledge regarding the true but unknown value of a 

quantity. The simplest example of uncertainty arises when an attempt is made to measure a 

quantity whose true value is a single unchanging value. The measurement instrument is typically 

imperfect, perhaps because of errors in calibration, spectral interference, inability to fully control 

all other factors aside from the one being measured, difficulties in obtaining a representative 

sample, or for a variety of other reasons (e.g., Mandel, 1969; Morgan and Henrion, 1990; Cullen 

and Frey, 1999). 
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If measurements are made repeatedly with the same instrument, it is typically the case 

that there will be some random variation in the observed values even if the true but unknown 

value is a constant (e.g., Henrion and Fischoff, 1986). The random variation in the measured 

values can be used to infer a probability distribution that represents the range and relative 

likelihood of the measurements. If the measurement method is known to be unbiased, then the 

average of the observations will converge to the true but unknown point value as the number of 

measurements becomes large. Therefore, an analyst may infer that the true but unknown value 

of the quantity being measured is enclosed by the range of values observed in repeated 

measurements. If the measurement method is known to be biased, then the method is said to be 

inaccurate. In this case, the average of repeated measurements does not converge to the true but 

unknown value. The difference between the mean of many measurements and of the true, but 

unknown value, is the bias. If the bias is known, such as based upon repeated measurements of a 

known sample, then a bias correction can be applied to the observations to produce a more 

accurate estimate of the true, but unknown, value. 

The dispersion of repeated observations above or below the mean observation is related 

to the precision of the measurements. A highly precise measurement method will produce a tight 

cluster of observations close to the mean observation. An imprecise method will have a large 

deviation of individual observations with respect to the average observation. A measurement 

method may be very precise but inaccurate, in that there may be a tight clustering of observations 

about the mean of the observations, but the mean of the observations may differ substantially 

from the true but known value. Alternatively, a measurement method may be very accurate but 

highly imprecise, in which the mean of the observations is equal to the true but unknown value 

but where there is a large deviance of values with respect to the mean. Other combinations, such 
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as accurate and precise, and inaccurate and imprecise, are also possible. Mandel (1969), Cullen 

and Frey (1999), and others discuss in more detail the notions of precision and accuracy. 

Uncertainty arises for reasons other than imperfections in making measurements. 

Another key source of uncertainty is random sampling error, which refers to the random 

variation in estimates of a statistic calculated from a finite random sample of data. For example, 

the sample mean is itself a random variable because it is estimated from a random sample of 

data. A key assumption is that the data are a sample from the true but unknown population 

distribution of interest. One random sample of a given sample size (e.g., n=10) will result in one 

estimate of the sample mean. Another random sample of the same sample size will result in a 

different estimate of the sample mean because of random differences between the two samples. 

A confidence interval for the mean calculated based upon a standard error is an indication of lack 

of knowledge regarding the sample mean based upon the variation in estimates of the mean that 

would be obtained from repeated random sampling with a given sample size for each random 

sample. 

There are differing interpretations of confidence intervals depending on whether one 

takes a strictly frequentist view of probability or a Bayesian view. The distinction between these 

views is described in Morgan and Henrion (1990) and Cullen and Frey (1999). A confidence 

interval is specified as a range such that it encloses the true but unknown population point value 

of the statistic with a confidence (or probability) of á. As the sample size of the random sample 

of the data increase, and if all other factors are the same (e.g., the variance of the random sample 

of the data) the width of the confidence interval will decrease. Therefore, more data typically 

translate into more knowledge relevant to inferring the true but unknown quantity. In this work, 

4




confidence intervals are interpreted as in indication of the precision with which a statistic is 

known. 

Another key source of uncertainty is the potential lack of representativeness of data. 

Very often in human exposure and risk assessment, data for the quantities of direct interest are 

not available, and surrogate data are used instead. For example, data regarding dietary 

consumption patterns of specific foods may not be available for specific subpopulations, such as 

fish consumption for subsistence fisherman. In such cases, an analyst might use fish 

consumption data for the general population as a basis upon which to make a judgment regarding 

the presumably higher fish consumption rate of the specific subpopulation. The most common 

concern with the use of surrogate data is that it may be biased. EPA (1999a) addresses issues 

and methods associated with the use of surrogate data as a basis for developing input 

distributions for probabilistic assessment. 

Lack of data is an obvious source of uncertainty. In some cases, there may be little or no 

data available for the quantity of interest or for sufficiently relevant surrogates. Data analysis is 

an insufficient approach for quantifying either variability and/or uncertainty in such a quantity. 

However, analogies with other data sets or judgments based upon established theory may serve 

as a basis for making bounding assumptions or even probabilistic assumptions regarding such 

quantities. In this situation, methods for eliciting expert judgment and for encoding the judgment 

in the form of subjective probability distributions can be used (e.g., Cooke, 1991; Kaheman and 

Tverski, 1982; Morgan and Henrion, 1990). 

Finally, other sources of uncertainty include model formulation and specification of the 

scenarios to be analyzed. A model is a simplified representation of a real system. 

Simplifications used in model development include aggregation and exclusion. Aggregation 
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refers to lumping details of the real world system into a single quantity. For example, in an air 

quality model several chemical species with common characteristics, such as aldehydes, may be 

simulated as if they were a single "lumped" chemical that has important characteristics 

considered common to all aldehydes, but that may not capture differences considered less 

important among the aldehydes. Exclusion refers to ignoring some aspects of the real world 

system in developing the model. For example, in an air quality model, some chemical 

compounds that may be potentially important to the formation of secondary pollutants may be 

excluded, either intentionally or unintentionally, from the model. Cullen and Frey (1999) 

introduce many concepts relevant to modeling and model uncertainty. One approach for 

addressing model uncertainty is to compare predictions made with alternative models. For 

example, Evans et al. (1994) present a probability tree in which alternative conceptual models 

are included. 

Scenario uncertainty refers to the possible failure to specify a scenario or a set of scenario 

that actually captures the real world problem that an analyst wishes to address. For example, if 

the intention is to estimate risk to humans because of human exposure to hazardous air 

pollutants, a scenario based only upon direct inhalation exposure to pollutants emitted from 

nearby sources may fail to capture the most important situations. Perhaps long-range transport is 

more important than short-range transport, implying that the analysis should have included a 

larger geographic area of emission sources. Perhaps indirect exposure pathways, such as food 

ingestion, are really the means by which humans are exposed to some of the HAPs, which may 

have undergone deposition and uptake by biological receptors (e.g., fish, plants). A key 

consideration in reducing scenario uncertainty is to perform a screening analysis to identify 

which exposure pathways are most important. 
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This report focuses on methods for characterizing uncertainty based upon random 

sampling error, which yields insight into the precision of the estimate for a statistic such as the 

mean, standard deviation, or parameters of a distribution fit to a data set describing inter-

individual variability. In the analysis of such data, an implicit assumption is that the data are an 

unbiased, random, representative sample of the quantity of interest. EPA (1999a) suggests 

methods for making adjustments to distributions for inter-individual variability if non-

representativeness or other sources of bias are believed to be present. While uncertainty 

associated with measurement error can be significant in some cases, this source of uncertainty is 

not addressed at this time in the development of AuvTool. While expert judgment is not 

explicitly addressed by AuvTool as a basis for specifying subjective probability distributions, 

many of the parametric distributions that are commonly used to represent expert judgments, such 

as the uniform, symmetric triangle, beta, normal, and lognormal, are included in the framework. 

It is assumed that the analyst has a relevant model and has developed appropriate scenarios. 

AuvTool can be used to support development of probabilistic input assumptions for multiple 

models and scenarios. 

1.2 Examples of Probabilistic Analysis 

The use of probabilistic analysis methods for dealing with variability and uncertainty is 

becoming more widely recognized and recommended for environmental modeling and 

assessment applications. The National Research Council and others have recommend that EPA 

use quantitative probabilistic analysis methods that distinguish between variability and 

uncertainty (NAS, 1994). One of the recommendations of the Emission Inventory Improvement 

Program (EIIP), which is jointly sponsored by EPA and other organizations, is to encourage the 

use of quantitative methods to characterize variability and uncertainties in emission inventories 

(Radian, 1996). 
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EPA has been responsive to these recommendations. For example, EPA has sponsored 

workshops regarding Monte Carlo simulation methods, has developed a guidance document on 

Monte Carlo methods, and has included guidance regarding probabilistic analysis in its most 

recent draft of Risk Assessment Guidance for Superfund (EPA, 1996; EPA, 1997; EPA, 1999a; 

EPA, 1999b). Uncertainty analysis is now part of the planning process for major assessments 

performed by EPA, such as the National Air Toxics Assessment. 

Recently, the National Research Council released a report on mobile source emissions 

estimation that calls for new efforts to quantify uncertainty in such emissions (NRC, 2000). The 

Intergovernmental Panel on Climate Change (IPCC) recently issues a good practice document 

regarding uncertainty analysis for greenhouse gas emission inventories (IPCC, 2000). Thus, the 

quantification of variability and uncertainty has become widely accepted not only in human 

health risk assessment but also in supporting or related areas, such as emissions estimation. In 

addition, there is a growing track record of the demonstrated use of quantitative methods for 

characterizing variability and uncertainty applied to emission factors, emission inventories, air 

quality modeling, exposure assessment, and risk assessment. Some examples of these are briefly 

mentioned here. 

There have been a number of projects aimed at quantifying variability and uncertainty in 

highway vehicle emissions, including uncertainty estimates associated with the Mobile5a 

emission factor model and with the EMFAC emission factor model used in California (Kini and 

Frey, 1997; Frey, 1997; Frey, Bharvirkar and Zheng, 1999; Pollack et al.,.1999). Frey and 

Eichenberger (1997) and Frey et al. (2001) have quantified uncertainty in highway vehicle 

emission factors estimated based upon measured data collected using remote sensing and on-

board instrumentation, respectively. Frey et al. (2002) have recommended modeling methods 
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for the New Generation Model (NGM) that will succeed the Mobile6 emission factor model. 

These methods include quantification of unexplained inter-vehicle variability and fleet average 

uncertainty. 

There have been a number of efforts aimed at probabilistic analysis of various other 

emission sources, including power plants, non-road mobile sources, natural gas-fired engines, 

and specific area sources (Frey, Rhodes, 1996; Frey, Bharvirkar and Zheng, 1999; Frey and 

Zheng, 2000; Frey and Bammi, 2002a&b; Frey, and Zheng, 2002; Frey and Bharvirkar, 2002; Li 

and Frey, 2002, Abdel-Aziz and Frey, 2002). Probabilistic anlayses have also been applied to air 

quality models, such as the Urban Airshed Model (e.g., Hanna et al., 2001). 

In the area of exposure and risk assessment, there have been a number of analyses in 

which variability and uncertainty were distinguished. These include, for example, Bogen and 

Spear (1987), Frey (1992), Hoffman and Hammonds (1996), Cohen et al. (1996), and others. 

As an example of a probabilistic analysis in which variability and uncertainty were 

distinguished, Frey and Rhodes (1996) quantified variability and uncertainty in emissions of 

selected hazardous air pollutants from coal-fired power plants. Limited data were available 

regarding the concentration of trace species, such as arsenic, in coal, and regarding the 

partitioning of the trace species in the major process areas of the plant, including the boiler, 

particulate matter control device, and flue gas desulfurization system. Parametric distributions 

were fit to the available data that represented the inter-unit variability in plant performance. 

Bootstrap simulation was used to estimate confidence intervals for the fitted cumulative 

distribution function (CDF) for each input data set. Both variability and uncertainty were 

propagated through an emissions model to yield estimates of variability in emissions from one 

averaging time to another and uncertainty in emissions for any given simulated averaging period. 
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Two averaging times were considered: three-day averages and annual averages. Three-day 

averages were included because the reported measurements represented plant operation over 

approximately a three-day period. Annual averages were also simulated because they were of 

more direct policy interest, such as in comparing estimated emissions with possible emission 

standards. Methods for considering measurement error, and for using mixture distributions to 

represent variability, were addressed. In addition, methods for identify the key sources of 

variability and uncertainty with respect to estimated emissions were illustrated. 

1.3 Key Insights from Probabilistic Analysis 

As noted in EPA (1997) and Cullen and Frey (1999), there is a tiered set of quantitative 

analysis methods that can be used in exposure and risk assessment. A starting point for an 

assessment typically includes worst-case, bounding, or screening analyses based upon point 

estimates and perhaps simplified models. Such analyses are intentionally biased and are 

intended to determine whether, under worst case conditions, an exposure or risk estimate may be 

sufficiently small that no further action is needed. If an analysis based upon such methods 

implies that the exposure and risk may be high enough to warrant further attention, then a second 

tier of analysis will typically include the use of more realistic input assumptions and the selection 

of more refined models. Probabilistic methods are typically used to replace point estimates for 

input assumptions as the assessment becomes more refined. With probabilistic input 

assumptions in the form of probability distributions, an analyst is able to characterize the range 

of possible values and the relative likelihood of values within the range, instead of being forced 

to choose a single point value. In contrast, if all inputs to a model are assigned point values that 

represent worst-case or high-end assumptions, the resulting exposure or risk estimate may be 

very high compared to the actual exposures or risks faced by the high-end exposed portions of 

the population (e.g., Burmaster and Hattis, 1994; Cullen, 1994; Finkel, 1990). 
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Key limitations of point estimates are that they do not provide an indication as to what 

fraction of the population have exposure or risk less than or equal to that of the point estimate, or 

greater than or equal to the point estimate. Therefore, information regarding inter-individual 

variability is not adequately characterized. Furthermore, in the point estimate approach, 

uncertainty is not quantified. Therefore, no insight is provided regarding the magnitude of 

uncertainty in the estimate or regarding key sources of uncertainty. If risks are over-estimated, 

then resources may end up being devoted to risk management strategies that yield less significant 

benefits than if they had been devoted to risk management in other areas. The use of biased point 

estimates can lead to inefficient allocation of resources. 

A probabilistic analysis approach incorporates more information into the assessment than 

does a point estimate approach. The relative range and likelihood of values for model inputs are 

characterized using probability distributions. The distributions are propagated through the model 

using a technique such as Monte Carlo simulation or related variations thereof. For each model 

output, both the range and likelihood of possible values is estimated. Therefore, decision-makers 

gain insight into the magnitude of inter-individual variability, including whether there are some 

individuals that may be subject to high risks even though many members of the population have 

low risk. Insight regarding the distribution of risks among members of the population is 

important in developing effective risk management strategies. Information regarding 

uncertainty in the risk estimate is useful in determining how likely it is that a given individual or 

portion of the population may actually face a high risk. If the range of uncertainty is large, it 

may be useful to identify key sources of uncertainty. In turn, additional data collection or 

research can be targeted to reduce uncertainty in the model inputs that most contribute to overall 

uncertainty in the risk estimate (Thompson and Graham, 1996). 
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Variability and uncertainty should be treated separately because they each have different 

decision-making and policy implications. Knowledge regarding variability can be used to 

identify subpopulations that face the greatest risks, such as children, asthmatics or individuals 

with activity patterns that bring them into greater contact with specific chemicals. Information 

regarding key sources of uncertainty can be used to prioritize additional data collection or 

research to improve estimates of exposure and risk. The National Research Council has 

recommended that the distinction between variability and uncertainty should be maintained 

rigorously at the level of individual components of a risk assessment as well as at the level of an 

integrated risk assessment (NRC, 1994). 

As summarized in Cullen and Frey (1999), probabilistic analysis is useful when: (a) a 

screening level analysis indicates that exposure and risk may be unacceptably high; (b) there is a 

need to identify priorities for collecting additional information in an effort to reduce uncertainty; 

(c) significant equity issues are raised regarding the inter-individual distribution of exposure and 

risk; (d) there is a need to identify, and determine how to target resources to reduce risk to 

particular subpopulations of highly exposed individuals; (e) there is a need to rank exposures, 

pathways, sites, or contaminants taking into account both variability and uncertainty; and/or (f) 

when the cost of remediation or intervention is high. Conversely, probabilistic analysis may not 

be needed in situations where a conservative screening analysis indicates no significant problem 

or when the costs of intervention or remediation are sufficiently small that they outweigh the 

costs of analysis. Another possible but unlikely reason that a probabilistic analysis might not be 

needed is if the variability and uncertainty are sufficiently narrow that a single point estimate is 

considered to be reliable. 
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1.4 SHEDS Model, Project Objectives, and Software Needs, 

The SHEDS model, which is being developed by EPA's National Exposure Research 

Laboratory (NERL), utilizes a probabilistic approach to predicting population exposures to 

pollutants. Concentrations of pollutants in various exposure media, as well as the physical 

factors that influence exposure, are input as distributions in the models. The model uses a two-

stage Monte Carlo simulation technique to produce distributions of exposure for various cohorts 

(e.g., age groups). Therefore, the SHEDS model requires that both variability and uncertainty in 

the model inputs be characterized. The SHEDS model involves in a large number of model 

inputs. For most of these inputs, it is necessary to quantify both variability and uncertainty. 

Currently, the characterization of variability and uncertainty for SHEDS model inputs must be 

done off-line. Therefore, there is a need for a software tool to support the development of 

probabilistic input assumptions for the SHEDS model, including characterization of both 

variability and uncertainty. 

The objective of this project was to develop a stand-alone software tool that can conduct 

statistical analysis of variability and uncertainty associated with fitting probability distributions 

to data sets for use with the SHEDS modeling framework. Secondary objectives were to develop 

a tool that would be user-friendly, to develop a tool so that it could be used for general purpose 

applications, and to verify the new software through extensive testing of its algorithms. 

In identifying the specific needs for a software tool, it is critically important to clearly 

determine the specifications for the software, including the input information that will be 

provided to the software and the output information that is needed from the software. The key 

specifications for the development of a software tool that supports SHEDS include the following: 
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1.	 For each input to SHEDS, either a random representative data set representing 

variability will be available, or information will be available regarding a 

parametric probability distribution that represents variability. 

2.	 The software must be capable of fitting a parametric probability distribution to 

input variables for which random representative data are provided. These 

distributions will represent variability. 

3.	 Graphical techniques based upon confidence intervals for the fitted cumulative 

distribution function (CDF) and quantitative statistical goodness-of-fit methods 

must be available for assessing the adequacy of a candidate parametric probability 

distribution in representing variability for a data set. 

4.	 Uncertainty in the parameters of the distribution, and regarding the mean and 

standard deviation, will be estimated based upon random sampling error. 

5.	 The software must be capable of performing batch operations in order to process 

information for a potentially large number of SHEDS model inputs. 

6. Information regarding both variability and uncertainty must be reported in a 

format consistent with SHEDS model input requirements. 

Prior to developing a new software tool, it is important to determine whether existing 

tools are capable of meeting the specific requirements of the SHEDS model as set forth above. 

1.5 Available Software 

A variety of programs have been developed that are capable of various types of 

probabilistic analysis. There are several commercially available software packages, such as 

Crystal Ball, @Risk, Analytica and RiskQ. Crystal Ball and @Risk both are Microsoft Excel-

based add-in aprograms (Palisades,1997; Decisioneering ,2001). Analytica is a stand-alone 

program for creating, analyzing, and communicating probabilistic models for risk and policy 
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analysis (Lumina, 1996). RiskQ is implemented in Mathematica (Bogen,1992). Capabilities to 

address both variability and uncertainty are available in Crystal Ball and RiskQ. While RiskQ 

has many powerful capabilities, it requires knowledge of programming in Mathematica (Murray 

and Burmaster,1993). @Risk and Analytica do not provide convenient capabilities for 

simultaneous analysis of both variability and uncertainty. Therefore RiskQ, @Risk, and 

Analytica were not applicable to the identified needs for supporting the SHEDS model. 

Crystal Ball uses a two-stage Monte Carlo simulation method as presented by Cohen et 

al., 1996. The method of Cohen et al. (1996) is very similar to that of Frey (1992) and Frey and 

Rhodes (1996). The primary difference is that the approach of Cohen et al. (1996) discards 

many intermediate values during the simulation. While this can reduce memory or storage 

requirements, it also results in the loss of useful information. Therefore, this approach was not 

selected. 

Frey (1992) developed case studies illustrating the distinction between variability and 

uncertainty using an earlier version of Analytica, which was known at that time as Demos. 

However, Demos and Analytica are structured to work with one dimension of probabilistic 

information. The limitations of Demos and Analytica at that time motivated the development of 

a specialized software tool. Therefore, Frey and Rhodes (1996, 1998, 1999) developed a 

FORTRAN-based program at North Carolina State University referred to as "BOOTSIM." 

BOOTSIM featured two-dimensional probabilistic representations of variability and/or 

uncertainty for model inputs, propagation of the two-dimensional probabilistic information 

through a model, characterization of both variability and uncertainty in model results, and 

analysis of model results to identify key sources of variability and uncertainty. BOOTSIM 

included a technique for quantifying uncertainty in selected statistics using bootstrap simulation. 
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The EPA Office of Air Quality Planning and Standards (OAQPS) supported the 

development of a prototype software tool for Analysis of Uncertainty and Variability in 

Emissions Estimation (AUVEE) (Frey and Zheng, 2000). AUVEE was developed based on 

BOOTSIM. However, BOOTSIM did not contain a capability to fit a parametric probability 

distribution to a data set or to compare alternative fitted distributions to data. For AUVEE, a 

capability was included to fit parametric distributions to data and to compare the fitted 

distribution and the data using a graphical display. Thus, unlike BOOTSIM, AUVEE included a 

Graphical User Interface (GUI) and capabilities to fit distributions to data. However, because 

AUVEE was restricted to an example case study, it did not have a capable to allow users to enter 

their own data. Furthermore, AUVEE did not include the use of statistical goodness-of-fit tests 

nor a batch analysis capability for working with many variables automatically. 

1.6 Need for New Software 

Based upon a review of available software tools, it was established that there was not 

existing software available that could meet all of the needs for the SHEDS model. However, 

AUVEE contained many of the features that were needed. Therefore, AUVEE was selected as 

the basis for developing a new software tool, referred to here as "AuvTool." 

In addition to the capabilities of AUVEE, AuvTool introduces new capabilities for the 

following: (a) accepts user input in a convenient spreadsheet format; (b) can accommodate input 

data for variability in the form of a data set or a specified parametric probability distribution; (c) 

additional options for parametric probability distribution models and the option of using an 

empirical distribution based upon resampling of the user-provide data set; (d) calculation of 

goodness-of-fit statistics; (e) a batch analysis capability for handling many input data sets or 

input distributions automatically; and (f) output information that meets the requirements of the 

SHEDS model. To facilitate a modular approach to software development, AuvTool was 
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developed using C++. Many of the algorithms of AUVEE were incorporated and were translated 

from FORTRAN into the new software tool. 

1.7 Overview of this Report 

The algorithms used in AuvTool are documented in Chapter 2. In Chapter 3, the system 

development and implementation of AuvTool are described in detail, including the design 

considerations, development environment, structure design and the main function modules. 

Chapter 4 summarizes the verifications of results with the use of AuvTool. An illustrative case 

study is given in Chapter 5. The case study demonstrates the use of the batch analysis feature of 

AuvTool and presents examples of variability and uncertainty analysis results that the new 

software can provide. Readers interested in more detail regarding how to use the AuvTool 

software are referred to the accompanying User’s Guide (Zheng and Frey, 2002). Chapter 6 

provides a summary, conclusions, and recommendations. 
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2.0 ALGORITHMS USED IN AUVTOOL 

The algorithms used in the AuvTool software are presented in this section. Seven key 

areas for which algorithms are documented include: (1) visualization of data sets using empirical 

distributions; (2) definition of the parametric probabilistic distributions used in AuvTool; (3) 

parameter estimation for the parametric probability distributions; (4) generation of random 

samples from probability distribution models; (5) evaluation and selection of a fitted probability 

distribution model based upon statistical goodness-of-fit tests; (6) characterization of uncertainty 

based upon random sampling error using bootstrap simulation; and (7) evaluation of dependence 

or correlation between statistics of interest, including the mean, standard deviation, and 

distribution parameters. Each of these areas are addressed in the following subsections. 

2.1 Visualizing Data Using Empirical Distribution 

Some of the key purposes of visualizing data sets include: (1) evaluation of the central 

tendency and dispersion of the data; (2) visual inspection of the shape of the empirical 

distribution of the data as a potential aid in selecting parametric probability distribution models 

to fit to the data; and (3) identification of possible anomalies in the data set (e.g., outliers). 

Specific techniques for evaluating and visualizing data include calculation of summary statistics, 

and plotting a data set as an empirical Cumulative Distribution Function (CDF). 

Three key characteristics of a CDF are its central tendency, dispersion, and shape. There 

are several measures of central tendency, which include the mean, median, and mode. The 

dispersion, or the spread, of a distribution is measured by the standard deviation or the variance 

of the distribution. The relative standard deviation (RSD), also known as the coefficient of 

variation (CV), is the standard deviation divided by the mean. For a non-zero mean, the CV 

provides a normalized indication of the dispersion of data values, with a large CV indicating 

relatively large variability in the data set. The shape of the distribution is reflected by quantities 
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Figure 2-1. Plot Illustrating the 95 Percent Probability Range on a Cumulative 
Distribution Function. 

such as skewness and kurtosis. The skewness is the asymmetric of a distribution, and the 

kurtosis refers to the peakedness of a distribution. These statistics can be used to aid in the 

selection of a parametric probability distribution model to fit to the data (Cullen and Frey, 1999). 

A CDF is a relationship between “cumulative probability” and values of the random 

variable. Cumulative probability is the probability that the random variable has values less than 

or equal to a specific numerical value of the random variable. CDFs provide a relationship 

between fractiles and quantiles. A fractile is the fraction of values that are less than or equal to a 

specific value of a random variable. Fractiles expressed on a percentage basis are referred to as 

percentiles. A quantile is the value of a random variable associated with a given fractile (Frey, 

Bharvirkar and Zheng, 1999). For example, the range of data values enclosed by the 0.025 and 

0.975 fractiles (2.5 and 97.5 percentiles) is often of particular interest, since this provides an 

indication of the dispersion of a distribution as reflected by the 95 percent probability range of 

values. An example of a CDF is illustrated in Figure 2-1 

Empirical estimation of a fractile from data requires rank ordering of the data. There are 

several possible methods for estimating the percentile of an empirically observed data point. 
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Figure 2-2. 	Example Graph of Visualizing Data Using the Hazen’s Plotting Position 
Method (n=10) 

These methods are referred to as “plotting positions.” The plotting position is an estimate of the 

cumulative probability of a data point. As described by Cullen and Frey (1999), Harter (1984) 

provides an overview of the various types of plotting positions. 

A commonly used plotting position, proposed by Hazen (1914), is used in AuvTool for 

displaying data points in comparison to fitted parametric distributions: 

i - 0.5
FX ( xi ) = Pr( X < xi ) = , for i = 1, 2, …, n and x1 < x2 < … < xn (2-1) 

n 

where, 

i = Rank of the data point when the data set is arranged in an ascending order 

n = number of data points 

x1 < x2 < … < xn are data points in the rank-ordered data set 

Pr(X<xi) = Cumulative probability of obtaining a data point whose value is less 

than xi 

An example graph of visualizing data using the Hazen’s plotting position method is 

shown in Figure 2-2. The figure depicts the plotting position of each of 10 data points for a 

small data set. 
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2.2 Definitions of Probability Distributions 

Probability distribution models used in AuvTool include the normal, lognormal, Weibull, 

gamma, beta, uniform, symmetric triangle parametric distributions and empirical distribution. 

Ang and Tang (1984), Hahn and Shapiro (1967), Morgan and Henrion (1990), Cullen and Frey 

(1999) and others review the theoretical basis underlying each of these distributions. The normal 

and lognormal distributions have an underlying theoretical basis in the central limit theorem 

(CLT) when applied to additive or multiplicative processes, respectively. For example, a process 

of pollutant dispersion generated by the sum of many random variations can be described by the 

Gaussian plume model (Seinfeld, 1986). Although the normal distribution is not appropriate for 

representing non-negative quanitities because it has an infinite negative tail, it is often used to 

represent non-negative quantities, such as weight or length, so long as the coefficient of variation 

is less than about 0.2 (Morgan and Henrion, 1990). 

The lognormal, gamma and Weibull distributions are useful for representing non-

negative and positively-skewed data. The two-parameter beta distribution is bounded by zero 

and one, and has flexibility to represent data with a variety of central tendency and skewness. 

The uniform and symmetric triangle distributions are most commonly used to represent expert 

judgments made in the absence of data. Empirical distributions can be used instead of parametric 

distributions. A comparison of empirical and parametric distribution is described in EPA 

(1999a) and in Section 2.3. 

More discussion of distribution selection criteria can be found in Hahn and Shapiro 

(1967), Ang and Tang (1984), Morgan and Henrion (1990), Hattis and Burmaster (1994), and 

Alvarez (1996), and Cullen and Frey (1999), among others. 
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2.2.1 Definition of Parametric Probability Distributions 

The definitions of the seven parametric distributions included in AuvTool are presented 

in Table 2-1. The definitions are based upon the probability density function (PDF). 

In Table 2-1, for the normal distribution, ì is the arithmetic mean, and ó is the arithmetic 

standard deviation. For the lognormal distribution, ìlnx is the mean of the lnx, and ólnx is the 

standard deviation of lnx. For the beta distribution, á and â are shape parameters, and B(á ,â�) is 

the beta function. For the gamma distribution, á is the shape parameter, â is the scale parameter, 

and Ã(· ) is the gamma function. For the Weibull distribution, k is the scale parameter, and c is 

the shape parameter. For the uniform distribution, a and b are the smallest and largest possible 

values. For the symmetric triangle distributions, a and b determine the range within which the 

variable can vary. 
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Figure 2-3. An example of an Empirical Distribution Represented a Step Function 
(n=10) 

2.2.2 Empirical Distribution


An empirical distribution is defined as a discrete distribution, F, that gives equal 


probability, 1/n, to each value xi in the dataset, x (Efron, 1979). The CDF for this function is 

therefore a step function of original data set, x, where each value xi is assigned a cumulative 

probability of i/n for i= {1,2,…n}. An example of an empirical distribution representing a step 

function is provided in Figure 2-3. 

2.3 Parameter Estimation of Probability Distributions 

A probability distribution model is a description of the probabilities of all possible values 

in a sample space. A probability distribution model is typically represented as a PDF or a CDF 

for a continuous random variable.  The PDF for a continuous random variable indicates the range 

and relative likelihood of values. The CDF is obtained by integrating the PDF (Cullen and Frey, 

1999). 

Probability distribution models may be empirical, parametric, or combinations of both. A 

parametric probability distribution model is a model described by parameters. The power of 

using parametric probability distribution models is that data sets, which may contain large 

numbers of data points, can be described in a compact manner based on a particular type of 
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parametric distribution function and the values of its parameters. For example, a normal 

distribution is fully specified if its mean and standard deviation are known. Another potential 

advantage of parametric probability distributions compared to empirical distributions is that it is 

possible to make predictions in the tails of the distribution beyond the range of observed data. In 

contrast, using conventional empirical distributions, the minimum and maximum values of the 

distribution are limited to their minimum and maximum values, respectively, of the data set. 

These values typically change as more data are collected. EPA (1999a) presents a discussion of 

the use of empirical verse parametric distributions. 

Based upon visual inspection of an empirical distribution of data as described in Section 

2.1, and consideration of processes that generated the data, the analyst can make a judgment 

regarding selection of one or more candidate parametric distributions to fit to the data set. Once 

a particular parametric distribution has been selected, a key step is to estimate the parameters of 

the distribution. The method of Maximum Likelihood Estimation (MLE) and the Method of 

Matching Moments (MoMM) are among the most typical techniques used for estimating the 

parameters. 

In order to estimate values of the parameters of a parametric probability distribution, 

statistical estimation methods must be used. Using such estimation methods, inferences are made 

from an available data set regarding a single best estimate of the parameter values. Usually, 

there are alternative methods available to estimate parameter values. Thus, it is necessary to 

choose a parameter estimation method. Small (1990) has discussed the following six desirable 

characteristics of estimators. These characteristics are useful when comparing and selecting an 

estimation method: 
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Consistency: A consistent estimator converges to the “true” value of the parameter as the 

number of samples increases. 

Lack of Bias: On average over many applications to many different data sets, an unbiased 

estimator yields an average value of the parameter estimate that is equal to 

that of the population value. 

Efficiency: An efficient estimator has minimum variance in the sampling distribution of 

the estimate. A sampling distribution is a probability distribution for a 

statistic (e.g., mean, standard deviation, distribution parameters). 

Sufficiency: An estimator that makes maximum use of information contained in a data 

set is said to be sufficient. 

Robustness: A robust estimator is one that works well even if there are departures of the 

data from the underlying distribution. In other words, such as estimator will 

yield reasonable values of the parameters even if there are some anomalies 

in the data set. 

Practicality: A practical estimator is one that satisfies the needs for the preceding five 

characteristics while remaining computationally efficient. 

For small sample sizes, the MLE method does not always yield minimum variance or 

unbiased estimates (Holland and Fitz-Simmons, 1982). However, for larger sample sizes, the 

MLE method tends to better satisfy the first five criteria for statistical estimation than other 

methods. Compared to MLE, MoMM estimators tend to be more robust but less efficient.  MLE 

can be extended to estimate parameters for distributions fitted to censored data. In the present 

study, both MLE and MoMM are included as options for estimation of parameters of parametric 
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probability distributions. The MoMM and MLE methods are described in more detail in the next 

subsections. 

2.3.1 Method of Matching Moments 

MoMM is based upon matching the moments or central moments of a parametric 

distribution (e.g., mean, variance) to the moments or central moments of the data set. MoMM 

estimators are often but now always easy to calculate. Therefore, this method is often the most 

straightforward to implement. Thus, it typically satisfies the criterion of practicality. For 

example, there are convenient solutions for MoMM parameter estimates for the normal, 

lognormal, gamma, and beta distributions (Hahn and Shapiro, 1967), as well as for the uniform 

and symmetric triangle distributions. However, MoMM may not fully satisfy the other criteria as 

previously noted. In the following sections, the MoMM estimators for each of the parametric 

distributions are presented 

2.3.1.1 Normal Distribution 

As defined in Table 2-1, the parameters for the normal distribution are the arithmetic 

mean, ì, and the arithmetic variance, ó2. The MoMM estimator of the mean is the sample mean, 

X . The MoMM estimator of the variance is the unbiased sample variance, s2 (Morgan and 

Henrion, 1990; Casella and Berger, 1990). 

n1 m̂ = X = � X i  (2-2) 
n i=1 

n 

ŝ 2 = s2 = 
1 �(Xi - X )2 

(2-3) 
n -1 i=1 

2.3.1.2 Lognormal Distribution 

The parameters of the lognormal distribution can be defined as: (1) the geometric mean, 

ìg, and geometric standard deviation, óg, estimated by m̂ 
g 

and ŝ 
g 
, respectively; or (2) the mean 
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and standard deviation of the logarithm of X, ìln(x), and óln(x), estimated by m̂ 
ln(x)

 and ŝ 
ln(x )

, 

respectively (Morgan and Henrion, 1990; Casella and Berger, 1990). 

1 2m̂;nx = ln( X ) - ŝ ln x  (2-4)
2 

ŝ ln x = ) ln( 2 ) ln( 2 2 X s X -+ (2-5) 

In AuvTool, the mean of lnx, ìlnx, and the standard deviation of lnx, ólnx, are used as the 

parameters to define the lognormal distribution. 

2.3.1.3 Beta Distribution 

The beta distribution has two shape parameters. The parameters can be estimated 

through relationships with the sample mean and the unbiased sample variance, X  and s2 (Hahn 

and Shapiro, 1967; Morgan and Henrion, 1990): 

â = X Œ
Ø 

X 
(1 -

2

X )
- 1œ

ø 
(2-6) 

º s ß 

b̂ = (X - 1)Œ
Ø 
X 

(1 -
2

X )
- 1œ

ø 
(2-7) 

º s ß 

2.3.1.4 Gamma Distribution


The parameters of the gamma distribution are the shape parameter á, and the scale 


parameter â, where â is an estimate of á, and b ̂ is an estimate of â. These parameters are 

estimated through relationships with the sample mean and unbiased sample variance, X  and s2 

(Morgan and Henrion, 1990; Casella and Berger, 1990). 

X 
2 

â = 
s 2 

(2-8) 

2 s
b̂ = (2-9)

X 
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2.3.1.5 Weibull Distribution 

For the Weibull distribution, the relationship between the parameters and the central 

moments of the data are (Morgan and Henrion, 1990): 

ˆ � 1 �X = b G �1 + � (2-10) 
Ł â ł 

2 ˆ 2 Ø 2 2 1 ø s = b ŒG (1 +
â

) - G (1 +
â

) 
ßœ (2-11) 

º 

There is no closed form solution for the MoMM estimator of the parameters of the 

Weibull distribution. Therefore, as an alternative, a parameter estimation method based upon 

regression analysis of a probability plot is used. 

In the probability plot method, if a data set is reasonably described by a Weibull 

distribution, then the following transformation may be used to plot the data (Cullen and Frey, 

1999): 

� Ø 1 ø � 
ln � ln Œ œ � = c ln( x i ) - c ln( k )  (2-12) 

� º F ( xi ) ß � 

where, 

c = shape parameter 

k = scale parameter 

F ( xi ) = 1 - F ( x i )  (2-13) 

F(x i ) is the complementary CDF of x. An empirical estimate of the CDF can be 

obtained using Equation (2-1), presented by Hazen (1914). Thus, it is possible to plot the data 

set and to calculate the scale and shape parameters from the intercept and slope of a best fit 
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Figure 2- 4. Example of a Probability Plot for a Weibull Distribution (n=50) 

regression line obtained using conventional least-squares regression. An example is shown in 

Figure 2-4 for n=50. In this example, the best fit equation was: 

� Ø 1 ø � 
ln � ln Œ œ � = 0.47313 ln( x i ) - 0.3644 (2-14) 

� º F(x i ) ß � 

Therefore, the shape parameter is c=0.47313. The scale parameter can be found by 

solving the expression: 

0.3644
k = exp( ) (2-15) 

c 

From Equation (2-15), it can be inferred that k is equal to 2.17. 

2.3.1.6 Uniform Distribution 

The parameters of the uniform distribution are the endpoints, a and b, which are 

ˆestimated by â and b . The parameter estimation formulae using MoMM are as follows (Morgan 

and Henrion, 1990): 

â = X - 3 s (2-16) 

b̂ = X + 3 s  (2-17) 

ln
(ln

(1
.0

/F
ha

t(x
))
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2.3.1.7 Symmetric Triangle Distribution 

The parameters of symmetric triangle distribution are a and b, which are estimated by 

ˆ â and b . MoMM parameter estimation formulas for these two parameters are (Morgan and 

Henrion, 1990): 

â = X  (2-18) 

b̂ = 6 s  (2-19) 

2.3.2 Maximum Likelihood Estimation (MLE) 

The MLE methods involves the selection of parameter values that characterize a 

distribution which was most likely to yield the observed data set (Cohen and Whitten, 1993). A 

likelihood function for independent samples is defined as the product of the PDF evaluated at 

each of the sample values. For a continuous random variable, for which independent samples 

have been obtained, the likelihood function is: 

n 

L( q 1 , q 2 ,..., q k ) = � f (x i | q 1 , q 2 ,..., q k ) (2-20) 
i =1 

where, 

q1, q2, …, qk = Parameters of the parametric probability distribution model. 

k = Number of parameters for the parametric probability distribution model. 

xi = Values of the random variable, for, i = 1, 2, …, n 

n = Number of data points in the data set. 

f  = Probability density function. 

The general idea behind MLE is to choose values of the parameters of the fitted 

distribution so that the likelihood that the observed data is a sample from the fitted distribution is 

maximized. The likelihood is calculated by evaluating the probability density function for each 

observed data point, conditioned upon assumed values for the parameters, and multiplying the 
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results. The parameter values may be changed, such as by using an optimization method, to 

change the value of the likelihood function until a maximum is reached. More commonly, the 

log-transformed version of the likelihood function is used, which is based upon the sum of the 

natural log of the probability density function evaluated for each data point, conditioned upon 

assumed values or the parameters. The MLE parameter estimators can be obtained by varying 

the parameter values so as to find the maximum of the log-likelihood function. 

The log-likelihood function of a univariate (describing one data set) two-parameter 

nL = � ln f ( i | m s ) ( 2 9 ) 

distribution is given by: 

n 

L = � ln [ f (xi q1,q 2 )]  (2-21) 
i=1 

where, 

n = number of data points. 

L = Log-likelihood function 

f = Probability density function 

è1, è2 = parameters of a two-parameter distribution 

For definitions of the probability density function f(x| è1, è2) for different parametric 

distributions, see Table 2-1 in Section 2.2. For some parametric probability distributions, such as 

the normal and lognormal distributions, analytical solutions for the maximum likelihood 

estimators of the parameters are available by setting the first partial derivatives of the likelihood 

function equal to zero. However, in many cases, an analytical solution is not readily available. 

In these cases, the maximum likelihood parameter estimates can be found using numerical 

optimization techniques. For the uniform distribution, since the density function is a constant, no 

MLE solution is available. Except for the uniform distribution, the estimation of the maximum 
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likelihood parameter values for the distributions in Table 2-1 can be formulated as the following 

optimization problem: 

n 

Maximize L = � ln [ f(x i è 1 , è 2 ) ]  (2-22) 
i =1 

Subject to 

q1>0 for beta (q1=a), gamma (q1=a)), Weibull (q1=k) 

q2>0 for beta (q2=b), gamma (q2=b), Weibull (q2=c) 

where, 

n= number of samples 

The optimization problem here is a multidimensional constrained one. A variety of 

methods are available to solve such problems. These methods include the downhill simplex 

method; the direction-set method, of which Powell’s method is the prototype; the penalty 

function method; and others (Press, et al., 1992). In this study, Powell’s method is employed. 

This method is relatively easy to program, it does not require calculations of derivatives, and it 

typically provides good results. 

Optimization solutions for the MLE parameter estimates are used in AuvTool for the 

gamma, Weibull, beta, and symmetric triangle distributions. In the implementation of AuvTool, 

for normal and lognormal distributions, analytic solutions are used. The MLE estimators for the 

normal and lognormal distributions are as follows (Morgan and Henrion, 1990): 

MLE Parameter Estimators for the Normal Distribution 

n1 
m = X = � X i  (2-23) 

n i = 1 

n 
2 

s 2 = s 2 = 
1 

� (X i - X )  (2-24) 
n i = 1 
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MLE Parameter Estimators for the Lognormal Distribution 

n1 
m ln x = � (ln x i ) 

n i = 1 

n 

ŝ 
ln x = (

1 
� (ln x i - m̂ 

ln x ) 2 )1 2 

n i = 1 

2.3.3 Parameter Estimation Method Availability for Probability Distributions 

Table 2-2 summarizes the availability of the MoMM and MLE parameter estimation 

methods for the probability distributions used in AuvTool. MoMM estimators are available for 

all but the Weibull distribution. For the Weibull distribution, a probability plotting method is 

provided in lieu of an MoMM method. MLE estimators are available for all but the uniform 

distribution. 

2.4 Algorithms for Generating Random Samples from Probability Distributions 

Computing efficiency and programming simplicity were used as the criteria for selecting 

methods for generating random samples from various distributions using Monte Carlo sampling. 

Monte Carlo simulation methods are based upon the use of a pseudo random number generator 

(PRNG) that produces a stream of random, independent uniformly distribution numbers. 

Uniformly distributed random numbers are used as the input to algorithms that generate random 

numbers from other types of distributions. 

The most efficient and simple method for generating random variables from a particular 

type of probability distribution is the method of inversion (Frey and Rhodes, 1999). This method 

(2-25) 

(2-26) 

is always used when the CDF can be inverted. In many cases, however, the inverse CDF cannot 

be written in a closed form, and an alternative method is used. Some alternative methods are the 

method of composition, the method of convolution, and the acceptance-rejection method (Law 

and Kelton, 1991). 
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Table 2-2. Parameter Estimation Method Availability for Parametric Probability Distributions 
Distribution 

Types 
MoMM  MLE Comments 

Normal � � Analytic solution for MLE 
Lognormal � � Analytic solution for MLE 

Beta � � Optimal Solution for MLE 
Gamma � � Optimal Solution for MLE 
Weibull � � Optimal Solution for MLE 
Uniform � N/A 

Symmetric 
Triangle � � Optimal Solution for MLE 

Note: 	 �: The method is available for the given distribution. 
�: The plotting method is used instead of MOMM for Weibull distribution 
N/A: The method is not available in this case 

In the following subsections, the PRNG and the methods used in the AuvTool to generate 

random variables for the normal, lognormal, Weibull, gamma, beta, uniform, symmetric triangle 

and step-wise empirical distributions are described. 

2.4.1 Pseudo Random Number Generator 

The term pseudo-random refers to numbers which appear as if they are uniformly 

distributed random numbers that actually are generated in a completely deterministic manner 

(Barry, 1996). Pseudo random numbers are thought to be “good” when they have the following 

features (Rubinstein, 1981): (1) statistical uniformity, (2) statistical independence, (3) 

reproducibility, and (4) they can be generated quickly and economically. Another key 

consideration is the period length, which is the number of random values that are generated 

before the same sequence begins to be repeated. 

There are a variety of methods for generating pseudo-random numbers (Bratley, et al., 

1987). The most widely used method is the Linear Congruential Generator (LGC). The 

advantage of LGC is its speed, simplicity and portability (Barry, 1996). However, a potential 

problem with a LGC approach is that its period length is easily exhausted (L’Ecuyer, 1996). It is 
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well recognized that, for statistical reasons, the period length of a linear-type generator should be 

several orders of magnitude of larger than what is actually needed (L’Ecuyer, 1994; 1996). 

An approach for increasing the period and improving the structure of the generator is to 

use combined Multiple Recursive Generators (MRGs) presented by L’Ecuyer (1996). In this 

method, two or more MRGs are combined. In AuvTool, a combined generator with two MRGs 

is used and is described as: 

Zn = (Xn –Yn) mod m1 (2-27) 

where the two underlying generators Xn and Yn are: 

Xn= (a1 Xn-1 + a2 Xn-2 + a3 Xn-3) mod m1  (2-28) 

and 

Yn= (b1Yn-1 + b2 Yn-2 + b3 Yn-3) mod m2  (2-29) 

with coefficients 

a1 = 0, a2 = 63308, a3 = -183326, 

b1= 86098, b2 = 0, b3 = -539608, 

and m1 = 231 - 1 = 2147483647 and m2 = 2145483479. 

The operator “mod” in the Equations (2-27~29) divides two integers and returns the remainder 

of the division. The period of this PRNG is 2205 ; the six initial values for x0, x1, x2 and y0, y1, 

y2 can be any integers from 1 to 231 - 1 = 2147483647 (L’Ecuyer,1996). In AuvTool, the initial 

values for the x0, x1, x2 and y0, y1, y2 are 1973272912, 281629770, 20006270, 1280689831, 

2096730329, and 1933576050, respectively. Only the value for the seed x0 is available for users 

to modify. 

2.4.2 Normal Distribution 

Generation of random variables from a normal distribution is simplified by the fact that 

any normal distribution can be written in terms of the standard normal distribution, with a mean 
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of zero and standard deviation of one. The symbol “~” denotes “is distributed as.” If X ~ N(ì, 

ó2), and if X ¢ ~ N(0,1), which is the standard normal distribution, then 

X = ì + ó X ¢ (2-30) 

Therefore, it is only necessary to generate random numbers from the standard normal. 

Standard normal random samples can be generated using an acceptance-rejection method 

developed by Box and Muller (1958). In this method, two uniformly distributed U(0,1) random 

variates, U1 and U2, are used to generate two N(0,1) random variates, X1 and X2. The Box and 

Muller method is used to calculate X1 and X2 as follows: 

X1 = -2 ln U1 cos (2pU 2 ) 
(2-31) 

X2 = - 2 ln U1 sin (2pU 2 ) 

However, a more efficient version of the Box-Muller method, called the polar method, 

was developed by Marsaglia and Bray (1964). The polar method is used in this study. The 

algorithm is presented in Law and Kelton (1991) as follows: 

Step1: Generate U1 and U2 as independent and identically distributed (IID) uniform 

random samples on the interval [0,1]. Therefore, U1 ~ (0,1) and U2 ~ (0,1) 

Step2: Let Vi = 2Ui - 1 for i = {1, 2}, and let W = V1
2 + V2

2. If W > 1, go back to Step 1. 

Otherwise, let Y = (-2ln W ( )/ W , X1¢ = V1Y, and X2¢ = V2Y. 

Step3: Then X 1¢ and X 2¢ are IID N(0,1) random variates. X1 = ì + ó X1¢ and X2 = ì + ó X2¢ 

so that X1 and X2 are IID N(ì, ó  2). 

Since two normal random samples are generated with each call of this subroutine, in 

principle the procedure only needs to be implemented once for every two normal distributions 

that are to be simulated. If U1 and U2 were truly IID random variables from a uniform 

distribution U(0,1), then using X1 followed by X2 on subsequent calls to the subroutine would be 
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valid. It has been shown, however, that if U1 and U2 are sequential pseudo random numbers (as 

is the case in this implementation) then X1 and X2 will fall on a spiral in (X1, X2) space, rather 

than being truly IID. In order to ensure that all normal random variates are truly IID in this 

implementation, only X1 is used and X2 is discarded. Another option would be to generate U1 

and U2 from separate and independent pseudo-random number streams. 

2.4.3 Lognormal Distribution 

Lognormal random samples are generated by using a special property of the lognormal 

2 2distribution. Namely, if Y ~ N(ìlnx, s ln x ), then eY ~ LN(ìlnx, s ln x ). Therefore, lognormal 

random samples are generated by the following algorithm: 

2Generate Y ~ N(ìlnx, s ln x ), 

2X = eY, so that X ~ LN(ìlnx, s ln x ), 

2Note that ìlnx and s  are the mean of lnx and standard deviation of lnx.ln x 

2.4.4 Beta Distribution 

The method used in this study for generating beta random samples relies upon a special 

property of the beta distribution. The beta distribution can be described as a ratio comprised of 

gamma distributions. If Y1 ~ G(á,1) and Y2 ~ G(â,1) and Y1 and Y2 are independent, then X = 

Y1/(Y1+Y2) ~ B(á, â) (Law and Kelton, 1991). Thus, the methods described for generating 

random samples from a gamma distribution are used as a basis for generating random samples 

for the beta distribution 

2.4.5 Gamma Distribution 

Like the normal and lognormal distributions, the gamma distribution has no closed form 

solution for its CDF or inverse CDF. Therefore, the method of inversion is not feasible for 

generating random variables in this case. An acceptance-rejection method is used here to 

generate gamma random variables. 
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In generating G(á, â) random variables, it is noted that if X ¢ ~ G(á,1), then X = â X ¢ ~ 

G(á ,â). Therefore, only the G(á,1) distribution needs to be simulated and the results can be 

easily transformed to that of any G(á, â) distributio n. Furthermore, a gamma distribution with á 

â. Exponential random 

variables are easily generated by the method of inversion as shown below (Morgan and Henrion, 

1990): 

1
X = - ln( U )  (2-32)

b 

where U is a random sample from the U(0,1) distribution and â is the parameter of the 

exponential distribution. 

Gamma distributions for which á < 1 are shaped significantly differently than gamma 

distributions for which á > 1. Therefore, two distinct acceptance-rejection algorithms are 

necessary. 

For á < 1, an acceptance-rejection algorithm by Ahrens and Deiter is used in this study. 

A description of this method is provided in Law and Kelton (1991), where the following 

algorithm is also presented: 

Step 1. Let b = (e + á)/e (e is a constant, and e= exp(1.0) =2.718282) ) 

Step 2. Generate U1 ~ U(0,1), and let P = bU1. If P > 1, go to step 4. Otherwise 

proceed to Step 3 

Step 3. Let Y = P1/á , and generate U2 ~ U(0,1). If U2 � e-Y, return X = Y. Otherwise, 

go back to Step 1. 

Step 4. Let Y = -ln[(b - P)/ á] and generate U2 ~ U(0,1). If U2 � Y á -1, return X = Y. 

Otherwise, go back to Step 1. 
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For á > 1, a modified acceptance-rejection algorithm by Cheng (1977) is used to sample 

random samples from a Gamma distribution. A description of the method is provided in Law 

and Kelton (1991). Only the algorithm is presented here: 

Step1. Leta = 1 2a - 1, b = a - ln 4, q = a + 1 a, q = 4.5, and d = 1 + ln q. 

Step 2. Generate U1 and U2 as IID U(0,1).


Step 3. Let V = aln[U1/(1 - U1)], Y = á eV, Z = (U 1
2 
U 2 

), and W = b + qV - Y.


Step 4. If W + d - á Z � 0, return X = Y. Otherwise, proceed to Step 5.


Step 5. If W � lnZ, return X = Y. Otherwise, go back to Step 1.


2.4.6 Weibull Distribution


The CDF for the Weibull distribution can be written as (Morgan and Henrion, 1990):


c 

F(x ) = 1 - exp - ( x / k )  (2-33) 

A random sample, X, from a W(k,c) can therefore be generated directly by the method of 

inversion using the inverse CDF: 

- 1 1 cX = F (U ) = k [- ln (1 - U )] (2-34) 

where U is a random sample from the U(0,1) distribution. 

2.4.7 Uniform distribution 

The method of inversion is used in this study for generating uniform distributions with 

any arbitrary endpoints. The method is as follows (Morgan and Henrion, 1990): 

X = a + (b - a )U  (2-35) 

where U is a random sample from the U(0,1) distribution. 

2.4.8 Symmetric Triangle Distribution 

The method of inversion is used in this study for generating symmetric triangle 

distribution, as follows as (Morgan and Henrion, 1990): 
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1X = (a - b) + b(2U ) 2 0 £ U £ 0.5 
(2-36)

1X = (a + b) - b(2.0 - 2U ) 2 0.5 < U £ 1.0 

where U is a random sample from the U(0,1) distribution. 

2.4.9 Empirical Distribution 

In an empirical distribution, a data set is described by a step-wise empirical cumulative 

distribution function, in which the probability of sampling any discrete value within the dataset is 

1/n. A random re-sampled version of the original data set, of size n, is denoted by: 

`X*=(X1*, X2*,….,Xn*)  (2-37) 

The asterisks indicate that X* is not actual data set x, but rather a randomized or 

resampled version. Since the sampling is done with replacement, it is possible to have repeated 

values within any given random samples from an empirical distribution. 

The algorithm for generating a random sample from an empirical distribution is as 

follows: 

Step 1: Rank an original data set in an ascending order to have an ordered dataset Xo in 

owhich Xm < Xm+1
o, where, m =1,2…n. 

Step 2: Generate a random number U from an U(0,1) distribution. 

Step 3: Calculate an index using the following formula: 

i = n · U  (2-38) 

where, 

i is a returned smallest integer that is larger than or equal to n · U 

between 1 and n by rounding up the product of n · U 

Step 4: Retrieve the data, Xi
o, located at the ith of the ordered dataset Xo . 
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2.5 Evaluation of Goodness-of-Fit of a Probability Distribution Model 

There are many goodness-of-fit tests available from which to evaluate the goodness of fit 

of an assumed distribution model with respect to the data. Two general types of approaches for 

evaluating goodness of fit include probability plots and statistic tests (Cullen and Frey, 1999). 

Probability plots are widely recognized to be a subjective method for determining 

whether or not data contradict an assumed model based upon visual inspection (Cullen and Frey, 

1999). A graphical technique used in AuvTool is to compare the CDF of the fitted distribution 

with the original data set plotted using the Hazen plotting position method (Hazen, 1914) that 

was introduced in Section 2.1. 

Statistical goodness-of-fit tests provide a quantitative measure of the goodness-of-fit of 

the assumed probability distributions, but many only apply to parametric distributions. An 

empirical distribution is an exact representation of the data in which each data point is assigned a 

probability of 1/n; therefore, a statistical goodness-of-fit test is not needed in this case. Three 

common goodness-of-fit tests for parametric distributions include the chi-square test, the 

Kolmogorov-Smirnov (K-S) test, and the Anderson-Darling (A-D) test. However, these tests 

may only be employed if a minimum amount of data is available (Cullen and Frey, 1999). For 

example, for the chi-square test, at least 25 data points should be available. The K-S test can be 

used with as few as five data points. The A-D test is valid if the number of samples is greater 

than or equal to eight. 

The chi-square test involves calculating a test statistic that approximately follows a chi-

square distribution only if the hypothesized model cannot be rejected as a poor fit to the data. 

The advantage of chi-square test is its flexibility; it can be used to test any distribution. 

However, a disadvantage of this method is that it has lower power than other statistical tests 

(Cullen and Frey, 1999). This is because the chi-square test involves binning of the data. In 
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binning the data, some of the information associated with individual data points is lost. Thus, the 

chi-square test is less discriminatory than a test that makes more sufficient use of all data points, 

such as the K-S test. 

The K-S test involves a comparison between a stepwise empirical CDF and the CDF of a 

hypothesized distribution. This test is based upon evaluation of the maximum difference in the 

cumulative probability of the fitted distribution versus that of a data point. An attractive feature 

of K-S test is that it is a distribution-free test of goodness of fit. An advantage of K-S test over 

the chi-square test is that it can be used with smaller sample sizes. However, K-S test tends to be 

more sensitive to deviations of a good fit near the center of the distribution compared to at the 

tails (Stephens, 1974; D’Agostino and Stephens, 1986). 

The A-D test is a “quadratic” test that is based upon a weighted square of the vertical 

distance between the empirical and fitted distributions (Cullen and Frey, 1999). The A-D test 

gives more weight to the tails than does the K-S test and therefore is more sensitive to deviations 

in the fit at the tails of a distribution (Stephens, 1974). However, the A-D test is not distribution-

free test. Therefore, the critical values must be calculated specifically for each type of 

parametric distribution. Therefore, the A-D test is often used as a supplement to other goodness-

of-fit tests. 

Because the chi-square test requires at least 25 data points, and because it is not as 

powerful as other methods, the chi-square test was not included in AuvTool. The K-S and A-D 

tests are included in AuvTool. 

It must be pointed out that there are some limitations with the use of statistical goodness-

of-fit tests. For example, they address only one possible criterion for determining goodness-of-

fit, and could imply acceptance of a fit that might be poor for reasons not addressed by the 
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criterion, or imply rejection of a fit that might be acceptable for reasons not addressed by the 

criterion. For example, it is possible that a normal distribution might not be rejected by a 

goodness-of-fit test. However, if the normal distribution is used to represent a quantity that must 

be non-negative, and if the probability of predicting negative values using a normal distribution 

is not negligible, then the use of a normal distribution will not make physical sense. Therefore, 

an uncritical application of a goodness-of-fit test can lead to an inappropriate choice of 

parametric distribution. Conversely, the goodness-of-fit test may imply rejection of a non-

negative distribution, such as a lognormal, which might be theoretically consistent with the basis 

of the data. Therefore, users are strongly urged not to rely on the results of goodness-of-fit tests 

without inspecting the results and considering other factors that are important to the selection of 

an appropriate parametric distribution. 

The graphical comparison of the CDF of the fitted distribution to the original data set 

plotted using the Hazen plotting position is more informative when confidence intervals are 

estimated for the fitted CDF, and when the frequency with which data are enclosed by the 

confidence intervals is taken into account. This approach is discussed in more detail in Section 

2.6 on bootstrap simulation. 

In the following subsections, methods for evaluating the adequacy of the fit of a 

parametric distribution with respect to the data are explained in more detail. These include the 

techniques used in AuvTool for: (1) visually comparing the CDF of the fitted distribution with 

the data; (2) using the K-S test; (3) using the A-D test; (4) and visually comparing confidence 

intervals for the CDF of the fitted distribution with the data. In addition, the method for 

automatically fitting distributions to the data in batch mode is discussed, with appropriate 

warnings to the user regarding limitations of the method. 
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2.5.1 Graphical Comparison of CDF of Fitted Distribution to the Data 

The goodness-of-fit of a parametric distribution compared to the data can be visually 

inspected. This is accomplished by plotting the CDF of the fitted distribution versus the data. 

The data can be plotted using the Hazen plotting position introduced in Section 2.1. 

Since analytical solutions are not available for CDFs for all of the parametric 

distributions used in AuvTool, the CDFs are estimated using numerical simulation. The 

construction of a numerically stable representation of CDF of the fitted distribution is based on 

statistical theory. The CDF is estimated by generating a large number of random samples from 

the parametric distribution and plotting them using the Hazen plotting position. With a large 

number of samples, the numerically simulated CDF will look as if it is a continuous smooth 

curve. The sample size chosen for numerical simulation of the CDF for purposes of graphical 

display is based upon the statement in Casella and Berger (1990) that if the sample size is large 

enough (e.g., >=2,000), then the sample can be assumed to be a very good representation of 

population distribution. Therefore, in AuvTool, 2,000 random numbers are generated for the 

distribution and are used to construct an empirical CDF using the Hazen plotting position. The 

numerically simulated CDF is considered to be a very good representation of the actual CDF of 

the fitted distribution, and it is plotted in the same graph with the original data set. 

An example of a graphical comparison of a numerically simulated CDF for a parametric 

probability distribution and of the data to which the distribution was fit is shown in Figure 2-5. 

The data are depicted by open circles. The numerically simulated CDF is depicted by a solid 

line. The example shown in Figure 2-5 is for a beta distribution fit to a data set for a quantity 

that is bounded by zero and one. The beta distribution corresponds very closely with the data 

over most of the range of the observed values. Graphs similar in technical content to this 

example, although somewhat different in format, are produced by the AuvTool GUI. 
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Figure 2-5. Comparison of Fitted Beta Distribution to an Example Dataset 

2.5.2 Kolmogorov-Smirnov Test 

As previously noted, the K-S test is based on comparison of the CDF of the fitted 

distribution to an empirical CDF of the data. The maximum discrepancy in the estimated 

cumulative probabilities for the two CDFs is identified. The maximum discrepancy is then 

compared to a critical value of the test statistic. If the maximum discrepancy is larger than the 

critical value, the hypothesized distribution is rejected (Cullen and Frey, 1999). This method is 

also discussed by Ang and Tang (1984), D’Agostino and Stephens (1986), and others. 

The algorithm for performing the K-S test is described here: 

(1) Rank the original data in an ascending order to have an ordered dataset X in which Xk 

< Xk+1, where, k =1,2…n. 

(2) Develop a stepwise cumulative density function as follows: 

� 0 x < x 1 

Sn (x) = � k n x k £ x £ x k + 1  (2-39) 
� 1 x ‡ x n 
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where, 

Sn(x) = The stepwise cumulative density function 

n = The number of data points in a data set 

xk =  The data 

(3) Calculate the maximum difference between Sn(x) and the CDF of the fitted 

distribution over the entire range of X. The maximum difference is denoted by: 

D = max F(x ) - S (x)  (2-40)n n 

where 

Dn = The maximum difference 

F(x) = The CDF of the fitted distribution 

(4) Compares the calculated maximum difference from Equation (2-40) with the critical 

avalue D  at a significance level of á. n 

aThe often-used significance level is 0.05. The critical values ofD  at a significance leveln 

of á=0.05 are tabulated in the Table 2-3. 

The Table 2- . One is 

marked as “Specified”, another is marked as “Unspecified”. “Specified” implies that the 

underlying distribution type representing a data set is known, while “Unspecified” means that the 

information involving the underlying distribution for a data set is unknown. For example, if 

there is a sample for which the true values of the parameters of the population distribution are 

known, a “specified” critical value would be used. However, in most cases, the parameters of 

the distribution are estimated from the same data set for which the goodness-of-fit comparison is 
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Table 2-3. Citical Value of Dn 
a the Kolmogorov-Smirnov Test 

n á=0.05 
(Specified) 

n á=0.05 
(Unspecified) 

5 0.56 5 0.337 
10 0.41 8 0.285 
15 0.34 10 0.258 
20 0.29 12 0.242 
25 0.27 15 0.220 
30 0.24 16 0.213 
35 0.23 18 0.200 
40 0.21 20 0.190 
45 0.20 25 0.180 
50 0.19 30 0.161 
>50 n/36.1 >30 n/886.0 

(Massey, 1951; Lilliefors, 1967) 

made. In this latter situation, the "Unspecified" values should be used.  Since this latter case is 

more common, the “Unspecified” critical values are used in the development of AuvTool. If the 

critical value of a number n is not listed in the Table 2-3, and when n is less than 30 

(“Unspecified”), a linear interpolation is used to calculate the critical value for the number. 

The K-S test is a distribution-free; it can be applied to normal, lognormal, beta, gamma, 

Weibull, uniform, and symmetric triangle distributions. However, the K-S test has several 

important limitations: (1) it is only valid for continuous distributions; and (2) it tends to be more 

sensitive near the center of the distribution than at the tails (D’Agostino and Stephens, 1986). 

2.5.3 Anderson-Darling Test 

The A-D test is used to test if a sample of data is from a population with a specific 

distribution (Stephens, 1974). It is a modification of the K-S test and gives more weight to the 

tails than does the K-S test. Unlike K-S test, the A-D test is not a distribution-free test. For 

different distributions, A-D test statistics and the corresponding critical values are different. For 

some distributions, relevant information for calculating the A-D test is not available in literature. 

These distributions include uniform, symmetric triangle and beta distributions. Therefore, in 
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AuvTool, the A-D test is available only for the normal, lognormal, gamma and Weibull 

distributions. 

The A-D test statistic is defined as: 

A 2 = - n - S  (2-41) 

where, 

n 

S = � 
(2i - 1)[ln( F(x i ) + ln( 1.0 - F(x n + 1- i )]  (2-42) 

i -1 n 

F is the cumulative distribution function of the specified distribution. Xi is the ordered 

data (Stephens, 1974; D’Agostino and Stephens, 1986). 

When parameters of an assumed distribution are not known, and have to be estimated 

from the sample data, the A-D test statistic must be modified (D’Agostino and Stephens, 1986). 

For normal and lognormal distribution, the modified statistic is (D’Agostino and Stephens, 

1986): 

* 2 2A = A (1.0 + 0.75 / n + 2.25 / n )  (2-43) 

For the Weibull distribution, the modified statistic is ( D’Agostino and Stephens, 1986): 

* 2A = A (1.0 + 0.2 / n )  (2-44) 

For the gamma distribution, when both the scale and shape parameters are unknown and 

are estimated from the data, the A-D test statistic does not need to be modified (D’Agostino and 

Stephens, 1986). However, the critical value at a given significance level for the gamma 

distribution is dependent on the magnitude of its shape parameter (D’Agostino, Stephens, 1986). 

The critical values of the A-D test for the normal, lognormal, and Weibull distributions 

are given in Table 2-4 and for the gamma distribution are given in Table 2-5. 
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1
2
3
4
5
6

Table 2-4. The Critical Values for Anderson-Darling test for Normal, Lognormal and Weibull 
distributions 

Distribution á=0.10 á=0.05 á=0.025 á=0.01 
Normal, 

Lognormal 0.631 0.752 0.873 1.035 

Weibull 0.637 0.757 0.877 1.038 
(D’Agostino and Stephens, 1986, Table 4.7, p=123; Table 4.17, p=146)


Table 2-5. The Critical Values for Anderson-Darling test for the Gamma Distribution

Shape Parameter Significant Level á =0.05 

0.786 
0.768 
0.762 
0.759 
0.758 
0.757 

8 0.755 
10 0.754 
12 0.754 
15 0.754 
20 0.753 
>20 0.752 

(D’Agostino and Stephens, 1986, Table 4.21, p=155) 

In AuvTool, linear interpolation is used to calculate the critical value of the A-D test for 

any given shape parameter based on the values provided in Table 2-5 for gamma distribution 

2.5.4	 Graphical Comparison of Confidence Intervals for CDF of Fitted 
Distribution to the Data 

The results from bootstrap simulation can be used to help evaluate the goodness of a fit of 

a distribution with respect to the original data by graphically comparing confidence intervals for 

CDF of the fitted distribution to the data. More details on the bootstrap simulation and how the 

confidence intervals for CDF of the fitted distribution are estimated can be found in Sections 

2.6.1, 2.6.3, and 2.6.4. 
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Figure 2-6. An Illustrative Example of Graphical Comparison of Confidence Intervals 
for CDF of Fitted Distribution to the Data 

Figure 2-6 graphically shows a comparison of confidence intervals for the fitted 

distribution with an example data set. The results are from two-dimensional simulation with the 

points out of 41 are contained within the 95 percent confidence intervals. Thus, the fit in this 

case is a reasonably good one. On average, it is expected that 95 percent of the data will fall 

inside of a 95 percent confidence interval of CDF of a fitted distribution if the data are a random 

sample from the assumed population distribution 

2.5.5	 Criteria for Automatically Seeking a Best Distribution Model in Batch Mode 
Analysis 

A technique for assisting the user in choosing a best parametric probability distribution 

model for a data set is included in AuvTool. The technique is based upon the of the K-S 

goodness-of-fit test. The technique is applicable to the normal, lognormal, beta, gamma and 

Weibull distribution. Although K-S test is also available for uniform and symmetric 

distributions, the two distributions are more often used to characterize subjective expert 

judgment and are not typically used when fitting distributions to data. Therefore, the uniform 
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and symmetric distributions are not included as options in the batch mode distribution selection 

technique. 

A premise for using K-S test value as a criterion is that a smaller value of the K-S test 

statistic implies a better fit. However, it must be pointed out that there is no specific support for 

this premise in the literature. The evaluation and selection of fitted distributions involves many 

factors. A distribution model that has the smallest value of K-S test may not always be the best 

model for describing a variable. For example, suppose that there is a variable for which samples 

could be larger than 1. However, because of limited sample size, it is possible that all of the data 

available in a given sample have values between 0 and 1. In this case, the results from using the 

batch analysis feature provided in the AuvTool might suggest that a beta distribution is a better 

fit in terms of the K-S test values. However, the two parameter beta distribution would 

inappropriate as a choice for describing a random variable whose values could exceed 1. 

Another example is given in Cullen and Frey (1999) for a leafy vegetable producing PCB 

concentration data set. In the example, almost all of the many analyses pointed to the normal 

distribution as being a better fit to the data than the lognormal distribution. However, the use of 

the normal distribution in that example leads to unacceptably high probabilities of predicting 

negative concentrations. Therefore, the normal distribution would be an inappropriate choice, 

even though it provided the best fit, because the PCB concentrations cannot be negative. 

Therefore it must be emphasized that uncritical application of the batch mode distribution 

selection procedure included in AuvTool can lead to an inappropriate selection of a 

parametric probability distribution model. 

The user of AuvTool is cautioned that the availability of a batch mode technique for 

choosing a distribution based upon the K-S test is not a substitute for the use of judgment. The 
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K-S test is based upon a specific criterion which may or may not be important to a particular 

analyst or decision maker in the context of a specific problem. The K-S test does not screen for 

results that may be physically implausible, such as a probability of sampling negative values for 

a quantity that must be non-negative. The appropriateness of selection of a distribution depends 

on the data quality objective of each analysis, which may differ from one situation to another. 

Therefore, uncritical application of the batch mode feature of AuvTool for seeking a best fit 

distribution is likely to lead to inappropriate selection of a probability distribution model in some 

cases. It is the user's responsibility to evaluate the automatically selected parametric 

probability distribution for appropriateness with respect to the user's own criteria and 

needs . 

2.5.6 Summary of Methods for Evaluating Goodness-of-Fit 

Several different techniques for evaluating goodness-of-fit of a parametric probability 

distribution model compared to a data set have been presented. Although it is tempting to base 

the selection of a parametric probability distribution model solely upon the application of a 

goodness-of-fit statistical test, this temptation should be strongly resisted. Instead, it is critically 

important to consider the following questions in making the choice of a parametric distribution: 

Is the selected parametric probability distribution model consistent with the data in terms 
of underlying theory? 

Is the selected parametric probability distribution a plausible representation of the data? 
For example, if the data must be non-negative, does the selected distribution also 
have this feature? 

What characteristics of the distribution are of most concern in your specific assessment, 
and are these criteria the same as those for the goodness-of-fit test? If so, then the 
goodness-of-fit test should be treated as a useful consideration in choosing a 
distribution, but it should not be the only consideration. The latter is especially true if 
the answers to either of the first two questions are "no". 

Are the criteria for the goodness-of-fit test relatively unimportant for a particular 
assessment? In this case, the user will find it more useful to rely upon a graphical 
comparison of the fitted distribution with the data, either based upon a comparison of 
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the CDF of the fitted distribution with the data, or based upon a comparison of the 
confidence intervals of the CDF of the fitted distribution with the data 

In fact, both graphical comparison and statistical goodness-of-fit tests involve subjective 

judgment regarding what constitutes an acceptable fit (Cullen and Frey, 1999). For example, the 

K-S and A-D tests involve subjective judgment regarding the choice of significance levels. 

Many authors emphasize the subjective nature of statistical tests. Hann and Shapiro (1967) state 

this quite well in their excellent book: 

“One might conclude…. that a proper procedure for selecting a distribution is to consider a 
wide variety of possible models, evaluate each by the methods here described, and assume as 
correct the one that provide the best fit to the data. However, no such approach is being 
suggested. Where possible, the selection of the model should be based on an 
understanding of the underlying physical properties… The distributional test then 
provides a useful mechanism for evaluating the adequacy of the physical interpretation. Only 
as a last resort is the reserves procedure warranted, and then, only with much care, for, 
although many models might appear appropriate within the range of data, they might well be 
in error in the range for which predictions are desired,” (pp.260-261). 

2.6 Characterization of Variability and Uncertainty 

The primary objective of this section is to introduce relevant methods for characterization 

of uncertainty in the mean, standard deviation, and parameters of a distribution. Uncertainty in 

a statistic attributable to random sampling error can be represented by a sampling distribution 

(Cullen and Frey, 1999). Sampling distributions are used to estimate confidence intervals for the 

parameters of a distribution. A confidence interval for a statistic is a measure of the lack of 

knowledge regarding the value of the statistic. There are a variety of methods for characterizing 

uncertainty in the mean or standard deviation, including analytical solutions and numerical 

simulations. Analytical solutions are available for cases in which the underlying distribution for 

a data set is normal or for which the variance is small enough and/or the sample size for a data 

set is large enough (e.g., >30). If the underlying population distribution is not normal and the 

sample size for a data set is small, analytical methods based upon normality may lead to 

54




significant errors in the estimation of confidence intervals. Therefore, there is a need for a more 

flexible approach for estimating sampling distributions and confidence intervals. The numerical 

simulation method of bootstrap simulatio, may be used to estimate confidence intervals for the 

mean or other statistics (Efron and Tibshirani, 1993). 

Bootstrap simulation, introduced by Efron in 1979, is a numerical technique originally 

developed for the purpose of estimating confidence intervals for statistics based upon random 

sampling error. This method has an advantage over analytical methods in that it can provide 

solutions for confidence intervals in situations where exact analytical solutions may be 

unavailable and in which approximate analytical solutions are inadequate. For example, in 

estimating uncertainty in the sample mean, bootstrap simulation does not require that the original 

data set be normally distributed, even for small sample sizes. This advantage over analytical 

methods that are based on normality assumptions makes bootstrap simulation a more versatile 

and robust method for estimating uncertainty in a statistic due to sampling error, especially for 

non-normal data sets (Cullen and Frey, 1999). Bootstrap simulation has been widely used in the 

prediction of confidence intervals for a variety of statistics. 

The method illustrated by Frey and Rhodes (1996;1998) for using bootstrap simulation 

in the context of an environmental case study is the basis for the simulation technique used in 

AuvTool. The following subsections introduce the bootstrap method and the two major steps 

associated with the bootstrap method: (1) generating bootstrap samples; and (2) forming 

bootstrap confidence intervals. In addition, the details of the two-dimensional simulation method 

presented by Frey and Rhodes (1996; 1998) are described. 

2.6.1 Bootstrap Method 

The bootstrap method addresses uncertainty due to random sampling error by first 

assuming that the original data set, x, of sample size n, is a random sample from the distribution 
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F̂ , and then repeatedly asking the question: What if the data set had been a different set of n 

ˆrandom values from the same distribution F ? This question is answered by repeatedly 

generating “bootstrap samples.” A bootstrap sample, x *, is defined as a random sample of size n 

ˆtaken from the distribution, F . Bootstrap samples may be simulated using random Monte Carlo 

simulation (Rhodes, 1997). A large number, B, of independent bootstrap samples (x*1, x*2, … 

x*n) are selected from the distribution F̂ . From each of the B bootstrap samples, a new statistic 

q ˆ * , is computed such that: 

q ˆ * i = f ( x * i ) for i =1, 2, …, B  (2-45) 

ˆ * ˆEach q  is referred to as a bootstrap replicate of q (Rhodes, 1997; Frey and Rhodes, 1999). 

The bootstrap replications (q ˆ *1 ,q ˆ *2 ,...,q ˆ * B ) are each independent realizations of an 

estimate of the parameter q. The dispersion of values of the bootstrap replications reflects the 

uncertainty in the sample estimate of the unknown parameter, q , attributable to random 

sampling error. The bootstrap replicate values describe an estimate of the sampling distribution 

of the statistic. Since a statistic is estimated from randomly drawn values, it is itself a random 

variable. The number of bootstrap replications necessary to reasonably approximate the true 

sampling distribution of the statistic depends upon the statistic being estimated. For, example, 

according to Efron and Tibshirani (1993), to compute the standard error of the mean (the original 

intent of the bootstrap technique), B = 200 is generally enough and B = 25 is often sufficient. 

However, for computing confidence intervals or estimating percentiles of sampling distributions, 

Efron and Tibshirani (1993) suggest B = 1000. In examples for computing confidence intervals 

given in Efron and Tibshirani (1993), the number of bootstrap replications ranges between B = 

1,000 and B = 2,000. 
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2.6.2 Methods of Generating Bootstrap Samples 


In bootstrap simulation, the sample data points, x = {x1, x2, …, xn} are assumed to be a 


random sample of size n from some unknown probability distribution F. The parameter of 

interest, q, is a characteristic of the distribution of F, q = f(F), such as the mean, variance, shape 

or scale parameter, or any fractile or quantile of the distribution F. An estimate of q is the 

statistic q ˆ , which is determined from the data set, q ˆ  = f(x). 

ˆUsing the data set, x, the distribution F , is defined to be an estimate of the unknown 

population distribution F. The distribution may be defined as either an empirical distribution or 

a parametric distribution. The former is the basis for non-parametric bootstrap, and the latter is 

the basis for parametric bootstrap (Efron and Tibshirani, 1993). Non-parametric bootstrap is also 

commonly referred to as "resampling." One of the main shortcomings of resampling of a data set 

is that the minimum and maximum values obtained in each bootstrap sample are limited to the 

minimum and maximum values within the data set. When only small data sets are available, this 

can lead to biases in the representation of a given model input (e.g., failure to consider possible 

large values that are not present in the limited data set). The use of parametric distributions is 

one way to allow for the possibility that smaller or higher values than those observed in the data 

set may occur in the real system being modeled. The method of generating bootstrap samples 

based on an empirical distribution for non-parametric bootstrap simulation is discussed in 

Section 2.4.9. The algorithms for generating bootstrap samples based on parametric distributions 

for normal, lognormal, beta, gamma, Weibull, uniform, and symmetric triangle distributions are 

documented in Sections 2.4.2 through 2.4.8. 

2.6.3 Methods of Forming Bootstrap Confidence Intervals 

The development of good confidence intervals is an important issue in bootstrap 

simulation. “ Good” means that the bootstrap intervals should closely match exact confidence 
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intervals in those special situations where statistical theory yields an exact answer, and the 

interval should give dependably accurate coverage probabilities in all situations. A method that 

produces such a good confidence intervals should be both transformation respecting and second-

order accurate (Efron and Tibshirani, 1993). 

Several bootstrap confidence interval methods have been proposed in the literature (Efron 

and Tibshirani, 1993; Burr, 1994). These methods include the standard normal, percentile, 

bootstrap-t, and Efron’s BCa. The standard normal method requires the imposition of normality 

assumption on the bootstrap distribution and it is neither transformation respecting nor second-

order accurate. Therefore, the standard normal method is not a “good technique” for forming 

bootstrap confidence interval. The percentile method is possibly the most frequently used in 

practice. Although it is only first-order accurate, the intervals obtained from this method are the 

simplest to use and explain (Efron and Tibshirani, 1993). The bootstrap-t and the BCa intervals 

are comparable in that both have been demonstrated theoretically to be “second-order correct”, 

but the bootstrap –t method is not transformation respecting. Burr (1994) suggests that 

bootstrap-t is unstable. More discussion on these methods can be found in the Efron and 

Tibshirani (1993), Burr (1994), and Martin (1990). Though there is no gold standard to make a 

definitive conclusion as to which method is the best, for simplicity and because it is the most 

widely used method in practice, the percentile method will be discussed and used. 

When calculating a confidence interval, the intent is to develop an interval that has a (1-

2a) probability of enclosing the true value of a statistic, q. The upper and lower bounds of this 

ˆ *confidence interval are determined by ordering the B bootstrap replicates of q , 


(q ˆ *1 ,q ˆ *2 ,...,q ˆ * B ). Given these ordered statistics, the 100ath percentile (the lower bound of the 


confidence interval) is the B•ath largest value, q ˆ * B • a , and the 100(1-a)th largest value, q ˆ * B • ( 1 - a ) . 
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For example, for B =1,000 and a= 0.05, the 90 % confidence interval for some parameter, q, is 

given by: 

[q ̂ 
* B•a ,q ̂ 

* B •(1-a ) ] = [q ̂
*50 ,q ̂

* 950 ]  (2-46) 

where, q ̂ 
* 50  and q ˆ * 950  are simply the 50th and 950th values in the ordered set if the bootstrap 

statistics. 

2.6.4 Two-dimensional Simulation of Variability and Uncertainty 

AuvTool features the use of the two-dimensional approach to simulation of both 

variability and uncertainty employed by Frey and Rhodes (1996, 1998) and that has also been 

implemented in other prototype software (e.g., Frey and Zheng, 2000) as described in Chapter 1. 

As shown in Figure 2-7, bootstrap simulation is used to simulate the uncertainty in the 

ˆparameters of a frequency distribution, F , that has been fitted to a data set of sample size n. A 

total of B bootstrap samples of sample size n are simulated. For each bootstrap sample, a new 

distribution is fitted and a bootstrap replication of the distribution parameters is calculated. The 

bootstrap simulation produces paired parameter estimates. These multivariate sampling 

distributions of the parameters represent the uncertainty in the distribution parameters. In the 

two-dimensional simulation, a total of q different frequency distributions are simulated, where q 

= B in most cases presented here. Each alternative frequency distribution is based upon a 

different set of bootstrap replicate distribution parameters. For each alternative frequency 

distribution, a total of p random samples are simulated to represent one possible realization of 

variability within the population. For example, suppose B=500 and p = 500. Thus, a total of 

250,000 samples are generated, representing 500 samples from each of 500 alternative frequency 

distributions. For each realization of uncertainty, the samples are sorted to represent cumulative 
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Figure 2-7.  -Dimensional Simulation 
of Variability and Uncertainty. (Where: B=number of Bootstrap Replications, 
q=Sample Size Used for Uncertainty, p=Sample Size Used of Variability) 
(Frey and Rhodes, 1998) 

 
 

distribution functions.  

95th percentile of variability) which can be used to construct confidence intervals for each 

Flow Diagram For Bootstrap Simulation and Two

Thus, there are 500 values for any given statistic (e.g., mean, variance, 



statistic. An example graph of probability bands from two-dimensional simulation was shown in 

Figure 2-6 of Section 2.5.4. 

2.7 Evaluation of Dependence or Correlation between Statistics of Interest 

Possible dependence or correlation between the mean, and standard deviation, and 

between the parameters of distributions sometime exists. The evaluation of the dependence or 

correlation will guide analysts to correctly make use of the statistics (Morgan and Henrion, 

1990). A sample correlation describes the strength of the linear association between variables. 

An association between variables means that the value of one variable can be predicted, to some 

extent, by the value of the other. A linear correlation is a special kind of association. A non-

linear relation can be transformed into a linear one before the correlation is calculated. There are 

a few ways to evaluate the dependency or correlation between a set of variable pairs. These 

include correlation coefficients, scatter plots and regression analysis (Cullen and Frey, 1999). In 

the AuvTool, the sample correlation coefficient is used as an indication of an association 

between the sample distributions of selected statistics. 

The correlation coefficient is calculated with the assumption that both variables are 

stochastic (i.e., bivariate Gaussian). It can be obtained by using the following formula (Morgan 

and Henrion, 1990): 

m

� k = 1
(x k - x )(y k - y)

R = 

� � = =
-· -

m 

1 k 

m 

1 k 

2

k 

2 

k ) yy ( ) x x ( 
(2-47) 

where, 

R = Correlation coefficient between two variables 

x
k = Variable x samples 

x  = The mean of x
k  samples 

y
k = Variable y samples 
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y  = The mean of y
k  samples. 

The magnitude of the correlation coefficient is a measure of probabilistic dependency 

between two uncertain variables. It varies from 0 (random relationship) to 1 (perfect linear 

relationship) or -1 (perfect negative linear relationship). 

The use of a sample correlation as an indicator of dependence between two distributions 

is a potentially useful but not perfect approach. If the true dependence is non-linear, then the 

sample correlation coefficient may fail to give a strong indication of a potentially important 

dependence. Frey and Rhodes (1998) illustrate the dependence between the mean and standard 

deviation, and between the parameters, for selected distributions. For example, the parameters of 

the gamma distribution have a strong inverse nonlinear dependence. A sample correlation 

coefficient will not be as sensitive to this type of dependency as, for example, a rank correlation 

coefficient. A feature available in AuvTool is the ability to export paired data for the sampling 

distributions of the mean, standard deviation, and the values of both parameters for each 

parametric distribution. Therefore, a user can graph the paired values of the bootstrap 

replications of the mean and standard deviation, or of the two parameters, to identify and 

characterize dependences that are not fully captured by a sample correlation coefficient. 

2.8 Summary 

This chapter has described the technical basis for the algorithms used in AuvTool. These 

algorithms include the following: 

• Plotting of data sets using the Hazen plotting position 

•	 Visualization of the CDF of fitted distributions and graphical comparison of these 

with the data 
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•	 Estimation of parameters for parametric probability distributions using MoMM or 

MLE approaches 

• Presentation of empirical step-wise CDFs 

•	 Generation of random numbers from empirical step-wise CDFs or from parametric 

probability distribution models 

•	 Calculation of test statistics as an aid in determined goodness-of-fit of a parametric 

probability distribution to a data set 

•	 Estimation of confidence intervals of the CDF of a parametric probability distribution 

fitted to a dataset and graphical comparison with the data as an aid in evaluating 

goodness-of-fit. 

•	 Use of bootstrap simulation to characterize sampling distributions and confidence 

intervals for key statistics, such as the mean, standard deviation, and parameters of 

parametric probability distribution models. 
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3.0 AUVTOOL SYSTEM DEVELOPMENT AND IMPLEMENTATION 

The methodology for quantifying variability and uncertainty described in Chapter 2 was 

implemented in the software tool AuvTool. In this chapter, we present the design considerations, 

development environment and tools, structure design, and the main function modules and 

associated main features of AuvTool. 

3.1 AuvTool Software Design Considerations 

The primary goal of AuvTool is to provide a user-friendly preprocessor module for the 

EPA SHEDS model which incorporates appropriate algorithms for fitting distributions to model 

inputs and for quantifying variability and uncertainty in each input. Therefore, the main concern 

in the design and development of AuvTool system is to make the output of AuvTool appropriate 

for use as input to the SHEDS model. Because the SHEDS model involves a large number of 

model inputs, and because variability and uncertainty must be quantified for such inputs, a batch 

analysis feature was included in AuvTool. Aside from meeting the requirements of the SHEDS 

model, a secondary objective for AuvTool is to make it generally applicable for quantifying 

variability and uncertainty in other quantitative analysis fields such risk assessment and emission 

estimation. Thus, AuvTool was designed as a stand-alone program. 

AuvTool provides output in a format of general application, but also in a format required 

for input to the SHEDS model. In addition, a future objective for AuvTool is to have capabilities 

which can allows users to specify their own models, and to propagate the variability and 

uncertainty from model inputs to model outputs. Therefore, the extensibility and expansion of 

the AuvTool was another main design concern. Based on these considerations, an object-

oriented programming technique was used in the development of AuvTool system to promote 

modularity, extensibility, and reusability of the source code. 
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3.2 Development Environment and Tools 

The Windows 98/ME platform was chosen as a development environment AuvTool. 

This choice was made to ensure compatibility with the SHEDS model. The software 

development tools used were Microsoft Visual C++, Graphic Server and Spread Active X 

controls. The reason for choosing Visual C++ lies in that it not only provides an object-oriented 

programming environment, which makes the software more extensible and expandable, but also 

facilitates the development of a user-friendly graphic interface. The Graphic Server and Spread 

tools can help to visualize the simulation results and organize the data input and result outputs. 

3.3 Structure Design of the AuvTool System 

Figure 3-1 shows the conceptual design and the relationship between modules of 

AuvTool system. AuvTool can currently be divided into five groups. Table 3-1 summarizes the 

composition of the groups and their main functions. As shown in Figure 3-1 and Table 3-1, the 

Data Import/Export group provides data for the Variability and Uncertainty Analysis group. The 

analysis results from the Variability and Uncertainty Analysis group are reported to the 

Variability and Uncertainty Resulting Reporting group, and to the Further Analysis group for 

further analysis of the sampling distribution data for the statistics of interest (e.g., mean, standard 

deviation, and distribution parameters). The results from the Further Analysis group are reported 

to the Variability and Uncertainty Resulting Reporting group for summarization. The 

modifications of the Random Seed Setting module in the Random Sampling group are passed to 

other analysis modules. 

3.4 AuvTool Main Modules 

As shown in Figure 3-1, AuvTool is composed of different function modules. The 

following subsections briefly describe the main functions modules and the associated features 

that the function modules provide. 
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Figure 3-1. The Conceptual Structure Design of AuvTool System 

Table 3-1. AuvTool Function Module Summarization Table 
Group Name Modules Main Functions 

Data 
Import/Export 

Data Entry, Importing and 
Exporting module and Loading 
Distribution Information module 

Provides the required data for variability 
and uncertainty analysis, and exports the 
input data for future analysis and other 
applications 

Random 
Sampling 

Random Seed Setting module and 
Random Sample Generator 
module 

Sets the random seeds and generates 
random samples 

Variability and 
Uncertainty 
Analysis 

Variability Analysis-Fitting 
Distribution Dataset by Dataset 
module, Batch Analysis module 
and Uncertainty Analysis module 

Implements all simulations and 
calculations related to variability and 
uncertainty analysis 

Further 
Analysis 

Analyzing the Sampling Data of 
Statistics of Interest Module 

Does further analysis of the sampling data 
of interests of statistics from bootstrap 
simulation 

Variability and 
Uncertainty 
Result 
Reporting 

Variability Analysis Result 
Reporting module and Uncertainty 
Analysis Result Reporting module 

Provides summarization tables for user’s 
variability and uncertainty analysis cases 
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3.4.1 Data Entry, Importing and Exporting Module


The Data Entry, Importing and Exporting module provides a data sheet similar to a 


spreadsheet for users to input or output data. In this module, users can enter data from the 

keyboard, load an existing AuvTool format data file, and import a Microsoft Excel 97 data file or 

tab-delimited text files from other application programs into the main data sheet. In the data 

sheet, AuvTool specifies that each column represents one data set, and users can have multiple 

data sets by using multiple columns in the input format. Users can name each data set. The 

module automatically counts the number of data points in a data set and logically checks the 

users’ inputs. For example, if there are some invalid numerical value inputs, AuvTool will 

prompt the user to correct their inputs before they can do variability and uncertainty analysis. 

This module allows the user to save their data into an AuvTool file format or to export their data 

to an Excel file or tab-delimited text file. The data in the module will be used in the other 

analysis modules as a basis of variability and uncertainty analysis. 

3.4.2 Loading Distribution Information Module 

It often happens that users can obtain distribution information for some variables from 

some other sources such as technical reports, while no original data for those variables are 

available. However, in this situation, it is still possible for users to do uncertainty analysis by 

using bootstrap simulation if they have sufficient information about the distribution describing 

the variable. This information includes the type of parametric distribution, the parameter values, 

and the sample size. The implementation of the Loading Distribution Information module 

enables users to complete uncertainty analysis for this situation. This module allows users to 

provide the distribution information from the keyboard, from an existing AuvTool disk file, or 

from other file formats such as Excel. The information is passed to the batch analysis module to 

do uncertainty analysis. Currently, the module allows users to provide common single 
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component parametric distributions. The distribution models include normal, lognormal, 

gamma, beta, Weibull, uniform, and symmetric triangle distributions. 

3.4.3 Random Seed Setting and Random Sample Generator Modules 

By default, any analysis modules will use the default random seed provided by AuvTool. 

However, in some situations, users want to change the random seed for their needs. For 

example, they want to check the repeatability of simulation results for different random sample 

series. Keeping the same seed will help users to duplicate the simulation results. The Random 

seed setting module implemented in AuvTool provides options for users to keep or modify the 

default random seed. The choice of random setting in this module is passed to all other modules. 

AuvTool also provides a random sample generator module, in which users can generate random 

samples by specifying the corresponding distribution information and the number of random 

samples they want to generate. This module can generate random samples based on an empirical 

distribution. The results generated in the module can be easily copied or exported to other 

application programs, for example, Excel or Notepad. 

3.4.4 Variability Analysis-Fitting Distribution Dataset by Dataset Module 

The variability analysis-fitting distribution dataset by dataset module automatically lists 

the data sets needing to be analyzed based on the data that users provide in the data entry, 

importing and exporting module. In the module, users are able to perform variability analysis 

data set by data set. This modules provides seven distribution types which include normal, 

lognormal, beta, gamma, Weibull, uniform and symmetric triangle distributions that can be fit to 

a data set, and (in most cases) a choice of two parameter estimation methods, including method 

of matching moments (MoMM) and maximum likelihood estimation (MLE ). 

The user can choose the K-S and A-D statistical goodness-of-fit tests, where applicable, 

to help in choosing a best fitting parametric distribution for a particular dataset. When users 
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select a data set to analyze, the module allows users to choose the parameter estimation method 

and the preferred distribution type. The data set and fitted distribution will be graphically and 

instantly visualized, which will help users to judge if the distribution they chose is a good 

representation of the data set or not. The K-S test and A-D statistical test results are presented on 

the right side of the user interface, which shows the value of the calculated test statistic; the 

critical value of the test statistic and whether or not the test was passed. If the users find that no 

parametric distribution offers a good enough fit to represent a data set, they can choose an 

empirical distribution. The decisions made via the module provide a basis for uncertainty 

analysis as described in Section 3.4.6. The variability analysis results in the module are reported 

to the variability analysis reporting module. 

3.4.5 Batch Analysis Module 


The batch analysis module is a core one in the AuvTool. Based on data provided in the 


data entry, importing and exporting module and the distribution information in the loading 

distribution information module, the batch analysis module automatically generates the control 

options for each data set or variable being analyzed. In the sheet inside the module, each row 

represents a data set or a variable; any choices and actions made on the selected row will only be 

effective for the data set or variable on the row. 

For any data sets or variables with original data, the program will set “Auto” as the 

default option in the column of Distribution Choice. The user can modify the default option to 

one of the specific distribution types listed in the Distribution Choice combo box. “Auto” is not 

a distribution type, but an option, in which the user lets the program automatically choose a good 

fit for the selected data set. 
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For those cases that do not have original data, there is no “Auto” option available, and 

distribution information is from the data provided in the loading distribution information 

module. Users cannot modify the distribution type in these cases. 

The module also allows users to choose parameter estimation methods. By default, the 

program will choose MoMM for cases with original data. For those cases without original data, 

and if no information is available for the parameter estimation methods, the program will mark 

“NA” on the row of the dataset. However, in uncertainty analysis, the program will by default 

assign MoMM to these cases. The module provides a feature to graphically display the fitted 

distribution and the data set. Another main feature of the module is that it allows users to 

visually compare different distributions fitted to a data set by graphically showing all reasonable 

fitted distributions in the same window, which will help users to choose a good fit. 

The main advantage of this module is that not only it covers all features implemented in 

the variability analysis-fitting distribution dataset by dataset module, but also it provides 

features of automatic batch variability and uncertainty analysis, visual comparisons of different 

distribution types fitted to a data set, and uncertainty analysis for the variables without original 

data. In the module, if users prefer to use the default settings for all data sets analyzed, they do 

not need to make any choice or to go to any other analysis modules, but they still can complete 

their variability and uncertainty analyses. 

The program will automatically help users to choose best fits and to do uncertainty 

analysis. This feature will be very helpful if users have a large number of data sets to be 

analyzed simultaneously. It must be pointed out that automatically choosing a best fit is based 

on a specified criterion. The criterion used in the AuvTool 1.0 is the minimum K-S test value. 

However, it must also be mentioned that a best fit in terms of the minimum K-S test statistic 
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value does not mean that the fit is the most reasonable one. In fact, users are cautioned that blind 

application of the K-S criterion to choosing a best fit may lead to selections of parametric 

distributions that are less than ideal fits in ways not captured by the K-S statistic or that may not 

have the most relevant theoretical underpinnings. 

As mentioned above, the batch analysis module allows users to do uncertainty analysis 

based on the users’ own judgments or selections. Any choices made via the module will be 

passed to the uncertainty analysis-bootstrap simulation module to do bootstrap simulations, and 

will be reported to the variability analysis-reporting module. 

3.4.6 Uncertainty Analysis-Bootstrap Simulation Module


The uncertainty analysis-bootstrap simulation module features the use of bootstrap 


simulation and two-dimensional Monte Carlo simulation for simultaneously quantifying 

variability and uncertainty. The simulations are based on the choices of distribution types and 

parameter estimation results from the variability analysis-fitting distribution dataset by dataset 

module or batch analysis module. 

The module allows users to modify the parameters for bootstrap simulations. For 

example, users can specify the number of bootstrap replications, and the sample size for 

variability. The program will by default show the probability band graph for the selected 

variable or data set when the bootstrap simulation is done. An example of band graph is shown 

in Figure 2-7 in the Chapter 2. The probability band depicts a plausible range which may 

enclose the “true” but unknown distribution. For example, the 95 percent probability band may 

be thought of as a 95 confidence interval. This interval has a 95 percent probability of enclosing 

the true but unknown distribution. The probability bands tend to be wider with very small 

datasets and/or in situations with large variation within the available sample of data. From the 

probability bands users can obtain a confidence interval for any percentile of the distribution. 
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This module also can graphically display the sampling distributions of the statistics of interest for 


the selected variable. The sampling distributions are the basis for constructing confidence 


intervals for the statistics. These statistics include the mean, standard deviation and distribution 


parameters. Because there are no parameters for an empirical distribution, the statistics for 


which sampling distributions are reported include only the mean and standard deviation. The 


module also provides a data sheet to hold the simulation data for the current variable in the data 


page of the module where users can export the results to other application programs. The 


simulation results from the module will be passed to the analyzing the sampling data of statistics 


of interest module. 


3.4.7 Analyzing the Sampling Data of Statistics of Interest Module 

The sampling distribution data from bootstrap simulation, which describe uncertainty for 

the selected statistics, are often described using an empirical distribution. The advantage of 

using empirical distributions is that they do not need any parametric distribution assumptions. 

However, a potential problem is that there is a large data storage requirement to save all of the 

replicate values of each statistic. A parametric probability distribution can also be used to 

represent the sampling distribution for the statistics in a more compact form. For example, in 

classical statistical theory, the confidence interval for the mean is often described using a normal 

distribution if the sample data are from a normal distribution or if the sample size is large 

enough. The use of bootstrap simulation makes the sampling data for statistics available for all 

other parametric population distribution and eliminates the often restrictive or incorrect 

normality assumption imposed upon the sampling distribution of the mean in case with small 

sample size and skewed data. Therefore, it is often the case that other parametric distributions 

besides the normal distribution should be used to represent the sampling distribution data for 

statistics such as the mean. The role of the analyzing the sampling data of statistics of interest 
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module in the AuvTool is to implement the further analysis of the sampling data from the 

bootstrap simulations feature. The batch analysis feature and the further analysis feature in the 

module embody the advantage of the AuvTool over the other commercial software packages. 

This module is very similar to the variability analysis-fitting distribution module. The 

main difference is that the former analyzes the sampling data of statistics from bootstrap 

simulation for a chosen variable, and uses a parametric distribution model to represent the 

uncertainty for a statistic, while the later focus on characterizing the variability of a variable 

based on an original data set using a distribution model. Another difference is that this module 

also has a feature that can automatically help users to choose a best fit to the sampling 

distribution data of a statistic; while the variability analysis-fitting distribution module does not. 

Like the variability analysis-fitting distribution module, the module also allows users to choose 

different distribution types and different parameter estimation methods when they analyze a 

statistic for a selected variable or data set. The choices made via the module will be used to 

construct the uncertainty analysis summary table in the uncertainty analysis result- reporting 

module. 

3.4.8 Variability and Uncertainty Reporting Analysis Modules


The purposes of the Variability and Uncertainty Reporting Analysis modules are to report 


the variability and uncertainty analysis results in a tabular form and to facilitate export of the 

results to other application programs such as Microsoft Excel. The variability analysis result-

reporting module summarizes the variability analysis results from the variability analysis-fitting 

distribution module or batch analysis modules. These results include the summarization of the 

variable or data set names analyzed, the number of data points for each variable or data set, the 

distribution types representing variability, the corresponding distribution parameters, the 

parameter estimation methods, and the K-S and A-D test results. For the beta, uniform and 
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symmetric triangle distributions, the A-D test is not available, and the corresponding cells will be 

marked “NA”. 

The uncertainty analysis result-reporting module summarizes the 95 percent confidence 

intervals for the mean, standard error, and the variable or data set names analyzed, the number of 

bootstrap replication for each variable or data set, the distribution types fitted to the sampling 

distributions of the statistics of mean, standard error and distribution parameters, and the K-S and 

A-D statistical test results for those distributions. The module also reports all pair-wise sampling 

data combinations of all possible statistics and the correlation coefficients between all statistics. 
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4.0 VERIFCATION OF AUVTOOL 

A key task of this project was a comprehensive evaluation and refinement of AuvTool. 

The evaluation was based upon extensive testing of the software by several persons who were 

not involved in the development of the software. These persons constituted a verification test 

team. The team was comprised of three people. The testing was done according to a predefined 

testing plan. 

The scope of the testing included: (1) evaluation of the Graphical User Interface, 

including identification of any instabilities or errors associated with the interface; (2) verification 

of methods for input and output of data worked correctly; (3) verification of algorithms for 

generating random numbers from each type of distribution (i.e. normal, lognormal, gamma, 

Weibull, beta, uniform, symmetric triangle, uniform, and empirical); (4) verification of 

algorithms for estimating the parameters of the parametric distribution, including the maximum 

likelihood estimators and the method of matching moment estimators; (5) verification of the 

results of bootstrap simulations for confidence intervals of the mean and, in selected cases, 

confidence intervals for the standard deviation; (6) verification of algorithms for the goodness-

of-fit tests, with a focus on the K-S test; and (7) verification of the numerical stability of the 

bootstrap simulation results. 

Any problems that were identified by the verification test team were reported to the 

individual responsible for software development, and new versions of the program were 

provided that corrected the identified problems. The program was found to perform well in 

terms of the graphical user interface and regarding the input and output of data. 

This chapter focuses on documentation of items (3) through (7) in the list above. These 

items pertain to random number generation, parameter estimation, evaluation of bootstrap 
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simulation results for selected confidence intervals for selected statistics, goodness-of-fit testing, 

and the numerical stability of bootstrap results. The details of the specific testing approach for 

each of these five items are described in the following sections. 

4.1 Verification of Random Number Generation for Probability Distribution Models 

AuvTool includes algorithms for generating random numbers from specified probability 

distribution models, including the normal, lognormal, gamma, Weibull, beta, uniform, symmetric 

triangle, and empirical distributions. The objective of the first test applied to AuvTool was to 

verify that the algorithms for generating random numbers from a specified probability 

distribution perform correctly. The random number generation algorithms are a key component 

of AuvTool. For example, they are the basis for performing bootstrap simulation. 

The evaluation of the performance of the random number generation algorithms was 

based upon the following approach: 

1.	 Specify an assumed population distribution. In the case of the parametric 
distribution, this required specification of parameter values. In the case of the 
empirical distribution, this was done by specifying a data set. 

2. Generate 1,000 random numbers from each distribution. 

3.	 Graphically compare the 1,000 random numbers from Step 2 with the respective 
specified distribution from Step 1. 

4.	 Perform a quantitative statistical goodness-of-fit test in which the random samples are 
compared to the specified distribution. 

5.	 Make a finding as to whether the randomly generated numbers are an acceptable 
sample from the specified distribution. 

The results of each of these steps are described in the following subsections. 

4.1.1 Specifying Parameters and Generating Random Numbers 

For each of the seven parametric probability distribution models, two parameters have to 

be specified. In testing the random number generators for each of the parametric distributions, it 

was desired to include test cases with different ranges of variability in order to evaluate the 
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robustness of the random number generator with respect to relative variation. Relative variation 

was quantified based upon the coefficient of variation (CV), which is the standard deviation 

divided by the mean. 

For each of the seven parametric distributions, parameters were specified for three 

coefficients of variation, as summarized in Table 4-1. In most cases, the coefficients of variation 

used were 0.5, 1.0, and 2.0.  These three values of CV were used for the normal, lognormal, 

gamma, Weibull, uniform, and symmetric triangle distributions. For these same six 

distributions, the assumed mean in each test case was 1.0. The parameters of the distributions 

associated with a mean of 1.0 and the assigned CV were calculated using MoMM. The MoMM 

parameter estimation method is described in detail in Chapter 2. The calculated parameter 

values are given in Table 4-1. In an independent check by members of the study team who were 

not involved in writing Chapter 2 or in coding the AuvTool software, the definitions of the 

probability distribution models and of the parameter estimation equations were verified by 

comparison to published information in sources such as Morgan and Henrion (1990). 

The values of CV used for the beta distribution were 0.2, 0.5, and 0.8. These values were 

chosen because the two-parameter beta distribution is defined only for a finite range of values 

from 0 to 1. Therefore, the standard deviation for a beta distribution is not unbounded. A mean 

value of 0.5 was selected. A judgment was made that the highest value of CV to use for test 

purposes should be 0.8. 

For the empirical distribution, one test case was evaluated based upon an arbitrarily 

generated data set. There were three test cases for each of seven parametric distributions, 

resulting in a total of 21 test cases for the parametric distributions and 22 test cases for all 

distributions, including the empirical distribution test case. 
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Table 4-1. Parameters of the Tested Distributions. 
Distributiona CVb Parameter1c Parameter2c 

Normal 
0.5 1 0.5 
1 1 1 
2 1 2 

Lognormal 
0.5 -0.112 0.472 
1 -0.347 0.833 
2 -0.804 1.269 

Gamma 
0.5 4 0.25 
1 1 1 
2 0.25 4 

Weibull 
0.5 2.101 1.129 
1 1 1 
2 0.543 0.575 

Beta 
0.2 12 12 
0.5 1.5 1.5 
0.8 0.281 0.281 

Uniform 
0.5 -0.5 2.5 
1 -2 4 
2 -5 7 

Symmetric Triangle 
0.5 1 1.225 
1 1 2.450 
2 1 4.899 

a For normal, lognormal, gamma, Weibull, , uniform, symmetric triangle distributions, mean 

equals 1. For beta distribution mean equals 0.5.

b CV = coefficient of variation, which is the standard deviation divided by the mean.

c Parameter definition are given in Chapter 2, Section 2.2.


For each test case, 1,000 random numbers were generated using AuvTool. This was done 

by using the Random Sample Generator feature of AuvTool described in Chapter 7 of the User’s 

Guide (Zheng and Frey, 2002). In the case of parametric distributions, random number 

generation was done by specifying the type of parametric distribution and the numerical values 

of the parameters, obtained from Table 4-1, and executing AuvTool to generate 1,000 random 

values in each case. For the empirical distribution, a data set was entered to specify the 

distribution. AuvTool was used to generate 1,000 random values from the specified empirical 

distribution. 
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4.1.2 Graphical Comparison of Random Numbers with Specified Distribution 

The objective of graphical comparison is to visualize the degree of match between the 

random samples and the corresponding specified distribution.  

comparison is given in Figure 4-1 for the case of a normal distribution with a mean of one and a 

CV of 0.5.  

random numbers were plotted using the Hazen plotting position described in Chapter 2.  

there are so many data points, they are very close together and appear as if they are a continuous 

line except at the ends of the lower and upper tails.  

as a solid line.  plotted using a function for the normal distribution available in 

Microsoft ExcelTM.  

specified distribution is expected because of random variation within a data set of a finite sample 

size.  The graphical comparison implies that there is good agreement between the sample of 

1,000 random numbers and the specified distribution in this case. 
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Graphical comparisons for all of the other test cases are given in Appendix A. For all of 

the distributions, including normal, lognormal, gamma, Weibull, beta, uniform, symmetric 

triangle, and empirical, there is good agreement between the random sample of 1,000 values and 

the CDF of the specified distribution. Thus, the graphical comparison provides a qualitative 

indication that the random number generators are performing properly. 

4.1.3 Goodness-of-Fit Tests for Random Numbers 

To augment the graphical comparison of random numbers generated from AuvTool and 

the specified distributions, quantitative goodness-of-fit tests were conducted. The K-S test is 

applicable to evaluating goodness-of-fit for continuous distributions. Therefore, it was used to 

assess the correspondence between the 1,000 random numbers and the specified distribution for 

each case pertaining to the normal, lognormal, gamma, Weibull, beta, uniform, and symmetric 

triangle distributions. The chi-squared test was used to evaluate the goodness of fit of the 

generated random numbers compared to the empirical distribution. The chi-squared test was 

used instead of the K-S test in the case of the empirical distribution because the empirical 

distribution is discrete. Therefore, strictly speaking, the K-S test should not be used to evaluate 

goodness-of-fit for the empirical distribution. The details of the K-S test are described in 

Chapter 2. The verification team reviewed the description of the K-S test in Chapter 2 and 

verified that it was consistent with information available in the literature. 

The results for evaluation of the goodness-of-fit of the specified distributions and the 

randomly generated numbers are summarized in Table 4-2 for all of the parametric distributions. 

aThe critical value of the K-S test at the a level for a sample size of n is expressed as Dn . In this 

work, the critical level a is set to be 0.05 and the sample size is 1,000. Therefore, the critical 

0 .05value used was D1000  = 0.0430. The test is passed if the calculated value of the test statistic is 
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0 .05Table 4-2. Summary of the Results of K-S Test with critical value of D1000  = 0.0430. 
Distribution Mean CV Da 

Normal 1 
0.5 0.0286 
1 0.0256 
2 0.0317 

Lognormal 1 
0.5 0.0286 
1 0.0273 
2 0.0337 

Gamma 1 
0.5 0.0238 
1 0.0254 
2 0.0254 

Weibull 1 
0.5 0.0320 
1 0.0250 
2 0.0292 

Beta 0.5 
0.2 0.0314 
0.5 0.0260 
0.8 0.0220 

Uniform 1 
0.5 0.0207 
1 0.0375 
2 0.0307 

Symmetric Triangle 1 
0.5 0.0320 
1 0.0320 
2 0.0320 

0 .05a All tests were passed for n=1000, a=0.05, compared to a critical value of D1000  = 0.0430. 

less than the critical value. As shown in Table 4-2, the calculated values of the test statistics are 

less than 0.0430 in all cases. The largest test statistic value was 0.0375 in the case of the uniform 

distribution with CV=1. In most cases, the value of the test statistic was less than 0.03. Based 

upon the results of the goodness-of-fit tests, the hypothesis that the data are a random sample 

from the specified distribution cannot be rejected. Therefore, the random number generator is 

found to perform properly for the parametric distributions. 

Although the details of the K-S test are mentioned in Chapter 2, the chi-squared test is 

only briefly introduced. Therefore, more detail regarding the chi-squared test is provided here. 

The chi-squared test was used for the empirical distribution. The chi-squared test involves 

calculating a test statistic that approximately follows a chi-square distribution only if the 
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hypothesized model cannot be rejected as a poor fit to the data. The chi-squared test includes 

grouping the values in to cells in which each cell has at least five data points. The probability of 

obtaining values within the range of each cell is calculated based on the hypothesized 

distribution. Then a test statistic is calculated and evaluated. The number of cells that should be 

used in a matter of judgment. The number of cells that should be used can be estimated as 

follows: 

n
For n < ~ 200 ; k £  (4-1)

5 

2 0.2For n > ~ 200 ; k = integer{4 · [0.75 · (n - 1) ] }  (4-2) 

where: k is the number of cells. A test statistic is computed as follows: 

k 2 

X 2 = � 
(M i - E i )  (4-3) 

i - 1 E i 

where: Mi is the number of data values in each cell: and Ei is the expected number of 

data values in each cell. The test is passed if the following condition is met (Ang and Tang, 

1975): 

k 2 

� 
(M i - E i ) 

< X 1
2 

- a ,k - 1  (4-4) 
i - 1 E i 

2 2is the value the chi square distribution, X k - 1where: X 1- a ,k - 1 , at a cumulative probability 

(1- a). 

For the test of the random number generator for the empirical distribution, a data set of 

n=1,000 that was simulated from a uniform distribution with a minimum of one and a maximum 

of 10 was used to specify an empirical distribution in AuvTool. AuvTool was used to generate 

1,000 random numbers from the specified empirical distribution. The chi-square test was used to 

test if the simulated samples obtained from AuvTool and the original samples that were input to 

AuvTool were from the same distribution. 
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Table 4-3.  -Squared test 
Range of Data Range of Data 

Ca L U Ei
b Mi

c Di
d Ca L U Ei

b Mi
c Di

d 

1 1 1.15 14 11 0.643 31 5.5 5.65 23 26 0.391 
2 1.15 1.3 24 21 0.375 32 5.65 5.8 16 16 0.000 
3 1.3 1.45 8 8 0.000 33 5.8 5.95 15 18 0.600 
4 1.45 1.6 22 15 2.227 34 5.95 6.1 20 20 0.000 
5 1.6 1.75 17 17 0.000 35 6.1 6.25 12 16 1.333 
6 1.75 1.9 12 11 0.083 36 6.25 6.4 16 16 0.000 
7 1.9 2.05 16 21 1.563 37 6.4 6.55 13 15 0.308 
8 2.05 2.2 22 20 0.182 38 6.55 6.7 9 10 0.111 
9 2.2 2.35 17 19 0.235 39 6.7 6.85 17 17 0.000 
10 2.35 2.5 16 12 1.000 40 6.85 7 13 11 0.308 
11 2.5 2.65 14 12 0.286 41 7 7.15 19 26 2.579 
12 2.65 2.8 22 20 0.182 42 7.15 7.3 17 8 4.765 
13 2.8 2.95 21 20 0.048 43 7.3 7.45 15 19 1.067 
14 2.95 3.1 25 18 1.960 44 7.45 7.6 15 17 0.267 
15 3.1 3.25 13 14 0.077 45 7.6 7.75 19 11 3.368 
16 3.25 3.4 14 14 0.000 46 7.75 7.9 15 16 0.067 
17 3.4 3.55 22 24 0.182 47 7.9 8.05 14 8 2.571 
18 3.55 3.7 22 18 0.727 48 8.05 8.2 7 6 0.143 
19 3.7 3.85 17 21 0.941 49 8.2 8.35 20 21 0.050 
20 3.85 4 18 22 0.889 50 8.35 8.5 17 17 0.000 
21 4 4.15 15 15 0.000 51 8.5 8.65 13 14 0.077 
22 4.15 4.3 23 26 0.391 52 8.65 8.8 15 22 3.267 
23 4.3 4.45 13 8 1.923 53 8.8 8.95 21 21 0.000 
24 4.45 4.6 18 21 0.500 54 8.95 9.1 14 15 0.071 
25 4.6 4.75 15 11 1.067 55 9.1 9.25 8 10 0.500 
26 4.75 4.9 10 6 1.600 56 9.25 9.4 22 26 0.727 
27 4.9 5.05 25 23 0.160 57 9.4 9.55 24 22 0.167 
28 5.05 5.2 16 20 1.000 58 9.55 9.7 14 19 1.786 
29 5.2 5.35 15 12 0.600 59 9.7 9.85 21 20 0.048 
30 5.35 5.5 16 14 0.250 60 9.85 10 14 23 5.786 

Total Chi-Squared test value = sum of Di = 49.45 
a Cell number. 
b Number of original data sets in each cell. 
c Number of simulated data sets in each cell. 

d Di = 
i

ii

E

EM 2)( -
 

 

In setting up the chi-square test, the number of cells was calculated to be 60 based upon 

Equation (4-2).   

Procedure of the Chi

Both the original and simulated data sets were divided into 60 cells, as shown in 



Table 4-4. Chi-Squared Test for Random Samples and Specified Empirical Distribution 
Hypothesis H0: Simulated sample comes from the original empirical distribution 
Test statistic: 49.45 
Degrees of freedom: 59 
Significance level: 0.05 
Critical valuea: 77.93 
Conclusions: Accept H0 

a. Calculated by MATLAB function chi2inv (0.95, 59). 

Table 4-3. The endpoints of each cell were determined based upon dividing the domain of the 

distribution into equal intervals. Although the width of each cell was the same, there was 

random fluctuation regarding the number of data points in each cell both for the original and for 

the simulated data. The test statistic was calculated by summing the values obtained for each 

cell for the quantity Di, as shown in Table 4-3. The test statistic was found to be 49.45. In 

contrast, the critical value for the test statistic, based upon 59 degrees of freedom and a 

significance level of 0.05, was found to be 77.93. The critical value was estimated using the 

chi2inv function in MATLAB. A summary of the test results is given in Table 4-4. Because the 

value of the test statistic is less than the critical value, the empirical distribution specified in 

AuvTool cannot be rejected as an inappropriate fit to the data generated by AuvTool. Therefore, 

the random number generator for the empirical distribution was found to perform properly. 

4.1.4 Summary of Results for Verification of the Random Number Generator 

Based upon graphical comparisons and quantitative statistical goodness-of-fit tests, the 

random number generators for the normal, lognormal, gamma, Weibull, beta, uniform, 

symmetric triangle, and empirical distributions were verified to perform properly. Therefore, 

AuvTool was demonstrated to correctly simulate random numbers for these distributions. 

4.2 Verification of Parameter Estimation Algorithms 

The objective of the work related to verification of parameter estimation algorithms was 

to verify that the algorithms for parameter estimation incorporated into AuvTool work correctly. 
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In order to verify the parameter estimation algorithms, it is necessary to use both AuvTool and 

independent software and/or calculations to estimate parameters based upon the same data sets. 

The parameter estimates obtained from AuvTool and the independent methods were then 

compared. If the results were the same or sufficiently similar, then the results of AuvTool were 

deemed to be correct. A key assumption in doing such comparisons is that the correct algorithms 

are used in the independent software and/or calculations. A key limitation in identifying 

software to use for comparison purposes is that the parameter estimation algorithms are often not 

well-documented. For example, two popular software tools for probabilistic analysis are Crystal 

Ball and @Risk. However, in many cases, the definition of the PDF and the parameters is not 

given, and/or information regarding the algorithm used for parameter estimation is not given. 

Therefore, it was not possible to rigorously compare parameter estimation results from Crystal 

Ball and @Risk with those from AuvTool. 

4.2.1 Method for Verification and Comparison of Parameter Estimates 

As documented in Chapter 2, AuvTool incorporates both MoMM and MLE parameter 

estimation methods for the parametric probability distribution models, with a few exceptions. 

The exceptions are that the MLE method is not available for the uniform distribution, and 

MoMM is not included for the Weibull distribution. With these exceptions, the verification task 

included development of alternative, independent methods for calculating both MoMM and MLE 

parameter estimates for selected data sets. 

In order to test and verify the implementation of the parameter estimation algorithms 

given in Chapter 2, several steps were followed. The first was to verify the correctness of the 

equations given in Chapter 2 by reviewing the literature. This work was done by the 

independent verification team, and not by the persons who implemented the software or who 

wrote Chapter 2. The equations reported in Chapter 2 were verified to be accurate. A second 
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step was to develop an independent method for calculating the parameters of distributions based 

upon the algorithms given in Chapter 2. The approach chosen for the independent calculations 

was to perform parameter estimation using Excel spreadsheets. 

In the case of MoMM, the MoMM estimators were programmed into an Excel 

spreadsheet and parameters were estimated for several sets of test data. In the case of MLE, two 

different types of calculations were done. For the normal and lognormal distributions, analytical 

solutions for the MLE estimator are given in Chapter 2 and these were implemented into Excel. 

For the gamma, Weibull, beta, and symmetric triangle distributions, the log-likelihood function 

was entered into Excel. The MLE parameter estimates were obtained by optimization. The 

"Solver" in Excel was used in finding the optimal solution for the parameter estimates. 

Specifically, the maximum value of the log-likelihood function was found by varying the two 

parameters using the Solver. The log-likelihood functions for the gamma, Weibull, beta, and 

symmetric triangle distributions are given here: 

Log-likelihood function for the gamma distribution: 

n � x �
J ( a , b ) = - n{a ln( b ) + ln [G (a ) ]}+ � � ( a - 1) ln( x i ) - i 

� (4-5) 
i = 1 � b � 

where: 

n = the number of data points 

J = Log-likelihood function 

G(a) = the gamma function of a, 

a, b = the parameters in the gamma distribution. 

Log-likelihood function for the Weibull distribution: 

na x
J( a , b ) = - n ln( ) + � �

� 
(b - 1) ln( i ) - (

x i ) b
� (4-6)

b i = 1 � a a � 

where: 
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a, b = the parameters in the Weibull distribution. 

Log-likelihood function for the beta distribution: 

n1
J ( a , b ) = n ln + � [( a - 1) ln x i + (b - 1) ln(1 - x i )] (4-7)

B(a , b ) i = 1 

where: 

B = Beta function, 

a, b = the parameters in the beta distribution. 

Log-likelihood function for the symmetric triangle distribution: 

n b - x - ai
L(a , b) = � (4-8)

2 
i = 1 b 

where: 

a, b = the parameters in the symmetric triangle distribution. 

The calculations that were performed in Excel are referred to as "Manual" calculations 

because it was necessary for the verification team to enter the data and the estimation algorithms 

into Excel, and to manually execute the Solver in the cases of the optimization solution. 

In addition to the use of Excel as a platform for performing independent calculations of 

parameter values, an attempt was made to use both Crystal Ball and @Risk. Both programs have 

a capability to estimate parameter values from data sets. However, as previously noted, these 

two programs are not sufficiently documented with regard to the definition of the PDF or of the 

parameter estimation methods employed for a particular distribution. Although AuvTool uses 

definitions of the PDF that are found in the literature, there are alternative ways to define many 

distributions that in turn lead to different parameter definitions and different numerical values of 

the parameters. For example, the parameters of the lognormal distribution can be defined as the 

arithmetic mean and standard deviation of log-transformed data, as is done in AuvTool. 

Alternatively, one could define the lognormal distribution based upon the geometric mean and 

geometric standard deviation, or based upon the arithmetic mean and arithmetic standard 
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deviation of untransformed data, or other approaches (e.g., Small, 1990). Similarly, the 

parameters of the gamma distribution can be defined in a variety of ways. In the absence of 

knowledge of the actual definitions used in Crystal Ball and @risk, it is quite likely that 

differences in parameter estimates obtained with these two software in comparison to AuvTool 

could be because of different definition. 

Even if the definition of the PDF and the parameters of a distribution is the same in 

different software tools, the numerical values obtained for the parameters can be different if 

different parameter estimation methods are used. Although AuvTool contains two of the most 

common parameter estimation algorithms, there are other methods that may have been used in 

software such as Crystal Ball and @Risk for parameter estimation. For example, probability 

plotting methods are sometimes used by practitioners to estimate parameters, although this 

approach is not recommended (e.g., Cullen and Frey, 1999). Thus, without knowledge of the 

specific parameter estimation used in Crystal Ball and @Risk, it is possible that any differences 

compared to AuvTool could be because of different parameter estimation methods, and not 

because of an error in AuvTool. Therefore, Crystal Ball and @Risk could not be used to verify 

AuvTool. 

Even though Crystal Ball and @Risk are poorly documented with regard to the 

definitions of the PDF, the definitions of the parameters, and/or the specifics of the parameter 

estimation algorithms used for each of the parametric distributions tested, a choice was made to 

include comparisons of Crystal Ball and @Risk with AuvTool were possible. The reason for 

doing so is that many practitioners commonly use Crystal Ball and @Risk. Therefore, if a 

practitioner were to estimate parameters for a given data set with either of these two tools and 

also with AuvTool, there may be situations in which different results would be obtained because 
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of undocumented differences in definitions and algorithms. Thus, it was deemed useful to 

identify situations in which such differences occurred even though the differences could not be 

explained at this time. It is recommended that developers of commercial software should 

properly document the definitions of PDFs, parameters, and algorithms used for parameter 

estimation. 

Because the random number generator was verified in Section 4.1, the random number 

generator of AuvTool was used to generate data sets of sample sizes 10, 20, and 50 for use in the 

parameter estimation algorithm testing. These data sets are given in Appendix B. 

4.2.2 Results of Parameter Calculations 

The results of calculations for parameter estimates from AuvTool, manual calculations 

performed in Excel, and @Risk and Crystal Ball (where applicable) are given in Tables 4-5 

through 4-11 for the normal, lognormal, gamma, Weibull, beta, uniform, and symmetric triangle 

distributions, respectively. Each table shows the results obtained with three different test data 

sets of sample sizes 10, 20, and 50. 

For Crystal Ball, definitions of the PDF and of the parameters are not given in either the 

user manual or help files. For @Risk, some parameter definitions are the same as those used in 

AuvTool, while the others are different from AuvTool. The comparisons of the PDF definitions 

in @Risk are discussed case by case in the following paragraphs. However, for all cases, there is 

no documentation of the parameter estimation methods used in @Risk or Crystal Ball. Therefore, 

for all cases, it is not known whether @Risk and Crystal Ball used MoMM or MLE estimates, or 

whether other methods are used instead (e.g., probability plotting, approximate solutions for 

MLE, etc.). 

The results for the normal distribution in Table 4-5 include parameters estimated using 

MoMM in AuvTool and manually using Excel as the calculation platform. The results of these 
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Table 4-5. Estimated Normal Parameters 

Method Software 
Sample size n=10 Sample size n=20 Sample size n=50 

m s m s m s 
MoMMa AuvTool 0.241 0.683 1.067 0.522 1.036 2.007 

Excel 0.241 0.683 1.067 0.522 1.036 2.007 
MLEb AuvTool 0.241 0.648 1.067 0.509 1.036 1.987 

Excel 0.241 0.648 1.067 0.509 1.036 1.987 
@Risk 0.241 0.683 1.067 0.522 1.036 2.007 

Crystal Ball 0.83 0.25 1.20 1.44 1.10 2.06 
a Method of Matching Moment.
b Maximum Likelihood Estimates. 

two sets of parameter estimates are identical. Therefore, it is verified that the parameter 

estimation equations for the mean and standard deviation are implemented correctly in AuvTool 

and that they provide the correct MoMM estimates. Similarly, the same parameter values were 

obtained for MLE using AuvTool and the manual calculation method implemented in Excel. 

Because MoMM and MLE are based upon different approaches to parameter estimation, 

the values for the standard deviation parameter for a given data set are not the same when 

comparing the two methods. It is expected that MLE will give a different estimate for the 

standard deviation than does MoMM. In the case of MoMM, the standard deviation of the 

distribution will be the same as that of the data. In the case of MLE, the standard deviation of 

the distribution is associated with the best fitting distribution that maximizes the likelihood 

function based upon the observed data values. Thus, the distribution estimated using MLE will 

have central moments different from that of the original data. 

For comparison purposes, parameter estimates obtained from @Risk are shown. @Risk 

has the same PDF definition as the one used in AuvTool and also reported the same result as the 

AuvTool MoMM estimates. Therefore, although not documented, it is likely that @Risk is using 

the same MoMM parameter estimation method as AuvTool. Parameter values obtained from 
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Table 4-6. Estimated Lognormal Parameters 

Method Software 
Sample size n=10 Sample size n=20 Sample size n=50 
mlnx slnx mlnx slnx mlnx slnx 

MoMM AuvTool -0.233 0.296 -0.270 0.947 -0.664 1.229 
Excel -0.233 0.296 -0.270 0.947 -0.664 1.229 

MLE AuvTool -0.233 0.306 -0.235 0.847 -0.782 1.261 
Excel -0.233 0.306 -0.235 0.847 -0.782 1.261 

@Risk Rejecta Rejecta -0.401 0.981 -0.505 1.106 
Crystal Ballb 0.83 0.26 0.66 0.38 1.01 2.00 

a Rejected the distribution as a candidate fit.

b The definition of the parameters of the lognormal distribution in Crystal Ball is not available.


Crystal Ball are based upon unknown parameter definitions and an unknown parameter 

estimation algorithm, and they do not correspond to any of the other values shown in Table 4-5. 

For the lognormal distribution, manual calculations performed in Excel verified that 

AuvTool correctly calculated the two parameters using both MoMM and MLE. Parameter 

values calculated in @Risk and Crystal Ball were different than those obtained from AuvTool. 

Since the parameter definitions and algorithms used in these two softwares were not sufficiently 

documented, the basis for the difference could not be determined. @Risk would not estimate 

parameters for the smallest data set. @Risk has a feature to automatically choose a "best" fit 

distribution, and it does not provide an option to allow a user to arbitrarily fit a distribution to a 

dataset. Therefore, it was not possible to estimate the parameters for a lognormal distribution for 

the data set with n=10. 

For the gamma distribution, the results in Table 4-7 demonstrate exact agreement 

between AuvTool and the manual calculations performed using Excel for the MoMM parameter 

estimates. For the MLE parameter estimates, the results from AuvTool and from the calculations 

in Excel were similar in all cases and were identical in some cases. The reason for the small 

differences (e.g., AuvTool estimate of 0.695 for the second parameter versus a manually 

calculated value of 0.694) can be attributed to the fact that a numerical optimization method was 
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Table 4-7. Estimated Gamma Parameters 

Method Software 
Sample size n=10 Sample size n=20 Sample size n=50 

á â á â á â 
MoMM AuvTool 0.580 1.535 0.956 1.16 1.11 0.763 

Excel 0.580 1.535 0.956 1.16 1.11 0.763 
MLE AuvTool 0.852 1.05 0.948 1.17 1.22 0.695 

Excel 0.886 1.01 0.948 1.17 1.22 0.694 
@Risk Reject Reject Reject Reject 1.141 0.738 

Crystal Balla 0.05 1.98 0.07 2.06 0.01 0.93 
a The definition of the parameters of the gamma distribution in Crystal Ball is not available. 

used in both AuvTool and in Excel. The numerical optimization method has a tolerance within 

which convergence is assumed. The tolerance can lead to some differences in the value of the 

log-likelihood function, and in the parameter values, at which the numerical method converges 

on a solution. The differences in the results for AuvTool and the manual calculation results are 

relatively small. Therefore, it is concluded that the AuvTool MLE parameter estimates were 

verified. 

For comparison purposes, gamma distribution parameter estimates obtained from @Risk 

and from Crystal Ball are shown. @Risk did not select the gamma distribution as the "best" fit 

for the data sets of sample sizes 10 and 20. Therefore, parameters for a gamma distribution 

could not be estimated for these cases in @Risk. The parameter values obtained from @Risk are 

similar to, but not the same as, those obtained by AuvTool and the manual calculation method in 

Excel. @Risk has the same parameter definitions as AuvTool, but the parameter estimation 

method is undocumented. It is likely that @Risk uses a different parameter estimation method 

than the ones available in AuvTool. The parameter estimates from Crystal Ball are substantially 

different. It is likely that Crystal Ball is using a different definition of the PDF, different 

definitions of the parameters, and/or a different parameter estimation method. 
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Table 4-8. Estimated Weibull Parameters 

Method Software 
Sample size n=10 Sample size n=20 Sample size n=50 

á â á â á Â 
Regression AuvTool 0.824 0.942 1.10 0.938 0.903 1.09 

MLE AuvTool 0.835 0.889 1.09 0.964 0.885 1.12 
Excel 0.835 0.889 1.09 0.964 0.885 1.12 

@Risk Reject Reject Reject Reject Reject Reject 
Crystal Balla 0.01 0.76 0.02 1.07 -0.01 0.88 

a The definition of the parameters of the Weibull distribution in Crystal Ball is not available 

For the Weibull distribution, AuvTool uses a regression method based upon probability 

plotting and MLE as the parameter estimation methods. The MLE results from AuvTool were 

reproduced exactly in the manual calculations performed using Excel. The MLE results are 

similar to, but not the same as, those obtained from the regression method. The regression 

method is not expected to produce the same results, and the differences in results between the 

regression and MLE methods are considered to be within the range of expected differences. 

Therefore, the parameter estimation methods for the Weibull distribution are deemed to have 

been verified. For comparison purposes, results obtained with @Risk and Crystal Ball are 

shown. @Risk did not choose the Weibull distribution as the "best" fit to the three data sets 

used; therefore, it was not possible to obtain parameter estimates for the Weibull distribution 

using @Risk. Crystal Ball produced parameter estimates that were very different from those of 

AuvTool and the manual calculation. Because documentation of how Crystal Ball calculates the 

parameter estimates, and regarding the definition of the PDF and the parameters, was not 

available, it is not possible to explain the differences. 

The MoMM and MLE parameter estimates for the beta distribution obtained from 

AuvTool were verified by comparison to values calculated manually using Excel. The results 

agreed identically for the MoMM estimates. The results agreed within the tolerance of the 

numerical optimization methods in the case of the MLE estimates. @Risk provided estimates for 
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Table 4-9. Estimated Beta Parameters 

Method Software 
Sample size n=10 Sample size n=20 Sample size n=50 

á â á â á â 
MoMM AuvTool 2.79 2.09 1.20 1.65 0.98 1.07 

Excel 2.79 2.09 1.20 1.65 0.98 1.07 
MLE AuvTool 2.79 2.27 1.10 1.54 1.12 1.24 

Excel 2.79 2.27 1.09 1.53 1.12 1.24 
@Riska Diff Diff Diff Diff Diff Diff 

Crystal Ballb 1.24 0.24 1.16 1.53 0.86 0.84 
a The beta distribution used in @Risk is defined based upon four parameters and is not directly 

comparable to the two-parameter beta distribution used in AuvTool.

b The definition of the parameters of the beta distribution in Crystal Ball is not available.


a four parameter beta distribution, instead of for the two parameter beta distribution used in 


AuvTool. Therefore, a comparison of the results from @Risk with those from AuvTool is not 


meaningful. Crystal Ball produced different values of the parameters than did AuvTool, 


although the discrepancy appears to decrease as the same size increases. However, since there is 


insufficient documentation in Crystal Ball regarding the algorithms used, it is not possible to 


explain the difference.


For the uniform distribution, only MoMM is used as a parameter estimation method in 

AuvTool. The results obtained in AuvTool were verified exactly by manual calculations 

performed in Excel. Results are also shown for parameter values obtained from @Risk and 

Crystal Ball for the same data sets. While the results are not identical, they appear to become 

more similar as the sample size increases. The PDF used in @Risk is reported and is the same as 

that used in AuvTool. The PDF used in Crystal Ball is not reported. Because the parameter 

estimation methods used in @Risk and Crystal Ball are not documented, no specific explanation 

can be offered with regard to differences. 

For the symmetric triangle distribution, the MoMM and MLE parameter estimates 

obtained in AuvTool were verified exactly in the manual calculations performed in Excel. 
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Table 4-10. Estimated Uniform Parameters 

Method Software 
Sample size n=10 Sample size n=20 Sample size n=50 

a (min) b (max) a (min) b (max) a (min) b (max) 
MoMM AuvTool 0.219 0.925 -0.0154 0.857 -0.0179 0.974 

Excel 0.219 0.925 -0.0154 0.857 -0.0179 0.974 
@Risk 0.00866 0.841 -0.0439 0.992 -0.00348 0.959 

Crystal Balla 0.01 0.84 -0.04 0.99 0.00 0.96 
a The definition of the parameters of the uniform distribution in Crystal Ball is not available. 

Table 4-11. Estimated Symmetric Triangle Parameters 

Method Software 
Sample size n=10 Sample size n=20 Sample size n=50 

a b a b a b 
MoMM AuvTool 0.572 0.500 0.421 0.617 0.478 0.701 

Excel 0.572 0.500 0.421 0.617 0.478 0.701 
MLE AuvTool 0.528 0.570 0.448 0.574 0.480 0.607 

Excel 0.521 0.504 0.448 0.574 0.480 0.607 

Because neither @Risk nor Crystal Ball have a capability to estimate parameters for a 

symmetric triangle distribution, no comparison with these two programs is shown. 

4.2.3 Summary of Parameter Estimation Verification 

The parameter estimation methods used in AuvTool for the normal, lognormal, gamma, 

Weibull, beta, uniform, and symmetric triangle distributions were verified in call cases for which 

MoMM and/or MLE solutions are included in AuvTool. The primary method for verification 

was based upon verifying the definitions of the PDFs and parameter estimation functions with 

respect to published equations in the literature, and performing manual calculations to solve for 

parameter values for specific test cases. The manual calculations were implemented in Excel. In 

the case of MoMM parameter estimates, exact agreement was observed between the AuvTool 

parameter estimates and the manually calculated estimates. In the case of MLE parameter 

estimates, the agreement with the manually calculated estimates was exact in most cases, and 

was within the precision of the numerical optimization method in all cases. 
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The results from AuvTool were compared with popular commercially available software 

packages, including @Risk and Crystal Ball. The PDFs and parameter definitions in @Risk for 

the normal, lognormal, gamma, Weibull, and uniform distributions are the same as those used in 

AuvTool. However, the parameter estimation algorithms used in @Risk are not documented. 

The same results were obtained from @Risk as from AuvTool using MoMM for the normal 

distribution. Therefore, in this case, it is likely that @Risk used the same MoMM solution for 

the parameter estimates as did AuvTool.  However, the parameter estimates obtained from 

@Risk for the lognormal, gamma, and uniform distributions differed from those obtained from 

AuvTool, although the parameter estimates were often similar in magnitude. These results 

suggest that @Risk employs parameter estimation methods different than those used in AuvTool. 

For the Weibull distribution, a direct comparison was not possible because @Risk did not select 

the Weibull distribution as a best fit to the test data. @Risk does not allow a user to over-ride its 

choice of a best fit distribution. 

For Crystal Ball, there was no documentation available in the user's manual or on-line 

regarding the definitions used for the PDFs or the parameters, or regarding the parameter 

estimation algorithms employed.  Crystal Ball typically provided parameter estimates that were 

different from those of both AuvTool and @Risk. The lack of documentation of the technical 

basis of Crystal Ball should be taken into account by serious practitioners when evaluating 

alternative software packages to be used for scientific and/or engineering applications. 

Overall, the parameter estimation algorithms in AuvTool were verified to perform as 

intended, and they provided correct parameter estimates for all test cases. The test cases 

included seven parametric distributions, data sets of three samples sizes, and evaluation of both 

MoMM and MLE parameter estimation methods. Thus, the testing performed was 
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comprehensive and thorough. A user can expect that the parameter estimates obtained with 

@Risk will typically be similar to but not the same as that of AuvTool. A user of Crystal Ball is 

cautioned that insufficient documentation was available to evaluate the parameter definitions or 

estimates used, and that results obtained from Crystal Ball were generally not comparable to 

those obtained from the verified AuvTool software. 

4.3 Verification of Confidence Intervals 

The objective of this test was to verify the accuracy of confidence intervals estimates by 

AuvTool using bootstrap simulation for selected statistics, including the mean and standard 

deviation. The method employed was to compare the AuvTool results with analytical solutions, 

where available. Bootstrap simulation was used in AuvTool to estimate the 95 percent 

confidence interval for the mean for each of the following eight distributions: normal, lognormal, 

gamma, Weibull, beta, uniform, symmetric triangle, and empirical. 

For the normal and lognormal distributions, an exact analytical solution for the 95 percent 

confidence interval of the mean can be calculated. For the other distributions, the 95 percent 

confidence interval of the mean should asymptotically converge to the exact analytical solution 

as the standard error of the mean becomes small compared to the mean value. The asymptotic 

properties of the 95 percent confidence interval for the mean are based upon the central limit 

theorem. The standard error of the mean is influenced by the variability in the assumed 

population distribution, or in the data set, and by the sample size. As the variability decreases, 

and/or as the sample size increases, the 95 percent confidence interval for the mean estimated 

from bootstrap simulation should converge to the analytical solution. 

In addition to evaluating the confidence interval solutions for the mean of all distributions 

included in AuvTool, an evaluation was made of the solution for the 95 percent confidence 
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interval for the standard deviation of the normal distribution, for which an analytical solution is 

available. 

The key steps performed in the test cases included the following: 

1.	 Develop data sets to use as test cases. This was done by specifying a population 
distribution and generating random samples of different sample sizes (e.g., n=10, 20, 
50, 1,000) from the specified distribution using AuvTool. The population 
distributions for all seven parametric distributions were specified for three different 
coefficients of variation (e.g., CV = 0.5, 1, 2) as given in Table 4-2. In addition, a test 
case was developed for the empirical distribution. The data sets are documented in 
Appendix B. An explanation of the special considerations for setting up test cases of 
the beta distribution is given in Section 4.1. 

2.	 Use AuvTool to fit distributions to the test data sets and to perform bootstrap 
simulation. Where applicable, obtain results based upon both the MoMM and MLE 
parameter estimation methods. The key results obtained were the bootstrap means, 
the 2.5th percentile of the sampling distribution of the mean, and 97.5th percentile of 
the sampling distribution of the mean. 

3.	 Calculate the analytical solution for the 95% confidence interval of the mean 
assuming normality. 

4. Compare the bootstrap results with the analytical solutions 

5.	 For the test of the confidence interval of the standard deviation for the normal 
distribution, the steps are the same as above with the exception that results from 
AuvTool were recorded for the sampling distribution of the standard deviation and 
were compared with the analytical solution of the confidence interval of the standard 
deviation. 

The results of the comparison of the confidence intervals for the mean are given in 

Section 4.3.1. Results for the comparison of the confidence intervals for the standard deviation 

of the normal distribution are given in Section 4.3.2. The key findings of the test of the 

confidence intervals obtained from AuvTool are given in Section 4.3.3. 

4.3.1 Verification of the Confidence Interval for Mean 

The two key components of the verification of the confidence intervals for the mean 

obtained from AuvTool include calculation of the analytical solution and simulation of the 

confidence interval in AuvTool using bootstrap simulation. The bootstrap simulation method is 
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described in detail in Chapter 2. The method for calculating the analytical solution of the 

confidence interval when normality conditions are satisfied and when the distribution parameters 

are known is briefly summarized here. More information regarding the calculation of confidence 

intervals can be found in Ang and Tang (1984), Hahn and Shapiro (1967), and Cullen and Frey 

(1999). 

Let x1, x2, ….xn be a random sample of sample size n from a normal distribution, N(m, 

s2). The analytical solution of the confidence interval of the mean can be calculated with the 

following equation (Casella and Berger, 1990): 

s s 
m 1 - a = (x - t a / 2 , n - 1 

n 
, x + t a / 2 , n - 1 

n 
) (4-9) 

where: 

1-a = the specified confidence level 

t a/2 = the percentile value of t-distribution with (n-1) degrees of 

freedom. 

X = mean of the original samples. 

S = standard deviation of the original samples 

For a lognormal distribution, we can take ln(x1), ln(x2), ….ln(xn), as samples from a 

normal distribution, N(m, s2), and get the analytical solution of confidence interval of mean for 

lognormal distribution as follows: 

n n1 S 1 S 
m 1 - a = ( � ln( x i ) - t a / 2 ,1 - n 

n 
ln x , � ln( x i ) + t a / 2 ,1- n 

n 
ln x ) (4-10) 

n i = 1 n i = 1 

where 

xi = the original samples, i = 1 to n. 

Slnx = the standard deviation of the variable ln(x) 

For other distributions, when the sample size is large enough and/or when the variability 

in the distribution is small enough, the sampling distribution of the mean asymptotically 
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approaches a normal distribution based upon the central limit theorem. Thus, it is not expected 

that the confidence intervals for the mean will agree with the analytical solutions for small 

sample sizes and/or large variability in the cases of the gamma, Weibull, beta, uniform, 

symmetric triangle, and empirical distributions. However, it is expected that the solutions for the 

95 percent confidence interval for the mean of these distributions will approach the analytical 

solution as the sample size becomes large and/or as variability in the distribution is reduced. 

Thus, it is useful to compare the numerical simulation results from AuvTool with the analytical 

solutions to evaluate whether the asymptotic trend that is expected is actually observed in 

practice. 

For the normal and lognormal distributions, samples with sample sizes of 10, 20, 50 and 

1000 were generated for each of the three values of CV that were tested, including CV = 0.5, 1, 

and 2. It should be noted that the mean and standard deviation of the population distribution 

from which random samples were generated were specified as per the values given in Table 4-2. 

However, it is not the case that each random sample has a mean and standard deviation equal to 

that of the assumed population distribution. Because of the finite sample sizes and because of 

random fluctuation in the sample values, the mean and standard deviation of each sample will be 

different than that of the specified population distribution. For the distributions other than the 

normal and lognormal, samples with sample size of 50 and 1000 were generated. Sample sizes 

of 10 and 20 were not used for the other distributions because the numerical solutions of the 

confidence intervals in those cases were not expected to be similar to the normality assumption 

of the analytical solution. 

For the randomly generated data sets used for each test case, AuvTool was used to 

calculate the 95% confidence interval of the mean based upon bootstrap simulation. Where 
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Table 4-12. Absolute 95% Confidence Interval of Mean for Normal Distribution 

Case 
Study na 

Mean 
of 

Data 

Bootstrap 
Means 2.5th percentile of Mean 

97.5th percentile of 
Mean 

MoMM MLE MoMM MLE Ab MoMM MLE Ab 

m=1, 
CV=0.5 

10 
20 
50 
103 

0.87 
1.07 
1.01 
0.98 

0.87 
1.08 
1.01 
0.98 

0.87 
1.05 
1.01 
0.98 

0.68 
0.89 
0.83 
0.96 

0.65 
0.80 
0.88 
0.95 

0.66 
0.84 
0.87 
0.95 

1.12 
1.28 
1.16 
1.01 

1.13 
1.31 
1.16 
1.01 

1.08 
1.30 
1.15 
1.01 

m=1, 
CV=1 

10 
20 
50 
103 

0.74 
1.13 
1.02 
0.96 

0.73 
1.14 
1.00 
0.97 

0.75 
1.12 
1.02 
0.96 

0.35 
0.69 
0.70 
0.90 

0.32 
0.63 
0.75 
0.90 

0.32 
0.68 
0.74 
0.90 

1.14 
1.57 
1.30 
1.03 

1.18 
1.56 
1.30 
1.03 

1.17 
1.59 
1.30 
1.03 

m=1, 
CV=2 

10 
20 
50 
103 

0.48 
1.27 
1.04 
1.07 

0.45 
1.32 
1.04 
1.07 

0.45 
1.29 
1.02 
1.07 

-0.43 
0.31 
0.54 
0.95 

-0.42 
0.39 
0.45 
0.93 

-0.36 
0.35 
0.48 
0.94 

1.42 
2.37 
1.57 
1.20 

1.28 
2.23 
1.58 
1.21 

1.33 
2.18 
1.59 
1.19 

a Sample size.
b Analytical solution. 

applicable, both MoMM and MLE were used as the basis for the bootstrap simulations. 

Equation (4-9) was used to calculate the analytical solutions for comparison to the normal, 

gamma, Weibull, beta, uniform, symmetric triangle, and empirical distributions. Equation (4-10) 

was used to calculate the analytical solution for comparison to the lognormal distribution. The 

results from AuvTool and analytical calculations were compared. The results are shown in 

Tables 4-12 through Table 4-19 for the normal, lognormal, gamma, Weibull, beta, uniform, 

symmetric triangle and empirical distributions. In the bootstrap simulation process, the number 

of replications used was B=1,000. 

The results for the normal distribution in Table 4-12 reveal generally very good 

agreement between the boostrap results obtained from AuvTool and the analytical results for the 

95 percent confidence interval of the mean for all sample sizes and all values of CV that were 

tested. For example, in the case of CV=0.5 with n=1,000, the mean values obtained from 
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Table 4-13. Absolute 95% Confidence Interval of Mean for Lognormal Distribution 

Case 
Study na 

Mean 
of 

Data 

Bootstrap 
Means 2.5th percentile of Mean 

97.5th percentile of 
Mean 

MoMM MLE MoMM MLE Ab MoMM MLE Ab 

m=1, 
CV=0.5 

10 
20 
50 
103 

0.83 
1.08 
1.01 
0.98 

0.83 
1.09 
1.02 
0.98 

0.83 
1.07 
1.00 
0.98 

0.67 
0.84 
0.87 
0.95 

0.67 
0.85 
0.88 
0.95 

0.67 
0.80 
0.86 
0.95 

1.00 
1.39 
1.19 
1.01 

1.00 
1.32 
1.15 
1.01 

0.98 
1.36 
1.16 
1.01 

m=1, 
CV=1 

10 
20 
50 
103 

0.65 
1.20 
1.04 
0.97 

0.65 
1.20 
1.04 
0.97 

0.66 
1.12 
1.00 
0.96 

0.46 
0.71 
0.78 
0.91 

0.45 
0.75 
0.77 
0.90 

0.45 
0.57 
0.73 
0.91 

0.89 
1.98 
1.40 
1.04 

0.94 
1.72 
1.30 
1.02 

0.86 
1.83 
1.35 
1.03 

m=1, 
CV=2 

10 
20 
50 
103 

0.43 
1.43 
1.10 
0.95 

0.43 
1.45 
1.10 
0.95 

0.45 
1.21 
1.02 
0.94 

0.27 
0.66 
0.68 
0.85 

0.24 
0.53 
0.61 
0.83 

0.24 
0.15 
0.53 
0.85 

0.65 
3.01 
1.74 
1.06 

0.77 
2.77 
1.73 
1.06 

0.63 
2.70 
1.67 
1.06 

a Sample size.
b Analytical solution. 

Table 4-14. Absolute 95% Confidence Interval of Mean for Gamma Distribution 

Case 
Study na 

Mean 
of 

Data 

Bootstrap 
Means 2.5th percentile of Mean 

97.5th percentile of 
Mean 

MoMM MLE MoMM MLE Ab MoMM MLE Ab 

m=1, 
CV=0.5 

50 
103 

1.00 
0.99 

1.00 
0.99 

1.00 
0.99 

0.87 
0.96 

0.87 
0.96 

0.86 
0.96 

1.15 
1.02 

1.14 
1.02 

1.14 
1.02 

m=1, 
CV=1 

50 
103 

1.15 
0.98 

1.16 
0.98 

1.15 
0.98 

0.88 
0.92 

0.90 
0.93 

0.85 
0.92 

1.49 
1.04 

1.45 
1.04 

1.45 
1.04 

m=1, 
CV=2 

50 
103 

0.99 
0.98 

0.99 
0.98 

0.97 
0.98 

0.27 
0.86 

0.24 
0.86 

0.24 
0.86 

1.62 
1.11 

1.56 
1.10 

1.54 
1.10 

a Sample size.
b Analytical solution. 

bootstrap simulation using either MoMM or MLE were the same as the mean value of the data, 

and the 95 percent confidence interval for the mean was from approximately 0.95 to 1.01 as 

estimated by all approaches. In general, the most agreement is expected for the smallest CV and 

the largest sample size, and the least agreement is expected for the largest CV and the smallest 

sample size. Thus, the results for CV=2 and n=10 are expected to be the worst among all of the 

cases, on average. In general, the results agreed well for all values of CV and all values of n. 
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Table 4-15. Absolute 95% Confidence Interval of Mean for Weibull Distribution 

Case 
Study na 

Mean 
of 

Data 

Bootstrap 
Means 2.5th percentile of Mean 

97.5th percentile of 
Mean 

Reg b MLE Reg b MLE Ac Reg b MLE Ac 

m=1, 
CV=0.5 

50 
103 

1.00 
1.00 

1.02 
1.00 

1.00 
1.00 

0.87 
0.97 

0.86 
0.97 

0.87 
0.97 

1.18 
1.04 

1.13 
1.03 

1.13 
1.03 

m=1, 
CV=1 

50 
103 

0.91 
1.00 

0.90 
1.00 

0.91 
0.99 

0.66 
0.94 

0.67 
0.94 

0.66 
0.93 

1.17 
1.06 

1.19 
1.06 

1.15 
1.06 

m=1, 
CV=2 

50 
103 

1.66 
2.06 

1.73 
2.07 

1.66 
2.05 

1.30 
1.96 

1.27 
1.95 

1.30 
1.95 

2.22 
2.18 

2.09 
2.16 

2.03 
2.16 

a Sample size. 
b Reg = Regression, and refers to the use of regression analysis as a basis for estimating 
distribution parameters. 
c Analytical solution. 

Table 4-16. Absolute 95% Confidence Interval of Mean for Beta Distribution 

Case 
Study na 

Mean of 
Data 

Bootstrap 
Means 

2.5th percentile of 
Mean 

97.5th percentile of 
Mean 

MoMM MLE MoMM MLE Ab MoMM MLE Ab 

m=0.5, 
CV=0.2 

50 
103 

0.51 
0.50 

0.51 
0.50 

0.51 
0.50 

0.48 
0.49 

0.48 
0.49 

0.48 
0.49 

0.54 
0.50 

0.54 
0.50 

0.54 
0.50 

m=0.5, 
CV=0.5 

50 
103 

0.54 
0.50 

0.54 
0.50 

0.54 
0.50 

0.48 
0.48 

0.48 
0.48 

0.48 
0.48 

0.61 
0.51 

0.61 
0.51 

0.61 
0.51 

m=0.5, 
CV=0.8 

50 
103 

0.51 
0.50 

0.52 
0.50 

0.51 
0.50 

0.41 
0.47 

0.40 
0.47 

0.40 
0.47 

0.68 
0.52 

0.64 
0.52 

0.62 
0.52 

a Sample size.
b Analytical solution. 

Table 4-17. Absolute 95% Confidence Interval of Mean for Uniform Distribution 

Case 
Study na 

Mean 
of 

Data 

Bootstrap 
Means 2.5th percentile of Mean 

97.5th percentile of 
Mean 

MoMM MLE MoMM MLE Ab MoMM MLE Ab 

m=1, 
CV=0.5 

50 
103 

1.13 
0.99 

1.13 
0.99 

N/A 
N/A 

0.89 
0.94 

N/A 
N/A 

0.89 
0.93 

1.38 
1.04 

N/A 
N/A 

1.37 
1.04 

m=1, 
CV=1 

50 
103 

1.30 
1.02 

1.30 
1.02 

N/A 
N/A 

0.76 
0.92 

N/A 
N/A 

0.81 
0.91 

1.80 
1.13 

N/A 
N/A 

1.79 
1.13 

m=1, 
CV=2 

50 
103 

0.60 
0.88 

0.59 
0.87 

N/A 
N/A 

-0.28 
0.66 

N/A 
N/A 

-0.28 
0.66 

1.50 
1.10 

N/A 
N/A 

1.49 
1.10 

a Sample size.
b Analytical solution. 
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Table 4-18. Absolute 95% Confidence Interval of Mean for Symmetric Triangle Distribution 

Case 
Study na 

Mea 
n of 
Data 

Bootstrap 
Means 2.5th percentile of Mean 

97.5th percentile of 
Mean 

MoMM MLE MoMM MLE Ab MoMM MLE Ab 

m=1, 
CV=0.5 

50 
103 

1.09 
0.98 

1.09 
0.99 

1.10 
0.99 

0.95 
0.95 

0.98 
0.96 

0.95 
0.95 

1.22 
1.01 

1.24 
1.02 

1.22 
1.01 

m=1, 
CV=1 

50 
103 

0.92 
1.00 

0.93 
1.00 

0.86 
0.98 

0.69 
0.94 

0.62 
0.92 

0.70 
0.94 

1.15 
1.06 

1.07 
1.04 

1.14 
1.06 

m=1, 
CV=2 

50 
103 

1.38 
1.00 

1.38 
1.00 

1.50 
0.97 

0.88 
0.87 

1.02 
0.86 

0.89 
0.87 

1.87 
1.13 

2.07 
1.12 

1.87 
1.12 

a Sample size.
b Analytical solution. 

Table 4-19. Absolute 95% Confidence Interval of Mean for Empirical Distributiona 

Case 
Study nb 

Mean of 
Data 

Bootstrap 
Means of 
AuvTool 

2.5th percentile of Mean 97.5th percentile of Mean 

AuvTool Analytical AuvTool Analytical 
m=1, 

CV=1 
50 
103 

1.15 
0.98 

1.13 
0.98 

0.86 
0.92 

0.85 
0.92 

1.43 
1.04 

1.45 
1.04 

a For empirical distribution, because there is no specified parametric distribution, we can choose 
any random numbers. Here, the same samples with sample size 50 and 1000 are used as gamma 
distribution for coefficient of variation equals to 1. No parameter estimation is used here.
b Sample size. 

For example, for all three values of CV, the AuvTool results for n=1,000 agreed well with the 

analytical solutions. 

In general, excellent agreement was found for the results of AuvTool versus the 

analytical solutions in the case of the lognormal distribution. For n=1,000, the upper and lower 

bounds of the confidence intervals agreed with the analytical solution typically within two 

decimal places. For smaller sample sizes and larger variability the results tend to vary from the 

analytical solution to some extent. For example, for CV=2 with n = 10, the 95 percent 

confidence interval for the mean was estimated to be 0.27 to 0.65 based upon bootstrap 

simulation using MoMM, 0.24 to 0.77 based upon bootstrap simulation using MLE, and 0.24 to 

0.63 based upon the analytical solution. Thus, the results were similar for the lower bound of the 
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confidence interval, but differed somewhat for the upper bound. In contrast, as the sample size 

increased, the concordance between the numerical simulation and the analytical solution 

improved. For example, for CV=2 and n=1,000, the 95 percent confidence interval for the mean 

was approximately 0.85 to 1.06 based upon all methods. 

The results from AuvTool for the 95 percent confidence interval of the mean agreed well 

with the analytical solutions for sample sizes of n=50 and n=1,000 for the gamma, Weibull, beta, 

uniform, symmetric triangle, and empirical distributions. In particular, for n=1,000, the results 

were typically exactly the same or very close for all distributions and for all values of CV that 

were tested. Thus, the asymptotic performance of the bootstrap solution for the 95 percent 

confidence interval for the mean was verified. 

4.3.2	 Verification of the Confidence Interval for the Standard Deviation of the 
Normal Distribution 

The analytical solution for the confidence interval of the standard deviation of a normal 

distribution is based upon the chi square distribution. Let x1, x2, ….xn be a random sample from 

a N(m, s2) distribution. According to Casella and Berger (1990), the confidence interval of 

standard deviation is given by: 

s 1 - a = ( , 
) 1( 

2 

1, 2 / 1 

2 

--

-

n 

s n 

a c 

) 1(
2 

1 , 2 / 

2 

-

-

n 

s n 

a c 
)  (4-11) 

where: 

1-a  = the specified confidence level, 

2 2 
ca / 2 , n - 1 = the percentile value of c distribution with (n-1) degrees of freedom at 

the level of a/2. 

Using the same random samples for the normal distribution that were used in the test of 

the confidence interval for mean, the confidence interval for standard deviation was also tested. 

AuvTool was used to calculate the 95% confidence interval of the standard deviation, using 
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Table 4-20. Absolute 95% Confidence Interval of Standard Deviation for Normal Distribution 

Case 
Study Na 

Std. 
Dev. of 
Data 

Std. Dev. of 
Bootstrap 
Samples 

2.5th percentile of 
Std. Dev. 

97.5th percentile of 
Std. Dev. 

MoMM MLE MoMM MLE Ab MoMM MLE Ab 

m=1, 
CV=0.5 

10 
20 
50 
103 

0.34 
0.52 
0.50 
0.49 

0.33 
0.51 
0.50 
0.49 

0.30 
0.49 
0.49 
0.49 

0.20 
0.37 
0.41 
0.47 

0.17 
0.33 
0.38 
0.47 

0.24 
0.40 
0.42 
0.47 

0.50 
0.68 
0.60 
0.51 

0.43 
0.67 
0.60 
0.52 

0.62 
0.76 
0.63 
0.52 

m=1, 
CV=1 

10 
20 
50 
103 

0.68 
1.04 
1.00 
0.99 

0.67 
1.04 
0.99 
0.99 

0.61 
0.98 
0.97 
0.99 

0.35 
0.74 
0.81 
0.94 

0.35 
0.71 
0.74 
0.94 

0.47 
0.79 
0.84 
0.95 

1.01 
1.38 
1.18 
1.03 

0.90 
1.37 
1.14 
1.03 

1.25 
1.52 
1.25 
1.03 

m=1, 
CV=2 

10 
20 
50 
103 

1.37 
2.09 
2.01 
1.99 

1.31 
2.09 
2.02 
1.99 

1.20 
1.96 
1.96 
1.99 

0.71 
1.45 
1.66 
1.90 

0.76 
1.46 
1.63 
1.90 

0.94 
1.59 
1.68 
1.91 

1.93 
2.73 
2.32 
2.07 

1.73 
2.68 
2.38 
2.09 

2.50 
3.05 
2.50 
2.09 

a Sample size. 
b Analytical solution. 

bootstrap simulation with MoMM and with MLE. Equation 4-11 was used to calculate the 

analytical solution for the 95% confidence interval of standard deviation. The results from 

AuvTool and the analytical calculation are compared in Table 4-20. 

For all cases in which n=1,000, the results from AuvTool agree almost exactly with the 

analytical solution. For smaller sample sizes, such as n=10, 20, and 50, MoMM typically gives 

somewhat wider estimates of the confidence interval than does MLE. The lower bound and the 

upper bound of the confidence interval was generally underestimated to some extent for the 

smaller sample sizes. These results suggest that the MoMM method gives wider coverage of the 

confidence interval compared to MLE, which is expected. The results also suggest that the 

numerical simulation results with the boostrap percentile method may tend to underestimate the 

analytical results in the case of the confidence interval for the standard deviation when the 

sample size is relatively small. 
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4.3.3 Summary of Results for Verification of Confidence Intervals 

The verification case studies demonstrate that AuvTool performs well in estimating 

confidence intervals for the mean. The results agree well with the analytical solution for the 

normal and lognormal distributions, and results for other distributions asymptotically approach 

the analytical solution as expected. AuvTool performed well in estimating confidence intervals 

for the standard deviation of the normal distribution for large sample sizes. For small sample 

sizes, the MoMM parameter estimation method resulted in more coverage of the actual 

confidence interval than did the MLE method. 

4.4 Verification of Algorithms for Goodness-of-Fit Tests 

The objective of this section is to document the verification of the K-S goodness of fit 

test algorithm that is employed in AuvTool. The procedure used in this task was as follows: 

1.	 Specify a test data set. The test data sets are documented in Appendix B. Three 
sample sizes of n=10, 20, and 50 were used to evaluate the robustness of results to 
different sample sizes. 

2.	 For each test data set, estimate the parameters of the distribution using both MoMM 
and MLE. 

3.	 For each distribution fitted to a given data set, calculate the K-S test statistic in 
AuvTool. 

4. For each distribution fitted to a given data set, calculate the K-S statistic manually. 

5.	 Compare the values of the K-S statistic calculated in AuvTool with those calculated 
manually. 

6. Manually calculate the critical value of the test statistic for a given sample size. 

7. Compare the calculated K-S statistic values to the critical value of the K-S statistic. 

The algorithm used for the K-S test as documented in Chapter 2 was verified by 

comparison to the literature by the verification study team. The K-S test is applicable to 

continuous distributions. Therefore, verification was done for the normal, lognormal, gamma, 
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Table 4-21. Verification of K-S Test Results for Normal Distribution 

Method Ca 

Sample size n=10 Sample size n=20 Sample size n=50 

Db 05.0 
10D c 

Rd Db 05.0 
20D c 

Rd Db 05.0 
50D c 

Rd 

MoMM 
AuvTool 0.163 

0.258 
P 0.148 

0.190 
P 0.0889 

0.125 
P 

Manual 0.163 P 0.147 P 0.0889 P 

MLE 
AuvTool 0.161 

0.258 
P 0.146 

0.190 
P 0.0872 

0.125 
P 

Manual 0.161 P 0.146 P 0.0872 P 
a Calculation method.

b Test statistics.

c Critical value at a=0.05 significance level.

d Results: P=pass, F=fail.


Table 4-22. Verification of K-S Test Results for Logormal Distribution 

Method Ca 

Sample size n=10 Sample size n=20 Sample size n=50 

Db 05.0 
10D c 

Rd Db 05.0 
20D c 

Rd Db 05.0 
50D c 

Rd 

MoMM 
AuvTool 0.158 

0.258 
P 0.147 

0.190 
P 0.118 

0.125 
P 

Manual 0.158 P 0.147 P 0.118 P 

MLE 
AuvTool 0.161 

0.258 
P 0.146 

0.190 
P 0.0873 0.125 P 

Manual 0.161 P 0.146 P 0.0873 P 
a Calculation method.

b Test statistics.

c Critical value at a=0.05 significance level.

d Results: P=pass, F=fail.


Table 4-23. Verification of K-S Test Results for Gamma Distribution 

Method Ca 

Sample size n=10 Sample size n=20 Sample size n=50 

Db 05.0 
10D c 

Rd Db 05.0 
20D c 

Rd Db 05.0 
50D c 

Rd 

MoMM 
AuvTool 0.154 

0.258 
P 0.112 

0.190 
P 0.0949 

0.125 
P 

Manual 0.154 P 0.112 P 0.0949 P 

MLE 
AuvTool 0.193 

0.258 
P 0.112 

0.190 
P 0.0749 0.125 P 

Manual 0.193 P 0.112 P 0.0749 P 
a Calculation method. 
b Test statistics. 
c Critical value at a=0.05 significance level.
d Results: P=pass, F=fail. 

Weibull, beta, uniform, and symmetric triangle distributions. The results are shown in Tables 4-

21 through 4-27, respectively, for these seven continuous parametric distributions. 
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Table 4-24. Verification of K-S Test Results for Weibull Distribution 

Method Ca 

Sample size n=10 Sample size n=20 Sample size n=50 

Db 05.0 
10D c 

Rd Db 05.0 
20D c 

Rd Db 05.0 
50D c 

Rd 

MoMM 
AuvTool 0.174 

0.258 
P 0.110 

0.190 
P 0.0818 

0.125 
P 

Manual 0.174 P 0.110 P 0.0818 P 

MLE 
AuvTool 0.178 

0.258 
P 0.113 

0.190 
P 0.0785 

0.125 
P 

Manual 0.178 P 0.113 P 0.0785 P 
a Calculation method.

b Test statistics.

c Critical value at a=0.05 significance level.

d Results: P=pass, F=fail.


Table 4-25. Verification of K-S Test Results for Beta Distribution 

Method Ca 

Sample size n=10 Sample size n=20 Sample size n=50 

Db 05.0 
10D c 

Rd Db 05.0 
20D c 

Rd Db 05.0 
50D c 

Rd 

MoMM 
AuvTool 0.212 

0.258 
P 0.124 

0.190 
P 0.0833 

0.125 
P 

Manual 0.212 P 0.124 P 0.0833 P 

MLE 
AuvTool 0.246 

0.258 
P 0.134 

0.190 
P 0.0958 0.125 P 

Manual 0.246 P 0.134 P 0.0958 P 
a Calculation method. 
b Test statistics. 
c Critical value at a=0.05 significance level.
d Results: P=pass, F=fail. 

Table 4-26. Verification of K-S Test Results for Uniform Distribution 

Method Ca 

Sample size n=10 Sample size n=20 Sample size n=50 

Db 05.0 
10D c 

Rd Db 05.0 
20D c 

Rd Db 05.0 
50D c 

Rd 

MoMM AuvTool 1 0.258 F 0.155 0.190 P 0.076 0.125 P 
Manual 0.290 0.258 F 0.161 0.190 P 0.0877 0.125 P 

a Calculation method.

b Test statistics.

c Critical value at a=0.05 significance level.

d Results: P=pass, F=fail.


For the normal, lognormal, gamma, Weibull, beta, and symmetric triangle distributions, 

the values of the K-S statistic calculated manually agreed exactly with the values reported by 

AuvTool. Both AuvTool and the manual calculations resulted in the same decision as to whether 

the distribution was rejected or not. The values of the K-S statistic typically differed depending 

on which parameter estimation method was used. This is because the distribution fitted using 
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Table 4-27. Verification of K-S Test Results for Symmetric Triangle Distribution 

Method Ca 

Sample size n=10 Sample size n=20 Sample size n=50 

Db 05.0 
10D c 

Rd Db 05.0 
20D c 

Rd Db 05.0 
50D c 

Rd 

MoMM 
AuvTool 0.210 

0.258 
P 0.125 

0.190 
P 0.130 

0.125 
P 

Manual 0.210 P 0.125 P 0.130 P 

MLE 
Auvtool 0.298 

0.258 
P 0.159 

0.190 
P 0.162 0.125 P 

Manual 0.298 P 0.159 P 0.162 P 
a Calculation method.

b Test statistics.

c Critical value at a=0.05 significance level.

d Results: P=pass, F=fail.


MoMM is not the same as that fitted using MLE. Neither method was consistently better at 

fitting a distribution to the data, per the results of the K-S test statistic. 

The manually calculated results for the K-S statistic for the uniform distribution were 

different than those obtained from AuvTool, as indicated in Table 4-26. The magnitude of the 

difference in results appears to decrease as the sample size increases. The exact reason for the 

difference is not yet known, although it is possible that there may be an implementation error in 

AuvTool regarding the K-S test statistic for the uniform distribution. 

The K-S test procedure used in AuvTool was verified by comparison to an independent 

software tool. In Crystal Ball, no clear definition was given with regard to how the K-S test is 

implemented. Therefore, it was decided not to use Crystal Ball for comparison purposes. 

Instead, for the standard normal distribution, the result of the K-S test statistic from AuvTool 

was verified by comparison to the “kstest” function in MATLAB. MATLAB only reports a K-S 

test for the standard normal distribution with specified parameters m = 0, s = 1 . In order to test 

the K-S test procedure in AuvTool, the code of the K-S test with a specified standard normal 

distribution was added and the results were compared. Both programs gave exactly the same 

results. 

112




Overall, the key findings are that AuvTool correctly implements the K-S test for all of the 

continuous parametric distributions with the possible exception of the uniform distribution. 

Future work should be aimed at identifying and correcting the apparent problem in the 

implementation of the K-S test for the uniform distribution. 

4.5 Evaluation of the Stability of Bootstrap Simulation Results 

Bootstrap simulation is a numerical method based upon random sample for estimating 

confidence intervals for selected statistics. Because bootstrap simulation is based upon a finite 

number of bootstrap samples, there is some random sampling error inherent in any results 

obtained from this method. Therefore, the objective of this task was to perform a test case in 

which bootstrap simulation was repeated several times for the same data set and the same 

number of bootstrap replications. The results of the multiple bootstrap simulations were 

compared to evaluate the variability in results obtained from one simulation to another. The 

comparison provides insight into the robustness of the bootstrap results. 

The method for performing the evaluation was based upon specifying a random data set 

as the basis for bootstrap simulation. For this purpose, 20 random values were generated from a 

gamma distribution with both scale and shape parameters equal to one. The choice of parametric 

distribution and parameter values was arbitrary. The 20 random values were all copied into each 

of 10 data columns in the input sheet for AuvTool. Therefore, there were 10 data sets, each with 

n=20 and each with the same numerical values of the 20 samples. AuvTool was executed to 

perform one bootstrap simulation, with B=1,000, for each of the 10 identical data sets. The 

results from each of the 10 bootstrap simulations are summarized in Table 4-28 for the mean 

value and 95 percent confidence interval of four statistics: mean, standard deviation, first 

parameter, and second parameter. Each row labeled "1" through "10" in the table represents one 

of the 10 bootstrap simulation results. In the next to last row of the table, the mean of the 10 
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Table 4-28. Stability of Bootstrap Simulation Results for the Mean and 95 Percent Confidence 
Intervals of the Mean, Standard Deviation, and Distribution Parametersa 

Test 
No. 

Mean Std. Dev. 1st parameter 2nd parameter 
Mb Lc Ud Mb Lc Ud Mb Lc Ud Mb Lc Ud 

1.14 0.667 1.80 1.16 0.584 2.09 1.17 0.497 2.30 1.11 0.403 2.54 

1.12 0.677 1.73 1.15 0.578 2.07 1.16 0.494 2.14 1.09 0.439 2.42 

1.11 0.652 1.71 1.13 0.587 2.11 1.17 0.510 2.16 1.08 0.436 2.32 

1.13 0.673 1.71 1.14 0.599 2.01 1.17 0.512 2.31 1.09 0.406 2.38 

1.10 0.678 1.71 1.12 0.557 2.06 1.17 0.494 2.29 1.08 0.402 2.45 

1.14 0.664 1.74 1.15 0.584 1.95 1.16 0.493 2.27 1.10 0.419 2.43 

1.14 0.662 1.71 1.15 0.579 2.05 1.19 0.501 2.26 1.07 0.422 2.39 

1.12 0.657 1.71 1.13 0.598 1.96 1.19 0.530 2.25 1.07 0.398 2.31 

1.11 0.691 1.73 1.12 0.550 1.94 1.14 0.513 2.26 1.12 0.410 2.32 

1.13 0.665 1.72 1.13 0.588 1.95 1.16 0.503 2.25 1.11 0.431 2.57 
Average 1.12 0.664 1.73 1.14 0.580 2.02 1.17 0.505 2.25 1.09 0.417 2.41 

CVe .013 .017 .016 .012 .027 .032 .013 .023 .025 .016 .034 .037 
a Results are based upon 10 bootstrap simulations of B=1,000 for a data set of n=20 obtained 

from a gamma distribution with scale parameter = 1 and shape parameter = 1.

b M = the mean value of the statistic.

c L = the lower limit of the 95 percent confidence interval, which is the 2.5th percentile of the 

statistic.

d U = the upper limit of the 95 percent confidence interval, which is the 97.5th percentile of the 

statistic.

e the standard deviation of the 10 test runs divided by the average of the 10 test runs. 


values given above in the same column is calculated. For example, the average of the data in the 

second column represents the average of the 10 bootstrap simulation means. The last row of the 

table displays the coefficient of variation for data in the column above. For example, the 

coefficient of variation of 0.013 for the mean implies that the standard deviation of the 10 values 

of the mean estimate of the mean statistic is 1.3 percent the value of the mean estimate. 

The coefficients of variation for each statistic estimated from the 10 bootstrap simulation results 

were less than 0.04 in all cases, and were less than 0.02 in six of the 12 cases given in the table. 

The 12 cases include the mean, lower confidence bound, and upper confidence bound for 
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each of four statistics. The mean value of the sampling distribution for the mean varied from 

1.10 to 1.14 among the 10 bootstrap simulations. These results imply that some variability in 

results can be expected from one bootstrap simulation to another. However, the relatively small 

values of the CV imply that the bootstrap simulation results are precise to within approximately 

two significant figures in these cases. The precision of the results can be improved by choosing 

larger values for the number of bootstrap samples (B). Overall, the results among the 10 

bootstrap simulations are found to be reasonably stable. 

4.6 Overall Findings Regarding Verification of AuvTool 

AuvTool was rigorously evaluated with respect to the generation of random numbers, 

estimation of parameters of distributions using both MoMM and MLE, confidence intervals 

estimated based upon bootstrap simulation, estimation of the K-S statistic, and the stability of 

bootstrap simulation results. Factors such as variation in sample sizes and CV were considered 

in the evaluation of AuvTool. Overall, AuvTool was verified to perform calculations correctly, 

and the results of AuvTool were found to be robust to different sample sizes and to different 

CVs. The random sample generation and parameter estimation of AuvTool is correct for all 

cases. AuvTool provides good estimates of the 95 percent confidence interval of the mean for 

the normal and lognormal distribution in all cases, and performs as expected for other 

distributions with regard to asymptotic convergence of the numerical solution to the analytical 

solution as the sample size increases. The K-S goodness of fit test is implemented correctly and 

provides correct results in all cases except for the uniform distribution. The bootstrap simulation 

results were found to be stable for an illustrative test case. The technical basis of AuvTool is 

more thoroughly documented than many other software packages, such as @Risk and Crystal 

Ball. Because of the lack of documentation of other software, it was difficult to make 

meaningful comparisons of results from AuvTool to those of other programs. 
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5.0 AN ILLUSTRATIVE CASE STUDY USING AUVTOOL 

In this chapter, a case study is presented to help illustrate the use of AuvTool. In this 

case study, the batch analysis feature of AuvTool is demonstrated. Results of analysis of 

variability and uncertainty are also presented. 

5.1 Introduction to Case Study 

There are five datasets with original data, which are named as “Dataset 1”, “Dataset 2”, 

“Dataset 3”, “Dataset 4” and “Dataset 5”, and the sample sizes for the data sets are 10, 20, 50, 

1000, and 10, respectively. These data represent five different variables. These data are entered 

into the main sheet of the data entry, importing and exporting module. There are also three 

variables without original data for which specified distribution information is available. The 

three variables are named as “NoData Name 1”, “ NoData Name 2” and “No DataName 3”, 

respectively. The corresponding distribution information is summarized in the Table 5-1. The 

information is provided in the loading distribution information module. 

5.2 AuvTool Analysis Results 

In the example case study, the batch analysis feature in the AuvTool is used. All default 

settings in AuvTool are kept except that the bootstrap replication numbers for “NoDataset 2”, 

“NoDataset 4” and “NoData Name 2” were modified to 500, 1000, 500, respectively (the default 

number is 200); and the parameter estimation method was modified to MLE (MoMM is the 

default method) for “NoDataset 1” and “NoDataset 3”. The program automatically chose best 

fits for the variables with original data and for the sampling distribution data for the statistics of 

interest. By invoking the batch analysis module and modifying the corresponding settings as 

introduced above, it took a few minutes for the program to report the variability and uncertainty 

analysis results to the variability and uncertainty analysis result-reporting module. 
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Table 5- 1. Summarization Table of Input Distribution Information for the Variables without 
Original Data 

Variable Name Sample 
Size 

Distribution 
Type 

First 
Parameter a 

Second 
Parameter b 

Estimation 
Method 

NoDataName 1 15 Normal 10 5 Moment 

NoDataName 2 20 Lognormal 0.5 0.25 MLE 
NoDataName 3 25 Gamma 20.5 10 NA 

a. First Parameter: mean for normal, mean of lnx for lognormal, scale parameter for gamma 
and Weibull, shape parameter for Beta distributions

b. Second Parameter: standard deviation for normal, standard deviation of lnx for 
lognormal, shape parameter for gamma, Weibull and beta distributions 

Table 5-2. AuvTool Variability Analysis Result Summarization Table 

Dataset or 
Variable Name 

No. Of 
Data 

Points Dist. Type 
Estimation 

Method 
First a 

Para. 
Second b 

Para. 
KS 

Test 
AD 
Test 

KS Test 
Passed 

AD test 
Passed 

Dataset 1 10 Weibull MLE 0.916 3.932 0.150 0.182 Passed Passed 

Dataset 2 20 Lognormal Moment -0.072 0.547 0.148 0.465 Passed Passed 
Dataset 3 50 Lognormal MLE -0.103 0.469 0.087 0.285 Passed Passed 

Dataset 4 1000 Lognormal Moment -0.130 0.473 0.016 0.306 Passed Passed 

Dataset 5 10 Normal Moment 0.651 0.330 0.137 0.206 Passed Passed 
NoData Name 1 15 Normal Moment 10 5 NA NA NA NA 

NoData Name 2 20 Lognormal MLE 0.5 0.25 NA NA NA NA 

NoData Name 3 25 Gamma NA 20.5 10 NA NA NA NA 
a. First Parameter: mean for normal, mean of lnx for lognormal, scale parameter for gamma 

and Weibull, shape parameter for Beta distributions 
b. Second Parameter: standard deviation for normal, standard deviation of lnx for 

lognormal, shape parameter for gamma, Weibull and beta distributions 

Table 5-2 lists the variability analysis results from AuvTool for the eight variables. The 

table includes the distribution information from the variables without original data. For the 

latter, since there are no original data available and no fitting was necessary to be done, no 

goodness-of-fit statistical tests are needed. Therefore, the relevant cells were marked as “NA” in 

those cases. 

Table 5-3 shows the confidence intervals of mean and standard deviation for all of the 

variables analyzed. The program can also summarize the confidence intervals for 
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Table 5-3. AuvTool Summarization Table for Confidence Intervals of Mean and Standard 
Deviation 

Dataset Name 

Mean 
2.5% 

Percentile 
Mean 
Mean 

Mean 
97.5% 

Percentile 
Std. Deviation 
2.5% Percentile 

Std. Deviation 
Mean 

Std. Deviation 
97.5% 

Percentile 

Dataset 1 0.665 0.829 0.983 0.121 0.222 0.323 

Dataset 2 0.830 1.06 1.33 0.355 0.604 0.994 
Dataset 3 0.886 1.01 1.18 0.350 0.491 0.691 

Dataset 4 0.949 0.982 1.01 0.454 0.490 0.532 

Dataset 5 0.424 0.650 0.855 0.181 0.316 0.484 
NoData Name 1 7.87 10.1 12.5 3.25 4.88 7.06 

NoData Name 2 1.51 1.70 1.90 0.286 0.421 0.591 

NoData Name 3 186 205 223 29.1 44.1 60.8 

Table 5-4. AuvTool Summarization Table for the Fitted Distribution to the Sampling Data of 
Mean Statistic 

Variable Name 
No.Of 
B. R. a Dist. Type Est. Method 

First 
Para.b 

Second 
Para. c 

KS 
Value 

KS 
Passed 

AD 
Value 

AD 
Passed 

Dataset 1 200 Normal Moment 0.829 0.078 0.039 Passed 0.187 Passed 

Dataset 2 500 Lognormal Moment 0.062 0.125 0.0252 Passed 0.438 Passed 

Dataset 3 200 Gamma Moment 193. 0.005 0.0254 Passed 0.133 Passed 
Dataset 4 1000 Lognormal Moment -0.019 0.016 0.0203 Passed 0.341 Passed 

Dataset 5 200 Beta Moment 17.3 9.35 0.037 Passed NA NA 

NoData Name 1 200 Lognormal Moment 2.31 0.126 0.0441 Passed 0.399 Passed 
NoData Name 2 500 Normal Moment 1.70 0.093 0.0245 Passed 0.253 Passed 

NoData Name 3 200 Normal Moment 205 9.15 0.0435 Passed 0.278 Passed 

B.R.a. The bootstrap replication number 
b. First Parameter: mean for normal, mean of lnx for lognormal, scale parameter for gamma and 

Weibull, shape parameter for Beta distributions 
c. Second Parameter: standard deviation for normal, standard deviation of lnx for lognormal, 

shape parameter for gamma, Weibull and beta distributions 

distribution parameters; those results are not shown here. Uncertainty analysis results are 

available for the variables without original data. 

Table 5-4 shows the summarization of results of fitting a parametric distribution to the 

sampling data for the mean. Similar analysis results are also available for the statistics of 

standard deviation, distribution parameters, but are not shown here. These results are 

automatically calculated by AuvTool. As previously mentioned, the normal distribution is often 
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used to represent the uncertainty in the mean; however, the assumption is only valid if the 

sampling distribution is from normal distribution and/or the sample size is large enough. The use 

of bootstrap simulation enables the use of other distribution types to represent the uncertainty in 

the mean as shown in Table 5-4. The statistical test results show that the distribution types 

describing the mean for all variables in the Table 5-4 are good representatives of the 

corresponding means. The compact forms of representing mean will be convenient in 

propagating the uncertainty from model inputs to model output in other software, such as 

SHEDS. 

It must be pointed out that the result formats shown above are not the ones that the 

SHEDS model requires. A special variability and uncertainty analysis result output format for 

the EPA SHEDS model is designed inside AuvTool but not shown here. 
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6.0 CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents key conclusions for the project and offers recommendations 

for future work. 

6.1 Conclusions 

The objective of this project was to develop a stand-alone software tool that can 

conduct statistical analysis of variability and uncertainty associated with fitting 

probability distributions to data sets for use with the SHEDS modeling framework. 

Secondary objectives were to develop a tool that would be user-friendly, to develop a tool 

so that it could be used for general purpose applications, and to verify the new software 

through extensive testing of its algorithms. 

The project succeeded in meeting the objectives that were set forth at the 

beginning of the project. Specifically, a stand-alone software tool was developed that can 

conduct statistical analysis of variability and uncertainty associated with fitting 

probability distributions to data sets. The new software tool, AuvTool, is capable of 

producing output in a format required by the EPA SHEDS modeling framework. The 

new software is user friendly. It includes a graphical user interface. A separate user's 

manual was prepared as part of this project and it is included as on-line help in AuvTool. 

Because the software is modular and was written as a stand-alone program, it can be used 

for any applications in which there is a need to fit distributions to data and/or to 

characterize variability and uncertainty associated with the fitted distribution. The 

technical basis of the software is documented in detail in this report. As reported in 

Chapter 4, the software was extensively tested to verify the technical correctness of the 

algorithms and to prove the stability and utility of the program. 
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AuvTool was rigorously evaluated with respect to the generation of random 

numbers, estimation of parameters of distributions using both MoMM and MLE, 

confidence intervals estimated based upon bootstrap simulation, estimation of the K-S 

statistic, and the stability of bootstrap simulation results. Factors such as variation in 

sample sizes and CV were considered in the evaluation of AuvTool. Overall, AuvTool 

was verified to perform calculations correctly, and the results of AuvTool were found to 

be robust to different sample sizes and to different CVs. The random sample generation 

and parameter estimation of AuvTool is correct for all cases. AuvTool provides good 

estimates of the 95 percent confidence interval of the mean for the normal and lognormal 

distribution in all cases, and performs as expected for other distributions with regard to 

asymptotic convergence of the numerical solution to the analytical solution as the sample 

size increases. The K-S goodness of fit test is implemented correctly and provides 

correct results in all cases except for the uniform distribution. The bootstrap simulation 

results were found to be stable for an illustrative test case. The technical basis of 

AuvTool is more thoroughly documented than many other software packages, such as 

@Risk and Crystal Ball. Because of the lack of documentation of other software, it was 

difficult to make meaningful comparisons of results from AuvTool to those of other 

programs. 

6.2 Recommendations 

As a result of this project, several recommendations were developed. These 

recommendations pertain to methods for documenting new software, the appropriate uses 

of AuvTool, and needs for continued development of AuvTool. 

When developing new software that is intended to be used for policy analysis or 

policy making purposes, a thorough approach to software development, documentation, 
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and testing should be taken, as demonstrated by this project. Specifically, in addition to 

developing the program itself, this project resulted in this technical document and a 

companion user's guide. Furthermore, the technical document includes documentation of 

extensive testing and verification of the software. The software and the documents 

should be made publicly available to facilitate review of any policy analyses performed 

with the aid of the software. 

The results of AuvTool were compared to two commercially available programs 

that include a capability for fitting distributions to data. The commercially available 

programs did not include sufficient documentation to enable meaningful comparisons. 

Therefore, a recommendation is that the vendors of such programs should provide more 

thorough and complete technical documentation of the definitions of parametric 

distributions and of the parameter estimation methods used. 

AuvTool should be used for its intended purpose, taking into account the 

limitations of the software and its technical basis. AuvTool was designed to fit 

parametric probability distributions to data and to characterize uncertainty in key 

statistics based upon random sampling error. Other sources of uncertainty, such as 

measurement error, are not addressed by the current version of AuvTool. 

The user is strongly cautioned to be very careful in using the batch analysis 

feature of AuvTool. As mentioned both in this technical document and in the user's 

guide, the batch method for selecting a "best" fitting distribution is based upon only one 

criterion and uncritically application of this criterion can lead to potentially incorrect 

results. Because the data quality objective of an analysis differs from one case to 

another, it is not likely that any one criterion will be adequate for all applications. It is 
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the user's responsibility to review the output from AuvTool to make sure that the 

distributions selected by AuvTool for a given case are appropriate to the user's needs. 

AuvTool should be continually reviewed and revised to ensure that it meets the 

ongoing needs of key users, such as analysts working with the SHEDS model and other 

user communities. Examples of key areas in which AuvTool should be augmented 

include the following: 

- Incorporation of other parametric distributions, as appropriate. 

- Evaluation of whether mixed empirical-parametric (MEP) distributions should 
be included in AuvTool. 

- Capability to fit mixture distributions to data and to quantify uncertainty in the 
statistics and CDFs of mixture distributions using bootstrap simulation. 

- Calculation of other statistics (e.g., skewness, kurtosis). 

- Incorporation of additional methods for assisting the user in choosing 
parametric distributions for fitting to data sets (e.g., moment planes, 
probability plots, other goodness-of-fit tests). 

- Incorporation of other bootstrap simulation methods for characterizing 
confidence intervals for statistics (e.g., BCa method). 

- Capability to handle measurement error in addition to random sampling error. 

- Capability to interface directly with other models for purposes of controlling a 
probabilistic simulation of variability and uncertainty in model inputs and 
outputs. 

The basis of these recommendations is briefly described. 

AuvTool includes a limited set of seven parametric distributions. There may be 

other parametric distributions that the user community has found to be convenient and 

that should be added to AuvTool. Although AuvTool includes capabilities to work with 

empirical distributions and with selected parametric distributions, methods for dealing 

with "mixed empirical parametric" (MEP) distributions should also be considered for 

inclusion in AuvTool. These methods typically involve estimating an upper and lower 
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tail that extends beyond the minimum and maximum values, respectively, of an empirical 

distribution. 

A key need for probabilistic analysis in the context of exposure and risk 

assessment is to be able to handle mixtures of two or more distributions. For example, 

many data sets are based upon observations of two or more subgroups. Such data can be 

multi-modal and would more accurately be described based upon a weighted combination 

of two or more parametric distributions (e.g., two lognormal distributions). The current 

version of AuvTool does not support the use of mixture distributions. A capability to fit 

mixture distributions to data and to estimate uncertainty in the statistics of mixture 

distributions should be included in future versions of AuvTool. 

AuvTool currently supports calculation of point estimates, sampling distributions, 

and confidence intervals for selected statistics, including the arithmetic mean, arithmetic 

standard deviation, and distribution parameters. There may be other statistics that would 

be useful to the user community. For example, the skewness and kurtosis are measures 

of the shape of a distribution. 

AuvTool currently includes a limited number of techniques for assessing the 

goodness-of-fit of a parametric distribution compared to an data set. These techniques 

include the K-S test and the A-D test. Other statistical goodness-of-fit tests could be 

included as options. In addition, graphical methods for evaluating goodness of fit, based 

upon probability plots and moment planes, could be incorporated. There are a variety of 

probability plotting methods that enable the analyst to evaluate different aspects of 

goodness-of-fit. Some methods provide more sensitivity with respect to goodness-of-fit 

of the tails while others provide more sensitivity with respect to the central portions of 
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the distribution. Moment planes are a graphical technique for comparing the shape of the 

empirical distribution of the data with the shape of possible candidate parametric 

distribution. Moment planes can be developed based upon the skewness and kurtosis. 

The bootstrap simulation method used in AuvTool is the percentile method, which 

is versatile. However, there are other bootstrap methods, such as BCa, that may give 

more accurate confidence interval estimates in some cases. Such methods are typically 

not as versatile as the percentile methods, but they should be evaluated for incorporation 

into future versions of AuvTool. 

AuvTool provides a method for quantifying uncertainty in the statistics of a 

distribution based upon random sampling error. While random sampling error may often 

be a dominate source of uncertainty, it is also possible that other sources of uncertainty 

may be equally or more important in some cases. For example, measurement errors in 

each individual data value may contribute substantially to uncertainty in key statistics or 

regarding the fit of a parametric distribution to the data. Methods for dealing with 

measurement error as a source of uncertainty should be evaluated for possible 

incorporation into AuvTool. 

Because AuvTool is modular and based upon an object-oriented programming 

approach, it is possible to extend AuvTool as a basis for quantifying variability and 

uncertainty in model inputs, propagating variability and uncertainty to model outputs, and 

analysis of results. Approaches for extending the capabilities of AuvTool to include an 

ability to interface with other models and to analyze probabilistic analysis results should 

be explored. 
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APPENDIX A. GRAPHICAL COMPARISON FOR RANDOM SAMPLE 
GENERATION 

 

1. Normal Distribution 

 

 

 

 

 

 

 

 

Figure A-1. Comparison of Random Samples and Specified Normal Distribution, 
m=1,s2=1. 

 

 

 

 

 

 

Figure A-2. Comparison of Random Samples and Specified Normal Distribution, 
m=1,s2=4. 
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2. Lognormal Distribution 

 

 

 

 

 

 

Figure A-3. Comparison of Rand. Samp. and Specified Lognormal Dist., mlnx=-
0.112, slnx=0.472. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-4. Comparison of Rand. Samp. and Specified Lognormal Dist., mlnx=-
0.347, slnx=0.833. 

 
 
 
 
 
 
 
 
 
 
 
 
 

igure A-5. Comparison of Rand. Samp. and Specified Lognormal Dist., mlnx=-
0.804, slnx=1.269. 
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3. Gamma Distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-6.  pecified Gamma Distribution, 
a=4, b=0.25. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-7.  
a=1, b=1. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure A-8.  
a=0.25, b=4. 
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4. Weibull Distribution 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure A-9.  

a=2.101, b=1.129. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-10.  
Distribution, a=1, b=1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-11.  n of Random Samples and Specified Weibull Dist., 
a=0.543, b=0.575. 
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5. Beta Distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-12.  
a=12, b=12. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-13.  cified Beta Distribution, 
a=1.5, b=1.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-14.  
a=0.281, b=0.281. 
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6. Uniform Distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-15.  -
0.5, b=2.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-16.  
Distribution, a=-2, b=4. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-17.  
Distribution, a=-5, b=7. 
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7. Symmetric Triangle Distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-18.  
a=1, b=1.225. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-19.  
a=1, b=2.450. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-20.  Samp. and Specified Symmtr. Triangle Dist., 
a=1, b=4.899. 
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8. Empirical Distribution 
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Figure A-21. Comparison of Empirical Distribution of Randomly Generated Data 
and Analytical CDF of Assumed Population Distribution for the 
Empirical Distribution. 
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APPENDIX B: DATA USED IN VERIFICATION TESTS 

Table B-1. Data Sets for Normal Distribution for Parameter Estimation and K-S Test 
n=10 n=20 n=50 

-0.9892 0.2554 -2.7846 
-0.4436 0.3347 -2.5341 
-0.4265 0.5029 -2.2542 
0.1772 0.5282 -1.9784 
0.2526 0.5368 -1.6614 
0.4170 0.8386 -1.3167 
0.5368 0.8763 -1.0314 
0.7948 0.9585 -0.9882 
0.9033 0.9735 -0.8873 
1.1912 1.0184 -0.8530 

1.1430 -0.5252 
1.1474 -0.4655 
1.1664 -0.2425 
1.1841 -0.1543 
1.2017 0.0552 
1.3456 0.0646 
1.3495 0.1266 
1.7138 0.2434 
1.9437 0.2570 
2.3228 0.3544 

0.5052 
0.5060 
0.8341 
0.8940 
0.9776 
1.0049 
1.0631 
1.0735 
1.1502 
1.5185 
1.5718 
1.5895 
1.6526 
1.6654 
1.7366 
1.8067 
1.9102 
1.9256 

Continued on next page. 
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Table B-1. Continued. 
2.1029 
2.3824 
2.3980 
3.0385 
3.3135 
3.6305 
3.8550 
4.0295 
4.3277 
4.7749 
4.8574 
6.2912 
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Table B-2. Data Sets of Normal Distribution for Confidence Interval Test  
m=1, CV=0.5 m=1, CV=1 m=1, CV=2 

n=10 n=20 n=50 n=10 n=20 n=50 n=10 n=20 n=50 
0.9585 0.9585 0.9585 0.9170 0.9170 0.9170 0.8341 0.8341 0.8341 
0.8763 0.8763 0.8763 0.7526 0.7526 0.7526 0.5052 0.5052 0.5052 
0.5282 0.5282 0.5282 0.0564 0.0564 0.0564 -0.8873 -0.8873 -0.8873 
1.0184 1.0184 1.0184 1.0368 1.0368 1.0368 1.0735 1.0735 1.0735 
1.3456 1.3456 1.3456 1.6912 1.6912 1.6912 2.3824 2.3824 2.3824 
1.1474 1.1474 1.1474 1.2948 1.2948 1.2948 1.5895 1.5895 1.5895 
1.2017 1.2017 1.2017 1.4033 1.4033 1.4033 1.8067 1.8067 1.8067 
0.8386 0.8386 0.8386 0.6772 0.6772 0.6772 0.3544 0.3544 0.3544 
0.5368 0.5368 0.5368 0.0735 0.0735 0.0735 -0.8530 -0.8530 -0.8530 
0.2554 0.2554 0.2554 -0.4892 -0.4892 -0.4892 -1.9784 -1.9784 -1.9784 

 1.1841 1.1841  1.3683 1.3683  1.7366 1.7366 
 0.5029 0.5029  0.0059 0.0059  -0.9882 -0.9882 
 0.3347 0.3347  -0.3307 -0.3307  -1.6614 -1.6614 
 0.9735 0.9735  0.9470 0.9470  0.8940 0.8940 
 2.3228 2.3228  3.6456 3.6456  6.2912 6.2912 
 1.1664 1.1664  1.3327 1.3327  1.6654 1.6654 
 1.3495 1.3495  1.6990 1.6990  2.3980 2.3980 
 1.1430 1.1430  1.2859 1.2859  1.5718 1.5718 
 1.7138 1.7138  2.4275 2.4275  3.8550 3.8550 
 1.9437 1.9437  2.8874 2.8874  4.7749 4.7749 
  0.8109   0.6217   0.2434 
  0.6894   0.3788   -0.2425 
  1.2276   1.4551   1.9102 
  0.6187   0.2374   -0.5252 
  1.8319   2.6639   4.3277 
  1.1632   1.3263   1.6526 
  1.7574   2.5148   4.0295 
  1.6576   2.3152   3.6305 
  0.7817   0.5633   0.1266 
  1.2757   1.5514   2.1029 
  0.8765   0.7530   0.5060 
  1.0012   1.0024   1.0049 
  1.9644   2.9287   4.8574 
  1.0376   1.0751   1.1502 
  1.2314   1.4628   1.9256 
  0.4922   -0.0157   -1.0314 
  1.0158   1.0315   1.0631 
  1.5784   2.1567   3.3135 
  0.1165   -0.7671   -2.5341 

Continued on next page. 
 



Table B-2. Continued. 
1.5096 2.0193 3.0385 
0.9944 0.9888 0.9776 
0.7638 0.5276 0.0552 
0.8143 0.6285 0.2570 
1.1296 1.2593 1.5185 
0.0538 -0.8923 -2.7846 
0.7662 0.5323 0.0646 
0.1864 -0.6271 -2.2542 
0.6336 0.2672 -0.4655 
0.7114 0.4229 -0.1543 
0.4208 -0.1584 -1.3167 
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Table B-3. Data Sets for Lognormal Distribution for Parameter Estimation and K-S Test 
n=10 n=20 n=50 

0.8601 0.6599 0.4025 
0.7958 0.5755 0.3268 
0.5727 0.3223 0.1351 
0.9101 0.7291 0.4686 
1.2398 1.2572 1.0748 
1.0280 0.9038 0.6500 
1.0822 0.9893 0.7460 
0.7679 0.5405 0.2969 
0.5774 0.3270 0.1381 
0.4426 0.2047 0.0676 

0.9608 0.7135 
0.3091 0.1267 
0.2335 0.0827 
0.6766 0.4181 
6.3983 12.8273 
0.9328 0.6821 
1.2654 1.0855 
0.8971 0.6427 
2.3208 2.7354 
3.4035 4.9025 

0.2768 
0.2033 
0.7967 
0.1700 
3.6918 
0.6765 
3.0556 
2.3723 
0.2570 
0.9002 
0.3269 
0.4486 
5.1661 
0.4919 
0.8044 
0.1233 
0.4655 
1.9402 
0.0475 
1.6296 

Continued on next page. 
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Table B-3. Continued. 
0.4409 
0.2456 
0.2792 
0.6214 
0.0405 
0.2471 
0.0568 
0.1765 
0.2150 
0.1029 
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Table B-4. Data Sets of Lognormal Distribution for Confidence Interval Test 
m=1, CV=0.5 m=1, CV=1 m=1, CV=2 

n=10 n=20 n=50 n=10 n=20 n=50 n=10 n=20 n=50 
0.8601 0.8601 0.8601 0.6599 0.6599 0.6599 0.4025 0.4025 0.4025 
0.7958 0.7958 0.7958 0.5755 0.5755 0.5755 0.3268 0.3268 0.3268 
0.5727 0.5727 0.5727 0.3223 0.3223 0.3223 0.1351 0.1351 0.1351 
0.9101 0.9101 0.9101 0.7291 0.7291 0.7291 0.4686 0.4686 0.4686 
1.2398 1.2398 1.2398 1.2572 1.2572 1.2572 1.0748 1.0748 1.0748 
1.0280 1.0280 1.0280 0.9038 0.9038 0.9038 0.6500 0.6500 0.6500 
1.0822 1.0822 1.0822 0.9893 0.9893 0.9893 0.7460 0.7460 0.7460 
0.7679 0.7679 0.7679 0.5405 0.5405 0.5405 0.2969 0.2969 0.2969 
0.5774 0.5774 0.5774 0.3270 0.3270 0.3270 0.1381 0.1381 0.1381 
0.4426 0.4426 0.4426 0.2047 0.2047 0.2047 0.0676 0.0676 0.0676 

 1.0644 1.0644  0.9608 0.9608  0.7135 0.7135 
 0.5592 0.5592  0.3091 0.3091  0.1267 0.1267 
 0.4770 0.4770  0.2335 0.2335  0.0827 0.0827 
 0.8723 0.8723  0.6766 0.6766  0.4181 0.4181 
 3.1210 3.1210  6.3983 6.3983  12.8273 12.8273 
 1.0467 1.0467  0.9328 0.9328  0.6821 0.6821 
 1.2444 1.2444  1.2654 1.2654  1.0855 1.0855 
 1.0238 1.0238  0.8971 0.8971  0.6427 0.6427 
 1.7555 1.7555  2.3208 2.3208  2.7354 2.7354 
 2.1815 2.1815  3.4035 3.4035  4.9025 4.9025 
  0.7481   0.5161   0.2768 
  0.6670   0.4216   0.2033 
  1.1090   1.0329   0.7967 
  0.6239   0.3748   0.1700 
  1.9629   2.8255   3.6918 
  1.0435   0.9278   0.6765 
  1.8294   2.4956   3.0556 
  1.6648   2.1137   2.3723 
  0.7277   0.4916   0.2570 
  1.1606   1.1191   0.9002 
  0.7959   0.5757   0.3269 
  0.8955   0.7085   0.4486 
  2.2245   3.5225   5.1661 
  0.9267   0.7527   0.4919 
  1.1130   1.0395   0.8044 
  0.5536   0.3036   0.1233 
  0.9078   0.7259   0.4655 
  1.5447   1.8524   1.9402 
  0.3882   0.1624   0.0475 

Continued on next page. 
 



Table B-4. Continued. 
1.4476 1.6521 1.6296 
0.8897 0.7005 0.4409 
0.7155 0.4772 0.2456 
0.7505 0.5190 0.2792 
1.0110 0.8775 0.6214 
0.3659 0.1463 0.0405 
0.7171 0.4791 0.2471 
0.4147 0.1825 0.0568 
0.6327 0.3842 0.1765 
0.6810 0.4373 0.2150 
0.5175 0.2696 0.1029 
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Table B-5. Data Sets for Beta, Uniform and Symmetric Triangle Distribution for 
Parameter Estimation and K-S Test 

n=10 n=20 n=50 
0.666686 0.056167 0.479767 
0.520708 0.204888 0.847666 
0.084358 0.416095 0.1422 
0.688581 0.681037 0.75929 
0.765656 0.674789 0.202192 
0.719637 0.314731 0.940327 
0.761868 0.187021 0.161397 
0.518099 0.942398 0.291832 
0.465871 0.50316 0.290142 
0.527589 0.74777 0.69741 

0.465847 0.795787 
0.293581 0.640029 
0.473296 0.932238 
0.448283 0.717781 
0.797148 0.540517 
0.005394 0.633189 
0.182474 0.762339 
0.288185 0.142484 
0.475007 0.549227 
0.255269 0.170821 

0.790685 
0.528421 
0.834544 
0.268829 
0.384195 
0.391376 
0.912772 
0.543857 
0.434066 
0.16911 
0.037326 
0.788454 
0.615929 
0.24517 
0.027483 
0.119344 
0.289228 
0.715284 
0.015397 

Continued on next page. 
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Table B-5. Continued. 
0.422466 
0.24964 
0.925673 
0.241992 
0.811826 
0.158428 
0.129122 
0.316524 
0.788725 
0.281392 
0.758638 
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Table B-6. Data Sets of Beta Distribution for Confidence Interval Test 
m=0.5, CV=0.2, n=50 m=0.5, CV=0.5, n=50 m=0.5, CV=0.8, n=50 

0.024467 0.002633 1.00E-10 
0.036959 0.002684 1.00E-10 
0.051817 0.004858 1.00E-10 
0.051899 0.004995 1.00E-10 
0.054774 0.006383 1.00E-10 
0.055357 0.007085 1.00E-10 
0.055589 0.007203 8E-07 
0.055947 0.011039 1.6E-06 
0.057648 0.012053 0.000002 
0.059847 0.0219 2.6E-06 
0.06246 0.022339 4.8E-06 
0.064651 0.024703 1.06E-05 
0.065029 0.026111 1.71E-05 
0.065164 0.026281 2.27E-05 
0.069831 0.026447 4.69E-05 
0.071273 0.034833 0.00013 
0.074798 0.035238 0.000141 
0.077348 0.035755 0.000158 
0.077413 0.035855 0.000168 
0.077604 0.039402 0.000187 
0.07854 0.04344 0.000221 
0.086017 0.045545 0.00026 
0.088675 0.054316 0.000354 
0.089772 0.061863 0.000884 
0.089893 0.063722 0.001193 
0.092192 0.07151 0.001745 
0.097064 0.072251 0.001804 
0.09716 0.077617 0.002203 
0.098054 0.079543 0.002609 
0.102059 0.081759 0.003233 
0.104372 0.085027 0.003602 
0.108084 0.089248 0.003891 
0.110239 0.0996 0.005033 
0.111961 0.113736 0.012219 
0.116976 0.116015 0.012529 
0.117631 0.116034 0.015099 
0.118047 0.128622 0.015686 
0.119931 0.140123 0.024592 
0.122798 0.148648 0.028731 
0.125703 0.166565 0.039662 

Continued on next page. 

153




Table B-6. Continued. 
0.138469 0.187798 0.050859 
0.151853 0.203531 0.053434 
0.15532 0.242457 0.080479 
0.166411 0.245294 0.152349 
0.167765 0.263492 0.193202 
0.17457 0.323808 0.206504 
0.178525 0.324956 0.208986 
0.196136 0.338322 0.2738 
0.197207 0.403492 0.406509 
0.25337 0.407709 0.412991 
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Table B-7. Data Sets of Uniform Distribution for Confidence Interval Test 
m=1, CV=0.5, n=50 m=1, CV=1, n=50 m=1, CV=2, n=50 

-0.32498 1.221523 6.07E+00 
0.30388 0.735288 6.39E+00 
0.583567 -1.25886 8.96E-01 
2.225166 3.913587 -4.49E+00 
2.46808 -1.3389 -1.27E+00 
1.529386 3.709192 -3.13E+00 
0.519346 -1.61759 -0.1291269 
0.355154 -0.18521 -2.7758997 
2.343876 0.195226 3.6908817 
-0.20759 -0.63884 5.8900257 
0.068129 -1.70059 6.1600923 
2.22944 3.43418 4.2930695 
1.01877 3.265578 0.3838651 
0.194764 -0.60356 0.3473017 
1.489041 -0.60929 -0.4435245 
1.817975 -0.57964 -2.696858 
1.510918 2.498651 -2.0761322 
-0.19813 0.939452 0.7750195 
1.583366 2.895536 -4.6393945 
2.100992 3.097996 3.3696667 
0.800552 2.275948 -4.2462408 
0.131175 1.671725 0.9784055 
0.642738 2.936652 -1.3917915 
1.58287 1.144557 4.7880763 
0.142016 -0.4461 -2.6372971 
1.05426 3.134434 -0.6632113 
1.109989 3.011648 2.2567119 
1.570975 2.699634 3.3643972 
0.714458 -1.82872 0.2817935 
0.510443 1.839341 2.4258328 
0.183517 1.56536 6.6566476 
0.650184 3.94612 3.4202417 
-0.04149 2.158811 -0.2463783 
2.358758 1.141405 -1.4996307 
0.889038 1.860129 -4.3053673 
2.346991 -1.82247 -4.7690753 
1.173009 2.3823 -1.8921308 
1.074553 -1.09907 3.1037538 
2.440008 -0.09205 -1.4702646 
0.771399 2.246039 -1.8078144 

Continued on next page. 
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Table B-7. Continued. 
2.190604 3.630662 2.3860321 
1.515629 3.77217 0.7263638 
0.119436 1.044941 0.0872605 
2.363081 2.912202 1.6929773 
1.830178 2.41365 -2.0452632 
-0.14426 2.069731 0.2477471 
1.263888 -0.35185 1.2236824 
1.324095 0.846339 -1.8524161 
2.227001 2.679161 4.6425357 
2.0533 -0.16315 4.0404926 
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Table B-8. Data Sets of Symmetric Triangle Distribution for Confidence Interval Test 
m=1, CV=0.5, n=50 m=1, CV=1, n=50 m=1, CV=2, n=50 

0.193447 1.225817 -1.10E+00 
0.67178 1.93194 1.62E+00 
0.816162 1.181863 1.01E+00 
1.700645 0.295435 2.21E+00 
2.046302 0.878902 -3.63E-01 
1.239597 1.149237 4.27E+00 
0.784837 1.358888 0.4972708 
0.699938 0.989834 0.2721264 
1.829793 0.813274 1.9241575 
0.315865 -1.18277 -1.152917 
0.528901 0.654205 0.5490978 
1.704738 -0.67189 -2.056923 
1.007688 1.128859 2.2209788 
0.608698 2.720267 4.0099247 
1.219326 1.268958 0.999532 
1.39898 0.867484 1.1666594 
1.230267 0.966704 -0.987974 
0.324538 -0.58699 3.041046 
1.267391 0.774517 1.5613391 
1.593197 0.379216 0.3800469 
0.915655 0.577578 3.7338996 
0.569631 0.439358 0.3809431 
0.844212 1.178303 4.433354 
1.267131 1.946709 -0.865622 
0.576426 0.98284 0.5462138 
1.02236 0.87753 3.1453094 
1.045767 0.512284 0.9832992 
1.26094 2.249964 4.5257123 
0.877254 -0.11401 3.8048765 
0.780417 2.156753 1.7004283 
0.601923 2.177259 -1.360886 
0.84769 0.507348 -0.16514 
0.452278 0.764985 1.6787819 
1.849099 1.168802 0.6397555 
0.95382 1.813824 1.7637404 
1.833754 1.848142 -1.15271 
1.072809 0.905758 1.2388257 
1.03083 0.157541 0.8716614 
1.980016 -0.09441 2.0387728 
0.902798 0.584578 5.4352119 
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Table B-8. Continued. 
1.66865 0.735153 1.423675 
1.232639 0.717552 0.5396904 
0.562207 1.0998 4.016813 
1.854897 0.822438 0.9173806 
1.406403 0.951848 2.9746332 
0.371561 1.101905 0.5656432 
1.112963 0.905231 0.9745913 
1.140383 2.466092 -1.047837 
1.702398 1.113093 2.5144999 
1.556505 -0.51151 2.6021935 
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Table B-9. Data Sets for Gamma and Weibull Distributions for Parameter Estimation and 
K-S Test 

n=10 n=20 n=50 
0.0512 0.4854 0.5399 
1.4647 0.2333 0.8592 
0.4995 0.0814 0.6626 
0.7216 0.3035 1.0968 
0.1151 1.7358 0.8372 
0.2717 0.9021 1.4874 
0.7842 0.0667 0.5451 
3.9898 0.0868 0.274 
0.1967 0.8909 0.6352 
0.8103 0.1124 0.4455 

2.8492 1.5651 
1.0417 0.9681 
0.2068 0.2442 
4.6191 0.3844 
1.9741 0.7742 
1.5957 0.5659 
1.6158 0.2304 
0.5045 2.8271 
1.3013 0.5061 

2.9904 
0.8786 
1.1874 
0.1343 
4.1991 
0.264 
0.0296 
0.01 

0.2372 
0.824 
0.6965 
1.542 
0.4408 
1.1393 
0.0407 
0.3193 
0.8868 
0.295 
1.317 
0.8212 
0.0689 
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Table B-9. Continued. 
0.3808 
1.5485 
0.1753 
0.464 
2.0116 
1.5744 
0.4989 
0.4622 
0.993 
0.5531 
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Table B-10. Data Sets of Gamma Distribution for Confidence Interval Test for Gamma 
and Empirical Distributions 

m=1, CV=0.5, n=50 m=1, CV=1, n=50a m=1, CV=2, n=50 
0.3495 0.0601 0.1240 
0.8061 0.3119 0.4576 
0.7780 0.4481 1.9215 
2.9950 2.3902 0.0019 
0.5772 4.5431 0.0990 
1.0095 1.1284 0.0002 
1.2915 0.4152 0.0042 
1.3076 0.3355 0.9951 
1.3639 2.9557 0.0170 
0.9038 0.1026 5.2902 
0.8323 0.2100 0.6898 
0.6116 2.4059 0.7764 
1.0571 0.7057 0.2163 
0.8644 0.2634 3.7640 
0.6304 1.0877 7.0598 
0.5235 1.4813 0.0002 
0.9455 1.1096 0.1302 
1.0915 0.1061 0.2326 
0.6012 1.1857 0.5471 
1.6019 2.0174 1.6067 
1.1438 0.5683 7.8384 
1.0575 0.2362 0.1253 
0.4541 0.4795 0.0730 
0.3622 1.1851 0.0087 
0.8123 0.2408 0.0393 
2.1055 0.7300 0.3317 
0.6358 0.7693 0.0081 
1.5140 1.1722 0.1039 
1.4096 0.5189 0.1621 
1.7865 0.4107 0.0583 
0.6721 0.2586 1.1142 
0.2636 0.4835 0.1813 
1.1551 0.1659 0.0799 
1.3607 3.0559 0.7581 
1.2498 0.6218 0.0305 
1.4574 2.9759 0.0000b 

0.7495 0.8157 0.0379 
1.0114 0.7441 8.4097 
1.4722 3.9121 2.5678 
0.6928 0.5513 0.0000b 
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Table B-10. Continued. 
1.6130 2.2717 0.0000b 

0.9870 1.1144 0.4993 
0.7406 0.2313 0.0535 
0.8659 3.0870 0.0099 
1.4405 1.4994 0.7027 
0.9251 0.1262 0.0002 
0.8307 0.8866 0.0008 
0.6517 0.9366 0.0078 
0.2690 2.3969 2.0831 
0.3600 1.9045 0.0138 

a This column of random numbers was also used for empirical distribution test 
b 10-8 instead of 0 was used to input into AuvTool. 
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Table B-11. Data Sets of Weibull Distribution for Confidence Interval Test 
m=1, CV=0.5, n=50 m=1, CV=1, n=50a m=1, CV=2, n=50 

1.9039 0.3153 5.2990 
0.5978 0.0127 2.6816 
1.0927 0.5815 2.1355 
0.9301 1.2358 0.2639 
1.6499 1.1584 0.0378 
1.3412 1.4805 0.9145 
0.8921 1.0239 2.2486 
0.1698 0.3815 2.5698 
1.4625 1.5667 0.1570 
0.8771 0.2888 4.4419 
1.1049 2.2432 3.2990 
1.3993 0.5836 0.2601 
1.7622 0.2578 1.4947 
1.2979 0.1610 2.9431 
0.5172 0.3411 0.9560 
0.8274 0.1958 0.6328 
1.8242 0.5276 0.9334 
1.7421 0.4313 4.3881 
0.8332 0.6515 0.8599 
1.6576 1.0983 0.3747 
0.2951 0.0667 1.7927 
0.7599 0.1024 3.1135 
1.4442 0.2091 2.0364 
0.1256 3.4456 0.8604 
0.4571 1.5845 3.0833 
0.557 0.1596 1.4497 
0.5511 0.2757 1.3807 
1.0884 0.1158 0.8723 
0.6542 0.4753 1.9223 
0.5512 1.1204 2.2647 
0.1549 0.0292 2.9721 
1.3131 2.5217 2.0243 
0.8776 1.0073 3.6727 
1.8067 0.8420 0.1433 
0.9044 0.3588 1.6671 
0.8439 0.1500 0.1541 
1.5217 0.0749 1.3050 
0.9813 1.1035 1.4243 
0.5569 0.9749 0.0663 
1.1891 1.4446 1.8357 
1.5017 1.7104 0.2947 
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Table B-11. Continued. 
0.1748 2.4092 0.9286 
1.2034 1.2038 3.1467 
0.794 0.2840 0.1393 
1.4865 0.1130 0.6214 
0.952 0.7812 4.1090 
1.2488 1.7273 1.1997 
0.8569 0.1702 1.1323 
0.6973 3.3622 0.2623 
0.5376 3.0228 0.4174 

Table B-12. Random Samples Used for Reliability Test 
0.4854 0.2303 0.0814 0.3035 1.7358 
0.9021 0.0667 0.0868 0.8909 0.1124 
2.8492 1.0417 0.2068 4.6191 1.9741 
1.5957 1.6158 0.5045 1.3013 1.6154 
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