

SOFEA© (SOil Fumigant Exposure Assessment system)

Programmer’s Guide

Steven A. Cryer
August 2004

sacryer@dow.com

Dow AgroSciences
9330 Zionsville Road

Indianapolis, IN 46268

© Copyright 2004 by Dow AgroSciences, LLC

 1

Abstract ... 3
Introduction... 3
Methods and Materials.. 4

Monte Carlo/Latin Hypercube Implementation.. 4
GIS Raster Approximations.. 4
Source Strength (Transient Flux of Fumigant) ... 8

Application Scaling Factor ... 8
Temporal (Syr) ... 9
Depth of incorporation (Sincorp) ... 9

Source and Source Flux File Generation .. 12
Mass applied to specific area (Township) .. 12
Field Placement (ISCST3 Sources) .. 14

Random Assignment... 16
Section Weighted .. 16

Overflow of source terms to surrounding sections ... 17
Overflow Section Probabilities ... 18
Section-Weighting Limitations... 21

Field Retreatment in Subsequent Years.. 25
Crop Type and Field Size Optimization ... 26

Field Size Optimization .. 27
Temporal parameter changes .. 31
Superposition of Unique Crop type results... 33
Post Processing of ISCST3 Simulation Results.. 34

Conclusions... 34
References... 35
Appendices.. 36

Appendix A. FORTRAN Source Code for Optimization Program ... 36
Appendix B. Subroutine Definitions.. 59
Appendix C. SOFEA Subroutine Connectivity Diagrams... 70
Appendix D. Names and Definitions of Parameter used in SOFEA 72

 2

Abstract

The Soil Fumigant Exposure Assessment (SOFEA©) system was developed to address exposure

concerns associated with the use of soil fumigants. The USEPA model ISCST3 forms the basis

for the numerical system. SOFEA automates the generation of input files, adds a Monte Carlo

component to ISCST3, and summarizes output results from ISCST3 in a systematic way.

SOFEA is largely written in Visual Basic for Applications (VBA) using Microsoft Excel as the

core program, although a specific optimization program was written in FORTRAN 90. ISCST3

and the optimization program are called from VBA and results are brought back into VBA to

make the transition transparent to the user. This manuscript serves as a programmers guide for

use by experienced VBA and FORTRAN programmers who may require modification of the

source code to enhance or supplement the current attributes of SOFEA. Descriptions of the

algorithms and the subroutines that execute them are summarized.

Introduction

SOFEA is a powerful and useful pre and post processor for ISCST3 when considering exposure

issues surrounding soil fumigants (Cryer, 2004). ISCST3 is a regulatory air dispersion model

developed by the USEPA that uses Gaussian plume approximations for transport predictions

(ISCST3, 1995). SOFEA provides the interface to generate complex ISCST3 input files that can

contain multiple transient source terms of different strengths and spatial/temporal attributes as

dictated by agronomic practices for the region being simulated. PDFs can be continuous (i.e.,

normal, triangular …), or discrete based upon experimental/field data by using the fitting tools

found in the Excel add-in software package Crystal Ball 2000 Pro (Trademark of Decisioneering,

Inc.). Coupling Excel, Crystal Ball 2000 Pro, and ISCST3, along with a stand-alone program for

optimization (discussed later), with VBA, allows the source code for deterministic models to

remain unmodified for stochastic implementation. Often, regulatory constraints dictate the

model source code cannot be altered if simulation results are to be used for registration or

regulatory purposes.

© Copyright 2004, Dow AgroSciences

 3

Methods and Materials

Monte Carlo/Latin Hypercube Implementation

Parameters required by ISCST3 input (and SOFEA) are predominately found in the worksheet

“PDF_Parameters”. SOFEA reads in the user specified input parameters and generates ISCST3

input files. Parameters can be single valued or assigned probability Density Functions (PDFs) to

account for parametric uncertainty/variability for regional assessments. The choice for

continuous PDF distribution type are lognormal, weibull, gamma, exponential, pareto, extreme

value, beta, logistic, normal, triangle, and uniform. Current parameters that can be assigned

PDFs are given in Table 1. Cells in Microsoft Excel can be assigned PDFs and these PDFs are

sampled using Monte Carlo and/or Latin Hypercube sampling by using the third party add-in

software package Crystal Ball 2000 Pro (Trademark of Decisioneering, Inc.). Crystal Ball

allows all spreadsheet cells to be expressed as probability density functions for Monte Carlo

simulation. Monte Carlo PDFs are sampled for at least 400 iterations to generate (in memory)

field attributes for internal use within SOFEA.

Table 1. Parameters in SOFEA that can be assigned a PDF

Crop % (up to 5 crops allowed) Application rate per crop Application date per crop

Field size per crop % Drip Applications per crop Incorporation depth per crop

Tarp coverage per crop Weather year

GIS Raster Approximations

SOFEA has the capability for data input from GIS data bases that can include crop cover,

elevation and population. The original design for SOFEA was to allow the capability of hand

entry of GIS information from hard copy maps. Thus, a single township (6 mi x 6 mi or 9565 m

x 9656 m) was divided into a 10x10 raster based grid (Figure 1). Each grid in the 10x10

township (6 mi x 6 mi) is assigned specific data via worksheets “LandCover”, “Population” and

“Elevation”. In addition, the worksheet “GIS Data” can contain direct data dumps from GIS

 4

software for use with SOFEA. Table 2 summarizes the SOFEA worksheets that require

populated via GIS (or user selected) information.

Table 2. Worksheets of SOFEA containing GIS information or where GIS information can be
entered.

Worksheet Description
GIS_data Contains raw data for township for the 10x10 raster based grid system
LandCover Worksheet where user can hand enter GIS information for land cover type (ag-

capable, urban, water) or read this information from the worksheet “GIS_data”
Population Worksheet where user can hand enter GIS information for population or read this

information from the worksheet “GIS_data”
Elevation Worksheet where user can hand enter GIS information for elevation or read this

information from the worksheet “GIS_data”

There are buttons on each worksheet where the user can reset each grid to zero, or use

information using GIS software/databases (such as ArcView). Macros assigned to buttons in

these worksheets are summarized in Table 3.

Table 3. Worksheet where buttons linked to macros perform GIS driven algorithms.

Worksheet – Macro Description
LandCover
 Land_null Sets all land to ag-capable (= 0)
 GIS_data_for_LandCover Gets GIS information from the worksheet GIS_data,

populates cells and generates land cover graphic in
worksheet “LandCover”

 LandCover_update Uses the user specified cell information in
“LandCover” and generates land cover contour graphic

Elevation
 Elev_null Sets all elevations to zero (i.e., flat)
 GIS_data_for_Elevation Gets GIS information from the worksheet GIS_data,

populates cells and generates elevation graphic in
worksheet “Elevation”

 Elevation_update Uses the user specified cell information in “Elevation”
and generates elevation contour graphic

Population
 Pop_null Sets all population density to zero
 GIS_data_for_Population Gets GIS information from the worksheet GIS_data,

populates cells and generates population contour
graphic in worksheet “Population”

 Population_update Uses the user specified cell information in “Population”
and generates population contour graphic

 5

6 miles

6
m

ile
s

0.6 mi

0.
6

m
i

6 miles

6
m

ile
s

6 miles

6
m

ile
s

0.6 mi

0.
6

m
i

Figure 1. Uniform grid raster for a single township. Coarse grid illustrates user supplied scale,

while refined grid is what is used internal to SOFEA.

The internal raster based grid for SOFEA for each township is 100 x 100, where each of the

“refined” grid has dimensions of 96.56 x 95.56. This value of grid dimensions is listed as a

parameter (Cell E17 in worksheet “PDF_Parameters”). A typical user shouldn't adjust this value

since it relates to the "resolution" of the GIS data. This value is used by SOFEA, but for

rounding and estimating [i.e., some times the GIS data dumps for a township have a grid of

12x10 (for example)]. Thus, the model interpolates via knowing the size of the grid we are after

is 96.56 x 96.56 m (10 x 10).

GIS information has been discretized such that a township can (and currently is) represented by a

coarse 10x10 raster based grid. Thus, the length of a township divided by 10 gives the 965.6

meter grid size. So when a user manually types in GIS information in worksheets such as "Land

Cover" (i.e. by putting a 0, 1, 2, or 3 in an appropriate cell), this cell represents a 969.6 m x

965.6 m chunk of real estate in the township that has unique properties (in terms of land cover,

elevation, and population). This chunk of land is further subdivided (internally) into a 10x10

 6

grid, but each of the new elements of the grid are assigned the same value as found in the coarser

grid. Thus, even though internal dimensions for the refined grid are 96.56 m x 96.56 m, the data

used to generated the refined grid is based on the coarse grid of 10x10 for a township. Typically,

GIS information is more detailed than the 10x10 township grid. Thus, detailed data must be

made “coarser” to yield data for the 10x10 raster grid township. The coarse GIS data is entered

in the worksheet “GIS_data”. Subroutines that read in the coarse GIS information from

worksheets “LandCover”, “Elevation”, and “Population” are GIS_data_for_LandCover,

GIS_data_for_Elevation, and GIS_data_for_Population, respectively.

Modifications for finer GIS resolution

GIS information is used to determine field placement (ag-capable land), topography (terrain

input for ISCST3), and population densities for use in risk assessment. There may be cases

where a 965.6 m x 965.6 m grid is two large to resolve the detail the user is after. An example

would be a large apartment complex in the middle of a rural area. A high population density is

captured in a small spatial area. This type of detail may be available in the original GIS data, but

when averaging this information to obtain a 10x10 township values, this detail is lost.

If higher resolution is required, a programmer can easily use a grid system of 100x100 for each

township for reading in GIS data. Modifications can be made to the subroutines

LandCover_color, Terrain_elev, pop_census to read in 100x100 resolution township data (from

an ASCII file or another worksheet) for land cover, elevation, and population, respectively. It is

in these subroutines where the 10x10 grid system using worksheets found in Table 2 are further

subdivided into the smaller raster based grid (to give a grid system of 100x100 for each

township). This subroutine can be used to read in information for a 100x100 township raster

grid in lieu of reading in coarse data.

The arrays where GIS information is stored internal to SOFEA are

Location(k, i, j) = Land Cover type at (i,j) location for township k.

Elevation(k, i, j) = Elevation at (i,j) location for township k

 7

Population(k, i, j) = Population at (i,j) location for township k

Where

k = township ID (1 ≤ k ≤ 9)

i = row within refined grid system (1 ≤ i ≤ 100)

j = column within refined grid system (1 ≤ j ≤ 100).

Source Strength (Transient Flux of Fumigant)

Mass volatilization loss for soil fumigants from soil can be estimated by field measurements or

numerical predictions. Predicted volatility loss from soil can be specified as transient source

terms for air dispersion modeling.

Application Scaling Factor

Measured flux rates, specific for the conditions at the time of the field study, are adjusted and

used as model source terms. The adjustments for volatility losses are based upon depth of

incorporation and time of year in an attempt to represent the complete flux response surface

(Cryer, 2004). It is assumed that flux rate is proportional to the application rate. Two different

experimental or numerically generated flux profiles can be used. For assessments performed by

van Wesenbeeck et al. (2004), drip and shank flux profiles based upon actual field studies

performed in California were used. If a surface drip application was selected, then the field

observation for surface drip was used and scaled appropriately, etc. The transient flux loss used

in the simulations for each field is given by Eq. 1.

Fluxi =
refR
R * Fi * Sincorp * Syr = Fscale *

ref

i
R

F (1)

Fluxi = Appropriately scaled hourly flux loss for hour “i” based upon observations of field
trial

R = pesticide application rate (kg/ha) obtained by sampling user defined PDF
Fi = experimentally observed flux rate (reference profile) for hour “i”
Rref = pesticide application rate (kg/ha) for the experimentally observed flux profile

 8

Sincorp = scaling factor for depth of incorporation (dimensionless)
Syr = scaling factor for time of year (dimensionless).
Fscale = R * Sincorp * Syr

The scaling factors Sincorp and Syr are discussed in the following sections.

SOFEA reads in Fi from the worksheet “Flux_files” via the subroutine “Get_flux”. Units for

flux are in g m-2 s-1. This flux is scaled (divided) by the reference application rate (kg/ha) such

that upon multiplication by the PDF sampled application rate (kg/ha). The units for flux required

by ISCST3 input are achieved.

F_scale is defined in the subroutine “Fld_Placement”.

Temporal (Syr)

Temporal scaling was broken down into a warm or cool season to account for the greater

potential mass loss during warm seasons. The scaling of cumulative mass loss between cool

(Sep 22 – Jun 21) and warm (Jun 22 – Sept 21) season emission rates was assigned a factor of

1.6 [B. Johnson California Department of Pesticide Regulations (CDPR), personal

communication, 2001] for California use scenarios. If the reference field study was conducted in

the winter, but for simulation purposes, a summer application was assumed, then the

experimental winter flux loss was scaled by 1.6. This indirectly accounts for gross temperature

effects for fumigant soil volatility losses from soil for a two-temperature regime year. Syr is

defined in the subroutine “Depth_Incorp“.

Depth of incorporation (Sincorp)

One approach to estimate the incorporation-scaling factor is to assume linearity with depth.

Here, 100% mass loss is assumed for surface applications if no plastic tarp is present at the soil

surface. If a tarp is present, then a default value of 64% of applied is assumed unless otherwise

specified by the user. The value of 64% loss is based upon simulation results of PRZM3 where

PRZM3 was modified to include the necessary surface boundary condition when a tarp is present

(Cryer and van Wesenbeeck, 2001). The 64% of applied loss with tarp at the soil surface is also

 9

consistent with small scale field measurements of 66% for shallow drip with tarp reported

elsewhere (Wang et al. 2001). However, the 64% loss for surface applications can be overridden

by the user if appropriate. The lower bound for the linear scaling is based upon the experimental

observation of field losses, where the depth of incorporation is known.

A limitation for linear scaling is that at some finite value for incorporation depth (critical depth),

volatilization will cease and/or goes negative. The critical depth is below the reference depth of

the field study. Negative predictions for volatility loss (non-physical) can be set to zero as this

critical depth is exceeded. An alternative approach is to assume that for any incorporation depth

greater than the experimental reference value, the flux loss equals the experimental value. For

example, if the field study incorporation depth was 18 inches, and the volatilization loss was 25

% of applied, than any incorporation depth > 18 inches will likewise result in a cumulative

volatilization loss of 25%. Both approaches are unsatisfactory since they introduce unrealistic

bias and are not continuous with depth, although the user can always assume non-linear scaling

with depth. However, the latter approach has been implemented for linear scaling (i.e., flux loss

remains constant at the reference rate for all depths greater than the reference depth). Figure 2

represents the qualitative behavior for flux loss with depth assuming linear and non-linear

scaling, and if a tarp is present at the soil surface.

Sincorp is defined in the subroutine “Depth_Incorp“. The linear and non-linear equations used for

Sincorp are given by Equations 2 and 5.

Linear Scaling

ApDepth <= Depth_ref

Sincorp =
ref_vol_Pct

max_)vol_PctApDepth]
ref_Depth0

ref_vol_Pctmax_vol_Pct[+
−

−

 (2)

Where

Pct_vol_max = maximum percentage of applied that can be lost if application is made at the
surface [input in worksheet “PDF_Parameters” cells B48 or C48 for drip or shank, respectively].

 10

Pct_vol_ref = percentage of applied lost from reference field (or numerical) flux trial [input in
worksheet “PDF_Parameters” cells B46 or C46 for drip or shank, respectively].

Depth_ref = depth of incorporation for reference flux trial [input in worksheet
“PDF_Parameters” cells B44 or C44 for drip or shank, respectively].

ApDepth = depth of incorporation for current source term being evaluated

Depth of Incorporation [cm]
0 10 20 30 40 50

%
 o

f A
pp

lie
d

V
ol

at
ili

ze
d

0

20

40

60

80

100

No Tarp

With Tarp

Lower bound given by user
supplied reference flux file
observation (Typically a field
study observation result)

60

Critical depth where
linear assumption
would break down

Depth of Incorporation [cm]
0 10 20 30 40 50

%
 o

f A
pp

lie
d

V
ol

at
ili

ze
d

0

20

40

60

80

100

No Tarp

With Tarp

Lower bound given by user
supplied reference flux file
observation (Typically a field
study observation result)

60

Critical depth where
linear assumption
would break down

Figure 2. Qualitative representation of conservative nature of linear scaling with depth when
numerical results indicate non-linear scaling is appropriate

Non-Linear Scaling

rate_k =
ref_Depth

)
max_vol_Pct
ref_vol_Pctln(

 (3)

Pdepth = Pct_vol_max * Exp(rate_k * ApDepth) (4)

 If Pdepth <= 0 Then Pdepth = 0
 If Pdepth >= 100 Then Pdepth = 100

 Sincorp =
ref_vol_Pct

Pdepth (5)

 11

Source and Source Flux File Generation

Source files for each crop type for a given year of simulation are generated in the subroutine

“Write_flux_files” that calls the subroutine “pop_fld_flux” to populate the array that summarizes

the hourly emission rates for each field type for all hours within a single year. If an application

date occurs within 15 days at the end of year, then the flux loss is “carried-over” to the beginning

of the year (Note: end of year = 365*24 hours for non-leap year, or 366*24 hours for leap year).

All source file flux rates for every hour and every day for the year are written to the ISCST3 flux

input files. Thus, there can be lots of zeros until the specific source application date is meet.

Other sources may be emitting mass at this date, and the source ID and flux rate are captured in

the flux input files for each hour of the simulation year.

Mass applied to specific area (Township)

SOFEA can have receptors in the central township of interest (1x1) or in neighboring townships

to the central township of interest (3x3), but source terms can be placed within an air shed

encompassing 23x23 townships. This is representative of a central township of interest

surrounded by 11 townships on all sides (Figure 3). Township numbering is also represented in

this figure.

A user supplied input parameter is the township allocation of a fumigant [kg]for townships

within California (Cell E5 in worksheet “PDF_Parameters”. This is a reference pesticide mass

(Mref) that can be applied to townships in the air shed being simulated. The reference (total)

applied mass to a township is scaled up or down by a user defined scaling factor that is input by

the user in worksheets “Twn_Mass_Wt” and “Twn_Mass_Wt_Ext”, respectively, for each

township in the simulation domain. The adjusted mass applied to a given township is simply the

reference allocation amount multiplied by the scaling factor (Eq. 6).

 12

Figure 3. Township numbering for a central township surrounding by 11 townships on all sides.

Mi = SFi * Mref (6)

Mi = Fumigant mass [kg] applied to township i

SFi = User supplied scale factor for township i [dimensionless]

Mref = reference fumigant mass (use typical value or township allocation (if appropriate) – [kg]).

Thus, townships can receive more or less mass than the reference amount if the scaling factor is

less than or greater than 1, respectively. A scale factor of zero indicates the township will

receive no fumigant mass for the current year of simulation. Figure 4 represents example input

 13

found in worksheet “Twn_Mass_Wt” where only the central 3x3 township information is input.

The central 3x3 corresponds to the range of GIS information that can be used. Townships

external to the central 3x3 can be allocated soil fumigant mass via the worksheet

“Twn_Mass_Wt_Ext”. However, the user needs to be aware that mass for the central 3x3 must

only be input in one worksheet (either “Twn_Mass_Wt” or “Twn_Mass_Wt_Ext”). Thus, one

worksheet will have all zeros for entries for the central 3x3. If this rule is not obeyed, then the

mass allocated is the sum of that given by “Twn_Mass_Wt” and “Twn_Mass_Wt_Ext”. In fact,

all weights in worksheet “Twn_Mass_Wt” can be nulled out, the worksheet hidden, and all input

can be made to the worksheet “Twn_Mass_Wt_Ext”. These two worksheets exits since many

users may not need to consider large areas for source placement (and visa versa).

0.216 0.066 0.09

0.316 1.040 0.148

0.479 0.70 0.00

Figure 4. Example of SOFEA input for 3x3 township allocation scaling factors for a reference

allocation mass.

Weighting factors for the applied mass to a township are read into memory using the subroutines

“fld_solve1” and “Read_Outside_3x3”, where the latter subroutine is called by the former if the

user has stated there will be fields outside the central 3x3 (Cell B112 in the worksheet

“PDF_Parameters”).

Field Placement (ISCST3 Sources)

Transient source terms are nematicide-treated fields where pesticide volatility can occur. Source

strength and location are based upon experimental observations, management practices,

agricultural capable land, and historical information. Much of the required data is geo-

referenced and amenable to Geographic Information System (GIS) overlays and extraction.

 14

Sources within a township can be placed randomly in agricultural land or weighted to specific

township locations. Agriculturally- (ag) capable land is defined as all land excluding urban

areas, water bodies, barren, rock, quarries, and wetlands. The total number of source terms

selected is dependant on the total amount of pesticide mass allowed in a given township (i.e., the

township allocation) and is a function of the field size, application rate, date, and depth of

incorporation. Actual mass applied is the application rate (kg/ha) x field size (ha), while

adjusted mass is the actual mass multiplied by CDPR scaling factors (dimensionless) as defined

in Figure 5. The user specifies a reference township allocation for a simulation [kg]. The

township allocation is the actual mass in the township for all soil fumigants other than 1,3-D and

the adjusted mass for the soil fumigant 1,3-D only when in the state of California. Which

application factors to use are given by the user choice for the integer flag “CA_13D_Scen” that

is an input in the worksheet “PDF Parameters”. No further source terms are allowed once the

township allocation is met. In this way, the sensitivity of the township allocation to acute, sub-

chronic, and chronic air concentrations can be addressed.

Figure 5. Methodology for determining the application factor for “correcting” the actual mass
applied to a pseudo “Adjusted Mass”. AF ≠ 1.0 are for 1,3-D in CA only.

Drip or
Shank?

No Drip

Shank

Tarp ? yes Is the
airshed in
CA?

Yes
A = 1.0 AF = 1.16

no
AF = 2.3

32 < Julian Date < 334
yes Incorp .

Depth >
45.7 cm?

yes
AF = 1.0

no
AF = 1.9

no

Incorp.
Depth >
45.7 cm?

yes
AF = 1.9

no

AF = 2.3

Start

F

Yes

Is the
fumigant
1,3-D?

No

A F = 1.0

 15

Random Assignment

The constructed numerical system assumes a maximum of 100,000 iterations when attempting to

randomly place fields within a township. Figure 6 illustrates that 100,000 iterations for random

field placement are acceptable to adequately cover the entire township domain (where each point

in Figure 5 represents the southwest corner of a treated field).

Figure 6. Example of a 100,000 and 50,000 randomly sampled SW field location for placement

of treated fields within a township.

Section Weighted

For some Townships, certain sections within a township (1/36 township area) traditionally apply

larger quantities of soil fumigant than do other township sections. In addition, it is possible that

a farmer can repeatedly treat a field with the same soil fumigant for several consecutive growing

seasons. Receptors in such sections, and near repeatedly treated fields will register higher

chronic and possible acute fumigant air concentrations due to the spatial intensity of fumigant

use. Simulations can be further refined to reflect repeated applications to the same fields.

Historical information is indicative of current and possibly future pesticide use patterns. In these

situations, the more refined section grids of a township are used. The California numbering of

township sections is given in Figure 7. For numerical implementation, the user specifies the

probability of each section receiving source terms (the sum of the probabilities for each township

equals one). Fields are placed randomly within the appropriate section at frequencies governed

 16

by the section probability (but are still constrained by agriculturally capable land) and land that

hasn’t been used for any other source term.

6 5 4 3 2 1

7 8 9 10 11 12

18 17 16 15 14 13

19 20 21 22 23 24

30 29 28 27 26 25
31 32 33 34 35 36

SW corner of field

0

9656

19312

28968

0 9656 19312 28968

x [m]

y
[m

]

Township

Section within
Township

9656 m (6 miles)

96
56

 m
 (6

 m
ile

s)

Figure 7. Township section numbering with example of section weighted field placement.

No other pesticide is rotated throughout the simulation cycle (i.e., all fields are always treated

with same fumigant) for each consecutive year of the simulation.

Overflow of source terms to surrounding sections

It is possible that many township sections have historically received a large percentage of the

allotted township allocation. If the current soil fumigant allocations were increased, and section

weighting inputs are based upon historical records, it is conceivable that all the ag land within

these sections can be treated before the fumigant mass allocation is achieved. This can occur if

the section has a large percentage of non-ag capable land, the user has specified the township

mass goes into relatively few sections, and/or when the total amount of pesticide mass (township

allocation) is large. The latter constraint arises as more treated fields are required when the

township allocation is increased. Thus, there is a need to account for high-use density sections

where it is anticipated the highest air concentrations will occur. The southwest corner for a

treated field (and thus area) is randomly selected for a section/township (Figure 7) via probability

weighting assigned by the user for random placement. Once a field is placed, this area is

unusable for additional applications of pesticide during the simulation year since a crop is now

growing (currently, most fumigant applications are made pre plant). Thus, a “cookie cutter”

scenario arises as different field sizes are randomly placed within a section (Figure 8). From a

 17

numerical standpoint, there may be the possibility that a sufficiently large field cannot be placed

in a given section, although the overall remaining area ag-capable land is of sufficient size. In

these cases, a spill-over/overflow algorithm was developed. On subsequent iterations, if a small

field size were selected, the algorithm would first try to place the field in the user-defined section

before any overflow occurs to maximize the treated area in a user specified section.

Overflow Section Probabilities

The numerical model first attempts to place a specific field within a township section. A new

random location is selected until the field can be placed or 100,000 iterations have occurred

(subroutine “Get_Fld_Coordinates”). The overflow algorithm is initiated to place the field in a

bordering section if at the end of these iterations a portion of unused land within a section was

not found to place a field. A field may not be accommodated due to other field placement, or

that it is close to the township boundary, or just will not geometrically fit in remaining ag-

capable land. It is hypothesized that if a township section “fills up” such that no new treated

fields can be placed, then the field should be placed in a section immediately surrounding this

high density use area. Details of how the overflow algorithm works are as follows.

Section

Previously placed
fields in section

Large field
will not fit

Smaller fields
will still fit

PDF sampled field size

Figure 8. Illustration of field placement within a section/township where not all land can be
utilized.

 18

Before the onset of a simulation, the user has defined section probabilities for treated field

assignment within a given township section. These section-weighting probabilities can be based

upon historical records or expert judgment. For calculation purposes, each neighboring section

surrounding the user specified non-zero probability section was internally assigned the same

probability magnitude as the original section. The methodology is illustrated in the example

found in Figure 9. The difference between Fig. 9 (a) and 9 (b) is that for 9 (a), all user defined

section overflows don’t impact (border) other potential overflow sections. In Figure 9 (a), the

user has specified three township sections having non-zero probabilities of receiving a treated

field (dark cells). All sections within the township that surround the user-supplied non-zero

probability sections are initially assigned the same probability value (light cells). Then, each

surrounding section probability is divided by the sum of all probabilities for the sections that

border the user supplied non-zero probability sections. For the example provided, the numbers

in parenthesis in the bordering sections is the actual probability assigned to the section.

All sections within the township that surround the user-supplied non-zero probability sections are

initially assigned the same probability value (light cells). If a surrounding section borders

multiple user supplied probability sections, then neighboring section probability is defined as the

sum of the probabilities resulting from all neighboring sections. Then, each surrounding section

probability is scaled by the sum of all probabilities for the sections that border the user supplied

non-zero probability sections (Eq. 7).

 Pi =
∑ i

i
NP

NP (7)

Pi = probability of a neighboring section receiving a treated field if the primary sections are

filled up.

NPi = Initial probability assigned to neighboring section surrounding a user-supplied non-zero

probability section (same as bordering user supplied section).

ΣNPi = sum of the initial probabilities for all neighboring sections within the township.

 19

Sections with user
defined probabilities

Sections neighboring sections
with user defined probabilities

Σ NPi = 8(0.6) + 8(0.3) + 3(0.1) = 7.5
i=1

19

0.1

0.6

0.3

0.3 0.3 0.3

0.3

0.30.30.3

0.3

0.6 0.6 0.6

0.6 0.6 0.6

0.60.6

0.10.1

0.1

(0.080) (0.080) (0.080)

(0.080) (0.080) (0.080)

(0.040) (0.040) (0.040)

(0.040) (0.040) (0.040)

(0.040) (0.040)

(0.080) (0.080)

(0.013)(0.013)

(0.013)

Σ NPi = 6(0.6) + 5(0.3) + 2(0.1) +2(0.9) + 1(0.4) = 7.5
i=1

16

0.1

0.6

0.3

0.6 0.6 0.6

0.6+ 0.3 0.6+ 0.3 0.6

0.60.6

0.10.3+0.1

0.1

(0.080) (0.080) (0.080)

(0.120) (0.080)

0.3
(0.040)

(0.080) (0.080)

(0.013)(0.053)

(0.013)

0.3
(0.040)

0.3
(0.040)

0.3
(0.040)

0.3
(0.040)

(0.120)

(a) (b)

Figure 9. Example of the overflow algorithm for determining probability of surrounding sections
that can receive a field if the algorithm is invoked. Initial magnitudes for surrounding
sections (light cells) are given along with the resulting calculated probability (in
parenthesis).

The methodology is slightly different when a neighboring section borders multiple user-defined

sections [Fig. 9 (b)]. Here, the neighboring section probability is defined as the sum for all user-

defined probabilities that the neighboring section borders. As before, these initial magnitudes

(Pi) for neighboring sections are subsequently scaled by the sum of the probability magnitudes

over all neighboring sections (NPi) once each neighboring section has been assigned a defined

magnitude (such that the sum of probabilities over all neighboring sections equals 1.0). In this

way, neighboring sections near the largest magnitude user-defined section probabilities have the

greatest chance of receiving an overflow field once the overflow algorithms are invoked.

Similarly, neighboring sections that border multiple user defined sections will have a greater

probability of receiving treated fields than the other neighboring sections that do not border

multiple user defined sections. This approach appears consistent with affluent rural areas that are

 20

capable of affording soil fumigation (i.e., a wealthy farmer who is already using soil fumigants

and is increasing his/her land production or buying up neighboring land).

Figure 10 is an example of section weighting with overflow. User specified sections at the

supplied probability weights are the first to fill with source terms. Once a section can no longer

accommodate a field, then neighboring sections are used as the overflow area for field

placement. If all overflow and surrounding sections fill, then source terms are randomly placed

in any remaining ag-capable land within the township.

W ater Urban M ountains

Section overflow field placem ent
Figure 10. Example of user defined section weighting field placement with overflow allowed.

Section-Weighting Limitations

There are limitations to section weighting as currently implemented. The numerical model

currently loops through crop type (up to 5 different crops) when placing fields. Thus, section

weighting first places all fields for crop #1, followed by crop # 2, and so on. If the section fills

up, the overflow algorithm will kick in and place fields in neighboring sections. It may be

possible for the section area to fill up before all of the crop types have been addressed. This can

 21

lead to artificial (or real) heterogeneity in crop types for a given region. The details of use data

such as that found in the California Pesticide Use Records (PUR) data often do not distinguish

crop type per section. Thus, the accuracy or error of this potential heterogeneous artifact for crop

placement cannot be addressed at this time. However, field heterogeneity can be partially

overcome through appropriate choice of section weighting as illustrated in Figure 11.

The graphics in Figure 11 represent a single township where the user has specified the

probability of a township section receiving an application (upper portion of figure). The first

graphic within this figure follows the user specification that all treated fields are placed in a

single section. Since there is not enough land to encompass the amount of treated fields, the

overflow algorithm is initiated and fields are placed in neighboring townships. The middle

graphic gives much the same result as the first, but the user has specified a single section had the

highest probability for treated fields, but neighboring townships also had a smaller probability.

This center example is more homogenous in crop type then the first. Finally, the last graphic

represents field placement results when non-continuous sections are given finite probabilities of

receiving treated fields.

(a) (c)(b)

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.06 0.06 0.06

0.00 0.00 0.00 0.06 0.52 0.06

0.00 0.00 0.00 0.06 0.06 0.06

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.20 0.00

0.00 0.00 0.00 0.00 0.60 0.00

0.00 0.00 0.00 0.00 0.20 0.00

0.00 0.00 0.00 0.00 0.00 0.00

Figure 11. Example results from user specified section weighting with overflow.

 22

Agricultural fields are typically fumigated once per year, with the exception of TV fields where

applications occur once during the lifespan of the orchard or vineyard. A system was

constructed such that any area that received a treatment during the year could not be retreated in

keeping with agronomic practices. Also, any TV area was eliminated from further treatment for

the rest of the multi-year simulation period. Land cover is based upon raster discretization of a

township into a grid system 100x100 (10,000 equal sized cells). The southwest corner for the

field is found by selection of a raster grid within the township. The grid selection is based upon

section weighting probabilities or random placement in ag-capable lands. The field is then

placed in the township, and surrounding grids are identified based upon the field location and

size (assuming the land is ag-capable and no portion of the area has already been used for a prior

source term).

Due to the discrete nature associated with a raster analysis, the number of surrounding grids a

field occupies can be either “rounded” up or down, according to the user preference. Rounding

up includes all grids a field comes in contact with, even if there is only slight overlap into a

neighboring grid. Rounding down only includes a surrounding grid if more than half of the grid

is occupied by the field. Figure 12 provides an example of the procedure in eliminating ag-

capable land from further consideration in a simulation year if rounding up or down is assumed.

Rounding down or up will give the same result if the field occupies at least 50% of a grid. By

specifying rounding up, there will be no possibility for treated field overlap. A small probability

of having some fields slightly overlap exists if rounding down is used. However, this may only

occur for townships having a large township allocation and high field density in specific

township sections. Rounding down can allow for denser field placement within a township

section since more ag-land is available for further field placement.

The “Worst-Case” chronic exposure for an individual is dependent upon the time spent near a

treated field immediately following a fumigant application which means that individuals residing

near a field that is repeatedly treated with a soil fumigant year-in, year-out, will have the highest

exposure potential. A critical input is therefore the density of fields within a township, the

frequency of field retreatment from year to year, and the likelihood of individuals spending a

large portion of their time near these treated fields during off-gassing.

 23

Land Eliminated

Land EliminatedRounding up

Rounding down

Figure 12. Example of land elimination due to integer rounding associated with field coverage.

The general flow diagram for the VBA code that is executed to place fields and generate

appropriate source and flux files for ISCST3 is given in Figure 13. This diagram lists the main

subroutines. There are other small subroutines that perform a small task that many of the

subroutines seen in Figure 13 utilize. However, Figure 13 will direct programmers who may

need to make modifications in the field placement/source strength subroutines.

 24

Fld_placement

Called from main program to place fields within township,
generate ISCST3 input files (source file and flux file)

Update_loc_array_w_repeat_flds

update arrays with repeat field information (if appropriate)

Figure 13. Flow diagram for field placement subroutines.

Field Retreatment in Subsequent Years

Figure 14 represents an example when 50% field retreatment is considered. For the first year of

rotation, fields are placed appropriately (random or section weighted). Following the first year

of simulation, 50% of the fields from the previous year are randomly selected (dark shade – Year

1) and marked as fields that will be retreated the following year (Dark shade – Year 2). New

fields are now assigned (Light shade – Year 2) such that properties of retreated fields and new

fields meet system constraints (see optimization section). This process is now repeated for each

year of simulation.

Get_Fld_Coordinates

Get_section_TV, Get_section_num
Read in section weightings and determine spill over
probabilities based upon methodology in text.

Selects (x,y) field coordinates based upon random or
section weighting, writes information for the source to the
worksheet “misc”

check_if_fld_fits
Know (x,y) location (NW corner of field) and field area.
Need to verfy that the field will fit (i.e., will not overlap
another field, have part of the field in non-ag capable land,
etc. write_flux_files

Writes out the hourly flux (source strength) file for ISCST3
simulations. All source terms are known before this
subroutine is called.

 25

Year 1 Year 2

End of Year 2, select 50% of fields Year 3

Fields that will be retreated the following year

Randomly placed fields within section

Fields that are randomly selected at the end of
current year simulation for retreatment the
following year.

Fields that are selected for
retreatment in the next year remain
the same field size and type.
However, application rate, date, and
depth of incorporation can change
via the user defined PDFs that are
resampled. New, randomly placed
fields can have all new properties.

Figure 14. Example of field retreatment algorithm assuming 50% of fields from a given year

will be retreated in the subsequent year.

In SOFEA, fields that will be retreated in the following year are flagged (stored in appropriate

arrays) and are used in the next year of simulation to determine the township allocation. Thus,

only the first year generates new fields, and subsequent years will use some fields from the

previous year as well as new source locations for the current year. In addition, repeat field

attributes are written to an ASCII file called “field_repeat”. This file is used by the optimization

program for the mass allocation contribution. Repeat fields are not “stretched or shrunk” in the

optimization program. Only new fields for the simulation year are altered. In this way the exact

same field size will be reused in next simulation year for field retreatment. The subroutine that

randomly samples fields for retreatment for the next year of simulation is “Randomize_flds” and

“fld_solve1”.

Crop Type and Field Size Optimization

The stochastic nature of the numerical system dictates different field sizes and application rates

will be selected for each crop type and for each year of simulation. A method was required to

keep the fumigant mass applied to any given township (user specified) as a constant under any

 26

condition. Thus, the township allocation is a management constraint that indirectly can control

fumigant exposure.

Field Size Optimization

Optimization procedures were used such that the township allocation was achieved but

constrained by the percentages of each crop type found within the township being met (crop

percentages are also user supplied). User defined field size PDFs are initially sampled to obtain

starting values for field sizes for each crop type. The number of fields are determined such that

the total mass of soil fumigant for all source terms is constrained at the user specified township

allocation and the residual for the crop percent cover is minimized. This results in a Mixed

Integer Linear Program (MILP) problem whose optimal solution is obtained using a modified

flexible-polygon search procedure (Himmelblau, 1972)

The mathematical representation for the objective function requiring minimization is given by

Eq. 7.

=Ψ ∑
=

−−
5

1

|100*|
i

pdfT iγ 5 N

∑ i, jA
iN

j=1

∑ ∑ i, jA
i

i=1 j=1

Tcap-adj| −∑ ∑
i

i=1 j=1

5 N

i, jA i, jR |i, j
AF

 (7)

Ψ = Objective function requiring minimization

γ = Weighting variable (100 or 1000) based upon order of magnitude analysis so optimization

procedure executes properly under a variety of diverse conditions. By adjusting γ, one can
emphasize the crop percent residual, township allocation residual, or both)

Tpdf i= Percent of township ag-capable land that is
 specifically for crop “i” (from PDF)

Tcap= Township allocation for soil fumigant [kg]

Ni = Integer number of fields for crop “i” (initially unknown)

 27

Ai = Area of a field for crop “i” [ha]

Ri = Application rate for crop “i” [kg ha-1]

i = counter for the 5 different crop types that can be present

The first and second term in Eq. 2 represents the sum of residuals for cropping area percentages

and for the township allocation, respectively. Thus, Eq. 2 is a function of the township allocation

and the percentages of user defined field types within the township. The numbers of fields for

each crop type (Ni) are constrained as integer’s ≥ 0. Once the number of fields for a given crop

type are known, then the PDF field sizes (Ai) are adjusted (slightly stretched or shrunk) to meet

the township allocation constraint. The logic flow diagram used in optimization procedure is

given in Figure 15. The parameter γ is used to emphasize one constraint over the other (or to

make each constraint of similar magnitude during optimization). Unknown values before the

optimization begins are the number of fields for each crop type (Ni), and the ending field size for

each field “j” for crop “i” (Ai,j). A total of 6 calls to the optimization routine are used to provide

initial estimates for the decision variables, followed by refinement of these variables. For the

first four calls, the weight factor in the objective function (γ) was 1000, 100, 10 and 1

respectively, to first provide a crude estimate for decision variables and then to consecutively

refine this initial estimate. Since γ begins as a large value, the percent of overall crop types

dominates the objective function, and the optimization routine focuses on estimating Ni. A value

of γ = 1000 is used to supply the “initial” guess to Ni. As γ decreases from 1000 to 1, the number

of fields (Ni) is altered as the township allocation portion of the objective function becomes of

similar importance. When γ = 1, and both the residuals associated with user specified crop

percentages and the township allocation are minimized. The procedure for first estimating Ni

followed by refinement in this estimate is outlined in the upper loop of Fig. 15. For γ < 1 (lower

loop of Fig. 21), changes in the number of fields (Ni) will remain small as the optimization

procedure now “stretches” or “shrinks” the field sizes such that the township allocation

constraint is achieved. Field size lower and upper bounds (A i,j lower, A i,j upper) for optimization

were constrained at ± 20% of the PDF sampled size.

 28

Start

γ = 1000
k = 1
m = 0 Call FORTRAN

Optimization
program

yes

γ = γ /10
k = k + 1

Is “k” < 4 ?

γ = 0.0001

Is “m” < 2 ?

no

m = m + 1
γ = γ * m*10

yes

no

Stop Return optimal
solution to worksheet

Ai,j lower = Ai,j * 0.8
Ai,j upper = Ai,j * 1.2

Figure 15. Flow diagram for logic used in optimization procedure for determining both the
number of fields for a given crop “i’ (Ni) and how these fields need to be stretched or
shrank to obtain the user specified adjusted mass constraint for a given township.

The optimization program source code (Written in Fortran) is given in Appendix A. Opt2.exe is

called for the central 3x3 townships, and for each township where fumigant mass has been

allotted outside the central 3x3. Input files required by the optimization program (“opt2.exe”)

are written from VBA, the program opt2 is executed, and results are imported back into VBA (all

transparent to the user). Input files required by opt2.exe are “field.dat” and field_repeat.dat” and

are written to the bin directory. The ASCII output file generated by opt2.exe and subsequently

read back into VBA is called “field_opt_dat”. Figure 16 is the FORTRAN Code reading in the

ASCII file “field.dat”. Parameters of this file are defined as follows:

The fields “field.dat”, “field_repeat.dat” and “field_opt.dat” are all free formatted.

 READ(1,*) TWN_CAP, ITERATION, K_READ, TWN_1_9
*
* TWN_1_9 IS THE INTEGER FLAG TELLING THIS PROGRAM HOW MANY TOWNSHIPS TO FIND
* SOURCE FILES FOR. TWN_1_9 EQUALS EITHER 1 OR 9. IF = 9, THEN WE ARE FINDING
* SOURCE TERMS FOR THE CENTRAL 3X3 TOWNSHIP DOMAIN. IF = 1, THEN WE ARE FINDING
* SOURCE TERMS FOR A SINGLE TOWNSHIP THAT IS "OUTSIDE" OF THE CENTRAL 3X3.
*
* Note: if K_READ = 0, then we need to read in information from the file
* "field_repeat.dat" that contains information about the fields that will
* need to be retreated for this year of simulation.

* READ IN THE FRACTION OF THE REFERENCED TOWNSHIP ALLOCATION FOR EACH TOWNSHIP ID
 READ(1,*) (FRAC_CAP(I),I=1,TWN_1_9)

 29

* READ IN THE CROP PERCENTAGE AREAS FOR EACH TOWNSHIP
 DO J = 1, TWN_1_9
 READ(1,*,END=999)(CROP_PER(J,I),I=1,5)
 END DO

* READ IN THE CRYSTAL BALL SAMPLING FOR AREA, APPLICATION RATE, DEPTH OF INCORP.
* ACUTAL MASS APPLIED, CORRECTED MASS (BASED ON DEPTH AND TIME OF YEAR)
 DO I = 1,5000
 READ(1,*,END=999,ERR=998)(AREA(J,I), RATE(J,I), DEPTH(J,I),
 # IDATE(J,I),AMASS(J,I), CMASS(J,I), D_or_S(J,I),
 # ITARP(J,I), SINCORP(J,I),SYR(J,I),J=1,5)
 END DO

Figure 16. FORTRAN Code from opt2.f where the program reads in the ASCII file “field.dat”.

Parameters in Figure 16 are:

FRAC_CAP(I),I=1,TWN_1_9) = fraction of the referenced township allocation for each
township id
CROP_PER(J,I),I=1,5) = crop percentage areas for each township, j=1 to TWN_1_9
AREA(J,I) = field area (ha)
RATE(J,I) = application rate (kg/ha)
DEPTH(J,I) = depth of incorporation (cm)
IDATE(J,I) = Julian application date
AMASS(J,I) = Actual mass [kg]
CMASS(J,I) = corrected mass (based upon CDPR methodology) [kg]
D_or_S(J,I)= Flag for drip (<2) or shank (=2) application
ITARP(J,I)= Flag if a tarp is (<2) or is not (=2) present
SINCORP(J,I)= Scaling factor based upon soil incorporation depth
SYR(J,I) = Scaling factor based upon time of year (CDPR methodology)

Field_repeat.dat

The following line is from opt2.exe that read in the ASCII file “field_repeat.dat”.

READ(3,*,END=1999,ERR=1998)TWN_ID, CRP_ID, XR, YR, ZR, AR, RR,
DR, IR, AM, CM, DOS, ITR, SINCR, SYRR

Twn_ID = township id (either 1-9, or some number from 1 – 529 for external (to 3x3) townships
Crp_ID = integer crop ID (1-5, where 1 = TV, 2 = FC, etc.)
(XR, YR,ZR) = (x,y,z) location of Northwest corner of field
AR = field size
RR = application rate
DR = application depth

 30

IR = application date (Julian)
AM = actual mass
CM = corrected mass
DOS = Drip_or_Shank flag
ITR = tarp flag (ITARP)

Field_opt.dat

'The format for "field_opt.dat" is as follows. There is a "grouping of information for each
township. The first line of data for a group contains the
Township ID #TV #FC #NC #SB # PP , where #TV = total number of tree and vine
fields, etc.

The next (#TV + #FC + #NC + #SB + #PP) lines of information contain data about the fields.
The first #TV lines are for Tree and vine fields, the next #FC lines are for Field crop fields, etc.
Information on these lines are as follows:

Township ID Area_start Area_end app. rate Scal. factor Depth-incorp app. Date
Drip/Shank Tarp(Y/N) Sincorp Syr Fld repeat x y z

Area_start = starting field size before optimization (i.e., that sampled from the appropriate
PDF
Area_end = ending field size after optimization
Scal. factor = CDPR factor for time of year and application depth (This is the # used for
 correcting fumigant mass
Depth-incorP = depth of incorporation
app. Date = Julian application date
Drip/Shank = if application is drip (0) or shank (1)
Tarp = if bare field (0) or tarp is present (1)
Sincorp = flux scaling factor for incorporation depth
yr = flux scaling factor for time of year
Fld_repeat = Flag for if this field is to be repeated in the next year of simulation (0 = no, 1 =
yes)
x, y, z = NW corner field coordinates for repeat fields (if Fld_repeat = 0, then these
 entries are blank)

Temporal parameter changes

Agronomic practices can change over time. These practices can include such things as the

percentage of retreated fields from year to year, field size changes, the amount and type of

pesticide used, application rates, incorporation depths, and loss of ag-capable land as cities

grow.. In addition, the ability to explore heuristic rules that may mitigate fumigant exposure is

desirable (such as a field cannot be treated 3-years in a row, staggering of sources between

 31

township sections in alternating years, and so on). Thus, a system with the ability to forecast an

exposure regime was required that could account for not only current scenarios but future “what-

if” scenarios as agronomic practices may change.

Existing/Historical
use records, area
treated, section
weighting for field
placement, etc.

Forecasted use
records, MeBr
replacement, 1-2
townships at
current cap, section
weighting for field
placement, etc.

Forecasted use records
w/ multiple townships
at the current township
cap, multiple at 2x cap,
section weighting for
field placement
expanded to account
for more mass applied,
etc.

Forecasted use records for
management of chronic
exposure, multiple townships
at the current township cap,
1/2 cap and so on, modified
section weighting to account
for less mass applied, urban
sprawl, etc.

Rotation cycle
input based
upon sampling
of user supplied
PDF’s,
correlations, etc.

Rotation cycle
input based
upon sampling
of user supplied
PDF’s,
correlations, etc.

Rotation cycle
input based
upon sampling
of user supplied
PDF’s,
correlations, etc.

Rotation cycle
input based
upon sampling
of user supplied
PDF’s,
correlations, etc.

Rotation cycle
input based
upon sampling
of user supplied
PDF’s,
correlations, etc.

Figure 17. Example of a 5 period rotation cycle, where each period has 5 years of simulation

(25-yr simulation).

Figure 17 represents how the temporal nature of agriculture can now be simulated. A 25-year

simulation has been broken down into five different 5-year intervals. The first 5 years represents

current conditions (i.e., actual use data that has been collected). The next five years are “near

term” approximations to agronomic practices, where input parameters are altered slightly (such

as increased use of a particular fumignat as a replacement for MeBr). The following 15-years

incorporate land use/demographics that may occur such as urbanization, ending of the life span

of current orchards (i.e., new areas for TV), potentially new BMPs regarding insect resistance

management, an so on. The same 25-year simulation can be equally broken up into three distinct

intervals (where parameters are statistically different than in other intervals) of 8 years, 8, years,

9 years, and so on, to address parameter assumptions and their impact on forecasting results.

 32

The forcast“ looping’ is generated simply by a “do” loop in VBA. The maximum number of

loops that can be incorporated is five. This is due to the hard coding for input parameter

sampling from the various worksheets of SOFEA.

Superposition of Unique Crop type results

Summarized ISCST3 output includes 24-hr maximum, and annual receptor concentrations. Post

processing routines were written such that additional averaging periods can be specified by the

user (i.e., 3-day, 15-day, and so forth). Air concentrations are obtained for each crop type

independently. Once all emission losses/air concentrations for each crop type are simulated, air

concentrations are superimposed to obtain representative air concentrations just as if all crop

types were simulated together (Figure 18).

= + +

Figure 18. Superposition of daily simulation results for each crop type for the simulation interval
(1-year) for an example having 3-crop types.

The reasons for superposition of simulation results are as follows. The execution time for

ISCST3 scales linearly with the number of source terms and the number of receptors. When

current township allocations are approached or exceeded, and the field sizes are small, then a

relatively large number of sources for the simulation domain will exist. Likewise, the total

number of receptors placed within the central 3x3 (9-township) simulation domain can become

large as the resolution/spacing between neighboring receptors becomes small. Additionally, MC

sampling requires an appropriate number of yearly simulations for stochastic response surface

generation since parametric uncertainty is characterized through MC simulations. Thus, a

simulation was broken up into yearly events for each field type to keep I/O and simulation

execution time manageable. Simulation results for each crop type were superimposed (i.e.,

added) on a daily basis for each receptor within the simulation domain. Results can be

 33

superimposed since Gaussian dispersion is independent of concentration gradients (i.e., the wind

convects the pesticide mass with dispersion as specified by the directional dispersion

coefficients). Simulation results are stored in memory (arrays) and superimposed in subroutines

“Post_Process”, “print_chronic”, and “print_simulation_avg”.

Post Processing of ISCST3 Simulation Results

Simulation results (air concentrations) generated and written to ISCST3 output files are read in

via VBA and are stored in memory upon completion of a simulation year for a given crop. After

each simulation, 24-hr maximum and chronic (annual) air concentration results are stored in

memory and written to the worksheets “24hr_max” and “Chronic”, respectively. Once all crops

have been simulated, a call to the subroutine “Post_Process” is made where the running averages

specified by the user are determined and written to the worksheet “Run_avg_twn” and

“24hr_summary”. Results in “24hr_summary” are for each crop type, while those found in

“Run_avg_twn” are the superimposed results from all crop types. Results found in

“Run_avg_twn” can be generated by the individual crop results found int “24hr_summary”.

Once all of the user specified number of years for the simulation has completed, results stored in

memory are then used to generate an N-year average value for chronic and subchronic exposure

intervals via calls to the subroutines “print_simulation_avg“ and “print_chronic “. Results from

these two subroutines are found as the last columns of numbers in the worksheets “Chronic” and

“Run_avg_twn”. Subroutine definitions are found in Appendix B. Subroutine connectivity and

parameters used in SOFEA are summarized in Appendices C and D, respectively.

Conclusions

SOFEA is a comprehensive numerical tool for simulating air exposure concentrations resulting

from fumigant use. SOFEA is written in VBA, although several FORTRAN programs are used

(OPT2 and ISCST3). VBA is effectively used with MS Excel to provide a pre- and post-

processor capability for ISCST3 such that the details of the repetitive tasks are transparent to the

user. This manuscript serves as a resource for programmers who may require modifications be

made to SOFEA, in addition to the functionality and the algorithms used throughout.

 34

References

Cryer, S.A., I.J. van Wesenbeeck, and J.A. Knuteson, 2003. Predicting Regional Emissions and
Near-Field Air Concentrations of Soil Fumigants Using Modest Numerical Algorithms: A Case
Study Using 1,3-Dichloropropene. J. Agric. Food Chem, 51, 3401-3409.

Cryer, S.A. and I. van Weseenbeck. 2001. Predicted 1,3-Dichloropropene Air Concentrations
Resulting from Tree and Vine Applications in California. J. Environ. Qual. 30:1887-1895.

Cryer, S.A., 2004 (In Preparation). Predicting Soil Fumigant Acute, Sub-chronic, and Chronic
Air Concentrations under Diverse Agronomic Practices.

ISCST3. 1995. Users Guide for the Industrial Source Complex (ISC3) Dispersion Models, Vol.
I – Users Instructions. U.S. Environmental Protection Agency, Office of Air Quality Planning
and Standards Emissions, Monitoring, and Analysis Division, Research Triangle Park, North
Carolina 27711, EPA-454/B-95-003a, Sept. 1995.

van Wesenbeeck, I.J. , S. A. Cryer, B.A. Houtman, and P.L. Havens 2004 (In Preparation).
Managing 1,3-Dichloropropene Soil Fumigant Exposure/Risk in California

 35

Appendices

Appendix A. FORTRAN Source Code for Optimization Program

* *
* opt2.f *
* *
* This optimization routine determines the number of fields for each crop *
* type for the fumignat management system. The objective function is to *
* minimize the residual between the user specified crop area for each crop, *
* and the user specified township allocation. The township allocation in this case is the *
* corrected cap based upon time of year an application is made and the depth *
* of incorporation. The corrected mass is calculated in the VBA code of the *
* MS Excel workbook, and VBA creates the file "township.dat" for every year *
* of simulation. Information in this file includes 1) Corrected township allocation*
* basis, the fraction of the township allocation basis for each of the 9 townships *
* to be simulated, and up to 750 randomly sampled field information for *
* each crop type. *
* *
* We now read in information for fields that are to be reused from a *
* subsequent year of simulation and still optimize # of fields and sizes *
* such that the corrected township allocation is acheived and the user specified *
* percentages for each crop type are approached. Both "new" and "repeat" *
* fields are written to the file "field_opt.dat" *
* *
* Written by Steve Cryer *
* Version 1.0 10/30/02 *
* *

*
 PARAMETER(MAX=800, MAX1 = 80)
 IMPLICIT REAL*8(A-H, O-Z)
 REAL*8 X(20), XL(20), XU(20), FUN(5), X_AREA(MAX),
 1 XL_AREA(MAX), XU_AREA(MAX), X_AREA_START(MAX),
 2 X_DEPTH(MAX),SINCORP(5,MAX),SYR(5,MAX),
 3 SF_INCRP(MAX), SF_YR(MAX),SINCORP_R(9,5,MAX1),
 4 SYR_R(9,5,MAX1)
*
 INTEGER IDATE, IX_NEW1(20), IX_OLD1(20), DS(MAX), TARP(MAX),
 1 JULDATE(MAX),IMAX(5), D_or_S(5,MAX),
 2 D_or_S_R(9,5,MAX1), TWN_ID, TID, CID,
 3 JX(9,5), ITOT(5), CPR_I, KX(5), ITOT_FLDS(9),
 4 FLD_ID, FR, K_READ,TWN_1_9

 COMMON /FITCOM/ EPSP, EPSF, STEP, ALPHA, BETA, GAMMA

 COMMON /MISC/ CROP_PER(9,5),AREA(5,MAX),RATE(5,MAX),
 # DEPTH(5,MAX),IDATE(5,MAX),AMASS(5,MAX),CMASS(5,MAX),
 # LCOUNT,TWN_CAP, FRAC_CAP(9),WT_FACT,IX_OLD(20),
 # RESID1,RESID2,IX_NEW(20),ITARP(5,MAX),ITERATION

 COMMON /MISC1/ X_RATE(MAX), X_AF(MAX), IX(20),RESID3, RESID4

 COMMON /MISC2/ AREA_R(9,5,MAX1), RATE_R(9,5,MAX1),
 1 DEPTH_R(9,5,MAX1), IDATE_R(9,5,MAX1), AMASS_R(9,5,MAX1),
 2 CMASS_R(9,5,MAX1), ITARP_R(9,5,MAX1), X_R(9,5,MAX1),
 3 Y_R(9,5,MAX1), Z_R(9,5,MAX1), JX, AF_R(9,5,MAX1)

 OPEN(1,FILE="field.dat",STATUS="OLD",FORM="FORMATTED")
 OPEN(2,FILE="field_opt.dat",STATUS="UNKNOWN",FORM="FORMATTED")
*
* READ IN THE TOWNSHIP ALLOCATION BASIS (KG), and iteration year of simulation.
* If iteration > 1, then we will have repeat fields that read in from

 36

* the file "field_repeat.dat"
*
 READ(1,*) TWN_CAP, ITERATION, K_READ, TWN_1_9
*
* TWN_1_9 IS THE INTEGER FLAG TELLING THIS PROGRAM HOW MANY TOWNSHIPS TO FIND
* SOURCE FILES FOR. TWN_1_9 EQUALS EITHER 1 OR 9. IF = 9, THEN WE ARE FINDING
* SOURCE TERMS FOR THE CENTRAL 3X3 TOWNSHIP DOMAIN. IF = 1, THEN WE ARE FINDING
* SOURCE TERMS FOR A SINGLE TOWNSHIP THAT IS "OUTSIDE" OF THE CENTRAL 3X3.
*
* Note: if K_READ = 0, then we need to read in information from the file
* "field_repeat.dat" that contains information about the fields that will
* need to be retreated for this year of simulation.

* READ IN THE FRACTION OF THE REFERENCED TOWNSHIP ALLOCATION FOR EACH TOWNSHIP ID
 READ(1,*) (FRAC_CAP(I),I=1,TWN_1_9)

* READ IN THE CROP PERCENTAGE AREAS FOR EACH TOWNSHIP
 DO J = 1, TWN_1_9
 READ(1,*,END=999)(CROP_PER(J,I),I=1,5)
 END DO

* READ IN THE CRYSTAL BALL SAMPLING FOR AREA, APPLICATION RATE, DEPTH OF INCORP.
* ACUTAL MASS APPLIED, CORRECTED MASS (BASED ON DEPTH AND TIME OF YEAR)
 DO I = 1,5000
 READ(1,*,END=999,ERR=998)(AREA(J,I), RATE(J,I), DEPTH(J,I),
 # IDATE(J,I),AMASS(J,I), CMASS(J,I), D_or_S(J,I),
 # ITARP(J,I), SINCORP(J,I),SYR(J,I),J=1,5)
 END DO

998 PRINT *, 'ERROR IN LINE ', I
 PAUSE

999 NTOT = I - 1
 CLOSE(1)

* READ IN THE FILE CONTAIING INFORMATION ON REPEAT FIELDS FOR CURRENT YEAR
* OF SIMULATION
*```````````````````````````````
* IF (ITERATION .GT. 1) THEN
 IF (K_READ .EQ. 0) THEN
*```````````````````````````````
 DO J = 1, TWN_1_9
 DO KK =1, 5
 JX(J,KK) = 0
 ENDDO
 ENDDO

 TID = 1
 CID = 1
 KCOUNT = 1

 OPEN(3,FILE="field_repeat.dat",STATUS="OLD",FORM="FORMATTED")
* =============
 DO I = 1,5000
* =============

 READ(3,*,END=1999,ERR=1998)TWN_ID, CRP_ID, XR, YR, ZR,
 1 AR, RR, DR, IR, AM, CM, DOS, ITR, SINCR, SYRR

* DETERMINE THE NUMBER OF RETREATED FIELDS FOR EACH CROP TYPE AND EACH
* TOWNSHIP ID. THIS INFORMATION (# OF RETREATED FIELDS) IS STORED IN THE
* ARRAY "JX(TWN ID, CROP ID)", WHERE TWN_ID = 1 TO 9, AND CROP_ID = 1,5

 IF (TWN_ID .EQ. TID) THEN

 IF (CRP_ID .EQ. CID) THEN
 JX(TWN_ID,CRP_ID) = KCOUNT
 ELSE
 CID = CRP_ID
 KCOUNT = 1

 37

 JX(TWN_ID,CRP_ID) = KCOUNT
 ENDIF

 X_R(TWN_ID,CRP_ID,KCOUNT)= XR
 Y_R(TWN_ID, CRP_ID,KCOUNT)=YR
 Z_R(TWN_ID, CRP_ID,KCOUNT)=ZR
 AREA_R(TWN_ID,CRP_ID,KCOUNT)=AR
 RATE_R(TWN_ID, CRP_ID,KCOUNT)=RR
 DEPTH_R(TWN_ID, CRP_ID,KCOUNT)=DR
 IDATE_R(TWN_ID, CRP_ID,KCOUNT)=IR
 AMASS_R(TWN_ID, CRP_ID,KCOUNT)=AM
 CMASS_R(TWN_ID, CRP_ID,KCOUNT)=CM
 D_or_S_R(TWN_ID, CRP_ID,KCOUNT)=DOS
 ITARP_R(TWN_ID, CRP_ID,KCOUNT)=ITR
 SINCORP_R(TWN_ID, CRP_ID,KCOUNT)=SINCR
 SYR_R(TWN_ID, CRP_ID,KCOUNT)=SYRR
 AF_R(TWN_ID, CRP_ID,KCOUNT)=CM/AM
 KCOUNT = KCOUNT + 1

 ELSE

 TID = TWN_ID
 KCOUNT = 1
 IF (CRP_ID .EQ. CID) THEN
 JX(TWN_ID,CRP_ID) = KCOUNT

 ELSE
 CID = CRP_ID
 KCOUNT = 1
 JX(TWN_ID,CRP_ID) = KCOUNT

 ENDIF

 X_R(TWN_ID,CRP_ID,KCOUNT)= XR
 Y_R(TWN_ID, CRP_ID,KCOUNT)=YR
 Z_R(TWN_ID, CRP_ID,KCOUNT)=ZR
 AREA_R(TWN_ID,CRP_ID,KCOUNT)=AR
 RATE_R(TWN_ID, CRP_ID,KCOUNT)=RR
 DEPTH_R(TWN_ID, CRP_ID,KCOUNT)=DR
 IDATE_R(TWN_ID, CRP_ID,KCOUNT)=IR
 AMASS_R(TWN_ID, CRP_ID,KCOUNT)=AM
 CMASS_R(TWN_ID, CRP_ID,KCOUNT)=CM
 D_or_S_R(TWN_ID, CRP_ID,KCOUNT)=DOS
 ITARP_R(TWN_ID, CRP_ID,KCOUNT)=ITR
 SINCORP_R(TWN_ID, CRP_ID,KCOUNT)=SINCR
 SYR_R(TWN_ID, CRP_ID,KCOUNT)=SYRR
 AF_R(TWN_ID, CRP_ID,KCOUNT)=CM/AM
 KCOUNT = KCOUNT + 1

 ENDIF

* =============
 END DO
* =============

1998 PRINT *, 'ERROR IN LINE ', I , ' "FIELD_REPEAT.DAT" '
 PAUSE

1999 NTOT = I - 1

* PRINT *, AREA_R(9,5,1) *** JUST A CHECK TO MAKE SURE IT READS FILE O.K.
* PAUSE
 CLOSE(3)
*
*```````````````````````````````
 ENDIF
*```````````````````````````````
* PRINT OUT NUMBER OF REPEAT FIELDS FOR EACH TOWNSHIP AND EACH CROP TYPE
* NOTE: THIS WAS USED FOR TROUBLE SHOOTING AND SHOULD BE COMMENTED OUT

 38

* FOR NORMAL EXECUTION.
*
* DO J = 1, TWN_1_9
* DO KK = 1, 5
* print *, 'JX(',J,',',KK,') = ',JX(J,KK)
* ENDDO
* PAUSE
* ENDDO
*
* Estimate lower and upper bounds on parameters. For our case, the upper
* and lower bounds represent the bin interval range for droplet radius.
*
 XL(1) = 0.
 XL(2) = 0.
 XL(3) = 0.
 XL(4) = 0.
 XL(5) = 0.
*
 XU(1) = 50.0
 XU(2) = 50.0
 XU(3) = 50.0
 XU(4) = 50.0
 XU(5) = 50.0
*
* Set the convergence criteria (i.e., if LOOP = 1. IF loop = 0, program
* uses defaults.

 LOOP = 1

 IF(LOOP .EQ. 1) THEN
 EPSP=1.0E-8
 EPSF=1.0E-0
 STEP=1.0
 ALPHA=1.0
 BETA=0.5
 GAMMA=2.0
 ENDIF

 NX = 5
 NY = 0
*

 DO I = 1, 5
 IX_OLD(I) = 1
 IX_OLD1(I) = 1
 IMAX(I) = 0 !IMAX = number of fields for crop type "I"
 ! for all townships simulated
 ENDDO

 PRINT *,' TV FC NC SB PP CROP_RESID CAP_RESID'
*
*======================#########
 DO LCOUNT = 1, TWN_1_9 ! This is the counter for Township ID
*======================#########
 KTOT = 0
*

 DO KK = 1, 5
 X(KK) = 1
 IF(CROP_PER(LCOUNT,KK) .LE. 11.0) X(KK) = 0.0
 ENDDO

*--
*NO NEED TO RUN OPTIMIZATION ROUTINE IF THE MASS
* APPLIED TO THE TOWNSHIP IS ZERO
 IF (TWN_CAP * FRAC_CAP(LCOUNT) .LE. 0.0001)Then
 DO KK = 1, 5
 X(KK) = 0
 ENDDO

 39

 GOTO 1001
 ENDIF
*--

 LOOP = 1
* '''''''''''''''''''''
 IF(LOOP .EQ. 1) THEN
 EPSP=1.0E-01
 EPSF=1.0E-03

 STEP=1.1

 ALPHA=1.1
 BETA=0.5
 GAMMA=0.00001
 ENDIF
* '''''''''''''''''''''

 LOOP = 1
 WT_FACT = 1000.0

 DO KK = 1, 5
 IF(CROP_PER(LCOUNT,KK) .LE. 11.0) X(KK) = 0
 ENDDO

 CALL OP2OPF(FUN, X, XL, XU, NX, NY, LOOP, 900, 0, IERR)
* '''
 LOOP = 1
 WT_FACT = 100.0

 DO KK = 1, 5
 IF(CROP_PER(LCOUNT,KK) .LE. 11.0) X(KK) = 0
 ENDDO

 CALL OP2OPF(FUN, X, XL, XU, NX, NY, LOOP, 900, 0, IERR)
* '''
 LOOP = 1
 WT_FACT = 10.0

 DO KK = 1, 5
 IF(CROP_PER(LCOUNT,KK) .LE. 11.0) X(KK) = 0
 ENDDO

 CALL OP2OPF(FUN, X, XL, XU, NX, NY, LOOP, 900, 0, IERR)
* '''
 LOOP = 1
 WT_FACT = 1.0

 DO KK = 1, 5
 IF(CROP_PER(LCOUNT,KK) .LE. 11.0) X(KK) = 0
 ENDDO

 CALL OP2OPF(FUN, X, XL, XU, NX, NY, LOOP, 900, 0, IERR)
* '''
 DO KK = 1, 5
 IF(CROP_PER(LCOUNT,KK) .LE. 0.95) X(KK) = 0
 ENDDO

1001 CONTINUE

 DO KK = 1, 5
 IX(KK) = NINT(X(KK))
 IF (IX(KK) .GT. IMAX(KK)) THEN
 IMAX(KK) = IX(KK)
 ENDIF
 ENDDO
*
* WE NOW HAVE THE TOTAL NUMBER OF FIELDS FOR CROP "i" STORED IN THE ARRAY
* IX(I), I = 1 FOR TV, 2 FOR FC, 3 FOR NC, 4 FOR SB, AND 5 FOR PP. NOTE: WE
* HAVE ALL RELEVANT, STOCHASTIC INFORMATION IN ARRAYS FOR FIELD AREA, APPLICATION
* RATE, DATE, AND SO FORTH. IF FOUR ENTRIES ARE REQUIRED FOR TV FIELDS, THEN,

 40

* THE FIRST FOUR ENTRIES FROM THE ARRAYS ARE USED. FOR THE NEXT TOWNSHIP, IF 6
* TV ENTRIES ARE REQUIRED, THEN THE NEXT 6 ENTRIES IN THE TV ARRAYS ARE USED.
* IN THIS WAY, WE MOVE DOWN THE ARRAYS (CONTAINING RANDOM, STOCHASTIC VALUES VIA
* CRYSTAL BALL SAMPLING OF THE USER DEFINED PDF'S) SUCH THAT DIFFERENT RANDOM
* SELECTIONS ARE ALWAYS USED. LOCATIONS WITHIN THESE DATA ARRAYS ARE GIVEN BY
* IX_OLD AND IX_NEW(I). ALSO, REMEMBER THAT X(I) IS REAL AND THUS WE MUST
* CONVERT TO AN INTEGER FOR SUMMATION.

 DO I = 1, 5
 IF(NINT(X(I)) .EQ. 0) THEN
 IUPPER = IX_OLD(I)
 ELSE
 IUPPER = IX_OLD(I) + IX(I) - 1
 ENDIF

* PRINT *, IX_OLD(I),IUPPER, IX(I)
 ENDDO

* ===========
 DO I = 1, 5
* ===========

 IF(NINT(X(I)) .EQ. 0) THEN
 IUPPER = IX_OLD(I)-1
 ELSE
 IUPPER = IX_OLD(I) + IX(I) - 1
 ENDIF

 DO L = IX_OLD(I), IUPPER
 KTOT = KTOT + 1
 X_AREA(KTOT) = AREA(I,L)
 X_RATE(KTOT) = RATE(I,L)
 X_AF(KTOT) = CMASS(I,L)/AMASS(I,L)
 X_DEPTH(KTOT) = DEPTH(I,L)
 JULDATE(KTOT) = IDATE(I,L)
 DS(KTOT) = D_or_S(I,L)
 TARP(KTOT) = ITARP(I,L)
 SF_INCRP(KTOT) = SINCORP(I,L)
 SF_YR(KTOT) = SYR(I,L)
 ENDDO

 IX_OLD(I) = IUPPER+1

* ===========
 ENDDO
* ===========
*
 ITOT_FLDS(LCOUNT) = KTOT

 LOOP = 1

 IF(LOOP .EQ. 1) THEN
 EPSP=1.0E-8
 EPSF=1.0E-6
 STEP=1.0
 ALPHA=1.0
 BETA=0.5
 GAMMA=2.0
 ENDIF

 NX1 = KTOT
 NY1 = 0

* DEFINE LOWER AND UPPER BOUNDS FOR FIELD AREA. CURRENLTY, ONLY ALLOW FIELD
* SHRINKING/STRETCHING TO BE ~ 10% OF ORIGINAL VALUE VIA CRYSTAL BALL SAMPLING.

 DO K = 1, KTOT
 XL_AREA(K) = X_AREA(K)*.8
 XU_AREA(K) = X_AREA(K)*1.2

 41

 X_AREA_START(K) = X_AREA(K)
 ENDDO

 WT_FACT = 0.001
 CALL OPTIMIZ(FUN, X_AREA, XL_AREA, XU_AREA, NX1, NY1,
 1 LOOP, 900, 0, IERR)

 LOOP = 1
 WT_FACT = 0.01
 CALL OPTIMIZ(FUN, X_AREA, XL_AREA, XU_AREA, NX1, NY1,
 1 LOOP, 900, 0, IERR)

* Add any new fields with repeat fields to obtain totals. Note: field
* parameters are in single dimension arrays from 1 to KTOT. Here, KTOT
* equals total number of fields being written to the optimization output
* file. Ktot = sum IX(I), I=1,5. Thus, we know enough information to
* add in any "repeat" field information to the appropriate arrays before
* final printing to the output file "field_opt.dat". It is this output
* file that is used in the Excel workbook modeling for
 IF (ITERATION .GT. 1) THEN
 DO I = 1, 5
 KX(I) = IX(I) + JX(LCOUNT,I)
 ENDDO
 ELSE
 DO I = 1, 5
 KX(I) = IX(I)
 ENDDO
 ENDIF

 WRITE(*,111)LCOUNT,KX(1),KX(2),KX(3),KX(4),KX(5),RESID3,RESID4
 WRITE(2,112)LCOUNT,KX(1),KX(2),KX(3),KX(4),KX(5)

111 FORMAT(' TOWNSHIP ID#',I1,5i4,2X,F10.2,E11.3)
112 FORMAT(I3,5I5)

 DO I = 1, 5
 IX_OLD(I) = 1
 ENDDO

 X0 = 0
 Y0 = 0
 Z0 = 0
 L = 0
*+++++++++++++++++++
 DO I = 1, 5
*+++++++++++++++++++
* FIRST, WRITE OUT THE REPEAT FIELD INFORMATION IF THE YEAR OF SIMULATION IS
* > 1 (i.e., for the first year of simulation, there are no "repeat" fields.
* ^^^^^^^^^^^^^^^^^^^^^^^^^^
 IF (ITERATION .GT. 1) THEN
* ^^^^^^^^^^^^^^^^^^^^^^^^^^
*
 FR = 1
* '''''''''''''''''''''''
 DO KK = 1, JX(LCOUNT,I)
* '''''''''''''''''''''''
 WRITE(2,*)LCOUNT, AREA_R(LCOUNT,I,KK),
 # AREA_R(LCOUNT,I,KK),RATE_R(LCOUNT,I,KK),
 # AF_R(LCOUNT,I,KK), DEPTH_R(LCOUNT,I,KK),
 # IDATE_R(LCOUNT,I,KK), D_or_S_R(LCOUNT,I,KK),
 # ITARP_R(LCOUNT,I,KK), SINCORP_R(LCOUNT,I,KK),
 # SYR_R(LCOUNT,I,KK),FR,X_R(LCOUNT,I,KK),
 # Y_R(LCOUNT,I,KK),Z_R(LCOUNT,I,KK)
* '''''''''''''''''''''''
 ENDDO
* '''''''''''''''''''''''
*
* ^^^^^^^^^^^^^^^^^^^^^^^^^^
 ENDIF
* ^^^^^^^^^^^^^^^^^^^^^^^^^^

 42

* UPDATE WHERE IN THE ARRAYS FROM "FIELD.DAT" TO GET FIELD INFORMATION FOR
* THE NEXT TOWNSHIP.

* NOW, WRITE OUT THE NEW FIELD INFORMATION

 FR = 0
*
 DO JP = 1, IX(I)
*
 L = L + 1
*
 WRITE(2,*)LCOUNT, X_AREA_START(L), X_AREA(L),
 # X_RATE(L), X_AF(L), X_DEPTH(L), JULDATE(L),
 # DS(L),TARP(L),SF_INCRP(L), SF_YR(L), FR,X0,Y0,Z0
*
 ENDDO
*

 IX_OLD(I) = IUPPER + 1

 IF(IX(I) .EQ. 0) THEN
 IUPPER = IX_OLD(I)-1
 ELSE
 IUPPER = IX_OLD(I) + IX(I) - 1
 ENDIF
*+++++++++++++++++++
 ENDDO ! This is the return for CROP TYPE counter
*+++++++++++++++++++
*
*===================#########
 ENDDO ! This is the return for Township ID counter
*===================#########

* PAUSE
 CLOSE(2)
121 FORMAT(1X, 4I10)
 END

*===

 SUBROUTINE DWOBJF(FUN, X, NY, NX)
 IMPLICIT REAL*8(A-H, O-Z)
 PARAMETER(MAX=800, MAX1 = 80)

 COMMON /MISC/ CROP_PER(9,5),AREA(5,MAX),RATE(5,MAX),
 # DEPTH(5,MAX),IDATE(5,MAX),AMASS(5,MAX),CMASS(5,MAX),
 # LCOUNT,TWN_CAP, FRAC_CAP(9),WT_FACT,IX_OLD(20),
 # RESID1,RESID2,IX_NEW(20),ITARP(5,MAX),ITERATION

 COMMON /MISC2/ AREA_R(9,5,MAX1), RATE_R(9,5,MAX1),
 1 DEPTH_R(9,5,MAX1), IDATE_R(9,5,MAX1), AMASS_R(9,5,MAX1),
 2 CMASS_R(9,5,MAX1), ITARP_R(9,5,MAX1), X_R(9,5,MAX1),
 3 Y_R(9,5,MAX1), Z_R(9,5,MAX1), JX, AF_R(9,5,MAX1)

 REAL*8 FUN(NX), X(NX),C_FRAC(5)
 INTEGER JX(9,5)

 SUM1 = 0.0
 SUM2 = 0.0

 DO I = 1, 5
 C_FRAC(I)=0
 ENDDO

* ===========
 DO I = 1, 5
* ===========
 IF(NINT(X(I)) .EQ. 0) THEN
 IUPPER = 0

 43

 ELSE
 IUPPER = IX_OLD(I) + NINT(X(I)) - 1
 ENDIF

 DO K = IX_OLD(I), IUPPER
 SUM1 = SUM1 + CMASS(I,K) !SUMMATION FOR TOTAL KG 1,3-D (ADJUSTED)
 SUM2 = SUM2 + AREA(I,K) !SUMMATION FOR TOTAL AREA FOR ALL CROP TYPES
 C_FRAC(I) = C_FRAC(I) + AREA(I,K)
 ENDDO
*----------------------------------
* ADD THE RETREATED FIELD AREA
* AND MASS(ONLY IF ITERATION > 1)

 IF(ITERATION .GT. 1) THEN
 DO KK = 1, JX(LCOUNT,I)
 SUM1 = SUM1 + CMASS_R(LCOUNT,I,KK)
 SUM2 = SUM2 + AREA_R(LCOUNT, I, KK)
 C_FRAC(I) = C_FRAC(I) + AREA_R(LCOUNT, I, KK)
 ENDDO

 ENDIF
*----------------------------------

* ===========
 ENDDO
* ===========

 DO I = 1, 5
 C_FRAC(I) = C_FRAC(I)/SUM2*100.
 ENDDO

 RESID1 = 0.0
 RESID2 = 0.0

 DO I = 1, 5
 ENTRY = ABS(C_FRAC(I) - CROP_PER(LCOUNT,I))
 RESID1 = RESID1 + ENTRY
 ENDDO

 RESID2 = abs(TWN_CAP*FRAC_CAP(LCOUNT)-SUM1)

*
 FUN(1) = WT_FACT*RESID1 + RESID2
*
 RETURN
 END
*

*===
 SUBROUTINE OBJFUNC2(FUN, X, NY, NX)
 IMPLICIT REAL*8(A-H, O-Z)
 PARAMETER(MAX=800, MAX1=80)

 COMMON /MISC/ CROP_PER(9,5),AREA(5,MAX),RATE(5,MAX),
 # DEPTH(5,MAX),IDATE(5,MAX),AMASS(5,MAX),CMASS(5,MAX),
 # LCOUNT,TWN_CAP, FRAC_CAP(9),WT_FACT,IX_OLD(20),
 # RESID1,RESID2,IX_NEW(20),ITARP(5,MAX),ITERATION

 COMMON /MISC1/ X_RATE(MAX), X_AF(MAX), IX(20), RESID3, RESID4

 COMMON /MISC2/ AREA_R(9,5,MAX1), RATE_R(9,5,MAX1),
 1 DEPTH_R(9,5,MAX1), IDATE_R(9,5,MAX1), AMASS_R(9,5,MAX1),
 2 CMASS_R(9,5,MAX1), ITARP_R(9,5,MAX1), X_R(9,5,MAX1),
 3 Y_R(9,5,MAX1), Z_R(9,5,MAX1), JX, AF_R(9,5,MAX1)

 REAL*8 FUN(NX), X(NX), C_FRAC(MAX)
 INTEGER JX(9,5)

 SUM1 = 0.0

 44

 SUM2 = 0.0
 RESID3 = 0.0
 RESID4 = 0.0

* Total current "corrected" mass
 DO K = 1, NX
 SUM1 = SUM1 + X(K)*X_RATE(K)*X_AF(K)
 ENDDO

* PRINT *, 'NX AND SUM1 = ', NX, SUM1, TWN_CAP*FRAC_CAP(LCOUNT)

 DO I = 1, 5
 C_FRAC(I)=0
 ENDDO

 JOLD = 1

 KTOT = 0
* ============
 DO I = 1, 5
* ============
 IF(IX(I) .EQ. 0) THEN
 IUPPER = 0
 ELSE
 IUPPER = JOLD + IX(I) - 1
 ENDIF

 DO K = JOLD, IUPPER
 KTOT = KTOT + 1
 SUM2 = SUM2 + X(KTOT) !SUMMATION FOR TOTAL AREA FOR ALL CROP TYPES
 C_FRAC(I) = C_FRAC(I) + X(KTOT)
 ENDDO
 JOLD = IX(I) + 1

*----------------------------------
* ADD THE RETREATED FIELD AREA
* AND MASS(ONLY IF ITERATION > 1)

 IF(ITERATION .GT. 1) THEN
 DO KK = 1, JX(LCOUNT,I)
 SUM2 = SUM2 + AREA_R(LCOUNT, I, KK)
 SUM1 = SUM1 + CMASS_R(LCOUNT, I, KK)
 C_FRAC(I) = C_FRAC(I) + AREA_R(LCOUNT, I, KK)
 ENDDO

 ENDIF
*----------------------------------

* ============
 ENDDO
* ============

 DO I = 1, 5
 C_FRAC(I) = C_FRAC(I)/SUM2*100.
 ENDDO

 DO I = 1, 5
 ENTRY = ABS(C_FRAC(I) - CROP_PER(LCOUNT,I))
 RESID3 = RESID3 + ENTRY
 ENDDO

 RESID4 = ABS(TWN_CAP*FRAC_CAP(LCOUNT) - SUM1)

 FUN(1) = RESID3 + WT_FACT*RESID4

*
 RETURN
 END

 45

*==
 SUBROUTINE OP2OPF(FUNCT, X, XL, XU, NX, NY, LOOP, MAXIT, IPRINT,
 1 IERR)
C
C **
C COPYRIGHT (C) 1992 BY THE DOW CHEMICAL COMPANY, MIDLAND, MICHIGAN
C **
C
C MODIFIED FLEXIBLE POLYGON SEARCH ROUTINE TO FIND THE MINIMUM OF A
C FUNCTION WITH PARAMETER AND OTHER VARIABLES CONSTRAINED
C
C DWOBJF = EXTERNAL SUBROUTINE THAT CALCULATES THE OBJECTIVE
C FUNCTION VALUE (FUNCT(1)) AND CONSTRAINTED FUNCTIONS
C (FUNCT(2 TO NY+1)) FROM CURRENT PARAMETER
C VALUES (X(1-NX)).
C SUBROUTINE CALLING SEQUENCE SHOULD BE:
C CALL DWOBJF(FUNCT, X, NX+NY, NX)
C FUNCT AND X ARE DOUBLE PRECISION VECTORS AND NX AND
C NY ARE ONE-WORD INTEGERS.
C FUNCT = VECTOR CONTAINING FUNCTION VALUE (FIRST LOCATION) AND
C CONSTRAINED VARIALBES (2 TO NY + 1) (OUTPUT)
C X = VECTOR OF 'NX' PARAMETER VALUES (UPDATE)
C XL = VECTOR OF 'NX' LOWER PARAMETER CONSTRAINT VALUES AND
C 'NY' LOWER CONSTRAINT FUNCTION BOUNDS (INPUT).
C XU = VECTOR OF 'NX' UPPER PARAMETER CONSTRAINT VALUES AND
C 'NY' UPPER CONSTRAINT FUNCTION BOUNDS (INPUT).
C NX = NUMBER OF PARAMETERS IN X VECTOR (INPUT).
C A NEGATIVE VALUES INDICATES UNCONSTRAINED OPTIMIZATION
C WITH XU AND XL VECTORS NOT TO BE USED.
C NY = NUMBER OF CONSTRAINT FUNCTIONS (INPUT).
C LOOP = NUMBER OF TRIALS (UPDATE).
C = 0 FOR INITIAL ENTRY WHEN DEFAULT COEFFICIENTS VALUES
C ARE TO BE USED.
C = 1 FOR INITIAL ENTRY WHEN COEFFICIENT VALUES SET BY THE
C USER IN LABELLED COMMON ARE TO BE USED:
C COMMON /FITCOM/ EPSP, EPSF, STEP, ALPHA, BETA, GAMMA
C THE VALUES THAT MUST BE SET ARE:
C EPSP = CONVERGENCE IN PARAMETER VALUES(1.E-8 ASSUMED)
C EPSF = CONVERGENCE IN FUNCTION VALUES (1.E-8 ASSUMED)
C STEP = INITIAL FRACTIONAL STEP SIZE (.20 ASSUMED)
C ALPHA = REFLECTION COEFFICIENT (1.0 ASSUMED)
C BETA = CONTRACTION COEFFICIENT (.5 ASSUMED)
C GAMMA = EXPANSION COEFFICIENT (2.0 ASSUMED)
C NOTE: ALL THESE VALUES ARE DOUBLE PRECISION.
C
C MAXIT = MAXIMUM NUMBER OF ITERATIONS (INPUT).
C IPRINT = 0 FOR NO PRINTING (INPUT).
C = WRITE UNIT NUMBER FOR PRINTING OF ALL TRIALS
C = - WRITE UNIT NUMBER FOR PRINTING OF FUNCTION IMPROVEMENTS
C IERR = RETURN INDICATOR (OUTPUT).
C = 0 FOR CONVERGED WITH NO ERRORS
C = 1 FOR FAILED TO CONVERGE IN MAXIT TRIALS
C = 2 FOR MORE THAN 20 PARAMETERS PLUS OTHER VARIABLES
C SPECIFIED
C = J FOR PARAMETER X(J-2) IS OUT OF BOUNDS
C
C EXAMPLE:
C REAL*8 X(), XL(), XU()
C SET NX, XL, XU VALUES AND STARTING ESTIMATES FOR X
C LOOP = 0
C CALL OP2CPF(DWOBJF, FUN, X, XL, XU, NX, 2, LOOP, 300, 0, IERR)
C IF (IERR) 10, 20, 10
C 10 PROCESS ERRORS
C 20 CONTINUE IN PROGRAM
C ...
C END
C SUBROUTINE DWOBJF (FUN, X, NY, NX)
C REAL*8 FUN(1), X(1)
C FUN(1) = FUNCTION OF X VECTOR FOR OBJECTIVE FUNCTION
C FUN(2) = FUNCTION OF X VECTOR FOR CONSTRAINTS

 46

C ...
C RETURN
C END
C
C
C REFERENCE:
C HIMMELBLAU, D.M., 'APPLIED NONLINEAR PROGRAMMING,'
C MCGRAW-HILL, NEW YORK (1972).
C
C **
C
 IMPLICIT REAL*8(A-H, O-Z)
 REAL*8 FUNCT(1), X(1), XL(1), XU(1)
 COMMON /FITCOM/ EPSP, EPSF, STEP, ALPHA, BETA, GAMMA

* REAL*8 FUNCT(1)
* INTEGER X(1), XL(1), XU(1)
C
C
* REAL*8 D(21, 26), FX(26), SCALE(20)
 REAL*8 D(51, 56), FX(56), SCALE(50)
 INTEGER FIND, PATH
C
 CHARACTER*8 PHASE(8)

 DATA PHASE/'Initial ', 'Vertex ', 'Vertex ', 'Reflect ',
 1 'Expand ', 'Contract', 'Reduce ', 'Solution'/

C
C SET INITIAL VALUES OF ROUTINE CONSTANTS
C
 IF (LOOP .NE. 1) THEN
 IF (LOOP .GT. 1) GOTO 90
 ALPHA = 1.
 BETA = .5
 GAMMA = 2.0
 EPSP = 1.D-6
 EPSF = 1.D-6
 STEP = 0.01
 LOOP = 1
 ENDIF

 PATH = 1
 FIND = 1
 N = IABS(NX)
 NX1 = N + 1
 NPTS = N + 1
 IERR = 2
 IF (NY .GT. 19) GOTO 581
 IF (NX .GT. 50) GOTO 581
 AN = N
 LAST = N + 2
 ALAST = LAST
 ALSTM1 = LAST - 1
 MEAN = LAST + 1
 NR = MEAN + 1
 NE = NR + 1
 NC = NE + 1
 NCDONE = 0
 MOVES = 0
 IF (NX .LT. 0) GOTO 90
 IF (NX .NE. 0) THEN
 DO I = 1, N
 IF (X(I) .LT. XL(I)) GOTO 80
 IF (X(I) .GT. XU(I)) GOTO 80
 ENDDO
 ENDIF
 IF (NY .LE. 0) GOTO 90
 CALL DWOBJF(FUNCT, X, 1 + NY, NX)
 DO I = 1, NY

 47

 IF (FUNCT(I + 1) .LT. XL(I + N)) GOTO 80
 IF (FUNCT(I + 1) .GT. XU(I + N)) GOTO 80
 ENDDO
 92 IF (IPRINT .NE. 0) THEN
 IF (IPRINT .LE. 0) THEN
 IF (LOOP .NE. 1) THEN
 IF (FUNCT(1) .GT. FX(MIN)) GOTO 110
 ENDIF
 ENDIF
 IPRNT = IABS(IPRINT)
 WRITE (IPRNT, 580) FUNCT(1), PHASE(PATH), LOOP, (X(I), I = 1,
 1 N)
 580 FORMAT (/, ' Function =', 1P, G12.5, ' - ', A8, ' after', I4,
 1 ' Trials at:', (/, 1P, 6G12.5))
 ENDIF
C
C RETURN IF SOLUTION FUNCTION VALUES WERE JUST CALCULATED
C
 110 IERR = 0
 IF (MAXIT .EQ. 1) GOTO 581
 IF (LOOP .GE. MAXIT) ITERM = 3
 IF (PATH .EQ. 8) GOTO 581
C
C CHECK IF OTHER VARIABLES RANGES HAVE BEEN EXCEEDED
C
 IF (LOOP .NE. 1) THEN
 IF (NY .GT. 0) THEN
 IF (MOVES .LT. 10) THEN
 DO I = 1, NY
 VALUE = FUNCT(I + 1)
 IF (VALUE .LT. XL(I + N)) GOTO 150
 IF (XU(I + N) .LT. VALUE) GOTO 150
 ENDDO
 GOTO 170
 150 CONTINUE
 DO I = 1, N
 D(I, FIND) = D(I, MEAN) + .5*(D(I, FIND) - D(I, MEAN)
 1)
 ENDDO
 MOVES = MOVES + 1
 GOTO 520
 ELSEIF (MOVES .LE. 10) THEN
 DO I = 1, N
 D(I, FIND) = D(I, MEAN)
 ENDDO
 MOVES = MOVES + 1
 GOTO 520
 ENDIF
 ENDIF
 ENDIF
C
C CHECK IF NUMBER OF TRIALS MAXIMUM HAS BEEN EXCEEDED
C
 170 MOVE = MOVES
 MOVES = 0
 LOOP = LOOP + 1
 FX(FIND) = FUNCT(1)
 IF (LOOP .GE. MAXIT) THEN
 IF (LOOP - N .GE. 2) THEN
 FIND = MIN
 PATH = 8
 ITERM = 3
 GOTO 520
 ENDIF
 ENDIF
C
 IF (PATH .NE. 2) THEN
 IF (PATH .NE. 3) THEN
 IF (PATH .EQ. 4) THEN
C
C PATH 4 - TEST FX(NR) VALUE AND EXPAND OR CONTRACT

 48

C
 IF (FX(NR) .GT. FMIN) THEN
C
 DO I = 1, LAST
 IF (I .NE. MAX) THEN
 IF (FX(NR) .LT. FX(I)) GOTO 400
 ENDIF
 ENDDO
 IF (FX(NR) .LE. FMAX) THEN
 FX(MAX) = FX(NR)
 DO I = 1, N
 D(I, MAX) = D(I, NR)
 ENDDO
 ENDIF
C
C CONTRACTION CALCULATIONS
C
 DO I = 1, N
 D(I, NC) = D(I, MEAN) + BETA*(D(I, MAX) - D(I,
 1 MEAN))
 ENDDO
 PATH = 6
 FIND = NC
 NCDONE = 1
 GOTO 520
C
C EXPANSION CALCULATIONS
C
 ELSEIF (MOVE .LE. 0) THEN
 DO I = 1, N
 D(I, NE) = D(I, MEAN) + GAMMA*(D(I, NR) - D(I,
 1 MEAN))
 ENDDO
 FIND = NE
 PATH = 5
 GOTO 520
 ENDIF
 ELSEIF (PATH .EQ. 5) THEN
C
C PATH 5 - TEST RESULTS OF EXPANSION CALCULATION
C
 IF (FX(NE) .LT. FMIN) THEN
 FIND = 0
 ISAVE = NE
 IF (FX(NE) .GT. FX(NR)) ISAVE = NR
 FX(MAX) = FX(ISAVE)
 DO I = 1, N
 D(I, MAX) = D(I, ISAVE)
 ENDDO
 ISAVE = NE
 IF (FX(NE) .LE. FX(NR)) ISAVE = NR
 GOTO 490
 ENDIF
 ELSEIF (PATH .EQ. 6) THEN
C
C PATH 6 - TEST RESULTS OF CONTRACT CALCULATION AND REDUCE
C
 IF (FX(NC) .LT. FMAX) THEN
C
 FX(MAX) = FX(NC)
 DO I = 1, N
 D(I, MAX) = D(I, NC)
 ENDDO
 FIND = 0
 GOTO 490
 ELSE
C
C REDUCTION CALCULATIONS
C
 DO I = 1, N
 TEMP = D(I, 1)

 49

 D(I, 1) = D(I, MIN)
 D(I, MIN) = TEMP
 ENDDO
 TEMP = FX(1)
 FX(1) = FX(MIN)
 FX(MIN) = TEMP
 DO I = 2, LAST
 DO J = 1, N
 D(J, I) = 0.5*(D(J, 1) + D(J, I))
 ENDDO
 ENDDO
C
C RESCALE PROBLEM AS PART OF REDUCTION
C
 DO I = 2, LAST
 DO J = 1, N
 D(J, I) = D(J, I)*SCALE(J)
 ENDDO
 ENDDO
C
 DO I = 1, N
 SCALE(I) = D(I, 1)*SCALE(I)
 D(I, 1) = 1.
 IF (SCALE(I) .EQ. 0.) THEN
 D(I, 1) = 0.
 SCALE(I) = 1.
 ENDIF
 ENDDO
C
 DO I = 2, LAST
 DO J = 1, N
 D(J, I) = D(J, I)/SCALE(J)
 ENDDO
 ENDDO
C
 PATH = 7
 FIND = 1
 GOTO 520
 ENDIF
 ELSEIF (PATH .EQ. 7) THEN
 GOTO 250
 ELSE
C
C PATH 1 - SET SEARCH CONSTANTS AND SCALE PROBLEM
C
 FIND = 1
 PATH = 2
C
 DO I = 1, N
 SCALE(I) = X(I)
 D(I, 1) = 1.
 D(I, MEAN) = 1.
 IF (SCALE(I) .EQ. 0.) THEN
 SCALE(I) = 1.
 D(I, 1) = 0.
 D(I, MEAN) = 0.
 ENDIF
 ENDDO
C
 D1 = .7071*STEP*(DSQRT(AN + 1.) + AN - 1.)/AN
 D2 = .7071*STEP*(DSQRT(AN + 1.) - 1.)/AN
 GOTO 210
 ENDIF
C
 400 FX(MAX) = FX(NR)
 DO I = 1, N
 D(I, MAX) = D(I, NR)
 ENDDO
 FIND = 0
C
C TEST FOR CONVERGENCE

 50

C
C STANDARD DEVIATION OF FUNCTION VALUES
 490 XMEAN = 0.
 DO J = 1, LAST
 XMEAN = XMEAN + FX(J)
 ENDDO
 XMEAN = XMEAN/ALAST
 XVAR = 0.
 DO J = 1, LAST
 XVAR = XVAR + (FX(J) - XMEAN)**2
 ENDDO
 XVAR = XVAR/ALAST
 XSD = DSQRT(XVAR)/DABS(XMEAN)
 IF (XSD .LE. EPSF) ITERM = 1
 IF (XSD .GT. EPSF) THEN
C
C STANDARD DEVIATION OF SIMPLEX VERTICE
 DO I = 1, N
 DMEAN = 0.
 DO J = 1, LAST
 DMEAN = DMEAN + D(I, J)
 ENDDO
 DMEAN = DMEAN/ALAST
 DVAR = 0.
 DO J = 1, LAST
 DVAR = DVAR + (D(I, J) - DMEAN)**2
 ENDDO
 DVAR = DVAR/ALAST
 DSD = DSQRT(DVAR)/DABS(DMEAN)
 IF (DSD .GT. EPSP) GOTO 510
 ITERM = 2
 ENDDO
 GOTO 505
 510 IF (FIND .EQ. 0) GOTO 260
 GOTO 520
 ENDIF
C
 505 FIND = MIN
 IF ((NCDONE .EQ. 1) .AND. (FX(NC) .LT. FX(MIN))) FIND = NC
 PATH = 8
 GOTO 520
 ENDIF
C
C PATH 3 - FIND MINIMUM AND MAXIMUM VALUES AND FIND CENTROID
C
 260 FMAX = FX(1)
 MAX = 1
 FMIN = FX(1)
 MIN = 1
 DO I = 2, LAST
 IF (FX(I) .GT. FMAX) THEN
 FMAX = FX(I)
 MAX = I
 ELSEIF (FX(I) .LT. FMIN) THEN
 FMIN = FX(I)
 MIN = I
 ENDIF
 ENDDO
C
C CENTROID CALCULATION
C
 DO I = 1, N
 SUM = 0
 DO J = 1, LAST
 SUM = SUM + D(I, J)
 ENDDO
 D(I, MEAN) = (SUM - D(I, MAX))/ALSTM1
 ENDDO
C
C REFLECT MAXIMUM THRU THE CENTROID
C

 51

 DO I = 1, N
 D(I, NR) = D(I, MEAN) + ALPHA*(D(I, MEAN) - D(I, MAX))
 ENDDO
 PATH = 4
 FIND = NR
 GOTO 520
 ENDIF
C
C PATH 2 - SETUP VERTEX VALUES AROUND INITIAL GUESS
C
 210 IF (FIND .GT. N + 1) THEN
 J1 = FIND - N + 1
 DO I = 1, N
 D(I, FIND + 1) = 2.*D(I, 1) - D(I, J1)
 ENDDO
 ELSE
 DO I = 1, N
 D(I, FIND + 1) = D(I, 1) + D2
 ENDDO
 D(FIND, FIND + 1) = D(FIND, 1) + D1
 ENDIF
 250 FIND = FIND + 1
 IF (FIND .GE. LAST) PATH = 3
C
C SETUP PARAMETERS FOR NEXT TRIAL AND CHECK THEIR RANGES
C
 520 CONTINUE
 DO I = 1, N
 X(I) = D(I, FIND)*SCALE(I)
 IF (NX .GT. 0) THEN
 IF (XU(I) .LE. X(I)) THEN
 X(I) = XU(I) - .1*(XU(I) - D(I, MEAN)*SCALE(I))
 D(I, FIND) = X(I)/SCALE(I)
 ENDIF
 IF (X(I) .LE. XL(I)) THEN
 X(I) = XL(I) - .1*(XL(I) - D(I, MEAN)*SCALE(I))
 D(I, FIND) = X(I)/SCALE(I)
 ENDIF
 ENDIF
 ENDDO
C
C PRINT FUNCTION AND PARAMETERS VALUES IF DESIRED
C
 90 CALL DWOBJF(FUNCT, X, 1 + NY, NX)
 GOTO 92
 80 IERR = I + 2
 581 RETURN
C
 END

*==
 SUBROUTINE OPTIMIZ(FUNCT, X_AREA, XL_AREA, XU_AREA, NX1, NY1,
 1 LOOP, MAXIT, IPRINT, IERR)
C
C SAME AS SUBROUTINE OP2OPF EXCEPT THIS ROUTINE CALLS THE SUBROUTINE
C OBJFUNC2 WHICH CONTAINS THE OBJECTIVE FUNCTION FOR STRETCHING/SHRINKING
C THE PREDETERMINED FIELD SIZES TO MEET CONSTRAINTS.
C
C **
C
 IMPLICIT REAL*8(A-H, O-Z)
 REAL*8 FUNCT(1), X_AREA(1), XL_AREA(1), XU_AREA(1)
 COMMON /FITCOM/ EPSP, EPSF, STEP, ALPHA, BETA, GAMMA

C
* REAL*8 D(21, 26), FX(26), SCALE(20)
 REAL*8 D(71, 76), FX(76), SCALE(70)

 INTEGER FIND, PATH
C

 52

 CHARACTER*8 PHASE(8)

 DATA PHASE/'Initial ', 'Vertex ', 'Vertex ', 'Reflect ',
 1 'Expand ', 'Contract', 'Reduce ', 'Solution'/

C
C SET INITIAL VALUES OF ROUTINE CONSTANTS
C
 IF (LOOP .NE. 1) THEN
 IF (LOOP .GT. 1) GOTO 90
 ALPHA = 1.
 BETA = .5
 GAMMA = 2.0
 EPSP = 1.D-6
 EPSF = 1.D-6
 STEP = 0.01
 LOOP = 1
 ENDIF

 PATH = 1
 FIND = 1
 N = IABS(NX1)
 NX11 = N + 1
 NPTS = N + 1
 IERR = 2
 IF (NY1 .GT. 19) GOTO 581
 IF (NX1 .GT. 70) GOTO 581
 AN = N
 LAST = N + 2
 ALAST = LAST
 ALSTM1 = LAST - 1
 MEAN = LAST + 1
 NR = MEAN + 1
 NE = NR + 1
 NC = NE + 1
 NCDONE = 0
 MOVES = 0
 IF (NX1 .LT. 0) GOTO 90
 IF (NX1 .NE. 0) THEN
 DO I = 1, N
 IF (X_AREA(I) .LT. XL_AREA(I)) GOTO 80
 IF (X_AREA(I) .GT. XU_AREA(I)) GOTO 80
 ENDDO
 ENDIF
 IF (NY1 .LE. 0) GOTO 90
 CALL OBJFUNC2(FUNCT, X_AREA, 1 + NY1, NX1)
 DO I = 1, NY1
 IF (FUNCT(I + 1) .LT. XL_AREA(I + N)) GOTO 80
 IF (FUNCT(I + 1) .GT. XU_AREA(I + N)) GOTO 80
 ENDDO
 92 IF (IPRINT .NE. 0) THEN
 IF (IPRINT .LE. 0) THEN
 IF (LOOP .NE. 1) THEN
 IF (FUNCT(1) .GT. FX(MIN)) GOTO 110
 ENDIF
 ENDIF
 IPRNT = IABS(IPRINT)
 WRITE (IPRNT, 580) FUNCT(1), PHASE(PATH), LOOP,
 1 (X_AREA(I), I = 1, N)
 580 FORMAT (/, ' Function =', 1P, G12.5, ' - ', A8, ' after', I4,
 1 ' Trials at:', (/, 1P, 6G12.5))
 ENDIF
C
C RETURN IF SOLUTION FUNCTION VALUES WERE JUST CALCULATED
C
 110 IERR = 0
 IF (MAXIT .EQ. 1) GOTO 581
 IF (LOOP .GE. MAXIT) ITERM = 3
 IF (PATH .EQ. 8) GOTO 581
C
C CHECK IF OTHER VARIABLES RANGES HAVE BEEN EXCEEDED

 53

C
 IF (LOOP .NE. 1) THEN
 IF (NY1 .GT. 0) THEN
 IF (MOVES .LT. 10) THEN
 DO I = 1, NY1
 VALUE = FUNCT(I + 1)
 IF (VALUE .LT. XL_AREA(I + N)) GOTO 150
 IF (XU_AREA(I + N) .LT. VALUE) GOTO 150
 ENDDO
 GOTO 170
 150 CONTINUE
 DO I = 1, N
 D(I, FIND) = D(I, MEAN) + .5*(D(I, FIND) - D(I, MEAN)
 1)
 ENDDO
 MOVES = MOVES + 1
 GOTO 520
 ELSEIF (MOVES .LE. 10) THEN
 DO I = 1, N
 D(I, FIND) = D(I, MEAN)
 ENDDO
 MOVES = MOVES + 1
 GOTO 520
 ENDIF
 ENDIF
 ENDIF
C
C CHECK IF NUMBER OF TRIALS MAXIMUM HAS BEEN EXCEEDED
C
 170 MOVE = MOVES
 MOVES = 0
 LOOP = LOOP + 1
 FX(FIND) = FUNCT(1)
 IF (LOOP .GE. MAXIT) THEN
 IF (LOOP - N .GE. 2) THEN
 FIND = MIN
 PATH = 8
 ITERM = 3
 GOTO 520
 ENDIF
 ENDIF
C
 IF (PATH .NE. 2) THEN
 IF (PATH .NE. 3) THEN
 IF (PATH .EQ. 4) THEN
C
C PATH 4 - TEST FX(NR) VALUE AND EXPAND OR CONTRACT
C
 IF (FX(NR) .GT. FMIN) THEN
C
 DO I = 1, LAST
 IF (I .NE. MAX) THEN
 IF (FX(NR) .LT. FX(I)) GOTO 400
 ENDIF
 ENDDO
 IF (FX(NR) .LE. FMAX) THEN
 FX(MAX) = FX(NR)
 DO I = 1, N
 D(I, MAX) = D(I, NR)
 ENDDO
 ENDIF
C
C CONTRACTION CALCULATIONS
C
 DO I = 1, N
 D(I, NC) = D(I, MEAN) + BETA*(D(I, MAX) - D(I,
 1 MEAN))
 ENDDO
 PATH = 6
 FIND = NC
 NCDONE = 1

 54

 GOTO 520
C
C EXPANSION CALCULATIONS
C
 ELSEIF (MOVE .LE. 0) THEN
 DO I = 1, N
 D(I, NE) = D(I, MEAN) + GAMMA*(D(I, NR) - D(I,
 1 MEAN))
 ENDDO
 FIND = NE
 PATH = 5
 GOTO 520
 ENDIF
 ELSEIF (PATH .EQ. 5) THEN
C
C PATH 5 - TEST RESULTS OF EXPANSION CALCULATION
C
 IF (FX(NE) .LT. FMIN) THEN
 FIND = 0
 ISAVE = NE
 IF (FX(NE) .GT. FX(NR)) ISAVE = NR
 FX(MAX) = FX(ISAVE)
 DO I = 1, N
 D(I, MAX) = D(I, ISAVE)
 ENDDO
 ISAVE = NE
 IF (FX(NE) .LE. FX(NR)) ISAVE = NR
 GOTO 490
 ENDIF
 ELSEIF (PATH .EQ. 6) THEN
C
C PATH 6 - TEST RESULTS OF CONTRACT CALCULATION AND REDUCE
C
 IF (FX(NC) .LT. FMAX) THEN
C
 FX(MAX) = FX(NC)
 DO I = 1, N
 D(I, MAX) = D(I, NC)
 ENDDO
 FIND = 0
 GOTO 490
 ELSE
C
C REDUCTION CALCULATIONS
C
 DO I = 1, N
 TEMP = D(I, 1)
 D(I, 1) = D(I, MIN)
 D(I, MIN) = TEMP
 ENDDO
 TEMP = FX(1)
 FX(1) = FX(MIN)
 FX(MIN) = TEMP
 DO I = 2, LAST
 DO J = 1, N
 D(J, I) = 0.5*(D(J, 1) + D(J, I))
 ENDDO
 ENDDO
C
C RESCALE PROBLEM AS PART OF REDUCTION
C
 DO I = 2, LAST
 DO J = 1, N
 D(J, I) = D(J, I)*SCALE(J)
 ENDDO
 ENDDO
C
 DO I = 1, N
 SCALE(I) = D(I, 1)*SCALE(I)
 D(I, 1) = 1.
 IF (SCALE(I) .EQ. 0.) THEN

 55

 D(I, 1) = 0.
 SCALE(I) = 1.
 ENDIF
 ENDDO
C
 DO I = 2, LAST
 DO J = 1, N
 D(J, I) = D(J, I)/SCALE(J)
 ENDDO
 ENDDO
C
 PATH = 7
 FIND = 1
 GOTO 520
 ENDIF
 ELSEIF (PATH .EQ. 7) THEN
 GOTO 250
 ELSE
C
C PATH 1 - SET SEARCH CONSTANTS AND SCALE PROBLEM
C
 FIND = 1
 PATH = 2
C
 DO I = 1, N
 SCALE(I) = X_AREA(I)
 D(I, 1) = 1.
 D(I, MEAN) = 1.
 IF (SCALE(I) .EQ. 0.) THEN
 SCALE(I) = 1.
 D(I, 1) = 0.
 D(I, MEAN) = 0.
 ENDIF
 ENDDO
C
 D1 = .7071*STEP*(DSQRT(AN + 1.) + AN - 1.)/AN
 D2 = .7071*STEP*(DSQRT(AN + 1.) - 1.)/AN
 GOTO 210
 ENDIF
C
 400 FX(MAX) = FX(NR)
 DO I = 1, N
 D(I, MAX) = D(I, NR)
 ENDDO
 FIND = 0
C
C TEST FOR CONVERGENCE
C
C STANDARD DEVIATION OF FUNCTION VALUES
 490 XMEAN = 0.
 DO J = 1, LAST
 XMEAN = XMEAN + FX(J)
 ENDDO
 XMEAN = XMEAN/ALAST
 XVAR = 0.
 DO J = 1, LAST
 XVAR = XVAR + (FX(J) - XMEAN)**2
 ENDDO
 XVAR = XVAR/ALAST
 XSD = DSQRT(XVAR)/DABS(XMEAN)
 IF (XSD .LE. EPSF) ITERM = 1
 IF (XSD .GT. EPSF) THEN
C
C STANDARD DEVIATION OF SIMPLEX VERTICE
 DO I = 1, N
 DMEAN = 0.
 DO J = 1, LAST
 DMEAN = DMEAN + D(I, J)
 ENDDO
 DMEAN = DMEAN/ALAST
 DVAR = 0.

 56

 DO J = 1, LAST
 DVAR = DVAR + (D(I, J) - DMEAN)**2
 ENDDO
 DVAR = DVAR/ALAST
 DSD = DSQRT(DVAR)/DABS(DMEAN)
 IF (DSD .GT. EPSP) GOTO 510
 ITERM = 2
 ENDDO
 GOTO 505
 510 IF (FIND .EQ. 0) GOTO 260
 GOTO 520
 ENDIF
C
 505 FIND = MIN
 IF ((NCDONE .EQ. 1) .AND. (FX(NC) .LT. FX(MIN))) FIND = NC
 PATH = 8
 GOTO 520
 ENDIF
C
C PATH 3 - FIND MINIMUM AND MAXIMUM VALUES AND FIND CENTROID
C
 260 FMAX = FX(1)
 MAX = 1
 FMIN = FX(1)
 MIN = 1
 DO I = 2, LAST
 IF (FX(I) .GT. FMAX) THEN
 FMAX = FX(I)
 MAX = I
 ELSEIF (FX(I) .LT. FMIN) THEN
 FMIN = FX(I)
 MIN = I
 ENDIF
 ENDDO
C
C CENTROID CALCULATION
C
 DO I = 1, N
 SUM = 0
 DO J = 1, LAST
 SUM = SUM + D(I, J)
 ENDDO
 D(I, MEAN) = (SUM - D(I, MAX))/ALSTM1
 ENDDO
C
C REFLECT MAXIMUM THRU THE CENTROID
C
 DO I = 1, N
 D(I, NR) = D(I, MEAN) + ALPHA*(D(I, MEAN) - D(I, MAX))
 ENDDO
 PATH = 4
 FIND = NR
 GOTO 520
 ENDIF
C
C PATH 2 - SETUP VERTEX VALUES AROUND INITIAL GUESS
C
 210 IF (FIND .GT. N + 1) THEN
 J1 = FIND - N + 1
 DO I = 1, N
 D(I, FIND + 1) = 2.*D(I, 1) - D(I, J1)
 ENDDO
 ELSE
 DO I = 1, N
 D(I, FIND + 1) = D(I, 1) + D2
 ENDDO
 D(FIND, FIND + 1) = D(FIND, 1) + D1
 ENDIF
 250 FIND = FIND + 1
 IF (FIND .GE. LAST) PATH = 3
C

 57

C SETUP PARAMETERS FOR NEXT TRIAL AND CHECK THEIR RANGES
C
 520 CONTINUE
 DO I = 1, N
 X_AREA(I) = D(I, FIND)*SCALE(I)
 IF (NX1 .GT. 0) THEN
 IF (XU_AREA(I) .LE. X_AREA(I)) THEN
 X_AREA(I) = XU_AREA(I) - .1*(XU_AREA(I)
 1 - D(I, MEAN)*SCALE(I))
 D(I, FIND) = X_AREA(I)/SCALE(I)
 ENDIF
 IF (X_AREA(I) .LE. XL_AREA(I)) THEN
 X_AREA(I) = XL_AREA(I) - .1*(XL_AREA(I)
 1 - D(I, MEAN)*SCALE(I))
 D(I, FIND) = X_AREA(I)/SCALE(I)
 ENDIF
 ENDIF
 ENDDO
C
C PRINT FUNCTION AND PARAMETERS VALUES IF DESIRED
C
 90 CALL OBJFUNC2(FUNCT, X_AREA, 1 + NY1, NX1)
 GOTO 92
 80 IERR = I + 2
 581 RETURN
C
 END

 58

Appendix B. Subroutine Definitions

Sub Main_Program()
'VBA system for 1,3-D township-cap modeling for the California Department of Pesticide
Regulations (CDPR). A simulation region is broken up into a 3x3 township area, with the
"Township" of interest centrally located. Five different crop types are assumed which include: 1)
Tree and Vine, 2) Field crops, 3) Nursery Crops, 4) Strawberries, and 5) Post-Plant vines. Any
of these crop types can be used as a catch all misc. crop through appropriate input file parameter
magnitudes found in the worksheet "PDF Parameters". Summary of worksheets contained in
workbook "CA_twn_cap2_gut3.xls", which is an abbreviation for California Township
allocation modeling.

Sub Auto_Open()
This subroutine is automatically executed upon opening of the workbook
"CA_twn_cap2_gut3.xls". The dialog sheet with the name of the modeling system, developer,
and version number is displayed until the user closes the window (Window must be closed
before execution of the worksheet macros can occur.

Sub GOTO_BEG()
Activates the worksheets "PDF Parameters” (i.e., goes to this worksheet from somewhere else).

Sub Check_for_Sheet1()
Check for any other Excel workbooks that may be open. Often, Crystal Ball doesn't work
properly if multiple workbooks are open. Keep only the 1,3-D system workbook called
"CA_twn_cap2_gut3.xls".

Sub Run_ISCST3(func_per_yr_cropID, PctDone, N_yrs, nspace, rec_ht, icyr, w_file_name,
sur_air_ID, up_air_ID, region, rate_coeff, pst_name, terrain, iteration, num_srcs,
num_srcs_all, anemo_ht, chron_conc, crop_hit, crop_hit_id, recep_all, tot_receptors)
This subroutine generates the ISCST3 input files and runs ISCST3 for a given year of simulation.
Since we broke the system down into five crop types, we have to run ISCST3 five times (once
for each crop source location and flux file. Flux and source files are already written for this year
of simulation (i.e., flux_**.dat, source_**.dat, where ** = TV, FC, NC, SB, or PP)

Sub Get_receptor_info(nspace, rec_ht, terrain, elevation, tot_receptors, location,
population, xgrid, ygrid, hgrid, R_type, P_type, E_type, recep_all, k_loop)
This subroutine generates the file "sampler.dat" that is called from the ISCST3 input file
 via the REceptor pathword "RE INCLUDED sampler.dat". In the file sampler.dat, the file has
the syntax as x,y, elevation, flagpole height, where x and y (x, y)are the coordinates of the
receptor. terrain = FLAT or ELEV. If equal to FLAT, then we can supply the x,y coordinates
and ignore both the elevation and the flag pole height, the latter because the flagpole height is
defined via the ISCST3 pathword "CO FLAGPOLE 1.5" in the ISCST3 input file recep_all =
integer flag to tell model to either place receptors only in the township of interest (0) or the entire
3x3 township domain (1). Note: we only put receptors in the township of interest to reduce

 59

CPU overhead, and given the fact that the center township has the most surrounding townships
(and thus source terms) so it will give the highest exposure predictions. In the assumed
geometry, the first township (bottom left, or the SW corner township) at the SW edge is where
the origin was defined. Thus, the SW corner of the township of interest has its origin at
approximately (9656, 9656), and each side is approximately 9656 m long. Thus, we use this
information when determining the receptor locations via the user defined grid spacing. Terrain
elevation information is stored in "elevation(twn ID, i,j), where i and j = 1, 100 (row and
column). The township of interest is a 6 mi x6 mi square section of land. In this program, the
user defines the land type for all townships in the simulation domain. Thus, it is possible to
define the land type that each receptor in the township if interest resides upon (i.e., urban, ag-
land, mountain, or water). Note: There will not be any source terms in water, mountains, or
urban areas, but receptors in these regions will experience fumigant drift concentrations.

Sub Post_process(nspace, ileap, iteration, R_type, town_avg, crop_hit, crop_hit_id,
recep_all, tot_receptors, num_srcs_all, Fortran_opt, Num_percen_pts, avg_per, avg_per1,
period_max, Num_avg_per)
This subroutine reads in the 24-hr ISCST3 output files for each crop type, and summarizes the
concentration information into a single, 24-hr concentration array for the township (i.e., by
summing the air concentration for each field type at each receptor and at the same time). 24-hr
exceedence probability data for the township of interest is written to the worksheet
"24hr_Summary". ISCST3 output summary files containing 24-hr concentration data are
24hr_TV.out, 24hr_FC.out, 24hr_NC.out, 24hr_SB.out, 24hr_TV.out. Header information for
24hr ISCST3 file. Note: when VBS encounters a ",", it assumes this is a line break. The header
for the Period output file (yearly in our simulation) is given below. Line 6 contains all of the
"commas" and thus this single line is read in as 12 lines of information.

Sub QuickSort_INT(List() As Integer)
Sorts an array using Quick Sort algorithm. Adapted from "Visual Basic Developers Guide" By
D.F. Scott. For use with integer arrays only

Sub QuickSort_SINGLE(List() As Single)
Sorts an array using Quick Sort algorithm. Adapted from "Visual Basic Developers Guide" By
D.F. Scott. For use with non-integer arrays only

Sub print_chronic(kc2, N_yrs, Chronic_all, Num_percen_pts, ichunk, tot_receptors)
Determine the average annual concentration for the N_yrs of simulation. Plot this value in
summary notation as one of the last column entries in the worksheet "Chronic"

Sub format_worksheets()
Subroutine adds lines and shadings to Worksheet labels

Sub print_simulation_avg(NYR_loop, town_avg, kc2, N_yrs, Num_avg_per, xgrid, ygrid,
hgrid, R_type, P_type, avg_per, ichunk, tot_receptors, num_srcs_all)
This subroutine writes the user supplied running average period concentations (i.e., 1-day, 15-
day) for each receptor to the worksheet "run_avg_twn". In addition, the "N_yrs" running
average receptor concentration is also determined

 60

Sub SORTY(icount, conc_all)
This Heap Sort method taken from numerical recipies and converted from Fortran to VBA

Sub shade_columns(kc2, ichunk, Num_avg_per, N_yrs, tot_receptors, ilast, jtot,
num_entries, kc4)
Highlight (shade) summary result columns in the worksheet ”Run_avg_twn".

Sub Call_Begin()
This subroutine opens up the form containing the Progress Status bar. The VBA code associated
with "UserForm2" is what fires off the subroutine "Main_Program"

Sub UpdateProgress(Pct)
Provides geometry and details for progress bar

Sub Odd_or_Even(Int_num, even_flag)
This subroutine takes and integer value (Int_num) and determines if the integer is
odd (even_flag = 0) or even (even_flag = 1).

Sub Read_new_inputs(wt_ID, bufzone, time_bufzone, Fortran_opt, per_nxt_yr, k_loop)
This subroutine reads in new input values for a new temporal "loop". Values read in from this
subroutine are found in the worksheet "forecasts". Remember, each "loop" (counter for loop is
"k_loop") can have different properties such as if section or random weighting is to be used,
section probabilities, township allocation, etc.

Sub write_headers(NYR_loop, forecast_ID)
Write the column headers for the worksheets “Chronic” and 24hr_max”

Sub fld_solve1(Max_No_Twnships, k_read, kp1, iteration, per_nxt_yr, fld_nxt_yr, A_End,
A_Start, scal_fac, Odepth, Appdate, O_D_or_S, Oitarp, X_rate, SF_incorp, SF_yr, IX,
FLD_R, X_REP, Y_REP, Z_REP, k_loop, I_External, I_twn, Ext_Twn_ID,
N_ext_twn_Hits, kline)
This subroutine is the latest for finding the number of fields for each crop type such that the user
specified "corrected" township allocation and crop percentages are achieved (or at least the
residuals are minimized). This subroutine uses CB to sample appropriate parameters 500 times
and generate an ASCII file called "fields.dat" that contains information required by an external
FORTRAN optimization program called "opt.exe". For this optimization, the fields for various
crop types can vary in size (unlike the VBA optimization where field sizes for each crop type are
the same for a given year of simulation).

Sub App_fac(ApDate, ApDepth, AF, itarp, ID_drip_or_shank)
Determines application factors for scaling cumulative flux losses based upon application type
(drip or shank), if a tarp is present, and the time of year. Application factors = 1.0 for all soil
fumigants, except for 1,3-D if used in the state of California only.

Sub App_fac(ApDate, ApDepth, AF, itarp, ID_drip_or_shank)

 61

Sub Randomize_flds(upperbound, lowerbound, fld_storage)
This routine takes the fields numbers from lowerbount to upper bound and randomizes them.
The random numbers are then stored in the array fld_storage

Sub crop_percent_external(TwID, k_loop, cp1, cp2, cp3, cp4, cp5)
This subroutine reads the crop percentages for a specific township that is outside of the central
3x3 simulation domain. FOr outside townships, we have a 23x23 domain, where the central 3x3
township is at the center of this 23x23 domain.

Sub Read_Opt_Results(j, TwID, kline, iteration, fld_nxt_yr, tot_fields, Twn_ID, CYES,
CNO, NCOL, krepeat, A_Start, A_End, X_rate, scal_fac, Odepth, Appdate, O_D_or_S,
Oitarp, SF_incorp, SF_yr, FLD_R, X_REP, Y_REP, Z_REP)
Read in information/solution brought back from call to opt2.exe (optimization program)

Sub LandCover_color(location, jocation, LANDflag, k_loop)
This subroutine reads in the user supplied information from the worksheet "LandCover" and
stores it in the array "Location(ID,i,j)". Since this array is an argument in the subroutine, one can
call this routine to bring in the array "Location(ID,i,j)" into other subroutines. LANDflag,
ELEVflag, and POPflag are integer flags denoting if the user has supplied GIS data for Land
cover, Elevation and population, respectively (0 = no data, 1 = GIS data supplied in worksheet
"GIS_data".

Sub Pop_plot_Update(k, istart, iend, User_Pop, MaxPop, MinPop, Num_incr, dinc)
This routine updates graphics found in sheet "Population" for simple & crude contour plots (no
smoothing) for elevation and population information that is contained in numeric for in the
worksheet "GIS_DATA".

Sub Ele_plot_Update(k, istart, iend, User_Ele, MaxEle, MinEle, Num_incr, dinc)
This routine updates graphics found in sheet "Population" for simple & crude contour plots (no
smoothing) for elevation and population information that is contained in numeric for in the
worksheet "GIS_DATA".

Sub LandCover_update()
This routine is assigned to the button in the worksheet "LandCover" since it has no arguments.
This routine performs the same tasks as the subroutine "LandCover_color". Call this latter
routine if you need to use the information stored in the array "location(ID,i,j)" that contains info
for ag/non-ag land.

Sub Population_update()
This routine is assigned to the button in the worksheet "Population" since it has no arguments.

Sub Elevation_update()
This routine is assigned to the button in the worksheet "Elevation" since it has no arguments.

 62

Sub Get_App_Date(App_date, App_type, itot, iteration, k_loop)
This routine reads in the application date for each field type App_date(i_flg, ic, itot),
App_type(i_flg, ic, itot)

Sub Write_flux_files(isrc, Ap_Type, F_scle_Type, Date_type, Rate_type, i_shank, i_drip,
Flux_Shank, Flux_Drip, iteration, ileap, jyr)
This subroutine writes the hourly emissions file for an ISCST3 simulation. Five emission files
are generated (one for each crop type). Crop types are 1=TV, 2=FC, 3=NC, 4= SB, 5=PP. Open
up hourly emission file for writing source strength information. These files are recreated for
each year of simulation

Sub leap_year(IYRO, ileap, idays_tot, jyr, icyr)
Determines if weather year is a leap year

Sub Juli2mon(Julian, ileap, IMON, IDAY)
This subroutines takes a Julian day (1-366) and converts it to the appropriate month and year.
Arguments that are brought into this routine include the Julian day (Julian) and the leap year flag
(ileap = 1 for non-leap year, =2 for leap year)

Sub pop_fld_flux(i, ic, idays_tot, isrc, Ap_Type, F_scle_Type, Date_type, Rate_type,
i_shank, i_drip, Flux_Shank, Flux_Drip, Flux_All)
This subroutine populates the array that summarizes the hourly emission rates for each field type
for all hrs within a single year

Sub Terrain_elev(ELEVflag, elevation)
ELEVflag = integer flag telling program if GIS data is available (1). If available, then the
information will be read from worksheet "GIS_data". If no GIS data is available, then ELEVflag
= 0 and information will be read from the worksheet "Elevation".

Sub pop_census(POPflag, population, k_loop)
POPflag = integer flag telling program if GIS data is available (1). If available, then the
information will be read from worksheet "GIS_data". If no GIS data is available, then POPflag =
0 and it is assumed population for all grids is zero.

Sub Section_prob(section, prob, i_section, irow, jrow, irow_neighbor, jrow_neighbor,
cumul, neighbor, cumul_neighbor, neighbor_TV, section_TV, prob_TV, i_section_TV,
irow_TV, jrow_TV, irow_neighbor_TV, jrow_neighbor_TV, cumul_TV,
cumul_neighbor_TV, k_loop)
Read in section probability data from coarse grid found in worksheet "Section_prob" for annual
crops (everything but T&V)

Sub Sec_refine_prob(section, i_section, irow, jrow, prob, prob_neighbor, neighbor,
irow_neighbor, jrow_neighbor, cumul, cumul_neighbor)
This subroutine determines the total number of user defined sections within each township
having non-zero probabilities for receiving a treated field. In addition, all surrounding sections

 63

for each user defined non-zero section is summarized for possible "spill-over" should a user
defined section "fill-up" with fields. We begin with a non-zero probability section. All
surrounding sections are stored in the order they are found using an integer indexing up to
"neighbor(ic)", where ic is the township ID. Thus, a "neighboring" section maybe counted more
than once if it is a neighbor to more than one user specified non-zero probability. In this way, a
neighboring section that neighbors more than one user supplied non-zero prob. section will have
a higher probability of being selected. This "higher" probability is accounted for via the
cumulative distribution definition (for examp. Assume a section neighbors two user specified
non-zero sections. This section may be in location 3 and 9 for all of the neighboring sections
"k", where k = 1 to neighbor(ic). Thus, this section can be pick multiple times depending what
the random number was for comparing to the cumulative curve. This has the net effect of
summing the probabilities for this neighboring section).

Sub Sec_refine_prob_TV(section_TV, i_section_TV, irow_TV, jrow_TV, prob_TV,
prob_neighbor_TV, neighbor_TV, irow_neighbor_TV, jrow_neighbor_TV, cumul_TV,
cumul_neighbor_TV)
This subroutine assigns section probabilities to the "refined" internal grid system for T&V fields
and also determines the neighboring sections that border a non-zero probability section defined
by the user. i_section(i) = number of sections within township "i" having non-zero probabilities
(i.e., fields can be place here.

Sub Read_sec_prob(section, k_loop)
If section weighting has been chosen, then read in the section probabilities from the worksheet
"Section_prob"

Sub Read_sec_prob_graphics(Twn, k)
Worksheet that places section weighting input by user found in "Section_prob" for the central
3x3 townships to appropriate locations in the worksheet "Twn_mass_Wt_Ext". In this way, the
inputs get transferred accordingly. Section weighting information is stored in the array Twn(i,j),
where i = 1-9 for the central 3x3 townships, and j = 1-36 corresponding to the 36 sections per
township.

Sub Read_sec_prob_TV(section_TV, k_loop)
This subroutine reads in the user supplied section probabilities for T&V fields (Lower graphic
found in worksheet "Section_prob".

Sub convert_xy(i, ic, elevation, rand1, rand2, sw_x, sw_y, sw_z, kp, N_grid)
Subroutine converts grid nomenclature to (x,y) coordinates for SW corner of field in meters for
use in ISCST3 modeling. Note that grid nomenclature is in rows and columns. Thus, the x value
is for the column location, and the y value is from the row location. Depending upon which
township (i.e., loop ic), then appropriate meters are added such that the origin is at the sw corner
of Township # 1. Note: we have to subtract off the number of grids to convert from the NW
corner to the SW corner which is what ISCST3 needs.

Sub convert_rand(ic, rand1, rand2, sw_x, sw_y)

 64

Subroutine converts sw corner of field (sw_x, sw_y) to appropriate integer number (rand1,
rand2), where rand1 and rand2 are integers from 1 to 100 which are used as the arguments for
the storage arrays. This routine is called when a field is repeated from the previous year since
we know the (x,y,z) location for the field, but we need to convert it to the appropriate storage
location (rand1,rand2) in the storage arrays. Note that grid nomenclature is in rows and columns.
Thus, the x value is from the column location, and the y value is from the row location.
Depending upon which township (i.e., loop ic), then appropriate meters are added such that the
origin is at the sw corner of Township # 1.

Sub Get_Date(ijul_date, ibs, lc, i, ApDate, App_date, ic, time_bufzone, ileap, l1, l2, l3, l4, l5,
mon_beg, day_beg, mon_end, day_end)
i is the id location for the field type (i.e., i equals 1 for T&V, i equals 2 for FC, etc). Call routine
to bring back the beginning month and day for the application and the ending month and day
from which to "turn off" the buffer constraint via the nomenclature/modifications in the CDPR
ISCST3 modified model. Brings back mon_beg, day_beg, mon_end, day_end

Sub Fld_placement(FLD_R, X_REP, Y_REP, Z_REP, fld_nxt_yr, A_End, SF_incorp,
SF_yr, Appdate, X_rate, IX, scal_fac, Odepth, O_D_or_S, Fld_size, num_flds, Num_Grids,
location, elevation, jocation, iteration, lc, app_rate, App_date, App_type, no_flds, i_drip,
i_shank, Flux_Drip, Flux_Shank, Percent_Drip, Scale_flg, ileap, jyr, bufzone,
time_bufzone, IYRO, j_section, prob, i_section, irow, jrow, irow_neighbor, jrow_neighbor,
cumul, neighbor, cumul_neighbor, jp_m, Date_one, Rate_one, Fld_one, sw_x_one,
sw_y_one, sw_z_one, itot, i_section_TV, cumul_TV, irow_TV, jrow_TV, Fortran_opt)
This routine places the fields within usable regions of the township when constrained by the
section weighting probability. A usable region is one where ag land exists, where the section has
a probability > 0.0 of having a treated field, and no T&V application has yet to be made. Once a
T&V application is made, this T&V land is omitted from further source terms. Programming
Logic is based upon section weighting (and the land type via the array "Location(township ID, i,
j)", where Location can have the following attributes. In this routine, the source location
information is written to an ASCII file for ISCST3 input. If "j_section = 0, then this is the first
time we have called this routine. Thus, any field locations (size and application rate) will remain
unchanged from this year forward in keeping with suggestions of B. Johnson (CDPR) {valid
only for wt_ID = 1].

Sub Update_loc_array_w_repeat_flds(X_REP, Y_REP, Z_REP, num_flds, Num_Grids,
A_End, fld_nxt_yr, FLD_R, location, jocation)
This subroutine updates the location array for the "repeat" fields such that any "new" field for
this year of simulation won't use this area

Sub Write_source_file(ic, i, bufzone, mon_beg, day_beg, mon_end, day_end, IRYO,
iteration, Fld_size, w_area, sw_x, sw_y, sw_z, scle, zero, f_name, isrc, l1, l2, l3, l4, l5, rand1,
rand2, N_grid)
This subroutine writes the SOurce descriptor portion of the ISCST3 input file

Sub write_Misc1(i, lc, isrc, iteration, ic, sw_x, sw_y, sw_z, Fld_size, app_rate, App_date,
m_actual, ijul_date, Fortran_opt, ApDate, ApRate)

 65

One of two subroutines that writes summary information about the source fields to the worksheet
"Misc"

Sub write_Misc2(AF1, ibs, lc, ApDepth, F_scale, ID_drip_or_shank, CYES, CNO, itarp,
m_actual, ijul_date, m_act_sum, m_adj_sum, Fortran_opt)
One of two subroutines that writes summary information about the source fields to the worksheet
"Misc"

Sub Get_section_Num(Xbound, Ybound, section, ic, prob, i_section, irow, jrow, cumul,
rand1, rand2)
Subroutine selects a section within township "ic" based upon the user defined probability
weighting on section (see worksheet "Section_prob"). Information on cumulative probability is
given in cumul(ic, 1 to i_section(ic)), where ic = township ID (1 to 9), and i (1 to i_section(ic))
are points in the cumulative distribution. There are a total of 36 sections per township.

Sub Get_section_TV(Xbound, Ybound, section_TV, ic, prob_TV, i_section_TV, irow_TV,
jrow_TV, cumul_TV, rand1, rand2)
Subroutine selects a section within township "ic" for annual crops based upon the user defined
probability weighting on section (see worksheet "Section_prob"). Information on cumulative
probability is given in cumul(ic, 1 to i_section(ic)), where ic = township ID (1 to 9), and i (1 to
i_section(ic)) are points in the cumulative distribution. There are a total of 36 sections per
township.

Sub Get_section_Num_fit(Xbound, Ybound, section, ic, prob_neighbor, neighbor,
irow_neighbor, jrow_neighbor, cumul_neighbor, rand1, rand2)
Subroutine selects a section within township "ic" based upon the user defined probability
weighting on section (see worksheet "Section_prob"). Information on cumulative probability is
given in cumul(ic, 1 to i_section(ic)), where ic = township ID (1 to 9), and i (1 to i_section(ic))
are points in the cumulative distribution. There are a total of 36 sections per township.

Sub check_if_fld_fits(ic, rand1, rand2, N_grid, location, jocation, fld_used, Fortran_opt)
This routine looks to see if a field can "fit" at the given location, where the SW corner (via rand1
and rand2) and the field area (via N_grid) are known. If the flag "fld_used" equals 1, then the
field at this location won't fit. If fld_used = 0, then a field can fit.

Sub Store_first_year_src(ic, i, i2, isrc, Ap_Type, F_scale, ApDate, ApRate, Fld_size, w_area,
sw_x, sw_y, sw_z, Date_one, Rate_one, Fld_one, sw_x_one, sw_y_one, sw_z_one)
This routine stores information about the source size, location, etc. from the first year of
simulation for a "section" weighted simulation.

Sub New_TV_location(ic, iteration, i_section, i_section_TV, sw_x, sw_y, sw_z, num_flds,
Num_Grids, no_flds, cumul, irow, jrow, prob, location, jocation, elevation, cumul_TV,
irow_TV, jrow_TV)

Sub GIS_data_land(User_Loc, location, k_loop)

 66

Reads in user supplied GIS land cover type and determines if the land is ag-capable, urban, or
mountains/rock/wetlands.

Sub read_data(isum, User_Loc, ii, jj, icol, SF, location, k_loop)
This subroutine reads in the raw data for land cover type for the central 3x3 townships based
upon user supplied raster based grid of 10x10 grid system for each township. Data is found in
worksheet “GIS_data”. This subroutine is called from the subroutine “Sub_GIS_data_land”

Sub GIS_data_elev(Elev, elevation)
This subroutine reads in the raw elevation data for the central 3x3 townships based upon user
supplied raster based grid of 10x10 grid system for each township. Data is found in worksheet
“GIS_data”.

Sub GIS_data_pop(Pop, population, k_loop)
This subroutine reads in the raw population data for the central 3x3 townships based upon user
supplied raster based grid of 10x10 grid system for each township. Data is found in worksheet
“GIS_data”.

Sub Pop_null()
This subroutine places zeros into each grid in the worksheet "Population" and is activated by the
macro button found in this worksheet.

Sub Elev_null()
This subroutine places zeros into each grid in the worksheet "Elevation" and is activated by the
macro button found in this worksheet.

Sub Land_null()
This subroutine places zeros into each grid in the worksheet "LandCover" and is activated by the
macro button found in this worksheet.

Sub write_Misc3(JX, X_R, Y_R, Z_R, AREA_R, RATE_R, DEPTH_R, IDATE_R,
AMASS_R, CMASS_R, D_or_S_R, ITARP_R, SINCORP_R, SYR_R, i, ic, sw_x, sw_y, sw_z,
Fld_size, app_rate, m_actual, ApDate, k_loop)
Write to the ASCII file "field_repeat.dat" that contains information on location and field size for
fields that will be retreated in the following year. Call crystal ball to obtain new application rates
and dates, depth of incorporation etc. for these fields that will be retreated in the next year. Even
though the field sizes/locations may remain the same, then can get a different application
treatment as given by the variability associated with the user supplied PDFs for crop types.

Sub Reinitialize_Layout(location)
This subroutine converts the areas were fields were placed in the previous year back to ag land.

Sub update_loc_array(i, ic, rand1, rand2, N_grid, location, jocation)
This routine updates the "location" array which contains integer entries for land type. For
location >0, it denotes land that can't be used (1 = water, 2 = urban, 3 = mts, 4 = previously used

 67

T*V. For location <=0, then this land has been used for previous field types, but can also be
used again if required for the random sampling methodology (wt_ID = 0). For the township
section weighting (wt_ID = 1), once a field is located, then this land can't be used for future
fields in the given year of simulation. This avoids having one field boundary overlapping
another field, especially in regions where a section has a high probability of being treated over
other township sections.

Sub Get_random_Num_fit(rand1, rand2, ic, N_grid, location, jocation)
This subroutine is called when the system has tried to place a field into the user defined sections
but has failed. Failure is probably due to the section and neighboring sections being full. So,
randomly place this field somewhere within the township that has ag-capable land. Note: This
subroutine should probably never be called unless the user has made some input errors such as a
large township allocation and small numbers of sections in a township where the fields may go.
Default fld_used = 0. If field can't fit, then the argument brought back from this routine is
fld_used=1

Sub GIS_data_for_LandCover()
This subroutine takes GIS information from the worksheet "GIS_data" and summarizes it in the
worksheet "LandCover" such that a landcover graphic can be plotted up. In this way, the user
can check out the land cover and the temporal changes in land cover (if forecast_ID = 1) before a
simulation is initiated.

Sub GIS_data_for_Population()
This subroutine takes GIS information from the worksheet "GIS_data" and summarizes it in the
worksheet "Population" such that a landcover graphic can be plotted up. In this way, the user
can check out the land cover and the temporal changes in land cover (if forecast_ID = 1) before a
simulation is initiated.

Sub Get_Fld_Coordinates(ic, iteration, N_Count, sw_x, sw_y, sw_z, Twn_External_ID,
Xcoord_SW, Ycoord_SW, repeat_now, fld_used, wt_ID, i, prob_neighbor, neighbor,
irow_neighbor, jrow_neighbor, cumul_neighbor, Xbound, Ybound, section_TV, prob_TV,
i_section_TV, irow_TV, jrow_TV, cumul_TV, rand1, rand2, section, prob, i_section, irow,
jrow, cumul, N_grid, location, jocation, Fortran_opt, jfill, no_flds, elevation, kp, kcount,
jflag, jcount, k_repeat, X_REP, Y_REP, Z_REP)
This subroutine determines the Southwest corner of field coordinates (sw_x, sw_y, sw_z).
Elevation data for the z-coordinate is avalable for the townships within the central 3x3 but is not
available for outside townships. Thus, a constant elevtion is assumed for all townships that are
outside the central township of interest. This constant elevation is the average elevation for the
central 3x3 township domain. Twn_External_ID is the ID for the external townships (i.e., for the
23x23). So the ID can vary from 1 to 529

Sub Get_Coord_Sec_Wt_Ext(Xcoord_SW, Ycoord_SW, sw_x, sw_y, Sec_wt)
This subroutine has section weights for a township stored in the array Sec_wt(i), i = 1 to 36
(since this is the maximum number of sections per twnship). (Xcoord_SW ,Ycoord_SW) =
Southwest corner of the township in question (meters)

 68

Sub LandCover_color(location, jocation, LANDflag, k_loop)
This subroutine reads in the user supplied information from the worksheet "LandCover" and
stores it in the array "Location(ID,i,j)". Since this array is an argument in the subroutine, one can
call this routine to bring in the array "Location(ID,i,j)" into other subroutines.

Sub Pop_plot_Update(k, istart, iend, User_Pop, MaxPop, MinPop, Num_incr, dinc)
This routine updates graphics found in sheet "Population" for simple & crude contour plots (no
smoothing) for elevation and population information that is contained in numeric for in the
worksheet "GIS_DATA".

 69

Appendix C. SOFEA Subroutine Connectivity Diagrams

Update_loc_array_w_repeat_flds

Figure D.1 Connectivity of subroutines to Main_Program

Main_Program Terrain_elev GIS_data_elev

Clear_old_data

write_headers

Population_update

GIS_data_for_Population

UpdateProgress

Get_Flux

Read_new_inputs

Read_3x3

LandCover_color GIS_data_land

pop_census GIS_data_pop

Section_prob Read_sec_prob

Read_sec_prob_TV

Sec_refine_prob

Sec_refine_prob_TV

Get_receptor_info

leap_year

crop_percent_external

fld_solve1
Depth_Incorp

App_fac

Get_next_yr

Randomize_flds

Read_Opt_Results

Read_Outside_3x3

Fld_placement

Get_Fld_Coordinates

convert_xy

Get_section_TV

Get_section_Num

check_if_fld_fits

 70

check_if_fld_fits Get_random_Num_fit

convert_xyGet_section_Num_fit

convert_xy

Figure D.2 Connectivity of subroutines to Main_Program (Cont’d).

Main_Program

Fld_placement

Update_loc_array_w_repeat_flds

Get_Fld_Coordinatescheck_if_fld_fits

Get_section_TV

Get_section_Num

Write_24hrmax

Get_Coord_Sec_Wt_Ext

Write_flux_files pop_fld_flux

Run_ISCST3

Write_Chronic UpdateProgress

QuickSort_INT

Post_process

QuickSort_SINGLE
UpdateProgress

print_chronic
print_simulation_avg

QuickSort_SINGLE

SORTY

shade_columns

 71

Appendix D. Names and Definitions of Parameter used in SOFEA

Parameter Description
A_End(ic, j) Ending field size after optimization for township ID “ic”, and source ID “j”
A_Start Starting field size before optimization (i.e., that sampled from the appropriate PDF)

for township ID “ic”, and source ID “j”
Act_Mass(k, l) PDF sampled (determined from PDF values) “actual” mass for source term for crop

ID “k” and Field source ID “l”. Actual mass is the field size * application rate.
AEND Variable used to store ending field size information when reading in the optimization

program generated file “Field_opt.dat”
Am_i_drip Random number between 0-1. Used in subroutine “fld_solve1” to determine if the

application is a drip or shank.
anemo_ht Anemometer height where meteorological wind speed/direction data was gathered.

User specified in worksheet "PDF Parameters"
Ap_type(i,j) Integer flag describing drip (1) or shank (2) applications for crop "i" and application #

"j" for crop "i", where j 1, isrc(i)
ApDate Julian application date for current field
ApDepth(i) Application (soil incorporation) depth for crop “i” (cm)
APP Variable used to store Julian application date information when reading in the

optimization program generated file “Field_opt.dat”
App_date(i,j) Application Date (Julian) for crop type "i", tonwship ID "TID", and max number of

crop treated fields in simulation year for crop "i" (i.e., itot(ic,i)), App_date(i, TID,
itot(ic,i))

app_drip_ref Worksheets("Flux_files").Cells(4, 4)
App_rate Application rate [kg/ha]
app_shank_ref Worksheets("Flux_files").Cells(4, 1)
App_type(I,j,k) Denotes the type of application. App_type = 0, then we have a drip application, for all

other integers we have a shank application. I = crop ID, j = Township ID, k = Source
ID

Appdate(i, j) Application date for township ID “i” and source ID “j”
Area(k, l) PDF sampled field area for crop ID “k” and Field source ID “l”
Area_end ending field size after optimization
Area_start Starting field size before optimization (i.e., that sampled from the appropriate PDF
AST Variable used to store starting field size information when reading in the optimization

program generated file “Field_opt.dat”
ave Holder variable to read in value from ISCST3 output that isn’t required or used
avg_per(np) User specified running average periods (i.e., 3-day, 60-day, etc.). np 1 to

Num_avg_per
Boat_load_memory A user supplied flag to tell program if post-processing routines are to be used. Much

of the Post-processing entails storing large amounts of data in memory until the
simulations are complete, after running averages etc. can be determined. If this
parameter equals 1, then detailed 24-hr ISCST3 output files are generated (Gb) and the
subchronic post processing routine is executed. If 0, then no subchronic information
is generated.

bound A bound on the integer number of treated fields for current year of simulation that will
include repeat fields (used in subroutine “fld_solve1“)

Bufzone Buffer zone setback around treated fields [m], read in from worksheet "PDF
Parameters"

c1 Variable used in subroutine “Post_Process” to store and write concentration
information to output summary worksheets.

C2 Variable used in subroutine “Post_Process” to store and write concentration
information to output summary worksheets.

 72

CA_13D_Scen If = 0, then SOFEA uses the methodlogy for adjusting the actual mass using the
Application Factors of CDPR that are specific for 1,3-D only (Thus, CA_13D_Scen =
0 for 1,3-D only, and only if 1,3-D is used in CA). If a region other than CA is
simululated, then =1. This parameter = 1 for all soil fumigants, and will only = 0 for
1,3-D in the state of CA only.

chron_conc(i) Same information as in Chronic_all(j,i), except this array is used for a single year of
simulation. When simulation year is complete, values in this array are stored in the
appropriate location in Chronic_all(j,i).

Chronic_all(j,i) Chronic exposure (annual) where all crop types have been superimposed. J = 1 to the
total number of years simulated, and I = 1 to the total number of receptors in
simulation domain.

Chunk Increment for percentile output (i.e., print out every "ichunk" value) to reduce the size
of data in percentile function. ichunk is based upon a user supplied input
"Num_percen_pts". Used to generate parameter “ichunk”

cmax Maximum concentration observed during a single simulation year
cmax1 Largest running average receptor concentration over entire year for crop #1 (TV).

Used to populate the array “conc_avg_fld_max1(i)”
cmax2 Largest running average receptor concentration over entire year for crop #2 (FC).

Used to populate the array “conc_avg_fld_max2(i)”
cmax3 Largest running average receptor concentration over entire year for crop #3 (NC).

Used to populate the array “conc_avg_fld_max3(i)”
cmax4 Largest running average receptor concentration over entire year for crop #4 (SB).

Used to populate the array “conc_avg_fld_max4(i)”
cmax5 Largest running average receptor concentration over entire year for crop #5 (PP).

Used to populate the array “conc_avg_fld_max5(i)”
CNO Character string “no” for output fields (i.e, is a tarp present?...)
CO_LINE(I) ISCST3 Key word input file strings for COntrol pathway
col_num Integer value used when specifying which column to write to in summary output

worksheets (a.k.a. “Chronic”)
col_num1 Integers used to specify what column to write summary information to in output

worksheets such as “Chronic”
col_num2 Integers used to specify what column to write summary information to in output

worksheets such as “Chronic”
conc(i,j,k) 24 hr average concentration that is read in from the ISCST3 output file summarizing

this information. Here, i crop id (1 TV, 2 FC, 3 NC, 4 SB, 5 PP), j integer number of
32,500 dimension increments in the 24hr concentration array, k unique receptor ID
within the 32,500 dimension. For example, lets assume the total number of
24hr/receptor concentrations within the ISCST3 24hr file is 50,000. Then, for TV
crops, the concentration information is stored in "conc(1,j,k)", where j 1,2 and k 1,
32500 when j 1, and k 1, 50,000-32500 when j 2. In this way we can overcome the
dimension and integer constraints implemented in the version of Excel this model was
developed in.

conc_avg_fld_max1() Maximum running average air concentration for crop ID #1 (TV) observed during
year

conc_avg_fld_max2() Maximum running average air concentration for crop ID #2 (FC) observed during year
conc_avg_fld_max3() Maximum running average air concentration for crop ID #3 (NC) observed during

year
conc_avg_fld_max4() Maximum running average air concentration for crop ID #4 (SB) observed during year
conc_avg_fld_max5() Maximum running average air concentration for crop ID #5 (PP) observed during year
conc_avg_fld1() Running average air concentration for crop ID #1 (TV), conc1/IDAY
conc_avg_fld2() Running average air concentration for crop ID #2 (FC) , conc2/IDAY
conc_avg_fld3() Running average air concentration for crop ID #3 (NC) , conc3/IDAY
conc_avg_fld4() Running average air concentration for crop ID #4 (SB) , conc4/IDAY
conc_avg_fld5() Running average air concentration for crop ID #5 (PP) , conc5/IDAY
conc_avg_twn(i, j) Running average concentration for receptor “i” and day of simulation year “j”

 73

conc_avg_twn_max(i) Maximum running average concentration for receptor “i” over entire year of
simulatoin

conc_fld1(i,j) Array where 24-hr information from ISCST3 yearly simulation fir crop #1 (TV) is
stored. Here “i” is the receptor ID and j = day of year.

conc_fld2(i,j) Array where 24-hr information from ISCST3 yearly simulation fir crop #2 (FC) is
stored. Here “i” is the receptor ID and j = day of year.

conc_fld3(i,j) Array where 24-hr information from ISCST3 yearly simulation fir crop #3 (NC) is
stored. Here “i” is the receptor ID and j = day of year.

conc_fld4(i,j) Array where 24-hr information from ISCST3 yearly simulation fir crop #4 (SB) is
stored. Here “i” is the receptor ID and j = day of year.

conc_fld5(i,j) Array where 24-hr information from ISCST3 yearly simulation fir crop #5 (PP) is
stored. Here “i” is the receptor ID and j = day of year.

conc_twn(jk, IDAY) The receptor concentration from all field types (i.e., the sum of the concentrations
from all simulations at a particular location and day. The location is via receptor #
"jk", and the day is "IDAY". Note: conc_twn(jk, IDAY) is the 24-hr concentration of
a unique receptor on a given day that is the sum of all individual crop type
simulations.

conc1 Sum of air concentration for crop ID #1 (TV)
conc2 Sum of air concentration for crop ID #2 (FC)
conc3 Sum of air concentration for crop ID #3 (NC)
conc4 Sum of air concentration for crop ID #4 (SB)
conc5 Sum of air concentration for crop ID #5 (PP)
Concentration(i) Chronic concentration (annual average) for receptor “i”
Corr_Mass(k, l) PDF sampled (determined from PDF values) “corrected” mass for source term for

crop ID “k” and Field source ID “l”. Corrected mass = actual mass * SF, where SF is
the scaling factor determined by CDPR methodology

cputime Actual cpu time for simulation to complete.
crop_hit(j) Crop ID number for crop field types having 1,3-D treated fields.
crop_hit_id(j) Flag used to determine if a specific crop type has any source terms (0 = no, 1 = yes).

If no, then the model doesn’t execute ISCST3 for this crop type “j”.
csum_neighbor Sum of probabilities for all neighboring sections that boarder a non-zero probability

user supplied section.
Cum_flux Cumulative flux total for given time of year. If reference flux profile was obtained in

the summer, the Cum_Flux Pct_vol_ref. However, if the reference flux profile was
obtained in the cool season, then the summer time loss would be “Cum_Flux” equals
Pct_vol_ref*1.6.

cumul(1 To 9, 1 To 36) Cumulative distribution array for user supplied township section probabilities for
Township ID “I”, j = 1 to i_section(ic) for annual crops

cumul_neighbor(1 To 9, 1
To 100)

Cumulative distribution array for neighboring sections to non-zero supplied township
section probabilities for Township ID “I”, j = 1 to i_section(ic) for annual crops (used
by spillover algorithm)

cumul_neighbor_TV(1 To
9, 1 To 100)

Cumulative distribution array for neighboring sections to non-zero supplied township
section probabilities for Township ID “I”, j = 1 to i_section(ic) for perennial (TV)
crops (used by spillover algorithm)

cumul_TV(1 To 9, 1 To
36)

Cumulative distribution array for user supplied township section probabilities for
Township ID “I”, j = 1 to i_section(ic) for perennial crops (TV)

cumulative(1 To 36) Cumulative distribution for user specified section weights as a function of townships.
CYES Character string “yes” for output fields (i.e, is a tarp present?...)
d(1 To 12) Number of days in each month for non-leap year
D_or_S(k, l) PDF sampled integer flag that denotes if a field application is for drip or shank for

crop ID “k” and Field source ID “l”
Date_one(1 To 9, 1 To 5, 1
To 300)

First year of information (in multiple year simulation) for application date stored in
this array for township ID “I”, crop ID “j”, and source ID “k”

Date_type(i,j) Application date (Julian) for crop "i" and application # "j" for crop "i", where j 1,
isrc(i)

 74

DeltaEle Elevation change increment used in generating crude contour plot found in worksheet
“elevation”.

depth(k, l) PDF sampled application soil depth for crop ID “k” and Field source ID “l”
Depth_ref Depth of incorporation for reference drip flux
Depth_incorp Depth of incorporation
DL(1 To 12) Number of days in each month for leap year
Drip/Shank If application is drip (0) or shank (1)
E_Type(i) Elevation of grid “i” [m]
Elev(30, 30) Coarse elevation data read from user supplied worksheet for 3x3 township domain

(each township is a 10 x 10 grid).
Elevation Elevation information array "elevation(twn ID, i,j)", where i and j 1, 100 (row and

column).
elevation(i, j, k) Elevation data for township I, row j and column k.
ELEVflag Flag to tell program if GIS data for land cover exists in the worksheet GIS_Data (0 no,

1 yes)
Ext_twn_cap(i) Fraction of the township allocation for all townships receiving source terms, where “i”

= 1 to the total number of townships receiving sources (N_ext_twn_Hits)
Ext_Twn_ID(i) Array that stores township ID’s for all townships in the 23x23 domain that receive

source terms. Township ID (integer from 1 to 529, see worksheet
"Twn_Mass_Wt_Ext"), with 1 the top left corner township, and 529 the bottom right
township. Have a total of 529 townships, with the 3x3 simulation domain at the center
of this "23x23" township area. i = 1 to the total number of townships having source
terms.

f_repeat Flag used to mark a field for retreatement the following year
F_scle_Type(i,j) Flux scale factor used to multiply the applcation rate scaled reference flux by
filename Filename (String) for ISCST3 output file that VBA will open up and subsequently

read in the simulation results.
fld_nxt(k) If a total of "tot_fields" are required for a given township, then the array "fld_nxt(k)"

will have "tot_fields" entries. Any T&V entry is given a 0. For example, if tot_fields
= 10 and there are 3 T&V fields then the array fld_nxt(k) will contain three zeros, and
the numbers 4, 5, 6, 7, 8, 9, and 10 randomly placed in the array for non-T&V fields.
Now, if the user has selected an input that 50% of the fields (non T&V) will be
retreated the following year, then any field where fld_nxt(k) >= 3 + INT(0.5*7 + .5)
(i.e., 7) will receive an integer flag ID of 1 that will indicate the field will be reused
the following year.

fld_nxt_yr(ic,k) Integer flag if the field is to be used in the next year of simulation. If 0 (no), =1, yes.
Thus, for random placement, fld_nxt_yr(k) 0 for all k. For section placement, this
array is populated based upon the user supplied number for the percent of fields
retreated in the following year (per_nxt_yr) and of course omitting any T&V fields
from the retreat analysis. (note: new T&V locations can be obtained in subsequent
years such that the percent of various crop types per township is met via the
optimization stuff. "ic" township ID, and k 1 to total number of field in township "ic"

Fld_one(1 To 9, 1 To 5, 1
To 300)

First year of information (in multiple year simulation) for field size stored in this array
for township ID “I”, crop ID “j”, and source ID “k”

FLD_R(i, j) Flag used to mark if a field will be retreated in the subsequent year of simulation for
township ID “i” and source ID “j”. = 0 no, = 1 yes. Note: if = 1 then we already
have (x,y,z) coordinates of field (X_REP, Y_REP, Z_REP)

fld_repeat(ic,i) Flag for if this field is to be repeated in the next year of simulation (0 = no, 1 = yes).
ic = township ID (1-9), i = source term ID (1 to # of sources in the year)

Fld_size(i,j) Field size [ha] for crop "i", i=1,5 and for township ID, 1-9
fld_storage(i) Fields ID numbers from “lowerbound” to “upper bound” are randomized and stored

stored in the array fld_storage(i), where “i’” ranges from lowerbound to upperbound.
This array used to select fields for retreatment the following year (i.e., if 50%
retreatment specified, use 1st half on entries in array).

Flux_drip(i) Hourly flux data that is used for drip applications (i.e., raw data can be in chunks of 6

 75

hr or 12 hr. Hourly values for a 6 hour chunk are assigned the observed 6-hr average).
Flux is scaled by reference drip study application rate.

Flux_drip_raw(i) Observed flux data (flux) for reference drip field study
Flux_shank(i) Hourly flux data that is used for shank applications (i.e., raw data can be in chunks of

6 hr or 12 hr. Hourly values for a 6 hour chunk are assigned the observed 6-hr
average). Flux is scaled by reference shank study application rate.

Flux_Shank_raw(i) Observed flux data (flux) for reference shank field study
forecast_ID Integer flag to tell program if different input parameter “loops” are to be simulated. A

loop is defined as a time interval (i.e., 5 years) where specific PDFs are to be sampled,
etc. The next “loop” will sample a whole new set of PDFs in such a way to “forecast”
anticipated agronomic practices and resulting effects on air concentrations.

forecast_loop Number of years of simulation per forecast “loop”. User specified in worksheet
PDF_Parameters.

FR Variable used to store repeat field integer (0 or 1) information when reading in the
optimization program generated file “Field_opt.dat”

Ftype(1 To 5) Character string for crop type (TV, FC, NC, SB, PP)
func_left This is the fraction (approximate) of total simulation left for the iterations (95%).

Used when plotting dialog box with % complete.
func_per_yr This is the fraction of total for each year of iteration
func_per_yr_cropID This is fraction of total for each crop type for each year of simulation. We include

additional time for non-ISCST3 simulation stuff
GIS_ID Flag to tell program if GIS data is user input and found in the worksheet “LandCover”

or is obtained from GIS databases and is found in the worksheet “GIS_Data”
Grid_space Receptor spacing of uniform grid of receptors [m]
GridX x-location [m]within township [m] defined and used in the subroutine

“Get_receptor_info”
GridY y-location [m] within township [m] defined and used in the subroutine

“Get_receptor_info”
hgrid(j) Elevation for receptor j
HGT Elevation measurement used in subroutine “Get_receptor_info” (not currently used)
hr_init_drip The military hour of the day the reference field study drip application was made
hr_init_shank The military hour of the day the reference field study shank application was made
I_already_have Integer flag used in logic found in various subroutine to denote of all source terms

have been accounted for.
i_drip Total number of hourly flux measurements/predictions in the Flux_Drip array

(integer)
I_External Flag that is used to determine if sources are placed in the central 3x3 domain only (=0)

or both the central 3x3 and surrounding townships (23x23 simulation domain (=1)
i_flg Integer denoting crop type; =1 Tree and Vine (T&V), 2, Field crops (FC), 3, Nursery

crops (NC), 4, Strawberries (SB), 5, Post Plant Vine
I_ran_or_sec User defined flag for source placement outside the central 3x3 to specify section

weighting (1) or random weighting (0)
i_section(ic) Number of sections within township "ic" having non-zero probabilities (i.e., fields can

be place here.
i_section_TV(1 To 9) Number of sections within a given township having non-zero probabilities for

perennial (TV) field placement for the central 3x3 township domain.
i_shank Total number of hourly flux measurements/predictions in the Flux_Shank array

(integer)
i_test Integer used to determine if current year is a leap year
I_twn Integer flag to tell subroutine “fld_solve1” that we will find source terms for the

central 3x3 domain (I_twn = 0). If I_twn = 1, then fld_solve1 will find source terms
for a single township that is outside the 3x3 central domain.

Ibs Counter for writing rows of information when troubleshooting
ic Township ID (1 thru 9) for central 3x3

 76

Icent Integer used in leap year subroutine to denote millennium (1900 or 2000)
ICHECK_LOOP Error trapping integer for the total number of forecast Loops. Currently, only up to 5

unique loops can be specified.
Ichunk Integer denoting how many data points to exclude when truncating an exceedence

curve data (i.e., Ichunk = 10, then every 10th point from the distribution will be
selected and written to a summary output worksheet). Increment for percentile output
(i.e., print out every "ichunk" value) is to reduce the size of data in percentile function.
ichunk is based upon a user supplied input "Num_percen_pts" and is the integer
approximation for the parameter “chunk”

Icolor Integer used to select colors used in crude contour plot found in worksheet
“elevation”.

icount Integer counter used for row number for writing to output worksheets such as
"24hr_Summary"

icyr 4 digit simulation year (Same as IYRO)
ID_drip_or_shank Flag for application type (=1 for drip, 2 for shank)
ID_OPT
IDAY Julian day of year for output storage (1-365 or 366)
iend Integer used to denote starting value for 3x3 township information (=30), since each

township is 10x10

Ileap Integer flag for leap year (1 non-leap year, 2 leap year)
Imax Integer used to dynamically allocate User_Pop, User_Ele … arrays based upon the

total number of “loops” (i.e., the user specifies new data for each loop in the
worksheets “Population”, “Elevation”, and “LandCover”.

incr_fine Number of raster grids per side for a township
irow(ic, j) Row number (1 to 6) of section "j" within township "ic" having user defined non-zero

probabilities, where j = 1 to i_section(ic) for annual crops
irow_neigh(ic,i) Row number in township "ic" for sections bordering section having non-zero prob.
irow_neighbor(ic,j) Row number (1 to 6) of neighboring section "j" within township "ic" surrounding a

user defined, non-zero section; where j = 1 to neighbor(ic). Annual Crops
irow_neighbor_TV(ic,j) Row number (1 to 6) of neighboring section "j" within township "ic" surrounding a

user defined, non-zero section; where j = 1 to neighbor(ic). Perennial (TV) Crop.
irow_TV(ic, j) Row number (1 to 6) of section "j" within township "ic" having user defined non-zero

probabilities, where j = 1 to i_section(ic) for perennial (TV) crops
iskip Integer used to determine how many data points in overall exceedence distribution to

“skip” such that total number of data points the user has specified for exceedence data
is met. (Similar to parameter “ ichunk”)

iskip0 iskip = iskip0
isrc(k) Number of source terms in current year of simulation for crop type “k”
Istart Integer used to denote starting value for 3x3 township information (=1)
Itarp Integer flag to denote of a tarp is present (=1 for no tarp, =2 for tarp)
iteration Current integer year in total number of years to simulate loop, i.e., year 7 of 10 ..
itot(ic,l) Maximum number of specific crop treated fields in simulation yr for field type "l", and

township "ic", where 1, 5 for T&V - PP, respectively. If 2 applications are made for
T&V, 4 for FC, 1 for NC, 3 for SB, and 2 for PP, then itot 4. When using information
from this array, we begin at the top and select application dates down through the
array. For the above example, there weill be 4 application date(s) for NC, but we will
only require the first entry.

ITT Total number of townships in the simulation domain that can/do receive source terms.
ITT includes the central 3x3 (i.e. 9) plus any external townships in the 23x23 township
domain that have non-zero township mass fractions.

IX(ic, k) Number of hits (source terms) in township ID “ic”, and for crop type “k”
iyr_hit Integer counter used for column number for writing to output worksheets such as

"24hr_Summary"
IYRO 4-digit year of simulation (i.e. 1988)

 77

J_tot_Flds Internal parameter used to dimension various arrays for the total number of source
terms in the entire simulation domain (up to 23x23 townships).

jcap Integer value used to sample appropriate PDFs for the source parameters to be
selected from (for 9 townships). Currently 400.

JDAY Integer used in post processing that ranges from 1 to the largest running average sub-
chronic interval specified by user. If a 60 day running average value was selected for
output, then JDAY = 1 to 60.

jocation(i, j, k) Denotes if land has been used by another field sometime during the current simulation
year. Used to keep field from being placed on top of one another in a given year of
simulation

Jover Integer used when reading in section weights for townships outside the central 3x3
(read in from worksheet "Twn_Mass_Wt_Ext")

jp_m(i,j) Identical to the parameter “num_flds” (i.e., the total number of fields for a specific
crop type), except that information is now represented by township ID “I” and crop ID
“j”

Jr Random number between 1 and jcap. This is because we have jcap entries per field
for the central 3x3 stuff (i.e. 9 townships). Since we have only 1 township we are
finding sources for, don't need a large list, so we sub-sample from the original 500 to
something smaller.

jrow(ic,i) Column number in township "ic" for section having non-zero probability here, i 1 to
i_section(ic)

jrow_neigh(ic,i) Column number in township "ic" for sections bordering section having non-zero prob.
jrow_neighbor(ic,i) Column number in township "ic" for section having non-zero probability here, i 1 to

i_section(ic)
jrow_neighbor_TV(1 To 9,
1 To 100)

Column number (1 to 6) of neighboring section "j" within township "ic" surrounding a
user defined, non-zero section; where j = 1 to neighbor(ic). Perennial (TV) Crop.

jrow_TV(1 To 9, 1 To 36) Column number (1 to 6) of section "j" within township "ic" having user defined non-
zero probabilities, where j = 1 to i_section(ic) for perennial (TV) crops

Jul_Date(k, l) PDF sampled application date for crop ID “k” and Field source ID “l”
Jul_ref Julian day when the reference trial was initiated (to determine if we are in warm or

cold season)
jyr Last 2 digit integer for the year (i.e., 1998 = 98)
Jyr 2-digit year of simulation (i.e. 88)
k_loop Current “loop” number the simulation is on.
k_repeat Flag for any calls in this current subroutine execution to the random field placement

algorithm. If we have already written out the repeat flds for the current year of
execution, then k_repeat 1 and this logic will be used in the subroutine
"fld_placement_random" such that the repeat fields will not be rewritten out again.

Kextend The maximum number of days post-year that we can have when performing running
averages

kfields Total number of different crop/field types (currently 5)
kline Integer used to write to various locations in output worksheets such as “Field_Info1”.

Since Excel only allows up to 256 columns, once this constraint is exceeded, kline is
some new large number (a.k.a. replace 1 with 250) such that data is now “wrapped
around” much like a word processor.

kolumn_max Error trapping integer value to see if the total number of columns for output summary
exceeds Excel limitations of 256, and thus the program will need to “wrap” results
around to new rows in Excel.

kover Integer used to denote which column number in summary worksheets that information
will be written to.

Kpp Counter for error checking (tyically not used)
krepeat Parameter used in the data results “wrapping” in worksheet "Field_Info1".
ksave Integer flag used to save simulation results. Currently, we save after each 10-year

simulation interval
Kwrap Flag for worksheet "24hr_Summary" to wrap around when number of Excel columns

 78

are exceeded.
L_orig Integer for use in reading in/determining source information for fields that may be

outside of the 3x3 domain. With L_orig = 1, we are determining fields inside the 3x3
domain. For L_orig > 1 then we are determining fields outside of the 3x3 domain.

LANDflag Flag to tell program if GIS data for land cover exists in the worksheet GIS_Data (0 no,
1 yes)

lc Integer counter used for writing information to various rows in worksheet "Misc"
leftover Integer that is used in the subroutine “Odd_or_Even” to determine if an integer is odd

or even.
linebs Character string used to skip header lines in ISCST3 output files
location(i, j, k) Land cover data storage for township I, row j and column k. Array location(ID,i,j)

that contains info for ag/non-ag land, and for the crop type. ID is the township ID (1-
9) and i=1,100, j=1,100 (i.e. the 100x100 fine grid used for discretizing the township.

loop_cnt Total number of annual crop fields
Lower Integer counter used to track overall lower bound for number of fields (excluding TV)

that a current year of simulation will have.
Lowerbound Number of T&V fields plus one
M(1 To 12) Last day of month (i.e., ML(1) 31, … ML(12) 365) for determining Julian day given

calendar month and day for a non-leap year
Max_No_Twnships Total number of townships external to the central 3x3 that have source terms.
Maxper Randomly generated percentage for comparing with “Per_tarp” to see if the current

application has a tarp or not. If a tarp is present, then the total maximum cumulative
mass loss is different than for a bare soil field. Also, parameters for estimating the
non-linear scaling factor with incorporation depth are also different between the
tarp/un-tarped fields.

ME_LINE(I) ISCST3 Key word input file strings for MEteorological pathway
ML(1 To 12) Last day of month (i.e., ML(1) 31, … ML(12) 365) for determining Julian day given

calendar month and day for a leap year
N_Count Incremental integer counter for the number of fields
N_drip Number of data points for reference drip flux profile '
N_ext_twn_Hits
N_ext_twn_Hits(5) Total number of townships external to the central 3x3 that will receive treated fields

(i.e. the township mass fraction specified by the user in worksheet
“Twn_mass_Wt_Ext” is non-zero.

N_FLD_EXTERNAL(ii) Total number of source terms for all crop types for township “ii” external to central
3x3

N_grid Number of raster grids of size “space” for each length of a treated field
N_loop Number of fields for township IC and crop J
N_loops Total number of loops (intervals when parameters can change) over the entire

simulation interval.
N_shank Number of data points for reference shank flux profile
N_yrs User specified number of years to simulate
NCOL Integer used to determine the number of columns required when writing data to the

worksheet "Field_Info1". If NCOL > 256, then results are wrapped around.
neighbor(ic) The total of all surrounding sections to a given non-zero user probability section

annual crops). This integer is used for integer indexing up to "neighbor(ic)", where ic
is the township ID.

neighbor_TV(1 To 9) The total of all surrounding sections to a given non-zero user probability section
(perennial (TV) crop). This integer is used for integer indexing up to "neighbor(ic)",
where ic is the township ID.

nhit_crp Integer flag to denote if a certain crop type ISCST3 simulation had occurred. ISCST3
simulations WON'T occur if no fields were selected for a specific crop type (i.e., the
% area of this crop type was zero)

NITER Same as parameter “iteration”.

 79

no_flds(ic, j, k) Flag used to denote if ag-land can support the field that is trying to be placed (0=yes,
1=no). ic = township #,j = fld type, k = Iteration year

Nspace Number of grids per side of township (Integer). User specified in worksheet "PDF
Parameters".

NTV_fields(i) Number of TV fields in township “i”, where i = 1 to 529 (i.e., the entire 23x23
township domain).

num Integer of upper bound minus lower bound
Num_avg_per Total number of averaging periods for subchronic exposure intervals
num_entries Integers used to specify row to write summary information to in output worksheets

such as "Run_avg_twn".
num_flds Number of fields of particular Fld_Size(i) for crop "i", i=1,5. This is an integer
Num_Grids() Number of grids (refined grid size) per field side for crop "i", i=1,5. This is an

Integer.
Num_percen_pts User specified number of points written for exceedence profile data. Usually, a few

additional points are added to capture the extreme upper percentiles of the distribution
(i.e., 99.9, 99.95, 100)

num_srcs(j) Number of fields in current year of simulation for crop ID j, where j 1, 5
num_srcs_all(I, j) Total number of soure terms (fields) in year "i" of simulation for crop ID j, where j =

1, 5
NYR_loop Number of unique “loops” over simulation interval. Each loop can have different PDF

values to create the ability for forecasting.
O_D_or_S(i, j) Flag for a drip or shank application for township ID “i” and source ID “j” (=1 drip, =2

shank)
OD Variable used to store depth of incorporation information when reading in the

optimization program generated file “Field_opt.dat”
Odepth(ic, j) Depth of incorporation for source term in township ID “ic”, and source ID “j”
ODS Variable used to store flag denoting if a drip or shank application was made when

reading in the optimization program generated file “Field_opt.dat”
Oitarp(i, j) Flag for if a tarp is present for township ID “i” and source ID “j” (=1 yes, =2 no)
OT Variable used to store flag denoting if a tarp was present when reading in the

optimization program generated file “Field_opt.dat”
P_type(i) Population density for grid “i”
P_Type(i) Population of grid that receptor is in
Pct_vol_max Percent of application volatilized if applied to the surface of the soil (user supplied)
Pct_vol_ref Percent of application that volatilized during the reference flux trial
PctDone Percent of overall simulation complete (for updating progress bar)
per_drip Percent of applications that are drip
per_nxt_yr User supplied percentage of fields that are retreated on a yearly basis
Per_tarp Percentage of applications that have a tarp over the soil surface
perc_area(ic, k) User supplied crop percentages for townhip “ic” (ic = 1 to 9) and crop ID “k” (k = 1 to

5)
Percent_Drip(i) Percent of applications that are drip (vs. Shank) for each crop type "(i)". This value is

obtained from sampling the appropriate PDF functions given in worksheet "PDF
Parameters"

percentile(j) Percentile array that is written to output summary worksheets. Percentile = (receptor
ID [“j”])/(total number of receptors)*100, where j = 1 to total number of receptors

period_max The maximum number of days post-year that we can have when performing running
averages

Pop(30, 30) Coarse population density data read from user supplied worksheet for 3x3 township
domain (each township is a 10 x 10 grid).

POPflag Flag to tell program if GIS data for land cover exists in the worksheet GIS_Data (0 no,
1 yes))

population(i, j,k) Population density information data storage for township I, row j and column k.
prob(ic,i) Non-zero probability of sections in township "ic", where i 1 to i_section (36 since this

 80

is the maximum number of sections per township)
prob_neighbor(ic,
neighbor(ic))

Probability of a "neighboring" section receiving a treated field once the user defined
non-zero probability section becomes "filled". Note that this probability the original
user defined probability for the central section divided by the total number of
neighboring sections within township "ic".

prob_TV(i,j) Storage location for user supplied township probabilities for perennial (TV) field
placement, I = township ID (1-9), j = section ID (1-36). Note: this array is only
updated if the section has a non-zero probability.

pst_name Pesticide/pollutant name used as the POLLUTID parameter in the ISCST3 input file
(i.e., this character string is used in the comments in ISCST3 output files.

r_test Variable used to determine if current year is a leap year
R_type(i) Land cover type for grid i [0 ag land, 1 water, 2 urban, 3 mountains]
rand1 Random integer between 1 and 100
rand2 Random integer between 1 and 100
random1 Random number between 0-1
random2 Random x location within a township section
random3 Random y location within a township section
Rate(k, l) PDF sampled application rate for crop ID “k” and Field source ID “l”
rate_coeff 1st order decay coefficient in air
rate_k Exponential decay rate constant used when scaling flux loses with application depth

when nonlinear scaling is specified.
Rate_one(I, j, k) First year of information (in multiple year simulation) for application rate stored in

this array for township ID “I”, crop ID “j”, and source ID “k”
Rate_type(i,j) Application rate (kg/ha) for crop "i" and application # "j" for crop "i", where j 1, isrc(i)
rdivid Used in the subroutine “Odd_or_Even” to determine if an integer is odd or even.

rdivid is defined as integer being brought into the subroutine divided by 2
RE_LINE(I) ISCST3 Key word input file strings for REceptory pathway
rec_ht Receptor height (m). User specified in worksheet "PDF Parameters".
recep_all Flag specified by user to tell program if receptors are to be placed in all of the central

3x3 (1) or only the single, central 1x1 township (0)
REDIS Character string used when writing ISCST3 input file
region Character string for name of region weather came from (i.e., “California”)
remainder Used in the subroutine “Odd_or_Even” to determine if an integer is odd or even.

remainder = rdivid - Int(rdivid)
Repeat_flds(i) Total the number of possible repeat fields for the following simulation year (but don't

include T&V fields) for the central 3x3 for township ID “i”
repeat_now Flag of field is a repeat from previous year (if repeat_now 1, then we already have

(x,y,z) coordinates of field since this is a repeat field from the previous year of
simulation

Round Round up (1) or Round down (0) grid for field placement (User specified Celll B80 in
worksheet “PDF_Parameters”.

Scal. Factor CDPR factor for time of year and application depth (This is the # used for correcting
1,3-D mass

Scale_flg Scale factor flag for emission flux which is a function of incorporation depth (linear =
1, non-linear = 2). User supplied parameter in worksheet “PDF_Parameters”.

SCF Variable used to store CDMS Application Factor when reading in the optimization
program generated file “Field_opt.dat”

Sdir Active workbook path (character string)
sec_no_bordering Count for the total number of sections not boarding a user defined section having a

probability of having treated fields
Sec_wt(i) User specified section weights (probabilities) for a specific township section outside

the central 3x3 receiving treated fields (read in from worksheet "Twn_Mass_Wt_Ext")
section(i, j, k) Stores township section weighting for annual field placement if section weighting was

specified. Data is stored in array Section(Twn ID, 1 to 6, 1 to 6). Thus, each

 81

township is broken into 36 sections as given by the row, column integers in the array.
section_TV(i, j, k) Stores township section weighting for perenial (TV) field placement if section

weighting was specified. Data is stored in array Section(Twn ID, 1 to 6, 1 to 6).
Thus, each township is broken into 36 sections as given by the row, column integers in
the array.

SEED_ID Random seed integer specified by user (currently not functional as intended)
SF_incorp(i, j) Dimensionless incorporation depth scaling factor for flux loss (Sincorp) for township

ID “i” and source ID “j”
SF_yr(i, j) Dimensionless temporal scaling factor for flux loss (Syr) for township ID “i” and

source ID “j”
Sincorp Flux scaling factor for depth of incorporation used to scale experimental flux

observations which were performed at some prescribed depth.
Slp Slope used in linear scaling with incorporation depth.
SO_LINE(I) ISCST3 Key word input file strings for SOurce pathway
space Dimension of raster grid (Cell E16 of worksheet “PDF_Parameters”)
Starttime Clock time when simulation is initiated
sur_air_ID Integer ID for the surface meteorological station where met file was measured
sw_x x-location for northwest corner of field edge
sw_x_one(i, j, k) Array for first year of information (in multiple year simulation) for x location of

southwest corner of field for township ID “I”, crop ID “j”, and source ID “k”
sw_y y-location for northwest corner of field edge
sw_y_one(i, j, k) Array for first year of information (in multiple year simulation) for y location of

southwest corner of field for township ID “I”, crop ID “j”, and source ID “k”
sw_z z-location (elevation) for northwest corner of field edge
sw_z_one(i, j, k) Array for first year of information (in multiple year simulation) for z location

(elevation) of southwest corner of field for township ID “I”, crop ID “j”, and source
ID “k”

Syr Flux scaling factor for time of year
Tarp If bare field (0) or tarp is present (1)
Tarp_expt Integer flag which specifies if a tarp were used in the reference field trial experiments

[0 no tarp, 1 tarp]
Tarp_YN(i, j) Array version of the parameter “itarp” for crop ID “i” and field/source ID “j”
Tcap_frac Fraction of the township allocation for townships external to the central 3x3 as input

in the worksheet “Twn_Mass_Wt_Ext”
terrain Character string for ISCST3 simulations (either “FLAT” or “ELEV” if elevation is

specified
time_bufzone Time [days] post application when the buffer zone constraint is active. Read in from

worksheet "PDF Parameters"
Time_drip(i) Observed time (hours post application) when flux data was measured for reference

drip field study
Time_Shank(i) Observed time (hours post application) when flux data was measured for reference

shank field study
tot_fields(i) Total number of source terms in the central 3x3 for township ID “i”
tot_receptors Total number of receptors in simulation domain
tot_repeat the actual number of fields that will be retreated in the following year. Excludes T&V.
town_allyear(i, j) Array that stores the "N_yrs" average receptor concentration for each receptor in the

simulation domain. Here, I = averaging period ID (1 = first period defined by user, 3
= 2nd …), and j = receptor ID

town_avg(i,j,k) Running average receptor concentration (i.e., 1-day, 15-day, etc.), where i user
specified running avg. period (1 to Num_avg_per), j receptor number (1 to kc2), and k
simulation year (1 to N_yrs). This populated array is passed into this subroutine.
Data in this array is obtained from reading the 24-hr data files generated by ISCST3
(array is populated in the subroutine "Post_Process"

town_avg_all() 1-D slice of 3-D array “town_avg” for running average receptor concentration for each

 82

receptor “j” (i.e., j receptor number (1 to kc2). Results by crop type are written to
worksheet “Run_avg_twn”

town_sum(j) "N" year average receptor concentration (based upon all field types involved) used in
sorting routine for exceedence curve determination.

TwID Internal variable for township ID, where the ID can range from 1 to the total number
of townships receiving sources (N_ext_twn_Hits)

twn_1_9 Integer flag denoting if source terms for a single township external to the central 3x3
are required (=1) or if source parameters within the central 3x3 (= 9)

Twn_BS Dummy storage variable used when reading in the first term from the SOFEA
generated file "field_opt.dat".

twn_cap_base Township allocation mass supplied by user in worksheet “PDF_Parameters”.
Twn_ID(i) Township ID for central 3x3, i=1 to 9
Twn_Mass_Wt(i) Township mass weight function for townships internal to the 3x3 domain, and i = 1, 9
TwnID Integer used for tracking external townships (1 – 529, where 241, 242, 243, 264, 265,

287, 288, 289 correspond to the central 3x3 townships.
up_air_ID Upper air Data Met Station ID
Upperbound Total number of treated fields
User_Ele(ii, jj) User supplied elevation information on a 10x10 grid system per township from user

entries found in worksheet "Elevation" for central 3x3. Thus, this array has
dimensions of 30x30.

User_Loc(ii,jj) User supplied land cover information on a 10x10 grid system per township from user
entries found in worksheet "LandCover" for central 3x3. Thus, this array has
dimensions of 30x30.

User_Pop(ii, jj) User supplied population information on a 10x10 grid system per township from user
entries found in worksheet "Population" for central 3x3. Thus, this array has
dimensions of 30x30.

w_file_name Weather File Name (Character string)
wt_ID Flag for field placement , 0 for random weighting, =1 for section weighting. This

variable is a declared PUBLIC and thus the magnitude is known without coming
through the subroutine argument list.

X_rate(i, j) Application rate for township ID “i” and source ID “j”
X_REP(i, j) x-location of SW corner of field for township ID “i” and source ID “j”.that will be

retreated the following year.
x1 Dummy variable for x location [m] of a receptor read in from ISCST3 output file. We

already have this information stored in other arrays.
xgrid(j) X location for receptor j
XR Variable used to store sw corner of field x-location information when reading in the

optimization program generated file “Field_opt.dat”
XRATE Variable used to store application rate information when reading in the optimization

program generated file “Field_opt.dat”
Y_REP(i, j) y-location of SW corner of field for township ID “i” and source ID “j”.that will be

retreated the following year.
y1 Dummy variable for y location [m] of a receptor read in from ISCST3 output file. We

already have this information stored in other arrays.
ygrid(j) Y location for receptor j
YR Variable used to store sw corner of field y-location information when reading in the

optimization program generated file “Field_opt.dat”
Z_REP(i, j) z-location (elevation) of SW corner of field for township ID “i” and source ID “j”.that

will be retreated the following year.
z1 Dummy variable for elevation [m] of a receptor read in from ISCST3 output file. We

already have this information stored in other arrays.
ZR Variable used to store sw corner of field z-location (elevation) information when

reading in the optimization program generated file “Field_opt.dat”

 83

 84

