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Appendix 1. 

Summary of Approach 

The goal of the statistical methods was to estimate a quantity that would be 
proportional to the potency of each chemical. along with confidence intervals. 
The data for this study were in the form of dose-response studies which measured the 
effect of different concentrations of OP pesticides on cholinesterase activities in brain, 
red blood cells, and plasma. The mean and standard deviation of cholinesterase 
activity, and number of animals examined were available for several dosages in each 
data set. Females and males were analyzed separately in each study. Studies were 
nested: for each chemical there were several groups of studies, each with a different 
MRID; within MRID, one or more studies were conducted, each with measurements 
taken for several durations of exposure. It is possible that potency increases to an 
asymptotic value as exposure duration increases. Studies with the same MRID were 
conducted in the same laboratory. Thus several steps were required to analyze the 
collection of data sets for each compartment × sex combination for each OP pesticide: 

1.	 Adequately model the relationship between dose and cholinesterase 
activity for each individual study, and estimate the absolute potency for 
that study. 

2.	 Determine which exposure durations are likely to be long enough that 
potencies are close to the steady-state value 

3.	 Combine potency estimates within MRID, resulting in a single estimate for 
each MRID, with standard error. 

4.	 Combine potency estimates across MRIDs, resulting in a single potency 
estimate for the chemical × compartment × sex combination 

5.	 Compute the relative potency by dividing all the potency measures within 
sex and compartment by that of the index compound, and estimate the 
standard error of the result. 

6.	 Compute BMD and BMDLs for each data set for the index compound, and 
combine the estimates using the same methods as for potency. 

The following sections describe each of these steps in greater detail. 
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� � 

� � 

Dose-Response Modeling 

The cumulative dose-response assessment for this analysis is based on the 
Relative Potency Factor (RPF) methodology (U.S. EPA, 2001). The RPF approach 
assumes that the dose-response for a combination of exposures, at least for relatively 
low levels of exposure, are dose-additive. That is, the response y for a combination of 
exposures Di would be : 

y = f 
Ł
� � mi Di ; b 

ł
� (1) (eq.1) 

i 

where mi is the absolute potency of the ith exposure, and � is a vector of parameters of 
the dose-response function whose values are the same for all chemicals. In practice, 
we select one index chemical, (call it I), and express all potencies as ratios to that of 
the index chemical; Ri = mi/mI. Then the expected response y for a combination of 
exposures Di would be: 

y = f 
Ł
� mI � Ri Di ; b 

ł
� (2) (eq. 2) 

i 

The response is the same as it would be if a dose of the index compound equal to 

� Ri Di  had been given. Furthermore, any combination of dosages that give the 

same overall weighted sum should result in the same response. For example, suppose 
the following potencies apply to four chemicals: 

Chemical Potency (mg/kg/day)-1 

(mi) 
Relative Potency 

(Ri) 

A 

B 

C 

D [index] 

0.346 0.309 

0.0082 0.0073 

1.21 1.08 

1.12 1.00 
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Suppose two sets of doses: 

Chemical Set 1 Set 2 

A 0.0137 0.00324 

B 1.17 0.00162 

C 0.0391 0.0486 

D 0.0391 0.0405 

Di� 1.26 0.094 

R Di i� 0.094 0.094 

Even though the two sets of doses are very different, and result in quite different 
total doses (1.26 mg/kg/day in set 1, 0.094 mg/kg/day in set 2), the expected responses 
are identical. If BMDLI is the lower confidence limit for a specified response (the 
benchmark response, BMR, in this case, a 10% reduction in cholinesterase activity) for 
the index chemical, then the response to the combination of exposures represented by 

the Di is likely to be smaller than the BMR if � Ri Di  is smaller than BMDLI. 

In this analysis, the dose-response function had to accommodate two important 
features of the data. First, since the results of multiple studies, perhaps carried out in 
different laboratories and at different times, and even sometimes reporting AChE 
activities in different units, it seemed prudent to express activity at a given dosage as a 
fraction of control activity. Implicit in this formulation is the idea that the among-data-
set component of variability follows a multiplicative error distribution. Second, it was 
observed that, as doses increased, AChE activity in quite a few data sets approached a 
lower non-zero asymptote. This asymptote varied among data sets, chemicals, and 
compartments. These two properties of the data were accommodated by fitting the 
model: 

y = B + ( A - B)e -mD (eq. 3) 

where A is the background level of cholinesterase activity, and B is the limit of AChE 
activity for large doses. In practice, in some cases, it was not possible to estimate all 
three parameters for a data set, or this model failed to adequately fit the data. In these 
cases, B was often set to 0 and higher doses were dropped from consideration, as will 
be described below in more detail. To force all parameter estimates to be non-
negative, what was actually estimated in each case was the natural logarithm of the 
parameter. So, for example, the parameters estimated were lA, lB, and lm, with A = elA , 
for example. Standard errors of the log-parameters reported by the statistical software 
were transformed using the delta method to be on the appropriate scale. 
Parameters for this model for each data set were estimated using generalized nonlinear 
least squares (GNLS). GNLS was selected because it does not require distributional 
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assumptions about the individual data (which could not be checked, since only 
summary statistics were available), unlike maximum likelihood (ML) estimation, and it is 
more robust than ML (Davidian and Giltinan, 1995, pp. 31, 39, 59). GNLS is an 
extension of weighted nonlinear least squares. In weighted nonlinear least squares, 
the parameter estimates are the values for the components of â (that is, in this case, 
the vector [A, B, m]N) that minimize the weighted sum of squares 

2 
SS = � wi ( yi - f (Dosei ; b )) , where yi is the observed activity, f() is the function 

described above in eq. I-3, and the weights wi are already known and are proportional 
to the reciprocal of the variance. In GNLS, the weights are taken to be a known 
function of the mean. In the OP data for this analysis, the variance among 
observations within dose groups is approximately proportional to the square of the 
mean of the group (see fig [1]), so regression weights based on the square of the 
estimated mean were used to improve the efficiency of the estimates over what would 
be obtained with unweighted regression. 

Goodness of fit of each fitted model to the corresponding data was quantified 
through a global test of goodness-of-fit, specifically the Pearson chi-squared statistic, 
through visual inspection of graphs, and through examining tables of standardized 

2 

residuals. The Pearson chi-squared statistic is C 2 = � ( yi - f (Dosei :b$)) / (s$ 2 / ni ) , 
i 

where i indexes dose groups. If the model is true, then ×2 will be distributed 
(approximately) as Chi-squared with degrees of freedom equal to the number of dose 
groups minus the number of parameters estimated. 

The process for getting the final parameter estimates for a data set was as 
follows: 

1. Estimate A, B, and m using GNLS for all dose groups in the dataset. 

2.	 If the P-value for the ×2 statistic was greater than 0.05, then the result is 
the estimate used. Otherwise (that is, if the P-value was less than 0.05, 
or no estimates resulted because the model did not converge), set B to 
zero, and try again with all the data. 

3.	 If the P-value is still less than 0.05, or there is no model fit at all, then 
sequentially drop the remaining highest dose and refit the model with B 
set to zero until either the P-value exceeds 0.05, or there are only three 
doses remaining. 
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Identifying Steady State 

The sets of data for each chemical, sex, and compartment included a range of 
exposure durations. To determine which data sets had a sufficiently long exposure 
duration that potency was no longer changing with time, we regressed the estimated 
potency against exposure duration, weighting observations by the reciprocal of the 
squared estimated standard errors. The data for the shortest remaining exposure 
duration in the data set was repeatedly removed until a data set was derived in which 
the slope of potency versus time was not significant (that is, the P-value exceeded 
0.05). In any case, the process was stopped when only three distinct durations 
remained. After a first pass through the data, a single duration was identified such that 
exposures exceeding that duration rarely showed a significant increase with time; all 
exposures less than that duration were removed from further consideration. 

Combining Potency Estimates and Computing Relative Potencies 

Potency estimates were nested in two levels for each chemical × sex × 
compartment: generally several data sets, representing a range of exposure durations 
and some duplication within each MRID, and several MRIDs. Since the data sets 
representing exposure durations at which steady state had not been achieved were 
deleted from the study before this stage, it was reasonable to model the individual 
potency estimates as coming from a nested hierarchical sampling scheme: 

1.	 First, assume there is an overall mean potency for a given chemical × sex 
× compartment combination; the procedure described below is designed 
to estimate this quantity, which will be used for computing the relative 
potency. 

2.	 Because of small differences in husbandry, analytic procedures, and 
other laboratory procedures, the potency realized in MRIDs may vary 
among MRIDs. Model this as sampling a MRID-specific potency from a 
distribution centered about the overall mean potency, with variance 

2s MRID . 

3.	 Again, because of differences among the studies that contributed the data 
sets within a given MRID, potencies realized within a given data set may 
vary among data sets within an MRID. Model this as sampling a data-set-
specific potency from a distribution centered about the MRID-specific 

2potency, with variance s DS . 

4.	 Finally, because a study is based on only a finite sample of animals, we 
can only estimate the data-set specific potency, with an error variance of 

s 2 . 
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Our final goal is to estimate the overall mean potency for the chemical × sex × 
compartment combination, along with a standard error that reflects the uncertainty in 
the estimate due both to errors in estimation and the variances among the MRID-
specific and data-set-specific potencies. Furthermore, once each such overall mean 
potency is computed and an index chemical selected, we want to compute the potency 
for each chemical relative to the index chemical in each sex × compartment 
combination. 

To facilitate this latter computation, all operations were conducted with 
logarithms of the potencies. Thus, in the end, the relative potencies were computed as 
elogm-logmI, where “logm” is the logarithm of the potency for the chemical for which the 
relative potency is being calculated, and “logmI” is the logarithm of the potency of the 
index chemical. The uncertainty of the relative potency is then expressed as a 
confidence interval, obtained by exponentiating the endpoints of the confidence interval 

2for the difference “logm - logmI”, whose standard error is se sem mI log log 
2 2 + , where seQ is the

square of the standard error for parameter Q, here one of the log potencies. 
The estimates of logm were constructed in two stages: first, estimates of data-set-
specific logms were combined, using their estimated standard errors, to yield MRID-
specific estimates of logm and standard errors; then, via the same process, the MRID-
specific estimates of logm were combined to yield overall mean estimates. The 
procedure used to combine the estimates is known as the “global two-stage method” 
(Davidian and Giltinan, 1995, pp 138ff). The logic of the global two-stage method is 
simple, and is illustrated here for estimating a MRID-specific estimate of logm. Since 
we have individual estimates of logm for each data set, it is natural to estimate a MRID-
specific estimate as the mean of the individual data-set-specific estimates. However, if 
we estimate the standard error in the usual way, based on the standard deviation of the 
data-set-specific estimates, it turns out that the resulting estimates of the standard error 
are biased upwards, because the procedure described here ignores the uncertainty of 
the individual estimates. The global two-stage method corrects this bias by explicitly 
taking into account that uncertainty. 

Estimating BMDs and BMDLs 

Benchmark doses were estimated for a 10% reduction in activity from 
background. That is, the benchmark dose is the value D such that: 

1 
0.1 = 

A 
]}{A - [ B + ( A - B)e -mD e 

which is: 

1 � 0.9 A - B �
D = - lnŁ� 

A - B ł� . 
m 
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The BMDL was based on the lower 95% confidence limit on the estimate of the 
BMD. The confidence limit was computed from the estimated standard error of the 
reciprocal of the BMD estimate, because simulations (described in the next 
subsection), indicated that such confidence limits came closer in practice to the 
theoretical coverage than did limits based on standard errors computed on the original 
scale or on the logarithm scale. That is, the lower 95% confidence limit was computed 
as: 

1 
, where BMDinv is the reciprocal of the BMD estimate:

BMDinv + 1.645seBMDinv 

m 
BMDinv =

� A - B �
= g( b ) , 

lnŁ� 
0.9 A - B ł

� 

where â is the vector of parameters, [A, B, m]N, and seBMDinv

error, computed as 
is its estimated standard 

¢ 
seBMDinv = �

� ¶g 
$ �

� 
S$ 

�
� 

¶g 
$ 

�
� ,

Ł ¶b ł Ł ¶b ł 

where S$ is the estimated covariance matrix for the parameters, and 
¶ 

¶ b
g 

$ is the 

gradient of g() evaluated at the parameter estimates. 

Simulations to Support the BMDL Computations 

Simulation Methods 

The performance of the statistical methods used in OPCumRisk, as well as the 
behavior of the estimation process, was checked by simulation. The simulation 
process was as follows: 

1. Generate simulated data sets 

a.	 For a set of values of A, B, and m, different levels of maximum 
inhibition observed (that is, given A, B, and m, pick the dose that 
yields the specified maximum level of inhibition), and particular 
dose regimen, compute mean cholinesterase activity levels (µ) 
using: 

µ(dose) = B + (A - B) e-m×dose 
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b. Compute the standard deviation of data from each dose (ó) by: 

ó(dose) = CV * µ(dose)/100. 

c.	 For each of 500 replicate data sets, sample means from a normal 
random number generator with mean given as in (a) and standard 
deviation given as ó//(Sample Size). Sample standard deviations 
by generating Chi-squared random numbers with degrees of 
freedom equal to (Sample Size - 1) using a Chi-squared random 
number generator, then multiplying by the square of the required 
standard deviation, dividing by Sample Size, and taking the square 
root. 

d.	 The parameter values used for the simulation were based on 
values observed in a pilot sample of studies, and are given in the 
table below: 

level of A: 2000 

levels of B (B/A): 0, 500, 1000 (0, 0.25, 0.5) 

levels of m: 0.03, 0.20, 1.0, 5.0 

Highest dose selected ActMaxF=(0.5, 0.85, 0.95)

to give activity at

highest dose = A - (1 -

ActMaxF)*(A - B)


Dose Regimens 
{0, 0.05, 0.20, 1.0}, and


(fractions of highest 
{0, 0.01, 0.067, 0.3, 1.0}


dose):


CV: 20%, 40% 

Sample Sizes: 6, 10 

A total of 216 unique combinations of parameter values were 
simulated, with each represented by 500 simulated data sets, for a 
total of 108,000 different simulated data sets available for 
parameter estimation. 
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2. Loop through the simulated data sets: 

a. Attempt to fit a model, estimating B, to all data points. 

b.	 If the P-value for the Pearson goodness-of-fit chi-square was less 
than 0.05, or the model did not converge, try to fit a model with B 
set to 0. 

c.	 Repeat step (b), dropping the high dose group with each iteration, 
until the Pearson chi-square is greater than 0.05, or only three 
doses remain. 

d.	 Record parameter estimates, the covariances of the estimates, the 
estimated benchmark dose for a 10% reduction of activity, and 
95% lower confidence limits based on standard errors for (i) BMD 
computed on the original dose scale, (ii) the natural logarithm of 
BMD, and (iii) 1/BMD. 

3.	 Summarize the simulation results. For each combination of parameter 
values, collect: 

a.	 The bias [mean(m) - true(m)] and relative bias [(mean(m) -
true(m))/true(m)] of the estimate of m. 

b.	 The proportion of each of the approaches for computing 
confidence limits in which the calculated limit is less than the true 
BMD. The true BMD is computed from the values of A, B and m 
from which the data were generated. 

c.	 Analyze the simulation results to examine relationships between 
parameter values and levels of bias or BMD coverage, and to 
determine which of the approaches to computing the BMDL comes 
closest to providing the nominal 95% coverage. The analysis is 
based largely on the use of regression trees (Breiman et al., 1984) 
as implemented in the Rpart package version 3.0.1 for R version 
1.3.0. 

The simulations showed that the bias on the absolute potency estimate in an 
individual data set depends upon the true value of B, and on the degree of 
cholinesterase inhibition at the high dose. Three different levels of B were considered 
in the simulations: 50% of background, 25% of background, and 0. Note that here, B 
refers to the value of the dose-response model used to generate the data, NOT the 
value estimated by fitting the data. Figure 2 shows that, if B was 50% of background, 
then m was underestimated by about 28%. None of the other factors in the simulation 
was systematically associated with variation around this level. If B was a smaller 
fraction of background, either 0 or 25% of background, then the bias depended upon 
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how much of the dose-response curve was captured in the individual dataset. If the 
cholinesterase activity at a high dose level was at least 85% of the estimated B, then 
on average absolute potency was over estimated by about 3%. If the cholinesterase 
activity at the high dose level was only 50% of the estimated B, then again, the degree 
of bias depended upon the true value of B. For example, if the true value of B was 25% 
of background, then the absolute potency was overestimated by around 11%. When B 
was 0, potency was overestimated by over 50%. 

If the true value of B was known for a given dataset, the degree to which the 
estimate of absolute potency for that data set is likely to be biased could be evaluated, 
since both conditions that influence bias in this simulation depended upon the true 
value of B. However, B is unknown for real data sets. To try to evaluate the magnitude 
of bias in the estimates of absolute potency that might be expected, we have estimated 
B/A for each chemical × sex × compartment combination by combining estimates of 
B/A from data sets in those compartments which were adequately fit by the full model 
(that is, while estimating B). Also, the ratio of the model-predicted activity at the 
highest dose actually used in the fitting to the predicted control activity was computed 
for each data set (using predicted values smooths out some of the statistical 
fluctuations). That ratio was used to estimate ActMaxF for each data set. The degree 
to which potency estimates might be biased by cross-tabulating the estimate of B/A and 
the estimate of ActMaxF can be evaluated. Although the simulation was run at discrete 
values of B/A and ActMaxF, of course the real data are distributed continuously across 
the possible ranges of these two variables. To do the cross-tabulation, both variables 
were broken at the midpoints between discrete points used in the simulation: B/A at 
0.125 and 0.375, and ActMaxF at 0.675. Altogether, B could be estimated for 1135 
data sets. The breakdown by B/A and ActMaxF and the of the bias in the absolute 
potency estimate the simulations predict would be operative if every dataset in the 
corresponding group of the table had values of B/A and ActMaxF at the corresponding 
simulation value is: 

ActMaxF 

B/A #0.675 > 0.675 

#0.125 
73 (6.4%) 117 (10.3%) 

bias: 50% bias: 3% 

0.125 < B/A #0.375 
199 (17.5%) 382 (33.7%) 

bias: 11% bias: 3% 

0.375 < B/A #1 
139 (12.2%) 225 (19.8%) 

bias: -30% bias: -30% 
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About 61.5% of these data sets fall into the 3% or 11% bias groupings, while about 
32% of the data sets fall into groupings where the simulations predict that absolute 
potency would be underestimated by about 30%. 

Two complications in the calculation of the relative potency factors need to be 
considered for a total evaluation of bias. First, since the RPFs are based on average 
absolute potencies, data sets with both high and low values of ActMaxF would be 
combined to get an overall average. This should mean that bias in the overall average 
potency should fall somewhere between that of the individual data sets. Secondly, the 
denominator of the RPF, the absolute potency of methamidophos, itself must have 
some bias. This has the effect of reducing the overall bias of the RPF of chemicals 
whose absolute potencies were overestimated, and increasing the bias of the RPF of 
chemicals whose absolute potencies were underestimated. In fact, it is likely this is a 
small effect, since, in the RBC compartment in males, the ratio B/A is about 0.14, so the 
bias in its absolute potency would range between 3% and 11% based on the 
simulation. 

It should be clear that the overall bias of the relative potency estimates that is 
due to the estimation procedure is likely to be relatively small. However, this whole 
analysis should be taken as suggestive, rather than determinative, of the levels of bias 
likely to exist in the estimates of absolute potency. The real data sets have a range of 
dose-placements and sample sizes, while the simulations, while based on the 
distribution seen in the data, used a much smaller range. We have estimated B/A, but 
many data sets do not allow B to be estimated. By dropping those data sets, we may 
have biased the estimate of B. Finally, this is not a very quantitative analysis of any 
bias that might result from combining data sets. 

Summary of Simulation Results 

1.	 Bias of Potency Estimates (Figure 2). The primary determinants of the relative 
bias in potency estimates is the value of B and the activity at the highest dose 
(ActMax). In models with B = 1000 (that is, B is half of A), the potency is 
underestimated by about 28%. In models with smaller B, if doses are large 
enough that the activity at the highest dose is close to B, the bias is about 3% of 
the true value. The largest bias, around 54%, occurs in models with B=0, and 
where the activity at the highest dose is half the background. 

2.	 Coverage of Nominal 95% Confidence Interval (Figure 3). In general, 
confidence limits for the BMD in individual data sets have lower than their 
nominal coverage; that is, the BMDL is too high. Only if B=0, where the average 
coverage is about 97% or, for larger B, the activity at the highest dose is only 
half way to the horizontal asymptote, where the average coverage is about 93%, 
are coverages close to nominal. 
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Software 

To facilitate modeling the large number of datasets evaluated in this study, 
special purpose software was written using version 1.2.1 of the open source statistical 
programming language R, (Ihaka and Gentleman, 1996; http://cran.r-project.org ). A 
graphical user interface using the tcltk package for R was constructed to facilitate all 
phases of the analysis. Model parameters and their standard errors were estimated 
using the function gnls in the R package nlme (version 3.1-10; see Pinheiro and Bates, 
2000). 

Consistency of results with dose-additivity assumptions:  Observation of 
maximal response for cholinesterase inhibition 

In an ideal world, chemicals in a common mechanism group would demonstrate 
the same theoretical maximal response for the common mechanism endpoints. Some 
argue that the achievement of the theoretical maximal response may have important 
implications for dose-additivity, particularly at high dose levels (Putzrath, 1997). The 
theoretical maximal response for cholinesterase activity would be 100% inhibition of the 
enzyme. 

Achieving the theoretical maximal response implies that the value of B is zero or 
practically zero. Because the actual value of B is affected by the background activity 
and the method of analysis, it is more appropriate to compare the ratios of B/A (i.e., the 
y-asymptote divided by the background) across studies than comparing the actual B 
values. This ratio of B/A represents the percent of background cholinesterase activity 
achieved at the estimated maximal response. For example if B/A is 0.25 then it is 
estimated that cholinesterase plateaus at 75% enzyme inhibition. 

A discussion of B/A ratios is complicated by the fact that the model fitting 
procedure included setting B to zero and also dropping high doses. Therefore, all 
dose-response models in addition to dose-response models with non-zero B values 
are reported below. As shown below, 75% of dose-response models exhibited B/A 
ratios of 0-0.20 and 0-0.39 for all dose-response models and models with positive B 
values, respectively. Distributions of B/A for each chemical-sex-compartment 
combination are given in Appendix 3. Larger B/A ratios (> 30%) were observed for 
acephate, bensulide, malathion, methidathion, mevinphos, naled, phosmet, pirimiphos­
methyl, and tetrachlorvinphos. 

These results indicate that the value of B was not the same for all datasets but 
was rather heterogeneous. In addition, these results also indicate that for many 
datasets, the estimated B value was larger than the theoretical maximum of zero. 
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Distributional analyses of dose-response models for all single cholinesterase measurements. 

Total 
Number of 
datasets 

Minimum 
1st 

Quartile 
Median Mean 

3rd 
Quartile 

Maximum NA*'s 

Distribution of 
B/Aa over all 
models 

1312* 0 0 0 0.116 0.203 0.890 6* 

Distribution of 
B/A over models 
with B > 0 

535 0.009 0.144 0.249 0.283 0.399 0.890 

*Includes brain anatomical sections.

*Datasets which did not converge to exponential model

a B/A = Ratio of y-asymptote to background. 

*NA, not available


In general, although the value of estimate maximal response was not the same 
for all the datasets, the results of the analysis did not contradict the assumption of 
dose-additivity, especially at low exposure levels appropriate for extrapolation of the 
cumulative risk to humans. Thus, there was not a sufficient basis to depart from dose 
additivity. 

Conclusion 

The present approach to determining relative potency has several advantages. As 
opposed to another method, such as maximum-likelihood, the generalized least 
squares method used here for estimation of the parameters of the individual dose-
response curves is generally more robust to misspecified data distributions which is 
important since actual data distributions were not directly available for checking. A 
novel aspect of this analysis was the use of a hierarchical statistical model to combine 
estimates of potency for the oral studies (average absolute potency values) and to 
combine estimates of benchmark dose for the oral, dermal, and inhalation routes 
(average BMD10s for the index chemical). Historically, OPP has selected single data 
sets or data points (such as reference doses [RfD] or NOAELs) for use in single 
chemical risk assessment. Aggregating over multiple data sets from studies with 
relatively well-defined study design has the advantage of being able 1) to increase the 
precision of the estimates when there is little additional variability among data sets and 
2) to incorporate the variability among data sets into the overall estimate of uncertainty 
(standard errors or confidence limits). By combining potency estimates across data 
sets within studies and across studies, maximizes the use of the available information; 
almost all of the available dose-response data was used. Finally, this approach allows 
for a test of the dose-additivity assumption based on the similarly shaped dose-
response curves because it generally forces an examination of each dose-response 
curve. 
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Figure 1.  10 of the standard deviation of cholinesterase activities plotted
against the log10 of the corresponding means, for each compartment and sex. 
Each point is a single dose group.  
the data in each panel.  
between estimated standard deviation and mean.  

Log

The plotted line is a regression line fitted to
The regression suggests the indicated relationship
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B=1000 

ActMaxF=0.85,0.95 

B=500 

B=0,500 

ActMaxF=0.5 

B=0 

-0.009255 

n=216 

-0.281500 
n=72 

0.126900 

n=144 

0.029860 
n=96 

0.320900 
n=48 

0.105900 
n=24 

0.535800 
n=24 

Relative Bias of Potency 

Figure 2. Regression tree relating relative bias in potency estimates to model 
parameter values. The overall average relative bias is -0.009255 over all 216 
combinations of conditions. If B < 1000 (that is B/A < 0.5), and the activity at the 
highest dose is nearly B, then the relative bias is only 0.0299. 
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Figure 3. Regression tree relating Coverage of the nominal 95% confidence limit for 
the BMD to the simulation conditions. The top number in each node is the average 
coverage at that node; n gives the number of observations that contribute to the 
average. 
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