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NOTICE 

 
 These meeting minutes have been written as part of the activities of the Federal 
Insecticide, Fungicide, and Rodenticide Act (FIFRA), Scientific Advisory Panel (SAP).  
The meeting minutes represent the views and recommendations of the FIFRA SAP, not 
the United States Environmental Protection Agency (Agency).  The contents of the 
meeting minutes do not represent information approved or disseminated by the Agency. 
The meeting minutes have not been reviewed for approval by the Agency and, hence, the 
contents of these meeting minutes do not necessarily represent the views and policies of 
the Agency, nor of other agencies in the Executive Branch of the Federal government.  
Nor does mention of trade names or commercial products constitute a recommendation 
for use. 
 
 The FIFRA SAP is a Federal advisory committee operating in accordance with 
the Federal Advisory Committee Act and established under the provisions of FIFRA as 
amended by the Food Quality Protection Act (FQPA) of 1996.  The FIFRA SAP provides 
advice, information, and recommendations to the Agency Administrator on pesticides 
and pesticide-related issues regarding the impact of regulatory actions on health and the 
environment.  The Panel serves as the primary scientific peer review mechanism of the 
EPA, Office of Pesticide Programs (OPP), and is structured to provide balanced expert 
assessment of pesticide and pesticide-related matters facing the Agency.  Food Quality 
Protection Act Science Review Board members serve the FIFRA SAP on an ad hoc basis 
to assist in reviews conducted by the FIFRA SAP.  Further information about FIFRA 
SAP reports and activities can be obtained from its website at 
http://www.epa.gov/scipoly/sap/ or the OPP Docket at (703) 305-5805.  Interested 
persons are invited to contact Myrta R. Christian or Joseph E. Bailey, SAP Designated 
Federal Officials, via e-mail at christian.myrta@.epa.gov or bailey.joseph@epa.gov.  
  
 In preparing the meeting minutes, the Panels carefully considered all information 
provided and presented by the Agency, as well as information presented by public 
commenters.  This document addresses the information provided and presented by the 
Agency within the structure of the charge. 
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INTRODUCTION 
 

 The FIFRA SAP has completed its review of the set of scientific issues being 
considered by the Agency pertaining to the N-methyl carbamate pesticide cumulative risk 
assessment: pilot cumulative analysis.  Advance notice of the meeting was published in 
the Federal Register on January 6, 2005. The review was conducted in an open Panel 
meeting held in Arlington, Virginia, on February 15 - 18, 2005.  The meeting included 
four separate sessions as follows. 
 

• Session 1 - Issues Related to Cumulative Hazard Assessment 
 
• Session 2 - Physiologically Based Pharmacokinetic/ Pharmacodynamic  

        (PBPK/PD) Modeling for Carbaryl 
 
• Session 3 - Drinking Water Exposure Analysis 
 
• Session 4 - N-methyl Carbamate Exposure Assessment:  A Pilot Case Study  

 
 Sessions 1 and 2 were chaired by Dr. Gary Isom and Myrta R. Christian served as 
the Designated Federal Official.  Sessions 3 and 4 were chaired by Dr. Steven Heeringa 
and Joseph E. Bailey served as Designated Federal Official.  A public comment period 
was held at the beginning of the 4-day meeting on February 15, 2005. 
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PUBLIC COMMENTERS 
 
Oral statements were presented as follows: 
 
On behalf of the Natural Resources Defense Council: 
 Jennifer Sass, Ph.D., Natural Resources Defense Council 
 
On behalf of Bayer Crop Science: Abraham Tobias, Ph.D. 
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INTRODUCTION 
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 In Session 1 of this meeting, the FIFRA SAP met to consider and review N-
methyl carbamate pesticide cumulative risk assessment: pilot cumulative analysis, issues 
related to cumulative hazard assessment.  EPA acknowledges that there are toxicological 
characteristics unique to the N-methyl carbamates which need to be considered in a 
cumulative risk assessment for this group.  Specifically, the mechanism of action for this 
group of pesticides is carbamylation of the acetylcholinesterase (AChE) active site.  This 
chemical change is reversible, allowing for relatively rapid recovery from inhibition.  
OPP is collaborating with laboratory scientists and statisticians from EPA's National 
Health and Environmental Effects Research Laboratory (NHEERL) to evaluate biological 
and empirical aspects of recovery.  EPA solicited comment from the SAP on specific 
issues related to dose-response modeling of AChE data, empirical estimation of time to 
recovery, and the impact of the laboratory method used to measure AChE inhibition on 
estimates of relative potency.  The agenda for this SAP meeting session involved an 
introduction, background, and detailed presentations of the issues related to cumulative 
hazard assessment provided by Dr. Anna Lowit (Health Effects Division, Office of 
Pesticide Programs, EPA), Dr. Stephanie Padilla, Dr. R. Woodrow Setzer, and Dr. Ginger 
Moser, (Office of Research and Development, National Health and Environmental 
Effects Research Laboratory, EPA).  Dr. Clifford Gabriel (Director, Office of Science 
Coordination and Policy, EPA), Mr. Jim Jones (Director, Office of Pesticides Programs, 
EPA), Mr. Joseph J. Merenda, Jr. (Office of Prevention, Pesticides and Toxic Substances, 
EPA), and Dr. Tina Levine (Acting Director, Health Effects Division, Office of Pesticide 
Programs, EPA) offered opening remarks at the meeting.  Dr. William Brimijoin and Dr. 
Gaylia Jean Harry presented comments submitted by Dr. Janice Chambers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

SUMMARY OF PANEL DISCUSSION AND RECOMMENDATIONS 
 



13 of 113 

 The overall issue posed to the panel for the Day 1 discussions was the suitability 
of the Agency’s near-term plans for quantitative estimation of Relative Potency Factors 
(RPFs) for use in the carbamate cumulative risk assessment.  An initial question was the 
reliability and usability of the basic cholinesterase inhibition data supplied to the EPA by 
pesticide registrants.  The second generic question called on the Panel to evaluate three 
aspects of the Agency’s plans for quantitative analysis of those data: (a) the basic 
biological/toxicological assumptions underlying the analyses, (b) the statistical 
methodology incorporating a simplified pharmacokinetic approach planned for 
estimating RPFs, and (c) the later potential for use of probabilistic methods to 
characterize uncertainty distributions related to standard point-estimate uncertainty 
factors that have traditionally been used in Agency risk analyses for non-cancer effects. 
 
 The Panel’s principal response to the first issue was based on a qualitative 
graphical comparison of cholinesterase inhibition observations for several carbamates 
from an extensive set of Agency-conducted experiments using a modern radiometric 
method with results from (a) Agency-conducted experiments using an older version of a 
colorimetric method, and (b) results from Agency files of experiments reported by 
pesticide registrants using an updated modification of the colorimetric method.  Briefly, 
these comparisons revealed considerable discrepancies between the results of the 
radiometric assay and the results from the older colorimetric method.  However 
discrepancies were much less apparent, though not completely absent, between the 
radiometric results and the results of the modified colorimetric procedure that has 
evidently been used by registrants in recent years.  The committee stressed that ultimate 
conclusions on this issue must be based on a full quantitative analysis of the dose-time-
response relationships seen for the radiometric data in relation to the registrant data.  If a 
full statistical analysis reveals anomalies in the comparisons of key parameters for 
particular compounds, then some adjustment of registrant data for individual compounds 
may be needed.  In the meantime, on the assumption that proper care was taken by the 
registrants in the conduct of the assays, it appears that the results of the studies submitted 
for pesticide registration provide a fairly reliable database of AChE inhibition in relation 
to carbamate exposure.  Thus, on balance, the Panel supports EPA's position that the data 
are suitable to support the cumulative risk assessment.  
 
 On the second question, in general, the Panel approves the way the Agency is 
approaching the empirical analysis of AChE data for N-methyl carbamates.  The 
empirical model being used should be flexible and is likely to fit the data, although the 
Panel also offered several suggestions on details of the primary modeling approach and 
modest variants that should be considered by the Agency.  Five simplifying assumptions 
articulated by the Agency were all generally considered reasonable, although there were 
reservations on some, and the Panel re-emphasizes the need for quantitative statistical 
analyses of the uncertainties resulting from departures from these assumptions where 
possible.  Finally, the Panel welcomed the openness on the part of EPA staff to explore 
the potential for using distributional approaches in noncancer risk assessments to the 
extent possible.  The Panel offers several suggestions in the spirit of encouraging the 
Agency to help develop and use existing and emerging probabilistic techniques.  The 
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Panel cautions, however, that the process of replacing the uncertainty factors with 
distributions based on empirical data is far from straightforward.  In addition to 
distributional techniques for analysis, this process will involve new articulation of risk 
management goals, which are, of course, beyond the scope of the Panel’s charge to offer 
advice on technical issues.  For example, although technical methods can in theory 
provide a description of how confident we should be that the population incidence of 
harm of a given severity level for a given exposure is less than a series of defined values, 
there has as yet been no articulation of how to interpret such a distributional description 
in the derivation of an RfD or an "Acceptable Daily Intake" (ADI).  What fraction of the 
population is intended to be "covered" with what confidence by the current system of 
single-point "uncertainty" factors? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PANEL DELIBERATIONS AND RESPONSE TO QUESTIONS 
 

The specific issues addressed by the Panel are keyed to the Agency's background 
documents, references, and the Agency’s charge questions. 



15 of 113 

 
Questions 

 
Issue 1.1:  Laboratory method for measuring cholinesterase inhibition 
 

As discussed in the paper (Cumulative Hazard Assessment:  Issues for the 
FIFRA SAP), in toxicology studies performed for pesticide registration, typically, 
acetylcholinesterase (AChE) inhibition is measured using modified Ellman, 
spectrophotometric methods (Ellman et al, 1961).  Scientists at EPA’s National 
Health and Environmental Effects Research Laboratory (NHEERL) have 
performed a series of time course and dose-response studies (Appendices 1 and 2) 
with seven N-methyl carbamate pesticides.  These studies have compared 
radiometric and spectrophotometric methods following acute dosing in rats.  EPA 
has provided plots of these studies along with plots of dose-response data from 
single dosing rat studies submitted for pesticide registration (Appendix 2).  Prior to 
the completion of these studies, there was a concern that studies submitted to EPA 
for pesticide registration may underestimate relative potency.  Specifically, using 
spectrophotometric methods, recovery of inhibition can occur prior to analysis if the 
proper precautions are not taken in the laboratory. 

 
Statistical analyses evaluating results of the radiometric data generated by 

EPA and the spectrophotometric data reported by registration studies have not 
been performed. However, in general, based on visual observation of these plots 
(Appendix 2), there appears to be good concordance, particularly at doses at or near 
10% inhibition, between the results of studies submitted for registration purposes 
where spectrophotometric methods were used and the results of studies performed 
by EPA where radiometric analyses were performed.  Nostrandt et al. (1993) have 
previously shown that modified Ellman assay gave answers comparable to the 
radiometric assay if some special precautions were taken.  EPA does not know the 
exact conditions used in various laboratories performing registration studies.  
However, it appears that the AChE data provided in the registration studies are of 
sufficient quality for evaluating relative potency. 

 
Question 1.1 
 

Please comment on EPA’s observations regarding the results of radiometric 
studies conducted by NHEERL and the results of studies submitted for 
pesticide registration. 

 
 
Panel Response 
 

The Panel debated whether the comparative studies of seven N-methyl 
carbamates at NHEERL give clear evidence that recent AChE data provided by the 
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registrants to EPA are of sufficient quality to support a cumulative risk assessment.  The 
Panel commended the EPA scientists for their well-designed and valuable study and 
reached a consensus that the results demonstrated “reasonable reliability” in the registrant 
data.  Several unresolved issues were noted, however, and qualifications and reservations 
were expressed as indicated below. 
 

The Agency presented dose-response data generated by two different methods for 
a number of carbamates (coded A to H) of varying potency.  One set of data was based 
on radiometric assays involving minimal sample dilution and minimal assay duration.  
These data were expected to approximate the true levels of AChE inhibition.  A second 
set of data was based on automated spectrophotometric assays, with no attempt to limit 
sample dilution or assay time.  The data from these “conventional Ellman assays” were 
expected to be more variable and to underestimate true levels of AChE inhibition by an 
unknown amount.  The purpose of this comparison was to gain perspective on the quality 
of data previously supplied to EPA by the registrants of the same seven carbamates, who 
carried out their assays with a version of the spectrophotometric method. 
 

The time-course and dose-response plots for the seven selected N-methyl 
carbamates in Appendix 2 of the EPA document differed between the radiometric and the 
spectrophotometric methods.  The differences did not follow a consistent pattern and 
therefore did not lend themselves to easy correction (such as a simple multiplicative 
adjustment in the percentage of inhibition measured by one method to convert to 
percentage of inhibition measured by the other method.)  It would be interesting to search 
systematically for the factors that could account for the differences observed.  Beyond the 
factors discussed by the Agency (dilution, temperature) there may be others (e.g. 
experimental design, type of carbamate, other assay details) that could explain at least 
some of the discrepancies between assays.  This information could help in judging the 
value and limitations of spectrophotometric methods for determining cholinesterase 
inhibition. 
 

For objective comparison of the two assay approaches, one should probably 
parameterize the time-response and dose-response data from each method and use 
derived parameters to describe the differences.  The time course of AChE inhibition in 
both data sets consisted of a sharp drop followed by a recovery to 100% of control 
activity.  One Panelist suggested that the recovery phase could be fitted to a two-
parameter Michaelis-Menten type of curve.  A one-parameter exponential recovery 
model, as used in the current proposal, is also an option.  Similarly, the dose-response 
data could be described by a slope parameter obtained with regression techniques.  
Because low-dose effects are important for risk assessment, one should explore how to 
calculate best the low-dose slopes of the different dose-inhibition curves.  For 
compounds where shoulder effects appear, e.g. owing to the normalization against 
control values, data in the shoulder region could be dropped from the regressions or 
modeled with the same kind of Michaelis-Menten approach used for the 
organophosphates. That is, the Agency could model the dose-response curves and 
express potencies as reciprocals of the benchmark doses associated with a predetermined 
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percentage of inhibition (e.g., the reciprocal of the ED10, or BMD10, at which 
cholinesterase is inhibited by 10%).  Differences between compounds could so be 
described - possibly quantitatively- more objectively than when viewing and interpreting 
the plots only. 
 

Without prejudging the outcome of a rigorous methodological/statistical 
comparison, the Panel discussed the reliability of EPA’s radiometric approach to 
assessing AChE inhibition by carbamates.  A point not addressed in the submitted assay 
protocols was how long samples waited between homogenization and assay.  The Panel 
heard in session that the delay was up to 90 minutes.  Such a delay might have allowed 
substantial reactivation if samples had been highly diluted.  However, the Panel was 
informed that tissues for these assays were homogenized in less than 5 volumes of buffer 
and were kept at ice temperature.  Although the Panel would prefer direct evidence that 
reactivation did not occur before the assay, it is reasonable to conclude that the NHEERL 
radiometric data reflect the true levels of carbamate-induced AChE inhibition.  This 
accuracy contrasts with the data from the same sample set obtained with a conventional 
Ellman procedure.  In the NHEERL study, the conventional data were much more 
variable, especially with red cells, and in most cases they underestimated AChE 
inhibition in samples exposed to higher levels of carbamate. 
 

Turning to the registrant data, all based on spectrophotometric methods, the Panel 
saw generally good agreement with the EPA/NHEERL results obtained using the 
radiometric method.  In many cases, the levels of inhibition reported by the registrants 
were similar to those in NHEERL’s radiometric data.  This agreement would be 
surprising if the registrants had used standard automated Ellman assays.  In public 
comment, however, an industry representative stated that the registrants as a group have 
made a concerted shift to a more rigorous modified method.  The Panel recognizes that a 
modified Ellman procedure will reliably measure AChE inhibition if tissue dilution, 
assay time, and assay temperature are minimized as described by Nostrandt et al. (1993). 
 One Panel member pointed out that running such assays in a real-time or “kinetic mode” 
offered the important advantage of being able to detect reactivation as it occurred, which 
is not possible with the end-point determinations in a radiometric assay.  Taking the data 
at face value, one can conclude that the registrants’ results do give a reliable index of 
cholinesterase inhibition with most of the tested carbamates.  Assuming similar quality in 
the studies on the carbamates not tested by NHEERL, then most if not all of those 
registrant data should also be useable for risk assessment. 
 

The agreement between the data sets from NHEERL and registrants should not be 
overstated, however.  In the first place, as mentioned above, firm conclusions await a 
rigorous statistical analysis.  Second, the graphs in Appendix 2 are somewhat misleading 
because, in standardizing for the control, the curves are forced together on the left (low 
dose region).  This squeezing effect can account for the apparent “optical agreement” at 
low levels of AChE inhibition.  Other options that could be explored by a statistician with 
access to the raw data would be expressing the comparative results in terms of ratios of 
the observed percentage of inhibition—either in aggregated form for all animals studied, 
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or on the basis of distributions of individual animal results in a form such as comparative 
box plots.  Of more concern were specific instances in which the NHEERL and registrant 
data diverged systematically.  Sometimes the divergence was conservative for risk 
assessment; i.e., the registrant data predicted greater inhibition than the NHEERL data, 
but in other cases the divergence was non-conservative.  With compound D, for example, 
the registrant data underestimated relative potency in the brain by a factor of about two.  
With compound C the underestimation of potency in red blood cells (RBC) was equally 
great.  The formal analysis should quantify the uncertainty in comparative potency 
estimates arising from such cases. 
 

In light of the available information, the Panel was open to the possibility that 
these individual discrepancies merely reflect random effects in, for example, statistical 
mean control for AChE activity.  Variations in the control for AChE activity are likely 
since individual animals can differ by 50% or more.  As one Panel member pointed out, it 
would be advantageous in the future to collect a series of timed blood samples from the 
same animal, starting before the toxicant is administered.  A modified study design with 
same-animal controls will reduce variability and increase statistical power.  Unfortunately, 
but obviously, repeated sampling cannot be extended to tissues like brain tissues.  While 
brain AChE remains a very important target site, future efforts should be devoted to 
develop models for RBC data as well, considering AChE activities in RBC are 
significantly correlated with activities in brain tissues as presented by the Agency’s 
scientists.  The concern about using brain AChE alone was raised by several SAP panel 
members in previous meetings, and for the purpose of validating the PBPK/PD models 
and cumulative risk assessments, an accessible specimen sample, such as red blood cells, 
is essential.  In this case brain sampling from humans is not feasible.  Additionally, issues 
of statistical power come to the fore in attempts to determine low levels of AChE 
inhibition. Previous SAP meetings have emphasized that precise determinations of 
BMD10, critical for estimates of relative potency, require accurate measures of inhibition 
at or below the level of 10%.  Using present methods, this goal is unachievable unless 
group sizes are very large, even with a time-series study design.  Novel approaches to 
address this problem are worth seeking. 
 

Returning to the question of why some registrant data appeared to underestimate 
the levels of AChE inhibition, the Panel could not exclude the possibility that certain 
studies suffered from shortcomings in experimental procedure.  In order to evaluate those 
concerns it is important to review the exact conditions used, and what Good Laboratory 
Practice (GLP) quality standards were implemented in the various laboratories.  The 
standard operating procedures of the registrants should be made available to the Agency 
together with the original data if they are to be considered for the risk assessment.  One 
Panel member suggested that a Round Robin test using known activities of AChE in 
human or animal tissue samples should be adapted so the variations between assays or 
between labs can be quantified within a pre-determined percentage.  Similar activities are 
being undertaken in the State of California.  The Panel also considered the possibility of 
compound-specific effects on enzyme activity under different assay conditions.  Data 
assessing these possibilities would be of valuable.  Ultimate conclusions should be based 
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on a full quantitative analysis of the absorption rate constant, recovery rate constant and 
AUC of the dose-response curves.  Of these, the parameter most likely to vary widely 
across laboratories/animals is the absorption rate constant.  However the recovery rates 
and the AUCs should agree.  If these metrics show anomalies for particular chemicals 
after a full statistical analysis, then some adjustment of registrant data for individual 
compounds may be needed.  In the meantime, on the assumption that proper care was 
taken by the registrants, it appears that the results of the studies submitted for pesticide 
registration provide a fairly reliable database of AChE inhibition.  Thus, on balance, the 
Panel supports EPA's position that the data are suitable to support the cumulative risk 
assessment. 
 
Issue 1.2:  Empirical modeling of AChE Data 
 

Part A.  Benchmark dose calculations: 
 

In the EPA’s cumulative risk assessment of the organophosphorus pesticides 
(OPs), a decreasing exponential model was used to develop benchmark dose 
estimates.  The FIFRA SAP previously endorsed this approach (FIFRA SAP, 2001 
& 2002).  EPA plans to use again a decreasing exponential model in its benchmark 
dose estimates for the N-methyl carbamate pesticides, with the addition of a 
component to model the time course of AChE inhibition.  This model was provided 
in the Eqs. 1 – 4 and the associated text (See Cumulative Hazard Assessment:  Issues 
for the FIFRA SAP and Appendices 3-4). 
 
Question 1.2a  

 
Please comment on the appropriateness of using the model provided in 
Equations 1 – 4 to calculate benchmark dose estimates based on 
cholinesterase inhibition for the N-methyl carbamate pesticides. 

 
Panel Response 

In general, the Panel approves of the way the EPA is approaching the empirical 
analysis of AChE data for N-methyl carbamates.  The empirical model being used should 
be flexible and is likely to fit the data.  The multiplicative model f(t,d) = A[1-g(d)h(t)], is 
a straightforward empirical modeling approach that has the advantage of being both 
practical and transparent.  However, when proceeding with this modeling, the Agency 
should be aware that the multiplication of the dose function with the time function could 
yield a dose-time-response surface that could, in some occasions, lack sufficient 
flexibility for fitting all of the carbamate data sets (see e.g. Figure 1 in Appendix 3).  The 
inclusion of a term combining time t and dose d may need to be considered. 
 

On the dose scale, the model is a bit over-parameterized and it will prove difficult 
to find an optimal solution.  Constraints on the model parameters and/or Bayesian 
methods could reduce this problem.  However, the SAP feels a more complicated model 
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is probably not justified. 
 

There could be greater emphasis on statistical hypothesis testing (e.g. does the 
ED10 change from one strain to the next; across sexes).  In addition, because this is an 
empirical model, goodness-of-fit needs to be carefully assessed when using this to make 
risk projections.  The Agency is encouraged to continue exploration of the Aikake 
Information Criterion (AIC) for comparative assessment of the quality of model fits to 
the data. 
 

The time component of the dose-response function is the classic solution to a 
simple PK process and adequate as a first look at the time course effects on dose-
response.  The dismissal of the human data for direct estimation and its projected use as a 
“validation” of an allometric scaling of the rat model seems premature (especially in light 
of the limited analysis used by the EPA to review the agreement between the two 
methods for evaluating AChE).  The Panel encourages the Agency to either directly 
estimate parameters using the human data or try to fit the human and rat data 
simultaneously with the species extrapolation built into the modeling. 
 

The use of the Benchmark Dose (BMD) concept and terminology for the 
cumulative risk assessment of carbamates needs clarification.  Otherwise it could be 
confused with the BMD approach used in standard risk assessment (RA) of chemicals.  
There, the BMD is used for the definition of a starting point (point of departure) for the 
low dose extrapolation and the definition of risk specific doses.  In contrast, in the 
present context of cumulative RA of carbamates, the BMD approach has been 
implemented to derive relative potency factors (RPFs).  In addition, this BMD method 
does not incorporate a process to estimate a BMD lower confidence level (BMDL) which 
is usually calculated in standard RA.  Possible later Monte Carlo uncertainty or 
sensitivity analyses might benefit from a series of upper and lower confidence limits on 
the estimates of mean RPFs. 
 

If estimates of the relative potency factors are to be obtained for individual 
animals, the solution of averaged parameter values will not be the same as the average 
solution.  In addition to the uncertainty distributions for the central estimate RPFs 
suggested in the previous paragraph, the Agency may need to generate solutions for 
random sets of animals to look at a variability distribution of relative potency factors.  
The RPFs will be calculated as ratios of two BMDs, say DR / DR-index , where the 
denominator will be the BMD of the index chemical, DR-index and DR the BMD of the 
compound to be considered for an inclusion in the cumulative RA.  From a statistical 
point of view, the RPF is then a ratio of two quantities where each was estimated from 
dose-response data and possesses therefore statistical variability.  Consequently, the 
variability of the RPF can be calculated and is a function of the statistical variability of 
DR and DR-index.  In order to calculate the standard error of the RPF =DR / DR-index 
according to a well known statistical method, the appropriate standard error estimates--
s.e.(DR) and s.e.(DR-index)--are required. 
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A source of uncertainty in this BMD approach stems from the choice of R=10% 
inhibition as the critical effect size.  When inspecting the figures of Appendix 2 one 
realizes that the slope of the dose-response curve is very shallow as one approaches 10% 
inhibition.  The shallow slope translates into a large variability in estimates of the dose 
that causes this level of inhibition.  Therefore, one may question whether the choice of 
R=10% is optimal or whether it should be replaced or compared to other choices of the 
critical effect size.  Furthermore, since the BMD for the cumulative RA is derived using a 
dose-time-response function f(t, d) the DR is also a function of time, better denoted DR(t). 
 When using the simple PK model, the RPF is also a function of time t after exposure 
better denoted RPF(t)= DR (t)/ DR-index(t).  When representing the response as a surface 
over the dose-time coordinate system, the BMD is similar to an isobole, a parameter well 
known in combination experiments.  RPFs are then simply ratios of isoboles from 
different experiments and should be presented as such.  If there is stability over time, 
then that can be noted and used. 
 

The multiplicative model f(t,d) uses the time of the peak effect, which is usually 
not known, as a model parameter to be estimated from the dose-time data.  Since 
measurements near the time of the peak effect are the exception rather than the rule in 
experiments like the present one, it is often difficult to obtain precise estimates of that 
time.  This difficulty reduces the interpretability of what is otherwise an important model 
parameter in the simple PK model.  The data presented by the Agency came from 
experiments that measured AChE inhibition no earlier than 15 minutes after exposure.  
The Agency should attempt to obtain reliable measurements of AChE inhibition at earlier 
time points.  If such data cannot be obtained, it may be possible to use a simpler model 
for the time component that does not require a biphasic curve but instead uses an 
instantaneous drop at exposure. 
 

On the other hand, one Panelist expressed a preference for the Agency to adapt 
the simple pharmacokinetic model in a direction that is more in line with a mechanistic 
interpretation of the original equation for the time course of cholinesterase inhibition.  
The current bi-exponential equation implies that all of the inhibition that will ultimately 
occur is available immediately at the outset of the AChE regeneration process.  This is 
not strictly correct because none of the AChE enzyme molecules can undergo 
regeneration before they have actually been inhibited.  In the view of this Panelist, a 
more mechanistically faithful model/equation would be a solution to the following 
differential equation:  d[Inhibition]/dT = k1[unabsorbed] – k2[Inhibition], where 
[unabsorbed] is the maximum possible inhibition if all the carbamate were delivered to 
the site of action in the brain instantaneously. 
 
This equation does not appear to have a closed-form solution, but it can be solved 
numerically using appropriate software.  It will avoid the need in the present equation for 
the statistical constraint that k1 is arbitrarily set to be less than k2 (which will likely be 
violated for dermal exposure experiments). 
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A concerted effort is needed to find data on intrinsic clearance rate for any of 
these chemicals since there may be compound specific changes that could affect the 
regeneration rate.  The Agency needs additional guidance and could possibly use a 
simple biochemical assay to get the theoretical recovery rates. 
 

Finally, the SAP was pleased that the Agency chose to perform the calculations 
using the R software package.  The equations were nicely coded and commented.  
Transparency in EPA’s model development and application will continue to improve the 
public’s confidence in the EPA’s work. 
 

Part B.  Simple pharmacokinetic model 
 

As discussed in the background document prepared for the FIFRA SAP, 
EPA is committed to improving methodologies and approaches for conducting 
cumulative risk assessments.  To this end, EPA has begun development of a simple, 
pharmacokinetic (PK) based approach for incorporating recovery of cholinesterase 
inhibition in risk estimates.  The simple PK model is more sophisticated than 
conventional relative potency approaches but less data-intensive than 
physiologically-based pharmacokinetic/ pharmacodynamic approaches and thus 
provides a pragmatic method for considering PK and/or mechanistic information in 
risk estimates.  There are still, however, limitations to the application of this 
approach for the N-methyl carbamate cumulative risk assessment—namely, the 
capability for cumulative exposure models to output distributions of exposure (in 
mg/kg or similar units) to individuals.  Given this limitation, EPA continues to 
pursue practical methods for improving risk assessment methods.  It is unclear at 
this time the degree to which this simple PK approach may be used in the 
cumulative risk assessment for the N-methyl carbamate pesticides.  However, as 
EPA continues to work towards improving its risk assessment methods, EPA is 
requesting comment from the FIFRA SAP regarding aspects of the development 
and application of this simple PK approach.  
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Question 1.2.b 

 
Please comment on the simplifying assumptions used in the simple PK 
approach to predicting cholinesterase inhibition.  Please include in your 
comments whether these assumptions tend to underestimate or overestimate 
potential risk.  These assumptions are: 

 
• The inhibitor is cleared quickly from the target tissue, so that 

recovery time mostly depends upon the rate of 
decarbamylation of AChE. 

• Competition among multiple inhibitors for AChE or clearance 
pathways is quantitatively insignificant. 

• Inhibitors do not modify the affinity of AChE for other 
inhibitors (e.g., by binding to a site on the AChE molecule that 
has allosteric effects), or such effects are quantitatively 
insignificant. 

• It is appropriate to ignore resynthesis of new AChE molecules 
in the time-frame of interest (1 – 6 hours). 

• The model for effects in humans can be calibrated by scaling 
parameters of models fit to rodent data. 

 
Panel Response 
 

The consensus of the Panel is that at low dose levels the assumptions listed below 
for the current model are probable valid.  There are, however, limited actual data to 
address or support these assumptions for carbamate pesticides.  As with any modeling 
exercise, the accuracy of the model is limited by the quality of the original data.  Thus, 
the Agency is encouraged to examine all available data sets including the human data 
comparison mentioned in the document, EPA studies on mixtures, and data provided by 
industry both in and outside of the registration packages for individual pesticides.  When 
evaluating these and other assumptions, the Agency is encouraged to consider how the 
model would need to be adjusted to account for any assumptions.  The adaptations 
needed to alter or remove some assumptions might not appreciably change the 
fundamental model structure or implementing software, while accounting for other 
assumptions may require a new model or software. 
 
Assumption 1.  The inhibitor is cleared quickly from the target tissue, so that recovery     
                           time mostly depends upon the rate of decarbamylation of AChE. 
 

The assumption that recovery of AChE activity mainly reflects the rate of de-
carbamylation is sound, given the half-life values of current members of the cumulative 
assessment group and the rate of exchange between fat and blood that can be inferred 
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from simple pharmacokinetic information.1  This assumption would be true at low 
concentrations.  However, with one compound, inhibition lasted twice as long as with 
most of the others.  The intrinsic rate of decarbamylation with this compound might be 
atypically slow, but that would be surprising since all of the tested carbamates should 
generate identical enzyme adducts.  Therefore, assumption one may not be universally 
true.  In other words, the rate of recovery of enzyme activity in rats treated with certain 
N-methyl carbamates might be driven by extrinsic factors, other than intrinsic rates of 
decarbamylation.  Should new carbamate pesticides with much higher degrees of 
lipophilicity and longer half-life values become available, and appear to a significant 
extent in the environment, the validity of this assumption should be revisited.  Some 
reevaluation also might be in order if elimination rates from human fat are much slower 
than the observed regeneration half lives for acetylcholinesterase activity in blood.  That 
may be the case because, as indicated by the human model parameters in ERDEM, the 
ratio of blood flow to fat volume is much lower in humans than in rats. 
 
Assumption 2.  Competition among multiple inhibitors for AChE or clearance pathways  
                           is quantitatively insignificant.  
 

The assumption that competition among multiple inhibitors for AChE or for 
clearance pathways is quantitatively insignificant should hold across much of the 
anticipated human exposure range.  However, this simplifying assumption may not hold 

 
1 For example, the ERDEM pharmacokinetic model incorporates an estimated fat/blood 
partition coefficient of 17.1.  For rats, the blood flow incorporated into this model is 0.51 
liters/minute and the tissue volume is approximately .015 Liters for a 0.25 kg rat.  Given 
this, the rate constant for elimination of carbaryl from fat is expected to be [blood flow 
/(tissue volume * fat//blood partition coefficient = .51/(.015*17.1) = 2.0/hour.  This rate 
constant directly implies a half life in fat of [ln(2)/2.0 = 0.35 hours], or about 21 minutes. 
Thus, for the rat experiments, release from the fat seems unlikely to appreciably distort 
observations of the half life of about 1.7 hours attributed to enzyme regeneration.  This 
would continue to be true even if the actual elimination half life for rat were about twice 
as long (41 minutes) as implied by an alternative rat tissue/blood partition coefficient 
estimation model suggested by one Panel member (Ginsberg, G. L., Pepelko, W. E., 
Goble, R. L., and Hattis, D. B. “Comparison of Contact Site Cancer Potency Across Dose 
Routes:  Case Study with Epichlorohydrin,” Risk Analysis Vol. 16, pp. 667-681, 1996; 
Walker, K., Hattis, D., Russ, A., and Ginsberg, G. “Physiologically-Based Toxicokinetic 
Modeling for Acrylamide—Risk Implications of Polymorphisms and Developmental 
Changes in Selected Metabolic Enzymes,” Report from the George Perkins Marsh 
Institute, Clark University, and the Connecticut Department of Public Health to the U. S. 
Environmental Protection Agency under Cooperative Agreement #827195-0, December 
2004; Ginsberg, G. L., Goble, R. L., and Hattis, D. B. “Slope Factor Comparison Across 
Dose Routes:  Case Study with Epichlorohydrin,” Report to the U.S. Environmental 
Protection Agency by TRC Environmental Corporation, April, 1994.  Spreadsheets 
incorporating the alternative assumptions for estimating partition coefficients in rats and 
humans will be supplied to EPA on request. 
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under conditions of relatively high exposure to two or more carbamate pesticides, where 
competition for the AChE protein and for clearance pathways is more likely.  Limited 
data with carbaryl and malathion indicate that malathion decreased the rate constant of 
absorption and beta-phase elimination of radiolabeled carbaryl when both were 
administered orally at 10 mg/kg to rat (Waldron and Abdel-Rahman, 1986).  This study 
suggests that at higher exposures, competition for the target as well as for elimination 
pathways would be expected. 
 
Assumption 3.   Inhibitors do not modify the affinity of AChE for other inhibitors (e.g.,    
                          by binding to a site on the AChE molecule that has allosteric effects), or  
                          such effects are quantitatively insignificant. 
 

The assumption that inhibitors do not modify the affinity of AChE for other 
inhibitors is sound, based on existing knowledge.  This is again especially true at low 
concentrations.  The potential interaction of carbamates should be acknowledged, and 
accounted for when such interaction significantly influences risk analysis.  Data to be 
obtained from the ongoing EPA studies of the combined 7 compounds should provide 
additional information on possible interactions.  However, the current design of these 
mixture studies may not be sufficient to fully resolve critical questions of effect 
additivity.  The inclusion of neural cell cultures as a complementary model system to 
assess specific interactions should be considered by the Agency.  The validity of this 
assumption should remain under surveillance for new carbamates that may interact by 
allosteric means with AChE.  If allosteric interactions are discovered, their effect on 
enzyme sensitivity will have to be defined before one can determine whether the 
operating assumption will tend to overestimate or underestimate risk. 
 
Assumption 4.   It is appropriate to ignore resynthesis of new AChE molecules in the       
                           time-frame of interest (1 – 6 hours). 
 

Simplification of any model is desirable especially in reducing the number of  
parameters for which limited or no data are available.  AChE protein is normally 
produced in excess with the majority being degraded.  The half-life of AChE synthesis in 
rodents is approximate 7 days, providing a net turnover of approximately 10%/day or 
0.5%/hr.  This turnover leads to the expectation that the maximum impact of new enzyme 
synthesis on the overall rate of reversal of AChE inhibition should be approximately 3%. 
 The relative impact of resynthesis of new AChE molecules is greater at higher levels of 
inhibition and becomes less important as activity returns to normal levels.  Re-synthesis 
of new AChE molecules is therefore unlikely to contribute much to the process of 
recovery during the first 6 hours.  
 
Assumption 5.   The model for effects in humans can be calibrated by scaling parameters 
                            of models fit to rodent data. 
 

Body weight3/4 scaling is the usual assumption for model extrapolation of bulk 
metabolic capacity among species, in parallel with observations of the scaling of 
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metabolic rates. There are no obvious data to indicate that the model for effects in 
humans should not be initially calibrated by scaling parameters of the models fit to rodent 
data.  If these parameters are identified as key contributing factors by sensitivity analysis 
the Agency should provide some guidance for targeted efforts to test the scaling 
assumptions for key parameters with limited human studies. 
 

As indicated earlier in the response to Question 1.1, ultimate conclusions should 
be based on a full quantitative analysis of the absorption rate constant, recovery rate 
constant and AUCs/dose.  Of these parameters, the most likely to vary substantially 
across laboratories/animals is the absorption rate constant.  In contrast, the recovery rates 
and the AUCs per dose should match from experiment to experiment.  If these parameters 
show discrepancies for particular chemicals, given a full statistical analysis, some 
adjustment of registrant data for individual compounds should be considered. 
 
Question 1.2c 

 
EPA historically has utilized (default) uncertainty factors for interspecies 
and intraspecies extrapolation.  EPA’s issue paper (and related appendices 3-
4) suggests that application of the simple, PK approach to estimation of risk 
provides an opportunity to consider probabilistic methods in uncertainty 
analysis for cumulative hazard assessment.  Please comment on biological 
and quantitative factors which may be important for consideration in the 
event probabilistic methods were to be used to perform uncertainty analysis 
in cumulative hazard assessment. 

 
Panel Response 
 

This question reflects a welcome openness on the part of the EPA staff to explore 
the potential for using distributional approaches in noncancer risk assessments to the 
extent possible.  The presenters exhibited a commendable dedication to achieve 
congressionally mandated public health protection goals with the aid of the best inputs of 
technical understanding that can be mustered in a reasonable time.  The Panel offers the 
suggestions below in the spirit of encouraging the Agency to help develop and use 
emerging probabilistic techniques.  However, the Panel is not able to offer a 
straightforward incremental path to utilize the insights gleaned from those techniques in 
the current system of single-point uncertainty factors that has developed over the decades 
since the original 1954 paper of Lehman and Fitzhugh (Lehman and Fitzhugh, 1954).  In 
part, this is because there has only been a beginning to public discussion of how to 
separate the risk assessment and risk management elements embedded in the current RfD 
procedure by specifying quantitative objectives that should be met by RfDs in terms of 
variability and uncertainty (Hattis et al., 2002).  That is, for exposure at an RfD level, 
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what degree of confidence should there be that the population incidence of some 
specified degree of biological effect is below a particular value? 
 

The discussion below will first cover one Panelist’s perspective on some issues in 
the potential use of probabilistic techniques to help inform choices of the values of 
specific uncertainty factors (those for interspecies projection and human inter-individual 
variability, as supplemented with the additional FQPA factor).  Then there will be some 
more general comments on opportunities and pitfalls in the use of probabilistic 
techniques in the analysis of currently available data for the carbamate cholinesterase 
inhibition agents. 
 
Interspecies Factor: 

 The goal of this factor is to convert the external doses associated with a sensitive 
but still “adverse” toxicological endpoint in a sensitive species of animals to doses that 
would be expected to cause the same “benchmark” incidence and severity of effects in 
humans.  Distributional analyses of empirical data on interspecies projection are 
potentially useful in the following way:  By assembling data bases of putatively 
analogous cases for relatively well studied chemicals, the “uncertainty” in interspecies 
projections for a chemical for which there are inadequate direct test information are 
estimated by observing the variability among a set of analogous chemicals with better 
information.  There is, of course, some need for judgment in the choice of a particular set 
of chemicals that can be considered “analogous” cases for a specific untested chemical. 

 The most recent distributional analyses relevant to this factor (Hattis et al., 2002) 
for multi-dose exposures are based on data for putatively analogous indices of systemic 
subchronic toxicity for 61 anti-cancer agents in animals and people assembled by Price et 
al., 2002.  [The endpoints used as benchmarks for toxicity in animals and people were not 
identical but were those historically used for prediction of human potencies from animal 
data by the National Cancer Institute—usually LD10 levels were used for rodents and 
compared with “maximum tolerated doses”2 inferred from human studies of the anti-
cancer agents.  For dogs and monkeys, the benchmarks were typically TDL (Toxic Dose 
Low) values.3]  The results of this analysis, in brief, are that where data from single 
species are used to project the potency of the same chemical in humans, the geometric 
mean of the estimates are close to what would be expected for a body weight3/4 

 
2 “Maximum Tolerated Doses” are operationally defined as the dose level at which none 
of six or one of six patients experience dose limiting toxicity with the next higher dose 
level having two or more patients experiencing dose limiting toxicity [Storer B.E (1989), 
Design and analysis of phase I clinical trials. Biometrics. 45(3), 25-37; and Edler L 
(2001) Overview of Phase I Trials. In Handbook of Statistics in Clinical Oncology (ed. J 
Crowley) Marcel Dekker, 1-34.] 
3 This is defined as the lowest dose to produce pathological alterations in hematological, 
chemical, clinical, or morphological parameters, the doubling of which produces no 
lethality. 
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projection.  There is, however, a considerable spread in the relationship between the 
human toxic potencies calculated from this scaling assumption and the potencies 
estimated from human data.  For example, for the 18 chemicals for which there are rat 
and human potency estimates, the geometric mean human potency for systemic toxicity is 
about 90% of the value projected from the rat data; however the 95th percentile of the 
distribution corresponds to more than four times the value projected from the a body 
weight3/4 scaling rule. 

 A similar distributional analysis is possible for acute toxicity using a database of 
thousands of LD50 observations in different species of animals assembled by Rhomberg 
and Wolff (1998).  Unfortunately, there are only four chemicals in this data base where 
estimates of human LD50s are provided.  However, analyses have been made of the 
distributions of interspecies differences for the diverse species represented in the 
collection.  On this basis, the central tendency of interspecies projections using these 
acute toxicity data is close to dose/body weight1 rather than the body weight3/4 scaling 
rule observed for the subchronic data discussed above.  The preliminary explanation for 
the difference in the central tendency scaling rules for subchronic versus acute toxicity is 
that the key causally relevant internal dosimeter for systemic subchronic toxicity tends to 
be an AUC (integrated Area Under the Curve of concentration X time) for the toxicant, 
for which energy-dependent elimination rates are important.  By contrast, it is thought 
that the key pharmacokinetic determinant of acute toxicity following a single dose of a 
typical toxicant is an internal maximum concentration of the toxicant, which is likely to 
be more strongly influenced by simple dilution of the administered dose in an appropriate 
distribution volume--which tends to scale across species in direct proportion to body 
weight.  This comparison has not, however, been done within mode-of-action groups.  It 
might be informative to select the anticholinesterase agents from the existing Rhomberg 
and Wolff (1998) data base and evaluate the interspecies scaling of that subset.  The full 
Rhomberg and Wolff (1998) data base is available from the first author. 

 In the context of the analysis of carbamate toxicity, for the chemicals where doses 
causing comparable degrees of cholinesterase inhibition can be determined, it would be 
useful to examine the distribution of human/animal toxic potencies for whatever degree 
of inhibition is selected as the “benchmark” response. 
 
Human Inter-individual Variability Factor 

 It is important to begin this discussion by mentioning the distinction between 
“dose-effect relationships” (where the dependent variable is a continuous response, as in 
a cholinesterase level) and “dose-response relationships” (where the dependent variable 
is the fraction of individuals who show a quantal, or binary, response such as death or a 
cleft palate.)  In the case of a quantal response that is caused by threshold mechanism, a 
“benchmark dose” (BMD) is interpretable as the fraction of individual animals (or 
people, if human data are used) who have thresholds for response that are lower than the 
defined “benchmark” response frequency (often 10%).  Therefore, for a quantal effect, 
the BMD contains some element of inter-individual variability, at least within the group 
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of animals (or humans) that was directly studied.   

 By contrast, where the biological response variable studied is a continuous 
parameter, as in the case of a cholinesterase level, the BMD is usually4 defined in terms 
of a change (such as a 10% reduction) in the group mean of the parameter under study.  
The chosen extent of change in the continuous variable is sometimes referred to as the 
“benchmark response” (BMR).  In this case, there is no component of individual 
variability in the BMD—essentially the BMD is an estimate of the dose that causes the 
designated percentage change in the continuous variable (BMR) in the typical or average 
member of the experimental animal group tested.  Therefore, for a continuous variable 
like a particular degree of acetylcholinesterase inhibition, the purpose of the human inter-
individual variability factor should be seen as the multiple of dose needed to convert the 
external doses associated with a particular percentage of inhibition (or other associated 
biological effects) in a typical or average person, to the dose that can be expected with 
high confidence to produce a corresponding cholinesterase inhibition (or other associated 
effects) in an acceptably small proportion of exposed humans.  Stated in this way, 
questions are raised as to how small is an “acceptably small proportion of exposed 
humans” and how high the confidence level should be that the incidence of 
cholinesterase inhibition at the BMR level is less than the incidence deemed 
“acceptable.”  These are policy determinations that are beyond the scope of the technical 
advice requested from the Panel, although it can be noted that there are preliminary 
proposals for operational answers to these questions in the existing literature (Hattis et 
al., 2002). 

 With this background it also should be noted that inter-individual variability in 
the dose producing a given amount of cholinesterase inhibition in people does not cover 
all of the pharmacodynamic variability.  In the taxonomy of human variability proposed 
in the past work of one Panelist (Hattis et al., 1999), pharmacodynamic inter-individual 
variability has two components:  

• Differences among people in the amount of the active agent at the active site 
needed to produce a particular change in a physiological parameter (e.g. 
cholinesterase inhibition), and  

 
4 Alternatives to this have been suggested in some cases.  For example some have 
advocated defining an “effect” for a continuous parameter in terms of the change in the 
number of individuals who are some number of standard deviations (or log standard 
deviations for a lognormal distribution) away from the group mean based on the 
distributional statistics of an unexposed control population.  However this 
“quantalization” approach discards some of the inherent statistical strength of a 
continuous biological response parameter, and, unless there is some basis for choosing 
the number of standard deviations used to define abnormality, appears no less arbitrary 
than picking some percentage change in the group mean level for defining a benchmark 
response. 
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• Differences among people in the amount of change in the physiological parameter 
needed to cause an adverse response (e.g., an acute change in cholinesterase 
function needed to cause short term symptoms, or developmental effects during 
possible “windows of vulnerability”, or a longer term adaptation needed to 
produce possible adaptive synaptic changes that could mediate longer term 
adverse alterations in neural or neuromuscular signaling as has recently been 
reported for some organophosphate agents) (van Helden et al., 2004; Delgado et 
al., 2004; Sánchez-Santed et al., 2004; Kassa et al., 2001a; Kassa et al., 2001b; 
Kassa et al., 2001c).  Subtle developmental effects are theoretically possible, for 
example, an early life marginal strengthening of signaling for some cholinergic 
pathways relative to other non-cholinergic pathways.  This is because, during 
some sensitive times, initially formed synaptic connections may be lost if there is 
few signaling traffic along them.  One Panelist noted that identifying sensitive 
window(s) for this kind of effect may be complex because different portions of 
the human nervous system develop (and perhaps undergo this synaptic “pruning”) 
at different times/ages (Johnston, 1995; Lichtman et al., 2000; Lowel and Singer, 
1992; Walsh and Lichtman, 2003).  

 
Because the types of variability mentioned in the second bullet would not be 

captured even if there were perfect measurements of the human inter-individual 
variability in changes in cholinesterase activities as a function of dose, the Agency should 
be cautious in its consideration for possible changes in the normal 10-fold human inter-
individual variability factor for anticholinesterase agents in the light of human clinical 
studies of cholinesterase inhibition from carbamates that have been conducted by or for 
the pesticide registrants.  The variability indicated by those human studies should be 
analyzed and compared with variability information for other general toxicants, but 
possible changes in the uncertainty factor for inter-individual variability should be 
limited by the fact that the full pharmacodynamic pathway to functional response is not 
captured in cholinesterase inhibition measurements standing by themselves.  The FQPA 
10-fold factor can be thought of as a policy-based recognition of the possibility of 
developmental effects mentioned in the second bullet above. 
 
Other General Comments 
 
 Panelists expressed general support for exploration of probabilistic approaches 
that would depart from the routine application of multiple factors of 10 for the various 
uncertainties in interspecies projection and the extent of human inter-individual 
variability.  However, there was skepticism that the results of probabilistic uncertainty 
analysis could, in the near term, be used to completely replace the traditional interspecies 
uncertainty factors without both PK and PD data for validation.  Furthermore, while there 
was optimism that pharmacokinetic scaling for interspecies projection is likely to be 
approachable, the Panel had reservations on the current capability to treat the PD portion 
of the pathway, especially with the relatively sparse data specific to carbamate 
pharmacodynamics.  For the inter-individual variability factor, the Panel expressed a 
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need for explicit consideration of the possible effects of human genetic differences 
leading to differences in absorption or metabolic elimination.  One Panelist expressed a 
strong preference that most of the analytical resources available for this effort be devoted 
to statistical analysis of the cholinesterase inhibition dose-response data, with no more 
than 10% of the available analytical resources devoted to a possible probabilistic 
analysis. 
 
 The Panel expressed its support of the suggestion made by the public presenter 
(Dr. Sass) to fully document and expose to independent verification the various models 
used for analysis of the cholinesterase inhibition information, as called for in the EPA’s 
Council for Regulatory Environmental Modeling (CREM) guidelines 
(http://epa.gov/osp/crem.htm). 
 
 Another Panelist, with some explicit support from other members, made four 
distinct methodological points for EPA to consider in framing its probabilistic analyses: 
 

• First, uncertainties other than those arising from simple sampling errors should be 
included.  Conventional uncertainty statistics such as standard errors are based 
solely on observable fluctuations in the available data.  However empirical 
experience has shown that even in such mathematically sophisticated fields as 
physics, as improved experimental techniques allow better measurements, there is 
a strong tendency for the updated measurements for such parameters as 
fundamental particle constants to be found to fall outside of the bounds of 
previously stated statistical confidence limits more often than would be expected 
by chance.  The likely generic explanation for this is that there are generally 
unsuspected sources of systematic error (miscalibration of instruments; 
unrepresentativeness of statistical samples in surveys, etc.) that mean that existing 
standard errors should generally be expanded beyond those conventionally 
calculated from internal differences within data sets.  Techniques have been 
suggested to do this (Shlyakhter, 1994; Hattis and Burmaster, 1994), but these 
have not yet been widely adopted. 

• Second, the issue of dependence should be thought through for any probabilistic 
analysis.  Dependency issues are of two kinds.  First, one parameter may depend 
on another because of real causal mechanisms that connect them.  For example, 
when fat is absorbed into the blood following a fatty meal, this will be likely to 
both increase the fat/blood partition coefficient for a volatile lipophilic chemical 
in a physiologically based pharmacokinetic (PBPK) model, leading to somewhat 
greater short term absorption from an inhalation exposure, and, in parallel, 
decrease the tissue/blood partition coefficients, and hence the rate of elimination 
of the chemical from a variety of lipid-containing model compartments (fat, 
brain) with venous blood exiting the organs.  A second distinct source of 
dependency is induced correlations in estimation errors for different parameters in 
the same regression or other statistical modeling analysis.  For example, in the 
simple pharmacokinetic model presented it is quite likely that the simultaneous 

http://epa.gov/osp/crem.htm
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estimation of cholinesterase inhibition half life and “absorption” half life” induces 
cross-correlations in estimates of these parameters.  Appropriate use of the 
calculated estimation errors for these parameters in a probabilistic uncertainty 
analysis requires direct or indirect consideration of the dependencies of the error 
distributions for one of these parameters on the others. 

• Third, although transformations can be convenient ways to enforce some 
constraints on parameter values in an estimation procedure (as was mentioned in 
the discussion of the simple pharmacokinetic model), such transformations may 
not always be ideal for deriving uncertainty distributions. 

• Finally, although it is prudent to use the guidance mentioned in the simple 
pharmacokinetic model justification to keep the model simple, there may be some 
merit in exploring even simpler models for sensitivity analysis (for example, 
eliminating the “absorption” half life). 

 
A further concern that was mentioned by one Panelist (but was shared by other 

Panelist) was for more analysis of errors caused by model uncertainty or 
misspecification.  What uncertainty arises from possible errors in the mathematical forms 
chosen for representing resynthesis or reactivation of inhibited acetylcholinesterase, or 
specifying the relationships between cholinesterase inhibition kinetics in rats versus 
people?  Although the quantitative information for carbaryl and other carbamates are 
likely to be among the better data sets, they should not be expected to yield very precise 
estimates of the values of model parameters.  This reinforces the need for careful thought, 
sensitivity and uncertainty analyses. 
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INTRODUCTION 
 
 In Session 2 of this meeting, the FIFRA SAP met to consider and review N-
methyl carbamate pesticide cumulative risk assessment: pilot cumulative analysis, 
physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling for 
carbaryl.  OPP is collaborating with scientists from EPA’s National Exposure Research 
Laboratory (NERL) to develop a PBPK/PD model for carbaryl within the Exposure 
Related Dose Estimating Model (ERDEM) Platform (Blancato et al., 2002; Okino et al. 
2004).  The carbaryl model will form the basic structure of a generalized model for the 
N-methyl carbamates.  A Quantitative Structure Activity Relationship (QSAR) database 
of physicochemical descriptors and provisional PK and PD parameter values has been 
assembled for selected N-methyl carbamates.  The completeness and representativeness 
of the QSAR database will influence the application of the PBPK/PD model for use in the 
cumulative risk assessment of the N-methyl carbamates.  EPA solicited comment on 
specific aspects of the appropriate use of ERDEM for this Risk Assessment.  The agenda 
for this SAP meeting involved an introduction, background, and detailed presentations of 
the issues related to PBPK/PD modeling for carbaryl provided by Dr. Anna Lowit 
(Health Effects Division, Office of Pesticide Programs, EPA), Dr. Miles Okino, Dr. Jerry 
Blancato, Mr. Fred Power, and Dr. Curtis Dary (Office of Research and Development, 
National Exposure Research Laboratory, EPA). 
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SUMMARY OF PANEL DISCUSSION AND RECOMMENDATIONS 

 
The Panel commends and supports the Agency's effort to develop a PBPK/PD 

model for carbaryl within the Exposure Related Dose Estimating model (ERDEM) 
platform and encourages its continuing improvement as the basic structure applicable for 
N-methyl carbamates (NMC).   
 

Comments were made regarding the coverage in the Agency background 
document.  Specifically, the given information is insufficient for a comprehensive review 
regarding the completeness and availability of database for model development.  Greater 
transparency and details also are needed for tracking model building decisions and 
calibration.   
 

Comments and suggestions were made on several areas of model construction, 
parameter estimation, and model fitting.  The Panel expressed concerns about the 
complexity of the model that appears to go beyond what the available data can support.  
Several suggestions for its simplification are given.  On the other hand, there are areas 
that may be inadequately modeled.  These include considering the inactivation of 
carbaryl when it is released from binding to cholinesterase, and the bioavailability of 
carbaryl through dermal uptake.  If necessary, it may be possible to place greater 
emphasis on the lower dose range pertinent to human exposures when calibrating model 
fit through evaluating the discrepancies between model predictions and experimental 
data.  Thoughtful considerations should be given to the decision to focus the model fit on 
the blood:brain partition coefficient.  A set of fat:blood partition coefficients are provided 
for initiating a sensitivity analysis.  With respect to the PD portion of the model, the 
general lack of PD data is noted. 

 
The Agency's initial effort is focused on group average parameters.  Future efforts 

can explore and assess parameter range and variability.  Modeling data from individual 
animals may reveal a unique set of coefficients for model parameters.  When aggregated 
data are applied to the model, the pertinence of prediction at the 99.9th percentile 
warrants careful consideration.  It is important to consider the model's utility when 
inputting biomonitoring data collected in humans.  Instead of using only the portion of 
data collected in Missouri, biomonitoring data collected in California also should be used 
to characterize human exposures.  Finally, the Panel provides detailed suggestions on 
statistical evaluation, specifically for determining model complexity and parameter 
estimation, assessing model's goodness-of-fit, and for sensitivity and uncertainty 
analyses.    

PBPK/PD modeling opens up a variety of possible endpoints for risk assessment. 
 The Panel provides perspectives for each of the five endpoints proposed by the Agency 
in the context of duration and level of exposure, toxicity implication, and the expression 
of risk.  The use of more than one endpoint is encouraged because it can enhance the 
understanding of how risk is defined and facilitates risk communication. 
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It is too early in the model development to determine its application in cumulative 
risk assessment for the NMC.  The Agency is encouraged to continue its development.  
General considerations for the future development of the ERDEM model include 
ensuring that the sizable model output is organized with options for ease in data and file 
management and export, and broadening the model application by adding the capability 
to model endpoints at target fetal tissues.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PANEL DELIBERATIONS AND RESPONSE TO QUESTIONS 
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The specific issues addressed by the Panel are keyed to the Agency's background 
documents, references, and the Agency’s charge questions. 

 
Questions 

 
Issue 2.1: Data Requirements for PBPK/PD Models 
 

The document "Assessment of carbaryl exposure following turf application 
using a physiologically based pharmacokinetic model" describes the application of a 
carbaryl specific physiologically based pharmacokinetic/pharmacodynamic 
(PBPK/PD) model to a case study of exposure for selected exposure scenarios 
involving broadcast applications of a liquid formulation of carbaryl to turf.  A 
PBPK/PD model was developed based on available laboratory studies, and applied 
to post-application exposure scenarios. 
 

The PBPK/PD model provided a structure to evaluate the pharmacokinetic 
(PK) and pharmacodynamic (PD) data available for carbaryl.  This case study was 
instructive in discovering data gaps, such as blood:brain partition coefficient values, 
isolated metabolism rates, and identification of specific metabolites.  Data published 
in the open literature were generally incomplete for the purposes of PBPK/PD 
modeling, where simultaneous tissue concentration, excretion and effect data are 
ideal for model evaluation.  Registrant data provided some constraints for 
PBPK/PD parameter values, but uncertainty remains in those values due to the 
dependence on fitting in vivo data and structure-activity methods (Poulin and Theil 
2000; J Pharm Sci 89:16-35). 
 
Question 2.1a 

 
Please comment on the completeness of the data used to develop the 
PBPK/PD model. 

 
Panel Response 
 

The documents provided to the Panel do not contain a comprehensive review of 
the data available for potential use in model calibration, and so it is difficult to respond to 
this question fairly.  Future documentation of the model and its derivation should include 
such potentially usable information.  Table 1 in the background document is far from 
sufficient for this purpose.  This is because (1) it evidently omits some data sets that the 
authors decided not to use, (in some cases for good reasons--e.g. because they were based 
on experiments with non-ring labeled carbaryl) and (2) because the observations 
themselves are not presented in tabular form.  Presentation of the useable data in tabular 
form, with available information on observed variation and measurement errors in the 
data in an appendix, facilitates independent assessment of the correspondence between 
observations and model predictions. 
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Question 2.1b 

 
Please comment on the way the data sets were used to estimate and constrain 
parameter values. 

 
Panel Response 

In general, the Panel is supportive of the ERDEM effort but considers the system 
to be in a relatively early stage of development.  This is particularly evident in the 
application to a complex modeling problem such as that presented by the many 
metabolic/inactivation pathways and multiple physiological compartments of the current 
PBPK/PD models for carbaryl in rats, adult humans, and children of various ages. The 
potential power of the model is that it can project across dose levels, species, and age 
groups.  However, there need to be caveats alerting the reader to the limitations and 
uncertainties in the model as currently developed and calibrated.  The Agency indicated 
that the model will continue to be improved as more data become available, and this is 
encouraged by the Panel.  Such improvements increase the likelihood that this model can 
be successfully extended to other carbamates. 

This question elicited a wide variety of comments on different aspects of model 
development, calibration, and testing.  The responses below are organized into four major 
headings: 

 
• Model documentation and disclosure of the history of model development and 

calibration with observational data 
 
• Fundamental model structure 

 
• General conception and execution of the “fitting” problem.  This includes  

o The problem of “overparameterization” and the balance of considerations 
in basing estimates of various model parameters on fitting results within 
the model versus exogenous information (such as organ volumes and 
blood flows) 

o The need for more formal statistical criteria for model fitting, instead of 
the current relatively informal procedure 

o The issue of model “validation” 
o The issue of group average versus individual values of model parameters 
 

• Evaluation of the current ERDEM model fits and implications of these 
early results with respect to   
o Which observations should be emphasized in model calibration? 
o Anomalies in the current fitting, and implications for adapting model 

inputs and refitting 
 



45 of 113 

Model Documentation and Development History 
 

The existing report provides only the most basic outline of the processes for using 
the data to calibrate the model.  There is no presentation of what fitting techniques were 
applied, which parameters were fixed or fitted, or what data were used to evaluate the 
fits.  Several Panelists also indicated that additional documentation of the modelers’ 
decisions in response to inadequacies in first-generation model fits is desirable.  The oral 
presentation indicated a relatively informal process of adjusting the brain/blood partition 
coefficient.  Some Panelists suggested that the EPA should undertake a more detailed and 
statistically formal effort to resolve the uncertainties in the calibration for the rat model 
before the projection is seriously used for estimating human delivered doses and inferring 
brain cholinesterase inhibition from the few urinary metabolite data available for human 
children. 
 

Fundamental Model Structure 
 

One Panel member made an observation that has significant implications for the 
structure of the carbaryl model.  This was that carbaryl binding to the active site of 
acetylcholinesterase (AChE) is, essentially, a metabolic destruction step for the carbaryl 
molecule.  Even if the cholinesterase enzyme molecule itself is regenerated by hydrolysis 
of the methylcarbamoyl moiety bound to the active-site serine, the original carbaryl is not 
regenerated.  Simple calculations by this Panelist suggested that this might not be the 
primary mode of metabolism of carbaryl, but it could make a significant contribution to 
overall metabolism.  If the contribution is appreciable then the model will need to be 
adapted.  Instead of locating all metabolism of carbaryl in the liver (following a 
convention in PBPK modeling that may often be an imperfect reflection of reality) the 
model should provide for catalyzed hydrolysis of carbaryl in all compartments where 
AChE and butyrylcholinesterase enzyme activities are known to be present--particularly 
the brain, blood, and liver.  
 

General Conception and Execution of the “Fitting” Problem 

a) The issue of “overparameterization” 

There is a well-known adage that represents the deceptively high quality of fits 
where there are few data and many parameters: “with four parameters I can fit an 
elephant; with five I can make it wave.”  Actually, a formal paper on this subject referred 
to in the Panel discussion suggests that many more than four parameters are required to 
create a mathematical function that will represent a drawing of an elephant, but the point 
is clear.  If a relatively limited data set is used to estimate the values of many parameters, 
it will usually be possible to arrive at a “fit” that appears excellent, but which in reality 
has no predictive power because the curve has simply been made to arbitrarily follow the 
data points, including all the experimental errors in the data, regardless of the accuracy of 
the implied mechanistic structure of the mathematical relationships in the model. 
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PBPK/PD models generally have many more parameters than can be usefully 
estimated with available data sets on the time course of the concentrations of parent 
chemical and metabolites in different places in the body and excreta.  Therefore, the 
tradition is to divide parameters into two subsets: 

• The vast majority of the parameters are estimated using data that are exogenous to 
the model and are thought to be relatively robust whatever conclusions are drawn 
about the values of other model parameters.  These exogenous inputs to the model 
typically include organ sizes, blood flow rates, alveolar ventilation, and 
tissue/blood partition coefficients based on direct measurements.  The inputs may 
also include such relatively distinctive elements of the ERDEM model as transit 
rates of food through portions of the gastrointestinal system, bile and urinary flow 
rates. 

• By contrast, a few types of parameters are usually estimated by “fitting” or 
“calibrating” those model parameters so that model outputs correspond to some 
set of time course concentration data collected following a defined in vivo 
experimental administration of the compound to animals or people.  This second 
set of parameters typically includes Michaelis-Menten enzyme kinetic parameters 
(Vmax and Km—the asymptotic maximum velocity of the reaction and the 
concentration of substrate that elicits half the maximum reaction rate) and dermal 
absorption rates. 

The ERDEM carbaryl model contains more parameters of the fitted category than 
usual, in part because the modelers tried to follow the whole ensemble of carbaryl 
metabolites in order to (1) use calibrating information in the form of total 14C levels in 
some compartments, and urinary outputs of specific metabolites for rats, and (2) draw 
inferences about internal exposure and, indirectly, brain cholinesterase inhibition from 
urinary metabolite data in exposed children.  Several Panelists were critical of the 
ERDEM modelers’ choice to adjust the brain/blood partition coefficient (and only that 
one partition coefficient) to achieve better agreement between observed and predicted 
brain concentrations, in part because this converts a parameter that was estimated on the 
basis of exogenous physical chemical information into one that is fitted via the model to 
specific data (see below for a more extended discussion). 

b) The need for more formal statistical criteria for model fitting 

Many of the Panelists strongly favored a more formal statistical approach to 
model fitting/calibration using the existing data.  This does not necessarily imply a 
completely equivalent (unweighted) treatment of all data—some types of data were 
judged by different Panelists to be more salient for risk-related predictions than others 
(see below), but development of some objective and statistically defensible procedure 
was widely considered to be an important aspect that should be considered for the next 
iteration of the ERDEM system. 
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c) Model “validation” 

“Validation” is the term used to describe a process whereby some predictions 
from a model are compared to observed data that were not used in the original calibration 
of model parameters.  This process is most useful when there are relatively large amounts 
of data available to estimate relatively few parameters, unlike the present case where the 
available data are relatively sparse in relation to the number of parameters.   

Some Panelists with experience in PBPK/PD modeling were critical of 
“validation” as a term.  They believe that it implicitly suggests that a model that survives 
a comparison with independent data is therefore “valid” or “true”.  In fact, while such a 
successful test can increase confidence in model predictions, in general there may be 
many other but untested models that would have equal mechanistic plausibility and not 
be incompatible with the same data. 

At least one of these Panelists suggested that instead of “validation”, modelers 
describe the process as “juxtaposition of model predictions and data.”  This treats the 
data and the model predictions on a more even footing.  In fact, when model predictions 
and data are incompatible, the data can be wrong, the model can be wrong, or both can be 
wrong in varying degrees.  Discrepancies between model predictions and observations 
present the modeler with a need/opportunity to reflect, and create different hypotheses 
about the likely source(s) of the discrepancies.  In this process it is helpful to look for 
patterns in the observed/predicted differences that can suggest the mechanistic origins of 
systematic errors in model structure or data.  Are the discrepancies more prominent with 
one strain or gender of animals than another? At early versus late time points? At high 
versus low doses?  In one tissue more than another?  Each of these types of patterns can 
suggest hypotheses that can be the starting points for further examination with other 
information.  Such hypotheses also can be used in sensitivity analyses to assess how 
much the ultimate risk-related result might be changed if the model was restructured in 
various ways, or data sources were weighted in ways that emphasized the least 
problematic or most likely relevant information for environmental exposures. 

d) Group average versus individual values of model parameters 

One Panelist pointed out that the ERDEM carbaryl model parameter values result 
from fitting one set of coefficients to an average response from replicate animals or 
people.  However, if each individual has a unique set of coefficients for model 
parameters, the solution of averaged parameter values will not generally be the same as 
the average solution.  To assess this, the modeling team should obtain, present, and 
analyze the raw data for individual animals if possible.  The modeling team may 
eventually need to generate solutions at random sets of correlated coefficient values and 
look at the distribution of the results to obtain better insights into the effects of individual 
variability on both averages and variability distributions for risk related outcomes.   
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Evaluation of the Current ERDEM Model Fits and Implications of the Current 
Results 

a) Which observations should be emphasized in model calibration? 
 

The apparent widespread use of total 14C levels in various organs for the purpose 
of calibration drew critical comments from several, but not all, Panelists because this 
represents an uncertain and varying proportion of unchanged carbaryl and metabolites at 
different times and places in the body.  Virtually all who commented preferred to 
emphasize the data on unchanged carbaryl for model calibration as being more causally 
relevant for the endpoint of cholinesterase inhibition.  However, one Panelist indicated 
that measurements of total 14C were likely to have been more accurately measured. 
 

One Panelist also emphasized the need to use some urinary metabolite 
information to help calibrate the rat model, because urinary metabolite data for human 
children represents essentially all the data that are available for calibration of the human 
model.  In response, EPA staff members indicated that information on the total 
metabolite distribution cumulated at long times after exposure were an important part of 
the calibration of the relative values for the metabolism components for specific 
metabolites in the rat model. 
  

Another preference that was widely shared among the Panelists was for 
calibration of the model to make predictions that most closely correspond with 
observations at relatively low doses that are closest to those likely to be experienced in 
people.  The EPA staff presenter for the ERDEM model expressed a similar preference 
but the system he showed for summarizing the model/data discrepancies with dose as a 
linear regression fit may tend to implicitly emphasize discrepancies at relatively high 
exposure levels.  Expression of discrepancies as the weighted sum of squares of log 
deviations of observations from predictions would avoid this inadvertent emphasis on the 
fits at high dose levels.  More sophisticated likelihood methods (again, most likely based 
on a log transformation of observations and predictions) could similarly be used to 
specifically evaluate discrepancies at lower dose levels. 
 

A final issue was the choice of the registrant’s Missouri rather than the California 
data for drawing modeling inferences about human exposures.  The reason given for this 
was that the Missouri data reflected adherence to the label directions for application of 
the carbaryl-containing products.  This may be a reasonable policy-related consideration 
in the evaluation of the data for purposes of re-registration decisions.  However for 
purposes of creating a model descriptive of actual human exposures the Panel suggested 
including the California data.  If use at greater than recommended rates occurred within 
the registrant’s own controlled experiment, it is at least plausible that similar departures 
from ideal application occur in the practical use of carbaryl-containing products in the 
much less controlled settings of residential use by consumers and perhaps also 
commercial applicators.  Moreover, the California data could provide quantitative 
information on the responses of urinary biomarkers to exposures over a much broader 
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range of exposures—allowing better calibration and testing of model predictions and 
inputs such as assumed human metabolism “Km”s that would otherwise be assumed to be 
identical to estimates from the animal data. 

b) Anomalies in the current fitting, and implications for adapting model inputs 
and refitting 

 
The Panel agreed that the model developed has promise, as outlined in a summary 

slide, to 
 
• Provide structure to evaluate the effects of diverse data on inferred risk 
• Efficiently evaluate different exposure scenarios 
• Identify factors affecting dose 

 
However, the Panel had difficulty evaluating the quality of such outputs without a 

better understanding of the source of all the parameters put into the model, and 
improvements to reconcile many of the model/data departures that are apparent in the 
Appendix. 

 
Discussion in an earlier subsection emphasized the need to reflect on patterns in 

model/data discrepancies to form mechanistic hypotheses about the source(s) of possible 
systematic errors.  In doing this, the modeler also asks: (1) which parameter estimates are 
more vulnerable to larger changes because of experimental variability or alternative 
interpretations (e.g. alternative metabolite compositions of total 14C) and (2) which 
parameters are key to the determination of the ultimate assessment parameters that affect 
risk (e.g. unchanged carbaryl versus metabolite concentrations).  The conclusions from 
the first reflection process help identify which parameters should be allowed to vary, if 
they are influential in affecting the model fit to observed information.  The decision to 
radically adjust the brain partition coefficient, and only that one, is one of the more 
questionable choices in model development in the opinion of several Panelists.  The 
results of the current data contain interesting indications that perhaps errors in estimating 
other partition coefficients may be contributing to the excessive model predictions of 
brain carbaryl concentrations that caused the modelers to drastically reduce the predicted 
brain/blood partition coefficient from what was predicted on physiochemical grounds. 
 
 Many of the data/model fits are not as good as they should be for a final model.  
In particular, the model seriously overestimates brain 14C concentrations and somewhat 
overestimates brain and blood 14C (Figures E2 and E3, p.130 in EPA draft document 
“Assessment of Carbaryl Exposure Following Turf Application Using a Physiologically 
Based Pharmacokinetic Model”).  On the other hand, the model (after the suspect 
adjustment of the brain/blood partition coefficient) does better at estimating the brain 
carbaryl concentration but if anything underestimates brain carbaryl at short times after 
exposure.  There are huge discrepancies between data and model predictions for blood 
naphthol and naphthol sulfate concentrations (Figures E10 and E11, p.134).  Brain and 
fat carbaryl concentration kinetics also show appreciable differences between data and 
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model predictions (Figures E18 and E19, p.138).  Peak brain carbaryl (Figure E18) is 
under predicted by two-fold.  In the case of fat, the time of occurrence of peak levels 
(Figure E19) indicates some fundamental problem with the partitioning or effective flow 
rates or blood brain transfer kinetics.  Similarly, in Figure E22 (p.140) it can be seen that 
the predicted brain napthol concentrations underestimate the observed data by about 
seven-fold.  Liver and blood napthol comparisons are off by something like ten-fold 
(E24, p.141).  Therefore, improvements in the model for rats are needed before extending 
it to make inferences about cholinesterase inhibition from urinary metabolite data in 
humans. 

 
Of these anomalies, the one that is particularly likely to be salient for alternative 

model development, in the view of one Panel member, is the apparent pattern of delay in 
the observed time to peak levels of carbaryl in the fat relative to that predicted by the 
current model (Figure E19, p.138).  This suggests one or two possible underlying 
differences between reality and the model inputs:  (a) The estimated fat/blood partition 
coefficient is too low and/or (b) the rate of transfer from the blood to the fat is slower 
than expected from perfusion-limited transport due to a relatively slowly-reversible 
binding of carbaryl in the blood.  Binding in the blood would tend to lower the effective 
brain/blood partition coefficient at longer times after oral exposure and also might 
contribute to an explanation of the failure (commented on by several Panelists) to 
measure detectable levels of carbaryl in the blood. 

 
To begin to explore this issue, one Panelist utilized his own data base of rat and 

human tissue/blood partition coefficients and regression model formulae (previously used 
for a few different published PBPK models (Ginsberg et al., 1996; Ginsberg et al., 2004; 
Walker et al., 2004)) to estimate the fat/blood partition coefficients and the half-life for 
perfusion based removal of carbaryl from fat in rats and humans based on the same 
octanol/water partition coefficient for carbaryl used by the ERDEM authors.  
(Spreadsheets containing these data bases and the formulae for tissue/blood partition 
coefficient estimation are available in the EPA OPP Docket (Docket Number: OPP 2005- 
0405).  The results are presented in Table 1.  It can be seen that the alternative estimates 
of the fat/blood partition coefficients are about twice as large as the estimates currently 
used in the rat model in ERDEM, and about three times as large in the case of humans.  
This leads to expectations of considerably longer elimination half lives for carbaryl in 
fat—in the direction needed to at least partially account for the model/data difference for 
the fat compartment seen in the rat model used in ERDEM.  It is suggested that the set of 
alternative partition coefficients could be used as an alternative starting point for 
sensitivity analysis for the ERDEM carbaryl modeling exercise. 
 

Table 1 
Comparative Estimates of Fat/Blood Partition Coefficients and Elimination Half 
Lives for Carbaryl in Fat in the Current ERDEM Model versus an Alternative 

Regression-Based Method 
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Species 

Body 
Weight 

(kg) 

Fat 
Volume 

(L) 

Fat 
Perfusion 
(L/Hour)

Fat/Blood 
Partition 

Coefficient

Source of 
Fat/Blood 
Partition 

Coefficient 

Elim. Rate 
Constant from 
Fat (1/hr) by 

Perfusion 

Half Life of 
Carbaryl in 

Fat (hr) 

Half life of 
Carbaryl in 
Fat (min) 

Rats  0.25 0.015 0.51 17.1 ERDEM 2.0 0.35 21 

Rats  0.25 0.015 0.51 33.9 
Hattis rat 

regression model 1.0 0.69 41 

         

         

         

Humans--9 
yr 20.4 2.35 16.9 17.1 ERDEM 0.42 1.7 99 

Humans--9 
yr 20.4 2.35 16.9 63.6 

Hattis rat 
regression model 0.11 6.1 368 

 
 
Issue 2.2: PBPK/PD Model Fidelity 
 

The PBPK/PD model was developed in the Exposure Related Dose 
Estimating Model (ERDEM) platform.  The ERDEM platform is, by design, highly 
structured and flexible for adaptation to new or emerging exposure and risk 
assessment needs.  In PBPK/PD modeling, there is a need to balance completeness 
regarding anatomical/physiological pathways/routes with the desire for model 
simplicity.  The model is required to simulate the relevant dose metrics and provide 
the capability to extrapolate from the laboratory setting to exposure scenarios of 
interest.  Modeling runs with the ERDEM platform are typically short; thus 
computational time is not an issue.  The important consideration is the in silico 
representation of the species and the connection with pathways and routes of 
exposure. 
 
Question 2.2a 

 
Please comment on the carbaryl PBPK/PD model structure for evaluating 
diverse exposure scenarios, including the exposure to children on the turf 
described in the report.  Please include in your comments a consideration 
of the degree to which the compartments included in this model 
reasonably describe the PK and PD characteristics of carbaryl and 
provide the ability to extrapolate the model across species and scenarios, 
balanced against model simplicity. 

 
Question 2.2b  
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As more PK and PD data become available, the model structure from this 
application may be applied to other N-methyl carbamates, including 
mixtures.  Please comment on the suitability of the carbaryl specific 
PBPK/PD model structure as developed in the ERDEM platform for 
expansion to include other N-methyl carbamates.  

 
Panel Response (to Question 2.2 a & b) 
 

The Panel commends the Agency and its scientists who are building this 
comprehensive PBPK/PD model for their work which has lead to an important milestone 
in the utility of mechanism-based models.  This model is relevant in the present context 
for cumulative risk assessment and will be important for doing biologically-based risk 
assessments for single compounds.  The model has achieved a level of maturation where 
all of the relevant parts and modules are publicly available and ready for open scientific 
scrutiny.  This model can be applied to the estimation of biomarkers of exposure and, to a 
lesser extent, biomarkers of effect. 
 

At this stage of model development, it is important to consider the applicability 
and acceptability of the model.  The model is extremely complex and the Panel expressed 
concern that this level of complexity may not have sufficient support in the available 
data.  Some modules of the model are structurally identical (e.g. those used as simple 
storage compartments) and could be considered as sufficiently similar to be treated with 
one generic differential equation thereby reducing the apparent complexity.  A second 
means of reducing apparent complexity would be to group modules of similar influence 
on the AChE levels (e.g. in response to the results of a sensitivity analysis).  Finally, the 
Agency may want to consider grouping some of the different metabolic rates to reduce 
the need for 2 parameters for each metabolite. 
 

However, some changes are needed that might increase complexity.  Dermal 
absorption seems to be inadequately modeled.  A portion of carbaryl absorbed by the skin 
and stored in the dermis may not be readily available for distribution in the circulation.  
This is evident by the results in Figure 12 on page 36 of the draft document "Assessment 
of carbaryl exposure following turf application using a physiologically based 
pharmacokinetic model" provided by the Agency to the Panel, in which the ERDEM 
model overestimates the peak total amount of C14 in blood by a factor of 2.5.  An 
additional differential term describing the release of carbaryl from dermis to blood may 
need to be added to this model.  Other results from the simulation for simultaneous oral 
and dermal exposure to carbaryl all show some degree of differences between model 
prediction and the observations.  The Dermal Thin Film technology, which is being 
developed in ORD, also could be used to investigate the extent of carbaryl or N-methyl 
carbamate retention in dermis and the rate of release to blood. 
 

The other missing component in the ERDEM model is a description of how the 
baseline AChE level in brain tissue is incorporated.  The current approach of using 
animal baseline AChE activities as the input levels is inadequate and may be wrong. The 
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fundamental limitation is that baseline AChE brain level in humans of all ages is hard to 
obtain.  This is why the SAP encourages EPA and the registrants to expand the focus on 
building PBPK/PD model to include both brain tissue and red blood cells (RBC).  As 
long as the RBC AChE inhibition can be modeled appropriately and adequately in the 
PBPK/PD model, the brain tissue AChE inhibition can then be predicted with a much 
better accuracy. 
 

Finally, on model changes, the model appears to treat AChE inhibition as a 
reversible binding mechanism when in fact, it is more of a metabolism mechanism; this 
needs to be corrected in later versions of the model. 
 

The runtime version of ERDEM was made available by the Agency and it was 
possible to execute this version without problems.  It produces a logfile where all 
relevant information on the set up, the performance and the results of the program can be 
inspected.  This wealth of information requires answers to several questions: 

 
• How will the model output be organized? 
• Which tables and which graphs of the numerical results will be stored in which 

format in which directory of the user’s PC?  Will these be files that can be easily 
edited? 

• How will the model characteristics be made available so that modeling can be 
replicated? 

 
The model seems to be general enough to cover the PBPK/PD modeling of single 

carbamates.  However, it is difficult for the Panel to discuss additions or subtractions to 
this model at this point because it has not been applied rigorously and to a broader class 
of agents.  As long as other NMCs behave like carbaryl, this carbaryl PBPK/PD model 
should be able to be used for other NMCs and mixtures.  Extra steps would need to be 
added for NMCs which requires metabolic activation and for those that have more than 
one active metabolite (e.g., aldicarb).  Caution should be used when the components of 
the PD model are used for other NMCs without additional data.  The major concern is 
that the reactivation time, or rate of AChE inhibition, will vary by NMC.  The other 
concern is that AChE-inhibition by NMCs, rather than by carbaryl alone, is assumed to 
be dose-additive.  While additional animal studies are being conducted to determine 
whether this assumption is valid, caution should again be taken.  The Panel encourages 
the Agency to evaluate how the model performs when all seven carbamates and their 
metabolites are modeled simultaneously using different exposure routes. 
 

The ERDEM model excludes a large part of the pharmacodynamics (PD) of 
carbamate toxicity.  Documents provided by the Agency indicate that other PD endpoints 
are currently under investigation (e.g. motor activity) which may represent more 
advanced health endpoints than AChE inhibition.  As the Agency develops the ERDEM 
model, they are encouraged to pursue these other PD endpoints. 
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The model uses various allometric scaling factors for adjusting model parameters 
including the determination of respective parameters for young children.  Price et al. 
(2003) have collected a series of equations for estimating organ and tissue volumes using 
National Health and Nutrition Examination Survey (NHANES) anthropometric data.  It 
was not clear from the documents and the presentation whether those equations have 
been used for the model, and if not, why they have been excluded. 
 

The terms and techniques being used by the Agency for predictions and data 
comparisons at the 99.9 percentile (e.g. Figure 20 of the aforementioned Agency draft) 
need clarification.  The model predictions do not appear to be 99.9% predictions of 
cumulative mass but are instead, based on a highly unlikely exposure event.  The analysis 
does not appear to include other uncertainties and variabilities in the model that might 
impact the predictions.  Moreover, comparing model predictions to data at the tails of the 
distribution is questionable at this time.  The research going into developing the 
PBPK/PD model is based largely on general, aggregated observations.  Until the model 
has been exercised in greater detail, the Panel suggests focusing the discussion on 
predictions at the median and within the interquartile range. 

 
An additional comment was made regarding the priority for developing the 

structure ERDEM.  One Panel member suggested that an additional component be added 
to ERDEM for modeling fetal in utero exposures, with the ability to model endpoints at 
target tissues, such as the fetal brain. 
 
Issue 2.3:  Statistical Model Evaluation Considerations 
 

Development of PBPK/PD models is an iterative process such that the model 
is improved and revised as more data and information become available.  In a 
regulatory setting, it’s not unusual that model development begins before all data 
sets have been collected.  Currently when using ERDEM, an initial model structure 
is developed based on the species physiology and known chemistry of the chemical 
and metabolites.  The initial model structure consists of the differential equations 
and variables that correspond to the relevant compartments and metabolic 
transformations.  The initial parameter values are estimates made by the 
researcher, often based on models of related chemicals.  The model is considered 
provisional until the available data are evaluated.  The parameter values and model 
structure are then updated to reflect the available data.  As new data are made 
available, they are evaluated concurrently with the existing data against the model 
simulations, and the model is revised accordingly.  This iterative process has been 
followed for the current carbaryl PBPK/PD model, where model evaluation was 
based on visual inspection and linear regression between the model results and data 
points (not included in the report).         
 
Question 2.3 
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Please comment on statistical or mathematical analyses which could 
inform the need for model revisions as new data are made available.  

 
Panel Response 

 
The Panel discussion on this question centered on the following three issues: 
 

• the nature and use of data for determining model complexity and parameter 
estimation,  

• approaches to assessing goodness-of-fit of the model, and  
• the need for assessing model complexity and parameterization sensitivity. 

 
Model complexity and parameter estimation  

 
The example model presented to the Panel is complex, with over 80 parameters: 

25 physiological parameters, 24 physiochemical parameters, 35 biochemical parameters 
and 10 inhibition and recovery rate parameters. Norm settings for these parameters are 
provided in Tables 3 to 9 of the draft report "Assessment of carbaryl exposure following 
turf application using a physiologically based pharmacokinetic model.”  The response 
data, dose metrics, available to assess the goodness of model predictions are a small 
dataset provided in Table 1.  Figures 7 to 19 demonstrate that the model when evaluated 
at the norm settings of the 80 parameters tends to follow the observed pattern of 
recovery, sometimes overestimating the amount of 14C radiation or the amount of 
carbaryl, etc and other times underestimating.  From a statistical point of view, the model 
is used to describe a complex set of multivariate data and hence it is not surprising that 
some over- and underestimation occurs. 
 

The model is not parameterized to a specific individual, nor does it use a global 
parameter estimation method, such as non-linear least squares, maximum likelihood or 
other statistical approach.  Some Panel members were not surprised by this, suggesting 
that the typical model building approach is to determine parameter values for individual 
compartments using available data for these compartments.  Other Panel members felt 
that more formal model-building and parameter estimation should have been displayed. 
 

The Panel discussed the model construction and parameter estimation process in 
some detail.  Two approaches are available for parameter estimation.  In the global 
approach, the whole problem is formulated as a large, multidimensional search for the 
values of the parameters that minimize the residual sums of squared deviations between 
the model predictions and any available data.  This can be done with or without 
constraints on the parameter values.  Unfortunately, with highly parameterized models 
and little data, model fit can be amazingly good, but the fitted model may be relatively 
useless for prediction purposes.  This is not unlike the phenomenon of fitting higher order 
polynomials to limited data; at some point the flexibility of the model allows the fitted 
line to perfectly intersect all available data points.  
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As an alternative to a global approach, least squares methods may be employed in 

a piece-wise manner.  Each parameter or related set of parameters is treated as a separate 
analysis.  This approach should make it easier to incorporate constraint information and 
utilize or test intermediate variable values.  The documents provided to the Panel discuss 
model fits for various compartments for the parent compound as well as the metabolites 
with various endpoints.  It was pointed out that when a model is constructed or 
parameterized by successively incorporating information from different data sets with 
adjustments made to model parameter values with each addition, the order in which the 
data are incorporated and the changes made will influence the final model form and 
associated parameter values.  This is not unlike what happens using stepwise regression 
in the presence of mild co-linearity.  The strategy of model building, model refinement 
and parameter estimation are all interrelated; changes in any one affects the other and 
together influence the final model and its predictability.  Therefore, transparent model 
building should include keeping track of what data are used to determine settings for each 
parameter.  A chronology of model adaptations also should be available to reviewers. 
 

An intermediate to the piece-wise approach and the global approach is to fit the 
model by using the data to inform us on only a couple of parameters on any particular 
run.  This reduces the dimensionality of the fitting process by making the fit of the 
parameters conditional on the other parameters being held fixed at their current 
“confirmed” values.  This is a useful approach when using data from many different 
experiments.  In a sense one calibrates the model for each set of data and examines the 
predictions from the fitted model from each set.  This approach can illuminate when 
additional information will be useful in improving model predictions. 
 

The Panel also discussed the more difficult issues of the dimensionality and 
complexity needed in the model.  It seems that the goal of a PB/PK model is to mimic 
reality and integrate current understanding of carbaryl-related processes.  Compartments 
and parameters in the model are essentially there, based on theoretical justifications and 
not necessarily because of their ability to be directly observed and/or calibrated using 
achievable observations.  Some compartments and/or parameters may have only indirect 
relationships to measurable outcomes and as such are only slightly correlated with these 
outcomes.  This model allows us to ask “what if” questions whose answers cannot be 
directly derived from observations.  A number of Panel members felt that the PB/PK 
model should be used as a check against simpler models that can be, and are, calibrated 
with existing data to important outcomes.  It was felt that there is still the need to collate 
the relevant empirical evidence, conduct appropriate parameterizations that pass 
statistical muster, and express the results in a way that allows us to characterize 
uncertainty in the model predictions.  Reference was made to comparing the PBPK/PD 
model results with the results from the simpler and empirically-based PK model 
discussed in a preceding session (Session 1: Issues related to cumulative hazard 
assessment).  Comparisons such as these offer insights into the amount of model 
complexity that is necessary to describe relevant outcomes. 
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Characterization of prediction uncertainty for the full PBPK/PD model is difficult 
because there are both model form uncertainties as well as parameter uncertainties.  For 
example, there was discussion relating to the situation where the compartment-specific 
data suggest one value for a parameter (e.g., dermal permeability coefficient), but the 
parameter value had to be dramatically changed from this data-derived value in order to 
get a better global model fit.  At least one Panel member felt that this is exactly the kind 
of situation that would justify the need to reexamine not just the particular assigned 
parameter value but also the form of the compartment model.  Contradictions such as 
these lead to increased scientific understanding and better final models.  This also 
brought up the issue of how new information is used to modify the model and/or model 
parameters.  There seems to be a need for protocols to help decide when new data 
improve on existing data.  At least one Panel member suggested that human data are 
preferred over animal data, in vivo data preferred over in vitro data and that direct 
observations be preferred over derived values.  Incoming new data also could be 
investigated with a series of models of increasing complexity (again, in a manner similar 
to what is done in model building in multiple regressions). 
 

Some Panel members belief that a combination of model simplification (judicial 
use of Occam’s Razor) and formal parameter estimation via traditional least squares or 
Bayesian methods (e.g. formal true Bayesian or hierarchical Bayesian updating 
techniques, Gelman et al 1996; Bois, 2000) will result in a model whose predictions are 
easier to evaluate.  Many would appreciate seeing how various model simplification 
approaches would affect the final model fit, e.g. stripping off parts of a model, combining 
compartments or eliminating compartments. 
 

For a given model formulation and where possible, parameter estimates should be 
accompanied by estimated standard errors and model predictions presented with 
associated prediction intervals.  It was noted that the confidence intervals presented in 
Table C2 (p.103) and illustrated in Figure C1 (p.102) (draft document "Assessment of 
carbaryl exposure following turf application using a physiologically based 
pharmacokinetic model") are confusing; reporting lower limits that are negative and 
plotting only the upper limits.  It was not clear if one- or two-sided intervals are used, nor 
was it clear which are desired. 
 

Also, it was noticed that much of the data used for parameter estimation is 
censored in some way.  Traditional least squares methodology is not directly applicable 
in this case, and how censored values are handled can have a dramatic effect on estimates 
and overall model fit.  The more formal statistical estimation approaches may require 
censored data likelihoods or weighted likelihoods which are quite difficult to handle 
properly.  The problem is multiplied when one is attempting to handle multiple datasets 
in the process. 
 

Goodness-of-fit
 

Goodness-of-fit of the model is highly related to the complexity of the model and 



parameter estimation.  For this reason, the discussion on goodness-of-fit was interspersed 
throughout the Panel deliberations. 
 

The applicability of statistical goodness-of-fit methods to assess the adequacy of 
model predictions is limited by the complexity of the PBPK/PD model, the type of data, 
the limited amount of data available to fit the model, and the aims of the modeling.  
Several views were expressed among the Panel members on the degree to which 
statistical approaches can and should be used. 
 

Some Panel members preferred a more qualitative assessment of model goodness-
of-fit, offering that adequacy might be judged by answers to the following questions. 

 
• Does the model capture the main points of the biological processes? 
• Does the model adequately describe available outcomes data for important dose 

levels and time ranges? 
• What can be learned by fitting the model to each of the available data sets? 
• Which changes to model parameters are needed to improve the fit in a specific 

key compartment and do these changes result in deterioration of the fit in other 
compartments? 

 
A number of suggestions were made for more quantitative ways to assess model 

goodness-of-fit. 
 

• If least squares methodology is used to estimate model parameters, the residual 
mean square can be used to assess model fit. Modifications to this approach 
include the Akaike Information Criterion (AIC) which joins the estimated mean 
square error to the number of parameters actually estimated in the model. 

• Evaluate model complexity by building a set of nested sub-models by 
systematically removing or simplifying compartments. Again, residual mean 
squares, AIC or other criterion can then be compared, either informally or via 
formal statistical tests where available, to assess the significance of differences 
between full and reduced models.  
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• Implement dynamic graphics which would allow visualization of the changes in 
model fit produced when one or a small number of parameters change their values 
continuously (movie-type visualization of model sensitivity). 

• Utilize some form of the Press statistic ( ( 2
Pr ˆ= −∑ess i i

i
g y y ) to evaluate the 

goodness of model predictions to data not used to calibrate the model. 
• Utilize other criteria, such as the minimum absolute distance between observed 

and predicted values (MAD, ˆ= −∑MAD i i
i

g y y ), or curve comparison statistics like 

an Anderson-Darling distance to measure goodness-of-fit.  



• Consider weighting some times more than others in the goodness-of-fit criteria 
and evaluate how this changes model fits (e.g., a weighted Press 
statistic, ( )2ˆ= −∑WP i i i

i
g w y y ).  

• If a likelihood function can be created, then likelihood goodness-of-fit statistics 
and associated tests become available. 

 
Establishing a quantitative criterion for assessing level of model fit is important in 

determining at what point one achieves acceptable model fit.  What is needed to set this 
value is the sampling distribution of the goodness-of-fit statistic.  It is unlikely that this 
will be analytically available and hence some form of Monte Carlo simulation study will 
be needed to develop this distribution.  Goodness-of-fit statistics are available to assess 
not just the overall goodness-of-fit of the model to observed outcomes, but can be used to 
identify where lack of fit occurs e.g. does the model underestimate brain concentrations, 
overestimate blood levels, etc. 
 

The entire discussion by the Panel emphasized the need in this study to identify 
the critical end points for the model.  It was not clear whether it was more important for 
the model to correctly predict peak concentrations, times at which peak concentrations 
were reached, peak or times for specific compartments (brain or blood) or some other 
aggregate measure of prediction fit (as mentioned above).  Some Panel members were not 
certain that fits on the temporal scale were best.  Other Panel members were concerned 
with whether model fits should be made on untransformed concentration values or log 
transformed concentrations.  Model fits to untransformed concentrations tends to allow 
large deviations, typically at higher concentrations to dominate the goodness-of-fit 
statistic.  Assuming multiplicative errors and natural log scaling allows better fits for low 
doses and helps avoid situations where parameter estimates are inappropriately estimated 
as negative. 
 

There was some discussion about choice of the settings for the human adult 
model.  Typically such models are designed for 20 year old males assuming 6% body fat. 
 The Agency may wish to utilize NHANES data or the findings of the Price et al (2003) 
study to define a more realistic typical individual. 
 

Sensitivity analysis
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The ERDEM PBPK/PD model is a complex system that involves many 
interdependent functional relationships.  Estimates or assigned values for many 
parameters of this system have varying degrees of current empirical support and all are 
subject to a degree of natural variability as well as “reducible” uncertainty for specific 
applications.  There was general consensus among the Panel of the need to perform a 
sensitivity analysis for the PBPK/PD model.  A limited sensitivity analysis was done but 
a more extensive analysis needs to be performed.  In general, it was felt that there may be 
only a few parameters that correlate with model predictions.  A common theme of the 
discussion was that, in general, researchers work very diligently to build the best model 
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they are capable of doing and then maintain skepticism in the model outputs.  A 
sensitivity analysis is one way this is done.  
 

Sensitivity analyses typically include an assessment of the effect of parameter 
uncertainty on model predictions.  This is typically assessed by applying prior 
distributions to parameters and assessing the degree to which changes in parameter 
values correlate with changes in model predictions.  With highly parameterized models 
this is a very difficult task.  But it was felt that a proper uncertainty analysis allows users 
of the model, and eventually regulatory assessors, the ability to place model predictions 
in their proper context. 
 

In terms of propagating uncertainties to endpoint predictions, the EPA should put 
more attention to errors caused by systematic model misspecification in the PBPK/PD 
model.  This includes concerns with over parameterization.  The uncertainty (and 
variability) in model predictions depends heavily on the selected model.  If the model is 
incorrect, depending on the degree of error, the uncertainty in the final model predictions 
also will be incorrect. 
 

In assessing uncertainty, it seems reasonable to include terms and pathways in the 
model that may have small contributions to the overall uncertainty, simply because their 
inclusion usually doesn’t make much difference and leaving them out begs the question 
of what effect they might have had.  A process to evaluate reductions in the 
dimensionality and complexity of the model is needed to support calibration of the 
models.  Some Panel members felt that the dimensionality of the model should be solely 
the responsibility of the model builder, but others would like to see an analysis of how 
model form changes affect predictions and changes sensitivity. 
 

The Panel also discussed the idea of letting the model form itself be uncertain.  
For example, the model developer could generate a suite of models, all of which are 
acceptable but which illustrate the range of understanding of the form of the underlying 
processes and expert opinion on how compartments might interact.  Some models might 
be highly defined, consisting of many compartments and parameters, whereas others 
could be very simple, based on purely empirical relations.  It also may be possible to 
assign a weight to each model proportional to the likelihood that the particular model 
properly describes the PBPK/PD system.  As in a Monte Carlo sampling procedure, one 
could then generate model predictions of endpoints from each of the models, and from 
multiple samples of the parameter uncertainties for the respective model.  This would 
result in a collection of model predictions based on uncertainty in both parameters and 
model specification and the resulting prediction distributions or prediction bands would 
better convey overall uncertainty.  This information complements the measures of 
goodness-of-fit resulting from formal parameter estimation. 
 

Not all Panel members wanted to go quite as far as the full parameter and model 
uncertainty analysis discussed in the previous paragraph.  One member preferred a well-
structured statistical analysis to a post-hoc uncertainty analysis; allocating 90% effort to 
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parameter estimation and only 10% to assessing uncertainty.  Others felt that it was 
crucially important that the underlying uncertainty be assessed in explicit probabilistic 
simulations.  One Panel member mentioned that a Bayesian Network approach (Borsuk et 
al., 2001, 2004) might be useful but another Panel member stated that this approach has 
been examined and found unacceptable for use with dynamic system models such as 
these PBPK/PD models. 
 

There was discussion that advances in computational algorithms and computer 
technologies have eliminated many of the computational barriers to full uncertainty 
analysis.  What is required is careful scientific specification of the model structure and its 
implied conditional, probabilistic relationships.  Specification of prior probabilities for 
parameter values requires good empirical data or carefully elicited expert judgment.  It 
does not remove the need to test how individual model components and changes in model 
specification will influence model outputs.  Nor does it eliminate the need for sensitivity 
analyses to the model outputs. 
 

Other related comments made during the Panel discussions include: 
 

• The models discussed do not seem to explicitly incorporate inter-individual 
variability. 

• The animal data typically used in calibration are aggregated and assumed 
homogeneous. 

• Model fits might be more useful if they are targeted at the midpoint or center of 
the response distribution rather than at the 99.9th percentile as seemed to be done 
in the report to the Panel. 

• The judgment of those model fits would be substantially improved if individual 
response values were included on plots and not only summary data (means). 

• Related to the quality of the mathematical and statistical analysis is the capability 
of the interface between the model application and stand-alone statistical analysis 
packages.  The amount of data that can be created during a simulation run needs a 
robust statistical analysis package with modern tools of statistical diagnostics and 
regression methods.  

• After creating Figures 7-19, the report talks about typical or expected ranges for a 
subset of the rate parameters as summarized in Table 13 (p.48).  It would have 
been informative to overlay the most extreme predicted curves onto one or more 
of Figures 7-19.  This would provide a “bound” on the prediction, allowing us to 
see if the observations at least fit within high-low predicted patterns.  This is not 
exactly a confidence band but something more than the “point estimate” presented 
in original graphs. 

 
Issue 2.4:  Risk Metric 
 

Historically, EPA has calculated margins of exposure (MOE) in its risk 
assessments for the N-methyl carbamate pesticides.  These MOEs are calculated by 
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dividing environmental exposure concentrations by a point of departure identified 
from toxicity studies.  These points of departure are typically no-observed-adverse-
effect- levels (NOAELs) or benchmark dose estimates (BMDs).  For the N-methyl 
carbamates, these NOAELs or BMD estimates are generally based on peak 
cholinesterase inhibition.  The use of PPBK/PD models provides the opportunity to 
consider toxicological endpoints other than peak cholinesterase inhibition.  Some 
potential toxicological endpoints include 1) peak concentration of the pesticide (or 
key metabolite) at the site of action; 2) total pesticide (or key metabolite) at the site 
of action over a period of time (e.g. area under curve); 3) peak cholinesterase 
inhibition; 4) inhibition at or above a pre-defined level of inhibition (e.g. BMD10); 
4) duration of time for inhibition at or above a pre-defined level of inhibition.  The 
current report explicitly provides the peak concentration of carbaryl and peak 
cholinesterase inhibition; although the other metrics are easily accessible from a 
model developed in the ERDEM platform. 
 
Question 2.4   

 
Given the toxicological characteristics of carbaryl and other N-methyl 
carbamate pesticides, please comment on the degree to which these 
toxicological endpoints are appropriate for purposes of developing a risk 
assessment. 

 
Panel Response 
 

PBPK/PD modeling has the advantage over the conventional NOEL and MOE 
approach in incorporating the current understanding of mechanism of toxicity in 
describing the relationship between components of risk assessment, e.g., toxicity, 
exposure, and risk.  The unique challenge of modeling the relationship between toxicity 
and exposure for carbaryl and other carbamate pesticides is that the pesticide and its 
active metabolite(s) are rapidly released after binding to cholinesterase. 
 

The Panel generally agreed that, as far as enzyme binding is concerned, the 
inhibition of cholinesterase activity is the ultimate metric for expressing toxicity and risk. 
 This could include both considerations of the peak inhibition level, the duration of 
sustained inhibition as expressed in the area under the curve (AUC), and the duration 
above a pre-defined inhibition level.  On the other hand, the profiles of carbamate and its 
active metabolites at the site of action are pertinent metrics of exposure.  These metrics 
are important for improving the understanding of both short- and long-term exposures 
(i.e., prolonged duration or repeated exposures) and can provide a linkage to the 
biological effects and the biomonitoring data in humans.   
 

Thus, all of the five metrics suggested by the Agency are of interest and each of 
them can potentially be a valid metric for risk assessment, although some expressions 
may require further clarification.  At this early stage of developing the PBPK/PD model 
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for carbaryl and possibly extending its application to other N-methyl carbamates and 
their cumulative exposure, the Agency is encouraged to explore the merit of each of these 
endpoints.  In fact, multiple expressions of some of these metrics can enhance a logical 
and clear presentation of risk assessment and facilitate the understanding and 
communication between the exposure and risk assessors and between risk assessors and 
risk managers.   
 

Specific comments for each metric are provided below with respect to their 
pertinence in risk assessment and consideration of time factor in exposure and toxicity. 
  

1) peak concentration of the pesticide (or key metabolite) at the site of action.   
 

The peak concentrations of pesticide or its key metabolites at the site of action are 
among the primary variables presented by the ERDEM model.  The concentration of the 
parent compound is the key expression of exposure for evaluating the toxicity of 
carbaryl.  This and the next metric (i.e., AUC) are the ultimate parameters of 
pharmacokinetic events after exposure, interfacing with the pharmacodynamic and 
toxicity metrics.  When properly modeled, the peak concentration informs pathway 
saturation and the various degrees of probability of states of the carbaryl, e.g., free-
circulating, bound to cholinesterase, metabolized as released from the enzyme complex.  
The peak level metric also supplies information on the speed at which the pesticide is 
taken up, the time-scale over which effects are likely to occur, and the maximum level of 
effect likely to occur. 
  

The peak level also could serve as a pointer to compound-specific toxicities that 
lie outside the common mechanism and is especially relevant in an acute setting.  One 
reason is that short-term adaptations reduce or eliminate physiological disturbances from 
minor to moderate levels of cholinesterase inhibition.  When moderate levels of 
inhibition are sustained, several compensatory mechanisms come into play almost 
immediately, including reduction of acetylcholine release as well as receptor-
desensitization and, later on, down regulation.  Synaptic homeostasis is quickly restored. 
 Hence, the AUC (see discussions under the next metric), is unlikely to be a good 
measure of acute toxicity.  
 

2) total pesticide (or key metabolite) at the site of action over a period of time 
(e.g. area under curve)  

 
The AUC metric includes the magnitude of effect implicitly, but also duration of 

effect.  The concentration of the pesticide or its active metabolite in and of itself is 
irrelevant to the characterization of risk in isolation from the extent of enzyme inhibition. 
 Thus, comments regarding this metric are not limited to the AUC of pesticide or its 
active metabolites but also the metric of AUC of cholinesterase inhibition. 

 
An important consideration is that the compensatory responses that might be 

taken by the organism in response to perturbation in acetylcholine signal strength are not 
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necessarily benign.  If sustained adjustments are made in particular synapses in the 
postsynaptic sensitivity or the presynaptic extent of acetylcholine release, these may well 
have subtle long term consequences for the transmission of signals that are important 
parts of neuron/neuron and neuron/muscle communication.  Thus, the toxicological 
response to long sustained exposures could be very different from the acute exposure 
scenarios.  Total AUC of inhibition or total time above a pre-defined level of inhibition 
(metric 5) can be important.  In these cases, compensatory mechanisms may fail, or the 
consequences of the compensations may themselves be adverse.  Therefore, models 
developed for the ERDEM platform should calculate and report these metrics. 

 
The different toxicological implications between the peak cholinesterase 

inhibition (next metric) versus the AUC of inhibition are simply illustrated:  in a 
poisoning event, 90% inhibition over 20 minutes is a more serious effect than 10% 
inhibition over 180 minutes.  While the AUC metric would give the same results for the 
above two scenarios, the health outcome is likely to be substantially different.  On the 
other hand, for non-acute poisoning events, e.g., 10% inhibition, the integrated AUC 
approach would be appropriate.  It may be, for example, that long-term, low-level 
cholinesterase inhibition gives rise to specific health outcomes of interest.  Further, 
repeated assaults may offer additional effects.  The scenarios outlined in the document 
presented to the Panel - adult applicator and child playing on treated turf offer examples 
that could give rise to similar integrated effects with entirely different profiles. 
 

3) Peak cholinesterase inhibition  
 

As described above, peak inhibition of cholinesterase activity is the most 
important endpoint for evaluating acute toxicity with carbamate anticholinesterases.  It is 
the most direct measure of adverse effect mediated through the common mechanism of 
toxicity for carbamates.  Thus, for short term effects, peak inhibition is a good first 
judgment for the dosimeter that is most likely to be predictive of toxicity. 
 
 The expression of peak cholinesterase inhibition at a given dose is comparable to 
the current toxicity data that defines the threshold as the no-observed-effect level 
(NOEL) based on the peak inhibition measured at the assumed peak time of effects.  
Thus, the PBPK/PD model can be used to estimate the peak inhibition after human 
exposure and compared to the level defined as adverse when exceeded, i.e., threshold 
cholinesterase inhibition.  Depending on the extent that a PBPK/PD model may address 
the inter-species and inter-individual variation in sensitivity (e.g., two individuals 
exposed to identical level of carbaryl may show different levels of inhibition due to 
differential susceptibility), uncertainty factor(s) may be modeled or applied in this 
comparison. 
 
 The similarity of this metric to the conventional NOEL or BMD has the added 
advantage of facilitating risk communication while transitioning into the mechanistic 
approach.  Modeling peak inhibition also allows the possibility of correlating this metric 
to other related neurological endpoints (e.g., neurobehavioral and clinical signs).  
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An apparent unknown is what dosimeter is closest to a causal determinant of the 

subsequent pharmacodynamic processes—from overt symptoms in adults to putative 
marginal strengthening of signaling along some pathways rather than others during 
development to more subtle adaptations of the synaptic responsiveness to later 
cholinergic stimuli.  This is where we really need progress in basic science to show how 
cells set and reset their set points for responsiveness in relation to the degree and duration 
of cholinesterase inhibition.  Thus, for current assessments, both peak inhibition and the 
AUC (the amount of inhibition times time) should be used as dose metrics for assessing 
MOE and risks of response. 
 

4) Inhibition at or above a pre-defined level of inhibition (e.g. BMD10)  
 

One Panel member commented that this metric requires some clarification.  
Simplistically, a PBPK/PD model can define the dose that results in a pre-defined peak 
level of cholinesterase inhibition, equivalent to the BMD (e.g., 10% inhibition in the 
brain).  In a conventional approach, this metric may then be used to generate the relative 
potency factor for acute toxicity of multiple carbamates; if it is determined that peak 
inhibition is the valid metric for expressing acute toxicity.  The main drawback is that 
this expression does not implicitly account for the time factor as the next metric (i.e., 
duration of time for inhibition at or above a pre-defined level of inhibition).  Instead, this 
metric suggests a dichotomous variable - exposure resulting in inhibition above a fixed 
level.  Thus, this metric may be less useful than knowing how long such an inhibition 
occurred.  Clearly there is a difference in inhibition above 10% that lasted for five 
seconds versus a similar inhibition, due to chronic exposure, that lasts for many days.   
 

5) Duration of time for inhibition at or above a pre-defined level of inhibition.  
 

Being able to take into account the duration/time factor is one satisfying feature 
of this metric.  Assuming that the pre-defined level is selected with some intrinsic 
meaning (e.g., a health outcome of interest), the duration of the insult experienced by the 
body represents a significant measure.  Short-duration insults are likely to produce less 
effect than long-term sustained insult of the same magnitude.  The selection of this metric 
pre-supposes that a pre-defined level is below some frank effect level.  Otherwise, the 
effect can be defined by other means.  Furthermore, the duration should be relative to the 
expected clearance rate.  For example, it can be asked: is this elevated level maintained 
for longer than the lifetime of carbaryl in the body and thus may be indicative of an 
ongoing, albeit low-level, exposure? 
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INTRODUCTION 

 
 In Session 3 of this meeting, the FIFRA SAP met to consider and review the 
N-methyl carbamate pesticide cumulative risk assessment: pilot cumulative analysis, 
specifically issues related to drinking water exposure assessment.  OPP solicited 
comment from the SAP on the use of existing ground-water models to provide a pilot 
ground-water exposure assessment for the N-methyl carbamate pesticides.  Session 3 
included presentations by Mr. Nelson Thurman and Dr. Dirk Young (Environmental Fate 
and Effects Division, Office of Pesticide Programs) and Dr. Tom Nolan (U.S. Geological 
Survey) pertaining to the use of ground water exposure models and transport models to 
help predict drinking water exposure estimates for the N-methyl carbamate pesticides.  
Dr. Steven Bradbury (Director, Environmental Fate and Effects Division, Office of 
Pesticide Programs) gave opening remarks for Session 3. 
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SUMMARY OF PANEL DISCUSSION AND RECOMMENDATIONS 

 
 The Agency solicited comments from the Panel on assessing regional 
groundwater vulnerability and predicting pesticide concentrations in groundwater for 
estimating exposures to N-methyl carbamate pesticides. 
 
 Data that can be used to assess nationwide groundwater vulnerability are quite 
limited.  Therefore an obvious approach for assessing groundwater vulnerability to 
pesticides does not exist.  EPA proposes to use a shallow groundwater vulnerability 
assessment that was developed for nitrates.  However, the nitrate assessment may not be 
appropriate for estimating shallow groundwater vulnerability to pesticides.  If the 
proposed approach is to be used, it should be compared with observed groundwater 
contamination data.  Alternatively, an approach utilizing the nationwide State Soil 
Geographic (STATSGO) Data Base and the pesticide leaching models should be 
considered. 
 
 To predict concentrations of N-methyl carbamate pesticides in groundwater, the 
proposed approach appears to be conservative and health protective for most reasonable 
scenarios.  In all but the most unusual cases, screens in the wells will draw from a large 
cross section of the aquifer, perhaps some depth below the groundwater table.  This water 
will be more dilute than the concentration of leachate in the vadose zone, and additional 
degradation may occur before people drink the groundwater.  Also, the level of detail 
incorporated in the model and the modeling decisions is consistent with or a bit more 
conservative than the assessments for other routes of cumulative exposure to people. 
 
 The Office of Pesticide Programs (OPP) presented illustrative applications of 
three groundwater models --- Root Zone Water Quality Model (RZWQM), Pesticide 
Root Zone Model (PRZM), and Leaching Estimation and CHemistry-Pesticides model 
(LEACHP) --- that it proposes to use.  The three groundwater models are very similar.  
However, in response to specific questions brought to the Panel, important considerations 
include the following: 

 
• Management practices and pesticide application.  The models must be able to 

address the management practices and pesticide application practices (e.g., 
pesticide incorporation, management practices that impact hydrology) that are 
important to N-methyl carbamate and other pesticide movement to shallow 
groundwater.  Urban uses of N-methyl carbamate pesticides could be important, 
but it is unclear whether the models proposed could address such uses.   

• Degradation product formation.   The model(s) should simulate formation and 
movement of degradation products if they are found to significantly contribute to 
risk. 
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Preferential flow.   Macropore or preferential flow may be essential to accurately 
predict  transport of N-methyl carbamate pesticides and other pesticides to shallow 
groundwater. 
• Hydrology and rainfall characteristics.   Most models predict the water balance 

accurately.  Correctly characterizing rainfall amount and intensity may be 
especially important when applying RZWQM, because it will not simulate 
macropore flow unless the rainfall is sufficiently intense. 

• Pesticide fate.  Some of the more sophisticated pesticide fate routines in models 
should possibly be avoided. Both the pesticide degradation rate and the adsorption 
strength are highly variable between fields and may explain the poor performance 
of the models during evaluation efforts. 

• Tile drainage.  If N-methyl carbamate pesticides are applied to areas that are tile 
drained, the selected model should simulate tile drainage for accurate loading 
estimates to surface water.  However, tile drainage consideration may not be 
necessary in the model for the purposes of the cumulative risk assessment, 
especially if this is a screening level tool. 

• Model calibration, sensitivity, testing, and ease of use.  Model calibration may be 
necessary.  If so, the ability to easily calibrate the model will be important.  Other 
important considerations include the transparency in the model’s calculations, the 
data requirements, post-analysis of the model output, internal documentation of 
code, ability to modify code, ability to interface the code with third-party 
graphical user interfaces (GUI), and ability to link to statistical analysis packages 
and geographical information system (GIS) packages. 
 

 Surface water and groundwater behave quite differently. Generally, groundwater 
travels slowly and thus spatial averaging is a poor assumption.  The pesticide 
concentration in each well depends on its immediate surroundings and cannot be 
represented by an average concentration.  Because wells have screens allowing water into 
them, temporal averaging should be considered. 

 
 To account for persistence of pesticides in groundwater, the background levels 
could be estimated with models, and decline in residues over time (estimated based on 
long-term trends in monitoring) should be considered.  The background document clearly 
identified that carbamate transformation can be pH specific.  Also, the transformations of 
some metabolites may be affected by concentration and anaerobic conditions. 
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PANEL DELIBERATIONS AND RESPONSE TO THE CHARGE 
 
 The specific issues to be addressed by the Panel are keyed to the Agency's 
background documents, references and charge questions.  

 
Question 1 
 
Selection of regional vulnerable ground water sites: 
 
 In both the organophosphate (OP) cumulative assessment and this 
carbamate cumulative assessment, OPP identified regional drinking water exposure 
sites for surface water sources of drinking water that would represent one of the 
more vulnerable surface watersheds in each region. The process, which was deemed 
a valid approach by the 2002 SAP (USEPA, 2002), identified those areas where 
areas of high combined cumulative pesticide use coincided with drinking water 
sources which were particularly vulnerable to runoff. This served as a regional 
screening assessment in that if the regional cumulative risk assessment finds that 
exposure in water is not a significant contributor to the overall exposure in that 
area, it will not be a significant contributor in other areas in the region. 
 
 For ground water sources of drinking water, OPP is proposing to use a 
similar approach (described in Section C.2. of the Drinking Water section of the 
case study).  
 
 National coverages of the vulnerability of aquifers to pesticide contamination 
are limited in availability, and generally refer to vulnerability of the overlying soils 
and surficial geology to leaching. Does the SAP believe that the sources on relative 
ground water vulnerability identified in the case study provide an adequate 
screening-level assessment of the potential for contamination of shallow aquifers to 
pesticide contamination? If these vulnerability assumptions are inadequate, what 
can be done to improve the approach? 
 
Panel Response 
 
 In the oral presentation, EPA staff indicated that the vulnerability assessment 
conducted for groundwater to date was not as systematic as that done for surface water. 
The Panel agreed that a more systematic assessment would be desirable.  
 
 As indicated by the EPA, the national coverages of the vulnerability of aquifers to 
pesticide contamination and related data are limited. The vulnerability assessments that 
are available are limited in the types of data considered in their creation and in the scales 
of the data used (e.g., the nationwide DRASTIC assessments).  There are some state and 
regional groundwater vulnerability assessments, such as those conducted in Indiana 
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(Cooper et al., 1997). The results of these regional assessments point out the importance 
of the scale of underlying data used in their creation (Cooper et al., 1997).  The 
DRASTIC groundwater vulnerability estimates for Indiana created with 1:250,000 scale 
GIS data resulted in significantly different estimates of vulnerability than those created 
using courser nationally-derived data. Further, Cooper et al. (1997) demonstrated the 
value of testing the vulnerability maps with observed groundwater quality data. 
Therefore, there are challenges in identification of groundwater vulnerability nationally. 
 
 To assess groundwater vulnerability, EPA used the method of Nolan et al. (2002) 
and three criteria to identify the most vulnerable regional drinking water exposure sites.  
The first two criteria were areas where carbamate pesticides are applied and areas where 
groundwater is used for drinking. The third criterion was to identify the areas most 
vulnerable to groundwater contamination.  
 
 The vulnerability assessment approach does not address off-label and improper 
uses of pesticides.  Agricultural pesticide applications might generally show fairly high 
adherence to prescribed uses and application rates, but residential applications might 
show considerably less fidelity to label uses.  One of the pesticides being considered has 
residential applications.  It is conceivable that EPA’s presumption that usage follows 
label guidance might seriously underestimate vulnerabilities in some suburban areas. 
 
 The Nolan et al. (2002) method to assess groundwater vulnerability was 
developed for nitrate, which may transport through the vadose zone or an aquifer 
differently than pesticides.  For example, vulnerable areas for pesticides may largely be a 
function of soil organic carbon and macropore flow, which may not be as large a factor 
for nitrate transport to shallow groundwater.  The method used by Nolan et al. (2002) 
also considers human population which may be unique to groundwater vulnerability to 
nitrate.  The model coefficient associated with the depth to groundwater also may have 
the wrong sign on it in this model if it is used for N-methyl carbamate pesticides.   
Therefore, areas may be vulnerable to pesticide leaching to shallow groundwater that are 
not identified by the Nolan et al. (2002) approach; the vulnerability GIS coverage that 
has been used may not be the most appropriate approach for identifying vulnerability of 
groundwater to carbamates and other pesticides.  
 
 If the Nolan et al. (2002) vulnerability approach is to be used for identifying areas 
vulnerable to pesticides reaching shallow groundwater, it should be compared to existing 
data on known contaminated aquifers, both current and past, to assess its quality.  The 
vulnerability model should agree well with field observations.  Where there is 
disagreement, the EPA should investigate to understand why they differ. 
 
 If one examines the next step proposed by EPA in modeling groundwater 
vulnerability, there is possibly a disconnect between the proposed groundwater 
vulnerability approach and the modeling approach.  For example, the groundwater 
vulnerability screening GIS map was created considering confined as well as unconfined 
aquifers. However, the modeling approach only considers very shallow unconfined 
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aquifers. The use of STATSGO (a nationwide soil GIS dataset) may be a more 
appropriate mechanism for vulnerability screening. The use of STATSGO combined with 
the models would allow the most vulnerable settings to be identified. Also, using 
STATSGO would be consistent with the proposed approach for modeling pesticide 
exposure in shallow groundwater, since soil properties play an important role in 
parameterizing the models, while aquifer properties are not considered. 
 
Question 2 
 
Use of leaching models for ground-water exposure assessments: 
 
 The Agency is basing its ground-water exposure assessment on private rural 
wells drawing its drinking water from an unconfined aquifer. The estimated 
exposure in drinking water from these wells is based on the concentration estimated 
at the top of this aquifer. 
 
 The three models that the Agency is considering for use in the cumulative 
assessment and in refined ground water exposure in aggregate (individual chemical) 
assessments – LEACHP, PRZM, and RZWQM – are leaching models that predict 
pesticide concentrations in water at some depth below the surface. As a result, the 
Agency is using estimated pesticide concentrations in the vadose-zone to represent 
concentrations in shallow ground water. As such, estimates would represent 
potential drinking water exposure from wells drawing from shallow, unconfined 
aquifers. 
 
 Is this approach a reasonable, health-protective approach for use in both 
cumulative and aggregate drinking water exposure assessments? If this approach 
produces an exceedance of essentially safe exposure levels, in what manner could a 
better estimate of exposure to pesticides in water be derived from existing data and 
modeling approaches? 
 
Panel Response 
 
 For most reasonable scenarios, the proposed approach appears to be conservative 
and health protective.  In most cases, the screens of wells are some depth below the 
groundwater table, allowing time for additional degradation before people drink the 
groundwater.  The level of detail in the assessment and the assumptions are consistent or 
a bit more conservative than the assumptions made for exposure from other pathways.  
However, there are several cases where caution is needed and the approach may not be 
health protective. 
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 If the pesticide is not entirely in the dissolved phase (as assumed in these models) 
and greatly in excess of normal agricultural use rate for example due to either a large 
accidental spill, an unusual surface runoff event or cleaning of tanks close to the well, the 
pesticide might reach a shallow unconfined aquifer in concentrations far in excess of 
model predictions.  
 
 The use of an aquifer model combined with the estimates of pesticides reaching 
shallow groundwater without calibration for local conditions is cautioned.  Calibrations 
with experimental data would likely provide better estimates of actual pesticide levels 
reaching drinking water. One of the challenges will be adequately representing the 
aquifers because data will be limited and site specific conditions could be essential for 
accurately estimating pesticide concentration.   
 
 Data used for model validation might not represent the “real” concentration 
leaching into the aquifer.  Caution should be used when estimating pesticide transport to 
shallow groundwater based on suction lysimeter and soil sample data.  If macropores are 
present in the soil, pesticides can move from the soil surface to shallow groundwater with 
little evidence of this movement in the unsaturated zone (Malone et al., 2000).  The best 
locations for pesticide samplers are in the capillary fringe of the groundwater or above 
textural interface layers.  Wick pan samplers are preferred above gravity pan samplers.  
Tile lines give the overall best integrated sample (Boll et al., 1992; Shalit et al., 1995; 
Boll et al., 1997). 
 
 The Agency’s tiered approach is supported.  Tiered approach is commonly used 
in risk assessment as a good use of limited resources by first looking into the worst case 
scenario using conservative assumptions.  This initial tier of analysis is less time 
consuming and data intensive.  A refining tier of analysis for a more realistic scenario is 
performed if the worst case scenario is deemed unrealistic and shows exceedance of safe 
exposure level.   
 
 The Panel raised several questions during the Agency presentation concerning 
how the models will be evaluated for the closeness of their prediction to the realistic 
situations.  The Panel recommended a more rigorous review of the chosen models for N-
methyl carbamate pesticides, specifically for their use in cumulative risk assessment.  
When the worst case scenario exposure prediction exceeds the Agency pre-determined 
safe level, and that prediction is deemed a gross over-estimation, the input parameters, 
including the default concordance parameters (e.g., in RZWQM), should be reviewed 
specific for the cumulative assessment group of the N-methyl carbamate chemicals.  
Attempts should be made to compare model results to available monitoring data.   
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Question 3 
 
Addressing the cumulative risk assessment needs: 
 
 The Agency has considered analyses of the capabilities of three ground water 
models for use in the carbamate cumulative exposure assessment and in individual 
chemical (aggregate) assessments. The major areas of evaluation – hydrology, 
management practices, pesticide transport processes, and ease of use of the model – 
are described in the background document Drinking Water Exposure Assessment: 
Ground Water Model Evaluation. For the cumulative assessment, OPP will compare 
results of all three models with each other and with available monitoring. The 
ultimate evaluation goal for the models is how well each meets the requirement of 
providing reasonable, health-protective estimates of pesticide residues for use in 
aggregate and cumulative drinking water exposure assessments. 
 
 In the SAP’s estimation, how well do the three ground water models OPP 
proposes to use – RZWQM, PRZM, and LEACHP – compare in addressing 
hydrology? Macropore flow? Rainfall characteristics? Management practices? 
Pesticide fate and transport? Formation and movement of transformation 
products? Can the panel recommend other criteria that should be considered in 
evaluating the effectiveness of these models for estimating drinking water 
exposure for regulatory purposes? 
 
Panel Response 
 
 The Panel's deliberations on each of the parameters are discussed in the following 
sections, along with recommendations for additional parameters that should be 
considered in the models. 
 
Management Practices and Pesticide Application 
 
 It is necessary to identify which processes are most important for accurately 
modeling N-methyl carbamate pesticides.  For example, incorporation of applied 
pesticides into the soil should probably be considered because this is a recommended 
agricultural practice in conjunction with the application of some N-methyl carbamate 
pesticides.  Another important factor to consider is the amount of pesticide applied.  The 
quantity used can usually be estimated based on sales records and on label instructions.  
The management practices (such as Integrated Pest Management) can greatly affect the 
amount of pesticide applied and is, therefore, an important consideration in modeling for 
this purpose.   
 
 Management practices usually have little effect on the water balance with the 
exception of those that include a winter cover crop (Walter et al., 1979).  In these cases,  
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there is less percolation during the early spring.  Therefore, management practices that 
include cover crops should be considered in the simulation of the hydrology.  
 
 Another concern is that agricultural uses may not be the only source of N-methyl 
carbamate pesticides, especially in suburban settings, yet these settings may still be 
drawing water from surficial aquifer wells.  Non-agricultural use may be small in its 
overall contribution, but such uses may be important and could even dominate in selected 
situations.  It may be important for the models to allow for consideration of non-
agricultural sources . 
 
Degradation  Product Formation  
 
 N-methyl carbamate pesticides in the environment are relatively labile and readily 
undergo hydrolysis giving rise to the amino acid and the alcohol form of the leaving 
group, e.g, 1-naphthol.  The leaving group component may itself be somewhat toxic.  
There are likely to be other products as well.  These should be traceable as part of the 
modeling.  Therefore, the model should simulate formation and movement of degradation 
products.  For example, metabolites of aldicarb such as aldicarb sulfoxide and aldicarb 
sulfone may be more important than the parent compound (Kraft and Helmke, 1991; 
Smelt et al., 1995).  This component must be thoroughly tested because there have been 
mass balance problems with transformation products in model testing. 
 
Preferential Flow 
 
 Macropore flow is likely essential to accurately model carbamate transport to 
shallow groundwater.  Even on loamy sand (Ritter et al., 1996), macropore flow can be 
an important process.  Specifically, N-methyl carbamate pesticides such as carbofuran, 
can be transported to shallow groundwater via preferential flow (Isensee et al., 1990; 
Kladivko et al, 1999).   Model codes including a description of preferential flow 
processes required less calibration efforts to meet the FOCUS model performance criteria 
on a sandy loam soil than those without such description (Thorsen et al., 1998). 
 
 The methods to simulate preferential flow are vastly different between the 
models.  This should not be a surprise since the theory for simulating preferential flow is 
still under development and not understood well.  Of interest here, most aquifers are 
overlain by sandy soils. Also, most N-methyl carbamate pesticides are applied on these 
sandy soils.  On these types of soils, unstable fingered flow and fingered flow are 
important.  Although RZWQM is the most sophisticated model in simulating preferential 
flow, it does not consider fingered flow (see Figure 2).  To model fingered flow, the 
maximum intensity of a storm might determine the number of fingered flow paths (Selker 
et al., 1996).  RZWQM clearly stands out in its sophistication to model macropore flow 
and is likely superior above the other models, but none of the models address the unstable 
fingered flow phenomena in sandy soils.  At the present time, preferential flow including 
funnel flow in sandy soils could be included by model developers, since the initial theory 
has been developed and could be tested in field situations (Steenhuis et al., 2001; Kim et 
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al., 2005).  EPA should be looking for these types of models for inclusion in the risk 
assessment. 
 
 Model users should be aware that it is simplistic to divide up the medium into one 
preferential flow region and a matrix component (Steenhuis et al., 1990).  In reality, there 
is a continuum between the fastest flow path and the slowest flow paths.  The 
experimental and theoretical work of Kung et al. (2000, 2005) and Gish et al. (2004) 
confirmed this concept. 
 
 In structured soil (e.g., silty, loamy, and clayey soil), macropore characteristics 
for RZWQM are easily parameterized.  Little is known for sandy soils though and work 
is needed to parameterize RZWQM for sandy soils. 
 
Hydrology and Rainfall Characteristics 
 
 Most models predict the water balance quite accurately, including the ones 
proposed for use by the Agency.  Accurate determination of daily rainfall amount is 
essential and may be one of the most crucial issues concerning accurate simulation of 
water balance (Wagenet and Hutson, 1996). The rainfall rate is also important, especially 
if macropore flow is identified as an important process to include in the model.  Skopp et 
al. (1981) varied how water was added to a column, which affected the rate of 
preferential flow, and consequently the breakthrough curves were completely different 
(also see Skopp and Gardner, 1992).  Steenhuis et al. (1990) developed a preferential 
flow model whereby flow was directly related to the rate of application.   
 
 Correctly characterizing rainfall intensity may be especially important when 
applying RZWQM, because it will not simulate macropore flow unless the rainfall is 
sufficiently intense.  That is, 24 hour or hourly rainfall may not be sufficiently intense to 
result in macropore flow with RZWQM.  Pesticides may move to shallow groundwater 
by macropore flow in the sandy soils if heavy rainfall occurs shortly after pesticide 
application (Ritter et al., 1996).  Subsequent rainfall events may be less important 
because the first storm after application can move solutes into the soil matrix, thereby 
reducing the potential for transport in macropores (Shipitalo et al., 1990).  Therefore, 
efforts should be applied to develop breakpoint rainfall input files for the first few storms 
after pesticide application.   
 
Pesticide Fate 
 
 Some of the more sophisticated pesticide fate routines in models should possibly 
be avoided.  For example, the RZWQM irreversible binding routine did not provide 
accurate simulations of metribuzin in percolate, suggesting this concept may need to be 
explored further (Malone et al., 2004).  Also, estimating parameters for kinetic sorption 
may be difficult.  However, if most pesticide is transported through percolate shortly 
after application, irreversible binding and kinetic sorption may be less important than 
short-term half-life and equilibrium sorption.   
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 Both the degradation rate and the adsorption strength are highly variable between 
fields. The variability of degradation rates between sites is one of the main problems for 
simulating the pesticide concentration in the aquifers with confidence, and this might be 
the main reason that the pesticide concentration in the USGS model evaluations (included 
as background documents) are so poorly simulated.  Pivetz and Steenhuis (1995) and 
Pivetz et al. (1996) concluded that the degradation rate may vary significantly in time.  
Reasonable estimates can only be obtained if prior experiments have been carried out at 
the site.  Because simple parameters such as the linear adsorption model and the first 
order degradation rate model are difficult to obtain, it will likely be too difficult to apply 
more complicated formulations of these relationships nationally.   
 
 Enhanced or accelerated degradation has been reported in N-methyl carbamate 
pesticides such as carbofuran (Cogger et al., 1998; Getzin and Shanks, 1990) and aldicarb 
(Suett and Jukes, 1988; Smelt et al., 1987).  Enhanced degradation, defined as an increase 
in pesticide degradation with each application, may lead to higher or more frequent 
applications because insecticidal efficacy will be reduced.  
 
Tile Drainage 
 
 If N-methyl carbamate pesticides are applied to areas that are tile drained, then 
the selected model should simulate tile drainage for accurate loading estimates to surface 
water.  Recent research suggests that the pesticide isoxaflutole and its metabolite RPA 
202248 are transported to the edge of the field through subsurface drains at about 1 m at 
rates similar to runoff (personal communications, Garey A. Fox, Assistant Professor, 
University of Mississippi).  However, tile drainage may not be necessary in the model for 
the purposes of the cumulative risk assessment, especially if this is a screening level tool. 
 
Model Calibration, Sensitivity, Testing, and Ease of Use 
 
 The use of any model of pesticide contamination from agricultural use is likely to 
give only an estimation of the contamination found in the surficial aquifer.  The use of 
the PRZM system is well established with respect to EPA usage.  This suggests that its 
use in this context may be supported above and beyond other ostensibly better, but 
perhaps more complicated and difficult to use models.  Further, parameterization of the 
other models may be difficult since data may not be available for scenarios of interest. 
 
 Experience with LeachN, the nitrogen movement implementation of the Leach 
model, demonstrates the difficulty of getting these models to predict observed levels of 
materials, even with intensive measurement of soil characteristics, initial conditions and 
control of soil nutrient additions.  EPA may wish to create their own tool for this purpose 
that they understand and can distribute and control. 
 
 The sensitivity of the models to key parameters that are likely to be changed in 
application of the models should be well understood.  Also, the sensitivity of key 
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parameters relative to the group of models being considered would provide insight into 
the most applicable model or models for various situations.  Perhaps probabilistic or 
nonlinear analysis of the model output might be the best approach to analyzing the 
parameter interdependencies. 
 
 The ease of model calibration and the ability to calibrate each model should be 
considered. Models often must be calibrated to perform adequately. Therefore, 
calibrations will be important considerations when using the groundwater models to 
estimate pesticides reaching shallow groundwater. 
 
 The ability to automate the use of each model so that it can readily utilize data 
from databases and GIS to facilitate automated model runs will likely be important for 
future applications of the models.  Models that require the use of a model-specific 
interface may not work very well or at all for such purposes.  
 
 Other criteria to take into consideration are: transparency in the model’s 
calculations, the data requirements, post-analysis of the model output, internal 
documentation of code, ability to modify code, ability to interface the code with third-
party GUIs, and ability to link to statistical analysis packages and GIS packages.  In 
analyzing a full cumulative risk assessment, users and reviewers must have models that 
are simple to evaluate during all portions of the risk assessment. 
 
 For model testing, as complete a dataset as possible should be used.  Some of the 
discrepancies between model and data may be resolved by averaging samples taken over 
a broader area. The models have much in common, so discrepancies between models 
must be explicable in each case in terms of known differences in model assumptions.  
The dataset should include soil samples, runoff, and percolate, because neglecting one of 
these dissipation pathways may provide an incomplete picture of model performance 
(Malone et al., 1999).  When preferential flow occurs, soil samples and suction lysimeters 
may not adequately characterize chemical movement to shallow groundwater, and 
percolate samples may be necessary (Malone et al., 2000). 
 
 The effects of water purification processes on carbamate levels also should 
potentially be considered. If such processes routinely eliminate most N-methyl carbamate 
pesticides from drinking water, this modeling would seem to be superfluous except for 
those drinking untreated water.  Estimation of these purification effects would thus seem 
critical, particularly new filtration technologies and the effects of chlorination and 
chloramines disinfectant technology.  At the current time, the potential for significant 
overestimation of carbamate levels from these models seems to exist.  These factors, 
together with the low level of exposure to N-methyl carbamate pesticides from drinking  
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water relative to other exposure sources, suggest this modeling may be of value for only a 
subset of the public. 
 
Question 4 
 
Estimating cumulative carbamate exposures in ground water: 
 
 Available monitoring data, primarily from the USGS NAWQA program, 
indicate that more than one carbamate in the cumulative action group may occur 
together in ground water (see the drinking water exposure section of the case study). 
Co-occurrence in ground water results when more than one carbamate is used at 
different times on the same crop, on different crops in rotation on the same fields, or 
on different crops grown on adjacent fields. 
 
 For surface water sources of drinking water, OPP adjusted estimated 
pesticide concentrations in the modeled reservoir by percent crop area and percent 
crop treated in the watershed to reflect the dilution of untreated areas on the total 
pesticide load reaching the reservoir (see the description of the surface water 
exposure assessment in the analysis methods of the Drinking Water section of the 
case study). 
 
 Given that less mixing of water from different fields is expected in shallow 
aquifers, should OPP use similar adjustments to ground water concentrations 
estimated from the leaching models? If not, what recommendations does the 
Panel have to account for the potential contributions from different fields treated 
with carbamates? 
 
Panel Response 
 
 Surface water and groundwater behave quite differently.  Surface water travels 
relatively rapidly from any location in the watershed to the outlet, and the Agency's 
adjustment for surface water edge of field concentration by percent crop area and percent 
crop treated in the watershed is reasonable.  Thus, the assumption is made that pesticide 
concentration in surface drinking water can be represented by the average spatial 
concentration of the runoff.   
 
 The assumption of taking spatial averages in the watershed is not valid for 
groundwater. Generally, groundwater travels slowly, usually less than 100 m/year.  The 
pesticide concentration in each well depends on its surroundings and cannot be 
represented by an average concentration.  Thus, the people drinking water from the wells 
are exposed to different concentrations.  This is important for the risk analysis where 
highest concentrations are often of interest.   
 



 The different concentrations for different wells are schematically depicted in 
Figure 1.  Pesticides are applied to a field as indicated. The pesticides travel in a distinct 
path to the river through the ground water.  Figure 1 illustrates that only the shallow well 
downstream from the field contains pesticide, while the other wells are pesticide free.  
The drinking water well in Figure 1 samples water from a larger volume and will be 
affected by more than one field. 
 
 The screens of shallow wells are typically a minimum of 4 feet long and sample 
pesticides over these depths. This means that the daily input at the top of the aquifer is 
averaged over a certain time period.  To help describe this better, Figure 2 depicts a close 
up view of the situation near the pesticide field from Figure 1. Only the water that fell on 
top of the field is shown in the groundwater depicted.  It can be seen that the oldest water 
is the deepest, while the water which just arrived is near the surface of the aquifer.  While 
the water is moving downward, it is, at the same time, moving sideways toward the river. 
 The line in the groundwater in Figure 2 is a streamline.  In this case water that falls at the 
upper edge of the field follows this path.   
 
 Although spatial averages cannot be taken for wells, temporal averaging can be 
done.  It is not difficult to calculate a reasonable time period over which the pesticide 
concentrations from the vadose pesticide model should be averaged. The depth of 
“recharge layer” per year is simply the recharge per year, r, divided by the saturated 
moisture content, θs.  The depth of water that represents water reaching the aquifer each 
year, D, can be calculated taking into account the adsorption partition coefficient, k, and 
the density of the soil, ρ, as:   
 

D r
ks

=
+θ ρ

 
The time, T, over which the pesticides arriving to the groundwater should be averaged 
can then be simply written as:  
 

                                      
D
ST =  

 
where S is the screen length. 
 
 The location of stream lines can be found with the method presented by Gelhar 
and Williams (1974).  This method was used in a model called MOUSE (Steenhuis et al., 
1987).  The model had many similarities to the models currently used by EPA (but 
without preferential flow paths). The details of simulating streamlines are given in these 
publications. The method consists of two simple equations; one that determines the 
displacement in the horizontal direction and the other in the vertical direction. 
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 The two surface water modifiers, percentage of crop area (PCA) and percentage 
of crop treated (PCT), can reasonably be used in ground water prediction also.  However, 
the persistence of N-methyl carbamate pesticides in ground water would require 
considerations of multiple years of pesticide use.  This is different from focusing the 
surface water scenarios on spikes associated with runoff and its relatively fast decline to 
low or nondetectable levels after runoff events.  Considerations also can be given for 
time of pesticide use and ground water movement.  In terms of PCA, the pattern of 
change in land use over time should be accounted for (e.g., to consider pesticide use at 
sites that were once agricultural).  When available, multiple years of data on PCT also 
may be useful to modify the default assumption of 100% PCT. 
 
 
 

 
 
Figure 1.  Schematic of flow paths in a valley with a river.  Only the shallow well 
 downstream of the field is affected by the field in which the pesticides are applied. 
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Figure 2.  Simple schematic of ground water  movement under a pesticide movement. 
 
Question 5 
 
 Several carbamates are known to persist for long periods of time after they 
reach ground water, particularly slightly acidic to acidic ground water (see the 
drinking water exposure section of the case study). This differs from estimates of 
exposures in surface water, where pesticide concentrations tend to occur as spikes 
associated with runoff and decline to low or nondetectable levels after runoff events. 
Pesticide concentrations in acidic ground water are slower to respond to changes in 
use patterns and mitigation actions than would be expected in surface water. 
 
 What recommendations does the Panel have for addressing carbamate 
persistence in ground water in order to provide a reasonable, health-protective 
estimate of residue levels in shallow ground water sources of drinking water? 
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Panel Response 
 
 The Agency is considering three possible approaches:  
 
 1) at one extreme, assume no background residues (drinking water exposures 
  would reflect only what is estimated by modeling), i.e., all residues in 
  groundwater are “fresh”;  
 
 2) at the other extreme, assume a baseline background concentration (based  
  on available monitoring), with model estimates as additions and no 
  decline;  
 
 3) in between, include the background levels with model estimates, but 
  provide an estimate of decline in residues over time (estimate based on 

 long-term trends in monitoring)  
 
 The EPA's 3rd suggested approach from the "background document" for Session 
3 appears sensible.  However, it is unclear how EPA would obtain the "long-term trends 
in monitoring".   
 
 The background document clearly identified that carbamate transformation can be 
pH specific.  Also, the transformations of aldicarb metabolites are concentration specific 
(Smelt et al., 1995).  That is, higher concentrations degrade more slowly than lower 
concentrations.  At least two peer-reviewed sources that studied aldicarb transformation 
used initial concentrations greater than 150 ug/L. Some studies of aldicarb degradation 
suggest that anaerobic conditions increase degradation (Smelt et al., 1995; Kraft and 
Helmke, 1992).   
 
 The question of persistence has underlying implications on the travel distance of 
the pesticide through a continuous aquifer.  There are a few references on estimating 
characteristic travel distance of a persistent pesticide based on its chemical properties 
(Bennet et al., 1999, 1998). 
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INTRODUCTION 

 
 In Session 4 of this meeting, the FIFRA SAP met to consider and review the  
N-methyl carbamate pesticide cumulative risk assessment: pilot cumulative analysis, 
specifically issues related to the N-methyl carbamate exposure assessment:  a pilot case 
study.  OPP solicited comment from the SAP on a case study which uses the Relative 
Potency Factor (RPF) approach to perform a cumulative exposure assessment for a group 
of 10 N-methyl carbamate pesticides that have been previously determined to represent a 
common assessment group based on the chemicals' similar mechanism of toxicity.  For 
Session 4, Dr. Anna Lowit and Mr. David Miller (Health Effects Division, Office of 
Pesticide Programs) provided an introduction and background on the pilot case study.  
Mr. David Hrdy, Mr. Jeff Evans, Dr. Steve Nako, and Mr. David Miller (Health Effects 
Division, Office of Pesticide Programs) provided a detailed presentation on the pilot 
exposure assessment case study, including discussions on dietary assessment, residential 
exposure inputs, residential use data and aggregate exposure, cumulative exposure 
assessment and model comparison.  Opening remarks for Session 4 were provided by 
Dr. Tina Levine (Acting Director, Health Effects Division, Office of Pesticide Programs). 
 
  



97 of 113 

 
SUMMARY OF PANEL DISCUSSION AND RECOMMENDATIONS 

 
 The Panel members agree that the overall case study is a thoughtful and useful 
analysis.  EPA has gained much knowledge from development of the organophosphate 
(OP) cumulative risk assessment and the Agency is to be commended on the carefully 
developed exploratory analysis for the N-methyl carbamates, given the varying quality of 
the datasets that were available.  The level of detail is adequate for a case study, but 
additional effort is needed in the full assessment, especially with regard to  non-food 
scenarios.  It was felt that uncertainty analyses will help to identify the datasets that 
should be examined most closely. 
 

The default assumption of eating events close together in time, in the context of 
the pilot case study for the N-methyl carbamate exposure assessment, is a reasonable 
approach.  Allowing for recovery seems difficult given the unknown durations that would 
have to be assigned to defensibly address this issue.  The extent to which eating 
frequency affects the outcome of this analysis is a testable proposition that could be 
explored as a distributed analysis.  The Panel noted that a supplementary analysis using a 
stratified sample of high end consumers would help justify the viability of this approach. 

 
The Panel made several recommendations regarding the cumulative N-methyl 

carbamate pesticide case study in terms of the data availability, reliability, limitations, 
and evaluations for use in representing patterns of pesticide co-occurence.  In addition, 
recommendations were made about pesticide residue degradation estimates, residue data 
availability, and the need to use regional and temporal variability in residues in the 
exposure scenarios chosen to be assessed by the Agency. 

 
 The case study presented to the Panel clearly demonstrated that available data, 
although limited, could be combined to conduct a cumulative exposure assessment for the 
 N-methyl carbamate pesticides.  The major concerns of the Panel were related to the age 
and quality of the data available, and its impact on pesticide use patterns that have been 
changing.  It was recommended that National Health and Nutrition Examination Survey 
(NHANES) biomonitoring data be used in combination with PBPK models to serve as a 
bounding analysis for the cumulative risk assessment. 
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PANEL DELIBERATIONS AND RESPONSE TO THE CHARGE 
 
 The specific issues to be addressed by the Panel are keyed to the Agency's 
background documents, references and charge questions.  

 
Question 1 
 
 There are several key principles for conducting a cumulative risk 
assessment. One such principle concerns the time frame of both the exposure (e.g., 
When does exposure occur? What is the exposure duration?) and of the toxic effect 
(e.g., What are the time to peak effects and the time to recovery? How quickly is the 
effect reversed?). Both should be adequately considered when performing a 
cumulative risk assessment so that an individual's exposure is matched with 
relevant and appropriate toxicological values in terms of duration and timing. 
There are several important considerations with respect to the temporal 
characteristics of the exposures and of the cholinesterase inhibitory effects of N-
methyl carbamate pesticides in estimating their cumulative risk. 
 
 OPP used a Relative Potency Factor (RPF) approach in this case study which 
is based on cholinesterase inhibition data from acute dosing studies performed in 
the rat.  A similar approach was used in the organophosphorus pesticide cumulative 
risk assessment several years ago. This RPF approach expresses toxicity of each 
chemical in terms of “index chemical equivalents”. In this approach, all exposure 
events within a day are adjusted by their RPFs and summed.  The three exposure 
models (DEEM/Calendex, LifeLine, and CARES) used in the case study express 
exposure as a distribution of 1 day (24 hour totals) exposures within a population. 
 
 Since AChE inhibition caused by the N-methyl carbamate pesticides recovers 
rapidly (minutes to hours), it might be important to consider the intra-day timing of 
exposure events. Specifically, if the exposure events within a day are distributed 
sufficiently far apart in time so that significant recovery of AChE inhibition occurs 
between any two exposure events, then summing exposures over 24 hours might 
overestimate the risk associated with AChE inhibition. For example, if an individual 
consumed 200 mL of apple juice in the early morning, an additional 200 mL during 
the afternoon, and another 200 mL late at night, this could present a very different 
risk picture than if the total 600 mL were presumed to be consumed at one time. 
 
 The current Food Commodity Intake Database (FCID) and the 
DEEM/Calendex, LifeLine, and CARES models are set up to consider food 
consumption on a per day (rather than per eating occasion) manner. Thus, the 
exposures reported in this case study reflect daily (24 hour) exposures. To the extent 
that a day’s eating occasion events leading to high (total) daily exposure are close 
together in time, the RPF approach described in the case study provides reasonable 
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estimates of risk. To the extent that eating exposure events leading to high total 
daily exposures are widely separated in time such that recovery of AChE inhibition 
occurs, the risks under the RPF approach in this case study may be overstated and a 
more sophisticated approach which accounts for intra-day eating patterns would be 
more appropriate. 
 
 OPP has investigated the degree to which high-end exposures can be 
attributed to specific eating occasions (within a day) that occur either closely spaced 
in time or widely separated by time by looking at the actual individual consumption 
events as reported in the Continuing Survey of Food Intakes by Individuals (CSFII). 
 Specifically, OPP has looked at the CSFII –based dietary records for individuals at 
several locations in the upper end of the exposure distribution to determine the 
extent to which these daily high-end exposures can be attributed to a single eating 
event, several eating events spaced closely in time (over several hours), or eating 
events widely separated by time (more than several hours).  As described in Section 
IV.H of the case study document, OPP found that that a large fraction of daily 
records contributing to the upper tail of the food exposure distribution represent 
single eating occasions. Assuming that subsequent, more detailed and extensive 
analyses provide confirmation of these preliminary observations and analyses, OPP 
believes and that it is unlikely that any more sophisticated, temporal-based 
approach which better accounts for temporal separation of eating/exposure events 
will result in substantial or significant changes in OPP’s risk estimates. 
 
Part A.  EPA requests the SAP provide comments on this exploratory analysis with 

respect to its adequacy and appropriateness.  Please also provide suggestions 
for future, more detailed analyses. 

 
 
Panel Response 
 

The Panel agrees that the overall case study is a thoughtful and useful analysis.  
EPA has gained much knowledge from development of the organophosphate (OP) 
cumulative risk assessment and the Agency is to be commended on the carefully 
developed exploratory analysis, given the varying quality of the datasets that were 
available.  The level of detail is adequate for a case study, but more effort is needed in the 
full assessment, especially the non-food scenarios.  Several additional exposure scenarios 
should be considered and they are detailed below.   

 
The general framing of Question 1 conveys concern about overestimates of risk.  

The Panel thinks that EPA should be focusing on identifying areas where overestimates 
or underestimates might occur, and then treat these specific concerns as points to 
consider in the variability and uncertainty analysis.  Clarity is an important consideration 
as the Agency moves toward a full case study.  
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The assessment process is complex, with different models contributing estimates 
to the overall assessment.  It is crucial that a stochastic model that implements a 
quantitative uncertainty analysis be performed.  It is an important addition and a 
necessary adjunct to the overall cumulative assessment that compares the various 
pathways of exposure.    

 
Overall data quality is highly variable within the assessment.  In general, the food 

assessment has the highest quality and most abundant data, with lower quality and more 
sparse datasets for water, incidental ingestion, and dermal pathways.  Presentation of 
model calibrations for these other datasets (e.g., measurements of tap water in the Spring 
season in southeast North Carolina, dermal exposure post-application studies and model 
outputs compared to urinary biomonitoring levels observed in the US population) are 
important in order for the output of the assessment to be an accurate representation of the 
real world. 

 
Another key analytical issue is the choice of exposure distributions to be used.  In 

particular, the Panel believes that the exposure distributions need careful consideration 
and should use all available data without artificial truncation of what are typically 
lognormal exposure distributions.  The concern that this may produce unreasonable 
assessments can be tested empirically if these “high” values are included but subjected to 
sensitivity and uncertainty analyses in the overall cumulative assessments.  Many of the 
input datasets for the analysis may already artificially truncate the exposure distributions 
by whom they sample and how the samples are taken.  Recruiting by telephone, for 
example, tends to find established people and likely does not reflect current diversity in 
race, ethnicity and income in the United States.  Truncations, if they are used, should be 
based on physical limits of concentration. 

 
 The Panel believes that EPA should focus on appropriate time scales and 
populations.  The use of a 99.9th percentile is important and should be presented such that 
it is clear this means approximately 4,000 children in the United States may be at risk 
given that there are approximately 4 million births in any given year.   
 
Comments on Specific Issues  

 
The omission of institutional exposure (i.e., non-residential, non-occupational) 

leaves a serious gap in the calculation of aggregate exposure.  Each age group will spend 
time in schools, offices, shopping malls, recreation and entertainment facilities, etc., and 
there will be pesticide use in these places. It is understood that suitable data may not be 
available for these places, yet it is important that EPA acknowledge these data gaps in the 
model development.  This issue was identified by the September 27-29, 2000 SAP 
"Session V - Aggregate and Cumulative Assessments Using Lifeline™ - A Case Study 
Using Three Hypothetical Pesticides" (p. 31).  
http://www.epa.gov/scipoly/sap/2000/september/modelsreport.pdf. 

 
Recall surveys can be of dubious quality.  This issue was identified by the April 

http://www.epa.gov/scipoly/sap/2000/september/modelsreport.pdf
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30 - May 1, 2002 SAP "Cumulative and Aggregate Risk Evaluation System (CARES™) 
Model Review" (p. 22).  
http://www.epa.gov/scipoly/sap/2002/april/caresmeetingminutes.pdf

 
The Panel reminded the Agency that some of the survey data available for the 

pilot case study exposure assessment of the N-methyl carbamate pesticides are dated and 
may not closely reflect some current exposure scenarios or be representative of the 
current population of the U.S.  

 
Relative potency factors (i.e., the ratio of the toxic potency of a given chemical to 

that of the index chemical) are used to convert exposures of all chemicals in the group 
into exposure equivalents of the index chemical. The current presentation of this 
approach for the calculation of the cumulative residue seems more complicated than 
necessary (e.g. when it is explained how the amount of residue of each chemical is 
adjusted by multiplying by a Relative Potency Factor (RPF) to get the equivalent residue 
of an index chemical).  Consulting the Toxic Equivalency Factor-Toxic Equivalent (TEF-
TEQ) approach for the dioxins and furans, where one determines the TEFs, obtains the 
TEQ values of each compound in the mixture exposure, and then does the multiplication 
and the summation, could serve as a good example to communicate this approach.  
However, this simple multiplication and calculation holds only if it can be shown that the 
carbamates act according to the principle of simple similar additive action at the chosen 
endpoint for risk assessment.  This means that the isoboles are parallel straight lines as is 
assumed for the dioxins. This is a crucial assumption underlying all the analyses at this 
stage. 

 
Several of the contact categories need to be expanded or better justified (see 

Estimation of Cumulative Exposure from N-methyl Carbamate Pesticides:  A Case Study 
of 10 N-methyl Carbamates, Table 10.  Specific Exposure Routes and Pathways/ 
Scenarios).  Additional contact routes for children should include dermal/oral contact 
with gardens, ornamentals, and trees.  Children have been observed having skin contact 
with vegetation and placing vegetation in their mouths.  Whether this is a major source of 
dermal or non-dietary ingestion is unclear; there may not be enough data to make a 
determination as to its impact on children’s exposure.  

 
In certain scenarios, EPA should provide better support to justify the exclusion of 

specific exposure routes such as "ingestion of soil and mouthing of grass" (see Estimation 
of Cumulative Exposure from N-methyl Carbamate Pesticides:  A Case Study of 10 N-
methyl Carbamates, Section VI -D).  EPA states that the reason for not including an 
exposure route involving oral ingestion of soil and mouthing of grass was justified 
because of the 'little impact' such routes had on the individual chemical risk assessments. 
 This justification needs better support by further exploring what difference the 
cumulative effect of several ‘little impacts’ might make in the cumulative risk 
assessment. 

 
In terms of clarity of the document, when discussing the residential exposure 

http://www.epa.gov/scipoly/sap/2002/april/caresmeetingminutes.pdf
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scenarios, EPA states that "The full range of exposure values -- expressed as uniform, 
log-normal, triangular, or cumulative distributions -- are used, where appropriate, rather 
than relying on point estimates."  (see Estimation of Cumulative Exposure from N-methyl 
Carbamate Pesticides:  A Case Study of 10 N-methyl Carbamates, Section VI-A).  While 
the Panel applauds this move away from point estimates, there needs to be clear 
descriptions as to why a particular distribution was used rather than another one.   

 
The food assessment is vulnerable in terms of extremes in food consumption, 

home grown vegetables and home pesticide applications.  Furthermore, most of the 
residues are a single record of composites, and deconvolution of residue data should be 
considered.  The food dataset should not be artificially restricted (e.g., exclusion of over 
tolerance values from the USDA Pesticide Data Program (PDP) dataset).  
 
Part B.  Given the results of the initial exploratory analysis, EPA believes that a 

more sophisticated time-based intra-day model (e.g., PBPK in which the 
timing of intra-day eating events is explicitly incorporated) for exposures 
through the food pathway would not substantially change the assessment of 
potential risks through this pathway compared to the results produced using 
the RPF methodology used in the case study in which 24 hour food 
consumption data is used. Please explain why you agree or disagree. 

 
Panel Response   

 
 The default assumption of eating events close together in time is a proper 
approach in the context of this pilot case study for the N-methyl carbamate exposure 
assessment.  Allowing for recovery seems difficult given the unknown durations that 
would have to be assigned to defensibly address this issue.  The extent to which eating 
frequency affects the outcome of this case study analysis is a testable proposition that 
could be explored as a distributed analysis.  The Panel noted that a supplementary 
analysis using a stratified sample of consumers at the high end of pesticide ingestion 
would help justify the viability of this approach.  However, a supplementary analysis 
should only be done if the underlying data are adequate to support the analysis.  The 
Panel is skeptical that this proposition is testable with existing datasets.  For example, the 
assessment presents comparison of records for a number of eating occasions and found 
few, if any, with four or more per day (see Estimation of Cumulative Exposure from N-
methyl Carbamate Pesticides:  A Case Study of 10 N-methyl Carbamates, Section IV-H). 
 Food consumption patterns, particularly for fruit juices in some families, is on an ad 
libitum pattern rather than as a specified number of events per day.  The structure of the 
CSFII surveys would not adequately pick up this type of exposure.  Therefore, the 
concern is that the data do not adequately capture human behavior, and exposures may 
not be seen because of the quality of the available data and not because the potential for 
exposure did not exist. 
 
Question 2 
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 A key concept that is unique to cumulative risk assessments is the concept of 

co- 
occurrence of residues (and thus co- or simultaneous exposure) to members of the 
Common Assessment Group (CAG).  Specifically, a cumulative assessment must 
appropriately consider residues that co-occur in time and space since these 
exposures must by combined and considered jointly.  This is true for exposures 
through the food pathway, the drinking water pathway, and the residential 
pathway.  The USDA’s PDP data program uses multi-analyte methods and thus 
simultaneously measures co-occurring residues in samples.  The drinking water 
concentrations generated from the PRZM-EXAMS model considered regional N-
methyl carbamate pesticide use and usage practices and thus implicitly considered 
co-occuring residues. 
 
 Exposures through the residential pathways can also co-occur.  One of the 
unique aspects of the N-methyl carbamate pesticide cumulative exposure assessment 
is the use of the Residential Exposure Joint Venture (REJV) data that provides 
current information on co-occurring use patterns for residential exposure.  The US 
EPA National Home and Garden Pesticide Use Survey (NHGPUS) can also be used 
to develop residential use profiles.  The PDP, PRZM-EXAMS, and REJV/NHGPUS 
data were used, to varying degrees, in this case study. 
 
Please comment on the use of the pesticide use/usage data (e.g., REJV and 
NHGPUS) to account for co-occurring use patterns in assessing residential 
exposures. 
 
Panel Response 
 
Data for Co-occurrence 

 
The Residential Exposure Joint Venture (referred to hereafter as the Joint 

Venture) and the National Home and Garden Pesticide Use Survey (referred to hereafter 
as the Home and Garden Survey) appear to be the two main databases for characterizing 
the co-occurring pesticide use patterns.  However, their use in assessing the co-
occurrence of pesticide use would need to be carefully considered and justified as it is 
possible that neither database fully captures the diversity of the US population as it 
presently exists.  The overall representativeness of both surveys should be evaluated to 
ensure they accurately reflect the racial, ethnic, and income diversity that currently exists 
in the U.S. population.   

 
The Panel appreciates the efforts of the Joint Venture task force that surveyed and 

collected more updated data on pesticide use patterns.   However, without access to this 
proprietary database, the Panel is unable to provide a proper review.  The Panel is also 
unable at this time, to determine if there might be alternative ways to utilize the data 
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(e.g., the reports from respondents who provided less than 12 months diaries) or any new 
dimensions to exposure analysis other than what was presented by the Agency.   

 
The Panel understands that the Agency's effort to evaluate the use of Joint 

Venture data is on-going and encourages a careful review of the validity and reliability of 
the Joint Venture data, in particular the potential effects of response bias and errors in 
reporting as indicated by product-application combinations that are not plausible.  
 
Additional Comments on Specific Issues Regarding the Joint Venture Database.   

 
As mentioned earlier in the Panel's response to Question 1 - Part A, telephone 

recruiting may not provide the most representative sampling of the population.  The 
dependence on telephone for recruiting may bias the sample to a wealthier than average 
population and may perhaps also bias against younger users that rely solely on cell 
phones whose numbers are not readily available.  The Agency is encouraged to 
systematically address the overall issues of telephone recruiting and consider a sub-study 
of non-responders that includes a telephone or personal interview as well as a validity 
study of responders that includes personal or telephone interviews. 

 
The demonstration of validity should also include response rates, and the 

adjustments done to them need to be understandable to the Panel and others who will 
review the cumulative risk assessment.  The extreme loss of response rate after the initial 
screening points to the need for a careful evaluation of the Joint Venture database.  The 
National Family Opinion (NFO) adjusted survey results for 6 demographic factors in an 
attempt to make the data representative of the overall U.S. population. The factors chosen 
to make such adjustments should be related to the use of pesticides, and specifically, to 
the N-methyl carbamate pesticides. 

 
Issues of statistical inference by region or state are important, as is the number of 

homes represented by the survey in demographic subgroups.  The limitation of sample 
size becomes a greater issue when the database is divided into more refined geographic 
locations. 

 
The analysis of the database should include the concordance between the 

inventory data and application records (accounting for labeled application method where 
appropriate). 

 
Some of the data, as presented by the Agency, stood out and may indicate the 

need for a more careful evaluation.  For example, the 69% derived proportion of 
applications to trees was by a handwand sprayer (see Estimation of Cumulative Exposure 
from N-methyl Carbamate Pesticides:  A Case Study of 10 N-methyl Carbamates, Table 
A.1.2 -  Residential Use of Chemical A, REJV/1).  Also, the 67% usage rate over a year 
seems low compared to other surveys.  Both Adgate et al. (2000) and the Home and 
Garden Survey reported usage rates in the 80-90% range.   
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The co-occurrence information provided by the Joint Venture is unique and 
valuable, yet the limitations of those data should be fully explored and stated. For 
example, the table of conditional probabilities (see Estimation of Cumulative Exposure 
from N-methyl Carbamate Pesticides:  A Case Study of 10 N-methyl Carbamates, Table 
A.1.8 - Chemical A Scenario Co-occurance Probability Matrix) for co-occurrence of 
pesticide applications to lawns must be based on a notably small number of observations 
(e.g., 1 or 2 homes).  

 
Given the proprietary nature of the Joint Venture dataset, and the need for 

transparency in Agency decision-making, EPA should carefully consider the pros and 
cons of using this data source and the specific information it can provide.  The Agency is 
encouraged to investigate the reliability of the co-occurrence data represented in the Joint 
Venture, to identify the important limitations, weaknesses, and uncertainties associated 
with the amount of information therein, and to incorporate this knowledge into the N-
methyl carbamate pesticide cumulative risk assessment (CRA). 

 
Additional Comments on Specific Issues Regarding Home and Garden Survey 

 
The main concern regarding the Home and Garden Survey database is the lack of 

assurance that the pattern of pesticide use has remained the same since the survey was 
taken more than 15 years ago.  In many respects, the household pesticide use practices 
have likely changed over the years.  For example, one cannot assume that pesticide use 
practices and types of pesticides used for various applications are the same now as then. 
If the amount of advertising that is conducted for marketing residential pesticides is 
effective, there should be at least increased product purchasing if not usage.  The 
demographic distribution of responders in the study may not reflect current demographics 
and therefore may either underestimate or overestimate usage patterns. In addition, the 
choice of pesticide may also have changed in the past 15 years.  It would be desirable to 
have an updated Home and Garden Survey in order to have some assurance that the 
survey results and extracted co-occurrences are still valid.   

 
The Joint Venture can be expected to reflect more closely the development of 

better spraying equipment, improvements in use labeling, and the awareness of domestic 
pesticide use currently.  However, it is unclear how much information from that data 
source is/will be used.  Thus, at this stage, the Panel strongly recommends that the 
Agency compare and contrast the results from Home and Garden Survey and the Joint 
Venture data where possible.  The advantages and disadvantages of using information 
from one or both surveys should be determined.  The comparison also could allow a 
better assessment of how the Home and Garden Survey data can be utilized in Lifeline to 
imply current use patterns.  An Agency effort to provide easy public access to the two 
parts of the Home and Garden Survey report is also recommended.  
 
Pesticide Residue Data 

 
The Panel commented on the approach used for pesticide degradation parameters 
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to define foliar residue in contact exposure (see Estimation Of Cumulative Exposure 
From N-Methyl Carbamate Pesticides: A Case Study Of 10 N-Methyl Carbamates, 
Section VI-F).  For example, setting the residue to zero for Chemical A 30 days after its 
application does not appear to be "conservative" because, based on its half life of 9 days, 
10% residue is expected to remain.  As for chemical G, a linear degradation rate is highly 
unusual because almost all environmental processes are first-order or quasi first-order. 
The Agency is encouraged to revisit the assumptions about chemical degradation with 
respect to realism versus conservatism. 

 
The Panel recommends that the regional and temporal patterns of N-methyl 

carbamate pesticide residues be explored across all pathways of exposure (not just for 
pathways associated with applications around the residence and for drinking water) and 
reflected in the exposure analysis estimates.  For example, the concentrations of certain 
organophosphates in food display a temporal pattern with the highest concentrations 
occurring in the spring and summer months. It seems reasonable to also expect that N-
methyl carbamate pesticides used in domestic agriculture will display a similar pattern.  
The Agency is encouraged to further explore the potential seasonal patterns of the PDP 
data that are used in assessing dietary exposures.   
 
Exposure Scenarios            

 
The studies used to develop the unit exposures for each application scenario 

should be made available to the Panel to evaluate their validity and reliability.  Many 
factors influence the results of such tests and the Panel is not currently aware of the 
conditions during the test.  Some of the important factors include: sprayer-target 
geometry; meteorology; spray nozzle type and settings, if adjustable; duration of 
application events; sampling methods and locations; analytical methods and 
performances; data reduction and analysis methods. 

 
Ready-to-use products have higher upper range dermal unit exposure values (mg 

exposure per unit of active ingredient applied) than hand wand, etc.  Yet, the amount 
applied with ready-to-use products is relatively low, so this application technique seems 
the least important (at least for many scenarios). However, questions remain regarding 
how the duration of exposure is considered; e.g., if the exposure is assumed to be 
instantaneous or spread over the duration of the application event. 

 
The Panel commented on the following specific exposure scenarios that are not 

addressed by the Agency: 
 

1. Omitting the hose-end sprayer application method for ornamental/tree sites 
may not represent a "conservative" approach.  Not explicitly accounting for use 
on trees may thus be an important limitation of the Lifeline model, and could 
lead to underestimates of upper-end residential use exposures for products 
applied to trees. The Agency is encouraged to explore the sensitivity of their 
results to this limitation.  
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2. The Agency should account for pesticide use by property managers or 
commercial pesticide applicators. 

3. Hand-to-mouth transfer of pesticides by applicators (adults) due to tobacco 
smoking is a likely exposure pathway, but it is not included in the pilot 
exposure case study.  Whenever the smoking information for adult applicators 
is available, this oral ingestion route should be incorporated in the assessment.  
Dermal and oral exposures are also likely to occur in children age 3 to 5 when 
N-methyl carbamate pesticides  are used in home gardens.  Studies have 
indicated that children of parents who use pesticides in their home gardens 
(either vegetable or flower) have significantly higher urinary OP metabolite 
concentrations than children whose parents reported no use of pesticides in 
their garden (Lu et al. 2001). These two likely exposure routes should be 
included in the assessment. 

4. The co-occurrences considered by the Agency in this current analysis are 
limited exclusively to pesticide occurrence in media in and around the home. 
As a result, locations frequented by people outside the home are not 
considered. For children's exposure, important areas not yet considered might 
include schools and day care centers where a premium is placed on 
demonstrable hygiene. The Agency should at least discuss the possibility of 
exposures outside the home and the associated risks. 

5. In the current assessment, exposures associated with household outdoor 
applications of N-methyl carbamate pesticides require contact with the media 
treated by the applicant (e.g., lawn, garden and vegetables). Several studies in 
the scientific literature have demonstrated that common residential use 
insecticides applied outdoors migrate into the home by being tracked inside 
(Lewis et al., 2001; Stout and Leidy, 2000; Nishioka et al., 2001). The Agency 
should consider the importance of this potential exposure pathway in their 
continuing assessment of N-methyl carbamate pesticides. 

6. The present analysis correctly puts a large amount of effort into distinguishing  
between the age groups. This is important and needed because of the possible 
higher risk of young children.  On the other hand, age is just one factor that can 
be considered.  Others that could be considered include vegetarians versus non 
–vegetarians or other groups of persons with specific behavioral differences 
which cause heterogeneity.  The simple PK model would allow this distinction 
since it adjusts for the incorporation of a number of experimental factors. 

7. It is not immediately clear how certain pathways were omitted from the garden 
scenarios.  The Agency should consider the tendency of children to mimic adult 
behaviors.  

 
Question 3 
 
 The data sources and methodologies used in the N-methyl carbamate case 
study are similar in many respects to the data sources and methodologies used in the 
Cumulative Risk Assessment for the OP pesticides.  For example, in both 
assessments the evaluation of exposure of the food pathway relied to a great extent 
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on the USDA’s PDP data, the evaluation of  exposure through the water pathway 
used PRZM-EXAMS modeling data, and the evaluation of exposure through the 
residential pathway used standard SOP algorithms along with label information, 
professional judgments, literature values, and survey data (REJV, NHGPUS). 
 
Please comment on the data sources used in the cumulative exposure assessment 
and on how EPA has considered and incorporated the data.  Does the SAP have any 
suggestions or recommendations regarding additional available data sources that 
EPA may wish to investigate? 
 
Panel Response 
 

The data sources used in the cumulative exposure assessment were those 
currently available. The Panel raised a number of concerns about the age and quality of 
the datasets and urged EPA to test the outcome of its assessment against the NHANES 
carbamate metabolite data as a means of reality testing.  Concerns were raised about 
secular trends in pesticide use, the age of some of the data, how the data are used, how 
the data are interpreted, and the types of distributions developed from the data. 
 
Sources Used in Assessment 

 
The case study presented to the SAP clearly demonstrated that available data, 

although limited, could be combined to conduct a cumulative exposure assessment for the 
N-methyl carbamate pesticides.  All 3 models were built upon the same datasets; 
therefore, the similar outputs, particularly at the high-end exposure profiles from all 
models, are not surprising.  While the improvement of these models is on-going, the 
Agency should begin the process of validating all of the models in terms of adequacy and 
appropriateness by using a different dataset.  The immediately available data for such an 
exercise are data collected by Bayer from their carbaryl turf application study.  Assuming 
the study took place in the southeast region of North Carolina and therefore took into 
account the component of drinking water exposure in the model simulation, the outputs 
from these models can then be used as inputs to the PBPK model for estimating 24-hour 
average 1-naphthol levels.  The modeled 1-naphthol levels can then be compared to 1-
naphthol levels reported by Bayer.  From here, the Agency could decide which model 
would provide the most robust and accurate prediction, and if not, what modifications are 
needed in the CRA models so that the gap between predicted vs. observed levels can be 
brought closer. 
 
Comments Regarding Specific Issues 
 
  1. Secular trends:  Several Panel members raised the issue of possible change in 
use patterns and trends away from using cholinesterase inhibiting pesticides.  The 
Panelists question whether the Agency used any factors to adjust for this potential factor. 
 There have been significant secular trends in overall pesticide use with shifts away from 
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acetylcholinesterase inhibitors because of their inherent toxicity.  While there has not 
been an outright ban or prohibition of any carbamates, we are likely to see far less 
household use of such pesticides.  At the very least, the mix of carbamates used in 
residential and agricultural settings has likely shifted.  It is unclear in the background 
documents provided to the Panel what correction factors were used. 
    
 2.  Age of data:  There was considerable concern among the Panel about the age 
of data collected with the NHGPUS 15 years ago. One cannot assume that pesticide use 
practices and types of pesticides used for various applications are the same now as then.  
Also, the demographic distribution of responders in that study may not reflect current 
demographics and therefore may either underestimate or overestimate usage patterns.  In 
addition, the choice of pesticide also may have changed in the past 15 years.  Since 
NHGPUS was published around 1990, and likely represent data collected around 1988, it 
is quite dated.  
  
 3. Data used:  Some of the data used are regionally specific (water) while other 
appear not to be regionally specific.  The regional use of data meant to be representative 
of the nation is inappropriate and likely to be error prone.  Since the case study is in the 
Southeast, it is appropriate to try and use data specific to that region.  The authors should 
be clear on the potential hazards of using such data on regions smaller than that for which 
they are truly representative.   
  
 This assessment uses food residue data collected over a nine year period, 1994 
through 2002.  A more recent and smaller window would be more appropriate. As stated 
in the document, the primary reason for this choice is to maximize the number of food 
commodities. With this design, there is a trade off between precision and bias that needs 
to be addressed.  It would be interesting to see how robust the estimates are when early 
years are deleted. 

 
Support for some of the assumptions may be made by correlating overall 

exposure with pesticide sales figures, at least if one collects data over a long period of 
time.   

 
It was also felt that deconvolution methods should be used to impute individual 

serving exposure values from composite samples. 
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4.  Data Interpretation:  Observational data for children contact with pets are 

from a very small dataset and do not cover activities such as sleeping with pets.  It also is 
based on a single period of observation per child. 
  
 5. Data robustness:  It is important to get away from professional judgments 
that are more difficult to evaluate by outside reviewers and sometimes less transparent in 
how they were developed, and use existing data bases.  Robustness of databases is always 
a concern, particularly when they were not developed specifically to meet the needs of 
the Agency for use in modeling exercises such as this one. 

 
6. Uncertainty Analysis:  It is very important to accompany the assessment 

with a substantial uncertainty analysis.  The model comparisons of the exposure results 
are presented in Table 15 of the background document, Estimation of Cumulative 
Exposure from N-methyl Carbamate Pesticides:  A Case Study of 10 N-methyl 
Carbamates, with six significant digits.  It seems unlikely, for a host of reasons, that such 
precision really attends these numbers.  Estimating the 99.9th percentile, for instance, at 
this precision would require many more replications than were likely deployed in the 
Monte Carlo simulations.  The model uncertainty expressed by the tables suggests only 
one or two significant digits.  There are, perhaps, even fewer after the measurement 
uncertainties and the sampling error that arises from having few data samples in some of 
the cells are accounted for.   

 
The Agency attempted to quantify the reliability of the simulation results.  It 

should be pointed out, however, that changing the numerical seed and re-running 
simulations is not a sufficient way to conduct uncertainty analyses.  At the very best, this 
approach can only assess the uncertainty arising from the use of a particular sequence of 
random numbers.  We might call this the ‘simulation uncertainty’.  This is perhaps the 
easiest kind of uncertainty to address, but it is likely to be the smallest kind affecting the 
overall results; or at least can always be made to be the smallest, simply by increasing the 
number of Monte Carlo replications.  The Panel emphasizes that the consequences for the 
reliability of the results attributable to model uncertainty, sampling uncertainty, and 
measurement uncertainty in general will likely be much greater, and will probably lead to 
the results having no significant figures at all.  In such a case, an explicit uncertainty 
analysis is crucial to interpreting the import of the calculations.  Measurement 
uncertainty may be especially hard to estimate because the various model approaches 
have been based on overlapping and essentially similar datasets. 

 
The Panel voiced concerns about truncation several times.  It was felt that the 

Agency should not truncate a parameterized distribution without a reasoned argument to 
justify this decision.  The same issue arises with empirical distributions. Using an 
empirical distribution is perhaps the most egregious kind of unjustified truncation.  As 
several Panelists mentioned, higher values are almost certain to be obtained than the 
original data contained if more samples are collected.  It is impossible to know the impact 
of truncations unless an uncertainty analysis is conducted that addresses the 
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consequences of ignoring the tails.  The Panel encourages EPA to continue to study the 
model stability and sensitivity. 

 
One Panel member suggested that it is important to assess the appropriateness, 

sufficiency and precision of the outcome of this cumulative risk assessment for the N-
methyl carbamate  pesticides.  For example, are N-methyl carbamate pesticides in 
drinking water alone capable of elevating the exposure profile during a certain period of 
time during a year for all ages of modeled individuals at the 95th percentile?  The other 
interesting scenario about the outcome of this cumulative exposure assessment is that, 
assuming seasonal contribution of N-methyl carbamate cumulative exposure from 
drinking water is real, and most, if not all, of the N-methyl carbamate pesticide residues 
come from the seasonal agricultural uses in the modeled region, this seasonal effect is not 
reflected in the food component.   

 
According to data presented in Table 16 of the background document Estimation 

of Cumulative Exposure from N-methyl Carbamate Pesticides:  A Case Study of 10 N-
methyl Carbamates, approximately 65% of total N-methyl carbamate dietary exposure 
comes from a single food type, which is citrus fruits, including orange, tangerine, and 
grapefruit.  If the availability of citrus fruits to the modeled individuals is limited only to 
a certain period of time in a year, say winter months, this seasonal effect obviously does 
not transmit to the total exposure profile. It was felt that longitudinal correlations across 
seasons are included in the analyses.  There was discussion of the longitudinal nature of 
the PDP studies and the inclusion of foreign food items and items from other areas of the 
country (i.e., Florida versus California oranges).   
   

Diurnal patterns of exposure are very important for biomonitoring studies of 
exposure and effect and are not really addressed in the Agency assessments.  If we 
measure a parent/metabolite at one time of day, yet exposures vary across the day, we are 
likely to get substantially different inferences for exposure and risk depending on when 
the exposures occurred.  A morning exposure may be completely eliminated by late 
evening.  If a urine sample is taken in the late evening, the exposure inferred will be 
substantially smaller than what might be inferred from a noon urine sample. 

 
Other Data Sources 
    
 There are other sources of data that can be used to challenge and evaluate the 
qualitative accuracy of the data on exposure being generated in this analysis.  
Specifically, the Centers for Disease Control and Prevention (CDC) has produced the 
“Second National Report on Human Exposure to Environmental Chemicals“ (CDC 
Publication 02-0716) which determined levels of 1- Naphthol (carbaryl metabolite), 2-
isopropoxyphenol (metabolite of propoxur) and carbofuranphenol (metabolite of 
benzofuracarb and carbofuran) in human urine.  Through “best estimate” and 
“conservative” assumptions and use of the PBPK model presented during this SAP 
meeting, it would be possible to bound the amount ingested prior to the measurement and 
compare this with the range seen in the exposure assessment.  For example, 1-naphthol is 
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a metabolic product of carbaryl, naphthalene and some components of cigarette smoke.  
Assuming all of this is from carbaryl is a “conservative” choice.  Calculating a likely 
urinary level from the exposure estimates and the PBPK model and comparing this to 
what was seen could provide the maximum percentage in urine that would be due to 
carbaryl if the exposure estimates are correct.  While this still presents some challenges 
(how long between urinations, what to do about the large number of observations below 
the limit-of-detection, other sources of the metabolite, etc.), it is a reality check worth 
doing.  The median urinary level of 1-naphthol in children 6-11 years of age was 1.1 
micrograms/L, and the 95%-tile 5.6 micrograms/L.  From the PBPK model and the data 
used to form that model, it appears that 1-naphthol will be a minor urinary metabolite of 
carbaryl, accounting for less than 5% (high metabolism but small urinary excretion) and 
suggesting about a 20-fold ingestion relative to urinary output; however, this could easily 
be calculated more accurately by those who are familiar with the model.  For 2-
isopropoxyphenol, both the median and the 95%-tile are below the limit-of-detection.  
For carbofuranphenol, the median is below the limit-of-detection and the 95%-tile is 0.43 
micrograms/L.  The sample sizes for 6-11 year-olds are between 450 and 483 and for the 
total dataset are between 1917 and 1998.  They have the advantage of being 
representative of the national population and can be divided into broad regions.  
 
 In terms of additional data, the Agency noted that a study on lawns and gardens 
use of Chemical A conducted by Rhone-Poulenc in 1998 showed similar results as 
estimates from the NHGPUS (see Estimation of Cumulative Exposure from N-methyl 
Carbamate Pesticides:  A Case Study of 10 N-methyl Carbamates, Appendix1 - Page 148, 
Table A.1.6).  It appears that this study may provide a more current context to the 
NHGPUS and the Agency is encouraged to present this data set in greater detail. 
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