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Executive Summary

One of the responghilities of the Environmenta Protection Agency’s Office of Pesticide Programsisto
estimate the typica and maximum percent of a crop treated (PCT) with a particular pesticide. These
esimates, referred to as “likely average PCT” and “likely maximum PCT”, could be reflective of
expected pedticide use in the short-term future (three to five years). The Office of Pesticide Programs
(OPP) may estimate forecasts (projections) of PCT values. OPP worked for sometime to develop a
methodology to calculate PCT. This paper details recent progress towards refining these PCT
projections.

To improve estimates of PCT, OPP condgdered various methods for estimating typica and maximum
PCT dong with criteriafor sdlecting an appropriate modd. This paper presents a brief account of the
advantages and disadvantages of these methods and criteria. The finaized versgon of the forecasting
methodology outlined by OPP includes a forecasting method, various “modds’ within the forecasting
method to project typical PCT, amode sdection criterion that identifies the most appropriate mode
and amodel specific upper prediction interva (upper bound) to project maximum PCT. Additiondly,
OPP performed an evauation of the forecasting methodology’ s accuracy. An objective measurement
commonly used in forecasting “competitions’ to quantify accuracy was employed to compare the
proposed forecasting methodology to some benchmark methods, including the method currently in use.
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1 2 | ntroduction
1.1 Regulatory Overview

Pedticides are regulated in the U.S. under the Federa Insecticide, Fungicide, and Rodenticide Act
(FIFRA) and the Federal Food, Drug and Cosmetics Act (FFDCA). 1n 1996, Congress passed the
Food Qudity Protection Act (FQPA), which amended both FIFRA and FFDCA by requiring that
aggregate and cumulative risks be consdered by the Environmental Protection Agency in granting
pesticide tolerance petitions and in ng whether pesticides can be reregistered for use. Through
these gatutes, EPA evauates risks posed by the use of each pesticide to make a determination of
safety. Only if the Agency determines that such resdues would be “safe’, may it authorize atolerance
to allow a pesticide resdue in food.

One of the respongbilities of EPA’s Office of Pesticide Programs (OPP) is to assess the potentid risks
from pesticide residues for food consumption. The Size of the potentid risks depends on a variety of
factorsincluding the toxicity of the pesticide (how much harm, if any, is caused by specific amounts of
the pedticide) and the magnitude of the exposure to the pesticide. In turn, exposure to a pesticide in the
food supply depends on two factors: the amount of the pesticide present in food and how much food a
person eats.

To develop estimates of such exposure, the Agency must use available and reliable, representative data
for such risk assessments. These data include pesticide use Statistics such as the percent of acrop
treated (PCT) with a particular pesticide.

The FQPA-amended FIFRA aso requires that OPP re-eva uate risks on a continuing basis.
Specificaly, the act permits the Agency to consider the percent of acrop that is treated with a pesticide
(PCT), but requires that this information be re-evauated (and, if necessary, the risk assessment be
adjusted) after five years. Thus, estimates of PCT should be reflective of future pesticide use based on
information from OPP data sources.

OPP is attempting to develop standard procedures that can be routingly used by abroad audience asa
“first gtep” in projecting PCT. It isimportant than any such “first sep” be well documented, clear and
trangparent, and reasonably smple to perform. Therefore OPP has compiled the current document to
detail the development, realization, and evauation of the methodology proposed to forecast “likely
average’ and “likdy maximum” PCT. OPP recognizes that the function of any forecasting tool is not to
rigidly dictate aforecast projection but rether to serve as a systematic means of illuminating and
highlighting patterns and trends in data. Specidized professond expertise and experience, including
specific knowledge of and judgment regarding agricultural practices and structurd changesin the
pesticide markets, can override forecasts based predominantly on standardized forecasting procedures.
OPP bdieves that the methods described in this document will subgstantidly improve our ability to
redigticaly evauate the potentid exposure of individuds and the population to pesticides and contribute
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to the god of protection of public hedth.

1.2 Forecasting M ethodology and Policy | ssues

It isimportant to note that implementing methods for forecasting pesticide use will necessarily involve
and draw from avariety of “science policies” That is, implicit to any decison that involves prediction
or forecagting are questions related to “How sure?’, “How often?’, “With what confidence?’, “ Over
what time period?’ and “How likely?” Each of theseis an issue that can be informed by the science of
datigtica forecasting, but for which that discipline can offer no firm, uncontested, or incontrovertible
answvers. Any so-cdled “answers’ to such questions are inherently judgmentd in nature. This guidance
does not investigate, nor even attempt to explore, the intricate nature of these decisions. Instead, it will
amply recognize that congderation of these policy issuesis on going and that further discusson in this
areais needed.

Since the approaches discussed in the document are intended to apply only to the methodol ogical
aspects of the forecasting process, it is important to note that the approaches discussed herein do not
support or prescribe the use of any one particular confidence level, percentile, percentage, or
forecasting period associated with the process of regulatory decison-making. Thus, athough the
document may discuss a“95th percentile upper prediction interval” or a“five-year time horizon”, these
decisons have not been made and should not be inferred. Instead, they should be accepted solely asa
amplification designed to make the technica discussion more concrete and the science policy “decision
points’ more gpparent. Although this paper makes no attempt to directly address these issues, there
are no intringc limitations in the methodology that would prevent such forthcoming decisons from being
made or the described methodology from being adapted to include these decisions.

1.3 Scopeand Organization of Document

Section 2 of this document details the devel opment of the methodology proposed by OPP for
forecasting PCT. An important component of detailing the development of the proposed methodology
isadescription of OPP s gpproach to forecasting PCT. Topics covered in this section include
identifying candidate forecasting methods and mode selection procedures. Documentation of this stage
ismotivated by EPA’s practice of soliciting public participation and guidance for the development of its
scientific methods. OPP believes an understanding of the decision process used to arrive at the
proposed forecasting methodology will help to make this process transparent.

Section 3 describes the findized version of the forecasting methodology, which is based on the
exponential smoothing forecasting method. A desirable aspect of any standardized procedure
employed by OPP for the purpose of forecasting PCT is that the process should be transparent,

ble, and reproducible. Therefore this section will provide abroad overview of the steps
involved in producing PCT forecagts. These steps include parameter optimization, modd sdection, and
caculation of PCT forecasts.

In order to gauge the accuracy of OPP s proposed methodology, section 4 includes an empirica
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evauation of the forecasts of various modds. In an attempt to evauate the ability of the methodology to
select the “best” forecasting model, the forecasts of various models are compared to those of the
methodically selected model. This*competition” isintended to evauate the predictive accuracy of the
methodically selected modd.

2 Methodological Development

2.1 Candidate Forecasting M ethods

Pedticide useis a dynamic process that is subject to unpredictable factors such as weather, pest
population, and the pesticide market itself. These factors influence the pesticide applicators decison-
making process when seeking to answer questions such as. “Does a crop need to be treated this
year?’, “If so, how much of the crop should be treated?’, “ At what rate should the pesticide be
gpplied?’, and “Is the cost of pesticide application worth the increase in expected crop yidd?.”
Modeling the complex relationships between these factors and the gpplicators decision-making
process, in order to forecast PCT, would require overwhelming amounts of information. As such,
multivariate methods that attempt to mode the relationship between percent crop treated and awide
variety of explanatory variables were ruled out as candidate methods. Rather OPP has focused on
univariate methods where forecasts depend only on the past values of PCT.

The exclusve use of historic data for producing forecasts is the identifying characteristic of extrgpolation
methods. Methods that can be used to extrapolate time series data such as PCT include linear
regression, Box-Jenkins methods, and exponentid smoothing. The models provided by these
extrapolation methods in addition to a smple mean/average modd were considered as candidates for
forecasting PCT. A brief description of the methods and/or model(s) and the reasons for
eiminating/including them as part of OPP findlized methodology follow.

2.1.1 Mean/Average Model

The mean mode is one of the smplest methods that could be used for forecagting time seriesdata. To
arive a aforecad, al that isrequired is taking the arithmetic mean (i.e. average) of the past
observations. By estimating percent crop treated as the mean of the past vaues, one assumes that the
observations are independent samples from a common population and that any differences are due to
some random error. In other words, any variation in the annud vauesis unexplained. Such amethod
would not account for any trend in the data. Initialy, OPP considered using the mean mode! for time
seriesthat do not exhibit atrend. Using this method on atime series that is exhibiting a trend would
expose the forecasts to serious criticism. For example, if the use of a pesticide has been increasing (or
decreasing), one could argue that the average underestimates (or overestimates) the pesticide’ s use.
Nonetheless, ingtances in which little datais available, such as a newly registered and/or reported use,
the mean model could provide adequate forecasts. This method was eventualy discarded in favor of
other forecasting techniques, but gtill serves as “benchmark” method with which to compare forecasts.
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2.1.2 OLSRegresson

Although commonly employed as a multivariate method, linear regression can be used as a univariate
method for time seriesdata. The linear regression approach modd s the relationship between the data
points and the time of their observation as alinear function. The linear relationship is specified by the
dope and intercept parameters. Regression methods differ in the procedures used to estimate the
values of these parameters. The most commonly used method is ordinary least squares (OLS), which
esimates the parameters by minimizing the squared resduas. The resduds are the differences

between the “ predicted” values and actual values of the time series (here predicted refers to the vaue of
adata point as estimated by the OLS modd, not in the sense of forecasting).

The nature of the trend in atime seriesis reated to the concept of “Sationarity.” Generdly atime series
is stationary if the mean and variance are congtant over time and the value of the covariance between
two time periods depends only on the distance between two time periods and not the actud time a
which the covariance is computed. With linear regression, the mean of the time seriesis modeled to
increase or decrease by the same amount for every time period; the change from one time period to the
next is the dope parameter. Thus the time seriesis considered nondtationary. However with linear
regression, one assumes the time series can be stationarized by accounting for the trend. In other
words, if one were to subtract the trend from each observation, the time series would have a constant
mean and variance. Thistype of trend isreferred to as adeterminigtic trend. Generdly adeterminigtic
trend is congtant throughout the time series; while avariable trend is referred to as being stochadtic.
OPP believesit ismore redigtic to assume that trends in PCT may change over time. Therefore linear
regression methods for forecasting PCT were ruled ouit.

2.1.3 IRLSRobust Regression

In addition to OL S regression, OPP considered iteratively re-weighted least squares (IRLS) regression.
IRLS regression is more specificaly classfied as arobust regresson method. The term “robust” refers
to the method' s goa of obtaining robust parameter estimates by dampening “outlier” effects. An outlier
isan observation with arelatively large resdua. Sometimes the resdua of an outlying observation is
“balanced out” by the residuas of the other observations (more common for cross-sectiona data than
to time series datd). Other times, outliers can greetly affect parameter estimation. The potentid
influence adata point has on parameter estimation is referred to asleverage. IRLS amsto diminish the
leverage of these outliers by weghting the resduas via some weight function(s). Generdly,
observations with relaively large resduas are assgned smaller weights than those of observations with
rdaively smdl resduds thus mitigating the leverage of outliers. Asthe nameimplies, IRLS repeetsthe
process of weighting the resduas and calculating the parameter estimates until there is negligible
difference between subsequent sets of weights (Hamilton, 1992).

In addition to modeding a determinigtic trend, there is another disadvantage of using IRLS to forecast
PCT. IRLS was examined dueto its ability to “down-weight” outlying observations. OPP thought this
would be helpful in Stuations where some of the earlier vaues for PCT were uncharacteristicaly high or
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low compared to more recent observations. Such achange in the “level” of PCT could be due to some
shift in the market, such asthe regigration or cancellation of some competitive chemicd; or a consstent
increase or decrease in pest pressure. The hope was that |RLS would be able to discount these initial
observations and start tracking the most recent level and trend of the time series. However, robust
regression regards outlying observations the same whether they occur at the beginning or the end of the
time series. If such change(s) were to take place and the most recent observations of PCT were
reflective of such change(s), OPP certainly would not want to disregard such observations when
caculating PCT forecasts.

2.1.4 Box-Jenkins Methods (ARIMA)

Box-Jenkins (BJ) methods were also considered for forecasting PCT. BJ methods model time series
as autoregressive integrated moving average (ARIMA) processes. When moddling atime seriesasan
ARIMA process, the first step isto dationarized the data. Differencing is a commonly used method for
dationarizing time seriesdata. The process of differencing a time series involves taking the difference
between subsequent observations. The term “integrated” (1) in ARIMA refersto this differencing
process. Once a stationarized, the datais modeled to be an autoregressive (AR) process and/or
moving average (MA) process. Generally an AR process models an observed vaue to be depend
upon previoudy observed vaue(s), a congtant term (i.e. deterministic) and a stochastic term. An MA
process models an observed value to be dependent upon a constant term and alinear combination (i.e.
weighted average) of multiple sochastic terms. The above explanations provide a generdly description
of ARIMA processes, adetermination of the ARIMA process which best fits a particular time seriesis
aiterdtive procedure that involves andyzing the resduds of the ARIMA process.

The BJ methods were developed as a framework to recognize and exploit patterns of variability in time
seriesdata. |dentifying characteristics of the time series are then used to select an gppropriate ARIMA
processto model. Thefact that BJ methods incorporate procedures for identifying and modeling
nongtationary time series (and variable trends) makes it an attractive univariate method. However, it is
generdly accepted that a least fifty observationsis needed to employ such methods. Typicaly time
seriesfor PCT contain much fewer observations. As gppeding as BJ methods are, OPP believes the
mgority of PCT time serieswould not meet the data requirements for gpplying BJ methods.

2.1.5 Exponential Smoothing

Exponential smoothing (ES) methods wer e considered by OPP for the purpose of forecasting
PCT. ESmethods model time series data in the manner similar to BJ methods. In fact many ES
models have an equivalent ARIMA model. The ES models of interest to OPP, simple exponential
smoothing (SES), linear exponential smoothing (LES), and damped-trend exponential smoothing
(DES), all have ARIMA equivalencies. Although BJ and ES methods can model seasonality in
time series data, seasonality is not a relevant characteristic of annual data such as PCT. Like
BJ methods, the ES methods can be used on nonstationarity data. However unlike BJ methods,
the ESmodel selection procedure istypically not based on examining the residuals to determine
if amodel effectively stationarizes the data.
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Every ESmodel can be considered as having two components:. level and trend. Both the level
and trend have a corresponding smoothing parameter, a and b respectively. For the models of
interest, the smoothing state is the arithmetic sum of these two components. The smoothing
state is the estimated or fitted value of an observation for particular time period. ESmodels
attempt to estimate the val ue of these components based on weighted averages of the
observations (for the level) or differencesin the observations (for the trend). The weights are
specified such that the most recent observations have the greatest effect on a component’s
estimation. In fact, the name * exponential smoothing” is derived from the specification that the
weightsincrease “ exponentially” from the most distant to the most recent observation--thus
providing “ smoothed” estimates of the level and trend.

The smoothing parameters assume values from zero to one and determine the value of the
weights. When a smoothing parameter is equal to one, all of the weight is given to the most
recent observation. Thus the estimate of the corresponding component is completely determined
by the previous observation. At the other extreme, when a smoothing parameter is equal to
zero, the weights are all the same: zero. Thus the value of the component is never updated from
itsinitial estimate. These extreme values can yield useful model equivalencies. For example,
when ais equal to one, the SESmodel is equivalent to the “ naive” model where the forecast for
atime seriesis simply equal to most recent observation. Typically however, valuesin between
these extremities are used to specify ESmodels. The larger the value of a smoothing parameter,
the more influence the observations from the recent past will have on the component
estimations. Conversely when smoothing parameters assume smaller values, the influence of
component estimation is more evenly distributed among observations from the distant and
recent past.

Being the most basic of the ES models, the simple ES model can be considered as having a trend
component equal to zero. In other words, the smoothing state is simply the level component.
The SESmodel attempts to track the changing level of atime series. If the smoothing parameter
isrelatively small, then the time seriesis being model as having a level that does not change
much from year to year. On the other hand with a relatively large smoothing parameter, the
SES model updates its estimate of the level frequently. For the SESmodel, the forecasts are the
same regardless of the number of years being forecasted.

The linear ESmodel has the added complexity of including a trend component (not equal to
zero). Theterm*linear” refersto the additive nature of the trend component: the smoothing
state is equal to level plusthe trend. In conjunction with modeling the changing level of the
observation, LES also models the shifting trend in the series. Aswith the simple model, the
smoothing parameter s govern how often the components are revised. Thus a time series can be
modeled as having a fairly stable level (small a) and a trend component that changes frequently
(large b). The LESforecasts increase by an amount equal to the last estimate of the trend
component. To illustrate, if |, isthe last estimate of the level for a time seriesand b, isthe last
estimate of the trend, then the forecast for next three yearswould bel, + b,, |, + 2*b,,and |, +
3*b, respectively.
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In addition to having a level and trend component, the damped-trend ES model includes a
parameter not previously mentioned: the damping coefficient, f. Asthe name implies, damped-
trend model damps the trend component of the model. Like a and b, the damping coefficient
can vary fromzeroto one. Thecloser f isto zero, the more rapidly the trend is damped.
Conversely, the damping of the trend is more gradual when f islarger. In fact the linear model
isa special case of the damped-trend model for which f isequal to one. The DESis a useful
model when there is evidence to suggest that the current trend in the data is unlikely to continue.
As an exampl e the forecasts for the next three yearswould bel, + (f)*b,, I, + (f + f 9)*b, and
l,+ (F + f 2+ f 3*Db, respectively.

The ES method has some very attractive characteristics: the models available with this method
allow for a variety of trends, put more emphasis on the most recent observations and are not
data intensive. Until recently the lack of a well-devel oped modeling framework presented some
disadvantages to employing the ES method. However, in recent years Hyndman and others
(Hyndman et al forthcoming) have done some innovative work to provide analytical formulae
for the forecast variances of these models. These formulae allow for the calculation of
prediction intervals for exponential smoothing forecasts. As such, ES models are the focus of
OPP’ s proposed methodology for forecasting PCT.

2.2 Model Selection Criteria

This subsection details some procedures considered by OPP for selecting an appropriate
exponential smoothing model to forecast a particular time series. The model selection criteria
that are the basis of these procedures are the Gardner-McKenze protocol and the Bayesian
information criterion. The Gardner-McKenze protocol selects a model by examining time series
before fitting any of the modelsto the data. In contragt, the Bayesian information criterion selects the
best model after the various exponentia smoothing modes have been fitted to the data. Ultimately use
of the Gardner-M cKenzie protocol lacked empirica support. While other mode sdection criteria
gmilar to the Bayesan information criterion, such as Akaike sinformation criterion are favored by
researchers (Hyndman et d 2002). Both methods are presented in the following section, athough the
Bayesan information criterion was ultimately chosen as the basis for mode sdection procedure.

2.2.1 Gardner-McKenze Protocol

The Gardner-McKenzie protocol (GMP) isa smple procedure for classifying trendsin time series
data (Gardner 1988). Once the trend has been classified, Gardner suggests which exponential
smoothing model to use. To determine the type of trend present in the time series, the variance of the
observations is compared to the variance of first order differences of the observations and the variance
of the second order differences of the observations. Thefirst order differences are calculated by taking
the arithmetic difference between subsequent observations. Similarly the second order differences are
caculated by taking the arithmetic difference of the first order differences. The protocol is based on the
proposition that if thereis no trend in the time series then the variance of the cbservationsisthe
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minimum, if there isamoderate trend then the variance of the firgt order differencesisthe minimum and
if thereis a strong trend then the variance of the second order differencesisthe minimum. For atrend
categorized as“none’, “moderate’ or “strong”, Gardner suggests using Smple, damped-trend and
linear exponentia smoothing respectively. An example demondrating the use of the GMPisgivenin
Table 1. Thefirst order and second order differences are denoted as DPCT and D?PCT respectively.

2.2.2 Bayesian Information Criterion

The Bayesan information criterion (BIC) isadaidtic that quantifies the relative “ goodness-of-fit” and
“complexity” of amodd. The component of the BIC that measure the goodness-of-fit of the modd is
the mean squared error (MSE). For the exponentia smoothing modes, the MSE is smilar to the more
familiar M SE associated with regresson modds. In generd, the MSE is the average or “mean” of the
“qquare’ of the “errors’, where the error is smply the difference between thefitted vaue of the model
and the observed vaue of the time seriesdata. Matheméticdly,

5 (Y Y)J

o n

MSE=

where n isthe number of observationsin the time series, l= and }-' are the observed and fitted values of the
observations respectively. A relatively small MSE isindicative of amodel that fits the historical datawell. At the
same time, the number of parameters employed to calcul ate these fitted values can supplement the M SE measure of
accuracy. These two concepts are central to the definition of the BIC, which can be formalized as:

BIC =nlnMSL) +knn)

where, as before, n isthe number of observationsin the time series, k isthe number of parameters for
the modd, and In(.) refersto the naturd logarithm. Aswith the MSE, aminima BIC indicates a*“good”
mode. Holding the M SE congtant, it can be seen that for a given time series as the number of
parameters used to specify amode increases, the BIC increases. Thus the BIC “pendizes’ models
with more parameters. The purpose of using the BIC isto sdect the modd that provides the “best” fit
to the historical data with the minimal number of parameters. The rationde behind this model sdlection
procedure is that the model that performs well at fitting will aso perform wel a forecasting.

2.3 Egimating Maximum PCT

When describing PCT forecasts, it has been understood that the pesticide use statistic referred to has
been the “likely average PCT.” “Likely average PCT” is the term OPP uses when denoting typica or
average use for the pedticide crop combination of interest (usualy at the national leve). However,
another pedticide use datidtic utilized by OPP is the “likely maximum PCT”, the maximum percent of a
crop expected to be treated with a specific pesticide (again, usudly at the nationd leve). OPP
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consdered severd different techniques for estimating the likdy maximum PCT. Theseincude generd
techniques that could be used regardless of the specified model, and others that are model specific.

2.3.1 General Techniques

Generd techniques could be used for estimating maximum PCT that do not take into account the model
being used to forecast the “likely average PCT” or its parameters. OPP considered severa options,
which can be characterized unsophisticated. Generdly, the maximum of the higtorica observations
might serve as an estimate of the “likely maximum PCT”, and has been by at least one OPP
stakeholder. OPP decided that such estimates were inadequate representation of maximum use. If
historic maxima were used for a crop that has not experienced high pest pressure, they could gresatly
underestimate future maximum use. On the other hand, if a pesticide is exhibiting a decidedly

decreasing trend in usage, the higtoric maximum may grosdy overesimate the maximum PCT. Such
generd techniques do not utilize dl rdevant information when estimating likely maximum PCT, and OPP
has focused on other options.

2.3.2 Modd Soecific Techniques

The mode specific techniques employed by OPP involve caculating prediction intervas. To be more
precise, the upper bound of aprediction interval or upper prediction interva (UPI) isof primary interest
to OPP. Generdly, aUPI isapoint estimate plus some multiple of the estimated standard deviation the
mode error. Additiondly, thereis a specific “confidence level” associated with the UPI based on
assumed digtributiona properties of the modd errors. As an example, for the “mean modd” described
earlier, one could use aUPI for anorma digtribution as detailed in Hahn (p. 63). Given n normdly
digtributed observations with standard deviation s, there is a 100%X (1-a) probability that none of the
next m future observations will exceed the upper bound,

)/rl = y +r”i—u_-rm,n)'s
wherer isatabulated probability distribution specificaly for caculating prediction intervas for
observations from anorma digtribution . In this case, the estimate standard deviation of the model

error would be s, the square standard deviation of the observations. For a with avaue of 0.05, the
confidence level associated with this UPI would be 95% or 100%X (1 - 0.05). A conservative estimate
(i.e underegtimate) for this upper bound that utilizes the more familiar and readily computable t Setistic

is,

o /,, j )/ 2
ym :Y +/(] -’L;} ’(’./ afmh Z)S
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It isimportant to keep in mind that this UPI is not expected to be exceeded by any of the next m future
obsarvations. Thisis quite different than computing five separate prediction intervas for each of the
next m future observations. Inspection of the formulafor calculaing this consarvative estimate of the
UPI for the mean mode verifies some of itsintuitive properties. The UPI becomes larger when the
number of future observations being predicted (M) increases or when the variability of the data series
(9) increases. However, the UPI diminishes as the number of observations (n) increases.

Similar UPIs can be cdculated for other forecasting models considered in this paper. Andytic UPIs
hinge on the cdculation of an estimate of the error variance (square of the standard deviation of the
modd errors). For methods such as regression and Box-Jenkins, estimates of the error variance for the
various models have been specified and are widdly used. Until recently, this has not been the case with
exponentia smoothing methods. Some exponentia smoothing modes do have equivadent ARIMA
moddls, from which “reasonable’ estimates of the forecast error can be calculated (Armstrong 2001, p.
481). However, Hyndman and his colleagues laid the foundation for computing UPIsfor severd ES
models (2002). For the ES modelsthat have ARIMA counterparts, these estimates of the error
variance are in agreement with one another.

Unlike the mean model, for these ES models there is no direct method for computing a UP! to contain
multiple future observations-such UPIs are sometimes referred to as simultaneous UPIS. However,
OPPisinterested developing an estimate for the “likely maximum PCT” for more than one year, which
would entail the use of amultaneous UPIs. Therefore, OPP is consdering cdculating such UPIs by
specifying an upper bound such that the product of the confidence levels of the single year UPIsis equd
to the desired overdl confidencelevd. To illustrate, suppose for a specific PCT time series, OPP
would like to caculate a UP! for which there would be a 95% probability that the UPI would not be
exceeded for any of the next three years. The confidence levels for the individual UPIswould
necessarily be greater than 95%. One possible combination of the individua confidence levels that
would yield the desired overall confidence level of 95% would be 99.5%, 98.5% and 97% ( 0.995 x
0.985x 0.970 » 0.95).

For any given ES modd, the error of a point forecast is characterized by the MSE, the values of the
estimated models parameters and the number of time periods beyond the last observation being
forecast. Thusthe estimated error variance and, hence, the UPI is determined by how well the model
fit the data, how much weight is given to recent observations, how rapidly the trend is disspating and
how far in the future the estimate is being provided.

3 Proposed Methodology

Having described the development of the methodology, this paper will now focus on the methods and
procedures that make up OPP s proposed methodology for forecasting PCT. Of the univariate
techniques considered by OPP, exponentia smoothing is smple, yet it provides an assortment of
methods for modding data. There are procedures for implementing ES methods such that the whole
process of parameter selection, mode salection, and forecasting can be automated. It isimportant to
note that any automated forecasting procedure employed by OPP for the purpose of estimating PCT or
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any other pedticide use gatistic will be reviewed by an andyst. Ultimatdy it isthe andys’s
responsibility to ensure that the estimate is reasonable and to adjust the estimate to be reflective of
changes in the pesticide market not captured in existing usage data, such as the introduction or
discontinuation of dternative pesticides.

3.1 Estimating Parameters of Forecasting Models

Among the various exponentia smoothing models, OPP selected ones which appear to be appropriate
for forecasting PCT: ample exponentid smoothing (SES), linear exponentid smoothing (LES), and
damped-trend exponential smoothing (DES). Each moded has one or more components, referred to as
level and trend. The SES modd has a Sngle component and a smoothing parameter, a, for the level.
Both the LES and DES modds have two smoothing parameters, one for the level (a) and one for the
trend (b). Additiondly, the DES mode has a damping coefficient (f). The mean squared error (MSE)
is used to estimate the parameters for each model. The values sdlected for a, b, and f for each model
arethose that minimizethe MSE. Recdl that the MSE for these modelsis Smilar to that usein OLS
regression in that it is based on the differences between the fitted vaues and the actud vaues of the
timesaries. Thusthevaduesof a, b, and f are those that provide the “best fit” for the specific modd.

3.2 Mode Selection

Once modd parameters have been estimated, forecasts of PCT can be calculated for each modd, and
the “best” of these three models can be identified. The model sdection criterion employed in OPP's
methodology is the Bayesian information criterion (BIC). For the BIC, the modd with the best fit is
that which minimizes the MSE with the fewest number of parameters. For example, if both the SES
and the DES models provide comparable M SE’s, one would select the SES modd using the BIC
because it has one parameter, while the DES modd hasthree. The modd with the smalest BIC is
consdered to be the “best” mode!.

3.3 Forecasting PCT with Optimal Model

Once the modd that minimizes the BIC has been sdected, one can forecast the vaues of “likely
average PCT” and “likely maximum PCT” using that moddl. Depending on the number of yearsto be
forecasted, the point forecast(s) of PCT from the “optima” mode i/are used for the likely average.
For the smple ES modd thisforecast issmply the last estimated vaue of the mode level. For the
linear ES modd, the point forecast is the last estimate of the level plus the last estimate of the trend.
For the damped-trend ES modd, the forecast isthe last estimate of the level plus the damped-trend
component, which is the last trend component adjusted by the damping coefficient. These estimates of
likely average PCT are easily caculated. However, the estimates for likely maximum PCT are more
complicated.

In order to obtain estimates of the likely maximum PCT, the upper bound of smultaneous prediction
intervals (UPIs) iscdculated. Asmentioned earlier, asmultaneous UP! is an upper bound for more
than one year of forecasts. For OPP s purposes, the number of years forecasted will generdly be



between three and five. The MSE serves as abasis for calculation of the forecast variance for the ES
models. Other factorsthat affect the forecast variance are the parameter values of the model and the
number years beyond the forecast horizon being forecasted. The forecast horizon isthe last year (or
other appropriate time unit) beyond which forecasts are obtained. As one would expect, Snce the
reliability of aforecast decreases the further out one forecadts, the forecast variance increases as the
years beyond the forecast horizon increases. Additiondly, the more parameters there are, the larger the
forecast variance.

Once the forecast variance of each point forecast has been calculated, the smultaneous UPI can be
obtained. The UP! is chosen such that the product of the confidence levelsis equa to 95%
(approximately). In order to determine the confidence leved for a point forecadt, the probability of the
point forecast not to exceed the UPI iscdculated. Given its forecast variance, this probability is
computed for each point forecast. In order to compute these probabilities, one must first standardize

- - - ’ - YY
the UPI. Thisisdone for each point forecast (}”-') by subtracting it from the UPI (~ ¢™*) and dividing by the
varl, ),

square root of its forecast variance (

Here the h+i subscript denotes the it" forecast beyond the forecast horizon h. These standardized

vaues, the z’ s are assumed to be associated with a normd distribution. Each % has an associated

(7 <z))

Z.
probability denoted as . That is, the probability of observing avalue lessthan or equal to  *. This

Y s
probability represents the confidence level of UH associated with the h forecast. Additionally the probability

¢ isequa to the product of these individual probabilities,

=

Here m denotes the number of point forecasts being made. Thus R’ is the combined probability of
observing values less than or equal to z for al m z’s, which represents the confidence level of the simultaneous UPI
for al m point forecasts. Since the forecast variance and the point forecasts are fixed values, the UPI can be found
by varying its value until the combined probability is approximately equal 0.95.

4 M ethodology Evaluation: An Empirical Example

The primary motive for updating the OPP methodol ogy for forecasting PCT is to provide more reliable and consistent
estimates of PCT. The model selection processis a concept of the proposed methodology that makesit more
appealing than the current methodology, which employs only one forecasting model. Therefore a“competition” was
performed to not only compare the PCT estimates produced by the various exponential smoothing models and those
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of the current model, but to examine the proposed methodology’ s ability to select the “best” model. Here the term
“best” refers to the accuracy of forecasting model. A quantification of accuracy commonly used in empirical studies
of forecasting methods is the mean absolute percentage error or MAPE. Theterm “error” refers to the forecasting

error, the difference between the actual value (Y;) and its forecasted value ( #). The formulafor computing the
MAPE is

100 % L.
MapPE—" V=

m 3

In order to evaluate forecasts, a*“hold out sample’ must be specified. The hold out sample conssts of
observations that are not used to develop the model or the forecasts. The accuracy of forecasting
modd is evaduated by computing the MAPE for this hold out sample.

For OPP s purposes, ahold out sample conssted of five years of annua data from 1996 to 2000.
Seventeen pesticide crop combinations (PCCs) were used in thisevaluation. These time serieswere
selected based on their “interesting” graphica properties and do not represent arandom sample of
PCT data. For nine of the PCCs the data are available from 1987; for the other eight data the earliest
avalable year is1990. In addition to the exponentiad smoothing modes and current modd, the mean
mode is used as a*benchmark” with which to compare the forecasts.

A sde-by-side comparison of the various PCT forecastsis shown in Table 2. The highlighted forecasts
are those of the forecast model selected by the proposed methodology and the dotted line represents
the forecast horizon. The point forecasts, which represent the “likely average PCT” arein regular text
and the interva forecasts, which represent the “likely maximum PCT” areitdicized. Under each PCC,
“flags’ are displayed when an upper prediction interval is exceeded. These flags do not specify the
year for which the UPI was exceeded and reflect decimd vaues not disolayed inthetable. Table3isa
summary chart of the MAPE for the different forecast moddls. Again the highlighted vaues are those
that represent the MAPE of the methodicaly sdected modd and the bold va ues represent the minimum
MAPE for the particular PCC. In only three cases, the minimum MAPE was not generated by the
exponentia smoothing models. As can be seen by the average MAPE at the bottom of the column, on
average, the ES models yielded considerably more accurate forecasts than those of the mean and
current models. However, dl three ES modd performed comparably to one another. Nonetheless, the
average MAPE of the forecasts using the BIC mode sdlection method is smdler than that of any one
forecasting modd. Taken asawhole, this competition is an indicator that the ES models utilized by the
proposed methodology perform better than the current modd and that the proposed model selection
process performs adequately at selecting best of these available moddls. OPP bdlieves the proposed
exponential smoothing method for forecasting PCT will better promote EPA’s god of protecting the
environment and human hedth by providing better estimates of pesticide use in future years.
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