Appendix K
Brief Overviews of Assays Considered for Tier 1 Screening

Table of Contents

I. Overviews of Mammalian Screens ... 1

II. Estrogen and Anti-estrogen - Intrinsic Activity
 A. Rat (and other nonhuman mammalian and avian) ER binding assay
 B. hER binding from MCF-7 cell lysate
 C. Estrogen competitor (binding) screening assay (a receptor/ligand assay, PanVera)

III. Estrogen and Anti-estrogen - In Vitro
 A. MCF-7 Proliferation Assay (ESCREEN)
 B. YES-Yeast Estrogen Screen
 C. MVLN Assay. Stably transfected reporter gene assay in mammalian cells
 D. Cotransfected reporter gene assay in mammalian cells (e.g., CV-1 or COS cells)
 E. Stably transfected reporter gene assay in mammalian cells (e.g., MCF-7 cells)

IV. Estrogen and Anti-estrogen - In Vivo
 A. Uterine peroxidase assay
 B. Developmental uterotrophic assay
 C. Uterine weight bioassay in juvenile or adult ovariectomized female rats
D. Vaginal smears (mucification and cornification)

E. Puberty. Age at vaginal opening (First estrus, onset of cyclicity)

F. Induction of female sex behavior (proceptive and receptive behaviors)

G. Feeding behavior. Food consumption and growth rate

H. Estrous cyclicity

I. Super apical developmental toxicity test

V. Anti-Estrogen - Synthesis Metabolism ..
 A. Testis/ovary culture in vitro or ex vivo

VI. Androgen and Anti-androgen - Intrinsic Activity
 A. Rat AR equilibrium binding assay
 B. hAR whole cell binding assay

VII. Androgen and Anti-androgen - In vitro
 A. YAS - Yeast Androgen Screen
 B. CV-1 cell assay. A hAR transcriptional activation assay in mammalian cell
 C. hAR Transactivation Assays using stable cell lines
 D. Leydig Cell culture

VIII. Androgen and Anti-androgen - In vivo
A. Endocrine Challenge Test (Fail et al., 1995)

B. Super Apical Developmental Toxicity Test

C. Pubertal development in male rodent (preputial separation)

D. Hershberger assay (1953)

IX. Anti-androgen - Synthesis Metabolism ..
 A. Testis/ovary culture in vitro or ex vivo

X. Thyroid - Intrinsic Activity ..
 A. TR binding assay

XI. Thyroid - In vitro ..
 A. Whole cell binding assays.
 B. Stably transfected cell lines.
 C. Thyroid hormone-responsive cells.
 D. Specialized cells.

XII. Thyroid In-vivo ...
 A. Short-term Serum T_4
 B. Long-term Serum T_4
 C. Thyroid peroxidase
D. Malic Enzyme

E. Mammal Development

XIII. Overview of Non-mammalian Screens

A. Procedures Using BIRDS and REPTILES to Determine Endocrine Disruptive Action

B. Overview of Endocrine Disruptor Relevant Screens to the Lower Vertebrates and Invertebrates

XIV. Amphibian Screens

A. Vitellogenin Assay

B. Frog Embryo Teratogenesis Assay Xenopus (FETAX)

C. Amphibian Metamorphosis Assay (Conceptual)

D. Frog In vivo Screening Assay (Conceptual)

E. Metamorphosis

XV. Bird Screens

A. Avian egg-injection Assay

B. Japanese quail early life stage

C. Japanese quail androgenicity screen

D. Vitellogenin production in female Japanese quail

E. Vitellogenin production in adult male birds: Japanese quail, chickens.

F. Avian "Plaque assay"
G. Avian cell culture

H. Chicken early life stage

I. Cartilage growth in chick

XVI. Fish Screens ...
 A. Vitellogenin Assay
 B. In vitro Vitellogenin Assay
 C. In vivo Screening Assay
 D. Early life stage test
 E. Embryo and sac fry test
 F. Partial life cycle test
 G. Full life cycle test
 H. Flounder Metamorphosis
 I. In vitro steroid receptor competition assay
 J. In vitro steroid production bioassay
 K. In vitro germinal vesicle breakdown (GVBD) bioassay

XVII. Invertebrate Screens ...
A. Daphnia reproduction (life cycle) test

B. Mysid life cycle test

XVIII. Reptilian Screens

A. Vitellogenin production in adult male turtles

B. Sex determination in turtles

Overviews of Mammalian Screens

Estrogen and Anti-estrogen - Intrinsic Activity

Rat (and other nonhuman mammalian and avian) ER binding assay

DESCRIPTION
In vitro affinity of toxicants for rER.

DEGREE OF USE
Extensive, for 20 years, largest in vitro database, fairly easy in vitro assay.

DURATION
24 hours.

ASSAY STABILITY
Good at low temperatures, receptor degradation at higher temperatures.

DOES IT METABOLIZE TOXICANTS
No

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes

ARE SPECIAL SKILLS/TRAINING NEEDED
Yes, but can be trained in short time.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
It could easily be standardized, most labs run it at 4°C for 18 hours.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Very sensitive for high to moderate affinity ligands, can be run over a wide range of log doses.

ARE THERE KNOWN FALSE POSITIVES
To the degree that it and all other in vitro assays cannot account for ADME, things that bind ER may not be active in vivo. Other than this, no false positives.

OR FALSE NEGATIVES
Yes, if assay is conducted at low temp, which is generally true, some things fail to bind ER under these conditions, but work in vivo and activate ER in proliferation assays and transfected cells (and effect can be blocked with anti-estrogen). In other cases, solubility at low temperature of lipophilic toxicants may preclude detection. SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
 No
COMMENTS
 Both agonists and antagonists bind ER, good for screening but additional information is required to determine if it is estrogenic or anti-estrogenic in vitro.

Requires radioactivity. Toxicant solubility and degradation are a problem in this and all other in vitro assays. GLP requirements should be established to verify culture conditions to the same degree that we verify dosing solutions for in vivo tests.

hER binding from MCF-7 cell lysate
DESCRIPTION
 Competitive binding of toxicants to hER in human cell lysate.
DEGREE OF USE
 Widespread since 1973.
DURATION
 A few days.
COMMENTS
 Problems similar to rat or other mammalian RBA assays for ER.

Estrogen competitor (binding) screening assay (a receptor/ligand assay, PanVera)
DESCRIPTION
 The assay utilizes recombinant, human estrogen receptor and an autofluorescent, high affinity estrogen ligand. Competitors are identified by their ability to disrupt binding of the ER and fluorescent estrogen. Binding is quantified by fluorescence polarization. This technique allows for the direct measurement of the bound to free ratio of the ligand at equilibrium, in solution, with no precipitation, dialysis, extraction, or any other separation of bound and free ligand required.
DEGREE OF USE
 This assay is currently in use in drug discovery as both a primary screen to search for new estrogen ligands and as a secondary screen to characterize lead compounds.
DURATION
 Receptor/ligand equilibrium is the rate limiting step. Including a one hour room temperature equilibration, it should take about two hours from sample prep to measurement of polarization.
ASSAY STABILITY
 Recombinant ER is stable at room temperature for at least six hours.
DOES IT METABOLIZE TOXICANTS
 No
ARE SPECIAL EQUIPMENT REQUIREMENTS MANDATED
A fluorescence polarimeter is required ($18.5K for single tube instrument, $30K for 96 to 384 well instrument).

ARE SPECIAL SKILLS/TRAINING NEEDED
No, only basic lab skills and GLP training is needed.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Yes, typically use estradiol as a standard for IC50 values comparison. Assay has been used to determine IC50 values and Ki values for tamoxifen, estradiol, estrone, estriol, estrone, chlordane, and others. Because assay is at true equilibrium, Ki values can be calculated.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Similar to other receptor/ligand binding assays. Sensitivity dependent not on assay, but on solubility of the test compound. For example, to determine an IC50 value of 50 mM, the test compound would have to be soluble in the test matrix at least 50mM.

ARE THERE KNOWN FALSE POSITIVES
As with other receptor binding assays, non-competitive inhibition is possible, but rare.

OR FALSE NEGATIVES
Probably less than receptor/ligand assays performed at lower temperatures. This assay can be performed at 4° to 37° C.

SPECIFICITY—ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
No

COMMENTS
Purified receptor is well characterized and therefore activity is more reproducible than lysates. No radioactivity. Assay is performed at true equilibrium. Technique is non-destructive. Reactions in disposable tubes can be remeasured under various conditions. For example, competition curve can be measured at 4° C, incubated at 20° C and then measured at 20° C. Assay can be performed in a multi-well format and automated. Technique should be applicable to multiple species ER to determine relative potency in those species. Assay is very simple, 1) add ER and fluorescent estrogen to test compound, 2) incubate, 3) measure polarization.

Estrogen and Anti-estrogen - In Vitro

MCF-7 Proliferation Assay (ESCREEN)
DESCRIPTION
Measures growth of cells in vitro in response to ER modulators.

DEGREE OF USE
Thousands of chemicals studied, several toxicants.

DURATION
One rep takes a week

ASSAY STABILITY
Varies with serum batch, MCF-7 cell subclone, passage number, etc.

DOES IT METABOLIZE TOXICANTS
Relatively unknown, has aromatase activity, but much less than kidney or liver cells.
Reports about metabolic activation of methoxychlor have not been verified.

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes, cell culture and cell counting equipment.

ARE SPECIAL SKILLS/TRAINING NEEDED
Yes, cells must be maintained the same, week after week.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Has not been standardized. Some factors could be (subclone type), while others (serum variability) would be difficult. Competent labs appear to get similar qualitative, if not quantitative results.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Very sensitive, one of the most sensitive assays.

ARE THERE KNOWN FALSE POSITIVES
Yes, some growth factors, other steroids may TCDD, etc., can influence proliferation assay, or kill cells or make them "sick" (would appear anti-estrogenic).

OR FALSE NEGATIVES
Things that require metabolic activation may be missed in this and all other in vitro assays.

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
As above, this is a complex response of an unknown number of genes that can be influenced by other mechanisms. Could also be false negatives if something binds ER and activates different genes.

COMMENTS.
Best assay of the '70s and '80s. Controls needed for cell viability, health and run with anti-estrogen to reverse effect in order to confirm that proliferation was mediated via ER.

YES-Yeast Estrogen Screen

DESCRIPTION
In vitro assay using yeast cells transformed with hER (whole or fragment), VIT promoter and reporter (luc or CAT) construct.

DEGREE OF USE
Widespread in industry for drugs, a handful of papers on use with toxicants. Results quite mixed.

DURATION
Short-term, 24 hours.

ASSAY STABILITY
Response varies greatly from subclone to subclone for certain types of xenoestrogens. Yeast have a cell wall and some strains have transport systems that render them drug resistant (i.e. dexamethasone). Other strains even appear to transport estradiol out of the cell. Response varies greatly, depending upon the type of hER gene construct (whole versus fragment).

DOES IT METABOLIZE TOXICANTS
Unknown

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Cell culture equipment and techniques.

ARE SPECIAL SKILLS/TRAINING NEEDED
Permanently transformed so may be easier than transient transfections, but in vitro training required.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Has not been standardized at present. Standardization could be achieved if the "best" subclone and gene/reporter construct could be determined. May be premature to standardize without further development as a research tool.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Good for some (alkylphenols), some strains are very insensitive to chlorinated pesticides.

ARE THERE KNOWN FALSE POSITIVES OR FALSE NEGATIVE
Depends upon specificity of reporter construct, but as good as any ER-binding assay. Several false negatives noted for some strains.

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
Depends on gene construct employed.

COMMENTS
As employed by some, is more like a binding assay because it fails to discriminate between agonist and antagonists. Given limitations of transport, is a curious choice given the minimal information provided and high potential false negatives.

MVLN Assay. Stably transfected reporter gene assay in mammalian cells
DESCRIPTION
The assay utilizes a mammalian cell line (MCF-7 with endogenous human ER) that has been stably transfected with an ER specific reporter gene (Vit-Luc).

DEGREE OF USE
Used in various labs for pharmaceutical and environmental research.

DURATION
From plating cells to harvesting lysate and Luc activity takes two to three days.

ASSAY STABILITY
Stably transfected cells maintain same level of activity for at least 30 passages. Activity is maintained after typical cell culture freezing storage cycles.

DOSE IT METABOLIZE TOXICANTS
May have aromatase and other limited metabolic capacities of other MCF-7 subclones.

ARE SPECIAL EQUIPMENT REQUIREMENTS MANDATED
Typical cell culture equipment as well as a luminometer to measure Luc activity.

ARE SPECIAL SKILLS/TRAINING NEEDED
Tissue culture, basic lab skills GLP training is needed.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Yes, activity for various steroids and nonsteroids are comparable to other transient reporter assays. Stably transfected cells can be easily distributed.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE COMPOUNDS
Highly sensitive. EC50 for E2 in the pM range.
ARE THERE KNOWN FALSE POSITIVES
 No, hypothetically ER could be activated by phosphorylation pathways.
OR FALSE NEGATIVES
 No, would expect only very specific activation of ER.
SPECIFICALLY - ARE THERE OTHER MECHANISMS TO PRODUCE THE EFFECT (FALSE POSITIVES)
 Hypothetically ER could be activated by phosphorylation pathways.
COMMENTS
 Specific for ER transcription activation. Done in mammalian cells. Utilizes human ER. Easy assay, no transactions. High assay signal due to all cells expressing reporter. Can be done in dishes, 12, 24 or 96 well plates. Can be automated.

Cotransfected reporter gene assay in mammalian cells (e.g., CV-1 or COS cells)
DESCRIPTION
 The assay utilizes a mammalian cell line (CV-1, COS) that has been transiently transfected with ER as well as an ER specific reporter gene (Vit-Luc).
DEGREE OF USE
 Used widely in various labs for pharmaceutical and environmental research.
DURATION
 From plating cells to harvesting lysate and Luc activity determination takes two to three days.
ASSAY STABILITY
 Stability depends on transfection efficiency between experiments.
DOSE IT METABOLIZE TOXICANTS
 May have limited metabolic capacities.
ARE SPECIAL EQUIPMENT REQUIREMENTS MANDATED
 Typical cell culture equipment as well as a luminometer to measure Luc activity.
ARE SPECIAL SKILLS/TRAINING NEEDED
 Tissue culture, transfection, basic lab skills and GLP training is needed.
HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
 Yes, when standardized relative to % activity of E2, results are comparable from assay to assay.
SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE COMPOUNDS
 Sensitive. EC50 for E@ in the 10pM range.
ARE THERE KNOWN FALSE POSITIVES
 No, hypothetically ER could be activated by phosphorylation pathways.
OR FALSE NEGATIVES
 No, would expect only very specific activation of ER.
SPECIFICALLY - ARE THERE OTHER MECHANISMS TO PRODUCE THE EFFECT (FALSE POSITIVES)
 Hypothetically ER could be activated by phosphorylation pathways.
COMMENTS
 Specific for ER transcription activation. Done in mammalian cells. Can utilize ER from any cloned source (any species). Requires transfections. Can be done in dishes or 12 well plates. Can transfect in different reporter constructs to compare ligand
selective gene regulation.

Stably transfected reporter gene assay in mammalian cells (e.g., MCF-7 cells)

DESCRIPTION
The assay utilizes a mammalian cell line (MCF-7 with endogenous human ER) that has been stably transfected with an ER specific reporter gene (Vit-Luc).

DEGREE OF USE
Used in various labs for pharmaceutical and environmental research.

DURATION
From plating cells to harvesting lysate and Luc activity determination takes two to three days.

ASSAY STABILITY
Stably transfected cells maintain same level of activity for at least 30 passages. Activity is maintained after typical cell culture freezing storage cycles.

DOSE IT METABOLIZE TOXICANTS
May have aromatase and other limited metabolic capacities of other MCF-7 subclones.

ARE SPECIAL EQUIPMENT REQUIREMENTS MANDATED
Typical cell culture equipment as well as a luminometer to measure Luc activity.

ARE SPECIAL SKILLS/TRAINING NEEDED
Tissue culture, basic lab skills and GLP training is needed.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Yes, activity for various steroids and nonsteroids are comparable to other transient reporter assays. Stably transfected cells can be easily distributed.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE COMPOUNDS
Highly sensitive. EC50 for E2 in the pM range.

ARE THERE KNOWN FALSE POSITIVES
No, hypothetically ER could be activated by phosphorylation pathways.

OR FALSE NEGATIVES
No, would expect only very specific activation of ER.

SPECIFICALLY - ARE THERE OTHER MECHANISMS TO PRODUCE THE EFFECT (FALSE POSITIVES)
Hypothetically ER could be activated by phosphorylation pathways.

COMMENTS
Specific for ER transcription activation. Done in mammalian cells. Utilizes human ER. Easy assay, no transaction. High assay signal due to all cells expressing reporter. Can be done in dishes, 12, 24 or 96 well plates. Can be automated.

Estrogen and Anti-estrogen - In Vivo

Uterine peroxidase assay

COMMENTS
Uterine peroxidase activity is thought to be estrogen regulated, therefore monitoring its levels may serve as a means to determine the estrogenicity of chemicals. Johri et
al. used this method to determine estrogenic/anti-estrogenic potential of anti-fertility substances. In this assay Charles Foster rats where given either oral doses ranging from 1.5-10.0 mg/kg or subcutaneous injections (e.g. estradiol) of 0.1-1.0 mg/rat/day. After 3 days (or longer) of dosing the animals were sacrificed 24 hours after the last dose. Uteri were excised and homogenized in sodium acetate. Peroxidase activity was determined (by the Alexander Method) and reaction rates were monitored and enzyme activity expressed as D A353/mg protein/min.

Developmental uterotrophic assay

DESCRIPTION
Rat; treatment on postnatal days (pnd) 10-14 with a variety of estrogens/antiestrogens inhibits uterine gland appearance and increases uterine weight and luminal epithelial height measured on pnd 14 or in adults. D-R curves; replicated in mice.

DEGREE OF USE

DURATION

ASSAY STABILITY

ARE SPECIAL EQUIPMENT REQUIREMENTS MANDATED
Balance; ocular micrometer; standard histology equipment for H&E staining of sections.

ARE SPECIAL SKILLS/TRAINING NEEDED
Animal handling and dosing; tissue removal and weighing; slide preparation including vertical placement of uteri in paraffin; simple microscopy.

AVAILABILITY
Available in open literature.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Standardization; use of positive controls; stable values for control and max responses over ten years and ~ ten estrogens.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Sensitivity: DES, EE2~1ug/Kg/day ED50 for luminal epithelial height (3x increase max) or for doubling uterine weight, ~0.3 ug/Kg/day ED50 for gland inhibition (~4 glands/section inhibited down to 0 glands/section.

ARE THERE KNOWN FALSE POSITIVES

OR FALSE NEGATIVES

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
Estrogens and antiestrogens; need to examine other hormones to establish specificity.

COMMENTS
General and specific suggestions today for the estrogens/antiestrogens. General: 1) Use a pure antiestrogen such as ICI 182,780 to confirm specificity of agonist/antagonist activity in vitro/in vivo? 2) All tasks- should we eventually consider
standardizing assays so data can be compared modeled and quality control checked? Include positive negative controls? 3) Are we assuming multipoint assays or (hopefully not) single point assays? 4) Where there are choices sensitivity should be considered; all other things being equal a chemical with e.g., low solubility, would be more likely to be detected in the more sensitive assay. What should the lower limits be on the hormonal activity relative to a standard such as E2? 5) Do cell assays need cytotoxicity measures to help interpretation of data?

Specific:
For in vivo detection of estrogenicity antiestrogenicity steroidogenesis effects, consider the following: On postnatal days (PND) 10-14, the rat ovary actively makes estrogens which increase uterine weight (normalized to body weight) by 30% on PND14. After about PND 16, estrogen levels drop to the lower but still detectable values found in immature rats. Ovariectomy or ICI 182,780 reduces uterine weight to control or lower values on PND 14 or beyond. Treatment with agonists on PND 10-14 increases uterine weight several fold, increases the height of the luminal epithelium (LEH) three-fold and inhibits the appearance of uterine glands. Glands begin to appear on PND 9 by invagination from the luminal epithelium and the process is over by PND 16-17. The later two measures are done on cross-sections of paraffin embedded uteri by ocular micrometer or image analysis for LEH and gland counts per section. Gland numbers are 4-5 in controls and decrease to almost zero from agonist treatment. So agonists increase uterine weight and LEH and decrease gland numbers. The triphenylethylene partial agonists/ partial antagonists such as tamoxifen, clomiphene, toremifine, etc. show marginal uterine weight gain, increase LEH three-fold and inhibit gland genesis. This pattern contrasts with the complete agonists. ICI 182,780, a complete antagonist, reduces uterine weight but has no effect on gland genesis or LEH, a different pattern than those above. Important here is that the patterns of responses in a single experiment distinguishes these pharmacological classes rather than depending on sequential experiments each with a different design. Additionally, one endpoint, gland genesis, is a classical developmental toxicity endpoint; there is a defined ontogenic pattern, a sensitive period, and an adverse outcome (gland numbers are reduced or absent in adults following PND10-14 treatment). We don't have experience with other mixed agonists/antagonists with the possible exception of some phytoestrogens for which the verdict is not yet in. An additional, but untested feature, is that chemicals which interfere with steroidogenesis should be active in this system; chemicals which increase steroidogenesis will act like an agonist but fail to bind to the ER, while those that decrease steroidogenesis will act like a pure antagonist (or ovariectomy) but fail to bind to the ER. Any nominations for chemicals in this category for us to look at? Virtues of the assay are that there are an average of six female pups per dam which can be randomized to different dams versus waiting for animals to mature or the need for ovariectomy and waiting for ten days; the pups stay with dams in a single cage throughout the experiment. Arrival of dams on GD 2 and completion of the study on PND 14 results in an average of five to six cage days per animal, while providing multiple endpoints and the ability to distinguish the pharmacological activity, and includes an endpoint for developmental toxicity. These features should be compared to the animal numbers, cage costs,
personnel time and length of time to conduct the sequential experiments as suggested in the outline.

Comments on metabolism:
Because only the in vivo assays have the potential to detect prohormone metabolism to an active hormone, this property should be included in the rationale for the Tier 1 battery including an in vivo component.

Comments on use of cell constructs/cultures:
These, along with the ER binding should, if positive, be seen as providing high priority for moving into Tier 1 and Tier 2 in vivo tests. Likewise, chemicals in the prescreens that are "positive" should be moved immediately into the tiers. This sequence is differentiated from one that would move a group of chemicals lockstep through the prescreen and Tier 1 steps with no priority (urgency) to move to higher tiers. With lockstep testing, market and regulatory decisions on chemicals that are a problem would ultimately be delayed to some unknown extent while exposure continues. In particular, the in vivo assays could be seen as inducing significant delays.

REFERENCES

Uterine weight bioassay in juvenile or adult ovariectomized female rats

DESCRIPTION
One to three oral or injected doses of toxicant to immature female rat (18-21 d), longer in adult ovx'ed female.

DEGREE OF USE
One of original “gold” standards for screening for estrogenicity, used for about 80 years. Extensive database on toxicants.

DURATION
One to three days, or weeks in adult.

ASSAY STABILITY
Very stable unless juvenile females older than 24 days at necropsy, or sloppily designed at weaning.

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Good balance and scissors.

ARE SPECIAL SKILLS/TRAINING NEEDED
Necropsy skills.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Standardized to some degree. Could be improved (trim fat, weigh with and without fluid).

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
One of the most sensitive in vivo short-term assays using immature or adult females. (Rank #1). Nonylphenol, octylphenol, bisphenol A, methoxychlor, estradiol 17 I, kepone, etc. are positive.

ARE THERE KNOWN FALSE POSITIVES
Yes, intact female is used, hence, effects on hypothalamic-pit axis, and GH or prolactin alterations could affect this process. In addition, aromatizable and nonaromatizable (via AR) can affect weight. Even a few false positives in ovariectomized adult females.

OR FALSE-NEGATIVES
Some potential, as some chemicals are poorly absorbed interaperitoneal and are more effective when given orally, while many others are less effective after oral
administration. As with any in vivo assay, chemicals that are estrogenic in binding or cell assays may be negative, albeit not falsely so, if they are not absorbed, are metabolically inactivated or excreted such that the active material never reaches the targets.

SPECIFICITY—ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
Yes, as indicated above.

COMMENTS
Necropsy of animals six hours after last dose, of three, is more effective than 24 hours later in detection of weak estrogens. In adult female, this endpoint can be coupled with several others.

Vaginal smears (mucification and cornification)

DESCRIPTION
Noninvasive measurement of estrogenicity in intact or ovariectomized female rat. Vaginal lavages are examined for cell types.

DEGREE OF USE
Extensive use for over 80 years (Allen-Doisy Assay).

DURATION
Moderate to long duration screen requires daily examination of vaginal cells by microscopy. At least one week in duration can dose for months at low dosage levels.

ASSAY STABILITY
Very stable across and within labs.

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Microscope

ARE SPECIAL SKILLS/TRAINING NEEDED
Not difficult, but requires more expertise than determination of vaginal opening or uterine weight. Data analysis can also be relatively complicated.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Not standardized with regard to a number of factors (staining versus no staining, read and discard wet sample or save dry and read later, data recording and classification, method of data analysis). In spite of the lack of standardization, this is a robust measure as I am not aware of a case where different labs, using different methods, did not get the same results. Could be easily standardized.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Xenoestrogen toxicant and pesticide data indicate clearly that vaginal cornification is less sensitive that a number of other screens for estrogenicity (Cluster Rank #4) below uterine weight, uterine histology, uterine biochemical measures, vaginal histology, vaginal mucification, vaginal opening, induction of mating behavior, etc. However, one data set with estrogenic PCBs reported vaginal cornification in the absence of an increase in uterine weight. Mucification of smears occurs before or at lower dosage levels than cornification.

ARE THERE KNOWN FALSE POSITIVES
As is the case with most of these screens, when intact animals are utilized, there are many treatments that alter vaginal cornification via nonestrogenic mechanisms. Conducting the test in an ovariectomized female enhances the specificity of the screen. Still, there are false positives, but the likelihood is greatly reduced.

OR FALSE NEGATIVES
Yes. Toxicants that accelerate or delay hypothalamic pituitary development, affect the reproductive tract directly, alter GH, or prolactin can alter VO in the intact juvenile female.

SPECIFICITY—ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
Yes, especially in intact animals.

COMMENTS
Good assay that can be used in conjunction with several other endpoints. For example, dose ovx'ed (long-term) female for three weeks, take vaginal lavage daily, observe lordosis behavior, necropsy female and weight uterus, vaginal and do histology on tract. Could also add biochemical measures.

Puberty. Age at vaginal opening (First estrus, onset of cyclicity)
DESCRIPTION
In vivo test of estrogenicity in intact juvenile female rats or mice. One major advantage over other assays is that this one can detect estrogens and antiestrogens (delayed VO). Acceleration and delay of VO, age at first estrus and onset of estrous cycles can occur after in utero exposure to xenoestrogens and other toxicants (TCDD—which also produces a permanent anomaly of VO).

DEGREE OF USE
One of original indices used to screen for estrogens 80 years ago. Included in most new multigenerational tests. Fair amount of xenoestrogen data. Methoxychlor, octylphenol, nonlyphenol are all positive.

DURATION
Acceleration of VO takes from 2-3 days to about a week, after which the process begins to occur normally at puberty in controls.

ASSAY STABILITY
Strains vary slightly (except Fischer rat). Age at VO has changed considerably since the 1930's due to improvements in diet.

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
None

ARE SPECIAL SKILLS/TRAINING NEEDED
Ability to follow a simple protocol. Absolutely the easiest assay and the animals do not need to be killed. Response is relatively uniform, such that fairly small differences can be detected with modest sample sizes.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Yes

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Falls into Cluster #1 or #2 for sensitivity below uterine weight, etc., but more sensitive than is vaginal cornification for most pesticides and toxic substances. Rivals uterine weight in juvenile rat for some chemicals if oral dosing is employed in uterotropic assay.

ARE THERE KNOWN FALSE POSITIVES
An apical test, several mechanisms can lead to accelerated or delays in VO.

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
Yes.

COMMENTS
Can be coupled with several other assays if dosing is continued like vaginal cornification, and for Ah-receptor, and thyroid hormone effects. If VO is delayed, ovary can be studied ex vivo for inhibition of steroid hormone synthesis. However, cannot be conducted along with uterotropic assay as some have tried.

Induction of female sex behavior (proceptive and receptive behaviors)

DESCRIPTION
In vivo behavioral test of lordosis induction (lordosis quotient) provides a quantitative screen for estrogenicity.

DEGREE OF USE
One of original, 80 year-old, tests for estrogenicity, used less extensively at present, as compared to uterine weight or vaginal cornification. Several xenoestrogens have been tested. Methoxychlor, nonylphenol, octylphenol, bisphenol A and o,p' DDT are positive, while chlordecone is negative.

DURATION
Three days

ASSAY STABILITY
Stable, little variability in data from lab to lab, or block to block.

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes, need reverse photoperiod (or willingness to work nights) with dim lights.
Minimal equipment requirements.

ARE SPECIAL SKILLS/TRAINING NEEDED
Some training required, but rather simple noninvasive observation.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Yes, most protocols are quite similar and could be easily put in standard SOP.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
One of the most sensitive assays, equivalent to, or better than (due to zero variance in controls) uterine weight and histology.

ARE THERE KNOWN FALSE POSITIVES
None, clearly the most specific test for an estrogenic response in vivo.

OR FALSE NEGATIVES
Yes, one is known, chlordecone blocks rather than induces lordosis (likely through the effect of the progesterone receptor, or as a result of the general neurotoxicity).
SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)

None known

COMMENTS

Can be coupled with other assays. For example, dose animal, observe sex behavior, necropsy female, weigh uterus and vagina and use tissue for histology and/or biochemical measures (i.e. ODC).

Feeding behavior. Food consumption and growth rate

DESCRIPTION

Simple in vivo assay which estrogens specifically retard via CNS action.

DEGREE OF USE

Everyone measures it, and widely recognized as a sensitive effect in the toxicology of estrogens in the male rat. Methoxychlor, nonlyphenol, octylphenol are positive. Bisphenol A is likely positive.

DURATION

Appearance of estrogen-inhibited food consumption and growth are dose-related. At high dosage levels the effects are immediate, while at lower dosage levels the effects take months to be manifest.

ASSAY STABILITY

Stable

DOES IT METABOLIZE TOXICANTS

Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED

Balances

ARE SPECIAL SKILLS/TRAINING NEEDED

No

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY

Yes

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS

Likely the most sensitive response in weanling/adult male rat but much less sensitive in intact female rat, and very good in ovariectomized female.

ARE THERE KNOWN FALSE POSITIVES

Obviously, this endpoint can be affected by a multiplicity of mechanisms, so although sensitive it is very nonspecific.

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)

Yes

COMMENTS

Always collected, but rarely recognized in a multigen study as an estrogenic effect. Lack of recognition of body weight as sensitive endpoint leads to serious misinterpretation of multigen data.

Estrous cyclicity

DESCRIPTION
Repeated daily observation of vaginal smears allows for determination of alterations of estrous cyclicity in rat. Can be done in other rodents, but mouse is more variable. Hamster is more regular, but rarely used and technique is quite different from rat or mouse.

DEGREE OF USE
Very widespread in reproductive physiology, required in most new multigen studies. Current database for xenobiotics modest, but growing.

DURATION
An absolute minimum of 10 days is needed. Guidelines typically require 15 days or longer. More useful if animals are dosed for some time period prior to treatment rather than initiating treatment with onset of observation.

ASSAY STABILITY
Some variability between females (4, 5 versus 4/5 d cyclers normal. Not unusual to see 6-7 day cycles right after puberty). Some strain variability, possibly seasonal (hypothesized, but not proven), and social influences (especially in mouse).

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Microscope

ARE SPECIAL SKILLS/TRAINING NEEDED
Collecting and evaluating smears takes a little practice, data analysis is more difficult.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Methods of smear collection, staining (if any), preservation of sample (not required by EPA, if any) and methods of recording data and analyzing data vary from investigator to investigator. However, competent labs usually get similar results despite variable methodologies.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
With exposure to adult or juvenile female, this assay is less sensitive to xenoestrogens than 1) uterine weight and histo, behavior 2) vaginal opening and 3) vaginal mucification and cornification. Less sensitive than ovarian measures to alterations of steroid hormone synthesis and ovarian morphology, due to compensation within ovary. Sensitive to disruption by hypothalamic-pituitary endocrine alterations (i.e. atrazine) of LH, FSH, GnRH, or prolactin.

In developmental studies, loss of estrous cyclicity is a sensitive response to perinatal xenoestrogen exposure via CNS defeminization. Appearance of anovulation is dose-related, can take six to nine months to appear. Too long for "screening", but all xenoestrogens that have been studied produce this affect.

ARE THERE KNOWN FALSE POSITIVES
As indicated above, this is an apical measure that responds to many mechanisms of action besides estrogenicity.

OR FALSE NEGATIVES
Weak estrogens may produce many other effects without altering estrous cyclicity.

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
Estrogens, androgens, steroid hormone synthesis inhibitors and toxicants that alter LH, FSH, GnRH or prolactin.

COMMENTS
Good apical test, but unfortunately less sensitive by about ten-fold to xenoestrogens (i.e. methoxychlor).

Super apical developmental toxicity test

DESCRIPTION
Expose pregnant/lactating dam and examine hormone (AR, ER, SIS, Ah and T3) sensitive endpoints in progeny up to puberty.

DEGREE OF USE
Such a protocol has been used at EPA, CIIT, NIEHS for xenoestrogens, environmental antiandrogens, Ah receptor agonists, phthalates and antithyroidal toxicants (PCBs and PTU).

DURATION
Relatively long (two to three months) as compared to other "screens," would need to determine if it is quicker and cheaper to run this as opposed to several more focused, shorter-term assays.

ASSAY STABILITY
Unknown, but should be as good as any developmental test.

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes, similar to needs for new multigen tests.

ARE SPECIAL SKILLS/TRAINING NEEDED
Multiplicity of in vivo techniques are required that are currently not used in toxicology labs, but they should be coming up to speed to implement new test guidelines.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Not standardized as used in different labs with respect to dosing or some of the assessments. Some standardization is now taking place between different labs.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Antiandrogenicity via AR, or SIS. In male progeny, AGD, areolas, nipples, reduced weight of prostate. Higher doses of AR-mediated, but not SIS, produce agenesis of prostate, undescended testis and agenesis of epididymis. Altered T production by testis, ex vivo.

Estrogenicity. Neonatal uterine weight and gland development (?), vaginal opening, age at first estrus, vaginal cornification. Prostate size in male (?), and sperm production (at high dosage levels). SIS or Antiestrogenicity. Pregnancy loss, delay in deliver by dam, delay in VO and possible altered ovarian hormone production ex vivo.

Antithyroid. Reduced perinatal growth and brain size. Lower serum T4 and possibly T3, elevated TSH. Also detects functional developmental alterations induced by phthalates, TCDD, etc. The following endpoints are considered to be insensitive
because they take too long to assess in a screen and/or have never been detected with a pesticide or toxic substance following developmental exposure (i.e. for ER-mediated: cancer, reduced AGD, hypospadias in male of female, undescended testes or any malformations).

ARE THERE KNOWN FALSE POSITIVES.
Very Apical Test used to screen for several mechanisms at once.
OR FALSE NEGATIVES.
Not likely, if designed properly.

Anti-Estrogen - Synthesis Metabolism

Testis/ovary culture in vitro or ex vivo

DESCRIPTION
Determination of testosterone production from testicular tissue from animals treated in vivo (ex vivo) or using in vitro dosing. Used for EDS, estrogens, antiandrogens, several other testicular toxicants, substances that inhibit steroidogenesis. In female, minced ovary culture can be used ex vivo from pregnant (i.e. GD 14-16) or cycling females (proestrus for estradiol production).

DEGREE OF USE
A few hundred publications over the last 25 years since the advent of RIAs for testosterone. Used in other vertebrates, as well as mammals. Used by several toxicology laboratories in addition to NHEERL-EPA.

DURATION
One day for in vitro, longer for ex vivo (duration depends upon dosing).

ASSAY STABILITY
Depends on methodology.

DOES IT METABOLIZE TOXICANTS
Yes, for ex vivo, little or no metabolism for in vitro.

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Incubator, freezer, necropsy equipment.

ARE SPECIAL SKILLS/TRAINING NEEDED
Some practice, but a rather simple assay that can be learned by competent technicians in a week or less. Need to be able to conduct RIAs for T, estradiol, and progesterone.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Has not been standardized between labs, but could be without too much difficulty.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Fairly sensitive.

ARE THERE KNOWN FALSE POSITIVES
Cell toxicants.

OR FALSE NEGATIVES
If metabolic activation is required then in vitro may not work.

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
COMMENTs.
These assays could be used rapidly to screen chemicals for ability to inhibit steroidogenesis.

Androgen and Anti-androgen - Intrinsic Activity

Rat AR equilibrium binding assay
DESCRIPTION
in vitro affinity of toxicants for rAR.
DEGREE OF USE
Extensive, for 20 years, large in vitro data base, with about 20 xenoantiandrogens identified to date, easiest in vitro assay.
DURATION
24 hours
ASSAY STABILITY
Acceptable at low temperatures, receptor degradation at higher temps.
DOES IT METABOLIZE TOXICANTS
No
ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes
ARE SPECIAL SKILLS/TRAINING NEEDED
Yes, but can be trained in short time.
HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
It could easily be standardized.
SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Sensitive, can be run over a wide range of log doses.
ARE THERE KNOWN FALSE POSITIVES
To the degree that it and all other in vitro assays cannot account for ADME, things that bind AR may not be active in vivo. Other than this, no false positives.
OR FALSE NEGATIVES
Yes, assay is conducted at low temp and some things fail to bind AR under these conditions, due to low solubility at low temperatures.
SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
No
COMMENTs
Both agonists and antagonists bind AR, good for screening but additional information is required to determine if it is androgenic or anti-androgenic in vitro. Requires radioactivity. Toxicant solubility and degradation are a problem in this and all other in vitro assays. GLP requirements should be established to verify incubation conditions to the same degree that we verify dosing solutions for in vivo tests. Should be simple, as labs are already set up to do the chemistry for in vivo studies.

hAR whole cell binding assay
DESCRIPTION
In vitro whole cell binding assay with human AR transiently transfected in a monkey kidney cell line (COS).

DEGREE OF USE
Extensive use in reproductive medical field. Several publications now with fungicides and pesticides.

DURATION
A few days for entire assay, including cell culture preparation.

ASSAY STABILITY
Quite stable.

DOES IT METABOLIZE TOXICANTS
These cells can activate some antiandrogenic fungicides.

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes, cell culture equipment and luminometer, robot optional.

ARE SPECIAL SKILLS/TRAINING NEEDED
Need to transfec cells.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Can be standardized fairly easily, especially with stable cell lines expressing hAR.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Sensitive, or more sensitive, than rat AR cytosolic binding assays.

ARE THERE KNOWN FALSE POSITIVES
Theoretically, chemical cytotoxicity may reduce radioligand binding to hAR, this could be interpreted as a false positive in the absence of appropriate controls.

OR FALSE NEGATIVES
Some toxicants requiring activation may not be detected.

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT
(Cell death.

COMMENTS
Need controls in this and other similar assays for cell viability, and health. Must verify toxicant stability in media.

Androgen and Anti-androgen - In vitro

YAS-Yeast Androgen Screen

DESCRIPTION
In vitro assay using yeast cells transformed with AR (whole or fragment), and a reporter (luc, ß-gal, or etc.) construct.

DEGREE OF USE
Little use, one paper on use with toxicants. Results for sole xenoantiandrogen yielded a false negative.

DURATION
Short-term, 24 hours.

ASSAY STABILITY
Response likely varies greatly from subclone to subclone for certain types of xenoandrogens. Reservations same as for YES.

DOES IT METABOLIZE TOXICANTS
Unknown

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Cell culture equipment and techniques.

ARE SPECIAL SKILLS/TRAINING NEEDED
Permanently transformed so may be easier than transient transfections, but in vitro training required.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Has not been standardized.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Insensitive to p,p' DDE.

ARE THERE KNOWN FALSE POSITIVES OR FALSE NEGATIVE
Detects antiandrogens as agonists, not as good as an AR-binding assay due to false negatives.

SPECIFICITY—ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
Unknown

COMMENTS
As employed, is more like a binding assay than other transfected cell assays because it fails to discriminate between agonist and antagonists. Given limitations of transport (i.e., cellular mechanisms accounting for multidrug resistance), is a curious choice given the minimal information provided and high potential false negatives.

CV-1 cell assay. A hAR transcriptional activation assay in mammalian cell

DESCRIPTION
Transiently transfected assay measuring transcriptional activation using luciferase reporter and an hAR construct in a primate kidney cell line (CV-1).

DEGREE OF USE
Extensive use in reproductive medical field. Several publications now with fungicides and pesticides.

DURATION
A few days for entire assay, including cell culture preparation.

ASSAY STABILITY
Stable, with considerable experience.

DOES IT METABOLIZE TOXICANTS
These cells can activate some antiandrogenic fungicides.

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes, freezer, incubator, and luminometer, robot optional.

ARE SPECIAL SKILLS/TRAINING NEEDED
Reported to be a difficult assay to initially establish. Need to transflect cells.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Can be standardized fairly easily, especially when stable cell lines have been established which will eliminate the need to transflect cells for each experiment.
SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Very sensitive.

ARE THERE KNOWN FALSE POSITIVES
Theoretically, cytotoxicity may induce apparent inhibition of DHT (this is true for many transfected cell reporter assays of antiandrogenicity), hence, use constitutively active mutant receptor as a cytotoxicity control (decline in luc indicates cytotoxicity).

OR FALSE NEGATIVES
Some toxicants requiring activation may not be detected.

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
Cell death

COMMENTS
Need controls in this and other similar assays for cell viability and health. Must verify toxicant stability in media.

hAR Transactivation Assays using stable cell lines

DESCRIPTION
Transcriptional activation assay using cells stably expressing a MMTV-luciferase reporter together with the hAR in a mammalian cell line such as a CV-1.

DEGREE OF USE
Under development, likely available in 6 months, could be automated for high throughput.

DURATION
24 hours

ASSAY STABILITY
Unknown to date, should be stable.

DOES IT METABOLIZE TOXICANTS
These cells can activate some antiandrogenic fungicides.

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes, freezer, incubator, and luminometer, robot optional.

ARE SPECIAL SKILLS/TRAINING NEEDED
Do not need to transfect cells, but training required and cell techniques needed.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Not yet, but can be easily standardized.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Should be as sensitive, or more sensitive, than transient transfection assays because all the cells are responsive.

ARE THERE KNOWN FALSE POSITIVES
Theoretically, cytotoxicity may induce apparent inhibition of DHT-induced effects (this is true for many cell reporter assays of antiandrogenicity), hence, use constitutively active mutant receptor as a cytotoxicity control (decline in luc indicates cytotoxicity).

OR FALSE NEGATIVES
Toxicants requiring activation may not be detected.
SPECIFICITY-Are there other mechanisms to produce this effect (false positives)
- Cell death.

COMMENTS
- Need controls in this and other similar assays for cell viability and health. Must verify toxicant stability in media.

Leydig Cell culture
DESCRIPTION
- Determination of testosterone production in purified, isolated Leydig cells.

DEGREE OF USE
- Limited to a several/few research laboratories.

DURATION
- A few days

ASSAY STABILITY
- Variable from lab to lab on degree of purification of Leydig cells and T production per cell.

DOES IT METABOLIZE TOXICANTS
- No

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
- Yes, quite a bit.

ARE SPECIAL SKILLS/TRAINING NEEDED
- Requires skills that are not widely available.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
- No

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
- Very sensitive to SIS, less sensitive, and to insensitive to estrogens.

ARE THERE KNOWN FALSE POSITIVES
- Cell toxicants.

OR FALSE NEGATIVES
- Toxicants that require metabolic activation.

SPECIFICITY-Are there other mechanisms to produce this effect (false positives)
- Cell membrane and second messenger effects.

COMMENTS

Androgen and Anti-androgen - In vivo

Endocrine Challenge Test (Fail et al., 1995)
DESCRIPTION
- Repeated observation of serum T, LH and other hormones (with and without LH or GnRH challenge) in catheterized animal. Clearly the best way to detect altered hormone secretion in vivo.

DEGREE OF USE
Limited
DURATION
 Few weeks.
ASSAY STABILITY
 Stable, once the animal is catheterized.
DOES IT METABOLIZE TOXICANTS
 Yes
ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
 Yes
ARE SPECIAL SKILLS/TRAINING NEEDED
 Yes, quite difficult.
HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
 Has not been standardized.
SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
 More sensitive than single determination of serum hormones levels.
ARE THERE KNOWN FALSE POSITIVES
 Stress reduces serum T, increases prolactin and corticosterone, effect that is rarely
counted for in most studies. Hormone levels are also subject to circadian effects.
OR FALSE NEGATIVES
SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT
 (FALSE POSITIVES)
COMMENTS.
 Excellent, but specialized. Tail bleeds can also be used for repeated sampling from
the same animal if only a small amount of serum is needed. This method also is not
standardized and requires a great deal of practice.

Super Apical Developmental Toxicity Test

DESCRIPTION
 Expose pregnant/lactating dam and examine hormone (AR, ER, SIS, Ah and T3)
sensitive endpoints in progeny up to puberty.

DEGREE OF USE
 Such a protocol has been used at EPA, CIIT, NIEHS for xenoestrogens,
environmental antiandrogens, Ah receptor agonists, phthalates and antithyroidal
toxicants (PCBs and PTU).

DURATION
 Relatively long (two to three months) as compared to other "screens," would need to
determine if it is quicker and cheaper to run this as opposed to several more focused,
shorter-term assays.

ASSAY STABILITY
 Unknown, but should be as good as any developmental test.

DOES IT METABOLIZE TOXICANTS
 Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes, similar to needs for new multigen tests.

ARE SPECIAL SKILLS/TRAINING NEEDED

Multiplicity of in vivo techniques are required that are currently not used in toxicology labs, but they should be coming up to speed to implement new test guidelines.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY

Not standardized as used in different labs with respect to dosing or some of the assessments. Some standardization is now taking place between different labs.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS

Antiandrogenicity via AR, or SIS. In male progeny, AGD, areolas, nipples, reduced weight of prostate. Higher doses of AR-mediated, but not SIS, produce agenesis of prostate, undescended testis and agenesis of epididymis. Altered T production by testis, ex vivo.

Estrogenicity. Neonatal Uterine weight and gland development (?), vaginal opening, age at first estrus, vaginal cornification. Prostate size in male (?), and sperm production (at high dosage levels). SIS or Antiestrogenicity. Pregnancy loss, delay in deliver by dam, delay in VO and possible altered ovarian hormone production ex vivo.

Antithyroid. Reduced perinatal growth and brain size. Lower serum T4 and possibly T3, elevated TSH. Also detects functional developmental alterations induced by phthalates, TCDD and etc. The following endpoints are considered to be insensitive because they take too long to assess in a screen and/or have never been detected with a pesticide or toxic substance following developmental exposure (i.e. for ER-mediated: cancer, reduced AGD, hypospadias in male of female, undescended testes or any malformations).

ARE THERE KNOWN FALSE POSITIVES.

Very Apical Test used to screen for several mechanisms at once.

OR FALSE NEGATIVES.

Not likely, if designed properly.

Pubertal development in male rodent (preputial separation)

DESCRIPTION

In vivo determination of age at puberty in male rat.

DEGREE OF USE

Database includes drugs and antiandrogens and estrogenic pesticides and toxic substance (vinclozolin, pp DDE, methoxychlor, phthalates, TCDD, PCBs). Required endpoint in new multigenerational test guidelines.

DURATION

20-30 days

ASSAY STABILITY

Varies from block to block and from LE to SD by less than two days if designed carefully. Delays of two to three days are generally significant with sample sizes of 10-12/group.

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
No

ARE SPECIAL SKILLS/TRAINING NEEDED
Some practice is required.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Has been, is almost as easy as puberty in female rat.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Slightly less sensitive than are some developmental AR-mediated alterations. Also moderately sensitive to xenoestrogens (for ER, PPS is less sensitive than growth, but much better than spermatogenesis and dosing duration is shorter).

ARE THERE KNOWN FALSE POSITIVES
Yes, this is an apical assay so anti-AR, ER, SIS inhibition, altered hypothalamic-pituitary function and Leydig cell toxicants will all delay this developmental landmark.

OR FALSE NEGATIVES
Unknown

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
Nonspecific, apical test.

COMMENTS
Noninvasive test that could be coupled with both Hershberger test and biochemical assays.

Hershberger assay (1953)

DESCRIPTION
In vivo measurement of effects of antiandrogenic/androgenic toxicants of androgen-dependent tissues in peripubertal/adult male rat. Weigh sex accessory glands and levator ani/bulbocavernosus muscle in T-implanted, castrate adult or intact juvenile male rat four to seven days after start of study. Can also measure serum T and DHT (to discriminate AR-mediated from SIS mechanisms and liver effects on metabolism), and biochemical indices (ODC) and tissue gene expression (TRPM2, C3).

DEGREE OF USE
Extensive in drug development and recently in toxicology of antiandrogens.

DURATION
One week.

ASSAY STABILITY
Stable

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Balance, scissors.

ARE SPECIAL SKILLS/TRAINING NEEDED
Good necropsy and surgical skills.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Has been standardized and validated.
SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
 Responds as expected to moderate dosage levels of antiandrogenic pesticides.

ARE THERE KNOWN FALSE POSITIVES
 Yes, especially if conducted in intact peripubertal male. An apical test in intact animal. More specific in castrate but some endpoints are still affected by other mechanisms.

OR FALSE NEGATIVES
 None known.

SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT (FALSE POSITIVES)
 Yes, prolactin, thyroid hormone, and estrogens affect some organ weights.

COMMENTS
 One of the best short-term assays for antiandrogens, along with pubertal development.

Anti-androgen - Synthesis Metabolism

Testis/ovary culture in vitro or ex vivo
DESCRIPTION
 Determination of testosterone production from testicular tissue from animals treated in vivo (ex vivo) or using in vitro dosing. Used for EDS, estrogens, antiandrogens, several other testicular toxicants, and substances that inhibit steroidogenesis. In female, minced ovary culture can be used ex vivo from pregnant (i.e. GD 14-16) or cycling females (proestrus for estradiol production).

DEGREE OF USE
 A few hundred publications over the last 25 years since the advent of RIAs for testosterone. Used in other vertebrates, as well as mammals. Used by several toxicology laboratories in addition to NHEERL-EPA.

DURATION
 One day for in vitro, longer for ex vivo (duration depends upon dosing).

ASSAY STABILITY
 Depends on methodology.

DOES IT METABOLIZE TOXICANTS
 Yes, for ex vivo, little or no metabolism for in vitro.

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
 Incubator, freezer, necropsy equipment.

ARE SPECIAL SKILLS/TRAINING NEEDED
 Some practice, but a rather simple assay that can be learned by competent technicians in a week or less. Need to be able to conduct RIAs for T, estradiol, and progesterone.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
 Has not been standardized between labs, but could be without too much difficulty.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
 Fairly sensitive.
ARE THERE KNOWN FALSE POSITIVES
 Cell toxicants.
OR FALSE NEGATIVES
 If metabolic activation is required then in vitro may not work.
SPECIFICITY-ARE THERE OTHER MECHANISMS TO PRODUCE THIS EFFECT
 (FALSE POSITIVES)

COMMENTS.
 These assays could be used rapidly to screen chemicals for ability to inhibit
 steroidogenesis.

Thyroid - Intrinsic Activity

TR binding assay

DESCRIPTION
Determines whether a chemical can alter T3 binding to its nuclear receptor. Assay is
performed on isolated nuclei. Nuclei can be isolated from liver of any species. In
principal, these results would reveal competition for the binding site or an allosteric
effect.

DEGREE OF USE
 Extensive

DURATION
 Four hours.

ASSAY STABILITY
 Prepared nuclei are stable at -80°C for long periods. Assay is performed at RT.

DOES IT METABOLIZE TOXICANTS
 No

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
 Yes

ARE SPECIAL SKILLS/TRAINING NEEDED
 Yes, but training period is not extensive.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
 Yes

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
 Very sensitive; can be run over broad dose range.

ARE THERE KNOWN FALSE POSITIVES
 No, though chemicals that bind to TR in vitro may not affect TR signaling in
 vivo.

OR FALSE NEGATIVES
 Conditions of the assay must be standardize because a variety of factors (e.g.,
 oxidation) blocks T3 binding to its receptor. In addition, solubility of lipophilic
 compounds may preclude binding in this in vitro system. Finally, chemicals that do
 not bind to the TR may still disrupt thyroid function or thyroid hormone action.

SPECIFICITY
This assay should be practical to do with tissue (liver) from any vertebrate.

Thyroid - In vitro

Whole cell binding assays.
Cell lines that express the thyroid hormone receptor can be used as a whole-cell binding assay. Generally, 125I-T$_3$ is added to the media and after a short incubation period, nuclei are isolated and counted. The difference between a whole-cell assay and other binding assays is that the ligand must be taken up into the cell by stereospecific uptake sites that can be blocked by xenobiotics. Thus, this type of screen could potentially detect a broader array of chemicals that affect thyroid hormone action (i.e., those that bind to TR and/or those that affect cellular uptake).

Cell lines from a number of vertebrates have been described to express the thyroid hormone receptor and, therefore, may be suitable. However, cell lines often exhibit a number of growth/maintenance characteristics that would make them more or less suitable for large screens, and this type of information would require further research to obtain.

Stably transfected cell lines.
Cells that express the TR can also be stably transfected to provide a number of reporters that would respond to different kinds of thyroid responsive elements (TREs). An example would be GH$_3$ cells which have been used to study the role of thyroid hormone on the regulation of growth hormone gene expression. Because there are a number of TRE motifs, one goal would be to establish a cell line that would allow an easy screen of compounds that might affect the ability of TR to influence the expression of several types of regulatory elements.

In principal, this type of assay could be established in cell lines from a variety of vertebrates with the same caveats listed above.

Thyroid hormone-responsive cells.
Various cell lines change phenotype in response to thyroid hormone. PC12 cells are an example. This is a rat pheochromocytoma cell line which can be induced to become neuron-like in response to NGF. Thyroid hormone can block this change, but it requires transient transfection of the thyroid hormone receptor.

Another example is that of the XLT-15 cell line of Yaoita and Nakajima. These cells can be induced to undergo apoptosis by thyroid hormone. Thus, a screen may be developed to determine whether a compound can influence this induction.

Specialized cells.
Various cell lines exhibit unique features that can be recruited for development of a
screen. For example, FRTL-5 cells are derived from a rat thyrocarcinoma. Marinovich et al. [Marinovich, 1995 #1153] have reported a clonal line that is stably transfected with the human thyroid peroxidase which can be inhibited by a number of chemicals (e.g., ethylenethiourea, a metabolite of dithiocarbamate pesticides).

Thyroid In-vivo

Short-term Serum T_4

DESCRIPTION
Determine whether a chemical can alter circulating levels of thyroxine. Several mechanisms for this, including decreased half-life (displacing from serum carrier proteins, activating liver enzymes), or decreasing synthesis by effects on the thyroid itself. T_4 is more sensitive than T_3 or TSH. T_3 and TSH can be measured if T_4 is affected but there are a number of compounds that affect T_4 without affecting T_3 or TSH. Other indices would be required.

DEGREE OF USE
Extensive

DURATION
24 hours or more

ASSAY STABILITY
N/A

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes, but T_4 kits are widely used clinically.

ARE SPECIAL SKILLS/TRAINING NEEDED
Yes, but training period is not extensive.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Yes

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
T_4 is not very sensitive in a short-term assay, though others may have more extensive knowledge on this.

ARE THERE KNOWN FALSE POSITIVES
No

OR FALSE NEGATIVES
Because the half-life of thyroid hormone in blood is long (~120h) and because some compounds may interfere with thyroid hormone synthesis (e.g., iodide uptake), short-term exposure may not be indicative of thyroid affects.

SPECIFICITY
High

COMMENTS
This could be coupled to a screen for reproductive effects.

Long-term Serum T_4
DESCRIPTION
Determines whether a chemical can alter circulating levels of thyroxine within a longer
time-course. This could be performed on animals being evaluated for reproductive
effects (see RTP proposal).

DEGREE OF USE
Extensive

DURATION
48 hours or more.

ASSAY STABILITY
N/A

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes, but T4 kits are widely used clinically.

ARE SPECIAL SKILLS/TRAINING NEEDED
Yes, but training period is not extensive.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Yes

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Unclear

ARE THERE KNOWN FALSE POSITIVES
No

OR FALSE NEGATIVES
None that are known.

SPECIFICITY
Unknown

COMMENTS
This assay can be included in an experiment for reproductive effects.

Thyroid peroxidase

DESCRIPTION
This description was contributed by Dan Sheehan (excerpted by TZ). The thyroid peroxidase has
a broad substrate specificity, for all phenolic chemicals essentially. One group of prototypical ED's
is the flavones and isoflavones; they inhibit thyroid peroxidase with IC0's in the low micromolar
range and can act as either competitive inhibitors or as suicide substrate inhibitors which
inactivate the peroxidase. Either or both of these actions could lower T3/T4 production, increase
TSH and lead to goiter/carcinoma. A population of human infants consuming soy infant formula,
which has a high isoflavone content, has been identified with Graves disease or Hashimoto's
thyroiditis, both autoimmune thyroid diseases diagnosed by goiter. The prevalence of soy formula
consumption was twice as high in these patients as in controls who had consumed cows milk
formula. The assay for inhibition is simpler, quicker, and cheaper than a receptor assay. It is a
colorimetric assay of peroxidase activity in the presence of various concentrations of a chemical
followed by graphical or computer solutions for IC50's. It seems likely to me that other chemicals
may act via the same mechanism. Also note that the phenolic "A" ring (or its equivalent) is

Unknown
and a phenolic group would be active estrogens in the micromolar range AND would also possibly be active on the peroxidase. Given the co-occurrence of thyroid and reproductive problems in some geographical areas, this may be due to estrogenic activity of low affinity ER ligands which also have peroxidase inhibiting activity. While this assay does not account for all mechanisms leading to thyroid toxicity, just as an ER RBA assay does not, it is cheap, simple, and quick; and, I think, should be in the in vitro battery for the thyroid.

DEGREE OF USE
- Extensive

DURATION

?-

ASSAY STABILITY
- N/A?

DOES IT METABOLIZE TOXICANTS
- Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
- Modest

ARE SPECIAL SKILLS/TRAINING NEEDED
- Yes, but training period is not extensive.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
- Yes

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
- Unclear

ARE THERE KNOWN FALSE POSITIVES
- No

OR FALSE NEGATIVES
- Compounds may interfere with thyroid hormone action without affecting TPO.

SPECIFICITY
- Unknown

Malic Enzyme

DESCRIPTION

DEGREE OF USE
- Extensive

DURATION

?-

ASSAY STABILITY
- N/A?

DOES IT METABOLIZE TOXICANTS
- Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
- Modest

ARE SPECIAL SKILLS/TRAINING NEEDED
- Yes, but training period is not extensive.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Unclear

ARE THERE KNOWN FALSE POSITIVES
No

OR FALSE NEGATIVES
Compounds may interfere with thyroid hormone action without affecting TPO.

SPECIFICITY
Unknown

COMMENTS
See above

Mammal development

DESCRIPTION
This assay can be performed on animals in which screens for reproductive effects are being evaluated as described in the RTP proposal. Simplest measures would be circulating T₄, and brain weight.

DEGREE OF USE
Brain weight is not used as an index of thyroid hormone action during development, though brain weight is clearly affected by thyroid hormone action.

DURATION
?

ASSAY STABILITY
N/A?

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Yes

ARE SPECIAL SKILLS/TRAINING NEEDED
Yes, but training period is not extensive.

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Unclear

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Unclear

ARE THERE KNOWN FALSE POSITIVES
Yes, compounds that affect nutritional status or eating. However, these may also influence thyroid hormone levels which are linked to nutritional status.

OR FALSE NEGATIVES
No?

SPECIFICITY
Unknown

COMMENTS
See above.
The following three overviews were submitted as alternatives to existing overviews and are included here as an addendum. (submitted by Dr. Soto)

MCF7 Proliferation assay (E-SCREEN)

DESCRIPTION
Measures proliferation of cells in culture in response to estrogens.

DEGREE OF USE
Used in various laboratories in the U.S.A., Europe and Japan. Many chemicals studied; several toxicants were discovered to have estrogenic properties using this method. Extensive published data on toxicants with estrogenic activity.

DURATION
From seeding the cells to harvesting cells=5 to 7 days. It requires 4 manipulations only: 1) seeding, 2) changing to test medium 24 hours later, 3) single-step harvesting (or staining in situ) and 4) counting (or reading in an ELISA plate reader).

ASSAY STABILITY
Very stable in the labs that started with a line/subline of proven sensitivity. Clones reported to have stable activity for over ten years.

DOES IT METABOLIZE TOXICANTS?
Not thoroughly characterized. However, some proestrogens (methoxychlor, bisphenol-A dimethacrylate, alkylphenol-monoethoxylates, non-hydroxylated PCBs) were reported to have activity in this assay.

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED?
Like all assays performed with vertebrate cell cultures, it requires laminar flow hood, CO2 incubator, cell freezing storage, inverted microscope, cell counting devise, and a detector for the specific end point measured (it may use an electronic cell counter or an ELISA plate reader if using sulforhodamine-B assay or other colorimetric assay).

ARE SPECIAL SKILLS/TRAINING NEEDED?
Like all assays using cell culture, it requires the ability of maintaining the culture stocks, periodic freezing after several passages to maintain the cultures in case of infections or other mishaps. The assay itself is very easy to perform.

HAS IT BEEN STANDARDIZED EASILY?
It is highly reproducible from assay to assay. It is used in several labs in the USA and Europe. By using responsive cells to begin with, it has provided comparable results when a battery of 20 coded chemicals were tested by several labs (manuscript in preparation; Project Coordinator: Philip Grandjean, Odense University, Denmark). Competent labs appear to get similar results. Cell of appropriate phenotype can be easily distributed.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Very sensitive; one of the most sensitive assays (E2 EC50=10-15 pM range; maximal activity 100 pM).

ARE THERE KNOWN FALSE POSITIVES?
In competent labs no false positives were found among growth factors. Testosterone is the only steroid that shows activity at TM concentrations. When assaying for antagonists, endocrinologists have used a two-step method to assess whether or not the effect is truly antiestrogenic regardless of whether the end point is inhibition of
estro gen-induced cell proliferation or inhibition of estrogen induction of a gene product: 1) assess the effect of a range of doses of the test compound together with the minimal estrogen dose needed for maximal induction of the gene product (inhibition), and 2) assess the effect of increasing doses of estradiol administered together with the dose of toxicant found to induce maximal inhibition (estradiol rescue).

OR FALSE NEGATIVES?
False negatives due to toxicity were not found using GLP (it only takes looking at the cells with the inverted microscope to detect unspecific toxicity). TCDD does have toxic effects both in the presence and absence of estrogens. Various substances that require metabolic activation like alkylphenols polyethoxylates may be missed.

SPECIFICITY-ARE THERE OTHER MECHANISMS OF ACTION TO PRODUCE THIS EFFECT (FALSE POSITIVES)?
So far, all substances found to be estrogenic with the E-SCREEN assay that were also tested using gene activation assays were found to be consistently estrogenic.

COMMENTS
Like for all bioassays, it requires obvious good laboratory practices. In the case of rodent bioassays it is important to work with healthy animals, appropriate light cycles, using feeds that do not contain estrogens, etc. When working with cells in culture, one has to start with a subline that expresses the appropriate phenotype. To maintain the phenotype, serum used for cell propagation has to be checked before using it for propagation (therefore, laboratories stock "good serum" to last for one year). Similarly, stocks have to be frozen periodically, and the charcoal-dextran stripped serum (which can be stored frozen in aliquots for up to one year, should be checked once before use). Recently, it was shown that recombinant serum albumin may be used instead of charcoal-dextran stripped serum.

The assay can be automated, and different labs use 12, 24 or 96 well plates, depending on whether one uses cell numbers, sulforhodamine-B staining or MTT reaction as the end point). Also, cells can be fixed in situ at the end of the experiment and stained days or weeks later.

MVLN assay. Stably transfected reporter gene assay in mammalian cells
(submitted by Dr. Soto)

DESCRIPTION
The assay utilizes a mammalian cell line (MCF7 with endogenous ER) that has been stably transfected with an ER-specific reporter gene (Vit-luc).

DEGREE OF USE
Used in various laboratories for pharmaceutical and environmental research. No publications are listed in Medline as yet attesting its use for estrogenic toxicants.

DURATION
From seeding the cells to harvesting lysate and Luc activity takes two to three days. The following manipulations are required: 1) seeding and exposure to charcoal-dextran stripped serum containing tamoxifen for 24-48 hours, 2) changing the medium to tamoxifen-free for 12 hours (or, treat for 1-2 weeks with charcoal-dextran stripped serum,), 3) incubate with test substance for 24 or more hours, 4) finally harvest cells,
5) homogenize them, 6) read assay, and 7) run a protein assay.

ASSAY STABILITY
Like the parent cell line MCF7, it should be stable when good laboratory practices are followed. It has been stable for 30 passages. Exposure to tamoxifen renders these cells unable to express estrogen induction of the reported gene.

DOES IT METABOLIZE TOXICANTS?
Not thoroughly characterized. It may maintain same capabilities as those of the parental cell line.

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED?
Like all assays performed with vertebrate cell cultures, it requires laminar flow hood, CO₂ incubator, cell freezing storage, inverted microscope, cell counting devise, and a detector for the specific end point measured (luminometer to measure Luc activity).

ARE SPECIAL SKILLS/TRAINING NEEDED?
Like all assays using cell culture, it requires the ability of maintaining the culture stocks, periodic freezing after several passages to maintain the cultures in case of infections or other mishaps. The assay itself is easy to perform.

HAS IT BEEN STANDARDIZED EASILY?
No published results are available on the performance of this assay to detect estrogenic toxicants. Stably transfected cells can be easily distributed.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Very sensitive; EC50 for E2 in the 20 pM range; maximal activity of E2 was reported at 1 nM.

ARE THERE KNOWN FALSE POSITIVES?
Hypothetically, ER may be activated by non-estrogenic agents through phosphorylation pathways. When assaying for antagonists, endocrinologists have used a two-step method to assess whether or not the effect is truly antiestrogenic regardless of whether the end point is cell proliferation or inhibition of estrogen induction of a gene product: 1) assess the effect of a range of doses of the test compound together with the minimal estrogen dose needed for maximal induction of the gene product (inhibition), and 2) assess the effect of increasing doses of estradiol administered together with the dose of toxicant found to induce maximal inhibition (estradiol rescue).

OR FALSE NEGATIVES?
Similarly to the parental cell line, false negatives due to toxicity should be excluded by GLP (it only takes looking at the cells with the inverted microscope to detect unspecific toxicity). It is suspected that like in the parent cell line TCDD may have toxic effects both in the presence and absence of estrogens. Various substances that require metabolic activation like alkylphenols polyethoxylates may be missed.

SPECIFICITY-ARE THERE OTHER MECHANISMS OF ACTION TO PRODUCE THIS EFFECT (FALSE POSITIVES)?
Hypothetically, ER may be activated by non-estrogenic agents through phosphorylation pathways.

COMMENTS
Specific ER activation. Like for all bioassays, it requires obvious good laboratory practices. In the case of rodent bioassays it is important to work with healthy animals,
appropriate light cycles, using feeds that do not contain estrogens, etc. When working with cells in culture, one has to start with a subline that expresses the appropriate phenotype. To maintain the phenotype, serum used for cell propagation has to be checked before use (therefore, laboratories stock "good serum" to last for at least one year). Similarly, cell stocks have to be frozen periodically.

The assay can be automated; can be done in 12, 24 or 96 well plates.

MCF7-AR1 assay. MCF7 cells stably transfected with "wild type" androgen receptor.
(submitted by Dr. Soto)

DESCRIPTION

The assay utilizes a mammalian cell line (MCF7) stably transfected AR. These cells proliferate maximally in serumless medium supplemented with insulin and transferrin. Androgens inhibit their proliferation; antiandrogens abolish the inhibitory effect of androgens.

DEGREE OF USE

This method was just published.

DURATION

From seeding cells to harvesting them, it takes 5 days.

ASSAY STABILITY

Like the parent cell line MCF7, it should be stable when good laboratory practices are followed. It has been stable for 4 years.

DOES IT METABOLIZE TOXICANTS?

Not thoroughly characterized. It should keep the same capabilities as those of the parental cell line.

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED?

Like all assays performed with vertebrate cell cultures, it requires a laminar flow hood, CO₂ incubator, cell freezing storage, inverted microscope, cell counting devise, and a detector for the specific end point measured (it may use an electronic cell counter or an ELISA plate reader when using sulforhodamine-B assay or other colorimetric assay).

ARE SPECIAL SKILLS/TRAINING NEEDED?

Like all assays using cell culture, it requires the ability of maintaining culture stocks, periodic freezing after several passages to maintain the cultures in case of infections or other mishaps. The assay itself is easy to perform.

HAS IT BEEN STANDARDIZED EASILY?

It can be standardized easily, since cells express AR constitutively. No published results are available on the performance of this assay to detect toxicants that are androgen agonists or antagonists. Stably transfected cells can be easily distributed.

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS

Very sensitive; EC50 for DHT in the pM range.

ARE THERE KNOWN FALSE POSITIVES?

In theory, hyperphysiological doses of glucocorticoids may bind to the AR and this may activate AREs.

OR FALSE NEGATIVES?
As with the parental cell line, false negatives due to toxicity should be excluded by GLP (it only takes looking at the cells with the inverted microscope to detect unspecific toxicity). In addition, since androgens inhibit cell proliferation, "rescue" from inhibition by an antiandrogen may help differentiating toxicity from androgenicity. Substances that require metabolic activation may be missed.

SPECIFICITY-Are there other mechanisms of action to produce this effect (false positives)?

Probably hyperphysiological doses of glucocorticoids.

COMMENTS

Like all bioassays, it require good laboratory practices. In the case of rodent bioassays it is important to work with healthy animals, appropriate light cycles, using feeds that do not contain estrogens, etc. When working with cells in culture, the cell line should express the appropriate phenotype. To maintain the phenotype, serum used for cell propagation has to be checked before use (therefore, laboratories stock "good serum" lots for at least one year). Similarly, cell stocks have to be frozen periodically. The assay can be automated; can be done in 12, 24 or 96 well plates.

Overview of Non-mammalian Screens

Procedures Using Birds and reptiles to Determine Endocrine Disruptive Action

The number of procedures available are limited for taxa other than mammals. In part, this is because many procedures used in mammals have just not been tried in other taxa, as well as because they are not appropriate for egg-producing vertebrates or any phyla other than Vertebrata. Hence, the procedures below have been divided into two matrices with identical structure as the mammalian matrix, but includes both birds and reptiles as subjects. The first matrix contains procedures that have already been used to determine endocrine action of contaminants, and the second contains procedures that could be used, but have not. The procedures in the second matrix need varying amounts of development to be ready for inclusion in a screening and testing program. The amount of development needed is estimated in the comments section.

Also, the number and variety of in vitro procedures that have been applied to wildlife is orders of magnitude smaller than used with mammalian material. This may be a particular problem for the design of a comprehensive set of screening procedures, because the screening battery is intended to cull out from a list of chemicals to be tested, all those chemical that have no intrinsic endocrine activity. Hence, the screening battery should be comprehensive for all types of endocrine action (or as many as possible). Thus the availability of short duration procedures using non-mammalian material that could be used as screens would seem crucial as the screening and testing program is intended to be protective of all taxa, not just humans and other mammals. The issue of the homology of steroid hormone and receptor structure across vertebrates classes needs to be explored more fully to help design an adequately comprehensive program, especially for the screening phase. At this date, there is no real choice to be made as there are very few if any procedures using non-mammalian material that
could be used as a screening tool. This area needs thoughtful development. In addition to development of non-mammalian vertebrate in vitro procedures, invertebrates in whole animal "biological activity" tests could be exploited, which by dint of the very short life cycle, of Daphnia for instance, could be economically used in a screening battery.

Overview of Endocrine Disruptor Relevant Screens to the Lower Vertebrates and Invertebrates

Unlike the many and wide array of screens available for mammalians, few exist for the animals outside that taxonomic group. There do exist some assays which can be employed with differing degrees of specificity and sensitivity. Predominantly, the assays available for these animals will be in vivo and somewhat apical. Although this means these assays will not provide detailed mode of action information, the endpoints will be relevant for interpreting "adverse" effects.

For the non-mammalian vertebrates, vitellogenin assays are available and will generally provide suggestive evidence of estrogen-related disruptions. However, there is some evidence of thyroid hormone involvement with vitellogenin production which may compromise any conclusive evidence of an estrogen specific action. Nonetheless, compounds which affect a change in normal vitellogenin levels should be captured in a screening program for more definitive investigation of the effect and its relevance.

Existing standardized tests for evaluating conventional toxicities are also included here because of the availability of such information for certain compounds (e.g., pesticides). Information from these tests can be used to screen for suggestive endocrine mediated effects to be flagged for further investigation.

Amphibian Screens

Vitellogenin Assay
DESCRIPTION
An assay which measures the amount of an egg yolk protein precursor in males as an indicator of estrogenic activity.
REFERENCES
DURATION
> 72 hours
EQUIPMENT
wet lab, antibody, immunology lab
STAFF SKILLS
can be trained
COST
modest
AVAILABILITY
limited by specificity of antibody, but Heppell et al. efforts at developing a "universal"
antibody appear promising

SENSITIVITY
good

SPECIFICITY
good for estrogen activity, but thyroid hormones may also be involved

STANDARDIZATION
not yet, but could be made without undue difficulties

RELATEDNESS
primarily estrogen box, more research is needed to ascertain whether thyroid or
androgen activity is or is not connected

Frog Embryo Teratogenesis Assay Xenopus (FETAX)

DESCRIPTION
A 96-hour whole embryo teratogenesis screening assay. Because the exposure is
through primary organogenesis all developmentally important processes are taken into
account.

REFERENCES
Dumont et al. (1983) Frog Embryo Teratogenesis Assay - Xenopus (FETAX) In:
Short-term Bioassays in the Analysis of Complex Environmental Mixtures III.
Plenum. ASTM. 1991. Standard guide for conducting the Frog Embryo

DURATION
96 hours

EQUIPMENT
general wet lab and microscopy lab

STAFF SKILLS
specialized knowledge of amphibian embryology and histology

COST
modest

AVAILABILITY
fair

SENSITIVITY
fair, not fully comprehensive for all estrogenic, androgenic, or thyroid related effects

SPECIFICITY
does not distinguish hormonal from non-hormonal developmental effects

STANDARDIZATION
yes through ASTM

RELATEDNESS
apical for some estrogenic, androgenic, and thyroid related effects other

Amphibian Metamorphosis Assay (Conceptual)

COMMENTS
Similar to a FETAX like assay but focused on tadpole metamorphosis, perhaps
specifically on tail resorption. Apical for thyroid related effects.

Frog *In vivo* Screening Assay (Conceptual)
COMMENTS
Similar in concept to what is proposed for fishes evaluating endpoints such as gonado-somatic index, secondary sex characteristics, oocyte maturation, plasma steroids, and plasma vitellogenin. Apical for estrogen, androgen, and thyroid related effects.

Metamorphosis
DESCRIPTION
Determines whether a chemical can affect the thyroid hormone-dependent process of metamorphosis.

DEGREE OF USE
Extensive

DURATION
Depends on species available. *Xenopus* or *Rana* would require about a week of treatment. *Scaphiopus* would require less time (24 hours), but may not be widely available.

ASSAY STABILITY
N/A?

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Modest

ARE SPECIAL SKILLS/TRAINING NEEDED
Yes, but training period is not extensive

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Yes

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
yes

ARE THERE KNOWN FALSE POSITIVES
No

OR FALSE NEGATIVES
Unclear

SPECIFICITY
Unknown

COMMENTS
The ease of compound administration may make this attractive. The use of ± T3/T4 paradigm would allow for identification of thyroid action disruption. Endpoints (e.g., hind-limb growth rate) are ÒintegratedÓ measures; thus, the screen would detect compounds that affect thyroid hormone action along the entire pathway. There are clearly a number of endpoint which may be more or less sensitive or reliable. Structure of internal organs (liver, pronephros), and production of urea are two.

Bird Screens

Avian egg-injection Assay
TEST AND FUNCTION:
The effects of steroids (and EDCs) on development of the reproductive tract and steroid concentrations. Subject are various species of wildlife. Exposure is by egg-injection before organogenesis; responses are measured at hatching and include the morphology, histology of the reproductive tract of males (females may be useful also), and plasma steroid concentrations. It can be extended into the breeding age of the affected animal to look check for functional impairment.

REFERENCES:
Nisbet et. al. 1996.
- several other studies now in progress using similar methodology with other species

DURATION:
Depends on the length of incubation (~ three weeks minimum), and availability of eggs: wild birds usually not easily available unless a breeding colony exists

EQUIPMENT:
incubator, hatchabator, general lab facilities and facilities for RIAs

STAFF SKILLS:
animal husbandry skills, general dissection and microscope skills, tissue handling and preparation for sectioning, biochemical expertise for RIA work

COST:
??

AVAILABILITY:
wide

SENSITIVITY:
good for estrogens

SPECIFICITY:
estrogenic effects in males: possibly non-aromatizable androgen effects in females

STANDARDIZATION:
needs work, especially in preparation and analysis of histological responses

RELATEDNESS:

OTHER:
The choice of subject species is crucial for operational ease, practicality and cost control. Embryos must be large enough at hatching to get a gonad that is easily handled and that has enough blood to collect for RIA on the plasma. Very similar responses to procedure R2. Compare to A2.

Japanese quail early life stage

TEST AND FUNCTION:
The effects of steroids (and EDCs) on development of sexual maturity in Japanese quail, and, if desired, of the reproductive tract and plasma steroid concentrations in siblings. This tests the time to onset of maturity as measured by secondary sex characters (cloacal or foam gland size) and behavior (crowing) in males; all are testosterone dependent. Exposure varies, see below.
REFERENCES:

DURATION:
~18 days incubation + 60 days to maturity

EQUIPMENT:
avian husbandry, general lab, tape recorder.

STAFF SKILLS:
husbandry, general lab.

COST:

AVAILABILITY:
quail are widely available; strains can be different, recommend out bred line

SENSITIVITY:
??

SPECIFICITY:
depending on the timing of exposure it can be made specific to estrogen OR androgens:
- if chicks are implanted or injected with EDC, male time to maturity is androgen sensitive
- if eggs are injected, the gonadal development of male offspring is impaired by estrogens (and possibly non-aromatizable androgens in female offspring, although this has not been demonstrated [matrix 2]); this is similar to procedure A1. Estrogenic effects on time to maturity in males is not known

STANDARDIZATION:
this test has been used widely and can be easily standardized further

RELATEDNESS:

OTHER:
excellent background information on the endocrinology of Japanese quail; this procedure might be developed into an Androgen antagonist assay in males with co-administration of EDC and androgen, and androgen alone as control [matrix 2]

Japanese quail androgenicity screen

TEST AND FUNCTION:
Foam gland size and crowing behavior in photo-regressed adult males to look at the Androgenic effect of EDCs on peripheral targets, using Japanese quail. This procedure uses individuals that are not secreting GNRH, and thus the HPG axis is shut down.

REFERENCES:
(brainstorming...) [matrix 2]

DURATION:
two weeks to regress; expose for two days, responses in five to seven days
Vitellogenin production in female Japanese quail

TEST AND FUNCTION:
Vitellogenin production in photo-regressed adult females to look at the Estrogenic effect of EDCs on peripheral targets, using Japanese quail.

REFERENCES:
(brainstorming...) [matrix 2]

DURATION:
two weeks to regress; expose for two days, vitellogenin response in 24 hours

EQUIPMENT:
animal husbandry, photoperiod control, electrophoresis lab

STAFF SKILLS:
as above

COST:

AVAILABILITY:

SENSITIVITY:

SPECIFICITY:
specific for estrogen binding peripherally; could be made into a test for the E-antagonist with co-administration of E2 and the potential EDC, along with E2 to the controls.

STANDARDIZATION:
good potential: husbandry can be made standard, but a common source of antibody is needed; ring testing probably needed for electrophoresis

RELATEDNESS:

OTHER:
Needs more development than A3. Could be used as a procedure for estrogen antagonists with co-administration of estrogen and using estrogen alone as a control.

Vitellogenin production in adult male birds: Japanese quail, chickens.

REFERENCES:

DURATION:
eight to ten days

EQUIPMENT:
animal facilities, electrophoresis equipment

STAFF SKILLS:
animal husbandry, electrophoresis, general lab

COST:

AVAILABILITY:
depends on antibody: birds widely available

SENSITIVITY:
"high", but o,p-DDT did not induce vitellogenesis...

SPECIFICITY:
high

STANDARDIZATION:

RELATEDNESS:

OTHER:
Looks pretty good; a little shorter duration than A5 (photo-regressed females) but relative sensitivity is unknown. Lots of current work on different species of wildlife that is not published

Avian "Plaque assay"

TEST AND FUNCTION:
Avian "Plaque assay"; slices of brain are prepared in vitro and infused with steroids, peptides or EDCs and GNRH production is measured. Exploits the negative feedback control of steroids on GNRH production.

REFERENCES:
personal communication; Tom Porter's lab at Texas A&M; reprints in the mail for more details!

DURATION:

EQUIPMENT:

STAFF SKILLS:

COST:

AVAILABILITY:
Only this lab uses the technique, as far as I can tell.

SENSITIVITY:

SPECIFICITY:

STANDARDIZATION:

RELATEDNESS:

OTHER:
This assay should be explored as it is one of the only in vitro assays for birds. Drawbacks include killing birds for brains, independence of different slices from the same brain is questionable, and the expertise rather local, I believe. Needs development.

Avian cell culture

TEST AND FUNCTION:
To test the action of steroids and EDCs on the handful of immortalized avian cell lines. In general, steroidogenic endpoints have not been identified, much less evaluated for sensitivity. Further only one avian cell line (fibroblasts) is spontaneously immortal and not chemically or virally transformed, hence is probably the best for results relevant to an intact animal. Again, steroidogenic responses are have not been identified in these fibroblasts (are any expected in a fibroblast?)

REFERENCES:
personal communication, Doug Foster, U Minn.

DURATION:

EQUIPMENT:

STAFF SKILLS:
COST:

AVAILABILITY:
 Patented, but is willing to license for this use.
SENSITIVITY:

SPECIFICITY:

STANDARDIZATION:

RELATEDNESS:

OTHER:
 Needs development, but promising.

Chicken early life stage

TEST AND FUNCTION:
 Coxcomb size, vent sex and gonadal morphology and histology of chickens; EDCs or steroid administered by injecting the eggs before organogenesis; similar to B1 and B2

REFERENCES:
 - and others..

DURATION:
 long: 23 weeks to maturity, but for morphology of the reproductive tract, can collect material from hatchlings after 21 day incubation.

EQUIPMENT:
 animal facilities, RIA, tissue handling

STAFF SKILLS:
 husbandry, RIA techniques, histological imbedding and slicing..

COST:

AVAILABILITY:
 no problem

SENSITIVITY:

SPECIFICITY:
 For Estrogenic activity in males chicks, and for aromatase inhibition in females; aromatizable androgen has no effect (but DHT, and hence other non-aromatizable androgens ?) Needs development for possible A+ procedure.

STANDARDIZATION:
easy for coxcomb, subjective assessments of gonadal morphology can be made more quantitative.

RELATEDNESS:

OTHER:
Coxcomb assay is a classic and has been widely used in the past, but it is very time consuming as maturity is reached not until five months; however, differences can be seen in the incompletely mature cock and may be useful. A nice twist exploited by Elbrecht and Smith is to use a cross that produced sexual dimorphism in feather color which was independent of steroid dependent characters, thus revealing genetic sex. In some studies the EDC has been topically applied to the comb directly. Needs development for possible A+ procedure.

Cartilage growth in chick

DESCRIPTION
Determines whether a chemical can alter the response of chick cartilage to thyroid hormone.

DEGREE OF USE
Extensive

DURATION
?

ASSAY STABILITY
N/A?

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Modest

ARE SPECIAL SKILLS/TRAINING NEEDED
Yes, but training period is not extensive

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Yes

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
Unclear

ARE THERE KNOWN FALSE POSITIVES
No

OR FALSE NEGATIVES
Compounds may interfere with thyroid hormone action without affecting cartilage

SPECIFICITY
Unknown

COMMENTS

Fish Screens

Vitellogenin Assay

DESCRIPTION
An assay which measures the amount of an egg yolk protein precursor in males as an indicator of estrogenic activity.

REFERENCES

DURATION
> 72 hours

EQUIPMENT
wet lab, antibody, immunology lab

STAFF SKILLS
can be trained

COST
modest

AVAILABILITY
limited by specificity of antibody although Heppell et al. are developing a "universal" antibody

SENSITIVITY
good

SPECIFICITY
good for estrogen activity, but thyroid hormones may also be involved

STANDARDIZATION
not yet, but could be made without undue difficulties

RELATEDNESS
primarily estrogen box, more research is needed to ascertain whether thyroid or androgen activity is or is not connected

In vitro Vitellogenin Assay

DESCRIPTION
A procedure isolating trout hepatocytes, treating them with a xenobiotic, and then measuring the amount of vitellogenin secreted into the culture medium.

REFERENCES
AVAILABILITY
- fair

SENSITIVITY
- good

SPECIFICITY
- good for estrogen activity

STANDARDIZATION
- practical

RELATEDNESS
- applicable to estrogen boxes

In vivo Screening Assay
- refer to Peter Thomas’s write up

Early life stage test

DESCRIPTION
- Newly fertilized eggs are exposed to a test chemical through hatching and early development and growth of the juvenile fish.Endpoints measured are hatching success, survival, and growth.

REFERENCES
- OECD 210, EPA 850.1400, ASTM E 1241-92

DURATION
- 31 - 72 days

EQUIPMENT
- wet lab sufficient for flow-through studies

STAFF SKILLS
- general

COST

AVAILABILITY
- commercially available

SENSITIVITY
- good

SPECIFICITY
- poor

STANDARDIZATION
- yes

RELATEDNESS
- applicable for all boxes, but does not differentiate hormonal from non-hormonal driven effects and is not fully comprehensive

Embryo and sac fry test

DESCRIPTION
- This is a short-term test in which the life stages from the newly fertilized egg to the end of the sac-fry stage are exposed. OECD 212.
DURATION
8 to 55 days
EQUIPMENT
wet lab
STAFF SKILLS
general
COST

AVAILABILITY
commercially available
SENSITIVITY
unknown
SPECIFICITY
none
STANDARDIZATION
yes
RELATEDNESS
apical for general fish health

Partial life cycle test

REFERENCES
Standard Methods for the Examination of Water and Wastewater (810B.2), APHA, AWWA, and WPCF (1985)

DURATION
long term, >250 days
EQUIPMENT
wet lab
STAFF SKILLS
experienced
COST
high
AVAILABILITY
commercially available
SENSITIVITY
good
SPECIFICITY
apical, but does not address transgenerational effects

STANDARDIZATION
fair
RELATEDNESS
applicable to all boxes, but more appropriate in definitive testing as a screen it should only be used if the test has already been completed.

Full life cycle test
REFERENCE
Standard Methods for the Examination of Water and Wastewater (810B.3), APHA, AWWA, and WPCF (1985)

DURATION
long term, >250 days

EQUIPMENT
wet lab

STAFF SKILLS
experienced

COST
high

AVAILABILITY
commercially available

SENSITIVITY
good

SPECIFICITY
apical, but does not address transgenerational effects

STANDARDIZATION
fair

RELATEDNESS
applicable to all boxes, but more appropriate in definitive testing as a screen it should only be used if the test has already been completed.

Flounder Metamorphosis

DESCRIPTION
Determines whether a chemical can affect the thyroid hormone-dependent process of metamorphosis.

DEGREE OF USE
Extensive

DURATION
seven days

ASSAY STABILITY
N/A?

DOES IT METABOLIZE TOXICANTS
Yes

ARE SPECIAL EQUIPMENT/REQUIREMENTS MANDATED
Modest

ARE SPECIAL SKILLS/TRAINING NEEDED
Yes, but training period is not extensive

HAS IT BEEN OR CAN IT BE STANDARDIZED EASILY
Yes

SENSITIVITY TO LOW DOSES OR WEAKLY ACTIVE CHEMICALS
yes

ARE THERE KNOWN FALSE POSITIVES
No
The ease of compound administration may make this attractive. The use of ± T3/T4 paradigm would allow for identification of thyroid action disruption. Endpoints (e.g., eye migration) are “integrated” measures; thus, the screen would detect compounds that affect thyroid hormone action along the entire pathway.

In vitro steroid receptor competition assay
REFERENCES

DURATION

EQUIPMENT

STAFF SKILLS

COST

AVAILABILITY

SENSITIVITY

SPECIFICITY

STANDARDIZATION

RELATEDNESS

OTHER

In vitro steroid production bioassay
REFERENCES

DURATION

EQUIPMENT

STAFF SKILLS

COST

AVAILABILITY
SENSITIVITY
SPECIFICITY
STANDARDIZATION
RELATEDNESS
OTHER

In vitro germinal vesicle breakdown (GVBD) bioassay
REFERENCES
DURATION
EQUIPMENT
STAFF SKILLS
COST
AVAILABILITY
SENSITIVITY
SPECIFICITY
STANDARDIZATION
RELATEDNESS
OTHER

Invertebrate Screens

Daphnia reproduction (life cycle) test
DESCRIPTION
 The objective of this test is to assess the effect of a chemical on the reproductive output of *Daphnia magna*. Information on growth is also obtained.
REFERENCES
 EPA 850.1300, OECD 211, ASTM E 1193-93
DURATION
 21 days
EQUIPMENT
 wet lab
STAFF SKILLS basic
COST moderate
AVAILABILITY commercially available
SENSITIVITY unknown
SPECIFICITY apical for invertebrate endocrine related effects, unknown as far as vertebrates are concerned
STANDARDIZATION yes
RELATEDNESS n/a

Mysid life cycle test

DESCRIPTION

The objective of this test is to assess the survival, growth, and reproduction of mysids through a complete life cycle.

REFERENCES

EPA 850.1350, ASTM E 1191-90

DURATION

28 days

EQUIPMENT

wet lab, saltwater capability

STAFF SKILLS

basic

COST

moderate

AVAILABILITY

commercially available

SENSITIVITY

unknown

SPECIFICITY

apical for invertebrate endocrine related effects, unknown as far as vertebrates are concerned

STANDARDIZATION

yes

RELATEDNESS

n/a

Reptilian Screens

Vitellogenin production in adult male turtles

TEST AND FUNCTION:
Vitellogenin production in adult male turtles (Red-eared slider, *Trachemys scripta*) and male frogs (*Xenopus laevis*); indicates estrogen receptor binding in the liver and/or estrogen receptor production.

REFERENCES:

DURATION:
injection daily for seven days, plasma collected on day 14

EQUIPMENT:
general lab space for animals, equipment for ELISA

STAFF SKILLS:
ELISA

COST:
Not high; turtles and frogs purchased

AVAILABILITY:
animals easily obtainable

SENSITIVITY:
sliders more sensitive than frogs when comparing DDT-exposed to estradiol controls, but frogs equally as sensitive as sliders when comparing the absolute of vitellogenin produced in response to DDT

SPECIFICITY:
estrogen-dependant response

STANDARDIZATION:
good potential, depends on common source of antibody

RELATEDNESS:

OTHER:
Exact same protocol used for amphibians; possibly useful as E- procedure with co-administration of estrogen.

Sex determination in turtles

TEST AND FUNCTION:
Sex determination in turtles; the red-eared slider (*Trachemys scripta*) and snapping turtles (*Chelydra serpentina*) have been used; responses measured are the morphology of the gonads and genital ducts and the histology of the gonads.

REFERENCES:
Wibbles, T. and D. Crews. 1995. Steroid-induced sex determination at incubation temperatures producing mixed sex rations in a turtle with TSD. *General and
Comparative Endocrinology 100: 53-60.

DURATION:
- rather long ~12 weeks to hatch and collection of samples

EQUIPMENT:
- general lab facilities

STAFF SKILLS:
- tissue handling

COST:

AVAILABILITY:
- eggs of *T. scripta* are commercially available

SENSITIVITY:
- incubation temperature is crucial and needs some discussion for development of the best conditions for testing; there is greater *physiological* sensitivity to steroids at incubation temperatures that produce mixed sexes from the clutch, but greater *statistical* sensitivity when clutch is incubated at male producing temperatures

SPECIFICITY:
- an estrogen dependant alteration of male gonads

STANDARDIZATION:
- ? some subjectivity in the morphological and histological analysis

RELATEDNESS:

OTHER:
- The red-eared slider (*Trachemys scripta*) has been studied most extensively; are other species more appropriate or available? Again, possibly useful as a E antagonist procedure with co-administered estrogen at male temperatures, OR with EDC alone at female temperatures. This needs development, but would be worth the effort as so much of the basics are known in this system.