

Appendix B Mode of Action: Inhibition of Acetylcholinesterase (AChE)

Draft

August 27, 2008

Prepared by:

Health Effects Division Office of Pesticide Programs US Environmental Protection Agency

Table of Contents

1.0	Introduction	3
2.0	Effects in Pregnant Rats	3
3.0.	Time Course Studies for Cholinesterase Inhibition	4
3.1.	Adult rat	6
3.2.	Pregnant Dams and Fetuses	6
3.3.	Post-natal Exposure to Pups	8
3.4.	Human Data	9
4.0.	Prenatal Exposure	10
4.1.	Acute	11
4.2.		
4.3.	Repeated Dosing, Literature Studies	13
5.0.	Postnatal Exposure	18
5.1.	Acute Oral	18
5.2.	Acute, Subcutaneous Injection	21
5.3.	Repeated Oral	26
5.4.	Repeated Subcutaneous Injection	27
6.0	Benchmark Dose Analysis for Cholinesterase Inhibition	31
7.0	Summary of Quantitative Differences in Cholinesterase Inhibition	33
8.0.	Discussion of ChE data	
8.1.	Gestational exposure	35
8.2.		
8.3.	Pregnant Dams and Fetuses	39
8.4.		
8.5.	Preliminary conclusions	44
Refere	ences	45
Attack	nment A: Summary of Registrant Toxicology Studies for Chlorpyrifos	54

1.0 Introduction

Chlorpyrifos, like other organophosphates, binds to and phosphorylates the enzyme acetylcholinesterase (AChE) in both the central (brain) and peripheral nervous systems (USEPA, 1999), leading to accumulation of acetylcholine and, ultimately, to clinical signs of toxicity. This mode of action, in which AChE inhibition leads to neurotoxicity, has been well described (Mileson et al. 1999). In 2000, the Agency concluded that inhibition of ChE was the most sensitive effect in all of the animal species evaluated and in humans, regardless of exposure duration. For the current analysis, the Agency has reviewed the studies submitted for registration as well as searched the public literature for studies in which pregnant animals and/or juvenile animals were exposed to chlorpyrifos. This review is summarized in the text and tables below. ChE inhibition is most commonly reported for the blood (plasma and RBC) and brain (whole or subsections), although a few studies have evaluated inhibition in peripheral tissues such as the heart or lung. Data in non-pregnant adults are provided as context or as supplementary information when data in the young or in pregnant animals are not available. This chapter includes 1) comparison of ChE inhibition in pregnant vs. non-pregnant adult animals, 2) examination of time course data, specifically the time to peak inhibition, and 3) discussion on how pre- or postnatal exposure, age/stage of development, duration of exposure, and method of administration may have an impact on the dose-response profile.

2.0 Effects in Pregnant Rats

Female rats, particularly pregnant rats, appear to be more sensitive than adult male rats to ChE inhibition caused by chlorpyrifos exposure (Moser et al. 1998 Hoberman 1998a, b, Mattsson et al. 1998, Lassiter et al. 1998, Zheng et al. 2000, Mendrala and Brzak 1998). Table 1 presents a comparison for both acute and repeat exposures. In mice, Weitman et al. (1983) found that PON1 activity towards the OP parathion was 50 nmol/min/ml in non-pregnant females, but it decreased as low as 14 nmol/min/ml during gestation (Weitman et al. 1983). Moser and Padilla (1998) found that inhibition of ChE in brain tissues had a sooner onset, a later peak effect, and a slower recovery in adult (approximately PND 70) females administered a single oral gavage dose of 80 mg/kg chlorpyrifos, compared to males.

Table 1. Comparison of Adult Pregnant Female and Male Cholinesterase Inhibition

Endpoint	Response	Comments
Acute ChEI - male and female rats (Mendrala and Brzak 1998; Lassiter et al. 1998a; Moser et al. 1998; Zheng et. al. 2000)	Male rats: slight (about 15%) brain ChEI at 10 mg/kg (2 studies); Male rats: 40% brain ChEI at 20 mg/kg; Female rats: 70% brain ChEI at 20 mg/kg; Female pregnant rats: 50% brain ChEI at 10 mg/kg	Pregnant female rats about 2-fold more sensitive than male rats to brain ChEI
Repeated Dose ChEI - male and female rats (Hoberman et al. 1998 a, b, MRID 44556901; Mattsson et al. 1998, MRID 44648101; Maurissen et al. 2000; Zheng et al. 2000)	Male rats, 14 days: BMD ₁₀ /BMDL ₁₀ : RBC ChEI: 0.2/0.095 mg/kg/day brain ChEI: 0.83/0.4 mg/kg/day Female pregnant rats GD6-20; 15 days (DNT): BMD ₁₀ /BMDL ₁₀ : RBC ChEI: 0.06/0.03 mg/kg/day brain ChEI: 0.65/0.55 mg/kg/day	Pregnant female rats more sensitive than male rats for RBC ChEI: RBC ChEI: 3.2-3.3- fold Brain ChEI: 1.2-fold (no sensitivity using BMDL ₁₀)

DNT= developmental neurotoxicity study

3.0. Time Course Studies for Cholinesterase Inhibition

The Agency has examined time course information when evaluating AChE data, particularly the time of peak inhibition and how it is affected by age, duration and method of exposure, and other factors.

Table 2 shows some key studies with time to peak effect data for rat plasma, RBC, and/or brain ChE inhibition at various ages. Laboratories vary on the number of measurements and times following exposure when ChE inhibition is measured. In the available studies, the time to peak inhibition following exposure to chlorpyrifos varies from 2 to 24 hours, but it is typically between 3 and 6.5 hours. One study notes that the time for peak ChE inhibition in the brain of PND 1 pups following exposure to chlorpyrifos oxon was 1 hour; since this was the only available study on the oxon, it was not included in the table. The time to peak effect may vary with age, exposure regime, and other factors; therefore, time of measurement should be considered during comparison of data among different laboratories.

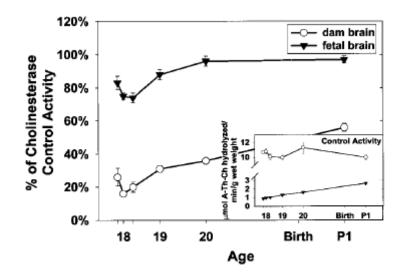
Study	Age Sex		Dose (mg/kg)	-	Time of Peak ChE Inhibition					
			(mg/kg)	Plasma	RBC	Brain				
Adults										
Mendrala and Brzak 1998	Adult	М	0.5	3 hr	NT	Not inhibited				
Mendrala and Brzak 1998	Adult	М	1, 5, 10, 50, 100	6 hr	NT	10: 10 Hr (50/100: 12 hr)				
Moser et al. 1998	Adult	M/F	20	NT	6.5 hr	6.5 hr				
Moser and Padilla 1998	Adult	N/A	80	NT	3.5 hr	3.5 hr (males) 24 hr (females)				
Pregnant Dams and Fetuses										
Ashry et al. 2002	Dam (at GD 18)	F	50	2-4 hr	NT	2 hr				
Lassiter et al. 1998a	Dam (at GD 18)	F	7 (GD 14-18)	NT*	NT*	5 hr				
Abu-Qare et al. 2001	Dam (at GD 18)	F	30 (dermal)	24 hr	NT	24 hr				
Ashry et al. 2002	GD 18 (fetus)	N/A	50	4 hr	NT	4 hr				
Lassiter et al. 1998a	GD 18 (fetus)	N/A	7 (GD 14-18)	NT	NT	5 hr				
Abu-Qare et al. 2001	GD 18 (fetus)	N/A	30 (dermal)	NC	NT	24 hr				
	Postn	atal Expo	sure to Pups							
Betancourt and			1.5	NT	NT	12 hr				
Carr,2004	PND 1	M & F	3	NT	NT	4 hr				
Timchalk et al. 2006			1	3 hr	3 hr					
	PND 5	N/A	10	6 hr	6 hr	3 hr				
	PND 12	N/A	1 10	24 hr 6-24 hr	6 hr	6 hr				
Timchalk et al. 2006	PND 17	N/A	1 10	24 hr 6 hr	3-24 hr 6-24 hr	24 hr				
Moser and Padilla 1998	PND 17	M & F	15	NT	6.5 hr	6.5 hr				
Moser et al. 1998		M & F	20	4	0.51					
	PND 27	M F	20 20	4	6.5 hr 3.5 hr	6.5 hr 3.5 hr				
	PND 1	г N/A	1	2 hr	2 hr	2 hr				
Dam et al. 2000	PND 11	N/A	5	4 hr	4 hr	4 hr				

Table 2. Comparison of Time to Peak Effect for Chlorpyrifos in Rats

N/A not applicable (sex not determined); NT= Not tested; NT* =whole blood assessed (2-10 hr peak); NC=No change

3.1. Adult rat

The registrant conducted a concentration-time course study of chlorpyrifos and chlorpyrifos-oxon in blood (Mendrela and Brzak 1998, MRID 44648102). Plasma ChE activity decreased in a time- and dose-dependent manner. The plasma ChE activities of rats treated with 0.5, 1, 5 or 10 mg/kg were maximally decreased 3-6 hours after treatment, with both the decrease and recovery of activity being dose-dependent. Plasma ChE activity was not significantly inhibited in the 0.5 mg/kg group. In the 1 mg/kg dose group, plasma ChE activity was significantly inhibited approximately 28% and 40% relative to controls at 3 and 6 hours post exposure, respectively. At 12 hours post-exposure (last time point measured), plasma ChE activity was still significantly inhibited about 15%. The decrease in plasma activity of rats treated with 50 or 100 mg/kg began within 10 minutes of treatment. At 12 hours after treatment, both groups were still significantly inhibited about 89% and had not shown signs of recovery.


Brain AChE activity was not affected as dramatically by chlorpyrifos treatment as plasma activity with only the 10, 50, and 100 mg/kg dose groups showing significant effects. The brain AChE activity of rats treated with 10 mg/kg chlorpyrifos began to decline within three hours of treatment and was significantly decreased by six hours after treatment. The brain AChE activity in the 50 or 100 mg/kg dose groups decreased significantly within one hour of treatments; and by 12 hours (last time point measured), it was approximately 30% and 20%, respectively, of control. In none of the affected groups did brain ChE show signs of recovery.

3.2. Pregnant Dams and Fetuses

Ashry et al. (2002) gavaged (corn oil) dams with 50 mg/kg chlorpyrifos on GD 18 and then evaluated fetuses 1, 2, 4, 12 and 24 hours postdosing. For the fetus, the peak time of inhibition was 4 hours postdosing (87% for brain and 98% for plasma), and for the dams, it was between 2 and 4 hours (94% for brain and 95% for plasma). Although the times of peak effect were similar between the dams and fetuses, the levels of inhibition were high in both, resulting from exposure to a relatively high dose.

The Ashry study can be compared to the Abu-Qare et al. (2001) study, which has a similar timing and dose of exposure (single exposure to 30 mg/kg on GD 18). The major difference is that Abu-Qare et al. administered chlorpyrifos via the dermal route. Differences in absorption may have led to the delayed peak time for inhibition (24 hours), compared to the earlier peak following oral exposure. Abu-Qare et al. dermally exposed pregnant dams to a single 30 mg/kg chlorpyrifos dose on either GD 16, 17 or 18. Brain ChE was significantly inhibited at 27-33% in the fetus compared to 47-52% in the dams 48 and 24 hours after dosing on GD 16 and 17, respectively. The peak time for brain ChE inhibition was at 24 hours post dosing for both the fetus (33% decreased) and dam (52% decrease) treated on GD17, but was highest at 12 hours (compared to 2 and 4 hours) following exposure on GD18.

Lassiter et al. (1998a) conducted a study to compare the degree and define the time course of ChE inhibition in the dam, placenta, and fetus following repeated exposure late in gestation to chlorpyrifos. Chlorpyrifos was administered to Long Evans rats by gavage in corn oil at doses of 0 or 7 mg/kg/day on gestation days 14-18; animals were killed at 2, 5, 10, 24, 48, and 120 hours after the last dose. Recall that Hunter et al. (1999) found that the peak concentration of TCP in the fetal brain was twice that of the maternal brain when dams were exposed to 7 mg/kg/day on GD 14-18 (see Issue Paper & Appendix A), even though the half-lives for TCP in the maternal and fetal tissues were similar. In the Lassiter study, peak maternal blood and brain ChE inhibition occurred 5 hours after the last dose, and by 120 hours, ChE activity had recovered to 30-45% inhibition. Fetal brain ChE inhibition was inhibited less, with a maximum of 25% at 5 hours after last dose, and recovered to control levels by 48 hours. Comparison of the Lassiter and Ashry studies indicates that the time of peak brain ChE inhibition in the fetus is the same (5 hours) following repeated or acute oral exposure. In contrast, peak brain ChE inhibition in the dam is later following repeat exposure (5 hours), compared to a single dose in late gestation (2 hours). Figure from Lassiter, et al., 1998.

3.3. Post-natal Exposure to Pups

In PND1 rats, the time of peak forebrain ChE inhibition following a single gavage dose was 12 hours at 1.5 mg/kg (58% decrease) and 4 hours at 3 mg/kg (82% decrease), indicating a shorter peak time with higher administered dose (Betancourt and Carr 2004). The peak time of ChE inhibition for chlorpyrifos oxon is less than for chlorpyrifos in PND1 pups, at about 1 hour postdosing, versus 4-12 hours for chlorpyrifos.

Timchalk et al. (2006) published an age-dependent pharmacokinetic and pharmacodynamic study for preweanling rats following rat exposure to chlorpyrifos. In the study, PND5, PND12 and PND 17 rats were given a single dose of 1 or 10 mg/kg chlorpyrifos via gavage (in corn oil), and plasma, RBC and brain ChE were measured at 3, 6 and 24 hours post dosing. Maximum inhibition was noted at 3-6 hours for PND5 rats at both doses. In PND 12 rats, peak inhibition time was about 6 hours for RBC and brain ChE activity and between 6 and 24 hours for plasma ChE. In PND 17 rats, the maximal brain ChE inhibition was 24 hours for both doses, but for plasma ChE activity was 24 hours at 1 mg/kg, and 6 hours at 10 mg/kg. RBC ChE showed maximal inhibition between 3-24 hours for both doses.

Moser and Padilla (1998) compared the effects of acute oral chlorpyrifos exposure in adult (70 days of age) and young (postnatal day 17) rats. They verified the findings of Pope, et al. (1991) that neonatal rats (10-27 days of age) were between 5-7 times more sensitive than adults to acute doses of chlorpyrifos at the maximum tolerated dose, with greater sensitivity identified in the youngest neonates. The timecourse of the effects of an acute dose of chlorpyrifos was evaluated for adults and PND day 17 pups. Assessments included behavioral evaluations (functional observational battery and motor activity). ChE activity measurements, and muscarinic receptor assays. Doses were administered by gavage at levels that were selected to produce similar effects in young and adult rats; adults received 80 mg/kg and pups received 15 mg/kg. Following testing, tissues were taken at 1, 2, 3.5, 6.5, 24, 72, 168, or 336 hours post treatment. In adult rats, behavioral changes and brain and blood ChE inhibition followed the same temporal pattern. Peak effect occurred in male rats about 3.5 hours postdose. The onset of changes was more rapid in females, but the time-course was more protracted and recovery was slower. In pups, maximal behavioral effects, as well as ChE inhibition occurred 6.5 hours after dosing, without gender differences. Partial to full recovery of behavioral changes was observed at 24 and 72 hours, similar to adults. Blood and brain ChE inhibition in young rats had nearly recovered by 1 week postdose, but adult brain ChE had not fully recovered at 2 weeks. Muscarinic receptor binding assays showed apparent down-regulation in some brain areas at 24 and 72 hours after chlorpyrifos treatment. The study authors concluded that: 1) young rats show similar behavioral changes as adults, although at a 5-fold lower dose; 2) the onset of maximal effects is somewhat delayed in the young rats, 3) ChE activity tends to recover more guickly in young rats, but; 4) the young rats appear to have more extensive muscarinic receptor down-regulation; and 5) young rats show no gender-related differences.

In another publication, Moser et al. (1998) evaluated the age and gender-related differences in the sensitivity to chlorpyrifos in the rat. PND17, PND27 and adult (70 day) rats were given an acute oral dose of chlorpyrifos via gavage (in corn oil), and brain and blood ChE activity was measured 3.5 and 6.5 hours post-dosing to determine the differences in sensitivity to ChE inhibition. At 20 mg/kg, brain and blood ChE inhibition was slightly greater or the same at 6.5 hours when compared to 3.5 hr after dosing, with the exception of PND 27 females, which had slightly less inhibition at 6.5 hr.

In a study by (Pope, et al.1991), time course of ChE inhibition and recovery in whole brain was compared in neonatal (PND 7) and adult rats after treatment with maximal tolerated doses of chlorpyrifos (s. c. in peanut oil). Neonatal rats were more sensitive than adults with respect to lethality. Maximal brain ChE inhibition was similar in both age groups, but the ChE activity recovered faster in neonates.

3.4. Human Data

There are three single dose human studies that conducted time course cholinesterase measurements to determine the time to peak effect of cholinesterase inhibition (Nolan et al. 1982 Kisicki et al. 1999; Griffin et al. 1999). The time to peak effect for individuals in these studies is shown on Table 3, and indicates some variation in the human response to chlorpyrifos. More information on the deliberate dosing human studies can be found in Appendix G.

Study	Age/sex/dosing regimen	Dose (mg/kg)	Time of Peak Cholinesterase Inhibition			
	regimen	(mg/kg)	Plasma	RBC		
Nolan et al. 1982	adult/male /single oral or dermal (n=6 oral/n=5 dermal)	0.5 (oral)	6 hr (1/6) (88%↓) 12 hr (3/6) (83- 89%↓) 24 hr(2/6) (71- 84%↓)	2 hr (1/6) (37%↓) 12 hr (1/6) (18%↓) 4 day (4/6) (14-53%↓)		
		5 (dermal)	2-3 days (2/5) (21- 35%↓)	None		
Kisicki et al. 1999	adult/male and female (n=6/sex)/single oral	2	NT	12 hr (1/12) (28%↓)		
Griffin et	Adult/male and female	0.1-0.014 (oral)	None	None		
al. 1999	(4 males/1 female)	0.31-0.39 (dermal)	None	None		

Table 3. Comparison of Time to Peak Effect for Chlorpyrifos Exposure in Humans

An acute oral and dermal pharmacokinetic study (Nolan et al. 1982, MRID 00124144) dosed six men once with 0.5 mg/kg orally and four weeks later dosed five of these same men with 5 mg/kg dermally, and one man with 0.5 mg/kg dermally. Blood was collected 2, 6, 12 and 24 hours, and up to 30 days (oral) and up to 9 days (dermal) post dosing for plasma and RBC ChE measurements. No signs or symptoms were observed in any of the subjects, but the primary focus of this study was pharmacokinetics. Men orally exposed to 0.5 mg/kg chlorpyrifos exhibited peak plasma

ChE inhibition of 83%-89%, 6 to 24 hours post-exposure and peak RBC ChE inhibition of 14-53% on post-exposure day 4. One subject (E) displayed 37% RBC at 2 hours The return of plasma ChE activity to pre-dose levels required about 30 days. Men dermally exposed to 5 mg/kg chlorpyrifos exhibited peak plasma ChE inhibition of 21-35% on days 2-3, and peak mean RBC ChE inhibition of 8-9% on day 4.

While RBC ChE inhibition was judged not to be significantly affected in the orally dosed group, mean values for the group reached a low point (a 27% decrease) on day 4. Individual values varied on this day between 14-53% of their pre-dose controls and a paired t-test comparing days 3 and 4 shows a statistically significant difference at a level of p=0.0115. The registrant stated that the inhibition noted on days 3 and 4 is an analytical artifact based on chlorpyrifos pharmacokinetics. If this is the case, it raises concerns about the quality and reliability of the study data. Again, HED notes that the relatively long recovery period of 30 days is unusual for plasma ChE, and is more characteristic of recovery for RBC acetyl ChE inhibition based on the 2 year dog data (McCollister et al. 1971, Kociba et al. 1985).

In a single-dose human oral toxicity study (Kisicki, et al. 1999/2000), 6 human subjects/sex/group were dosed orally with chlorpyrifos at dose levels of 0, 0.5, 1.0 in the first phase and 0 or 2.0 mg/kg in the second phase. Baseline measurements of red blood cell (RBC AChE) ChE activity were obtained for each subject and were used for comparison. RBC AChE was monitored at 2, 4, 8, 12, 24, 36, 48, 72, 96, 120, 144, and 168 hours post dose. Plasma ChE was not assessed. No treatment-related effect was observed in males in RBC AChE activity at any dose level. In females, no treatment-related effect was observed in RBC AChE activity at the 0.5 and 1.0 mg/kg dose levels. At 2.0 mg/kg, one of the six females displayed RBC AChE inhibition (19%-28%) during the 8-48 hour time interval post dose. No assessments after 48 hours were made for this person. All other females at this dose level showed no inhibition.

In another human oral/dermal dosing toxicity study (Griffin et al. 1999), adults were exposed to a single-dose of analytical grade chlorpyrifos. Five subjects (4 males and 1 female) were dosed orally with 1 mg chlorpyrifos applied to a sugar cube. Four weeks after the oral dose, 28.59 mg of chlorpyrifos was administered to the skin of the same subjects by spreading 100 μ L of a commercial preparation of chlorpyrifos diluted in water, onto an area of 78 cm2 of the inner forearm, which was then covered with a raised impermeable plastic container for 8 hours. Blood samples were collected over 24 hours. Plasma and erythrocyte (RBC) ChE activities were determined for each blood sample. Blood plasma and erythrocyte cholinesterase activity was never less that 90% of the pre-exposure values for either dosing regime.

4.0. Prenatal Exposure

In general, the available prenatal exposure data suggest that the dams have greater ChE inhibition than the fetus when measured at the same time point following *in utero* exposure to either a single or repeated dose. Refer to Appendix A for discussion of the age-related differences in ChE enzyme generation, in the rate of chlorpyrifos detoxification, as well as the levels of the terminal metabolites measured in the fetal and maternal tissues. A summary of some of the key studies are presented in Tables 4 and 5 and are discussed in greater detail below, beginning with single-dose studies and ending with repeated-dose studies submitted for registration and found in the open literature. The majority of the studies exposed dams to chlorpyrifos via oral gavage, but in some, chlorpyrifos was administered by subcutaneous injection.

4.1. Acute

Lassiter et al. (1998a) examined ChE inhibition in fetuses exposed to a single dose of 7 or 10 mg/kg chlorpyrifos on GD 18. As discussed in section 3.B, the level of inhibition measured in the fetuses was not different than the dams at 5 hours post-dosing for both dose groups. In the Lassiter study, both fetal and maternal brain ChE was inhibited about 40% at 5 hours following exposure to 10 mg/kg chlorpyrifos. At a lower dose of 7 mg/kg, there was no statistically significant ChE inhibition in either the fetal or dam brain.

Ashry et al. (2002) exposed dams to a much higher dose of chlorpyrifos, 50 mg/kg, by oral gavage on GD 18. At this dose, significant inhibition (65-67%) was already noted at 1 hr, the first time ChE was measured in both fetuses and dams. Maximal inhibition of brain AChE (about 95%) was reached at 4 hr in fetal brain, but not until 12 hr in maternal brain; recovery in the fetus was more rapid, whereas inhibition in the dam lasted from 12-48 hr. Similar results were observed, but with slower recovery, in plasma.

Subcutaneously injected (s.c.) chlorpyrifos to dams during gestation produces more extensive neurological effects in the dam relative to the developing fetus following a single high dose of 200 mg/kg/day on GD 12 (Chanda et al. 1995). However, as discussed below, there may appear to be less ChE inhibition at a given time point following exposure in the fetus, compared to adults, because the enzyme has a quicker recovery time due to its rapid rate of synthesis. In the Chanda study, it is possible that the ChE measurements were not taken at the time of peak effect as several days of recovery were allowed before ChE inhibition was measured. Dams had 82-88% brain ChEI on GD 16 (4 days post dosing) and PND 3, compared to 42-44% fetal brain ChEI at the same time measurements.

Similar results are seen following acute dermal exposure to chlorpyrifos, in that the level of ChE inhibition in the fetus when measured at a given time was less than that of the dam. Abu-Qare et al. (2001) dermally exposed pregnant dams to a single 30 mg/kg chlorpyrifos dose on either GD 16, 17 or 18. Brain ChE was significantly inhibited at 27-33% in the fetus compared to 47-52% in the dams 48 and 24 hours after dosing on GD 16 and 17, respectively. The peak time for brain ChE inhibition was at 24 hours post dosing for both the fetus (33% decreased) and dam (52% decrease) treated on GD17, but was highest at 12 hours (compared to 2 and 4 hours) following exposure on GD18.

Study	Route (vehicle)	Time of exposure	Time of measurement	Dose	Fetal inhibition ²	Compartment ³	Maternal inhibition ²	
		GD 16	48 hrs after exposure		27% *		47% *	
Abu-		GD 17	24 hrs after exposure		33% *		52% *	
Qare et	dermal <i>(acetone)</i>		12 hrs after exposure	30 mg/kg	23% (NS)		33% *	
al. 2001			4 hrs after exposure		19% (NS)		27% *	
			2 hrs after exposure		16% (NS)		15% (NS)	
Chanda et al. 1995	s.c. injection (peanut oil)	GD 12	GD 16	200 mg/kg	42% *	brain ChE	88%	
	,		1 hr after		65% *	Brain AChE	67% *	
			exposure		78% *	plasma AChE	81% *	
			2 hrs after		82% *	Brain AChE	94% *	
Ashry			exposure		97% *	plasma AChE	95% *	
et al.	oral gavage	GD 18	4 hrs after	50	87% *	Brain AChE	84% *	
2002	(corn oil)	GD 10	exposure	mg/kg	98% *	plasma AChE	94% *	
2002			12 hrs after		84% *	brain AChE	94% *	
			exposure		98% *	plasma AChE	91% *	
			24 hrs after		90% *	brain AChE	95% *	
			exposure		97% *	plasma AChE	91% *	
Lassiter et al.	oral gavage	GD 18	5 hrs after	7 mg/kg	19% (NS)	brain ChE	32% (NS)	
1998a	(corn oil)		exposure	10 mg/kg	37% ⁴ *	brain ChE	51% ⁴ *	

Table 4. ChE inhibition1 following acute prenatal exposure to chlorpyrifos in rats.

¹ For many of the studies, inhibition levels were inferred from graphs.

² Levels are % inhibition, compared to controls.

³ Compartments are given as described by the study author(s).

⁴ Maternal and fetal compartment ChE inhibition are not significantly different from one another AChE = acetylcholinesterase

ChE = cholinesterase, reported as either total (acetyl- and butyryl) or not specified

GD = gestational day

N/A = not available

NS = not statistically significant

RBC = red blood cell

s.c. = subcutaneous

* p<0.05

4.2. Repeated Dosing, Studies Submitted for Registration

The text described in 4.2 is also summarized in Attachment A of this document.

In registrant-submitted developmental toxicity studies, chlorpyrifos toxicity was evaluated in rats, mice and rabbits. Two rat and one rabbit developmental study did not evaluate ChE inhibition in the fetus, so a comparison with the maternal ChE inhibition is not possible. In a mouse developmental study, the dams had significant plasma and RBC ChE inhibition at 1 mg/kg/day following exposure on gestation day 6-15, while fetus did not exhibit ChE inhibition until 10 mg/kg/day (Deacon et al. 1979, MRID 00095268). All of the available registrant repeated dosing studies indicate that the fetus has less ChE inhibition than the dams following repeated *in utero* exposure.

In the rat developmental neurotoxicity study, and a companion study (Hoberman 1998a, b, MRID 44556901; Mattsson et al. 1998, MRID 44648101; Mattsson et al. 2000; Maurissen et al. 2000), dams were treated with 0, 0.3, 1, or 5 mg/kg/day chlorpyrifos from GD 6 through lactation day 11. Statistically significant plasma (43-52%) and RBC (39-41%) ChE inhibition were noted in dams exposed to 0.3 mg/kg/day from gestation days 6-20 (4 hours postdosing). Brain ChE activity was significantly decreased in the 1 mg/kg/day (\downarrow 18%) and 5 mg/kg/day (\downarrow 90%) dams as compared to concurrent controls. No significant plasma, RBC or brain ChE inhibition was observed in the fetus on gestation day (GD) 20 or in the pups at any time measurement. In the high dose group (5 mg/kg/day), however, there was significant ChE inhibition on GD20 in the fetus $(85\%\downarrow$ plasma and $92\%\downarrow$ RBC, $82\%\downarrow$ heart, and $60\%\downarrow$ brain). Slightly less ChE inhibition was noted in the pups exposed from GD 6 to postnatal day (PND) 1, with 60% plasma, 85% RBC, and 35% brain ChE inhibition 2 hours after dosing of the dams at 5 mg/kg/day. EPA evaluated this study and believes the pup ChE measurements at 2 hr postdosing dams is not an ideal time. On page 39 of MRID 44648102, it states that "most of the exposure from milk would likely have occurred between 3 and 6 hours postmaternal dosing (based on peak blood levels Fig.7) with a further delay of a few hours due to time necessary to digest the milk (based on Byczkowski et al. 1994)." Therefore, it appears that the ChE measurements underestimate the levels of inhibition that would be expected if the pups were allowed to be exposed to the majority of the chlorpyrifos in the milk.

4.3. Repeated Dosing, Literature Studies

Table 5 summarizes studies that show ChE inhibition following repeated prenatal exposure to chlorpyrifos in rats. As described above in the time course section, Lassiter et al. (1998a) conducted a study to compare the degree and define the time course of ChE inhibition in the dam, placenta, and fetus following late gestational exposure to chlorpyrifos following dosing on gestation days 14-18. In another study by Lassiter et al. (1999), dams were gavaged on GD 14-18 with 3, 5 or 10 mg/kg/day chlorpyrifos and evaluated 5 hours post-dosing. Fetal ChE was inhibited less than dams for all doses in the brain, liver and blood. Brain ChE was significantly depressed at 14% in the fetus and 33% in the dams of the 3 mg/kg/day group. Similar results were noted by Hunter et

al. (1999) where doses of 3 and 7 mg/kg/day during GD 14-18 resulted in more brain ChE inhibition in dams (41% and 84-87%) than the fetus (3% and 25-32% at 5 hour post dosing with chlorpyrifos.

Richardson and Chambers (2003) dosed pregnant rats orally via gavage (in corn oil) with 0, 3, 5, or 7 mg/kg chlorpyrifos from gestation day 6 to 20. Pups were sacrificed on postnatal days 1, 3, 6, 9 and 12 for determination of brain, heart, lung and serum ChE activities. Cholinesterase inhibition in the dams was not measured. Cholinesterase activities were inhibited in a dose-related manner, with brain cholinesterase inhibition of about 26%, 32%, and 45% in the 3, 5, and 7 mg/kg/day groups, respectively, on PND 1. Inhibition of brain ChE persisted in all treatment groups until postnatal day 6, and in the 3 and 7 mg/kg dose groups until PND 9. Lung ChE was maximally inhibited on PND1 with inhibition of about 28%, 74% and 75% in the 3, 5 and 7 mg/kg/day groups, respectively. Serum ChE was inhibited to a similar degree in all dosage groups, about 30%, 35% and 32% on PND1.

Four repeated prenatal exposure studies can be compared to examine the effect of administration method on ChE inhibition. In Hunter et al. (1999), fetal brain ChE was inhibited 12% on GD 19, 24 hours following exposure to 7 mg/kg/day via oral gavage on GD 14-18. Lassiter et al. (1998) had a similar exposure regime and found fetal brain ChE to be inhibited 17% on GD 19, 24 hours following exposure to 7 mg/kg/day via oral gavage on GD 14-18. In comparison, Chanda and Pope (1996) measured 40% fetal brain ChE inhibition in GD 20 pups whose dams were exposed via s.c. injection to a slightly lower dose, 6.25 mg/kg/day, on GD 12-19. Although greater inhibition of fetal brain ChE activity was seen in the older pups in the study with longer exposure, the levels of maternal brain ChE inhibition were similar at these same time points: 68% in the Hunter study, 74% in the Lassiter study, and 75% in the Chanda and Pope study. Qiao et al. (2002) also exposed dams via s.c. injection, and found that 5 mg/kg/day on GD 17-20 resulted in 44-50% inhibition of fetal brain ChE in GD 21 pups. Greater levels of fetal inhibition were seen following s.c. injection, but this increased inhibition could also be due to the older age of the fetuses. Comparison of the maternal ChE data shows no difference in inhibition due to route of exposure.

Two studies were examined in which pregnant rats were exposed to repeated doses in the range of 20-25 mg/kg/day chlorpyrifos and ChE measured 24 hours after exposure. When dams were exposed to 25 mg/kg/day via s.c. injection on GD12-15, fetal brain ChE activity was inhibited 42% when measured on GD 16, 24 hours after exposure (Chanda and Pope 1996). Exposure to 25 mg/kg/day on GD 12-19 by s.c. injection caused 58% inhibition of fetal brain ChE when measured on GD 20, 24 hours after exposure (Chanda and Pope 1996). Oral exposure by the dams to 20 mg/kg/day chlorpyrifos on GD17-20, caused 74% and 82% inhibition of fetal brainstem and forebrain ChE activity, respectively, when measured on GD 21, 24 hours after the last dose (Qiao et al. 2002). For all of these exposure regimes, maternal brain ChE inhibition levels on GDs 16, 20, and 21 suggests that the older fetus is more sensitive than the younger fetus, with the dam more sensitive than the fetus of either age. However, Lassiter et al. (1998a) reported that the amount of fetal brain ChE activity increased 4.3 times between GD14 and GD18. The authors speculate that, "it may be that the new

synthesis of uninhibited cholinesterase molecules may dilute the inhibited molecules". Thus, the difference in fetal brain ChE inhibition between GD16 and GD21 following exposure to similar doses for 4-7 days, with greater inhibition seen later in gestation compared to mid-gestation, may be due to a difference in the rate of recovery.

In both Mattsson et al. (2000) and Lassiter et al. (1999), dams were exposed to 5 mg/kg/day chlorpyrifos via oral gavage and examined 4-5 hours after the final dose. In the Lassiter study, animals were exposed from GD 14-18 and measured 5 hours after exposure, and in the Mattsson study, they were exposed from GD 6-20 and measured 4 hours after exposure. Brain ChE inhibition was 30% in GD 18 fetuses (Lassiter et al. 1999), and hindbrain and forebrain ChE inhibition was 56-60% in GD 20 fetuses (Mattsson et al. 2000). The higher degree of inhibition in the Mattsson et al. (2000) study may have resulted from the longer exposure duration, the difference in time of measurement, and/or the difference in enzyme synthesis rate between the younger and older fetus.

Table 5. ChE inhibition ¹ following repeated prenatal exposure to chlorpyrifos in
rats.

	Route	Time of	Time of	_	Fetal		Maternal	
Study	(vehicle)	exposure	measurement	Dose	inhibition ²	Compartment ³	inhibition ²	
	(1011010)	onpecure	incucui cincint		0%	forebrain ChE	2% (NS)	
					0%	hindbrain ChE	0%	
				0.3	0%	RBC ChE	24% **	
				mg/kg/day	0%	plasma ChE	35% **	
					0%	heart ChE	0%	
					8% (NS)	forebrain ChE	10%/7% ⁵ **	
Mattsson	oral		4 hrs after	1	0%	hindbrain ChE	12%/7% ⁵ (NS)	
et al. 1998,	gavage	GD 6-20	exposure (GD 20)	mg/kg/day	5% (NS)	RBC ChE	87%/85% 5**	
2000 ⁵	(corn oil)				4% (NS)	plasma ChE	77%/60% ⁵ **	
					0%	heart ChE	49%/50% ^{5**}	
					60% **	forebrain ChE	89%/85% ^{5**}	
				5	56% **	hindbrain ChE	80%/75% ⁵ **	
				mg/kg/day	92% **	RBC ChE	99%/95% ⁵ *	
				mg/kg/uay	85% **	plasma ChE	94%/85% ⁵ **	
					82%**	heart ChE	89%/80% ⁵ **	
				0.3	N/A	plasma ChE	43.3%	
				mg/kg/day	N/A	RBC ChE	41.3%	
Hoberman				mg/kg/uay	N/A	brain ChE	0.3%	
et al., 1998	oral		4 to 5 hrs after	1	N/A	plasma ChE	68.9%	
a, b,	gavage	GD 6-20	exposure (GD 20)	mg/kg/day	N/A	RBC ChE	84.4%	
Maurissen	(corn oil)				N/A	brain ChE	17.9%	
et al. 2000				5 mg/kg/day	N/A	plasma ChE	91.5%	
					N/A	RBC ChE	99.9%	
					N/A	brain ChE	89.8%	
				3	26% *	brain ChE	N/A	
					mg/kg/day	30% *	serum ChE	N/A
Richardson				mg/kg/day	28%*	lung ChE	N/A	
and	oral gavage			5	32% *	brain ChE	N/A	
Chambers		GD 6-20	PND 1	mg/kg/day	35% *	serum ChE	N/A	
2003	(corn oil)			mg/ng/day	74% *	lung ChE	N/A	
2000				7	45% *	brain ChE	N/A	
				mg/kg/day	32% *	serum ChE	N/A	
				3 3 3 3 7	75% *	lung ChE	N/A	
					0%	forebrain ChE	0%	
				0.3	0%	hindbrain ChE	7% (NS)	
				mg/kg/day	0%	RBC ChE	40% **	
					0%	plasma ChE	55% **	
					0%	heart ChE	10% (NS)	
Metteese					5% (NS)	forebrain ChE	6% (NS)	
Mattsson	oral	GD 6-PND	2 hrs after	1	0%	hindbrain ChE	6% (NS)	
et al. 1998,	gavage	1	exposure (PND 1)	mg/kg/day	0%	RBC ChE	90% **	
2000	(corn oil)				5% (NS)	plasma ChE	80% **	
					2% (NS)	heart ChE	40% **	
					35% **	forebrain ChE	88% **	
				5	35% **	hindbrain ChE	80% **	
				mg/kg/day	85% **	RBC ChE	99% **	
					60% **	plasma ChE	95% **	
			1		65% **	heart ChE	85% **	

	Route	Time of	Time of		Fetal		Maternal		
Study	(vehicle)	exposure	measurement	Dose	inhibition ²	Compartment ³	inhibition ²		
Chanda	S.C.	exposure	measurement						
and Pope	injection	GD 12-15	24 hrs after	25	42% *	brain ChE	82% **		
1996	(peanut oil)	00 12 10	exposure (GD 16)	mg/kg/day	-12 /0		02 /0		
1550	(pecaricie cii)			6.25					
Chanda				mg/kg/day	40% *		75% *		
	s.c. injection	GD 12-19	24 hrs after	12.5	50%*	brain ChE	85% *		
and Pope 1996	(peanut oil)	GD 12-19	exposure (GD 20)	mg/kg/day	50%		00 %		
1990	(peariar oil)			25	58% *		90% *		
				mg/kg/day					
			2 hrs after		17% (p value N/A)	brain ChE	74% (p value N/A)		
			exposure (GD 18)		38% (p value		85% (p value		
			exposure (OD 10)		N/A)	liver ChE	N/A)		
					25% (p value		84% (p value		
			5 hrs after		N/A)	brain ChE	N/A)		
	oral		exposure (GD 18)		46% (p value	liver ChE	84% (p value		
Lassiter et	gavage	GD 14-18		7	N/A)		N/A)		
al. 1998a	(corn oil)			mg/kg/day	26% (p value	brain ChE	80% (p value		
	(0000000)		10 hrs after		N/A)		N/A)		
			exposure (GD 18)		46% (p value	liver ChE	82% (p value		
			24 hrs after		N/A) 12% (p value		N/A) 69% (p value		
					N/A)	brain ChE	N/A)		
			exposure (GD 19)		15% (p value		58% (p value		
					N/A)	liver ChE	N/A)		
				3	14%	brain ChE	33%		
				mg/kg/day	26%	liver ChE	78%		
	oral gavage <i>(corn oil)</i>			mg/ng/ddy	NA	blood ChE	88%		
								5	30%
				mg/kg/day	52%	liver ChE	80%		
Lassiter et		GD 14-18	5 hrs after		NA	blood ChE	93%		
al. 1999			exposure (GD 18)	7 mg/kg/day	45%	brain ChE	86%		
					67%	liver ChE	84%		
					NA 47%	blood ChE	94% 89%		
				10	75%	brain ChE liver ChE	89%		
				mg/kg/day	NA	blood ChE	96%		
			5 hrs after	3	3%	brain ChE	41%		
			exposure (GD 18)	mg/kg/day	24%	liver ChE	84%		
			2 hrs after	/	16%	brain ChE	74%		
	oral		exposure (GD 18)		38%	liver ChE	85%		
Hunter et	gavage	GD 14-18	5 hrs after		25% & 32% ⁴	brain ChE	84% & 87% 4		
al. 1999	(corn oil)		exposure (GD 18)	7	43% & 60% ⁴	liver ChE	84% & 89% 4		
	(10 hrs after	mg/kg/day	26%	brain ChE	80%		
			exposure (GD 18)		43%	liver ChE	82%		
			24 hrs after		12% 16%	brain ChE	68% 58%		
Oizo et el	S.C.	GD 17-20	exposure (GD 19) GD 21	1	3% (NS)	liver ChE brainstem ChE	58% N/A		
Qiao et al. 2000	injection	GD 17-20	3021	ı mg/kg/day	6% (NS)	forebrain ChE	N/A N/A		
2000	(DMSO)			2	15% ***	brainstem ChE	N/A		
	(∽ mg/kg/day	20% ***	forebrain ChE	N/A		
				5	44%	brainstem ChE	N/A		
				mg/kg/day	50%	forebrain ChE	N/A		

Study	Route (vehicle)	Time of exposure	Time of measurement	Dose	Fetal inhibition ²	Compartment ³	Maternal inhibition ²
				10	65%	brainstem ChE	N/A
				mg/kg/day	75%	forebrain ChE	N/A
				20	74%	brainstem ChE	N/A
				mg/kg/day	82%	forebrain ChE	N/A
				40	78%	brainstem ChE	N/A
				mg/kg/day	84% (see graph A)	forebrain ChE	N/A

¹ For many of the studies, inhibition levels were inferred from graphs.

² Levels are % inhibition, compared to controls.

³ Compartments are given as described by the study author(s).

⁴ This study was broken into dose-response and time-course components, and each measured brain and liver ChE 5 hrs after exposure to 7 mg/kg/day.

⁵ Two maternal inhibition values are presented. The first value represents EPA independently derived values from analysis of the raw data as presented in the EPA Data Evaluation Record (DER), and the second value is that published in the literature study.

ChE = cholinesterase, reported as either total (acetyl- and butyryl) or not specified

DMSO = dimethyl sulfoxide GD = gestational day N/A = not available NS = not statistically significant PND = postnatal day RBC = red blood cell s.c. = subcutaneous * p<0.05 ** p<0.02 *** p<0.0001

5.0. Postnatal Exposure

Several studies exist in which a single dose of chlorpyrifos was administered directly to the pup, via oral gavage, s.c. injection, or i.p. injection, at ages ranging from PND 1 to PND 33. The text summarized in 5.1 and 5.2 is tabulated in Table 6. Generally, it appears than younger pups are more susceptible to ChE inhibition than older pups.

Repeated exposure studies also exist where chlorpyrifos was administered via oral gavage or s.c. injection on two or more days, beginning as early as PND 1. These studies are summarized in 5.3 and 5.4 and tabulated below in Table 7. It may be important to consider the time of measurement, as well as the beginning time of exposure.

The Agency has conducted benchmark dose (BMD) analysis on several of the single dose studies for consideration as an acute point of departure. A summary of the BMD analysis is presented in Section 6 below.

5.1. Acute Oral

Pups were administered 1.5 or 3 mg/kg chlorpyrifos via gavage in corn oil on PND 1 (Betancourt and Carr 2004). The time of peak forebrain ChE inhibition in PND 1 rats following a single dose was 12 hours at 1.5 mg/kg (58% decrease) and 4 hours at 3 mg/kg (82% decrease), indicating a shorter peak time with higher administered dose.

Draft

Timchalk et al. (2006) published an age-dependent pharmacokinetic and pharmacodynamic response model for preweanling rats following rat exposure to chlorpyrifos. In the study, PND 5, PND 12, and PND 17 rats were given a single dose of 1 or 10 mg/kg chlorpyrifos via gavage (in corn oil), and plasma, RBC, and brain ChE levels were measured at 3, 6, and 24 hours post dosing. At both dose levels, younger animals demonstrated a greater sensitivity to plasma, RBC, and brain ChE inhibition (sensitivity was PND5>PND12>PND17). Maximum inhibition was noted at 3-6 hours for PND 5 rats for all compartments. In older PND 17 rats, the time for maximal ChE inhibition was longer; peak brain and plasma ChE inhibition was measured at 24 hours, and peak RBC ChE inhibition was between 3-24 hours for both doses. At 1 mg/kg, maximal plasma ChE inhibition was 62%, 33.4%, and 21.9% for PND 5, 12 and 17 rats, respectively, while maximal RBC ChE inhibition was 45.7%, 27%, and 15%, respectively. Maximal brain ChE inhibition at 1 mg/kg was 22.1%, 5.2%, and 2.5%, for PND 5, 12, and 17 rats, respectively. Dr. Charles Timchalk provided the individual animal data from this study with anticipation that the Agency would perform benchmark dose (BMD) modeling on these data. Prior to the conduct of the BMD analysis, the Agency identified some inconsistencies in these data. For example, in the brain AChE data in PND5 animals at each timepoint, 3-4 animals exhibited approximately 4X more activity than the remaining animals in the group. If this is resolved, the Agency may, in the future, use the PND 5 data in a BMD analysis. BMD results for PND 12 and 17 are provided below.

Zheng et al. (2000) conducted a comparative ChE study between adult male rats and neonatal rats on postnatal day 7. Animals were acutely dosed with chlorpyrifos via gavage (in peanut oil) with 0, 0.15, 0.45, 0.75, 1.5, 4.5, 7.5, or 15 mg/kg, and ChE measurements were performed 4 hours post-dosing. ChE activity in neonates was inhibited similarly in plasma, RBC, and the frontal cortex (ED_{50} =1.5-2.9 mg/kg) while in adults, significant ChE inhibition was noted only in plasma and RBC. In the adult males, no significant ChE inhibition was noted at 0.75 mg/kg/day, while at 1.5 mg/kg, there was significant 23.7% plasma and 29.7% RBC ChE inhibition. The neonatal pups were more sensitive to ChE inhibition following a single oral dose, with approximately 14% RBC ChE inhibition at 0.45 mg/kg and 0.75 mg/kg, and statistically significant 31.8% RBC and 17% brain ChE inhibition at 1.5 mg/kg. Similar to the Timchalk et al. (2006) study, the Agency secured additional information from Dr. Carey Pope that was not published in the Zheng et al. (2000) paper. With this information, the Agency performed a preliminary BMD analysis on the pup data (both acute and repeated). These data are highly variable at the low end of the dose-response curve. Specifically, the results show 33% increase, 13.7% decrease, and 23% increase in brain ChE activity at the 0.15, 0.45, and 0.75 mg/kg doses, respectively. Because of this significant variability, the BMD results at the 10% response level typically used by OPP to derive points of departure (PoD) in risk assessment are highly variable and considered unreliable for brain ChE inhibition.

Moser et al. (1998) evaluated the age- and gender-related differences in the sensitivity to chlorpyrifos in the rat. PND 17, PND 27 and adult (70 day) rats were given an acute oral dose of chlorpyrifos via gavage (in corn oil), and brain and blood ChE activity was measured 3.5 and 6.5 hours post-dosing to determine the differences in

sensitivity to ChE inhibition. (In addition, the study evaluated differences in behavioral changes.) PND 17 rats were given 5 or 20 mg/kg chlorpyrifos, PND27 rats were given 20 or 50 mg/kg chlorpyrifos, and adult rats were given 20 or 80 mg/kg chlorpyrifos. Comparisons of the 20 mg/kg dose across age groups showed generally less ChE inhibition and fewer behavioral effects with increasing age, with the exception that adult females were similar to the PND 27 rats. The degree of ChE inhibition in the brain more closely paralleled the blood inhibition in the younger rats, compared to the adults. Preweanling rats had considerably less carboxylesterase (CarbE) and A-esterase activity, and adult females had less liver CarbE activity than males. These differences in detoxifying enzymes correlate with the age-related differences in behavioral and biochemical effects, as well as the gender differences seen in adult rats, and the authors conclude may be a major influence on the differential sensitivity of chlorpyrifos.

In a more recent publication, Moser et al. (2006), 17 day old male rats were exposed to a single dose via gavage (in corn oil) of 0, 0.5, 2, 5, 10, or 20 mg/kg chlorpyrifos. Blood and brain ChE activity was measured between 4.25 and 4.5 hours post-dosing. In this study, blood ChE inhibition was approximately 10%, 40%, 80%, 89% and 96.5%, while brain ChE inhibition was 0, 10%, 58%, 70% and 80% for the 0.5, 2, 5, 10 and 20 mg/kg dose groups, respectively. Dr. Ginger Moser has provided the individual animal data for BMD analysis, and the results are shown in Section 6.

5.2. Acute, Subcutaneous Injection

Dam et al. (2000) subcutaneously injected 1 or 5 mg/kg chlorpyrifos to PND 1 or PND 11 male and female rats, respectively, and measured brain ChE activity at 2 and 4 hours post dosing. In the PND1 pups, brain ChE inhibition was greater at 2 hours post dosing (60-80% for males and 10-35% for females) than at 4 hours post dosing (35-50% for males and 0-25% for females), and it was also greater in males than females. In the PND 11 pups, the degree of ChE inhibition was much lower than observed in PND 1 rats, even though they were exposed to a higher dose, there were no apparent sex differences, and ChE inhibition generally increased between 2 and 4 hours.

Jett et al. (2001) dosed PND 7 rats with 0.3 and 7 mg/kg chlorpyrifos subcutaneously in peanut oil and reported no significant ChE in the cerebellum, cortex and hippocampus 3 and 24 hours post-dosing. Blood AChE was not measured. Since a dose of 7 mg/kg chlorpyrifos was given orally to 17 day old rats would be expected to result in about 60% brain ChE inhibition (Moser et al., 2006), there is an open question as to whether or not the method of administration (subcutaneous in peanut oil) resulted in inhibition that was not detected during the times for assessment. The results of Jett et al. (2001) are discussed in more detail in the Issue Paper and Appendix C.

Route Time of Time of Inhibition³ **Compartment**⁴ Study Dose (vehicle) exposure measurement 70% (M); brainstem ChE 25% (F) 80% (M); 2 hrs after 1 cerebellum ChE exposure mg/kg 10% (F) 60% (M); S.C. Dam et al. forebrain ChE injection PND 1 35% (F) (2000)(DMSO) 35% (M); brainstem ChE 25 % (F) 4 hrs after 40 % (M); 1 cerebellum ChE exposure mg/kg 0 % (F) 50 % (M); forebrain ChE 25 % (F) cerebral cortex & i.p. Atterberry 2 hrs after 80 medulla injection PND 1 >90% * et al. (1997) exposure mg/kg oblongata/pons (corn oil) AChE 4 hrs after 25% exposure 8 hrs after 28% exposure 10 hrs after 1.5 40% forebrain ChE exposure mg/kg 12 hrs after 58% exposure 24 hrs after **Betancourt** oral 49% exposure and Carr PND 1 gavage 4 hrs after 82% (corn oil) (2004)exposure 8 hrs after 81% exposure 10 hrs after 3 forebrain ChE 80% mg/kg exposure 12 hrs after 81% exposure 24 hrs after 54% exposure cerebral cortex & i.p. Atterberry 2 hrs after 80 medulla injection PND 3 >90% * exposure mg/kg oblongata/pons et al. (1997) (corn oil) AChE **Timchalk et** oral 3 hrs after PND 5 22.1% brain ChE gavage exposure al. (2006) (corn oil) 3 hrs after 1 45.7% **RBC ChE** exposure mg/kg 3 hrs after 62.1% plasma ChE exposure 10 3 hrs after 83.6% brain ChE exposure mg/kg 6 hrs after 83.5% **RBC ChE** exposure

Table 6. ChE inhibition¹ following acute postnatal exposure² to chlorpyrifos in rats.

Page 22 of 60

	Jeti (2
DOCUMENT	Zhen (2
VE	Woı (2
СНІ	Pop Chak (1
EPA AR	Pop (1
SN	Dan (2

Study	Route (vehicle)	Time of exposure	Time of measurement	Dose	Inhibition ³	Compartment ⁴
	(veniere)	capesare	6 hrs after exposure		98.4%	plasma ChE
				0.3	Ns Ns	cerebellum ChE cortex ChE
Jett et al. (2001)	s.c. injection (peanut oil)	PND 7	3 & 24 hrs after exposure	mg/kg 7	Ns Ns Ns	Hippocampus ChE cerebellum ChE cortex ChE
				mg/kg 0.15	Ns 33% increase	Hippocampus ChE frontal cortex ChE
				mg/kg	3% increase 11%	RBC ChE plasma ChE
				0.45 mg/kg	13.7 15% 27%	frontal cortex ChE RBC ChE plasma ChE
				0.75 mg/kg	23% increase 15%	frontal cortex ChE RBC ChE
Zheng et al.	oral gavage	PND 7	4 hrs after exposure	1.5 mg/kg	38% 17% 32%	plasma ChE frontal cortex ChE RBC ChE
(2000)	(peanut oil)		exposure	4.5	51% 77% 84%	plasma ChE frontal cortex ChE RBC ChE
				mg/kg 7.5	77% 77%	plasma ChE frontal cortex ChE
				mg/kg	88% 78%	RBC ChE plasma ChE
				15 mg/kg	93% 94% 76%	frontal cortex ChE RBC ChE plasma ChE
Won et al. (2001)	oral gavage (peanut oil)	PND 7	4 hrs after exposure	7.5 mg/kg 15	48% *	frontal cortex ChE
Pope and	S.C.		24 hrs after	mg/kg 15 mg/kg	40% (p value N/A)	brain ChE
Chakraborti (1992)	injection (peanut oil)	PND 7	exposure	19.9 mg/kg	50% (p value N/A)	plasma ChE
			4 hrs after exposure		40% (p value N/A) (can't verify)	plasma ChE
Pope et al. (1991)	s.c. injection	PND 7	O.4 has after	45 mg/kg	78% (p value N/A)	brain ChE
(1001)	(peanut oil)		24 hrs after exposure		93% (p value N/A) 94% (p value	RBC ChE
					N/A) 15% (M);	plasma ChE
Dam et al.	s.c. injection	PND 11	4 hrs after	5	30% (F) 35% (M);	brainstem ChE
(2000)	(DMSO)		exposure	mg/kg	25% (F) 20% (M); 20% (F)	forebrain ChE
Timchalk et	oral gavage	PND 12	6 hrs after exposure	1 mg/kg	5.2%	brain ChE

Study	Route	Time of	Time of	Dose	Inhibition ³	Compartment ⁴
Olddy	(vehicle)	exposure	measurement	2000		oompartmont
al. (2006)	(corn oil)		6 hrs after		27.0%	RBC ChE
. ,			exposure		21.070	
			24 hrs after		33.4%	plasma ChE
			exposure			p
			6 hrs after		80.4%	brain ChE
			exposure	40		
			6 hrs after	10	80.9%	RBC ChE
			exposure	mg/kg		
			6 & 24 hrs after		87%	plasma ChE
			exposure			
Atterberry et al. (1997)	i.p. injection	PND 12	2 hrs after exposure	80 mg/kg	>90% *	cerebral cortex & medulla oblongata/pons
(,	(corn oil)					AChE
			24 hrs after		2.1%	brain ChE
			exposure]	∠.1%	
			3 & 24 hrs after	1	15%	RBC ChE
			exposure	mg/kg	15%	
	oral		24 hrs after		21.9%	plaama ChE
Timchalk et	gavage	PND 17	exposure		21.9%	plasma ChE
al. (2006)	(corn oil)		24 hrs after		58.9%	brain ChE
、			exposure	Į	50.970	
			6 & 24 hrs after	10	62%	RBC ChE
			exposure	mg/kg	02 /0	
			6 hrs after		75.7%	plasma ChE
			exposure			
				0.5	0%	
				2	10%	
				5	58%	Brain ChE
Massasatal	oral			10	70%	
Moser et al.	gavage	PND17	4.5 hours	20	80%	
2006	(corn oil)		postdosing	0.5	10%	
	()			2	40%	
				5	80%	Blood ChE
				10	89%	
				20	96.5%	
			3.5 hrs after		73% (M);	
			exposure		70% (F) (p	blood ChE
			•		value N/A)	
				5	62% (M);	hrain ChE
	orol		6 E bro offer	mg/kg	60% F) (p	brain ChE
Moser et al.	oral	PND 17	6.5 hrs after		value N/A) 80% (M);	
(1998)	gavage (corn oil)		exposure			blood ChE
	(COITI OII)				77% (F) (p value N/A)	DIOOU CITE
			3.5 hrs after		87% (M);	
			exposure	20	87% (M), 87% (F)	
			6.5 hrs after	mg/kg	89% (M);	Brain ChE
			exposure	ing/kg	91% (M), 91% (F)	
Chanda et	oral		3.5 hrs after	15	77% (p value	
	gavage	PND 17	exposure	mg/kg	N/A)	plasma ChE
al. (2002)	(corn oil)		6.5 hrs after	ing/ng	85% (p value	
			0.0 113 0101		N/A)	brain ChE

Study	Route (vehicle)	Time of exposure	Time of measurement	Dose	Inhibition ³	Compartment ⁴	
					80% (p value N/A)	liver ChE	
			3.5 hrs after exposure		86% (M); 82% (F) (p value N/A)	RBC ChE	
Moser and Padilla	oral	PND 17	6.5 hrs after exposure	15	87% (p value N/A)	brain ChE	
(1998)	gavage (corn oil)		24 hrs after	mg/kg	91% (M); 90% (F) (p value N/A)	RBC ChE	
			exposure		80%*	diaphragm ChE	
					80% *	heart ChE	
Won et al. (2001)	oral gavage <i>(peanut oil)</i>	PND 21	4 hrs after exposure	23.5 mg/kg	65% *	frontal cortex ChE	
	oral		3.5 hrs after exposure	20 mg/kg	89% (M); 90% (F) (p value N/A)	blood ChE	
Moser et al.			6.5 hrs after exposure		70% (M); 69% (F) (p value N/A)	brain ChE	
(1998)	gavage (corn oil)	PND 27		exposure	27 exposure		89% (M); 88% (F) (p value N/A)
			3.5 hrs after	50	86% (M);		
			exposure 6.5 hrs after	50 mg/kg	80% (F) 80% (M);	Brain ChE	
			exposure		88% (F)		
Atterberry et al. (1997)	i.p. injection <i>(corn oil)</i>	PND 33	2 hrs after exposure	80 mg/kg	50% *	cerebral cortex & medulla oblongata/pons AChE	

¹ For many of the studies, inhibition levels were inferred from graphs.

² Data only provided for studies in which pups were directly dosed; data from lactational transfer studies were not included. ³ Levels are % inhibition, compared to controls.

⁴ Compartments are given as described by the study author(s).

AChE = acetylcholinesterase

ChE = cholinesterase, reported as either total (acetyl- and butyryl) or not specified

DMSO = dimethyl sulfoxide

F = female

i.p. = intraperitoneal

M = male

N/A = not available

Ns = not significant

PND = postnatal day

RBC = red blood cell s.c. = subcutaneous

5.3. Repeated Oral

The Agency has conducted benchmark dose (BMD) analysis on several of the repeated studies for consideration as a chronic point of departure. A summary of the BMD analysis is presented in Section 6 below.

In the open literature, ChE inhibition has been observed at doses as low as 1 mg/kg/day following repeated exposure to young pups. Guo-Ross et al. (2007) exposed pups to chlorpyrifos on PNDs 1-4 via oral gavage. When measured on PND 4, 4 hours after chlorpyrifos exposure, brain ChE was inhibited 25% at 1 mg/kg/day and 45% at 1.5 mg/kg/day. Betancourt and Carr (2004) also exposed young pups, on PNDs 1-3 via oral gavage, to 1.5 mg/kg/day. At this dose, they found less inhibition than Guo-Ross, 27% in the forebrain, but their measurement was taken at 24 hours after the last dose, rather than at 4 hours, and likely missed peak inhibition. Betancourt and Carr (2004) found greater brain ChE inhibition with 3 mg/kg/day (45%), but this measurement was again taken 24 hours after the last dose. In older rats exposed from PND1-11, there was no forebrain ChE inhibition at 1.5 mg/kg, and 20% ChE inhibition at 3 mg/kg, 24 hours post dosing (Betancourt and Carr, 2004).

Richardson and Chambers (2005) examined ChE inhibition in several ages of developing rats following repeated oral exposure to chlorpyrifos. Rats were gavaged (in corn oil) daily from postnatal day (PND) 1-12 with 1.5 mg/kg, and increasing gradually to 3 mg/kg and then to 6 mg/kg. Brain ChE activity was significantly inhibited on PND 6, 12, 22 and 30. Following daily doses of 1.5 mg/kg daily, PND 6, PND 12, PND 22, and PND 30 rats had 49%, 43%, 36%, and 18% brain ChE inhibition, respectively. ChE measurements were 6 hours, 12 hours, 24 hours and 9 days post dosing for PND 6, 12, 22 and 30 rats, respectively. On PND 22 and 30, 94% or greater of the inhibited ChE could not be reactivated by the oxime TMB-4 in both treatment groups, indicating aging of the phosphorylated ChE. The authors conclude that the long-term reduction in brain ChE activity that was observed following repeated postnatal exposure to chlorpyrifos is attributable to permanent inactivation or "aging" of the enzyme.

In a 14 day, repeated comparative cholinesterase study between adult male rats and neonatal rats (PND 7- 20) animals were dosed with chlorpyrifos via gavage (in peanut oil) with 0, 0.15, 0.45, 0.75, 1.5, 4.5, 7.5 or 15 mg/kg, and ChE measurements were performed 4 hours post dosing (Zheng et al. 2000). ChE activity in neonates was inhibited similarly in plasma, RBC and the frontal cortex, while in adults, significant ChE inhibition was noted only in plasma and RBC. Neonates were not substantially more sensitive to ChE inhibition following repeated exposure, with the possible exception of brain ChE inhibition. For example, brain ChE was inhibited 41.9% in neonates and 23% in adult males at 1.5 mg/kg/day. However, the Agency notes that the brain ChE activity data for this study are highly variable, which reduces the confidence in these results. The study authors suggest that the relative "resistance" of neonates to repeated exposures is a more robust recovery of ChE activity following each exposure. As noted above, the Agency attempted a BMD analysis of this study, but due to substantial variability at doses lower than 1.5 mg/kg/day, the BMDs at the 10% response level were considered unreliable for brain ChE inhibition.

5.4. Repeated Subcutaneous Injection

Song et al. (1997) exposed young rat pups from PND 1-4 to 1 mg/kg/day chlorpyrifos via s.c. injection. Brainstem ChE was inhibited 24% on PND 5, 24 hours after the last dose. This data correlates with the 27% inhibition of forebrain ChE noted on PND 4 following oral exposure to 1.5 mg/kg/day on PNDs 1-3 (Betancourt and Carr, 2004), and the 25% inhibition of brain ChE noted 4 hours after oral exposure to 1 mg/kg/day on PNDs 1-3 (Guo-Ross, 2007). These data indicate that similar levels of brain ChE inhibition are reached in young pups following repeat exposure, whether chlorpyrifos is administered via oral gavage or s.c. injection.

Jett et al. (2001) dosed rats on postnatal days 7, 11, and 15 with 0.3 and 7 mg/kg chlorpyrifos subcutaneously in peanut oil and reported no significant ChE in the cerebellum, cortex and hippocampus on PND 16. In contrast, Liu et al. (1999) administered 5 mg/kg/day chlorpyrifos via s.c. injection to similarly aged pups, from PND 7-13, and reported 64% and 74% inhibition of cortex and striatum ChE, respectively, when measured on PND 14, 24 hours after the last dose. In the Jett study, rats dosed on PND22 and 26 also did not exhibit ChE inhibition in the cerebellum, cortex and hippocampus 2 days (on PND 28) after dosing. When Liu et al. (1999) extended dosing to 5 mg/kg/day on PNDs 7-20, they measured 60% and 68% inhibition of cortex and striatum ChE, respectively, on PND 21. The differences between these studies is not likely due to the "recovery" of the pups between doses in the Jett study, as a similar dose of 10 mg/kg/day, by oral gavage, still resulted in 59% inhibition of brain ChE activity on PND 17 (Timchalk, 2006).

Table 7. ChE inhibition ¹ following repeated postnatal exposure ² to chlorpyrifos
in rats.

Otymelyr	Route	Time of	Time of	Deee	In h : h : t : a : a 3	Commentaria and 4	
Study	(vehicle)	exposure	measurement	Dose	Inhibition ³	Compartment ⁴	
Guo-Ross	oral		4 hrs after	1 mg/kg/day	25% *		
et al. (2007)	gavage (corn oil)	PND 1-4	exposure	1.5 mg/kg/day	45%	brain ChE	
Betancourt	oral		24 hrs after	1.5 mg/kg/day	27% *		
and Carr (2004)	gavage (corn oil)	PND 1-3	exposure (PND 4)	3 mg/kg/day	45% *	forebrain ChE	
Song et al. (1997)	s.c. injection <i>(DMSO)</i>	PND 1-4	24 hrs after exposure (PND 5)	1 mg/kg/day	24% *	brainstem ChE	
Tang et al. (1999)	oral gavage <i>(corn oil)</i>	every other day PND 1- 5	24 hrs after exposure (PND 6)	3 mg/kg/day	38% *	brain (excluding cerebellum) ChE	
	anal				74% **	forebrain ChE	
Carr et al.	oral	every other day PND 1-	24 hrs after	3	70% **	hindbrain ChE	
(2001)	gavage (corn oil)	uay FND 1-	exposure (PND 6)	mg/kg/day	20% **	serum ChE	
		5			39% **	lung ChE	
Richardson and Chambers (2005)	oral gavage (corn oil)	PND 1-6	6 hrs after exposure (PND 6)	1.5 mg/kg/day	49%	brain (excluding cerebellum and medulla-pons) ChE	
Betancourt	oral		24 hrs after	1.5 mg/kg/day	28% *		
and Carr (2004)	gavage (corn oil)	PND 1-6	exposure (PND 7)	3 mg/kg/day	43% *	forebrain ChE	
				1 mg/kg/day	N/A		
Guo-Ross et al. (2007)	oral gavage <i>(corn oil)</i>	PND 1-8	4 hrs after exposure	1 mg/kg PND 1-4 & 2 mg/kg PND 6-8	47% *	brain ChE	
				1.5 mg/kg PND 1-4 & 3 mg/kg PND 6-8	65% *		
					18% **	forebrain ChE	
					39% **	hindbrain ChE	
	oral	every other	24 hrs after		22% **	serum ChE	
Carr et al.	,	al			3	32% **	diaphragm ChE
(2001)		10)	mg/kg/day	45% **	heart ChE		
				33% **	lung ChE		
					29% **	skeletal muscle ChE	

Draft

Cturdy (Route	Time of	Time of	Deee	Inhihition ³	Comportmont ⁴
Study	(vehicle)	exposure	measurement	Dose	Inhibition ³	Compartment ^₄
Betancourt	oral		24 hrs after	1.5	None	Forebrain ChE
and Carr (2004)	gavage (corn oil)	PND1-11	exposure (PND 12)	3	20%	FOIEDIAIII CITE
Richardson and Chambers (2005)	oral gavage (corn oil)	PND 1- 12	12 hrs after exposure	1.5 mg/kg/day	43%	brain (excluding cerebellum and medulla-pons) ChE
Tang et al. (1999)	oral gavage <i>(corn oil)</i>	every other day PND 1- 13	24 hrs after exposure (PND 14)	3 mg/kg/day	37% *	brain (excluding cerebellum) ChE
Carr et al. (2001)	oral gavage	every other day PND 1- 15	24 hrs after exposure (PND 16)	3 mg/kg/day	30% ** 23% ** 45% ** 55% ** 53% ** 20% **	forebrain ChE hindbrain ChE diaphragm ChE heart ChE lung ChE skeletal muscle
	(corn oil)	every other day PND 1- 19	24 hrs after exposure (PND 20)		35% ** 26% ** 55%** 47% **	ChE forebrain ChE hindbrain ChE heart ChE lung ChE
Tang et al. (1999)	oral gavage <i>(corn oil)</i>	every other day PND 1- 21	24 hrs after exposure (PND 22)	3 mg/kg/day	29% *	brain (excluding cerebellum) ChE
Richardson and Chambers (2005)	oral gavage (corn oil)	PND 1-21	24 hrs after exposure (PND 22)	1.5 mg/kg/day	36%	brain (excluding cerebellum and medulla-pons) ChE
Liu et al.	S.C.		24 hrs after	5 mg/kg/day	64% (p value N/A) 74% (p value	cortex ChE
(1999)	injection (peanut oil)	PND 7-13	exposure (PND 14)	10 mg/kg/day	N/A) N/A N/A	striatum ChE cortex ChE striatum ChE
Jett et al. (2001)	s.c. injection (peanut oil)	PNDs 7, 11, 15	24 hrs after exposure	0.3 mg/kg/day 7 mg/kg/day	N/A N/A N/A N/A N/A	cerebellum ChE cortex ChE hippocampus ChE cerebellum ChE cortex ChE
Liu et al. (1999)	s.c. injection	PND 7-20	24 hrs after exposure (PND	5 mg/kg/day	N/A 60% (p value N/A) 68% (p value N/A)	hippocampus ChE cortex ChE striatum ChE
	(peanut oil)		21)	10 mg/kg/day	N/A N/A	cortex ChE striatum ChE
Zheng et al. (2000)	oral gavage <i>(peanut oil)</i>	PND 7-20	4 hrs after exposure	0.15 mg/kg/day	20% 13% 12% 7.5%	frontal cortex ChE RBC ChE plasma ChE frontal cortex ChE
				0.45 mg/kg/day	7.5% 25% 20%	frontal cortex ChE RBC ChE plasma ChE

Study	Route (vehicle)	Time of exposure	Time of measurement	Dose	Inhibition ³	Compartment ⁴				
				0.75	5%	frontal cortex ChE				
				mg/kg/day	29%	RBC ChE				
				mg/kg/day	24%	plasma ChE				
				1.5	42% *	frontal cortex ChE				
				mg/kg/day	57%	RBC ChE				
				mg/kg/day	59%	plasma ChE				
				4.5	76%	frontal cortex ChE				
				mg/kg/day	89%	RBC ChE				
				mg/ng/day	77%	plasma ChE				
				7.5	85%	frontal cortex ChE				
				mg/kg/day	97%	RBC ChE				
				mg/ng/day	86%	plasma ChE				
				15	N/A	frontal cortex ChE				
				mg/kg/day	N/A	RBC ChE				
				mg/ng/day	N/A	plasma ChE				
Song et al. (1997)	s.c. injection <i>(DMSO)</i>	PND 11-14	24 hrs after exposure (PND 15)	5 mg/kg/day	66% *	brainstem ChE				
								0.3	N/A	cerebellum ChE
	S.C.			mg/kg/day	N/A	cortex ChE				
Jett et al.	injection	PNDs 22 & DND 28			N/A	hippocampus ChE				
(2001)	(peanut oil)	26	FND 20	26	7 ma/ka/day		N/A	cerebellum ChE		
	(peanar on)						N/A	cortex ChE		
				mg/kg/day	N/A	hippocampus ChE				

¹ For many of the studies, inhibition levels were inferred from graphs.

² Data only provided for studies in which pups were directly dosed; data from lactational transfer studies

were not included. ³ Levels are % inhibition, compared to controls.

⁴ Compartments are given as described by the study author(s).

AChE = acetylcholinesterase

ChE = cholinesterase, reported as either total (acetyl- and butyryl) or not specified

DMSO = dimethyl sulfoxide

F = female

GD = gestational day

i.p. = intraperitoneal

M = male

N/A = not available

PND = postnatal day

RBC = red blood cell

s.c. = subcutaneous

* p<0.05 **[`]p<0.01

6.0 Benchmark Dose Analysis for Cholinesterase Inhibition

Numerous scientific peer review panels over the last decade have supported the Agency's application of the BMD approach as an improvement over the historically applied approach of using no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect-levels (LOAELs) and as a scientifically supportable method for deriving Points of Departure (PoDs) in human health risk assessment. The NOAEL/LOAEL approach does not account for the variability and uncertainty in the experimental results, which are due to characteristics of the study design, such as dose selection, dose spacing, and sample size. With the BMD approach, all the dose response data are used to derive a PoD. As a preliminary analysis, the Agency has conducted BMD modeling on selected studies described previously in this Appendix. These studies were selected based on the availability of at least two treatment groups and age/lifestage of animals tested. Selected studies include gestational exposures to the dam and acute and repeated exposures to post-natal pups of ages spanning PND1 up to PND 20.

In brief, the Agency has used a decreasing exponential dose-response model similar to that used for the OP and *N*-methyl carbamate cumulative risk assessments and previously reviewed by the FIFRA SAP on several occasions (FIFRA SAP 2001, 2002, 2005a, 2005b). Consistent with risk assessment on other OP and *N*-methyl carbamate compounds, the Agency has used a benchmark response level of 10% and has thus calculated BMD₁₀s and BMDL₁₀s. These values (the central estimate and lower confidence bound, respectively) represent the estimate dose where AChE is inhibited by 10% compared to background. Extensive analyses conducted as part of the OP cumulative risk assessment (USEPA, 2002) have demonstrated that 10% is a level that can be reliably measured in the majority of rat toxicity studies, and is generally at or near the limit of sensitivity for discerning a statistically significant decrease in AChE activity across the brain compartment and is a response level close to the background AChE level.

As shown in Table 8, the preliminary BMD analysis has included brain, RBC, and heart ChE inhibition data. These BMD estimates are discussed in detail in the chlorpyrifos Hazard and Dose Response Characterization document.

Reference	Age	Bra (mg/kg		RBC or Heart (mg/kg/day)			
Reference	Age	BMD ₁₀	BMDL ₁₀	BMD ₁₀	BMDL ₁₀		
Acute/Single Dose Studies							
Betancourt and Carr (2004)	PND 1	0.12	NR	NA			
Zheng et al. (2000)	PND 7 (male)	0.41 ^A	0.25 ^A	0.54	0.34		
Timchalk et al. (2006)	PND 12	0.64	0.54	0.25	0.08		
Timchalk et al. (2006)	PND 17	NA	Ą	1.12	0.48		
Moser et al. (2006)	PND 17	0.87 0.67		Ν	NA		
Zheng et al. (2000)	Adult (male)	5.83 ^A	3.09 ^A	0.61	0.48		
	Repeat Do	se Studies					
Betancourt and Carr (2004)	PND 1-3	0.44	0.22	NA			
Zheng et al. (2000)	PND 7-20 male	1.4 ^A	0.95 ^A	0.21	0.14		
Zheng et al. (2000)	Adult, 14 days male	0.83 ^A	0.40 ^A	0.20	0.095		
Betancourt and Carr (2004)	PND 1-6	0.41	0.198	NA			
2006 Cumulative RA	Repeated >21 days, Adult Female (non- pregnant)	1.48	1.26	26 NA			
Dow (Hoberman et al. 1998a,b, MRID44556901); Maurissen, 2000	Dam, GD6-20	0.65	0.54	0.06	0.03		

Table 8. Summary of Benchmark Dose Analyses for Acute and Repeat Studies

Reference	Age	Bra (mg/kg		RBC or Heart (mg/kg/day)	
Kelelence	Age	BMD ₁₀	BMDL ₁₀	BMD ₁₀	BMDL ₁₀
Dow	Dam, GD6-20	Hindbrain	Hindbrain	RBC	RBC
(Mattsson et al. 1998		1.10	0.81	0.14	0.08
44648101); Mattsson,		Forebrain	Forebrain	Heart	Heart
2000		1.17	0.98	0.16	0.12
Dow	Dam, LD 1	Hindbrain	Hindbrain	RBC	RBC
(Mattsson et al. 1998		0.96	0.55	0.079	0.0498
44648101); Mattsson,		Forebrain	Forebrain	Heart	Heart
2000		1.11	0.77	0.109	0.056

NA= Not applicable; ^Adata for brain may be unreliable (see text)

7.0 Summary of Quantitative Differences in Cholinesterase Inhibition

Several studies published in the peer-reviewed literature and previously discussed have evaluated the differential sensitivities between adults and young animals following *in utero* and/or postnatal exposure to chlorpyrifos. Table 9 presents a brief comparison of the responses to chlorpyrifos between different age groups.

Endpoint	Response	Comments
ChEI - BMD₁₀ (Zheng et al., 2000) RBC Plasma	PND 7 neonate –0.54 mg/kg; adults-0.61 mg/kg PND 7 neonate-0.178 mg/kg; adults –0.629 mg/kg	<u>Sensitivity:</u> Neonate 1.1-fold >adult Neonate 3.5-fold >adult
ChEI - BMD ₁₀ : males Zheng et al. 2000 pup vs. Mendrala and Brzak (1998) adult Plasma	PND 7 neonate-0.178 mg/kg (4 hr); adults – 0.571 mg/kg (3 hr); 0.287 mg/kg (6 hr)	<u>Sensitivity:</u> Neonate 1.6-3.2-fold >adult
ChEI - BMD₁₀ 14 Days (Zheng et al. 2000) Brain RBC Plasma	PND 7 neonate-1.4 mg/kg; adults 0.827 mg/kg PND 7 neonate –0.209 mg/kg; adults-0.199 mg/kg PND 7 neonate-0.2 mg/kg; adults –0.19 mg/kg	<u>Sensitivity:</u> Adult 1.7-fold > neonate none none
ChEI - male and female rats (Mendrala and Brzak, 1998; Lassiter et al. 1998; Moser et al. 1998; Zheng et. al., 2000)	Male rats: slight (about 15%) brain ChEI at 10 mg/kg (2 studies); Male rats: 40% brain ChEI at 20 mg/kg; Female rats: 70% brain ChEI at 20 mg/kg; Female pregnant rats: 50% brain ChEI at 10 mg/kg	Pregnant female rats about 2-fold more sensitive than male rats to brain ChEI
Acute neurotoxicity (Moser et al. 1998)	PND17 juvenile- neurotoxicity at 20mg/kg; adult females-neurotoxicity at 50 mg/kg	Juvenile 2.5-fold more sensitive than adult
Muscarinic down regulation-acute dose (17 day juveniles) (Moser et al. 1998)	PND17 juvenile-down regulation at 15 mg/kg; adult females-down regulation at 80 mg/kg	Juvenile 5.3-fold adult (at the respective doses, down regulation was more extensive in young rats)

Table 9. Relative Responses of male, female, juvenile, neonatal and fetal rats to chlorpyrifos

8.0. Discussion of ChE data

Chlorpyrifos, like other OPs, binds to and phosphorylates the enzyme, AChE, in both the central (brain) and peripheral nervous systems leading to accumulation of acetylcholine and, ultimately, to clinical signs of toxicity. This mode of action, in which AChE inhibition leads to neurotoxicity, has been well described (Mileson et al, 1998). In 2000, the Agency concluded for chlorpyrifos that inhibition of ChE was the most sensitive effect in all of the animal species evaluated and in humans, regardless of exposure duration. For the current analysis, the Agency has reviewed the studies submitted for registration as well as searched the public literature for studies in which pregnant animals and/or juvenile animals were exposed to chlorpyrifos. ChE inhibition is most commonly reported for the blood (plasma and RBC) and brain (whole or subsections), although a few studies have evaluated inhibition in peripheral tissues such as the heart, diaphragm, or lung.

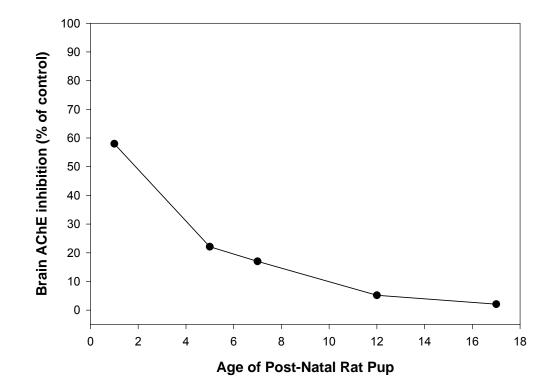
Tables 10-12 provide summary information from AChE studies in gestational and post-natal studies in rats. The information provided here focuses on effects at or near a dose of 1-1.5 mg/kg. This dose has been used by numerous investigators evaluating both AChE inhibition and other toxicities. As such this dose provides a comparison point for comparing among studies, different toxicities, duration of exposure, ages, lifestages, and methods of administration. Comparisons across different studies need to be made with care as timing of sampling varies among studies which impacts results.

8.1. Gestational exposure

In gestational studies with chlorpyrifos, AChE activity is generally inhibited more in dams than in the fetus (Table 10). A similar pattern has been seen for many other OPs (USEPA, 2006, Attachment 1 to the Issue Paper). As such, it would appear that the fetus may be protected by the dam. However, rat fetal brain ChE activity increases 4 times from GD14 to GD18 and that activity increases another 3 times from GD18 to PND1. According to Lassiter et al (1998a), "new synthesis of uninhibited cholinesterase molecules may dilute the inhibited molecules such that the fetal brain cholinesterase activity recovers more quickly than the maternal brain." Therefore, at a given time after exposure, cholinesterase may appear less inhibited by chlorpyrifos in the fetus compared to adults because the fetus recovers more quickly by rapidly synthesizing new brain cholinesterase. Further support for Lassiter's comments are found in toxicokinetic (TK) studies. Following gestational exposure to the dam, Hunter et al. (1999) found that levels of TCP in the fetal brain were 2-3 times higher than in the maternal brain. Additional data are found in Mattsson et al (1998, 2000) who showed that chlorpyrifos levels were 2-fold higher in maternal blood than fetal blood but TCP levels were similar. Thus, when the dam is exposed to chlorpyrifos, the fetus is as well--likely at similar levels. As such, although the AChE data consistently shows more inhibition in the dam compared with the fetus, the fetus may not actually be protected by the dam. Therefore, AChE data in fetuses from repeated dosing gestational studies may not accurately reflect potential fetal toxicity at a particular dose.

Table 10. Summary of repeated studies evaluating gestational exposure to maternal rats and fetuses.

Study	Route (vehicle)	Time of exposure	Time of measurement post-dosing	Dose	Fetal inhibition	Maternal inhibition	Compartment
					8% (NS)	10%/7% (p<0.02)	forebrain
Mattsson	oral				0%	12%/7% (NS)	hindbrain
et al. (1998,	gavage (corn oil)	GD6-20	4 hrs	1 mg/kg/day	5% (NS)	87%/85% (p<0.02)	RBC
2000)	(00				4% (NS)	77%/60% (p<0.02)	plasma
					0%	49%/50% (p<0.02)	heart
Hoberman			1	N/A	68.9%	plasma	
et al. 1998a,b,	oral gavage (corn oil) GD6-20 4-5 hrs 1 mg/kg/day			1	N/A	84.4%	RBC
Maurissen et al (2000)		mg/kg/day	N/A	17.9%	brain		
					5% (NS)	6% (NS)	forebrain
					0%	6% (NS)	hindbrain
Mattsson et al.	oral GD6- 2 hrs 1 gavage DND1 2 hrs mg//g/day.	2 bro	2 hrs		0%	90% (p<0.02)	RBC plasma heart plasma RBC brain
1998, (2000)	(corn oil)	PND1	21113	mg/kg/day	5% (NS)	80% (p<0.02)	plasma
					2% (NS)	40% (p<0.02)	heart
Qiao et al. S.C. (2002) (DMSO) GD 17-20 GD 2	GD 21	1 mg/kg/day	3% (NS)	brainstem	N/A		
(2002)	(DMSO)			mynyiday	6% (NS)	forebrain	N/A


8.2. Post-natal, acute exposures

In post-natal studies where pups are directly exposed, the degree of ChE inhibition is clearly age dependant following single exposures (Table 11, Figure 1). In general, blood and peripheral measures are more inhibited at the same dose compared with brain measures. As mentioned in the Issue Paper, newborn and juvenile rats are more sensitive to AChE inhibition caused by chlorpyrifos than adult rodents, not because of a difference in the affinity of chlorpyrifos oxon to AChE, but because maturation of detoxification enzymes (Iyer, 2001). This ontogeny (and resulting reduced sensitivity) is evident in Figure 1 where the degree of brain AChE inhibition decreases with the age of the post-natal pup.

Table 11. Summary of acute studies evaluating post-natal exposure to juvenile rats.

Study	Route (vehicle)	Age	Time of measurement post-dosing ^a	Dose	Inhibition	Compartment
					70% (M); 25% (F)	brainstem
Dam et al. (2000)	s.c. injection (DMSO)	PND 1	2 hrs	1 mg/kg	80% (M); 10% (F)	cerebellum
					60% (M); 35% (F)	forebrain
Betancourt and Carr (2004)	oral gavage (corn oil)	PND 1	12 hrs	1.5 mg/kg	58%	forebrain
Timchalk					22.1%	brain
et al.	oral gavage	PND 5	3 hrs	1 mg/kg	45.7%	RBC
(2006)					62.1%	plasma
	oral gavage (peanut oil)	PND 7	4 hrs	1.5 mg/kg	17%	frontal cortex
Zheng et					32%	RBC
al, 2000					51%	plasma
Timchalk					5.2%	brain
et al.	or al gavage	PND 12	6 hrs	1 mg/kg	27.0%	RBC
(2006)					33.4%	plasma
Timchalk					2.1%	brain
et al.	oral gavage	PND 17	24 hrs	1 mg/kg	15%	RBC
(2006)					21.9%	plasma
Moser et				0.5 mg/kg	0%	brain
	oral gavage	PND17	4.5 hrs	2 mg/kg	10%	Drain
al. 2006	(corn oil)	orn oil) PND17 4.5 hrs	0.5 mg/kg	10%	whole blood	
				2 mg/kg	40%	whole blood

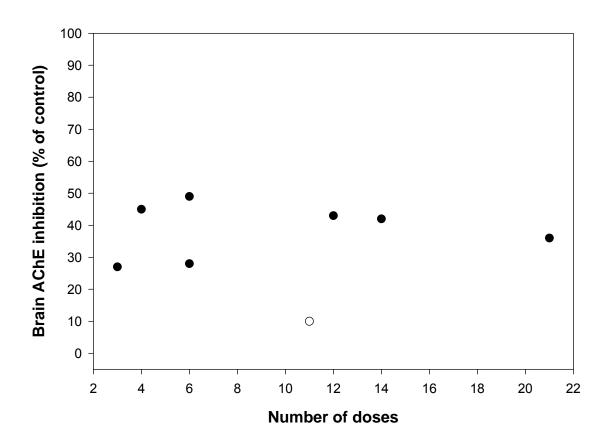
a. Reported time of peak effect

Figure 1. Plot of brain AChE inhibition in post-natal pups following a single dose of 1 mg/kg

8.3. Pregnant Dams and Fetuses

Table 12 and Figure 2 summarize information from repeated dosing studies in post-natal pups using a dose of 1-1.5 mg/kg/day as a point of comparison. Repeated dosing studies show similar degrees of brain AChE inhibition independent of duration of exposure. For example, Guo-Ross et al (2007) and Richard and Chambers (2005) each measured similar amounts of brain AChE inhibition but Guo-Ross et al (2007) dosed pups with only 4 exposures whereas Richard and Chambers (2005) used 6 exposures. The pattern of similar degrees of AChE inhibition across repeated dosing post-natal studies likely reflects the rapid nature of AChE recovery observed by multiple investigators (Chakraborti *et al.,* 1993; Moser and Padilla, 1998; Pope et al., 1991; Pope and Liu, 1997). This pattern is less evident at higher doses where AChE inhibition has reached >70-80% and/or where metabolic processes may be saturated (Table 7).

One exception to this is the PND1-11 group in Betancourt and Carr (2004) where no significant brain AChE inhibition was reported. When evaluating the results within the Betancourt and Carr (2004) study, there is a decrease in inhibition following repeated dosing studies from PND1-3, 1-6, and 1-11 suggesting that as the pups mature, they become less sensitive. A similar but less pronounced trend was observed by Richards and Chambers (2005) who showed that PND1-6 and 1-12 dosing resulted in similar degrees of inhibition. In the PND1-21 group, a somewhat lower amount of


brain AChE inhibition was observed (36%) compared with the PND1-6 and 1-12 groups. There are potential explanations for this. First, the results of Richards and Chambers (2005) may be explained based on the timing of measurement, PND1-6 animals were measured at 6 hours post-dosing but the PND 1-21 was measured 24 hours post-dosing. Alternatively, the reduced brain AChE inhibition could have resulted from maturation of detoxification pathways resulting in decreased inhibition.

It is notable that the trend shown in Figure 2 is distinctly different from results in adult studies for most OPs. Typically in adult rats, AChE inhibition increases with repeated exposures. In other words, at a common dose level, more inhibition is observed after repeated exposures compared with a single exposure.

Study	Route (vehicle)	Time of exposure	Time of measurement post-dosing	Dose	Inhibition	Compartment
Guo-Ross et	oral gavage	PND 1-4	4 hrs	1 mg/kg/day	25%	brain
al. (2007)	(corn oil)		1110	1.5 mg/kg/day	45%	Sidin
Betancourt and Carr (2004)	oral gavage	PND 1-3	24 hrs	1.5 mg/kg/day	27%	forebrain
Song et al. (1997)	s.c. injection (DMSO)	PND 1-4	24 hrs	1 mg/kg/day	24%	brainstem
Richardson and Chambers (2005)	oral gavage (corn oil)	PND 1-6	6 hrs	1.5 mg/kg/day	49%	brain (excluding cerebellum and medulla-pons)
Betancourt and Carr (2004)	oral gavage	PND 1-6	24 hrs	1.5 mg/kg/day	28%	forebrain
Betancourt and Carr (2004)	oral gavage	PND1-11	24 hrs	1.5 mg/kg/day	None	forebrain
Richardson and Chambers (2005)	oral gavage (corn oil)	PND 1- 12	12 hrs	1.5 mg/kg/day	43%	brain (excluding cerebellum and medulla-pons)
Richardson and Chambers (2005)	oral gavage (corn oil)	PND 1-21	24 hrs	1.5 mg/kg/day	36%	brain (excluding cerebellum and medulla-pons)
	oral				42%	frontal cortex
Zheng et al (2000)	gavage (peanut oil)	PND7-20	4 hrs	1.5 mg/kg/day	57%	RBC
	(pound on)				59%	plasma

Table 12. Summary of repeated studies evaluating post-natal exposure to juvenile rats.

Figure 2. Plot of brain AChE inhibition in post-natal pups following repeated dosing at 1.5 mg/kg

8.4. Method of administration

AChE studies available for chlorpyrifos use a variety of methods of administration. The two most common are oral gavage and subcutaneous injection, particularly with DMSO. Some have suggested that the TK properties of a particular chemical may vary by method of administration, thereby impacting the amount of AChE inhibition observed in a particular study. However, the Agency's analysis suggests that the inhibition levels may be more similar than previously believed.

In general, study designs in gestational studies vary widely among laboratories with regard to doses used, number of repeated doses, and gestational days of dosing which makes comparing the results problematic. Chanda and Pope (1996) exposed dams from GD 12-19 via subcutaneous injection with peanut oil and showed 75% brain inhibition 24 hours after the last dose in the dams at a dose of 6.25 mg/kg/day. Hunter et al (1999) and Lassiter et al (1998a) exposed dams using corn oil gavage from GD14-18 at 7 mg/kg/day and observed 68% and 69% brain AChE inhibition 24 hours after the last dose, respectively. The gestational days of dosing differs between the studies and the number of doses differs between the studies--8 and 5 for Chanda and Pope (1996) and the EPA studies (Hunter et al, 1999; Lassiter et al, 1998a), respectively. Even when considering the differences in study designs, there is notable similarity in the amount of measured brain AChE inhibition at 24 hours after the last dose in the studies using subcutaneous injection and oral gavage—75% and 68-69% (Chanda and Pope, 1996; Hunter et al, 1999; Lassiter et al, 1998a, respectively).

Comparison of post-natal studies show that brain AChE inhibition at similar dose levels (e.g., Tables 11 and 12) yields remarkably similar results in young pups (ages PND1-5). For example following an acute dose of 1 or 1.5 mg/kg/day in PND1 pups, 60% and 58% forebrain AChE inhibition were noted from subcutaneous injection with DMSO and corn oil gavage, respectively (Dam et al, 2000; Betacourt and Carr, 2004). Following exposure at 1 mg/kg/day from PND1 to PND4, 24% and 25% brain AChE inhibition were noted from subcutaneous injection with DMSO and corn oil gavage, respectively (Song et al, 1997; Guo-Ross et al, 2007). The time measurements of these studies were at 24 hour and 4 hours post-dosing for subcutaneous injection and gavage, respectively. The Agency also notes that preliminary (not yet replicated or published by the authors) data by Carr and Narr presented at SOT (2008) showed striking similarity in the time course and amount of brain AChE inhibition in PND10 pups exposed at 5 mg/kg from subcutaneous injection with DMSO and corn oil gavage. Moreover, the amount of brain AChE (25-28%) in the Carr poster is similar to that PND11 pups exposed at the same dose from Dam et al (2000) who used subcutaneous injection (15-30% brain stem, but 15-35% for brain) at 4 hours post-dosing.

A recent study by Marty et al (2007) provides TK data which supports findings of post-natal AChE studies mentioned above. Specifically, Marty et al (2007) compared methods of administration for PND5 pups exposed to 1 mg/kg/day chlorpyrifos via corn oil gavage, subcutaneous injection with DMSO, and oral exposure in milk. Across the three methods of administration, Marty et al (2007) showed relatively small (2-fold or less) differences in: 1) AUC for chlorpyrifos and TCP; 2) ½ lives for TCP; and 3) similar time to peak effect for chlorpyrifos and TCP. Based on the findings of Marty et al (2007), there appear to be only small differences in TK characteristics in PND5 pups exposed via corn oil gavage, subcutaneous injection with DMSO, and exposure in milk.

The Agency has concluded for young pups, at least up to PND 5 in rat, that administration via the oral route and subcutaneous injection provide remarkably similar results and that post-natal studies up to PND 5 in either route are relevant for risk assessment. Less data are available to compare routes/methods of administration for older pups and no comparative TK data are available for gestational exposures. As more studies are available in the future, the Agency may, if appropriate, extend this conclusion to include older pups. The lack of comparative PK for oral gavage and subcutaneous injection in pregnant dams and fetuses in considered an important data gap in quantitatively evaluating dose response data in subcutaneous injection studies (as discussed in Appendix C). However, the Agency can not discount the findings of subcutaneous injection gestational studies at this time.

8.5. Preliminary conclusions

Numerous AChE studies are available in different lifestages and ages in rats. These studies vary widely by the level and number of doses used, availability of time course information, and method of administration. The Agency has preliminarily concluded the following

- Repeated dosing gestational studies which show less fetal brain AChE inhibition compared with the dam may not reflect actual toxicity to the pup. This conclusion is based, in large part, on TK data comparing blood and brain levels of chlorpyrifos and/or its metabolites in fetal and dam tissues.
- Following acute post-natal exposure studies, there is an age-dependant sensitivity that decreases as the pups mature.
- When considering the repeated dosing post-natal studies across laboratories, there is little variability with respect to degree of brain AChE inhibition across different durations of exposure. Within a laboratory, however, decreases in sensitivity have been observed with longer duration of exposure.

References

Abu-Qare, A. W., Abdel-Rahman, A., Brownie, C., Kishk, A. M., and Abou-Donia, M. B. (2001). Inhibition of cholinesterase enzymes following a single dermal dose of chlorpyrifos and methyl parathion, alone and in combination, in pregnant rats. *J Toxicol Environ Health A* **63**, 173-89.

Ashry, K. M., Abu-Qare, A. W., Saleem, F. R., Hussein, Y. A., Hamza, S. M., Kishk, A. M., and Abou-Donia, M. B. (2002). Inhibition and recovery of maternal and fetal cholinesterase enzymes following a single oral dose of chlorpyrifos in rats. *Arch Toxicol* **76**, 30-9.

Atterberry, T. T., Burnett, W. T., and Chambers, J. E. (1997). Age-related differences in parathion and chlorpyrifos toxicity in male rats: target and nontarget esterase sensitivity and cytochrome P450- mediated metabolism. *Toxicol Appl Pharmacol* **147**, 411-8.

Barker, M. (1989) Chlorpyrifos Oral Toxicity Study in Beagle Dogs (Repeated Daily Dosage for 13 Weeks): Lab Project Number: MBS 31/88999. Unpublished study prepared by Huntingdon Research Centre Ltd. 209 p. MRID No. 42172801

Betancourt, A. M., and Carr, R. L. (2004). The effect of chlorpyrifos and chlorpyrifos-oxon on brain cholinesterase, muscarinic receptor binding, and neurotrophin levels in rats following early postnatal exposure. *Toxicol Sci* **77**, 63-71.

Breslin, W.; Liberacki, A.; Dittenber, D. et al. (1991) Chlorpyrifos: Two-Generation Dietary Reproduction Study in Sprague-Dawley Rats: Lab Project Number: K-044793-088: ...F1: ...F1W:...F2W. Unpublished study prepared by Dow Chemical Co., Tox. Research Lab. p.1181. MRID No. 41930301.

Brzak, K.A., Harms, D.W., Bartels, M.J., and Nolan, R.J. (1998). Determination of Chlorpyrifos, Chlorpyrifos-oxon and 3, 5, 6-trichloro-2-pyridinol in rat and human blood. J. Anal Toxicol. 22:203-230.

Byczkowski JZ, Kinkead ER, Leahy HF, Randall GM, and Fisher JW. (1994). Computer simulation of the lactational transfer of tetrachloroethylene in rats using a physiologically based model. Toxicol Appl Pharmacol. Apr; 125(2):228-36.

Calhoun, L.; Johnson, K. (1988) Chlorpyrifos: 4-Day Dermal Probe and 21-day Dermal Toxicity Studies in Fischer 344 Rats: Proj. ID(S) K-044793-085; K-044793-086. Unpublished study prepared by Dow Chemical Co. p. 191 MRID No. 40972801

Carr, R. L., Chambers, H. W., Guarisco, J. A., Richardson, J. R., Tang, J., and Chambers, J. E. (2001). Effects of repeated oral postnatal exposure to chlorpyrifos on open- field behavior in juvenile rats. *Toxicol Sci* **59**, 260-7.

Carr, R. L. and Nail, C. A. (2008). Comparison of Enzyme Inhibition Patterns Following Developmental Chlorpyrifos Exposure Using Different Administration Paradigms. 2008 SOT Annual Meeting, Seattle.

Chakraborti, T.K., J.D. Farrar, and C.N. Pope. (1993) Comparative neurochemical and neurobehavioral effects of repeated chlorpyrifos exposures in young and adult rats. *Pharmacology Biochemistry and Behavior* 46:219-224.

Chanda, S.M., P. Harp, J. Liu, and C.N. Pope. (1995) Comparative developmental and maternal neurotoxicity following acute gestational exposure to chlorpyrifos in rats. *Journal of Toxicology and Environmental Health* 44:189-202.

Chanda, S. M., and Pope, C. N. (1996). Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats. *Pharmacol Biochem Behav* **53**, 771-6.

Chanda, S. M., Lassiter, T. L., Moser, V. C., Barone, S., Jr., and Padilla, S. (2002). Tissue carboxylesterases and chlorpyrifos toxicity in the developing rat. *Hum Ecol Risk Assess* **8**, 75-90.

Corley, R.; Landry, T.; Calhoun, L.; et al. (1986a) Chlorpyrifos: 13-Week Noseonly Vapor Inhalation Exposure Study in Fischer 344 Rats: Laboratory Project Identification: HET K-044793-077. Unpublished study prepared by Dow Chemical USA. 168 p. MRID No. 40013901

Corley, R.; Landry, T.; Calhoun, L.; et al. (1986b) Chlorpyrifos: 13-Week Nose only Vapor Inhalation Exposure Study in Fischer 344 Rats: Supplemental Data: Lab. Proj. I.D. HET K-044793-077. Unpublished supplemental data prepared by Dow Chemical Co. p.14 MRID No. 40166501

Crown, S.; Gur, E.; Nyska, A.; et al. (1985) Toxicity in Dietary Administration to Rats for 13 Weeks Pyrinex|: Laboratory Project ID MAK/058/PYRA. Unpublished study performed by Life Science Research Israel Ltd. p 174. MRID No. 40436406

Crown, S. (1990) Pyrinex Technical Oncogenicity Study in the Rat: Lab Project Number: MAK/095/PYR. Unpublished study prepared by Life Science Research Israel, Ltd. p.1591 MRID No. 42172802

Draft

Dam, K., Seidler, F. J., and Slotkin, T. A. (2000). Chlorpyrifos exposure during a critical neonatal period elicits gender- selective deficits in the development of coordination skills and locomotor activity. *Brain Res Dev Brain Res* **121**, 179-87.

Deacon, M.M.; Murray, J.S.; Pilny, M.K.; et al. (1979) The Effects of Orally Administered Chlorpyrifos on Embryonal and Fetal Development in Mice. (Unpublished study received Aug 16, 1979 under 464-448; submitted by Dow Chemical U.S.A., Midland, Mich.; 098912-A) MRID No. 00095268

Dittenber, D.A (1997). Chlorpyrifos: Evaluation of Single Oral Doses on Cholinesterase and Neurotoxic Esterase Inhibition in F344 Rats. Toxicology Laboratory, Dow Chemical Co. Study No. 960036. March 13, 1997. MRID No. 44273901.

Ecobichon, DJ, Stephens, DS. (1973). Perinatal development of human blood esterases. Clin Pharmacol Ther. Jan-Feb;14(1):41-7.

FIFRA Science Advisory Panel (SAP). 2001. "End Point Selection and Determination of Relative Potency in Cumulative Hazard Assessment: A Pilot Study of Organophosphorus Pesticide Chemicals." Report from the FIFRA Scientific Advisory Panel Meeting of September 27, 2000. FIFRA Scientific Advisory Panel, Office of Science Coordination and Policy, Office of Prevention, Pesticides and Toxic Substances, U.S. Environmental Protection Agency. Washington, DC. SAP Report 2000-0X. Available: http://www.epa.gov/scipoly/sap/2000/September/FIFRA SAP, 2002

FIFRA Science Advisory Panel (SAP). 2002. "Organophosphate Pesticides: Preliminary OP Cumulative Risk Assessment." Final report: <u>http://www.epa.gov/scipoly/sap/2002/index.htm</u>

FIFRA Science Advisory Panel (SAP). 2005a. "Final report on N-Methyl Carbamate Cumulative Risk Assessment: Pilot Cumulative Analysis." http://www.epa.gov/scipoly/sap/2005/february/minutes.pdf

FIFRA Science Advisory Panel (SAP). 2005b. "Final report on Preliminary N-Methyl Carbamate Cumulative Risk Assessment." <u>http://www.epa.gov/scipoly/sap/2005/august/minutes.pdf</u>

FIFRA Science Advisory Panel (SAP). 2008. "Final report on the Agency's Proposed Action under FIFRA 6(b) Notice of Intent to Cancel Carbofuran." Report from the FIFRA Scientific Advisory Panel Meeting of February, 5-8 2008 (Report dated September 2, 1998). Available at: http://www.epa.gov/scipoly/sap/meetings/2008/february/carbofuransapfinal.pdf

Griffin P; Mason H; Heywood K; Cocker J. 1999. Oral and dermal absorption of chlorpyrifos: a human volunteer study. Occup Environ. Med. 56: 10-13

Draft

Guo-Ross, S. X., Chambers, J. E., Meek, E. C., and Carr, R. L. (2007). Altered muscarinic acetylcholine receptor subtype binding in neonatal rat brain following exposure to chlorpyrifos or methyl parathion. *Toxicol Sci* **100**, 118-27.

Gur, E. (1992) Prinex Technical: Oncogenicity Study in the Mouse: Lab Project Number: MAK/106/PYR. Unpublished study prepared by Life Science Research Israel Ltd. p.1238 MRID No. 42534201.

Hoberman A.M. (1998a,b). Developmental neurotoxicity study of chlorpyrifos administered orally via gavage to CrI:CD®BR VAF/Plus® presumed pregnant rats. Argus Research Laboratories, Inc., Horsham, Pennsylvania, laboratory study No. 304-001, sponsor study No. K-044793-109, May 1, 1998: MRID 44556901, MRID 44661001.

Hunter, D. L., Lassiter, T. L., and Padilla, S. (1999). Gestational exposure to chlorpyrifos: comparative distribution of trichloropyridinol in the fetus and dam. *Toxicol Appl Pharmacol* **158**, 16-23.

Iyer, P. (2001). Developmental and Reproductive Toxicology of Pesticides. In Handbook of Pesticide Toxicology (R. I. Krieger, ed., Vol. 1, pp. 375-423. Academic Press, San Diego, CA.

Jett, D. A., Navoa, R. V., Beckles, R. A., and McLemore, G. L. (2001). Cognitive function and cholinergic neurochemistry in weanling rats exposed to chlorpyrifos. *Toxicol Appl Pharmacol* **174**, 89-98.

Kisicki J.S., Seip, C.W., and Combs M.L. (1999). A Rising Dose Toxicology Study to Determine the No-Observable-Effect-Levels (NOEL) for Erythrocyte Acetylcholinesterase (AChE) Inhibition and Cholinergic Signs and Symptoms of Chlorpyrifos at Three Dose Levels. MDC Harris Laboratory, Lincoln Nebraska, Study No. 21438 (for the Harris Project) and DR K-0044793-284 (for Dow AgroSciences), April 19, 1999, MRID No. 44811002.

Kociba, R.; McCollister, S.; Keyes, D.; et al. (1985) Results of Two-year Dietary Feeding Studies on Dowco 179 in Beagle Dogs: Supplement to Original Report. Unpublished report prepared by Dow Chemical U.S.A. 246 p. MRID No. 00146519

Lassiter TL, Padilla S, Mortensen SR, Chanda SM, Moser VC, Barone S (1998a) Gestational exposure to chlorpyrifos: Apparent protection of the fetus? Toxicol. Applied Pharmacol. 152: 56-65.

Lassiter, T. L., Barone, S., Jr., Moser, V. C., and Padilla, S. (1999). Gestational exposure to chlorpyrifos: dose response profiles for cholinesterase and carboxylesterase activity. *Toxicol Sci* **52**, 92-100.

Liu, J., Olivier, K., and Pope, C. (1999). Comparative Neurochemical Effects of Repeated Methyl Parathion or Chlorpyrifos Exposures in Neonatal and Adult Rats. *Toxicol Appl Pharmacol* **158**, 186-196.

Marable, B.; Baker, P.; Stebbins, K.; et. al. (2001) Chlorpyrifos Technical: 6-Week Dietary Study of Acetylcholinesterase Inhibition in Beagle Dogs: Lab Project Number: 011036. Unpublished study prepared by The Dow Chemical Company. 194 p. MRID No. 45466501

Marty, M. S.; Domoradzki, J. Y.; Hansen, S. C.; Timchalk, C.; Bartels, M. J.; Mattsson, J. L. (2007). The Effect of Route, Vehicle, and divided doses on the Pharmacokinetics of Chlorpyrifos and Its Metabolite Trichloropyridinol in Neonatal Sprague-Dawley Rats. Toxicological Sciences 100 (2): 360-373.

Mattsson J.L., Maurissen J.P., Spencer, P.J., Brzak K.A., and Zablotny C.L. (1998). Effects of Chlorpyrifos administered via gavage to CD rats during gestation and lactation on plasma, erythrocyte, heart and brain cholinesterase and analytical determination of chlorpyrifos and metabolites. Health and Environmental Research Laboratories, The Dow Chemical Co. for Dow AgroSciences, August 31, 1998. Unpublished Study. MRID 44648101.

Mattsson, J. L., Maurissen, J. P., Nolan, R. J., and Brzak, K. A. (2000). Lack of differential sensitivity to cholinesterase inhibition in fetuses and neonates compared to dams treated perinatally with chlorpyrifos. *Toxicol Sci* **53**, 438-46.

Maurissen J.P., Shankar, M.R., Mattsson J.L. (1996). Chlorpyrifos: cognitive study in adult Long-Evans rats. The Toxicology Research Laboratory, Health and Environmental Studies, The Dow Chemical Co. Midland, MI. Laboratory Project Study ID K-044793-096. April 29, 1996. MRID No. 44020901. Unpublished.

Maurissen, J.P., Hoberman, A.M., Garman, R.H., Hanley, T. (2000). Lack of Selective Developmental Neurotoxicity in Rat Pups from Dams Treated by Gavage with Chlorpyrifos. *Toxicol Sci* **57**, 250-63.

Mendrala A.L., and Brzak K.A. (1998). Chlorpyrifos: Part A-concentration-time course of chlorpyrifos and chlorpyrifos-oxon in blood. Health and Environmental Research Laboratories. The Dow Chemical Co. Midland MI. Laboratory Project Study ID: 971187A. August 31, 1998. MRID No. 44648102. Unpublished.

McCollister, S.B.; Kociba, R.J.; Gehring, P.J.; et al. (1971) Results of Two-Year Dietary Feeding Studies on Dowco^(R)I179 in Beagle Dogs: T35.12-44793-18. (Unpublished study received Aug 28, 1972 under 3F1206; submitted by Dow Chemical U.S.A., Midland, Mich.; CDL:092213-A). MRID No. 00064933

Mileson BE, Chambers JE, Chen WL, et al. 1998. "Common Mechanism of Toxicity: A Case Study of Organophosphorus Pesticides." Toxicol Sci. 41: 8-20.

Mortensen, S.R., Hooper M.J. S. Padilla. (1998). Rat brain acetylcholinesterase activity: developmental profile and maturational sensitivity to carbamate and organophosphorus inhibitors. Toxicology. 125:13-19.

Moser, V. C., and Padilla, S. (1998). Age- and gender-related differences in the time course of behavioral and biochemical effects produced by oral chlorpyrifos in rats. *Toxicol Appl Pharmacol* **149**, 107-19.

Moser, V. C., Chanda, S. M., Mortensen, S. R., and Padilla, S. (1998). Age- and gender-related differences in sensitivity to chlorpyrifos in the rat reflect developmental profiles of esterase activities. *Toxicol Sci* **46**, 211-22. Moser, V.C., Simmons, J.E., Gennings, C. 2006. Neurotoxicological Interactions of a Five-Pesticide Mixture in Preweanling Rats. *Toxicol Sci* **92**(1), 235-45.

Moser, V.C., Simmons, J.E., Gennings, C. 2006. Neurotoxicological Interations Of A Five-Pesticide Mixtxure In Preweanling Rats. Toxicol Sci 92(1), 235-45.

Newton, P. (1988) A Thirteen Week Nose-Only Inhalation Toxicity Study of Chlorpyrifos Technical (Pyrinex) in the Rat: Project No. 88-8058. Unpublished study prepared by Bio/dynamics, Inc. 587 p. MRID No. 40908401

Nolan R.J., Rick D.L., Freshour M.L., and Saunders J.H. (1982). Chlorpyrifos: Pharmacokinetics in human volunteers following single oral and dermal doses. The Dow Chemical Co. Biomedical Medical Research Lab. Toxicology Research Lab. Midland MI. Accession No. 249203.

Ouellette, J.; Dittenber, D.; Kloes, P.; et al. (1983) Chlorpyrifos: Oral Teratology Study in Fischer 344 Rats. (Unpublished study received Aug 15, 1983 under 3F2947; submitted by Dow Chem- ical U.S.A., Midland, MI; CDL:071866-A). MRID No. 00130400.

Padilla S., Wilson, V.Z., and Bushnell, P.J. (1994). Studies on the correlation between blood cholinesterase inhibition and "Target Tissue" inhibition in pesticide-treated rats. Toxicology 92;11-25.

Pope, C.N., T.K. Chakraborti, M.L. Chapman, J.D. Farrar and D. Arthun. (1991) Comparison of in vivo cholinesterase inhibition in neonatal and adult rats by three organophosphorothioate insecticides. *Toxicology* 68:51-61.

Pope, C.N. and T.K. Chakraborti. (1992) Dose-related inhibition of brain and plasma cholinesterase in neonatal and adult rats following sublethal organophosphate exposures. *Toxicology* 73:35-43.

Pope, C.N, Chakraborti, T.K., Chapman, M.L and Farrar, J.D. (1992). Long-Term neurobehavioral and behavioral effects induced by acute chlorpyrifos treatment (1992) Pharm.Biochem.Behav. 42:251-256

Pope, C.N and Liu, J (1997). Age-Related Differences in Sensitivity to Organophosphorous Pesticides. *Environmental Toxicol. And Pharmacol.* 4;309-314.

Pope, C. N. ; Karanth, S.; Liu, J.; and Yan, B. (2005). Comparative Carboxylesterase Activities in Infant and Adult Liver and Their *In Vivo* Sensitivity to Chlorpyrifos Oxon. *Reg. Toxicol. Pharmacol. 42:* 64-69.

Qiao, D., Seidler, F. J., Padilla, S., and Slotkin, T. A. (2002). Developmental Neurotoxicity of Chlorpyrifos: What is the Vulnerable Period? *Environ Health Perspect* **110**, 1097-1103.

Richardson, J., and Chambers, J. (2003). Effects of gestational exposure to chlorpyrifos on postnatal central and peripheral cholinergic neurochemistry. *J Toxicol Environ Health A* **66**, 275-89.

Richardson, J., and Chambers, J. (2005). Effects if repeated oral postnatal exposure to chlorpyrifos on cholinergic neurochemistry in developing rats. *Toxicol Sci* **84**, 352-59.

Roberts, N.; Phillips, C.; Gopinath, C.; *et al.* (1987). Acute Delayed Neurotoxicity Study with Chlorpyrifos in the Domestic Hen: Huntingdon Research Centre Ltd. Report. No. MBS 16/87764. Unpublished study. MRID 40510601.

Rubin, Y.; Gal, N.; Waner, T.; (1987a) Teratogenicity Study in The Rat: Laboratory Project ID MAK/101/PYR. Unpublished study performed by Life Science Research Israel Ltd. p.268 . MRID No. 40436407.

Rubin, Y.; Nyska, A.; Waner, T. (1987b) Pyrinex Teratogenicity Study in the Rabbit: Laboratory Project ID MAR/103/PYR. Unpublished study performed by Life Science Research Israel Ltd. p.208 MRID No 40436408.

Shankar, M.; Bond, D.; Crissman, J. (1993) Chlorpyrifos: 13-Week Neurotoxicity Study in Fischer-344 Rats: Lab Project Number: K-044793-094. Unpublished study prepared by The Toxicology Research Lab., Dow Chemical Co. p.535 MRID No. 42929801.

Song, X., Seidler, F. J., Saleh, J. L., Zhang, J., Padilla, S., and Slotkin, T. A. (1997). Cellular mechanisms for developmental toxicity of chlorpyrifos: targeting the adenylyl cyclase signaling cascade. *Toxicol Appl Pharmacol* **145**, 158-74.

Szabo, J.; Young, J.; Grandjean, M. (1988) Chlorpyrifos: 13-Week Dietary Toxicity Study in Fischer-344 Rats: Project ID: File No. TXT:K-044793-071. Unpublished study prepared by Dow Chemical Co. 242 p. MRID 40952801.

Tang, J., Carr, R. L., and Chambers, J. E. (1999). Changes in rat brain cholinesterase activity and muscarinic receptor density during and after repeated oral exposure to chlorpyrifos in early postnatal development. *Toxicol Sci* **51**, 265-72.

Thompson, D.J.; Gerbig, C.G.; Warner, S.D. (1971) Three Generation Reproduction and Teratology Study in the Rat following Prolonged Dietary Exposure to Dursban O,O-Diethyl 0-3,5,6-trichloro-2- pyridyl phosphorothioate: HH-382. (Unpublished study received Aug 28, 1972 under 3F1306; submitted by Dow Chemical U.S.A., Midland, Mich.; CDL:099239-B). MRID No. 00029064.

Thompson, D.J.; Gerbig, C.G.; Warner, S.D. (1971) Three Generation Reproduction and Teratology Study in the Rat following Prolonged Dietary Exposure to Dursban O,O-Diethyl 0-3,5,6-trichloro-2- pyridyl phosphorothioate: HH-382. (Unpublished study received Aug 28, 1972 under 3F1306; submitted by Dow Chemical U.S.A., Midland, Mich.; CDL:092213-B) MRID No. 00064934

Timchalk, C., Poet, T. S., and Kousba, A. A (2006). Age-dependent pharmacokinetic and pharmacodynamic response in preweanling rats following oral exposure to the organophosphorus insecticide chlorpyrifos. *Toxicology*. **220**, 13-25.

US EPA. 1999. US Environmental Protection Agency. Policy on a Common Mechanism of Action: The Organophosphate Pesticides. Federal Register 64(24):5795-5799. February 5.

U.S. Environmental Protection Agency. 2006. Revised Organophosphorous Pesticide Cumulative Risk Assessment, July 31, 2006. Office of Pesticide Programs, U.S. Environmental Protection Agency. Washington, D.C. Available http://www.epa.gov/pesticides/cumulative/rra-op/

U.S. Environmental Protection Agency. 2000. "The Use of Data on Cholinesterase Inhibition for Risk Assessments of Organophosphorous and Carbamate Pesticides"; August 18, 2000. Available: <u>http://www.epa.gov/pesticides/trac/science/cholin.pdf</u>

U.S. Environmental Protection Agency. 2002. Revised Organophosphorous Pesticide Cumulative Risk Assessment; June 10, 2002. Office of Pesticide Programs, U.S. Environmental Protection Agency. Washington, D.C. Available: http://www.epa.gov/pesticides/cumulative/rra-op/ U.S. Environmental Protection Agency. 2006. Revised Organophosphorous Pesticide Cumulative Risk Assessment, July 31, 2006. Office of Pesticide Programs, U.S. Environmental Protection Agency. Washington, D.C. Available http://www.epa.gov/pesticides/cumulative/rra-op/

U.S. Environmental Protection Agency. 2000. "The Use of Data on Cholinesterase Inhibition for Risk Assessments of Organophosphorous and Carbamate Pesticides"; August 18, 2000. Available: <u>http://www.epa.gov/pesticides/trac/science/cholin.pdf</u>

U.S. Environmental Protection Agency. 2002. Revised Organophosphorous Pesticide Cumulative Risk Assessment; June 10, 2002. Office of Pesticide Programs, U.S. Environmental Protection Agency. Washington, D.C. Available: <u>http://www.epa.gov/pesticides/cumulative/rra-op/</u>

Warner, S.D.; Gerbig, C.G.; Strebing, R.J.; et al. (1980) Results of a Two-Year Toxicity and Oncogenic Study of Chlorpyrifos Ad- ministered to CD-1 Mice in the Diet. (Unpublished study received Mar 20, 1980 under 464-343; submitted by Dow Chemical U.S.A., Midland, Mich.; CDL:242059-A). MRID No. 00054352

Weitman SD, Vodicnik MJ, and Lech JJ. (1983). Influence of pregnancy on parathion toxicity and disposition. Toxicol Appl Pharmacol. Nov;71(2):215-24.

Wilmer, J.; Berdasco, N.; Crissman, J.; et al. (1992) Chlorpyrifos: Acute Neurotoxicity Study in Fischer 344 Rats: Lab Project Number: K-044793-093B: K-044793-093C: K-044793-093D. Unpublished study prepared by The Dow Chemical Co., Toxicology Research Lab. p.271. MRID No. 42669101

Won, Y. K., Liu, J., Olivier, K., Jr., Zheng, Q., and Pope, C. N. (2001). Agerelated effects of chlorpyrifos on acetylcholine release in rat brain. *Neurotoxicology* **22**, 39-48.

Young, J.; Grandjean, M. (1988) Chlorpyrifos: 2-Year Dietary Chronic Toxicity-Oncogenicity Study in Fischer-344 Rats: Study ID: TXT:K/044793/079. Unpublished study prepared by Dow Chemical Co. 990 p. MRID No. 40952802

Zheng, Q., Olivier, K., Won, Y. K., and Pope, C. N. (2000). Comparative cholinergic neurotoxicity of oral chlorpyrifos exposures in preweanling and adult rats. *Toxicol Sci* **55**, 124-32.

GDLN	STUDY	DOSE (mg/kg/day)(1	RESULTS (mg/kg/day) (1)				
	Subchronic Toxicity						
82- 1(a)	Subchronic Feeding in Rats (90 days) MRID #: 40436406 Makhteshim-Agan; Crown et al. 1985 Core Grade: acceptable guideline	0, 0.025, 0.5, or 10 (0, 0.5, 10 or 200 ppm)	 95.5% a.i. chlorpyrifos NOAEL ChEI: none for plasma ChEI due to reductions in male plasma enzymes at 0.025 LOAEL ChEI: 0.025 (significant 22%↓ in plasma ChE activity that was dose-related) NOAEL (systemic): 0.5 LOAEL (systemic): 10 Effects: decreased weight gain and slight 				
			decreases in packed cell volume, red cells and hemoglobin <u>Note</u> : Female ChEI data is unreliable due to a possible reporting error. RBC and brain ChE activity were not measured.				
82- 1(a)	Subchronic Feeding in Rats (90 days) MRID #: 40952801 Szabo et al. 1988	0, 0.1, 1, 5 or 15	95.7 - 98.5% chlorpyrifos NOAEL: 0.1 (plasma and RBC ChEI) LOAEL: 1 (significant plasma and RBC ChEI in both sexes)				
	Core Grade: acceptable guideline		<u>Effects</u> : increased organ weights (brain and heart), and reduced weight gain at 15 mg/kg/day and increased adrenal gland vacuolation and significant brain ChEI in both sexes 5 and 15 mg/kg/day.				
82- 1(b)	Subchronic Oral (capsule) in Beagle Dogs MRID #: 42172801 Barker 1989 Core Grade: acceptable guideline	0, 0.01, 0.22, or 5	 95.8% chlorpyrifos NOAEL: 0.01 LOAEL: 0.22 (significant 33-67% ↓ plasma and 24-46% ↓ RBC ChEI) Effects: Brain ChEI (46% ↓) occurred at 5 mg/kg/day. <u>Comments</u>: At 0.01 mg/kg/day, plasma ChEI noted in females (significant 20-24% at week 6, and non-significant 24% at week 12) and males (15% at week 13) that was not considered of sufficient magnitude and consistency to be biologically and toxicologically meaningful. 				
	Subchronic Oral feeding in Beagle Dogs MRID #: 45466501 2001 Marable, B.; Baker, P.; Stebbins, K.; et. al. (2001) Core Grade: acceptable non-guideline for RBC and brain ChE only	0, 0.5, 1 or 2 mg/kg	97.6% chlorpyrifos NOAEL: < 0.5 LOAEL: 0.5 (significant 41-56% ↓ RBC ChE for females and males, respectively) <u>Effects</u> : No significant Brain ChEI at 2 mg/kg/day.				

Attachment A: Summary of Registrant Toxicology Studies for Chlorpyrifos

GDLN	STUDY	DOSE (mg/kg/day)(1	RESULTS (mg/kg/day) (1)
82-2	21-Day Dermal Toxicity Study in Rats and 4-day Dermal Probe Study MRID #: 40972801 Calhoun and Johnson 1988 Core Grade: acceptable guideline	0, 0.1, 0.5, 1 or 5 (21 day study) 0, 1, 10, 100 or 500 (4-day dermal probe study)	 100% chlorpyrifos NOAEL: 5 (plasma and RBC ChEI) LOAEL: 10 (45% plasma and 16% RBC ChEI following 4 days of exposure) NOAEL (systemic): not identified LOAEL (systemic): not identified (>5) <u>Effects</u>: Slight erythema in 2/4 females at 1 and 10 mg/kg/day, respectively.
82-4	Subchronic Inhalation in Rats (90 days) (nose only) MRID #: 40013901 & 40166501 Corley et al. 1986a,b Core Grade: acceptable guideline	0, 5.2, 10.3 or 20.6 ppb (0, 72, 143 or 287 µg/m ³) (maximum dose equivalent to 0.044-0.082 mg/kg/day)	100% chlorpyrifos NOAEL: not identified (ChEI and systemic) LOAEL: not identified at highest attainable vapor concentration (>20.6 ppb or 287 μg/m ³) (ChEI and systemic)
82-4	Subchronic Inhalation in Rats (90 days) (nose only) MRID #: 40908401 Makhteshim-Agan; Newton 1988 Core Grade: acceptable guideline	0, 5, 10 or 20 ppb (0, 70, 143 or 287 μg/m ³) (equivalent to 0, 0.024, 0.048 or 0.097 mg/kg/day, respectively)	95% chlorpyrifos NOAEL: not identified (ChEI and systemic) LOAEL: not identified at highest attainable vapor concentration (>20 ppb) (ChEI and systemic)
	C	hronic Toxicity/Ca	rcinogenicity
83-1& 2	Chronic feeding/ carcinogenicity study in F344 rats (2 yrs) MRID # 42172802 Crown et al. 1990 Core Grade: acceptable guideline	Males: 0, 0.0132, 0.33 or 6.99 and Females: 0, 0.0146, 0.365 or 7.78 (0, 0.2, 5 or 100 ppm)	 96.1% chlorpyrifos NOAEL:0.0132 LOAEL: 0.33 (significant 15-51% plasma ChEl in both sexes, 19-31% RBC ChEl at 104 weeks vs. controls and 11-17% RBC ChEl vs. vehicle controls) NOAEL (systemic):0.33 LOAEL (systemic): 6.99 Effects: decreased body weights in males and females, and cataracts, and diffuse retinal atrophy

GDLN	STUDY	DOSE (mg/kg/day)(1	RESULTS (mg/kg/day) (1)
83-1 & 2	Chronic feeding/ carcinogenicity study in F344 rats (2 yrs) MRID # 40952802 Young and Grandjean 1988 Core Grade: acceptable guideline	0, 0.05, 0.1, 1 or 10	Lorsban 98.5% chlorpyrifos NOAEL: 0.1(plasma and brain ChEI) LOAEL: 1 (significant 39-86% plasma, 14-34% RBC and 5-9% brain ChEI) NOAEL (systemic): 1 LOAEL (systemic): 10 <u>Effects</u> : decreased body weight gain, red blood cells, hemoglobin, cholesterol, protein, and globulin, and increased platelets and specific gravity, increased adrenal gland weight, and fatty vacuolation of the zona fasciculata. No evidence of carcinogenicity.
83-1b	Chronic feeding study in beagle dogs (2 yrs) MRID # 00064933 & 00146519 McCollister et al. 1971, Kociba 1985 Core Grade: acceptable guideline	0, 0.01, 0.03, 0.1, 1 or 3	 97.2-98.8% chlorpyrifos NOAEL: 0.01, 0.03, & 1 for plasma, RBC and brain ChEl, respectively LOAEL (plasma ChEl): 0.03 (mostly significant mean of 23-29% ↓ at 1 year and 10-24% ↓ at 2 years) LOAEL (RBC ChEl): can not be established due to data quality issues LOAEL (brain ChEl): 3 (19.4-20.8% ↓ at 2 yr) NOAEL (systemic): 1 LOAEL (systemic): 3 Effects: increased absolute and relative liver weights that could be an adaptive response
83-2	Chronic feeding study in CD-1 mice (2 yrs) MRID # 00054352 & 00142902 (Accession No. 242059) Warner et al. 1980 Core Grade: acceptable guideline	0, 0.5, 5 or 15 ppm (highest dose tested is 2.25 mg/kg/day)	 99.6% chlorpyrifos LOAEL: 2.25 (90%↓plasma, and 50%↓ RBC ChE activity relative to controls after 1 week) NOAEL(systemic) = 2.25 LOAEL (systemic): none observed (>2.25) <u>Effects</u>: no systemic effects observed at highest dose tested (HDT). No treatment-related tumors. ChE only measured at 15 ppm (2.25 mg/kg/day) after 1 and 4 weeks.

GDLN	STUDY	DOSE (mg/kg/day)(1	RESULTS (mg/kg/day) (1)
83-2	Chronic feeding/ carcinogenicity study in CD-1 mice (78 weeks) MRID # 42534201 Gur 1992 Core Grade: acceptable guideline	Males: 0, 0.89, 8.84, 45.2 Females: 0, 0.938, 9.79, or 48.1 (0, 5, 50 or 250 ppm)	 95.5% chlorpyrifos NOAEL: none for ChEI LOAEL: 0.89 males; 0.938 females (significant 45-51% plasma ChEI in both sexes) NOAEL (systemic): 8.84 males, 9.79 females (50 ppm) LOAEL (systemic): 48.1 females, 45.2 males (HDT; 250 ppm) <u>Effects</u>: decreased body weight gain and food consumption in males, decreased water consumption in females, increased incidences of keratitis and hepatocyte fatty vacuolation, and increased incidence of gross clinical findings (ocular opacity and hair loss) in both sexes. Brain ChE was inhibited at the high dose in both sexes. No evidence of carcinogenicity. <u>Note</u>: The validity of the RBC ChE assay is questionable.
		Developmental	Toxicity
83-3a	Developmental Study in CD rats (gavage) MRID# 40436407 Makhteshim-Agan; Rubin et al. 1987a Core Grade: acceptable guideline	0, 0.5, 2.5 or 15 (gestation day 6-15)	96.1% chlorpyrifos <u>Maternal NOAEL</u> : none observed for plasma ChEI; 2.5 for systemic <u>Maternal LOAEL</u> : 0.5 (decreased plasma ChEI); 15 (systemic) based on decreased food consumption (only the first few days of dosing) and body weight during dosing. <u>Developmental NOAEL</u> : 2.5 <u>Developmental LOAEL</u> : 15 (HDT) based on an increase in post-implantation loss. <u>Comments:</u> RBC and brain ChE were not
83-3a	Developmental Study in F344 rats (gavage) MRID# 00130400 Ouellette et al. 1983	0, 0.1, 3, or 15 (gestation day 6-15)	measured. 96.6% chlorpyrifos <u>Maternal NOAEL</u> : 0.1 (plasma and RBC ChEI) <u>Maternal LOAEL</u> : 3 (90.3% plasma and 74.3% RBC ChEI)
	Core Grade: acceptable guideline		<u>Developmental NOAEL</u> : none identified <u>Developmental LOAEL</u> : none identified (>15 highest dose tested, HDT)

GDLN	STUDY	DOSE (mg/kg/day)(1	RESULTS (mg/kg/day) (1)
83-3a	Developmental Study in CF-1 mice (gavage) MRID# 00095268 Deacon et al. 1979 Core Grade: Not acceptable guideline	0, 0.1, 1, 10, or 25 (gestation day 6-15)	 96.8% chlorpyrifos <u>Maternal NOAEL</u>: 0.1 (plasma and RBC ChEI); 10 (systemic toxicity) <u>Maternal LOAEL</u>: 1 (plasma and RBC ChEI); 25 (systemic toxicity) based on decreased body weight, food and water consumption, and increased mortality. <u>Developmental NOAEL</u>: 1 (plasma and RBC ChEI); 10 for systemic toxicity <u>Developmental LOAEL</u>: 1 (plasma and RBC ChEI); 10 for systemic toxicity <u>Developmental LOAEL</u>: 10 (plasma and RBC ChEI); 25 (systemic toxicity) based on minor skull variations, delayed ossification of skull bones and sternebrae and reduced fetal body length. <u>Comments:</u> Brain ChE not measured.
83-3 (b)	Developmental Study in New Zealand rabbits (gavage) MRID# 40436408 Makhteshim-Agan; Rubin et al. 1987b Core Grade: acceptable guideline	0, 1, 9, 81, or 140 (gestation day 7-19)	 96.1% chlorpyrifos <u>Maternal NOAEL</u>: none observed for plasma ChEI; 81 for systemic toxicity <u>Maternal LOAEL</u>: 1 (plasma ChEI); 140 for systemic toxicity based on reduced food consumption, body weight loss, and apparent post-implantation loss. <u>Developmental NOAEL (systemic)</u>: 81 <u>Developmental LOAEL (systemic)</u>: 140 based on slightly decreased fetal weights and crown-rump lengths, and an increased incidence of unossified xiphisternum and/or 5th sternebra.
83-6	Developmental Neurotoxicity Study in Rats MRID: 44556901 Hoberman. 1998a,b Core Grade: unacceptable guideline, but upgradeable	0, 0.3, 1, or 5 (gestation day 6 through lactation day 11)	 99.8% chlorpyrifos <u>Maternal NOAEL</u>: none observed for plasma or RBC ChEI <u>Maternal LOAEL</u>:≤0.3 (43%↓ plasma and 41%↓% RBC ChE activity relative to controls) <u>Developmental NOAEL (systemic)</u>: can not be determined <u>Developmental LOAEL(systemic)</u>: can not be determined <u>Comments</u>: at 1mg/kg/day significant treatment-related decrease in the measurement of the parietal cortex, supported by possible (although nonsignificant) alterations in the hippocampal gyrus, in the brain of female rats at postnatal day 66. Morphometric data for low-dose (0.3 mg/kg/day) female rats at postnatal day 66 have been requested.

		DOSE	RESULTS
GDLN	STUDY	(mg/kg/day)(1	(mg/kg/day) (1)
NA	Cholinesterase and Metabolite Determination Study in Rats (Companion Study of the Developmental Neurotoxicity Study) MRID: 44648101 Mattsson et al. 1998 Core Grade: Acceptable Non- guideline	0, 0.3, 1, or 5 (gestation day 6 through lactation day 11)	 99.8% chlorpyrifos <u>Maternal Effects</u>: Dams in the 0.3 mg/kg/day group exhibited a 52%↓ plasma and 39↓% RBC ChE activity relative to controls <u>Developmental Effects</u>: Pups in the 5 mg/kg/day group exhibited an 85%↓ plasma, 92↓% RBC, 82%↓ heart and 60%↓ brain ChE activity relative to controls <u>Note</u>: This is a pharmacokinetic study, and therefore, NOAELs and LOAELs were not identified
		Reproductive	Toxicity
83-4	2-Generation Reproduction Toxicity in SD Rats MRID No: 41930301 Breslin et al. 1991 Core Grade: acceptable guideline	0, 0.1, 1, or 5 for 10 (F0) or 12 (F1) weeks prior to mating, through lactation and weaning	97.8-98.5% chlorpyrifos Parental NOAEL: 0.1 Parental LOAEL: 1 (significant 43-59% plasma, and 65-69% RBC ChEI at 1 mg/kg/day; and 48- 49% brain ChEI and histological lesions of the adrenal gland at 5 mg/kg/day). Reproductive NOAEL: 1 Reproductive LOAEL: 5 (HDT) based on reduced pup weight and increased pup mortality in F1 generation only.
83-4	3-Generation Reproduction Toxicity in SD Rats MRID No: 00029064, 00064934 Thompson 1971 Core Grade: acceptable guideline	0, 0.03, 0.1,or 0.3 for first generation, and 0.1, 0.3 or 1 for second and third generation	Parental NOAEL: 0.1 Parental LOAEL: 0.3 (plasma and RBC ChEI) Reproductive NOAEL: >1 (HDT) Reproductive LOAEL: not identified
		Neurotoxi	city
81-7	Delayed Neurotoxicity Study in Hens MRID No: 40510601 1987; Roberts et al. 1987 Core Grade: acceptable guideline	0, 50, 100 or 110	96.8% chlorpyrifos NOAEL: 110 (HDT); No delayed neurotoxicity
81-8	Acute Neurotoxicity Study in Rats MRID 42669101and 42943101 Wilmer et al. 1992 Core Grade: acceptable guideline	0, 10, 50 or 100	 98.2% chlorpyrifos NOAEL (systemic): 10 LOAEL (systemic): 50 <u>Effects</u>: Decreased body weight, and motor activity and increased incidence of adverse clinical signs ChE activity not measured

GDLN	STUDY	DOSE (mg/kg/day)(1	RESULTS (mg/kg/day) (1)
ΝΑ	Acute Pharmacokinetic Study in Rats MRID 44648102 Mendrala and Brzak 1998 Core Grade: acceptable nonguideline	0.5, 1, 5, 10, 50, 100	89.4-99.8% chlorpyrifos NOAEL: 0.5 LOAEL: 1 (28-40% plasma ChEI at the peak time of inhibition, 3-6 hours post exposure) Other: significant brain ChEI at doses ≥10 Note: red blood cell ChE measurements were not collected.
82-8	13 Week Rat Neurotoxicity Study MRID 42929801 Shankar et al. 1993 Core Grade: acceptable guideline	0, 0.1, 1, 5, or 15	 98.2% chlorpyrifos NOAEL (systemic): ≥15 LOAEL (systemic): none established <u>Effects</u>: Decreased motor activity and an increased incidence of urine incontinence in females. <u>Note</u>: This study did not measure ChE activity.
ΝΑ	Special Acute Neurotoxic Esterase (NTE) Rat Study MRID 44273901 Dittenber 1997 Core Grade: acceptable non-guideline	0, 1, 5, 10, 50 or 100	 98.1% chlorpyrifos NOAEL: 1 [plasma ChE, and RBC and heart acetyl ChE] LOAEL: 5 (45% plasma ChEI; 17% RBC AChEI; and 19% heart AChEI). Effects: NTE was not inhibited at any dose. <u>Note</u>: ChE measurements were made 24 hours post exposure.
NA	Cognitive Rat Study MRID 44020901 Maurissen et al. 1996 Core Grade: Acceptable non guideline	0, 1, 3, or 10 for 5 days/week for 4 weeks	 98.1% chlorpyrifos NOAEL: none observed (plasma and RBC ChE), LOAEL: 1 (68% plasma ChEI; 56% RBC ChEI and 8% brain ChEI). NOAEL (systemic): 1 (miosis) LOAEL (systemic): 3 (miosis)
83-6	Developmental Neurotoxicity Study in Rats MRID: 44556901 Hoberman. 1998a,b Core Grade: unacceptable guideline, but upgradeable	0, 0.3, 1, or 5 (gestation day 6 through lactation day 11)	99.8% chlorpyrifos <u>Maternal NOAEL</u> : none observed for plasma or RBC ChEI <u>Maternal LOAEL</u> : ≤0.3 (43%↓ plasma and 41%↓% RBC ChE activity relative to controls)

(1) Unless specified.ChEI = Cholinesterase Inhibition

RBC = red blood cell

NOAEL = No Observable Adverse Effect Level

LOAEL = Lowest Observable Adverse Effect Level

NA= Not applicable