


-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

Background Document for the Scientific Advisory Panel on Orchard Airblast:
Downwind Deposition Tolerance Bounds for Orchards
July 23, 1999

Table of Contents

SUMMAIY . . e et e e e e e e e e e e e e e e e e e 3
INtrOdUCHION . . 4
Overall StUdY DeSIgN . . . .ot 6
Background . . . ... 6
Validity of Generic Approach . ... ..ot e 10
Range of ConditionS . ... ... i 10
Equipment and PractiCes . . ... ..o 10
Cariers/Formulations . . . . .. ..o 11
MEtEOIOIOgY . . . v vttt 11
OrCNaIdS . .o 13
Evaluation of DataQuality . . . ... ... i 14
Tracer Stability and SpikeRecovery . ... 14
DEPOSItION . . oo 15
MaESS ACCOUNTING . . . vttt et et et e e e e e e e e e e 17
AOMIZAION . . 18
Feld Study ResUItS . . ..o 21
General Comments of the Peer Reviewers . ... ... e 25
Data AnalySISfor EXpOSUre ASSESSMENT . . . .o ottt et et e e e e e 26
Overview of Objectivesand ISSUES. ... ... . it e 27
Orchard GroUPINGS . . .o ot it et e e e e e e e e 28
Statistical ProCedUIreS . ... ... 30
Overview of Procedures. .. ... .. i 30
Adjustment of Distancesto Measurement Points. . .............. ... .. ........ 31
Distance-Deposition Curves, Regresson Methods., ............ ... ... ... ..... 32
Tolerance Bound Calculations. .. ... ...t 33



-
<
L
=
-
O
o
(@
L
>
—
- -
O
o 4
<
<
o
Ll
2
=

Regression and Tolerance Bound Results . . ... .. ..o 35
RESUITS . . . o 35

Limitations and Possible Refinements of the Deposition Bounds as used for orchard airblast

studiesand ground spray StUAIES. . . .. .. .o e 39
Ganzelmeier Data on Drift from Airblast Applications . ............. ... ... ... .. ..., 41
REEIENCES . . . .o 46
APPENAICES . ..ot 49



-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

. Summary

The Environmental Fate and Effects Division (EFED) of the Office of Pesticide Programs (OPP)
currently has no model for estimating spray drift from orchard airblast applications.
Consequently, EFED’ s environmental risk assessments include standard estimates drift. To
develop atool which could be used to estimate downwind drift at a range of distances the Spray
Drift Task Force's (SDTF) data set was analyzed and used to develop two generic deposition
curves. These curves are proposed to form the basis of a method for estimating drift from
orchard airblast applications. As part of an ongoing peer review effort, EFED seeks the opinions
of the Scientific Advisory Panel (SAP) regarding the orchard data and their potential regulatory
use. The deposition curves from the data are proposed to be used in risk management for setting
buffer zones. There may be cases where EPA finds that estimated deposition from spray drift
(using these curves) would present an unreasonable risk that cannot be mitigated to acceptable
levels. In such cases, EPA may decide not to register a particular use on the basis of this
assessment.

The SDTF, acodlition of pesticide registrants, performed airblast studies that quantified drift from
pesticide applications in eight distinct orchard environments. Meteorological conditions,
atomization data, drift measurements and grower interviews were collected in support of these
studies as well asinformation on analytical recovery and tracer stability. The application
equipment chosen was supposed to represent that most commonly used. The effects of canopy
spacing, size and density were suggested to be the most important factors affecting drift.
Deposition levels were not, however, quantitatively related to measured variables. No corrections
were made to account for losses of pesticide tracer due to degradation or extraction recovery.

In order to consolidate the SDTF data set into aform useful for assessing downwind drift,
deposition data were grouped into high drift potential orchards and low drift potential orchards.
Orchard groupings are hypothetical categories of different orchards based on their relative
potential to allow drift. The high drift grouping is composed of data from orchards containing tall
trees (pecans), dense canopies (citrus), spaced canopies (young orchards), and dormant trees.

The low drift grouping is composed of data from medium canopy densities (apple and amond)
and 2 meter high vineyards. The development of these groupings was based on observed
deposition values from individual orchards and physical characteristics expected to result in higher
drift.

Mean deposition versus distance curves and corresponding tolerance bounds were developed for
the high and low groupings. Statistical analysis was performed by fitting individual applications
with a smple exponential decay function and then using the calculated depositions from the
function to estimate variability at a range of distances to determine tolerance bounds.

Datafor each tree crop type (e.g., dmonds) were collected from a single orchard, minimizing
variability. Anayzing deposition values across groups of different orchard types increases
variability which helpsto offset the lack of variability in the study design.
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Grouping also isintended to alow the datato be bridged to represent more orchard types than
those included in the SDTF study orchards. Orchard groupings are intended to be used as
surrogates for other orchard types with similar physical parameters (e.g., height, canopy density,
canopy spacing). If data are provided to define the physical characteristics for an orchard type of
a species or variety not included in the high or low groupings, it should be possible to categorize
the orchard into an existing grouping.

I1. Introduction

EFED risk assessments normally estimate a fixed amount of spray drift from orchard airblast
applications. The aquatic exposure scenario for airblast uses a standard 5% of the application rate
which deposits on a 64 meter wide, one hectare pond immediately adjacent to the orchard. This
valueis used for al types of orchards and application equipment. No valueis presently used to
assess deposition to ponds farther from the edge of the orchard making it difficult to assess risk
reduction from the use of buffer zones. There is an immediate need within EFED for a model
which provides more information on how orchard type and distance affect downwind drift.

Pesticide drift, as defined by the Association of American Pesticide Control Officials, isthe
physical movement of pesticide through the air at the time of pesticide application or soon
thereafter from the target site to any non- or off-target site. This definition intentionally excludes
off-site movement of pesticides due to volatilization and other secondary causes. Under the
Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) pesticide registrants are conditionally
required to submit study data on the propensity of their products to result in off-target deposition.
In the past this requirement has been dealt with on a chemical by chemical basis. However, since
drift potentia of pesticidesis largely independent of the chemical nature of the active ingredient,
the SDTF has carried out a number of studies to approach the FIFRA requirement generically.
The studies performed by the SDTF have been divided into categories by application method:
aerial, ground hydraulic, chemigation and orchard airblast. This review of the SDTF orchard
airblast studies emphasizes data collected on horizontal surfaces.

During 1993 and 1994 the SDTF conducted drift studies on orchard airblast applications. Their
data was submitted to EPA in the form of severa reports. In December 1998, a scientific peer
review workshop was organized by EFED. Scientists participating in the workshop were asked
to review the SDTF studies for airblast, ground hydraulic, and chemigation application methods.
The questions posed to reviewers were:

1. Arethe reports scientifically sound in terms of study design, analytical methods, data collection,
statistical analysis and interpretation.

2. Do the data support the generic approach used by the SDTF, i.e., is drift independent of the
chemistry of the active ingredient?

3. How do atomization studies on spray mixtures relate to field studies?
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4. What are the limitations of the data set for predicting potential exposure of non-target
organisms to pesticide drift?

5. What factors most influence off-target spray drift of pesticides?

6. To what extent can the data be related to drift that might result from typical airblast and ground
Spray pesticide applications?

The overall view expressed by the participants from academia and government research and
regulatory ingtitutions was that the quality of the data was high relative to other drift studies and
the data were acceptable to use for risk assessment purposes. All reviewers felt that canopy type
and structure are particularly important factors in orchard spray drift and that the SDTF database
contains a very good range and mix of canopy architectures. The sprayers selected for the studies
were considered typical of those used across the country and were appropriate for the selected
canopy conditions. Environmental conditions (wind speed, humidity, etc) were also considered
important. When the studies are taken as a whole, the range of conditionsis quite good.
However, the range of conditions for any individual canopy study was somewhat limited. One
comment made by nearly every reviewer was that very little statistical evaluation of the data had
been conducted by the SDTF. This comment led to the undertaking of the statistical work and
deposition curve development presented is this report. An attempt was made to capture the
criticisms and concerns of the peer reviewers and include them in integrated form. In addition,
severa figuresincluded here are adapted from those of the peer reviewers. Individua reports of
the peer reviewers are included in the background materia for this report.

OPP poses the following questions to the SAP regarding the Spray Drift Task Force orchard
studies, the deposition curves generated from these studies, and the use of these curvesin risk
assessments and risk management:

1. What significant limitations, if any, exist in the orchard data in terms of:
a) application equipment (e.g., nozzles, sprayers)?
b) meteorologica conditions (e.g., temperature, humidity, wind speed)?
C) site conditions (e.g., terrain, crop canopy)?
d) reliability of deposition data (e.g., tank mix tracer concentrations, analytical
recoveries)?

2. Isthe method used for generating the deposition curves appropriate given the data from which
they were devel oped?

3. Doesthe SAP agree that the proposed approach is an improvement over the current methods
used by OPP to predict deposition from off-target spray drift?

4. Given the available information, do the 95th percentile values for the deposition curves appear:
a justified? Are additional correction factors required?



-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

b. realistic? Do the percentile calculations overestimate “real world” levels?

5. Will the outlined method for incrementally increasing orchard size by summing depositions
from inside treatments with increasing offsets be appropriate for adjusting results to varying sized
orchards?

6. Arethe given orchards groupings (high and low) reasonable for:
a. statistical purposes?
b. risk assessment purposes?

7. Do the data provide a sound basis from which to generate deposition curves which can be used
in risk assessment and risk management?

I11. Overall Study Design
A. Background

The SDTF produced four studies on drift and atomization from airblast applications under
different field conditions with varying equipment. Three studies conducted on orchards in
different states were: 1994 Orchard Airblast Study on Pecansin Georgia, 1994 Orchard Airblast
Field Study on Citrusin Florida, and 1993 Airblast Study in California. In addition to the field
studies, studies on the droplet size spectrum produced by equipment similar or identical to that
used in field studies and a report integrating the results from the different studies were also
produced. Surveysfrom 59 growers and applicators from nine states provided information on
practices used in airblast pesticide application. Interviews included questions on types of
equipment used, crops and commodities, future and present orchard spacing and application
techniques.

Airblast applications are distinct from other application methods in the equipment used and the
cropstreated. Since orchard airblast applications are directed into the canopy from inside the
orchard, it islogical to assume that the canopy typeis likely to affect the movement of the
pesticide. Field study designs were chosen to provide an array of canopy types, heights, and
spacings so that the effects of the physical environment on spray drift could be assessed. Air
movement through canopies is likely to vary depending on the type and growth stage of orchard
being treated; thus severa orchards (apple, grape, amonds, oranges, grapefruit, and pecans) were
studied to identify potentia differences affecting the magnitude of drift. Aspects of airblast
applications which were examined in SDTF studies for their effects on spray drift are outlined
below:

1 The largest trees studied were mature pecan trees (20-21 mtall). Applicationsto large
trees require that the pesticide formulation be projected from the airblast apparatus to the
tree tops, pushing the pesticide spray to great heights. Because the lateral distance
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traveled by pesticide drift is related to spray height, it isimportant to examine drift
resulting from applications to tall trees.

The smallest trees studied were small grapefruit trees (~2 mtall). Small trees may just
require lateral projection of the pesticide from the airblast apparatus minimizing the height
of the spray; but small, immature trees have larger spaces between the trees within rows.
Larger spaces are expected to result in greater air flow and thus may increase drift. The
relatively large space (~2.3 m) between the small grapefruit canopies provided atest of
this physical parameter relative to the other orchards where the trees were in contact.

Since pesticides may be applied to trees lacking foliage, drift resulting from applications to
dormant apple trees was studied. (Foliated apple trees were also examined.) Driftislikely
to be affected by the absence of |eaves on the trees alowing relatively unrestricted air
movement through the canopy.

Airblast and mist blowers are different application equipment which may be used in smilar
orchard settings. Drift from mist blower application to grapefruit was studied and
compared to results from airblast applications. Drift from wrap-around sprayer usein a
vineyard was aso measured.

The droplet size spectrum of the pesticide formulation produced during application has
been identified by the SDTF and many independent researchers as an important factor
affecting drift, particularly with aerial applications. The droplet size spectra produced by
airblast and mist blower equipment similar or identical to that used in field studies was
determined under arange of conditions to determine the importance of equipment and
configuration on the production particles with high drift potential.

Drift from spraying the first few rows of the orchard (outside treatments) and drift from the next
few rows further in the orchard (inside treatments) were determined separately. For inside
treatments with tree fruits (see figure below) the sprayer traveled between the third and sixth tree
rows spraying on both sides. For outside treatments spraying took place from the outer most
edge, spraying inward, through the third row of trees. With grapes, the distance between rows
was smaller and the outside treatments and inside treatments consisted of spraying the outermost
four rows on both sides and the next four rows, respectively.

B. Methods

Drift was measured using horizontal and vertical alpha cellulose collection cards, polyurethane
foam (PUF) low volume air samplers, and polyester strings downwind from the application area
Malathion and carbaryl were used as tracers to quantify drift. The horizontal cards after
extraction and analysis by GC (malathion) or HPLC (carbaryl) provided data on the amount of
deposition of the pesticide application. Vertically hung polyester strings provided data on the
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profile of the drift cloud. Drift samples were collected at regular distances from 0to 549 min
three rows, perpendicular to the rows of the orchard, downwind,10-20 minutes after application
was completed. Additional sampling stations at 549 m were spread parallel to the orchard in
order to capture the most drift possible.

The application rate of malathion in the orchards was not determined directly. Althoughin
pesticide field studies it is common practice to measure application rate directly by measuring
horizontal deposition in the field, no such measurements were made in these studies. Instead, the
amount of tracer used per acre was calculated from the tracer concentration of the tank mix
(determined from the known volumes of water and tracer added), determining the volume sprayed
(tanks were calibrated to subtract the volume remaining in the tank after application from the
initial volume), and the acreage sprayed. Deposition data collected from inside the orchard, had it
been collected, could have confirmed calculated application rates. However, given the
heterogeneous three dimensional environment of orchards, spacings between trees and the
intended deposition onto trees, it is possible that measurements made on orchard floors would be
erratic and difficult to interpret. The absence of confirmatory measurements inside the orchard
increases the importance of accurately defining tank mix tracer concentrations which were
problematic (see Tracer Stability and Spike Recovery below).



Figure 1

Inside and outside treatment areas for tree fruit.
(View from above)
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C. Vdidity of Generic Approach

In SDTF aeria application studies, a generic approach focusing on droplet size was validated.
Production of small, light droplets was identified as a critical factor affecting drift in aeria
applications. Droplet size is determined by the physical properties of the tank mix, the application
equipment and operating conditions. Physical properties such as dynamic surface tension and
viscosity, which are important in determining drift potential, are not gresatly affected by the active
ingredient. Thus, in most cases, drift can be assessed independently of the pesticide in the
formulation.

Contrary to aeria applications, airblast applications occur within a varying three dimensional
environment of an orchard which affects air current movement as well as spray interception. The
heterogeneous environment of orchards varies with the type and age of the trees within it and
with the season. These complexities had to be addressed in the airblast drift study design and did
not allow a generic approach across different crop types asin the aerial application studies. The
results of the airblast studies must be considered relative to where the spray was applied.

IV. Range of Conditions
A. Equipment and Practices

The application equipment chosen was intended to be representative of current practices. Models
examined in the SDTF studies were 1) the Wilbur-Ellis sprayer with Albuz AM7 hollow cone
ceramic nozzle tips (as used in the California and Florida orchards), 2) the FMC John Bean Model
9300 CP axial fan blast sprayer fitted with hollow cone ceramic nozzles (as used in the Georgia
Pecan field study), 3) AGTec mist blowers with AGTec mist blower nozzletips, and 4) awrap-
around sprayer with unspecified nozzles used on grapes. The AGTec mist blower used in the
droplet size spectrum study (model 400LPS) was not identical to the type used in the Florida and
Cdiforniafield studies (model 500CS) but nozzles and configurations were identical and airstream
velocities were similar.

It would be costly and impractical to test al airblast equipment used in US agriculture so the
equipment chosen was supposed to represent that most commonly used. It is not clear, however,
how this determination was made. Although interviewed growers and applicators were asked to
specify application equipment, their responses of makes and models of airblast equipment were
not stated in the report. It isalso not clear what differences that may affect spray drift exist
between models. Many growers surveyed stated a transition to tower sprayers which direct spray
downward into trees. However, tower sprayers were not included in the studies.

Application equipment and techniques vary with the crop being treated. Growerstailor their

application practices to suit the orchard receiving a pesticide treatment. Airblast treatments are
conducted to give thorough coverage of leaves and bark with the spray mixture. Spray not

10



-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

contacting atree is wasted so applications are usually directed at trees, with nozzles pointed away
from or above the trees being turned off. Most growers report turning off outside nozzles as they
turn corners, not using outward pointing nozzles on end rows and not using upper nozzles for
small trees. The application methods used in the airblast field studies reflect the common
practices reported in the interviews of growers and applicators.

B. CarriersFormulations

Airblast pesticide applications generally consist of aformulated active ingredient in awater carrier
that may or may not contain surfactant. Drift retardants were not used in field trials because none
of the 59 growers interviewed used a drift retardant product in their applications. Airblast tank
mixes are usualy quite dilute due to the high application volume (50 to 1500 gallong/acre). Thus
the range of physical properties for airblast applications is substantially smaller than for other
application methods using more concentrated formulations.

Inthe SDTF airblast field studies, awater carrier containing phosphate buffer and pesticide tracer
was used. The pesticides were used at rates lower than specified on their labels because multiple
applications were performed on the same rows. The pesticides used as tracers were the
organophosphate insecticide maathion (Florida, Georgia, California) and the methyl carbamate
insecticide carbaryl (California) which are both susceptible to hydrolysis at alkaline pH.
Phosphate buffer was added to the water carrier to reduce pH, increasing the stability of the
tracers.

A different tank mix solution from that used in field studies was used in atomization studies (see
Atomization below). However, given that airblast applications are normally dilute water
solutions, the tank mix solutions used in field and atomization studies probably have similar
properties to those used in general agriculture.

C. Meteorology

The most important meteorological condition affecting spray drift from pesticide applicationsis
usually wind speed. Wind speed was measured both inside and outside the orchards at multiple
heights. As expected, wind speed insde orchards is lower and varies less than outside. The wind
speed range observed inside and outside each orchard is stated in Table 1.

Wind direction shifts were also measured during application and drift periods. Much of the
variation in measurements from different replicatesis likely due to wind direction and turbulence.
During the application and drift periods, wind direction varied by a standard deviation of greater
than 40 degrees and commonly varied by more than 15 degrees. Shifting wind and turbulence
would be expected to greatly affect deposition at given collection sites.  In addition to shifting
wind conditions, some of the differences between replicate deposition measurements may be due
to different wind angles during replicates.

11
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Table 1. Orchard type and wind conditions inside and outside the orchard.

Wind speed (mph)

Orchard type Inside Outside
Pecans 0.6-1.5 3.4-8.7
Grapes 0.4-1.0 1.8-6.9
Almonds 04-1.1 4.1-6.1
Oranges 0.5-1.0 5.8-9.2
Apples 0.4-0.5 3.3-74
Apples (dormant) 0.5-6.2 2.2-12.2
Large Grapefruit 3.8-8.8* 3.6-9.1
Small Grapefruit 2.7-6.9* 3.4-7.3

*These measurements were made above tree height.

Wind angle also leads to a slight underestimation of drift at a given distance. The minimum
distance which the drift cloud can travel to a collection point is the perpendicular distance from
the orchard to the collector. Thisis the distance that was used to describe drift distances and
correlated with magnitude of deposition in the SDTF integration report. The actual distance
traveled would be dlightly greater depending on the wind angle; 1.5% and 6% greater for angles
of 10 and 20 degrees, respectively. Cosine corrected downwind distances can help compensate
for wind angle.

The wind speeds which occurred during these studies cover most of the range under which
growers reported they would make applications. Some growers stated, however, that they would
make airblast applications in higher winds, with 23 mph reported as the highest.

Other meteorolgica data (humidity, temperature, solar radiation, and barometric pressure) were
collected. Relative humidity and temperature, along with other factors, affect evaporation which
decreases drop size while the application is airborne and may increase drift potential.

Richardson number (Ri) was used as a measurement of atmospheric stability in SDTF studies.
Stable conditions, when thereis little vertical mixing, are commonly associated with high drift

12
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levels. The majority of the field study data were collected under neutral or unstable conditions (Ri
<0.1). Sincethe SDTF data were collected under unstable conditions and stable conditions
would be expected to result in higher drift levels, the use of the data should not be extended to
stable conditions.

D. Orchards

Study sites were chosen so that prevailing winds blew perpendicular to orchard rows. A range of
orchard types was chosen to represent the majority of orchardsin US agriculture. The orchard
environment is determined by a number factors including the age and /or size of the trees, the
season (if the trees are deciduous), tree spacing, canopy density, leaf size, and pruning practices.
The sites chosen represent a broad range of canopy types including dormant and small trees which
were expected to pose the highest drift potential.

Canopy densities were quantitatively characterized using an instrument (L1-COR LAI-2000) with
awide angle lens to measure light in severa locations in each orchard. The amount of light
penetrating the canopies was used to quantify the density. The LAI-2000 instrument was used to
calculate leaf areaindex (LAI) values (an estimate of leaf surface area above a unit area of soil)
and diffuse noninterceptance (DIFN) (the percent of sky seen through the canopy). A high LAI
and low DIFN indicate a dense canopy.

Other important orchard characteristics affecting drift are tree height and the amount of open area
between trees (the open distance between canopies). The table below adapted from the SDTF
integration report (MRID 43925701) shows the range of orchard conditions included in the field
studies.

Table 2. Physical parameters of orchards included in the SDTF study. A high leaf areaindex
(LAI) and low diffuse noninterceptance value (DIFN) indicate a dense canopy.

Crop Avgcrop | Approx. space DIFN LAI
height (m) | betw. trees (m)
dormant apples 4.3 3 0.776 0.30
grapes 18 0 0.278 1.52
amonds 7.9 0 0.259 1.57
apples 4.3 0 0.195 191
pecans 20.7 0 0.182 1.96
oranges 5.2 1 0.090 2.81
large grapefruit 4.6 0 0.089 2.77

13
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" small grapefruit 2.7 2.1-2.4 0.069 3.07 "

Growers comments suggested that there is a movement toward orchards with closely spaced trees
pruned on the sides and the top. This geometry facilitates harvest by hand. The result would be
more orchards with small trees and less space between trees. An orchard scenario of this sort was
not examined in these studies.

V. Evaluation of Data Quality
A. Tracer Stability and Spike Recovery

The stability of the tracers was assessed in the tank mixes and on the collection media. Samples
were taken from the spray tanks before and after applications. Tracer concentration
measurements were compared to calculated values. At the time the reports were written, the
stability test results had not undergone quality assurance. In some instances spikes appeared to
undergo significant degradation, but confirmatory studies showed the tracers to be stable. No
corrections for tracer degradation were used.

Any variability in tank mix concentration would directly impact the calculation for relative off-
target deposition. Figure 2 summarizes the ratio of measured tank concentrations referenced to
the mix recipe. Post-spray samples are offset dightly from pre-spray samples. Horizontal lines
indicate the medians at different tracer rates. Analyzed tank samples showed considerable
variability for al three studies ranging from the extremes of 17% and 125% of the mix formula
Generadly, however, medians were within 20% of the mix formula. There appears to be no
consistent bias with respect to tracer type or tracer rate. However, there tends to be a tendency
for the means of the pre-spray samples to be higher than post-spray samples. Representatives of
SDTF have attributed tank mix variability largely to poor mixing at the time of sampling and have
thus justified the use of the tank mix formulae in calculating relative drift amounts. Environmental
fate data show that the tracers used, malathion and carbaryl, have the potential to undergo
alkaline hydrolysis and microbia degradation with half-livesin the order of days.

There is concern that chemical tracer instability may have affected the quality of the deposition
data. Malathion has some potential to volatilize and is not particularly stable, especially under
alkaline conditions (see Table 1, in Ground Boom SAP Background document). Malathion is
susceptible not only to hydrolysis at alkaline pH (half life at pH 9: 0.5 days), but also to aguatic
metabolism under aerobic conditions (half life: 1.1 days). The vapor pressure of malathion is4 x
10° torr. Loss of tracer through volatization, hydrolysis, and/or metabolism could result in
significant underestimates in deposition.

In addition to the above concerns, the results of the Georgia pecan study's tank mix stability are
guestionable. In the first treatment, tank mix data were problematic with low recoveries and high
variability (17.0 and 68.4% recovery of expected tracer) and mishaps in sample handling

14
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(containers were reported to have broken) which made re-analysis impossible. The second
treatment showed greater and more consistent recoveries with 63.2% and 81.1% for first and
second replicates, respectively.

B. Fidd Fortifications on Collectors

High and low level field fortifications of tracers on collection media were used to assess the
stability of tracers during the period from application to analysis. Tracers, dissolved in organic
solvent, were placed on the collection mediain a spot using a micropipette. Field spikes were
either frozen immediately after adding the tracer (unwesathered) or after the drift period
(weathered). Spiked collection media were placed upwind from the application area to avoid
contamination during spraying. Unspiked control samples measured possible contamination.

A potential weaknessin the field fortification protocol is that the spikes were not performed using
tank mix contents. By adding the fortification in an organic solvent the collection media was drier
than that receiving tracer drift in the water carrier. Because the tracers used are susceptible to
hydrolysis, damp conditions are expected to decrease tracer stability. This adds uncertainty, but
because tank mix water was buffered to improve stability in the tank, stability on collection media
may also have been enhanced.

Wesathered and unweathered field fortification samples suggest that some tracer degraded during
the study and storage time. Considerable range exists in recovery as a percentage of spiking level
(seefigure below). In the California study spikes from the tank mix were used but the amount of
spiking material was calculated from the mix formula and not the measured concentration in the
tank. In thisinstance, variability in the samples collected from the tank may increase measured
recovery variability. However, the lab-prepared spikes in organic solvent showed only dightly
less variability in recovery of maathion. Generally, higher fortification levels resulted in higher
recoveries (80-105%) and lower fortification levels resulted in lower recoveries (65-85%). The
apparent loss of tracer at low levels could result in atendency of underestimating deposition in the
far field. Inthe Cdifornia, Florida, and Georgia studies the overall mean recoveries were 78%,
87%, and 89% of spikes on alpha cellulose collectors, respectively.

C. Deposition

For measurements made during a single application at the same distance, variation in measured
deposition isrelatively small. Horizontal deposition was measured on apha cellulose cards at
regular intervals down three collection lines perpendicular to orchard rows. Sampling units were
comprised of three cards spaced 15 m apart but equidistant from the orchard’ s edge. Some
sampling units were consolidated and analyzed as single samples. At other distances samples
were anayzed individually which made it possible to assess variability between collection lines
within single applications. Horizontal apha cellulose cards which were analyzed separately had
an average standard deviation of 22% for 144 sets of three cards.
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Figure 2. Tank tracer analyses (from R.E. Mickle'sreview of SDTF data)
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Deposition results showed high variability between replicate applications. Most applications
scenarios were repeated once (airblast treatments of grapes and dormant apples were
performed one time) and the results were averaged in SDTF tables and figures.

Measurements of drift varied more between replicates of applications than within the same
application. Expressed by percentage of the average deposition, replicates varied between 0.7
and 178%, with an average variation of 55.7%. Variation did not show atrend with distance
from the orchard with the highest variation observed at the 50 m distance (averaging 75.5%).

Airblast and mist blower drift measurements were not made for inside rows of grapefruit

trees. This adds uncertainty to the calculated levels of drift from young orchards with spaced
trees. In other test orchards deposition from inside and outside treatments was measured
separately and then added to determine total deposition. In the grapefruit orchard horizontal
deposition measurements for inside treatments were not included in the study design so total
deposition could not be calculated. In the absence of actual measurements, estimated values
were calculated by extrapolating results from other orchards in the airblast study (excluding
grapes, but including dormant apples). The SDTF assumed the average ratio of deposition
from inside and outside treatments from other orchards would be similar to that in grapefruit
and used this value to extrapolate inside treatment deposition from outside treatment
deposition. In all orchards examined with inside and outside row treatments, deposition
resulting from the outside row was severa times higher than from inside rows in the near field
but similar at greater downwind distances. 1n orchards such as small grapefruit where thereis
space between trees, overall drift and drift from inside rows may be higher than most

orchards. Extrapolating drift data from orchards with different canopies, as was done with the
grapefruit orchards, may underestimate actual drift from orchards with spaced trees. The
estimated inside treatment data from grapefruit were not included in the orchard groupings
used for statistical analyses.

D. Mass Accounting

Calculating mass balance can be a useful check for determining a study’ s overall accounting of
the pesticide sprayed. The mass balance of spray leaving orchards was calculated using string
and horizontal deposition data. String data were used as the measure of drift leaving the
orchard and traveling downwind at set distances. The sum of depositions on the vertical
strings and the horizontal collectors was considered to reflect the total amount of drift at a
given distance. Horizontal deposition integrated over a distance was assumed to decrease
linearly between measurement stations which probably dightly overestimates drift. Using this
approach the recoveries in the 0 to 30 m range ranged from 45 to 225% (or 73 to 143% when
the highest and lowest values were dropped). Inthe 0 to 150 m interval the recoveries ranged
from 52 to 109%. Recovery was lower for the mist blower than airblast.
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E. Atomization

Atomization data show that airblast and mist blower equipment produce very fine sprays.
Atomization studies were conducted with the Wilbur-Ellis airblast, FMC John Bean airblast,
and AGTec mist blower equipment. (The wrap-around sprayer used in grape applications was
not examined.) Droplet size spectrafor the Wilbur-Ellis and AGTec equipment were
determined using a Mavern 2600 laser diffraction particle size analyzer. The spectrafrom the
FMC sprayer was analyzed with a Sympatec Vario/LA HELOS laser diffraction particle size
analyzer which is reported to work on the same principle as the Malvern instrument. These
two instruments were located at different facilities and were not tested against each other at
the time of the reports. Corrections were made in the analyses by computer software for
multiple scatterings of dense sprays close to nozzle tips.

The tank mix solutions used in the field studies were different from those used in the
atomization studies. Pesticide tracers present in the field studies were not used in the
Atomization Droplet Size Spectrafor Airblast Sprayers (except for one non-GL P experiment
containing malathion). Instead, water containing a non-ionic surfactant (Induce™,
predominately containing alkyl aryl polyoxyakane ethers) was used. This solution is expected
to have alow dynamic surface tension (although the value was not determined) which would
favor the formation of small, drift-prone droplets.

Figure 3. Spike recoveries (from R.E. Mickl€e s report).
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Orchard Airblast Trials
Alpha-cellulose Deposit Samplers
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Atomization studies attempted to mimic droplet size spectra produced in field studies.
However, some equipment and carriers varied between the field and atomization studies. The
AGTec mist blower used in the droplet size spectrum study (model 400LPS) was not identical
to the type used in the Florida and California field studies (model 500CS). However, because
nozzles and configurations were identical and airstream velocities were similar, the SDTF
suggested that the spectrum results would be similar.

Results from the atomization study showed the drop size spectrum of the Wilbur-Ellis
apparatus under a range of operating conditions as well as spectra for the mist blower and
FMC sprayer. Drop size spectra were expressed as the droplet diameter at which half of the
spray volume exists in droplets of smaller diameter (D, ) and the volume percentage of spray
in droplets with diameters less than 141mm (V_,,,) which are considered to be most drift
prone. The Wilbur-Ellis airblaster generally produced dightly finer sprays with smaller
nozzles and higher pressures. Larger nozzle angle adso resulted in asmall increase in fine
droplet production.

Atomization results most relevant to field studies are listed below with equipment and
configurations producing finer spray listed first:

Table 3. Application equipment parameters.

crop Equipment pressure (psi) Dyos V 141 (%0)
grapefruit AGTec 45 94 75
mist blower
grape Wilbur-Ellis 200 122 60
grapefruit Wilbur-Ellis 250 128t0 132 | 55to0 56
amond Wilbur-Ellis 200 137 55
apple Wilbur-Ellis 145 134 53
orange Wilbur-Ellis 200 144 51
pecan FMC 200 146 48
John Bean
grapefruit Wilbur-Ellis 145 166t0 170 | 36to 37
dormant apple | Wilbur-Ellis 145 172 37

20



-
<
L
=
-
O
o
(@
L
>
—
- -
o
o
<
<
o
L
2
=

The AGTec mist blower produced the finest droplets with more fines being produced at the
top nozzles. With the exception of the mist blower, droplet size does not vary greatly among
the airblast applications. Factors other than droplet size spectra are probably more important
in affecting drift potentia in most orchard airblast applications.

V1. Field Study Results
A. Rank of Crops by Drift Potential

Trendsin drift potential appeared to be primarily correlated with canopy geometry and to a
lesser extent the drop size spectrum.

Average deposition values from the SDTF studies are presented in the table below. Tree
crops were ranked in the following order, from highest to lowest drift potential based on
horizontal deposition at 15 m (50 ft). These data are shown graphically in the figure below.

Several factors which are likely to affect drift potential are inseparable and are related to
canopy type. For example, spray equipment for pecans is configured to spray to the height of
atall orchard. Also, higher wind speeds are observed in dormant canopies. Thus, with these
studies, it seems reasonable to rank relative drift potential by canopy type. Figure 2 suggests
that drift from applications to different orchards varies with distance. The dormant apple
orchards which had the highest level of drift at 15 misnear the lowest at 300 m. This effect is
likely due to the absence of foliage resulting high deposition near the orchard combined with
the dlightly more coarse spray reducing far field deposition. Mist blower applications resulted
in lower depositions at 15 m than high pressure airblast applications, but this trend was
reversed at farther distances which islikely due to the small droplet size spectrum of the mist
blower relative to airblast sprayers..
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Table 4. Horizontal deposition from study orchards.

Horizontal deposition
(m)
o canopy and
P spacing 0 7.6 15 30 91 752 | 183 244 305 549
% application rate
dormant apples no leaves - 12.2 8.9 2.05 | 0.083 - 0.009 .005 <0.002 <0.002
small grapefruit .
(high pressure I?":' dmﬁf’ - |10 | 635t |32z |0 . |00 ; ; -
airblast) gespacing
very tall,
pecans d;”;edirgte'y 935 | 626 | 468 | 227 | 0378 | 0198 [ 0.105 - - -
between trees
large grapefruit )
(highpressure | densenospace | f g oo | g0 | gopx [ 0121 ] . | 0005 - - -
; between trees
airblast)
smal_l grapefruit short, den_se; } a4 | 278+ | 1.20% 0.151 } 0.064 } } _
(mistblower) large spacing * *
large grapefruit dense; no space } 209+ | 263 0.992 | 0.144 } 0.038 } }
(mist blower) between trees ) ’ * * * -
dense; some
oranges space between - 3.47 1.60 0.468 | 0.062 - 0.032 0.022 0.010 0.004
trees
tall, low density;
amonds no space between - 2.84 0.710 | 0.152 | 0.030 - 0.011 .009 0.004 0.003
trees
ranes short, low
grap density; no space - 0.770 | 0.237 | 0.096 | 0.013 - 0.005 0.003 <0.002 <0.002
(with airblast) betw :
een vines
moderate density,
apples no space between - 0.544 | 0.087 | 0.123 | 0.028 - 0.014 0.010 0.005 0.002
trees
grapes (with short, low
wrap-around density; no space - 0.104 | 0.056 | 0.027 | 0.008 - 0.003 | <0.002 <0.002 <0.002
Sprayer) between vines

*The fraction of deposition arising from inside row treatments was cal culated based on the
relative contribution of inside treatments in other orchards.
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Figure 4

Cumulative horizontal deposition from inside and outside treatments.
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B. Rationale for Calculating Tolerance Bounds

Useful drift estimates for environmental risk assessments should provide aredlistic upper
bound for deposition levels which are expected to commonly occur. The values reported in
the table above are useful in calculating the relative importance of canopy type on drift at a
given distance. EFED believes the values are not directly appropriate for risk assessment
because depositions are expected to regularly exceed the reported values for the following
reasons.

1) The percentages reported are average values. Approximately half of all measurements
would be expected to exceed those reported.

2) Only one replicate was performed so reported values may not represent accurate means.
The variability between applications was frequently high with an average variation of 55.7%
around the mean.

3) Replicates were not conducted in different orchards to assess variability within an orchard
type.

4) Deposition was only measured perpendicular to rows. Downwind deposition parallel to
rows might be higher due to less restricted air movement in thisdirection. Increased
deposition was measured perpendicular to rows of trees with space between them relative to
trees with continuous canopies. Based on this observation, less restricted air movement
down rows of trees would also be expected which could result in higher drift along this axis.

5) Reported values were not adjusted for degradation. Although most tracer recoveries were
reasonable, not accounting for the measured |oss results in another factor which consistently
reduces reported values.

6) Downwind distances did not account for wind angle. Reported values were correlated with
distances perpendicular to the orchard, but actual drift distances are longer due to wind angle.
Thisresultsin asmall underestimate of drift for a given distance.

7) Other canopy types may be less effective at intercepting drift. Given the limited range of
canopies that was practical to test in this study, it is not possible to extrapolate to all other
canopies. For instance, it is not clear what drift could be expected from a banana orchard.

8) Drift resulting from inside treatments in grapefruit orchards was estimated from other
orchards.

9) Only the outermost six rows (eight rows for grapes) were treated. Treating more rows
would result in increased drift.
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Each of the above factors must be considered when using these data directly for risk
assessments. By placing bounds on the data and using correction factors, if necessary, the
data set should be very useful in developing exposure assessments.

VIIl. General Comments of the Peer Reviewers

The reports of the December 1998 peer review workshop on the SDTF airblast studies are
included in the background materia for the SAP. The reviewer’s comments provide an
understanding of the strengths and weaknesses of SDTF studies.

Most of the reviewers gave positive overal comments on the studies and their results. The
scale and level of detail of studies were generally considered to be laudable.

Positive comments included the statements below with referenced page numbersin
parentheses:

Terrell Barry: “The data in this report appears sound in terms of the basic study design,
analytical methods, and data collection techniques.” (Page 1)

“These studies represent a very comprehensive database on drift from orchard blast
applications.” (Page 1)

Robert D. Fox: “In summary, | believe these studies were well planned and conducted, and
that the data obtained was useful as a data base of downwind deposits from spraying severa
tree-fruit canopies and vineyards.” (Page 5)

“Measured deposit values were similar to valuesin other studies reported in the literature for
similar canopies and sprayer treatment, when put on the same basis. No one else has
measured droplet size spectra as accurately asthis study. Or used such awide range of
canopies.” (Page 5)

Steven G. Perry: “The overall study design was very good and scientifically sound. The
studies contribute an excellent database representing drift and deposition over a wide range of
canopies and a reasonable range of spray equipment.” (Page 16)

Jodie D. Whitney: “With few exceptions, the SDTF results on drift deposition downwind of
the orchard are very similar to those in the literature. Given the variability that existsin trying
to make these measurements, my judgement is that the similarity of the results of the SDTF
and other studiesis very acceptable.” (Page 4)

D. Ken Giles: “Thisisagood study. The data represent a dedicated, multi-year, multi-

location effort to characterize airblast spraying, a diverse and difficult application technique
used on very diverse crops.” (Page 1)
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Criticisms of the studies included the following statements:

Steven G. Perry: “... the range of meteorological conditions both for each canopy tested and
over al the canopiesisfairly limited.” (Page 17)

Jodie D. Whitney: “The 2-replicate data in these studies provide only an indication of the
experimental error and caution should be exercised comparing treatment means from 2
replications.” (Page 2)

Robert D. Fox: “There was some variability in measured tank mix concentration. We aso
have difficulty in obtaining exact values of tank mix.” (Page 2)

D. Ken Giles: “The study reports alow level of replication. Many applications were
replicated only once while most were executed twice.” (Page 5)

R.E. Mickle: “The SDTF should assess other studies with data closer to the application zone
in order to establish representative deposit profiles from the application zoneto 7.6 m if buffer
zones of this size are important.” (Page 4)

“The SDTF should address this problem [measured tank mix concentration variability] and
either resolve the issue in terms of why the tank samples were not representative or use the
datafor developing uncertainty bounds for the data set.” (Page 6)

“In order for these data to be related to potential exposure, the SDTF hasto fully assess the
potential losses due to collection efficiency and sample degradation.” (Page 11)

Terrell Barry: “Potentia limitations of the data set for predicting off-site exposure include the
difficulty on interpreting the results due to confounding treatments with wind speeds and the
lack of applications at lower wind speeds.” (Page 1)

After presentations at the peer review workshop, there was a discussion on the use of the data
for regulatory purposes. The peer reviewers were receptive to using percentile curves similar
to the example reported by Terrell Barry for ground hydraulic boom applications. However,
the complexity of the airblast data resulting from the importance and variability of canopy
characteristics made the statistical development of deposition bounds more difficult than
ground applications.

Some reviewers noted that although these extensive studies do not (and could not be expected
to) include measurements of deposition under all possible combinations of canopy structure,
sprayer characteristics, and environmenta conditions, this data base (with its high quality
measurements) fills much of the void in our orchard spray drift knowledge base. If utilized
wisely, it was suggested that these data could serve as the basis for significant improvements
in our current risk assessment methods. Limitations in the overall range of conditions studied
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would be factored into any deposition estimate based on this data.
VIIl. Data Analysis for Exposure Assessment
A. Overview of Objectives and Issues.

For purposes of this report, we are concerned only with bounds that can be used in risk
assessments that they are scientifically defensible. (Anidea assessment would be
“probabilistic,” i.e., would characterize the frequency or probability of exceeding given
magnitudes of exposure or impact.)

We build from the idea of using adistribution percentile. However, in view of the limited
guantity of data, we propose to use procedures that address not only variation in drift
deposition (as represented by distribution percentiles), but also statistical error in estimating
percentiles. A simple percentile would be calculated from a finite amount of more or less
variable data, so there will be some uncertainty regarding the rea percentile. This uncertainty
can be addressed by calculating an upper bound for the percentile. A one-sided bound on a
percentile can aso be called a one-sided tolerance bound.

Use of atolerance bound provides a statement of the general form “we have 85% confidence
that 99% of values will not exceed ... [deposition value]” for a particular distance. We have
actually calculated tolerance bounds for the 95th and 99th percentiles, using confidence
coefficients 65%, 75%, 85%, and 95%, as a function of distance for outside rows. For
example, use of the value with 65% confidence for a given percentile means the odds are
about 2:1 that the bound will be higher than the true percentile. Note that with sufficient data,
use of tolerance bounds converges to use of percentiles. Useful basic references on tolerance
bounds include Hahn and Meeker (1991) and Gilbert (1987).

We have not evaluated the orchard data using statistical methods that we would consider if
the study were “ideal” from the viewpoint of characterizing variation in drift. In the actual
design of the orchard studies, a given treatment (combination of crop and application
procedure) was evaluated twice in sequence in asingle site and year. At a given study site and
year the order of treatments was not randomized. We would consider a different statistical
approach if each treatment had been applied at multiple sites within an appropriate
geographic range. In that case some kind of “mixed” model might also be considered. This
approach would recognize different levels of variation, e.g., variation within a site versus
variation among sites, and would provide estimates of variation specific to different levels.

(A split-plot model is an example of a mixed model.)

For the orchard data, one approach would be to assume that variation among sites and times
does not matter. We have adopted an approach that we consider more cautious. We have
assumed that within several rough groupings of treatments (described below), the variation
observed in the orchard drift data will be higher than would be observed for any single
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treatment. Based on this assumption, we formed groupings of treatments and treated the
variation within a grouping as statistically independent, although the variation observed results
partly from different treatments. Among the treatments in a single category, this approach
will likely be more protective for some than for others. We suggest that the approach
represents some tradeoff between, on the one hand, recognizing some differences among
treatments, and on the other, respecting the limits of the data for making fine distinctions.

B. Orchard Groupings

The characteristics of the different canopies associated with higher drift levels enable
speculation as to the mechanism of increased off-site movement of application.
Characteristics correlated with increased drift are stated below in order of importance with
suggested mechanisms:

Table 5. Canopy characteristics proposed to be associated with drift.

Canopy Characteristic Possible Explanation
Associated with Drift

no leaves less restricted air movement through the canopy
resultsin higher wind speeds in the orchard.

space between trees less restricted air movement around trees can
carry application out of orchard.

tall canopy projection of application to tall tree tops results
in a higher drift cloud which takes longer to
settle and thus travels farther.

dense canopies blocking air flow through the canopy resultsin
movement of wind above and around trees.

The effect of canopy density is opposite at high and very low densities. With no leaves drift is
highest because air movement through the canopy isless restricted. With a dense canopy air
movement is likely pushed above and around trees and results in higher drift than trees with
moderate canopy density. Given the variable and contrary effects at high and very low
densities it is not clear how drift would be affected from orchard canopy types not examined
in the SDTF study.

In order to consolidate the SDTF results into aform useful for assessing downwind drift,
deposition data were grouped to form two orchard groupings: a high drift potential group and
low drift potential group (see table below). The high drift grouping is composed of data from
orchards containing tall trees (pecans), dense canopies (citrus), spaced canopies (young
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orchards), and dormant trees. The low drift grouping is composed of data from medium
canopy densities (apple and ailmond) and 2 meter high vineyards. The development of these
orchard groupings was based on observed deposition values from individual orchards and
physical characteristics expected to result in higher drift.

Initially three groups were created based on physical characteristics following the groupingsin
the SDTF model, AgDRIFT, which is empirically based on the same orchard data. Given that
anatural grouping of orchards was not clearly apparent from deposition data, it seemed
logical to group orchards based on their physical parameters asthey are believed to relate to
drift: Tall and dense trees are expected to result in high drift clouds which are prone to drift
farther. Dormant and spaced trees are expected to alow relatively unrestricted air flow
through the orchard increasing drift. Medium density and medium height canopies are
expected to allow a combination of horizontal movement within the canopy and foliage
capture of pesticide material such that drift beyond the canopy isless than that of tall, very
dense, or very sparse canopies. Vineyards are expected to be effective in trapping drift
because they have medium density canopies and because they are relatively low to the ground
the resulting drift clouds do not travel far. However, graphical analysis showed the difference
between the two higher drift canopy types was small (see figure below). Although the
probable reasons why different orchards associated with high drift were different, the resulting
magnitudes of drift were similar. Given the closeness of the mean values for tall/dense and
spaced/dormant, it seemed appropriate to combine them to form a single high drift grouping.
A low drift group was composed of the vineyard/medium group alone.

Table 6. SDTF orchards included in groupings.

Orchard grouping | Orchard type used in grouping

pecans (tall)

High drift small citrus (spaced trees)
citrus (dense canopies)
dormant apples (sparse)

apples (medium density)
Low drift almonds (medium density)
grape vineyards (low height,
medium density)

Given the distinctness of the mist blower and wraparound sprayer equipment, these data were
not averaged with airblast data but placed in separate groups.

Since the study design generally included only one orchard type per commodity (e.g. one

variety of apple tree in asingle orchard) and did not test all types of orchard trees, the
possibility exists that the test orchards do not reflect the true means and variation of orchards
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inthe U.S. Thelack of data defining the variability in individua orchard types (e.g. pecans)
greatly increases the uncertainty in defining individual orchards, but upon grouping, random
errors should be reduced through averaging. Random errors overestimating drift should tend
to be compensated by random error resulting in underestimates.

Grouping minimizes error that would be generated from averaging the highest and lowest drift
scenarios. Clearly pecan orchards are distinctly different from vineyards, and the two would
be expected to result in very different levels of drift. Grouping is required because averaging
of the highest and lowest drift potential scenarios would not accurately characterize drift
potentia indicated in the data.

Another intention of categorizing the data into groups was to bridge the data to estimate drift
from orchards other than those included in the SDTF study orchards. Orchard groupings are
intended to be used as surrogates for other orchard types with similar physical parameters
(e.g. height, canopy density, canopy spacing) for which detailed drift data are not available. 1If
data are provided to define the physical characteristics for an orchard type of a species or
variety not included in the orchard grouping, it should be possible to categorize the orchard
into an existing orchard grouping (i.e. high or low) and estimate drift without performing field
studies for the specific orchard type.

Orchard groupings are intended to be flexible and to alow for the addition of significant, new
data. Asadditional data become available from ongoing and future studies, it will be possible
to redefine orchard groupings and update deposition values based on orchard physical
parameters and applications methods. To encourage the development and use of drift-
reducing technology, new groupings with lowered deposition values may be developed as
quantitative drift study data become available. Orchard groupings reflecting lower drift levels
may result in lower exposure levelsin risk assessments.

IX. Statistical Procedures
A. Overview of Procedures.
The first step was to reduce the data for each application by fitting a smooth curve relating
percent deposition to distance independently for each application. The purpose of this step
was to reduce the datafor a single application to a small number of curve parameters. In
preliminary analyses, a specific function was found to fit well for most applications (e.g., for
the most part yielding high R? values):

deposition = exp{a + b * (distance™0.5)}
This function has two parameters. a parameter denoted a can be viewed as quantifying

deposition close to the field edge. A second parameter b quantifies how rapidly deposition
falls off with distance from the field edge. The function was fitted separately for each
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application, resulting in an estimate of a and an estimate of b for each application. The
parameter estimates (for a and b) were used as input data for the subsequent analyses, the
calculation of percentiles and statistical bounds. Additional details are given in Section 3
below.

The distance values used in the curve-fitting step were adjusted based on wind angle to
provide an estimate of distance from the field edge, in the wind direction. In addition,
distances for inside applications were adjusted based on the point of application inside the
field. (See Section B below.)

The vaues of a and b for a given application were used to predict deposition at a given
distance from the field edge. Because a and b have distinct values for each application, we
also have adistinct prediction for each application, for a given distance from the field edge.
The predicted values at a given distance were used as a statistical sample to calculate a
tolerance bound at that distance using the procedures described in Section 4 below.

An obvious alternative would be, instead of using predicted values at a given distance, to
restrict attention to those distances actually evaluated in the study, and calcul ate tolerance
bounds based on the actual measurements rather than based on the values predicted from
regression. However, some exposure calculations may require interpolation of exposure at
distances not measured directly. Also, after distance has been adjusted for wind angle or (for
inside rows) distance inside the field, we no longer have collections of measurements at the
same distance. The regression approach places the datain a more uniform and manageable
form. Findly, if we assume that deposition decreases as some smooth function of distance
from the edge of the field, then in principle some information on deposition at a given distance
is provided by the measurements at adjacent distances. Provided that the curvesfit well, this
information is retrieved by the regression approach.

B. Adjustment of Distances to Measurement Points.

For the curve-fitting step (relating deposition to distance), the distances are from the point of
application to the measurement station. For outside rows, the distances are between the field
edge and the measurement station. For inside rows, an “inset” value is added to the distance,
which is the distance between an inside row and the edge of the field. Theinset values we
have used for inside rows are tabulated below.
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Table 7. Inset values for adjusting distances for inside applications

Study Crop Appl. Method Inset (M)
Georgia/94 pecan airblast 45.75
Cdifornia/93 grapes airblast, 14.4
wraparound 14.4
amonds airblast 16.75
orange airblast 16.75
apple airblast 12.25
dormant airblast 12.25

Distances for inside treatments can aso be modified using available information on wind
angle. The wind angle was expressed as degrees ‘relative to normal’ (e.g., O degrees means
that wind perpendicular to the crop rows). Wind angle values varied up to 69 degrees. The
objective of awind angle adjustment is to provide distance from the point of application (the
field edge for outside rows, or a point within the field for inside rows) to the measurement
point. Combining these calculations, distance relative to a point of origin is expressed, for
inside and outside rows, by the formula:

STADIST + INSET
cos{ WINDDEG * K )

where STADIST = gtation distance from edge of field (m);
INSET = inset (m, >0) for inside rows, O for outside rows,
WINDDEG = wind angle in degrees from normal (see above);
K = proportionality constant, depending on whether the cos function is defined
to operate on angles (K=1) or radians (K=3/180).

C. Distance-Deposition Curves, Regression Methods.

For each application we fit a smooth curve relating deposition (denoted y, %application) to
distance (denoted x, in meters). (Here x is assumed to be adjusted for ‘inset’ and wind angle
as described above.) Generdizing the familiar formulafor first-order degradation, aflexible
family of functionsis:

f(x;a,b) = exp(a + bxP).

The vaue of p=0.5 was found to work well for the ground spray data (reported elsewhere),
and in preliminary anayses we have found that choice to work well to the orchard data as
well. The choice p=1, which corresponds to the first-order dissipation curve, appeared
particularly poor in preliminary work. We have uniformly fitted the function with p=0.5 for
the orchard data, i.e., the function we have fitted is
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f(x;a,b) = exp(a + bvVx).

Before fitting curves, non-detect observations were processed as follows. Non-detects were
either deleted from the analysis, or kept and replaced with half the detection limit, according
to the following criteria: (1) A non-detect was kept whenever there was a detection at a more
distant measurement station; (2) If there were non-detects beyond all the detection distances,
only one was kept (the one closest to the field edge).

For each application, the function given above was fitted by regressing the natural logarithm
of deposition against the square-root of distance. This approach results in maximum R? when
comparing predicted to observed values in the log scale.

In preliminary analyses we used approximate ordinary least squares (OL S) methods that
maximize R? in the scale of %oapplication. The basis for the preliminary approach was that the
approach based on transformation might place too high weight on the smallest values, which
are often equal to half the detection limit. However, we have concluded that in the specific
context of pesticide drift analysis, the OL S approach results in unacceptable proportional
errors, particularly for the more distant measurement locations. In other words, errors of a
small fraction of percent of the application rate correspond to a many-fold difference between
observed and predicted values. We note that whether proportional error or absolute error is
more important depends on the application.

It should be noted that if we know that what we need is specifically the arithmetic mean
deposition, back-transforming the results of aregression from the log scale will be somewhat
inaccurate for that purpose. However, we concluded that there was no strong basis for a
specific preference for prediction of the arithmetic mean for a given application, relative to
other measures of central tendency.

Deposition data were available for distances up to 183 m for the GA and Fl studies, and up to
549 m for the CA study. To improve thefit of the curves, the data for 549 m were dropped
for the CA study, so that we used distances up to 335 m for that study. These are distances
from the field edge; distances used for inside applications will be larger.

D. Tolerance Bound Calculations.

An upper tolerance bound covers a percentile & of the distribution, with confidence & 1n our
calculations, a single tolerance bound applies to a combination of percentile of distribution (&
= 95%, 99%), and confidence coefficient (&= 65%, 75%, 85%, 95%), distance from edge of
fied (x =5 m, 10m, 20m, ..., 250 m), and treatment grouping. We have calculated tolerance
bounds only based on the outside applications (not for the inside applications).
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To calculate a bound for deposition at given distance (x), the first step was to plug the
estimates of a and b (calculated as described above using regression of deposition against
distance) into the formula for deposition: If a; and b; denote the estimates for the ith
application, deposition at distance x is estimated by exp( a, + b,vx ) for the ith application. The
resulting estimates of %appl were then used as input for the calculation of tolerance bounds.
The calculations for upper-bound deposition for a given treatment group used the mean
deposition for applications in that treatment group; however, the same coefficient of variation
was assumed to apply for each treatment group, a point that we now develop. Based on that
assumption, we used the same estimated coefficient of variation for each grouping.

With regard to statistical assumptions, we initially concluded that alognormal assumption
would be simple and appropriate. However, the application of lognormal methods resulted in
absurdly high estimates of percentiles, e.g., 99th percentile estimates that exceeded 100% of
the application rate, when the actual measurements were generally less than 0.01%. We think
it isuseful to describe this outcome because lognormal assumptions are popular and
sometimes appropriate in exposure assessment and such an approach is likely to be suggested
from time to time for analysis of spray drift data.

The initia assumption of lognormality was based on preliminary graphical analysis (cumulative
probability plots) which combined the data across treatments ignoring treatment groupings.
(Treatment groupings were even more uncertain at the time than now.) While such plots
definitely appeared more normal after log transformation, further study suggested an
aternative interpretation, namely that variation was reasonably normal within groupings (as
far as one can tell with the limited number of measurements per grouping) but variances were
smaller in groups with smaller means. Logarithmic transformation seemed to result in aright
tail of the distribution falling more abruptly than expected for the normal distribution. A
Bartlett’ stest did not indicate significant differences in variance but the test is not specifically
sensitive to situations where variance increases with the mean, and was implemented with a
limited sample size.

With alarge amount of data per grouping, the variance can be calculated separately for each
grouping. However, we note that the coefficient of variation (standard deviation / mean) was
reasonably similar across treatment groups. We considered it appropriate to develop a
procedure based on the assumption of a common coefficient of variation. Thusthe
assumptions of our approach are that the distribution is normal within each grouping (as usual
in ANOVA); however in lieu of the familiar assumption of equal variances, we assume an
equal coefficient of variation. The (assumed common) coefficient of variation was estimated
using aformulathat pools (in a sense, averages) the sample coefficients from the individual
groups. The formulafor pooling coefficient of variation estimates is a specia case of the
“moment estimator” given by McCullagh and Nelder (1989).

To calculate tolerance bounds based on the equal-CV assumption, we adapt a well-known
procedure based on the noncentral-t distribution (Guttman, 1970). The technical appendix
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develops the agorithm and provides a SAS program (SAS Inst., Inc.). When thereisasingle
sample, the equal-variance and equal-CV approaches are identical and exact. When there are
multiple samples, the equal-variance formulae are exact while the equal-CV approach is
approximate.

For the equal-CV approach, the approximation is of atype that we think isfairly customary,
amounting to replacing an unknown group mean by a sample mean. The approximation is
expected to be better for groups with alarger sample size. In view of the fact that the result is
approximate, a Monte Carlo experiment may be considered in order to evaluate the quality of
the approximation, particularly for small N.

X. Regression and Tolerance Bound Results
A. Results

Results of the regression step (regression of deposition against distance for each application)
are displayed in Table 8. R? values were mostly higher than 95%. For two cases with R?
below 80%, graphs of the raw data against distance indicated that the data was very variable
so that no monotone curve would have yielded a high R?.

Tolerance bounds are given in an Appendix, by percentile, confidence, distance, and treatment
category.

Figures 5 and 6 show mean and 95™ percentile curves compared to sample data from
individual treatments. Each point is the average deposition on three horizontal alpha cellulose
cards at a given distance from the edge of the orchard. Measurements made in the same
application are connected by aline in the graphs.

Graphed data show a reasonable relationship relative to the curves. The mean curve may over
predict mean deposition in the far field because the maority of points fall under the curve
except at short distances. As expected, few points sit above the 95" percentile curve but
enough that so this estimate is not unrealistically high. The apparent relationship between the
field data and the curves suggest that the statistical approach described above would be
appropriate for generic exposure estimates resulting from spray drift.
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Table 8. Results of curve fitting for each application.

Regression Results
Study |Treat- Inside/ Crop Device Treat-
ment ## | Outside ment R Parameter
Grouping Estimates
[1] Iny,In9| vy, 9 a b
[2] [3]
GA/94 1 out pecan airblast 1 94.1% 87.6% 2.751 -0.417
92.1% 82.4% 2550 -0.358
2 in 50.1% 44.8% 0.750 -0.193
62.4% 18.9% 1.104 -0.277
CA/93 102 out grapes airblast 3 94.0% 89.0% 0.302 -0.565
103 in 98.0% 95.6% -0.260 -0.337
104 out wraparound 5 99.1% 98.4% |-2.409 -0.336
97.9% 90.1% -1.239 -0.420
h 105 in 99.5% 98.9% -2.967 -0.279
94.9% 87.0% -2.336 -0.275
z 107 out almonds airblast 3 90.6% 79.7% 0.910 -0.375
m 91.7% 82.8% 1.068 -0.433
108 in 95.4% 86.1% -0.937 -0.284
z 94.5% 94.4% -0.398 -0.463
110 out orange airblast 1 90.6% 93.4% 1597 -0.377
: 96.0% 92.4% 1.609 -0.433
u 111 in 96.9% 98.0% | 0031 -0.255
97.6% 94.3% -0.211 -0.338
o 116 out apple airblast 3 92.4% 76.0% |-0.747 -0.264
a 72.1% 55.3% |-2.063 -0.253
117 in 79.0% 59.7% |-1.355 -0.231
u‘ 63.8% 53.2% |-2.652 -0.188
119 out dormant airblast 2 98.1% 95.7% 3.880 -0.611
> apple
H 120 in 96.3% 92.8% 2.976 -0.558
FL 1 out Large Citrus | airblast 1 91.9% 97.7% 3.565 -0.503
: 99.3% 99.3% 3.318 -0.598
U 4 out mist blower 4 96.8% 96.9% | 2.304 -0.487
98.6% 96.9% 1.908 -0.432
“ 6 out Sm.Citrus airblast 2 98.7% 90.1% 4.017 -0.589
< 99.3% | 98.7% | 3578 -0.586
9 out mist blower 4 96.3% 94.9% 1.955 -0.399
{ 94.5% 77.0% | 2.341 [-0.438
n [1] groupings: 1) large/dense; 2) dormant/young; 3) medium; 4) mistblower; 5) wraparound
m [2] R®for the regression of In deposition against square-root of distance. Thisis optimized by the values of a
and b displayed.
[3] The predicted values from the regression were back-transformed to the scale of %deposition, and we report
m' the the squared correlation with the untransformed measurements of %deposition. Thisis not optimized by
: the displayed valuesof aand b .
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Figure 5. High drift grouping, outside treatments. Predicted deposition and downwind
distance relative to field data.
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Figure 6. Low drift grouping, outside treatments: Predicted deposition and downwind
distance relative to field data.
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2. Limitations and Possible Refinements of the Deposition Bounds as used for orchard
airblast studies and ground spray studies.

The following text isidentical in the ground spray document and the airblast/orchard
document. Material on inside applications applies only to the airblast/orchard studies.

We note several important limitations of the bounds reported here. Here some of the issues
are discussed in fairly general terms. EFED and the authors of this report are considering
some refinements. However, we redlize that in view of the limited quantity of data, the value
of refinements will need to be weighed against the possible value added.

Refinements of the curve-fitting step. We have used a statistical approach that involves fitting
acurve to the deposition results for each application. This step may be refined in two ways.
First, the specific curve we have fitted tends to under-predict for the locations most distant
from the field edge. Therefore we may consider fitting somewhat more flexible curves.
Second, a more rigorous treatment of the non-detects may be adopted from the statistical
literature on analysis of censored data. The development of a more refined regression
approach is likely to be an iterative process.

Incorporating the residual variation from individual regression curves. For our tolerance
bound cal culations the measured values of deposition were replaced with values predicted
using regression equations, which were fitted to the data from individual applications. Since
measured values vary from the predictions, a more refined approach would make use of the
residual variances. For asingle regression curve, the residual variance estimate quantifies the
variation of individua data points from the regression line. A relatively challenging approach
would involve applying spatial statistical methods to the data from the individual collectors.
That approach would take into account spatial auto-correlation as well as the magnitude of
residual variance at the level of individua collectors.

Bounds for integrated deposition. The bounds reported here apply to deposition (% of
applied) at a given distance from the edge of the field, for a series of distances. An agquatic
exposure assessment would require that we integrate the deposition-distance curve over the
surface area of awater body, to calculate mass deposition into the water body. In order to
place an upper bound on integrated exposure, an obvious approach would be to define an
“upper bound deposition curve” as the set of upper bounds over distance, and integrate the
upper bound curve. An aternative which may be somewhat more rigorous would be to
integrate each of the fitted curves separately and apply a tolerance bound calculation to the
values that result.

Itislikely that each variation of the exposure indices will suggest modifications for the
procedure for calculating statistical bounds. Therefore it is desirable to refine the exposure
estimates as much as possible before putting in much more work on the calculation of
statistical bounds. With regard to higher-tier assessments, we note that flexible Monte Carlo
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procedures have been proposed in the risk assessment literature, that appear to address the
statistical error in a manner analogous to our use of tolerance bounds (hierarchical Monte
Carlo, see e.g., Brattin et al., 1996, or bootstrap methods).

Scaling from row to field. The bounds reported here apply to the deposition expected to
result from a single pass of an applicator through the field. If we are to estimate the
deposition from spraying awhole field, it seems that the deposition at a given distance from
the edge of the field would be calculated by summing contributions from drift originating at
different points within the field. If the deposition from spraying a single row has a normal
distribution (as assumed for the computations reported here), the distribution of the sum from
severa rows will also have anormal distribution.

It does not seem reasonabl e to suppose that the deposition from two rows will be statistically
independent, given that adjacent rows are likely to be treated during the same period of a
singleday. Appropriate handling of correlations would need to be worked out by formal
analysis. However we provide some general remarks on the handling of correlations.

Firgt, the issue of correlations can be confusing because of the distinction between the
correlations in the data versus in the field. Depending on how the data were collected, the
former may or may not be viewed as estimating the latter. For example, it appears that the
data cannot be used to estimate the correlation of deposition from outside rows and inside
rows in the orchard airblast studies. In the design of the orchard studies a substantial period
might elapse between the tests with outside and inside rows. It appears that ignoring a
positive correlation would underestimate the variance of total deposition. For example, for
two rows with deposition D, and D,, we have

variance( D, + D, ) = variance( D, ) + variance( D, ) + 2*covariance( D,, D, ).

The more positive the correlation, the less likely a high deposition from one row will be
compensated by alow deposition from the next.

Second, correlations may affect statistical confidence intervals by determining, in effect, the
amount of independent data: If two variables (say A and B) are correlated so that B can be
predicted to some degree based on knowledge of A, then measuring B adds less information,
beyond what is provided by A, relative to the case where the variables are independent. Thus
it seems that ignoring correlations may result in statistical bounds that are too narrow: one
effectively assumes more data than is actually available.

Random effects models. The bound procedure assumed that all applicationsin agiven
treatment grouping are independent, when actually most of the applications are paired with
the same treatment given to replicatesin apair. An aternative would be to use an approach
that recognizes explicitly two “levels’ of variation (between replicates in areplicate-pair,
among replicate pairsin atreatment grouping). This approach would probably widen the
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statistical bounds somewhat. This could be justified on the grounds that measurements under
awider variety of conditionsis likely to be more valuable than repeated measurement under
very similar conditions. Development of tolerance bounds for random effects models could
involve considerable effort: Straightforward procedures appear to be available only for some
gpecial cases (e.g, Bhaumik and Kulkarni, 1996). An acceptable expedient may be smply to
average the results for pairs of replicate pairs, and take N to be the number of pairs or
unpaired treatments.

Consideration may be given to the use of formal meta-analysis methods, to combine the Spray
Drift Task Force data with data from other spray drift studies. Issuesinvolved in combining
data are beyond the scope of this report. However, we note that random effects approach
could be valuable by alowing a distribution of differences among studies. Random effects
models are in fact an important tool in current meta-analysis methodology (e.g., Normand,
1995).

Alternatives to distance-by-distance bound calculation. The bounds calculated here require
that the group means and pooled CV be calculated separately for each distance, although the
calculations for each distance are based on the same set of a and b estimates from the curve-
fits. It is possible that some greater flexibility will be obtained by working with a bivariate
distribution for the two parameters, and devel oping ways to trandate the results into the scale
of deposition. Evidently, this can be simplified if the parameters can be assumed to vary
independently. We have done some work towards such an approach.

Monte Carlo simulation to evaluate statistical procedures. A Monte Carlo experiment may
be considered to evaluate the approximate tolerance bounds. This would naturally be done
after most conceptual issues are settled.

XI. Ganzelmeier Data on Drift from Airblast Applications

A number of drift studies conducted in Germany for registration purposes have been
summarized (Ganzelmeier et d 1995). The data collected from drift studies to fruit and vine
crops included 61 treatments to fruit trees (31 early growth, 30 late growth stages) and 21
treatments to vineyards (10 early, 11 late stages). The results for orchards and vineyards were
combined into early and late groupings. Comparisons between SDTF results and Ganzelmeier
are limited in that quantitative canopy density measurements, tree type, orchard layout,
treatment area size, and drop size information for the applications were not given in the
Ganzelmeier report.
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Table 9. Comparison of Ganzelmeier and SDTF application conditions for fruit and vine

crops.
parameter Ganzelmeier SDTF
wind speed range (mph) 0.2-14* 1.8-12.2**
temperature (°F) 36-77 55-103
humidity (% relative) 36-90 8-82
downwind distance (m) 3-50 0-550

* |t isnot clear whether wind speed measurements were made inside or outside orchards.
** From measurements outside the orchard.

The Ganzelmeier early and late grouping for orchards and vineyards were analyzed to produce
a95™ percentile value at each distance deposition was measured. Graphically comparing the
95™ percentile of the Ganzelmeier data to that derived from the SDTF data (see figures below)
shows the Ganzelmeier to be similar to the SDTF but direct comparisons are limited by the
factors listed above. It is likely that the Ganzelmeier early growth stages are likely similar to
the SDTF dormant apple study and may be useful as a comparison to the high grouping of the
SDTF data (see figure below). Since the canopy characteristics in the Ganzelmeier late
grouping were not defined it is not clear which SDTF grouping is most reasonable for
comparison. Since the SDTF high category represents more tree typesit was used for
comparison in the figure below. Ganzelmeier late grape is best compared to the SDTF low
grouping which includes grape vineyards.
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Figure 7. Comparison of SDTF “High” grouping to Ganzelmeier “Early” grouping.
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Figure 8. Comparison of SDTF “High” grouping to Ganzelmeier “Late” grouping.
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Figure 8. Comparison of SDTF “Low” grouping to Ganzelmeier “Late” grape grouping.
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The graphical comparisons of the 95™ percentiles of the Ganzelmeier and SDTF studies
generally show similar results close to the treatment area, and higher deposition predicted by
the SDTF curves at greater distances. The largest discrepancy in the near-field is from
comparing “late grapes’ to the SDTF “low” category (Figure 8). The apparent under-
prediction of the SDTF data may be aresult of the absence of SDTF deposition datain grapes
at distances less that 8 m and the use of a one row width offset to define the edge of the field
in the SDTF studies. The edge of the treatment area was not defined in the Ganzelmeier
report.

The graphical comparisons presented above generally suggest that the 95" percentile curves
generated from the SDTF data are protective.

XIl. EFED’s Present Drift Estimation and SDTF 95™ Percentile Curve

For exposure assessments related to airblast pesticide applications, EFED currently assumes
that 5% of the application rate driftsinto a 1 hectare pond immediately adjacent to a 10
hectare orchard. The hypothetical pond is 63 m wide, 2 m deep, and has an approximate
volume of 2x10’ liters. The pesticide concentration in the pond from a 1 kg / hectare
application to the orchard is equivalent to the direct application of 0.05 kg to the pond or an
estimated screening concentration of 2.5 ppb.

The 95™ percentile curve of the SDTF data does not allow integration to the edge of the
orchard without extrapolation to distances less than 8 m. Although some measurements were
made at the edge of the orchards, most field trials used 8 m as the closest measurement to the
orchards.

Using the SDTF 95" percentile curve from the outside applications it is possible to estimate
aguatic concentrations in hypothetical ponds which beginning 8 m or farther from the orchard
edge. The estimated concentration is useful as a rough comparison of how the SDTF data
compares EFED’ s current practice, but, since only afew rows of the orchards were sprayed
for outside treatments, it does not account for an orchard size of 10 hectares. For estimation,
if deposition is assumed decrease linearly between 8 and 70 m (see tolerance table in the
appendices) the overal deposition would be 7.7%. When diluted into 20 million liters, the
estimated screening concentration of a 1 kg / hectare application would be approximately 3.9
ppb. If the edge of the pond is 70 m from the orchard and extends to 130 m, the estimated
screening concentration resulting from 0.53% of the application rate would be approximately
0.27 ppb.
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Appendix 1: Noncentral-t tolerance bounds under equal variance and equal
coefficient of variation assumptions

The material in this appendix isidentical in the documents for orchard/airblast and ground
spray.

Notation, General linear model theory (GLMT). We use the following conventiona
notation to describe distributions:
+2 chi-square distribution with i degrees of freedom, or a random value with that
distribution;
N(u,6%) normal distribution with mean p and variance 6%, or arandom value with that
distribution;
O(x) cumulative distribution function (CDF) for aN(0,1) distribution;
O*(x) inverse-CDF for aN(0,1) distribution.

We assume that the data are in #gr groups with N; values in the ith group. We assume that
valuesin the ith group areiid normal with mean ; and variance 6 2

Let = the value of the jth observation in theith group, j=1,...,N,, i=1,...,.#gr;
: = sample mean for the ith group, i=1,...,#gr;

2 = sample variance for the ith group, i=1,...,.#gr.

<

(/)x<|

All of the theory used here is shared with the derivation of familiar parametric confidence
bounds for the mean of a normal distribution based on the Student t distribution. Here, where
aresult from this basic theory is used, thisisindicated by “GLMT.”

Pooling variances and pooling coefficients of variation. As background, it is useful to
review the familiar situation involving multiple groups (say #gr groups), with an assumption
that the within-group variance is equal across groups, i.e., we assume 6,°=0 ,>=,...,=0,,°=0 .
The common variance 6 2 can be estimated by the ANOVA error mean square (MS;) which
effectively averages the sample variances over groups.

MS. =1 * X, df; s (summing over groups)

where df; = degrees of freedom for theith group =N, - 1,
i = total degrees of freedom = %, df;.

Then i -MS/6? has a -+, distribution and is statistically independent of the sample means
(GLMT).
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For the situation involving an equal coefficient of variation (CV), we use a specia case of the
“moment estimator” described by McCullagh and Nelder (1989). Instead of assuming an
equal variance in each group we assume an equa CV. In other words we assume:

0/ U1=0,/0,=..=0 4/ Uy =CV
or
60,=u,-CV, i=1,..Hor.

For situations such as this where some functional relationship is assumed to relate the variance
to the mean it is common to use a weighted regression approach. In this case the ideal
weights would weight observations in the ith group proportionally to .2 (GLMT).
Unfortunately the ideal weights then depend on the unknown true group means ..., My -

The weighted means equal the unweighted means because the ideal weights change among but
not within groups. Regarding variance estimation, we note that as a rule of thumb weighted
regression procedures involve replacing the familiar regression sums of squares (SS) with
weighted SS. Considering in particular the following weighted SS for residuals:

#or N;

WSSE = Z Z:l uiiz(yij - }T,)z

-1

#or

=) dfi (s /1)°

i=1

In general, the method of moments involves setting a statistic equal to its expected value. We
have exactly that E(WSS;)=i -CV? (GLMT). Therefore, for an approximate method of
moments estimator in this situation we make the approximation

#or
WSS, = Y df (s/¥,)% =1 - (CVx)?

i=1

where CV* isour estimate of the common within-group coefficient of variation. Hence
CV*=[i *Zdf . (CV*)?]"* where CV* isthe sample coefficient of variation for the ith group.
The coefficient of variation is pooled by squaring the sample CV'’s, averaging (weighting by
degrees of freedom) and finally taking the square root.
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Noncentral-t tolerance bounds: the equal variance case. Inthefamiliar Situation involving a
common within-group variance 6 2 the ath percentile for the ith group has the general form
u+z, 6 where z, = O(a).

For the ith group, we may use a bound of the general form y, + k-s, where s is the estimated
within group variance (equal for all groups). Therefore the problem of finding a bound that
covers percentile & with confidence & amounts to solving for k in the expression:

priy +ks>p+z0]=4a

The exact solution in the equal variance situation is well known (e.g., Guttman, 1970) but it is
useful to review the solution here as background for an approximate solution for the equal-
CV situation. Theevent y, +k-s, > |, + 2,6 aboveis equivalent to:

[(Wi- yi)+2z0]/s<k

On the left side, divide numerator and denominator by 6/vN,, which is the standard deviation
of y;:
[(W- Y (O/VN) +2z,VN. 1/ (sVN,/6) < k.

or Nz VN, , 1)/ (%217 ) < kVN,

where the numerator and denominator random variables are statistically independent (GLMT).
By the definition of a noncentral-t random variable, the event of interest is:

T(zVN;, i) < kVN,

where T (&, i ) denotes a noncentral-t random variable with noncentrality parameter & and
degrees of freedom i .

Therefore the following agorithm (which is easily programmed in SAS) yields a bound that
covers percentile & with exact confidence &

Q) Calculatez,= O*(a).
(The SAS function PROBIT may be used.)

(2)  Caculate the noncentrality parameter 8=z, VN..

(©)) Find the appropriate critical value of a noncentral T(&,i) distribution, say t*
that satisfiesPr[ T(&,i) < t*] =&
(The SAS function TINV may be used.)

4 k=t* /VN.

(5) Theboundisy, +k-swhees=vMS..
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Noncentral-t tolerance bounds: the equal-CV case. Inthe equal-CV situation, we pursue an
analogy with the equal-variances situation and try to solve at least approximately for k in the
expression:

pr{y +ko;’>p;+z,6,} =&

where 0,=CV - u,isthetrue standard deviation in the ith group,
6 * =CV* -y . issuggested as an estimator of ¢ ,,
CV* isthe pooled coefficient of variation described above.
Using the same steps as for the equal variance situation, we require:

pr{N(z;vN,,1)/(6*/6,)<kvVN,;} =4

Regarding the distribution of the ratio 6 */6 ,, we have:

0, W - CV W - CV

v - 12:(:”:52——21/2
6+ ¥ - CVs Yi T L i i Y

For an approximation, we substitute the sample means (y;, known) for the true means (L,
unknown), which after some rearrangement and GLMT gives 6 */6 , =V(+?i) This suggests,
as an approximation, using 6 ;* in place of s in the agorithm described above, for the equal
variance situation. |f we make this approximation, technically the denominator will deviate
from the desired function of a-? distribution, and also the numerator and denominator are not
evidently independent, which are conditions for the ratio to have the noncentral-t distribution.

The agorithm differs from the agorithm for the equal variances case only at Step 5:

(55 Theboundisy,+k-6.*where6 * =CV* -y ,.

53



-
<
L
=
-
O
o
(@
L
>
—
- -
O
o 4
<
<
o
Ll
2
=

The following SAS code was used:

** Program SASTOL. SAS (SAS) : Tol erance bound cal cul ati ons for

** the equal -CV nodel. D. Farrar, 6/99

** The program cal cul ates tol erance bounds using SAS functions for the
** normal and noncentral t distributions. 1t does not calculate the

** pooled CV. The pooled CV is an input.

** | nput fields:

** The first 2 input fields are not used in the calculations. They are

** there because | just wanted themcarried along into the output.

** PERC - percentile to estimate or bound on (=BETA)

** N - nunber of observations on which nean is based

> DF - nunber of degrees of freedom on which CV is based,

> not necessarily N1

> Cv/ - coefficient of variation, possibly pooled over groups.

** Qutput fields:
** PERCTILE - point estimate of the percentile identified by input
** variabl e PERC

** TO[ P] - bound that covers percenile PERC with confidence P%

TI TLE1 "Tol erance bounds for deposition by distance"

* *

* *

* *

* *

* *

* *

* *
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FI LENAME | DATA '[insert file nane]’;

FOOTNOTE "Bound TOL[P% covers percentile (PERC) with confidence P%;
NODATE PAGESI ZE=100 ;
*| NPUT VARI ABLES : GROUP X PERC N DF MEAN CV ;
DATA,
| NFI LE | DATA ;
I NPUT  GROUP X PERC N DF MEAN CV ;

4 = PROBIT( PERC) ; * critical value of N(O,1) distr
NCP = Z*SQRT(N) ; * noncentrality parameter

S = MEAN*CV ; * estimate of standard deviation
PERCti | e= MEAN + Z*S ; * point estimate of PERCentile
TOL65 = MEAN + S*TINV(. 65, DF, NCP) / SQRT(N); * tol erance bounds ;
TOL75 = MEAN + S*TINV(.75,DF, NCP) / SQRT(N);

TOL85 = MEAN + S*TINV(.85,DF, NCP) / SQRT(N);

TOL95 = MEAN + S*TINV(.95,DF, NCP) / SQRT(N);

PROC SCRT; BY GROUP PERC X ;

PROC PRI NT NOGOBS ;
VAR X N DF MEAN CV PERCTILE TOL65 TOL75 TOL85 TALYS ;
BY GROUP PERC ;
PAGEBY GROUP;

RUN;
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Appendix 2: Tables of tolerance bounds for outside applications in the orchard airblast
studies

Using the procedure outlined in Appendix 1, tolerance bounds have been calculated
corresponding to percentiles 95% and 99%, with confidence levels 65%, 75%, 85%, and
95%. Computations were based on the SAS program given in Appendix 1.

Variablesin output are as follows:

GROUP: 1 for the “high” group; 3 for the “low” group; 4 for mistblower applications; 5
for wraparound applications to grapes

PERC percent for percentiles that we want to estimate or bound (95%, 99%)
X distance in meters

N number of observations used to calculate a mean

DF number of degrees of freedom used to calculate a pooled CV

MEAN mean deposition for applications in a given group and distance

cv pooled coefficient of variation for a given distance

PERCTILE percentile point estimate
TOLG65 etc.  tolerance bound with confidence 65%, €tc.

Tol erance bounds for deposition by distance 32
Qut si de applications 11: 15 Tuesday, June 1, 1999

-------------------------------------- GROUP=1 PERC=0. 95 - -« - == m = mmmmmmmeomme oo ce e

X N DF MEAN cv PERCTI LE TOL65 TOL75 TOL85 TOL95

0.0 9 16 26. 7862 0.67238 56. 4109 60. 2399 62.9163 66. 5591 73.5740
5.0 9 16 7.9477 0. 60254 15. 8245 16. 8426 17.5542 18. 5227 20. 3879
7.6 9 16 6. 0188 0. 58736 11. 8337 12.5852 13. 1106 13. 8256 15. 2025
8.0 9 16 5.7940 0. 58533 11. 3723 12. 0933 12.5972 13. 2831 14. 6041
10.0 9 16 4.8543 0. 57609 9. 4541 10. 0486 10. 4642 11. 0298 12.1190
15.0 9 16 3. 3403 0. 55795 6. 4059 6. 8021 7.0790 7. 4560 8. 1819
15.2 9 16 3. 2957 0. 55733 6. 3169 6. 7074 6. 9804 7.3519 8. 0673
20.0 9 16 2. 4453 0. 54470 4.6362 4.9193 5.1173 5. 3867 5. 9054
30.0 9 16 1. 4591 0. 52821 2.7268 2. 8907 3. 0052 3.1611 3.4613
30.0 9 16 1. 4591 0. 52821 2.7268 2. 8907 3. 0052 3.1611 3.4613
30.5 9 16 1. 4257 0. 52766 2.6632 2.8231 2.9349 3.0871 3.3801
40.0 9 16 0. 9508 0. 52140 1.7662 1.8716 1. 9453 2. 0455 2. 2386
50.0 9 16 0. 6555 0.52184 1.2182 1. 2909 1. 3417 1. 4109 1.5442
60.0 9 16 0. 4705 0.52793 0. 8790 0.9318 0. 9687 1. 0189 1. 1157
70.0 9 16 0. 3481 0. 53843 0. 6564 0. 6962 0.7241 0.7620 0. 8350
80.0 9 16 0.2638 0. 55234 0. 5036 0. 5345 0. 5562 0. 5857 0. 6424
90.0 9 16 0. 2040 0. 56885 0. 3948 0.4195 0. 4367 0. 4602 0. 5054
91.0 9 16 0. 1990 0.57062 0. 3857 0. 4099 0. 4267 0. 4497 0. 4939
91. 4 9 16 0. 1970 0.57133 0. 3822 0. 4061 0. 4228 0. 4456 0. 4894
100.0 9 16 0. 1603 0. 58728 0. 3152 0. 3352 0. 3492 0. 3682 0. 4049
110.0 9 16 0.1278 0.60712 0. 2553 0.2718 0.2834 0.2991 0. 3293
120.0 9 16 0.1031 0.62793 0. 2095 0.2233 0. 2329 0. 2460 0.2712
130.0 9 16 0. 0840 0. 64937 0.1738 0. 1854 0. 1935 0. 2045 0. 2258
140.0 9 16 0. 0692 0.67120 0. 1455 0. 1554 0.1623 0.1717 0. 1898
150.0 9 16 0. 0574 0. 69319 0.1229 0.1313 0.1372 0. 1453 0. 1608
152.0 9 16 0. 0554 0. 69760 0.1189 0.1271 0. 1328 0. 1406 0. 1557
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Bound TOL[P% covers percentile (PERC) with confidence P%
Tol erance bounds for deposition by distance 33
Qut si de applications 11: 15 Tuesday, June 1, 1999

-------------------------------------- GROUP=1 PERC=0. 99 - -« - === - m o mmmmmomeomme oo

X N DF MEAN cv PERCTI LE TOL65 TOL75 TOL85 TOL95

0.0 9 16 26. 7862 0.67238 68. 6849 73. 4632 76. 7277 81. 2069 89. 9235
5.0 9 16 7.9477 0. 60254 19. 0880 20. 3585 21. 2264 22.4174 24.7350
7.6 9 16 6. 0188 0. 58736 14. 2429 15. 1808 15. 8215 16. 7007 18. 4117
8.0 9 16 5.7940 0. 58533 13. 6834 14.5832 15. 1979 16. 0413 17. 6826
10.0 9 16 4.8543 0. 57609 11. 3599 12.1018 12. 6087 13. 3042 14. 6576
15.0 9 16 3. 3403 0. 55795 7.6760 8.1704 8.5082 8.9717 9. 8737
15.2 9 16 3. 2957 0.55733 7.5687 8. 0560 8. 3889 8. 8457 9. 7347
20.0 9 16 2. 4453 0. 54470 5. 5439 5. 8973 6. 1387 6. 4699 7.1146
30.0 9 16 1. 4591 0. 52821 3.2521 3. 4565 3.5962 3.7879 4.1609
30.0 9 16 1. 4591 0.52821 3.2521 3. 4565 3.5962 3.7879 4.1609
30.5 9 16 1. 4257 0. 52766 3.1759 3. 3755 3.5118 3. 6989 4.0630
40.0 9 16 0. 9508 0. 52140 2.1040 2. 2356 2.3254 2. 4487 2. 6886
50.0 9 16 0. 6555 0.52184 1. 4513 1.5421 1. 6041 1. 6891 1. 8547
60.0 9 16 0. 4705 0.52793 1. 0483 1.1142 1.1592 1. 2209 1. 3411
70.0 9 16 0. 3481 0. 53843 0.7841 0. 8338 0. 8678 0.9144 1. 0051
80.0 9 16 0.2638 0. 55234 0. 6029 0. 6415 0. 6680 0.7042 0.7747
90.0 9 16 0. 2040 0. 56885 0.4739 0. 5047 0. 5257 0. 5546 0.6107
91.0 9 16 0. 1990 0.57062 0. 4631 0. 4932 0.5138 0.5420 0.5970
91. 4 9 16 0.1970 0.57133 0. 4589 0. 4887 0.5091 0.5371 0.5916
100.0 9 16 0. 1603 0. 58728 0. 3793 0. 4043 0.4213 0. 4448 0. 4903
110.0 9 16 0.1278 0.60712 0. 3082 0. 3288 0. 3428 0. 3621 0. 3997
120.0 9 16 0.1031 0.62793 0. 2536 0.2708 0. 2825 0. 2986 0. 3300
130.0 9 16 0. 0840 0. 64937 0.2110 0. 2255 0. 2354 0. 2489 0.2753
140.0 9 16 0. 0692 0.67120 0.1772 0. 1895 0.1979 0. 2094 0.2319
150.0 9 16 0. 0574 0. 69319 0. 1500 0. 1605 0.1677 0.1776 0. 1969
152.0 9 16 0. 0554 0. 69760 0. 1452 0. 1554 0.1624 0.1720 0. 1907
160.0 9 16 0. 0480 0. 71520 0.1279 0. 1370 0. 1432 0. 1517 0. 1683
170.0 9 16 0. 0404 0.73711 0. 1097 0.1176 0.1230 0. 1304 0. 1448
180.0 9 16 0. 0342 0. 75881 0. 0946 0.1015 0. 1062 0.1127 0. 1253
183.0 9 16 0. 0326 0. 76527 0. 0906 0. 0973 0.1018 0. 1080 0.1201
190.0 9 16 0. 0292 0. 78025 0. 0821 0. 0881 0. 0922 0. 0979 0. 1089
200.0 9 16 0. 0250 0. 80136 0. 0715 0.0768 0. 0804 0. 0854 0. 0951
210.0 9 16 0. 0215 0. 82212 0. 0625 0. 0672 0. 0704 0.0748 0. 0834
220.0 9 16 0. 0186 0. 84249 0. 0549 0. 0591 0. 0619 0. 0658 0.0734
230.0 9 16 0.0161 0. 86246 0. 0484 0. 0521 0. 0546 0. 0581 0. 0648
240.0 9 16 0. 0140 0. 88201 0. 0428 0. 0461 0. 0483 0. 0514 0. 0574
244.0 9 16 0. 0133 0. 88971 0. 0408 0. 0439 0. 0460 0. 0490 0. 0547
250.0 9 16 0.0123 0.90114 0. 0379 0. 0409 0. 0429 0. 0456 0. 0510
335.0 9 16 0. 0044 1. 04706 0. 0150 0. 0162 0.0171 0.0182 0. 0204
549.0 9 16 0. 0006 1. 31030 0. 0023 0. 0025 0. 0027 0. 0028 0. 0032
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Bound TOL[P% covers percentile (PERC) with confidence P%

Tol erance bounds for deposition by distance
Qut si de applications

OO0 O0OO0CO0OO0OO0O0OO0O0OO0OO0OO0OO0O0OO0OO0OO0OO0COP,PODOOOOOOUIOOONODOOO®OO

x

P4

guooooauoaoaoaoaooaaoaoaoaaoaoaoaaoaaoaoaaoaaooaaoaoa

COOOOOO000000000000000000000000000000000R

MEAN

46941
57926
46853
45512
39766
29906
29601
23577
15900
15900
15621
11461
08620
06682
05300
04280
03508
03441
03415
02911
02441
02066
01762
01514
01309
01272
01138
00995
00873
00841
00770
00682
00606
00541
00484
00434
00416
00390
00174

. 00036

PPOOOO0OO000O00000000000000000O000O0000O000000

cv

67238
60254
58736
58533
57609
55795
55733
54470
52821
52821
52766
52140
52184
52793
53843
55234
56885
57062
57133
58728
60712
62793
64937
67120
69319
69760
71520
73711
75881
76527
78025
80136
82212
84249
86246
88201
88971
90114
04706
31030

GROUP=3 PERC=0. 95

PERCTI LE

COOOOOO00000000000000000000000000000000ORW

09454
15335
92118
89330
77449
57352
56737
44701
29714
29714
29179
21290
16019
12485
09993
08168
06790
06671
06624
05723
04878
04199
03644
03185
02801
02732
02477
02200
01963
01899
01759
01581
01426
01290
01169
01063
01024
00969
00474
00114

CO 000000000000 000000000000000000000000RW

11: 15 Tuesday,

June

34
1, 1999

TOL65

. 33855
23955
98915
95909
83107
61473
60811
47872
31788
31788
31215
22766
17130
13356
10698
08752
07283
07156
07106
06145
05244
04519
03927
03436
03025
02951
02678
02382
02127
02058
01907
01716
01549
01402
01272
01158
01116
01056
. 00519
. 00126

COOOOOO000000000000000000000000000000ORREREW

TOL75

51229
30093
03755
00594
87135
64407
63712
50131
33265
33265
32665
23817
17921
13977
11200
09168
07634
07501
07449
06445
05505
04747
04128
03615
03185
03107
02821
02510
02244
02171
02013
01812
01636
01482
01346
01225
01181
01118
00552
. 00134

COOOOLO000000000000000000000000000000ORREREW

TOL85

74677
38376
10286
06916
92572
68367
67628
53179
35258
35258
34621
25235
18989
14814
11877
09729
08107
07967
07912
06851
05857
05055
04399
03856
03400
03318
03014
02684
02401
02324
02156
01942
01755
01590
01445
01316
01268
01201
00595
00146

COOOO00000000000000000000000000000ORREREER

TOL95

. 19337
54153
22725
18958
02928
75910
75085
58984
39054
39054
38347
27936
21022
16409
13167
10798
09009
08855
08794
07624
06527
05642
04917
04315
03810
03719
03382
03016
02701
02614
02427
02189
01980
01796
01633
01489
01436
01360
. 00677
. 00167
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Bound TOL[P% covers percentile (PERC) with confidence P%

Tol erance bounds for deposition by distance
Qut si de applications

OO0 O0OO0O0OO0OO0O0OO0O0OO0OO0O0OO0O0OO0OO0OO0OO0COP,PODOODOOOOUIOOONODOOO®OO

x

P4

guooooaoaoaoaoaooaaoaoaoaaoaoaoaaoaaoaoaaoaaooaaoaoa

COOOOOO000000000000000000000000000000000R

MEAN

46941
57926
46853
45512
39766
29906
29601
23577
15900
15900
15621
11461
08620
06682
05300
04280
03508
03441
03415
02911
02441
02066
01762
01514
01309
01272
01138
00995
00873
00841
00770
00682
00606
00541
00484
00434
00416
00390
00174

. 00036

PPOOOO0OO000000O00000000000000O000O0000000000

cv

67238
60254
58736
58533
57609
55795
55733
54470
52821
52821
52766
52140
52184
52793
53843
55234
56885
57062
57133
58728
60712
62793
64937
67120
69319
69760
71520
73711
75881
76527
78025
80136
82212
84249
86246
88201
88971
90114
04706
31030

GROUP=3 PERC=0. 99

PERCTI LE

COOOOOO000000000000000000000000000000ORREREW

76785
39121
10873
07484
93061
68723
67980
53453
35437
35437
34797
25363
19085
14889
11938
09780
08150
08009
07954
06888
05888
05083
04424
03877
03419
03337
03031
02700
02415
02337
02168
01953
01765
01600
01454
01324
01276
01209
00599
00147

COCOOOO0000000000000000000000000000000RREREA

11: 15 Tuesday,

June

35
1, 1999

TOL65

. 05830
49381
18963
15316
99796
73628
72829
57228
37906
37906
37220
27119
20407
15926
12777
10474
08737
08586
08528
07390
06324
05464
04760
04176
03686
03597
03271
02916
02610
02527
02345
02114
01912
01734
01576
01436
01385
01312
. 00652
. 00161

OO0 00000000000000000000000000000000RRERER

TOL75

26060
56528
24598
20770
04487
77045
76207
59858
39626
39626
38908
28343
21329
16649
13361
10959
09145
08989
08927
07740
06627
05730
04995
04384
03872
03779
03437
03066
02746
02658
02468
02226
02014
01827
01662
01515
01461
01384
00690
. 00170

CO000000000000000000000000000000000RRERER

TOL85

53633
66268
32278
28205
10880
81702
80812
63442
41970
41970
41208
30010
22584
17633
14158
11618
09702
09537
09472
08217
07041
06092
05314
04668
04125
04027
03664
03270
02931
02838
02636
02379
02153
01954
01778
01622
01564
01482
00741
00183

COOOOOO0000000000000000000000000000OR RO

TOL95

. 06826
85059
47094
42547
23214
90685
89694
70356
46491
46491
45646
33228
25006
19532
15694
12891
10776
10594
10522
09137
07839
06790
05930
05215
04613
04505
04103
03665
03287
03184
02959
02673
02421
02199
02003
01828
01763
01672
. 00839
. 00209

60



Bound TOL[P% covers percentile (PERC) with confidence P%
Tol erance bounds for deposition by distance 36
Qut si de applications 11: 15 Tuesday, June 1, 1999

-------------------------------------- GROUP=4 PERC=0. 95 - - = - === m=cmmmmmmomeomme oo oeo e

X N DF MEAN cv PERCTI LE TOL65 TOL75 TOL85 TOL95

0.0 4 16 8. 55057 0.67238 18. 0072 19. 5259 20. 6141 22.0777 24.8529
5.0 4 16 3.18288 0. 60254 6. 3374 6. 8440 7.2070 7.6952 8. 6209
7.6 4 16 2.53036 0. 58736 4.9750 5. 3676 5. 6489 6. 0272 6. 7446
8.0 4 16 2.45181 0. 58533 4.8124 5.1915 5.4631 5. 8284 6.5212
10.0 4 16 2.11680 0. 57609 4.1227 4.4448 4.6756 4.9861 5.5747
15.0 4 16 1.54882 0. 55795 2.9702 3. 1985 3.3621 3.5821 3.9992
15.2 4 16 1.53141 0.55733 2.9353 3. 1608 3.3223 3. 5396 3. 9516
20.0 4 16 1. 19065 0. 54470 2. 2574 2. 4287 2.5515 2.7166 3. 0297
30.0 4 16 0. 76651 0.52821 1. 4325 1. 5394 1.6161 1.7191 1. 9146
30.0 4 16 0. 76651 0.52821 1. 4325 1. 5394 1.6161 1.7191 1. 9146
30.5 4 16 0.75141 0. 52766 1. 4036 1.5083 1.5834 1. 6843 1. 8757
40.0 4 16 0. 52917 0. 52140 0. 9830 1. 0559 1.1081 1.1783 1. 3115
50.0 4 16 0. 38200 0.52184 0. 7099 0. 7625 0. 8003 0. 8510 0.9472
60.0 4 16 0. 28464 0.52793 0.5318 0.5715 0. 6000 0. 6382 0.7108
70.0 4 16 0.21726 0. 53843 0. 4097 0. 4406 0. 4627 0. 4925 0. 5490
80.0 4 16 0. 16901 0. 55234 0. 3226 0.3472 0. 3649 0. 3886 0. 4337
90.0 4 16 0. 13353 0. 56885 0. 2585 0.2785 0.2929 0.3123 0. 3489
91.0 4 16 0. 13052 0.57062 0. 2530 0.2727 0. 2868 0. 3058 0. 3417
91. 4 4 16 0. 12934 0.57133 0. 2509 0.2704 0.2844 0. 3032 0. 3389
100.0 4 16 0.10688 0. 58728 0.2101 0. 2267 0. 2386 0. 2546 0. 2849
110.0 4 16 0. 08651 0.60712 0.1729 0. 1868 0. 1967 0.2101 0. 2354
120.0 4 16 0. 07069 0.62793 0. 1437 0. 1554 0. 1638 0.1751 0. 1966
130.0 4 16 0. 05826 0. 64937 0. 1205 0. 1305 0. 1376 0.1473 0. 1655
140.0 4 16 0. 04837 0.67120 0.1018 0.1103 0. 1165 0.1248 0. 1404
150.0 4 16 0. 04043 0. 69319 0. 0865 0. 0939 0. 0992 0. 1064 0.1199
152.0 4 16 0. 03903 0. 69760 0. 0838 0. 0910 0. 0962 0.1031 0.1162
160.0 4 16 0. 03400 0. 71520 0. 0740 0. 0804 0. 0850 0. 0912 0. 1029
170.0 4 16 0. 02875 0.73711 0. 0636 0. 0692 0.0732 0. 0786 0. 0888
180.0 4 16 0. 02443 0. 75881 0. 0549 0. 0598 0. 0633 0. 0680 0.0770
183.0 4 16 0. 02328 0. 76527 0. 0526 0. 0573 0. 0607 0. 0652 0.0738
190.0 4 16 0. 02085 0. 78025 0. 0476 0. 0519 0. 0550 0. 0591 0. 0670
200.0 4 16 0.01787 0. 80136 0. 0414 0. 0452 0. 0479 0. 0516 0. 0585
210.0 4 16 0. 01538 0. 82212 0. 0362 0. 0395 0. 0419 0. 0451 0. 0512
220.0 4 16 0. 01329 0. 84249 0. 0317 0. 0347 0. 0368 0. 0396 0. 0450
230.0 4 16 0. 01151 0. 86246 0. 0278 0. 0305 0. 0324 0. 0349 0. 0397
240.0 4 16 0. 01001 0. 88201 0. 0245 0. 0269 0. 0285 0. 0308 0. 0350
244.0 4 16 0. 00947 0. 88971 0. 0233 0. 0256 0. 0272 0. 0293 0. 0334
250.0 4 16 0. 00873 0.90114 0. 0217 0. 0237 0. 0252 0. 0272 0. 0310
335.0 4 16 0. 00301 1. 04706 0. 0082 0. 0090 0. 0096 0. 0104 0.0119
549.0 4 16 0. 00034 1. 31030 0. 0011 0. 0012 0. 0013 0. 0014 0. 0016
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Bound TOL[P% covers percentile (PERC) with confidence P%
Tol erance bounds for deposition by distance 37
Qut si de applications 11: 15 Tuesday, June 1, 1999

-------------------------------------- GROUP=4 PERC=0. 99 - -« - === s mmmmmeomme oo

X N DF MEAN cv PERCTI LE TOL65 TOL75 TOL85 TOL95

0.0 4 16 8. 55057 0.67238 21.9253 23.7008 24.9467 26. 6397 29. 8931
5.0 4 16 3.18288 0. 60254 7.6444 8. 2367 8. 6522 9. 2170 10. 3023
7.6 4 16 2.53036 0. 58736 5.9878 6. 4468 6. 7689 7. 2065 8. 0476
8.0 4 16 2.45181 0. 58533 5.7904 6. 2336 6. 5446 6. 9672 7.7793
10.0 4 16 2.11680 0. 57609 4.9537 5. 3303 5. 5946 5. 9537 6. 6438
15.0 4 16 1.54882 0. 55795 3.5591 3. 8260 4.0133 4.2678 4.7568
15.2 4 16 1.53141 0. 55733 3.5170 3. 7806 3. 9655 4.2168 4.6998
20.0 4 16 1. 19065 0. 54470 2. 6994 2. 8997 3. 0402 3.2312 3.5982
30.0 4 16 0. 76651 0. 52821 1.7084 1. 8334 1.9212 2. 0404 2. 2695
30.0 4 16 0. 76651 0. 52821 1.7084 1. 8334 1.9212 2. 0404 2. 2695
30.5 4 16 0.75141 0. 52766 1. 6738 1.7962 1.8822 1. 9989 2.2233
40.0 4 16 0. 52917 0. 52140 1.1710 1. 2562 1. 3160 1.3973 1. 5534
50.0 4 16 0. 38200 0.52184 0. 8457 0.9073 0. 9505 1. 0092 1.1220
60.0 4 16 0. 28464 0.52793 0.6342 0. 6806 0.7132 0. 7575 0. 8425
70.0 4 16 0.21726 0. 53843 0. 4894 0. 5255 0. 5509 0. 5853 0. 6515
80.0 4 16 0. 16901 0. 55234 0. 3862 0.4150 0. 4352 0. 4627 0. 5155
90.0 4 16 0. 13353 0. 56885 0. 3102 0. 3337 0. 3502 0. 3725 0. 4155
91.0 4 16 0. 13052 0.57062 0. 3038 0. 3268 0. 3429 0. 3648 0. 4070
91. 4 4 16 0. 12934 0.57133 0.3012 0.3241 0. 3401 0. 3618 0. 4037
100.0 4 16 0.10688 0. 58728 0. 2529 0.2723 0. 2859 0. 3044 0. 3399
110.0 4 16 0. 08651 0.60712 0. 2087 0. 2249 0. 2363 0. 2518 0. 2815
120.0 4 16 0. 07069 0.62793 0.1740 0.1877 0.1973 0.2104 0. 2355
130.0 4 16 0. 05826 0. 64937 0. 1463 0. 1579 0.1661 0.1773 0. 1987
140.0 4 16 0. 04837 0.67120 0.1239 0. 1339 0.1410 0. 1505 0. 1689
150.0 4 16 0. 04043 0. 69319 0. 1056 0.1143 0. 1204 0. 1286 0. 1445
152.0 4 16 0. 03903 0. 69760 0.1024 0.1108 0. 1167 0. 1247 0. 1401
160.0 4 16 0. 03400 0. 71520 0. 0906 0. 0981 0. 1033 0.1105 0.1243
170.0 4 16 0. 02875 0.73711 0.0780 0. 0846 0. 0892 0. 0954 0.1074
180.0 4 16 0. 02443 0. 75881 0. 0675 0.0733 0.0773 0. 0827 0. 0932
183.0 4 16 0. 02328 0. 76527 0. 0647 0. 0702 0.0741 0. 0793 0. 0894
190.0 4 16 0. 02085 0. 78025 0. 0587 0. 0637 0. 0672 0.0720 0. 0812
200.0 4 16 0.01787 0. 80136 0. 0512 0. 0556 0. 0587 0. 0629 0.0710
210.0 4 16 0.01538 0. 82212 0. 0448 0. 0487 0. 0514 0. 0552 0. 0623
220.0 4 16 0. 01329 0. 84249 0. 0393 0. 0428 0. 0452 0. 0485 0. 0548
230.0 4 16 0. 01151 0. 86246 0. 0346 0. 0377 0. 0398 0. 0428 0. 0484
240.0 4 16 0. 01001 0. 88201 0. 0306 0. 0333 0. 0352 0. 0378 0. 0428
244.0 4 16 0. 00947 0. 88971 0. 0291 0. 0317 0. 0335 0. 0360 0. 0408
250.0 4 16 0. 00873 0.90114 0. 0270 0. 0295 0. 0312 0. 0335 0. 0379
335.0 4 16 0. 00301 1. 04706 0. 0103 0.0113 0.0120 0.0129 0.0147
549.0 4 16 0. 00034 1. 31030 0.0014 0. 0015 0. 0016 0. 0017 0. 0020

-
<
L
=
-
O
o
(@
L
>
—
- -
O
o 4
<
<
o
Ll
2
=




-
<
L
=
-
O
o
(@
L
>
—
- -
O
o
<
<
o
Ll
2
=

Bound TOL[P% covers percentile (PERC) with confidence P%

Tol erance bounds for deposition by distance
Qut si de applications

QOO0 O0O0OO0OO0O0OO0O0OO0OO0OO0OO0O0OO0OO0OO0OO0OP,LPODOOOOOOUIOOONODOOO®OO

x

P4

NN NONNNNNNNDNDNDNDNNNNNNNNNNDNDNPODNDNNNNNDNDNDNDNNNNNNNDNDN

CO 000000000000 00000000000000000000000000

MEAN

18976
07779
06327
06150
05388
04068
04027
03212
02163
02163
02125
01552
01160
00892
00701
00560
00454
00445
00442
00373
00309
00259
00218
00185
00158
00153
00135
00117
00101
00097
00088
00077
00067
00059
00052
00046
00044
00041
00016

. 00002

PPOOOO0OO00000000000000000000000O0000O000000

cv

67238
60254
58736
58533
57609
55795
55733
54470
52821
52821
52766
52140
52184
52793
53843
55234
56885
57062
57133
58728
60712
62793
64937
67120
69319
69760
71520
73711
75881
76527
78025
80136
82212
84249
86246
88201
88971
90114
04706
31030

GROUP=5 PERC=0. 95

PERCTI LE

COOOOOO0000000000000000000000000000000000

39963
15489
12439
12070
10493
07801
07718
06089
04043
04043
03969
02883
02155
01666
01322
01070
00880
00863
00857
00733
00618
00526
00451
00389
00338
00328
00295
00258
00227
00219
00201
00178
00159
00141
00127
00113
00109
00102
00044
00008

OO 000000000000 00000000000000000000000000

11: 15 Tuesday,

June

38
1, 1999

TOL65

. 44250
17064
13688
13280
11536
08564
08472
06677
04427
04427
04346
03155
02359
01824
01448
01174
00967
00949
00942
00807
00681
00580
00498
00431
00374
00364
00327
00287
00253
00244
00224
00199
00177
00158
00142
00127
00122
00114
. 00050
. 00009

OO 000000000000 00000000000000000000000000

TOL75

47373
18211
14597
14161
12296
09119
09021
07105
04706
04706
04621
03353
02507
01940
01541
01249
01030
01011
01004
00860
00727
00620
00533
00461
00401
00390
00351
00308
00272
00262
00241
00214
00191
00170
00153
00137
00131
00123
00054
. 00010

COOOOOO0000000000000000000000000000000000

TOL85

51529
19738
15807
15333
13307
09858
09752
07675
05079
05079
04986
03617
02704
02093
01664
01350
01114
01094
01086
00932
00788
00673
00579
00501
00437
00425
00382
00336
00297
00286
00263
00234
00209
00187
00167
00150
00144
00135
00060
00011

OO 000000000000 00000000000000000000000000

TOL95

. 59301
22593
18071
17525
15197
11241
11119
08741
05774
05774
05669
04110
03073
02380
01894
01539
01272
01249
01239
01065
00902
00772
00665
00577
00503
00490
00441
00389
00344
00332
00305
00272
00243
00217
00195
00175
00168
00158
. 00070
. 00013

63



Bound TOL[P% covers percentile (PERC) with confidence P%
Tol erance bounds for deposition by distance 39
Qut si de applications 11: 15 Tuesday, June 1, 1999

-------------------------------------- GROUP=5 PERC=0. 99 - -« === <= o mmm e o meomme oo

X N DF MEAN cv PERCTI LE TOL65 TOL75 TOL85 TOL95

0.0 2 16 0. 18976 0.67238 0. 48658 0. 53425 0. 56841 0.61434 0.70144
5.0 2 16 0.07779 0. 60254 0. 18683 0.20434 0.21689 0. 23376 0. 26576
7.6 2 16 0. 06327 0. 58736 0. 14971 0. 16360 0.17354 0. 18692 0.21229
8.0 2 16 0. 06150 0. 58533 0. 14523 0. 15868 0.16831 0. 18127 0. 20585
10.0 2 16 0. 05388 0. 57609 0. 12608 0. 13768 0. 14599 0. 15716 0.17835
15.0 2 16 0. 04068 0. 55795 0. 09348 0. 10196 0. 10803 0.11620 0. 13170
15.2 2 16 0. 04027 0. 55733 0. 09247 0. 10086 0. 10687 0. 11495 0. 13027
20.0 2 16 0. 03212 0. 54470 0.07281 0. 07935 0. 08403 0. 09033 0. 10227
30.0 2 16 0. 02163 0.52821 0. 04821 0. 05248 0. 05554 0. 05966 0. 06746
30.0 2 16 0. 02163 0. 52821 0. 04821 0. 05248 0. 05554 0. 05966 0. 06746
30.5 2 16 0. 02125 0. 52766 0. 04733 0. 05152 0. 05453 0. 05856 0. 06622
40.0 2 16 0. 01552 0. 52140 0. 03435 0. 03737 0. 03954 0. 04245 0. 04798
50.0 2 16 0. 01160 0.52184 0. 02568 0. 02794 0. 02956 0. 03174 0. 03587
60.0 2 16 0. 00892 0.52793 0.01987 0. 02163 0. 02289 0. 02459 0. 02780
70.0 2 16 0. 00701 0. 53843 0. 01579 0. 01720 0.01821 0. 01957 0. 02214
80.0 2 16 0. 00560 0. 55234 0.01281 0. 01396 0. 01479 0. 01591 0. 01802
90.0 2 16 0. 00454 0. 56885 0. 01056 0. 01153 0. 01222 0. 01315 0. 01491
91.0 2 16 0. 00445 0.57062 0. 01037 0.01132 0. 01200 0.01291 0. 01465
91. 4 2 16 0. 00442 0.57133 0. 01029 0.01123 0.01191 0.01282 0. 01454
100.0 2 16 0. 00373 0. 58728 0. 00882 0. 00964 0.01023 0. 01102 0. 01251
110.0 2 16 0. 00309 0.60712 0. 00746 0. 00816 0. 00866 0. 00934 0. 01062
120.0 2 16 0. 00259 0.62793 0. 00636 0. 00697 0. 00740 0. 00799 0. 00909
130.0 2 16 0. 00218 0. 64937 0. 00547 0. 00600 0. 00638 0. 00689 0. 00785
140.0 2 16 0. 00185 0.67120 0. 00473 0. 00520 0. 00553 0. 00598 0. 00682
150.0 2 16 0. 00158 0. 69319 0. 00412 0. 00453 0. 00482 0. 00522 0. 00596
152.0 2 16 0. 00153 0. 69760 0. 00401 0. 00441 0. 00470 0. 00508 0. 00581
160.0 2 16 0. 00135 0. 71520 0. 00361 0. 00397 0. 00423 0. 00458 0. 00524
170.0 2 16 0. 00117 0.73711 0. 00317 0. 00349 0. 00372 0. 00403 0. 00462
180.0 2 16 0. 00101 0. 75881 0. 00280 0. 00308 0. 00329 0. 00357 0. 00409
183.0 2 16 0. 00097 0. 76527 0. 00270 0. 00297 0. 00317 0. 00344 0. 00395
190.0 2 16 0. 00088 0. 78025 0. 00248 0. 00274 0. 00292 0. 00317 0. 00364
200.0 2 16 0. 00077 0. 80136 0. 00220 0. 00243 0. 00260 0. 00282 0. 00324
210.0 2 16 0. 00067 0. 82212 0. 00196 0. 00217 0. 00232 0. 00252 0. 00290
220.0 2 16 0. 00059 0. 84249 0. 00175 0. 00194 0. 00208 0. 00225 0. 00260
230.0 2 16 0. 00052 0. 86246 0. 00157 0. 00174 0. 00186 0. 00202 0. 00233
240.0 2 16 0. 00046 0. 88201 0. 00141 0. 00156 0. 00167 0.00182 0. 00210
244.0 2 16 0. 00044 0. 88971 0. 00135 0. 00150 0. 00161 0. 00175 0. 00201
250.0 2 16 0. 00041 0.90114 0. 00127 0. 00141 0. 00151 0. 00164 0. 00189
335.0 2 16 0. 00016 1. 04706 0. 00056 0. 00062 0. 00067 0. 00073 0. 00084
549.0 2 16 0. 00002 1. 31030 0. 00010 0. 00011 0. 00012 0. 00013 0. 00016

Bound TOL[P% covers percentile (PERC) with confidence P%
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