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NOTICE 
 

These meeting minutes have been written as part of the activities of the Federal Insecticide, 
Fungicide, and Rodenticide Act (FIFRA), Scientific Advisory Panel (SAP).  The meeting 
minutes represent the views and recommendations of the FIFRA SAP, not the United States 
Environmental Protection Agency (Agency).  The content of the meeting minutes does not 
represent information approved by the Agency.  The meeting minutes have not been reviewed 
for approval by the Agency and, hence, the contents of these meeting minutes do not necessarily 
represent the views and policies of the Agency, nor of other agencies in the Executive Branch of 
the Federal government, nor does mention of trade names or commercial products constitute a 
recommendation for use. 
 
The FIFRA SAP is a Federal advisory committee operating in accordance with the Federal 
Advisory Committee Act and established under the provisions of FIFRA as amended by the 
Food Quality Protection Act (FQPA) of 1996.  The FIFRA SAP provides advice, information, 
and recommendations to the Agency Administrator on pesticides and pesticide-related issues 
regarding the impact of regulatory actions on health and the environment.  The Panel serves as 
the primary scientific peer review mechanism of the Environmental Protection Agency (EPA), 
Office of Pesticide Programs (OPP), and is structured to provide balanced expert assessment of 
pesticide and pesticide-related matters facing the Agency.  FQPA Science Review Board 
members serve the FIFRA SAP on an ad hoc basis to assist in reviews conducted by the FIFRA 
SAP.  Further information about FIFRA SAP reports and activities can be obtained from its 
website at http://www.epa.gov/scipoly/sap/ or the OPP Docket at (703) 305-5805.  Interested 
persons are invited to contact Sharlene R. Matten, Ph.D., SAP Designated Federal Official, via e-
mail at matten.sharlene@epa.gov. 
 
In preparing these meeting minutes, the Panel carefully considered all information provided and 
presented by EPA and Dow AgroSciences (DAS), as well as information presented in public 
comment.  This document addresses the information provided and presented by EPA and DAS 
within the structure of the charge. 
 

http://www.epa.gov/scipoly/sap/�
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INTRODUCTION 
 
The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Scientific Advisory Panel 
(SAP) has completed its report of the SAP meeting regarding scientific issues associated with 
“Chlorpyrifos Physiologically-Based Pharmacokinetic and Pharmacodynamic (PBPK/PD) 
Modeling Linked to Cumulative and Aggregate Risk Evaluation System (CARES).”  
Advance notice of the SAP meeting was published in the Federal Register on December 6, 
2010.  The review was conducted in an open Panel meeting on February 15-17, 2011 at One 
Potomac Yard, Arlington, Virginia.  Materials for this meeting are available in the Office of 
Pesticide Programs (OPP) regulatory docket or via www.regulations.gov, Docket No.:  EPA-
HQ-OPP-2010-0588.  Kenneth Portier, Ph.D., chaired the meeting.  Sharlene Matten, Ph.D., 
served as the Designated Federal Official.  Steven Bradbury, Ph.D., Director, Office of Pesticide 
Programs (OPP), and John (Jack) Fowle III, Ph.D., Deputy Director, Health Effects Division 
(HED), provided opening remarks at the meeting.  Agency presentations of technical background 
materials were provided by Anna Lowit, Ph.D., David J. Miller, and Chester Rodriguez, Ph.D., 
all of HED.  In addition, technical presentations were provided by Michael Bartels, Ph.D., Mr. 
Paul Price, and Sue Marty, Ph.D., of Dow AgroSciences, LLC and Torka Poet, Ph.D. and Paul 
Hinderliter, Ph.D., of Battelle, Pacific Northwest National Laboratory. 
 
Chlorpyrifos (O,O-diethyl O-(3,5,6trichloro2pyridinyl) phosphorothioate) is a broad-spectrum, 
chlorinated organophosphorus (OP) insecticide.  In 2000, nearly all residential uses were 
cancelled voluntarily by Dow AgroSciences (DAS), but agricultural uses remain. The 2000 
human health risk assessment was largely based on adult laboratory animal data (rat or dog) for 
cholinesterase inhibition and the application of default uncertainty factors to address inter- and 
intra-species differences including susceptible populations.  Currently, the Agency is developing 
a new human health risk assessment expected to be released in June 2011.  In 2008, the FIFRA 
Scientific Advisory Panel (SAP) reviewed a draft science issue paper on the human health effects 
of chlorpyrifos.   
 
Since that time, DAS has developed a source-to-outcome model, which is composed of existing 
probabilistic dietary exposure software to produce estimates of longitudinal exposure (CARES 
model) and a PBPK/PD model of response (LifeStage PBPK/PD model).  Coupled together, 
these model components relate data on pesticide residues on crops to the probability of inhibition 
of cholinesterase in humans.  Chlorpyrifos was used as an example pesticide because there exists 
a comparatively rich data set on metabolism and mechanism of action of cholinesterase 
inhibition, multiple markers for exposure and effects, quantitative PBPK/PD models to predict,  
markers of early effects (i.e., inhibition of red blood-cell and plasma cholinesterases), and human 
data for model calibration and evaluation. 
 
The linking of the chlorpyrifos PBPK/PD model with a probabilistic exposure model may 
provide opportunities to calculate distributions of exposure to chlorpyrifos and its metabolites 
with cholinesterase inhibition levels across the U.S. population.  In addition, this approach may 
allow estimation of data-derived uncertainty factors that consider use of toxicokinetic and 
toxicodynamic data to inform quantitative extrapolations for interspecies differences and human 
variability in dose response assessment.  The topics covered during the February 2011 SAP are 
consistent with EPA’s Office of Pesticide Programs’ continuing efforts to improve the scientific 

http://www.regulations.gov/�


 9 

basis for risk assessment by broadening the application of probabilistic exposure techniques and 
PBPK models.  The Agency has a conceptually similar effort on-going to link PBPK models for 
pyrethroids with Stochastic Human Exposure and Dose Simulator (SHEDS) exposure software, a 
probabilistic exposure model developed by the EPA’s Office of Research and Development, 
which was reviewed by the SAP in July, 2010.  The current effort by DAS is a research effort, 
which may, if sufficiently robust, inform future Agency risk assessments; the February meeting 
is a key milestone in the process.  
 
The purpose of the February 2011 SAP meeting was to request scientific advice from the Panel 
on technical issues related to the PBPK/PD model, the proposed approach for merging the 
PBPK/PD model with CARES, and the use of such tools in risk assessment.   
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PUBLIC COMMENTERS 
 
Oral statements were presented by: 
  
 

1) Dale Hattis, Ph.D., Research Professor, Clark University, Worcester, MA 
 

2) Wendelyn Jones, Ph.D., Senior Director, Human Health Policy, CropLife America, 
Washington D.C. 
 

 
Written statements were provided by: 
 

1) Dale Hattis, Ph.D., Research Professor, Clark University, Worcester, MA 
 

2) Carol Dansereau, Executive Director, Farm Worker Pesticide Project, Seattle, WA 
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SUMMARY OF PANEL DISCUSSION AND RECOMMENDATIONS 
 
Charge Question 1:  Physiologically Based Pharmacokinetic/Pharmacodynamic 
(PBPK/PD) Modeling 
 
QUESTION 1.1:  Model Structure. Please comment on the structure of the chlorpyrifos 
PBPK/PD model with specific consideration of the mechanistic basis for the acetylcholinesterase 
(AChE) inhibiting mode of action.  Please include in your comments consideration of age-
dependant metabolism and the proposed approach to assess human variability.  
 
Panel Response Summary 
 
With certain reservations, the Panel found that the mechanistic basis for the AChE-inhibiting 
mode of action of chlorpyrifos had been satisfactorily incorporated into the PBPK/PD model, 
noting that the model did not address non-cholinergic effects of chlorpyrifos.  The Panel 
generally supported the focus on inhibition of AChE and red blood cell (RBC) AChE as the most 
suitable marker and surrogate for the true target of the anticholinesterase effect of chlorpyrifos, 
specifically synaptic AChE in brain, spinal cord, and peripheral nervous systems.  However, the 
Panel identified several concerns with how DAS handled age-dependent metabolism in the 
model and the proposed approach to assess human variability.  Among other factors, limited 
numbers of samples to study age-dependent human metabolism (in particular with very young 
individuals) and the use of non-physiological conditions to estimate metabolic rates, limited the 
Panel’s confidence in that component of the model.  There were concerns about the 
parameterization of the model based on the unpublished age-dependent metabolism study (Smith 
et al., 2011 as Attachment A1

 

 in DAS, 2011), especially with respect to paraoxonase (PON), the 
enzyme that hydrolyzes chlorpyrifos-oxon.  The Panel had difficulty in evaluating the DAS 
model because the pharmacokinetic and pharmacodynamic components were grouped together in 
a way that made it hard to assess the validity of the structure and parameters of each component.  
The Panel recommended that DAS provide the source of and details about all of the model 
parameters in an effort to be more transparent and complete.  Such information would 
significantly raise the general understanding of and confidence in the model.  Overall, the model 
would be greatly improved if the parameterization for PON was based on more accurate and 
relevant experimental data. 

QUESTION 1.2: Dose Metrics.  In Section 6, DAS proposes a number of dose metrics for use in 
the PBPK/PD effort.  These include peak levels of blood and brain AChE inhibition, peak blood 
and brain levels of chlorpyrifos and its oxon metabolite, and urinary measures of 3,5,6-trichloro-
2-pyridinol (TCPy), a chlorpyrifos metabolite.  Please comment on the utility, strengths, and 
limitations of these proposed internal dose metrics.   
 
 
 

                                                
1 DAS Report (2011), Attachment A. Smith, J.N., C. Timchalk, M.J. Bartel, T.S. Poet.  2011. In vitro age-dependent 
enzymatic metabolism of chlopyrifos and chlorpyrifos-oxon in human hepatic microsomes as well as chlorpyrifos-
oxon in plasma.  Unpublished manuscript.  
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Panel Response Summary 
 
The Panel indicated that all of the named parameters could be supported scientifically as metrics 
for chlorpyrifos exposure with some limitations.  Peak brain AChE inhibition could be an 
indicator of potential toxicity, but cannot be measured in humans.  Peak blood AChE inhibition 
could serve both as a biomarker of exposure and as a potential surrogate marker for target tissue 
toxicity; however, its measure is highly variable among people and therefore results must be 
interpreted with this variability in mind.  Peak chlorpyrifos concentration may be useful for 
computing acute exposures, but the area under the time-concentration curve may be more useful 
than the peak level for computing the effects of repeated exposures.  The peak chlorpyrifos-oxon 
concentration is potentially useful because chlorpyrifos-oxon is the active species, although this 
metabolite is highly reactive and rarely measurable.  Consequently, little confidence could be 
placed in the concentrations measured.  Therefore, chlorpyrifos-oxon concentration is probably 
not a practical input parameter, although it could be useful for the model to predict values for it.  
Another dose-metric with limited utility is urinary TCPy.  Urinary TCPy can be biased by pass-
through TCPy that is absorbed as an environmental degradate; therefore, these measurements 
should be interpreted with caution. 
 
QUESTION 1.3: Non-Cholinergic Effects.  Although the current modeling effort focuses on 
AChE inhibition, there are data to suggest that chlorpyrifos exposure may also result in non-
cholinergic effects.  As such, and if appropriate, please provide plausible additional and/or 
alternative dose metrics such as area under the curve (AUC) metrics or other temporal-based 
internal dose metrics that may be appropriate for evaluating potential non-cholinergic effects. 
 
Panel Response Summary 
 
The Panel thought it was reasonable to consider non-cholinergic effects in the long term, but did 
not think it would be appropriate to provide guidance on any specific dose metrics as there are no 
standard methods to measure non-cholinergic activity and no non-cholinergic mechanism has yet 
been validated.  Obtaining model output for AUC for chlorpyrifos and chlorpyrifos-oxon will be 
useful for use in simulating non-cholinergic effects.  Modeling BChE inhibition may also be 
useful as a potential measure of non-cholinergic toxicity.  While non-cholinergic effects may be 
of high interest and importance, any such non-cholinergic effects of chlorpyrifos have not yet 
been confirmed. 
 
Charge Question 2:  Longitudinal Dietary Exposure Assessment 
 
QUESTION 2.1: Please comment on the methods used by DAS to investigate the relationships 
between dietary exposures and levels of chlorpyrifos and chlorpyrifos-oxon in blood.   Please 
include in your comments discussion on the strengths, weaknesses, impacts, and utility of the 
DAS proposal to focus on the immediate prior and subsequent days to high-end exposures and 
provide alternative approaches to assessing longitudinal (multi-day) exposures, if appropriate.  
Under what conditions and scenarios might this focus be inadvisable and/or lead to incorrect 
conclusions regarding exposures, doses, and risks?  
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Panel Response Summary 
 
The Panel concluded that the scope of DAS’ longitudinal dietary exposure was incomplete.  It 
should include dietary intake over many days (not just five days) and under various, correlated, 
eating behaviors.  The Panel recognized that limitations in the CARES and/or Lifeline model 
make such analyses difficult.  

QUESTION 2.2: Please comment on the soundness of the conclusions reached by DAS with 
respect to the impact and importance of accounting for longitudinal dietary exposures to 
chlorpyrifos at the upper ends (e.g., >99th percentile) of the exposure distribution.  To what 
extent, if any, can the DAS conclusions be generalized to other AChE-inhibiting chemicals and 
under what conditions?  Please suggest how this issue of generalization to other pesticides could 
be investigated and explored?  
 
Panel Response Summary 
 
The Panel agreed that it was important to account for longitudinal dietary exposures to 
chlorpyrifos at the upper ends (e.g., >99th percentile) of the exposure distribution.  However, the 
Panel stated that it would be premature to conclude that the chlorpyrifos analysis can be 
generalized to other chemicals or when multiple AChE-inhibiting chemicals are present in a 
single eating event.  For example, the CARES-PBPK/PD model predictions for chlorpyrifos may 
be erroneous if there are other pesticides also present with different affinities for BChE or AChE. 
 
Charge Question 3: Model Calibration and Evaluation with Direct Dosing Human Studies 
 
QUESTION 3:  Please comment on the model evaluation approach comparing the linked 
CARES-PBPK/PD source-to-outcome model predictions with the Kisicki et al. 1999 study.  In 
what ways could or should the model evaluation approach used by DAS be extended?  Are there 
other model evaluation methods with respect to this aspect of the DAS manuscript that the Panel 
suggests be performed?  To what extent does the Panel agree that the DAS model predictions are 
reasonably consistent with those of the Kisicki et al (1999) literature-reported values?   
 
Panel Response Summary 
 
The Panel agreed that the data from the Nolan et al. (1982) and Kisicki et al. (1999) studies were 
scientifically suitable to be used in the model evaluation.  The Panel concluded the Nolan et al. 
(1982) study was suitable for calibrating the DAS PBPK/PD source-to-outcome model.  
However, the Panel noted that, for several reasons, the model was not “validated” using the 
Kisicki data.  For one, the Panel commented that since some of the model parameters were 
calibrated to the Kisicki data, it puts into question the independence of a model-to-data 
validation. 
 
The model evaluation that this question refers to is only the comparison of the LifeStage 
PBPK/PD model to the Kisicki et al. (1999) data.  In light of the limitations of the Nolan and 
Kisicki studies, the Panel concluded that the model fit to the Kisicki data was generally 
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reasonable (by visual comparison), although the model fit for the highest dose was not 
particularly good, and the model’s ability to predict cholinesterase inhibition recovery was not as 
good as would be desired.  The charge question asked the Panel to comment on the 
“reasonableness” of a model evaluation without providing a compelling description of how the 
joined models will be used.  Without knowing how a model will be used, it is not possible to 
comment sufficiently on its reasonableness or appropriateness.  The Panel recommended that the 
potential sources of uncertainties identified in these and other comparisons should be captured 
for assessing the overall model uncertainties if the model is used for risk assessment. This 
analysis will be useful to ensure goodness of fit at a dose range outside the potential human 
exposure range and for possible model adjustment that can reduce the uncertainties in model 
predictions at the range relevant to human exposures.   

Charge Question 4: Comparison of Model Predictions with Human Monitoring Data 
 
QUESTION 4:  Please comment on the model evaluation approach used by DAS to compare the 
linked DAS source-to-outcome model dose predictions to (i) Eaton et al (2008), Whyatt et al. 
(2009) and Barr et al. (2010),  (ii) the Curwin (2007) and Lu (2008) literature values and (iii) 
NHANES data measurements.  To what extent does the Panel agree that the DAS model 
predictions are reasonably consistent with those of the literature-reported values and the 
NHANES data? Please suggest, if appropriate, other model evaluation methods or alternative 
approaches for comparing model predictions with actual human exposure that the Panel 
recommends to further evaluate the model predictions. Please include in your comments 
suggestions for what additional datasets should be used for comparison.    
 
Panel Response Summary 
 
The Panel indicated that DAS made a strong effort to compare the results of the source-to-
outcome model and the validation model to data and past models reported in the public record.    
The DAS model provided similar results to other published models, but when comparing results 
to direct measures from biological field sampling, there were only two relatively small studies of 
chlorpyrifos blood and serum levels from two adjacent states, New York and New Jersey 
(Whyatt et al., 2009 and Barr et al., 2010).   
 
The Panel found the comparison between the DAS model and the NHANES data to be 
problematic.  The source-to-outcome predictions did not agree particularly well with the data.  
The Panel also commented on DAS’ omission of data at the limit of detection (LOD) in the 
comparisons.  Much of the TCPy data in NHANES are below the LOD.  Inclusion of the LOD 
values for NHANES would offer a clearer comparison.  Results from two smaller studies, 
Curwin et al. (2007) and Lu et al. (2008), were used to compare the source-to-outcome model 
results with field data.  While the Panel concluded that the method of comparison itself seemed 
valid, the conclusion that the predictions were consistent with observed values was overstated.  
The Panel also found that the DAS comparison of the model to the published data of TCPy in 
urine was cursory.  The urinary concentrations of TCPy from the individuals in the Curwin et al. 
(2007) study were not appropriate to compare with model predictions because exposures other 
than dietary were included.   
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The Panel thought the source-to-outcome model was inadequate to predict urinary TCPy values 
that could be compared to the published data.  Considering that the PBPK-PD model had been 
calibrated thoroughly, one would expect the model outputs, in terms of chlorpyrifos, 
chlorpyrifos-oxon, and TCPy in blood and AChE inhibition, to resemble the data from human 
volunteer exposure studies (see response to Charge Question 3).  Therefore, the inability of the 
CARES dietary exposure model to generate representative input data significantly reduces 
confidence in the predictability of the PBPK-PD model.  The Panel reported on recently 
published data from Lu et al. (2010) that could be used as potential input values in the PBPK-PD 
model to assess how the model would perform compared to the observed values. 
 
Several Panel members expressed concern with using a simple multiplicative factor to estimate 
TCPy levels in pregnant women.  The Panel consensus was that using a simple multiplicative 
factor might provide inaccurate and imprecise TCPy levels in pregnant women. 
 
Concern was expressed with regard to the focus on dietary exposures to chlorpyrifos through the 
diet to the exclusion of other pathways, and to the direct intake and subsequent excretion of 
TCPy in the diet itself.  The Panel indicated that more work in this area of the model is 
important.  An additional concern focused on the comparison with occupational data.  The route 
of exposure in occupationally-exposed individuals would likely be quite different from the 
dietary pathway emphasized in the remainder of the report.  As a consequence, this analysis may 
be inappropriate as a demonstration of the validity of the model. 
  
Charge Question 5:  Sensitivity Analyses, Variability, and Uncertainty 
 
QUESTION 5.1:  The four step procedure described above was intended to permit DAS to focus 
on the factors that were most important in determining variation in response.  Please comment 
on the methods used by DAS to assess variation in response (e.g., identification of sensitive 
factors and collection and integration of empirical data on variation).  Please discuss the extent 
to which the methods described are appropriate and complete?   
 
QUESTION 5.2:  During the Scientific Advisory Panel meeting held in July 2010 in which 
EPA’s Office of Research and Development SHEDS/PBPK model was presented (see 
http://www.epa.gov/scipoly/sap/meetings/2010/072010meeting.html), the Panel reviewed ORD’s 
Bayesian Approach to quantitative uncertainty analysis. DAS in its source-to-outcome model did 
not attempt to perform a formal quantitative uncertainty analysis (QUA), but instead evaluated 
components of the model by performing model-to-model comparisons (e.g., multiple dietary 
exposure models and multiple models of longitudinal exposures) and by performing model-to-
measurement comparisons for internal dose (e.g., chlorpyrifos in blood and TCPy in urine) and 
AChE in blood and plasma. Since formal Bayesian QUAs are only rarely conducted, are there 
other methods (short of rigorous Bayesian approaches) that the SAP can recommend for 
characterizing uncertainty due to limited data? 
 
Panel Response Summary 
 
The Panel addressed Charge Questions 5.1 and 5.2 together in one unified response.   
 

http://www.epa.gov/scipoly/sap/meetings/2010/072010meeting.html�
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The Panel concluded that the sensitivity, variability, and uncertainty analyses were incomplete as 
outlined in the DAS report, but emphasized the work represented a reasonable starting point.  
The Panel agreed that a systematic and explicit characterization of both variability and 
uncertainty, separately and for all individual components/steps of the exposure-to-biomarker 
modeling system, is needed and would substantially improve the analysis presented in the report.  
Implementing Bayesian analytical methods to enhance the study under review was also strongly 
recommended by the Panel, though there was a wide range of suggestions regarding the extent 
and the specifics of such an implementation.  The Panel recognized that gaps in the data make 
any analysis difficult, including employing the aforementioned Bayesian techniques.  The Panel 
agreed that, despite gaps in the data, it is nonetheless valuable to also analyze components of the 
models when possible.  The Panel also agreed that local sensitivity analysis was inadequate and 
recommended exploring and applying methods for computationally-efficient global sensitivity 
analysis.  The Panel recommended a larger systematic effort to simplify the model using known 
assumptions, processes, and interactions in both the exposure and the biological 
(pharmacokinetic and pharmacodynamic) models. 
 
Charge Question 6: Calculating Data-Derived Extrapolation Factors 
 
QUESTION 6.1:  Please comment on the strengths and limitations of DAS’s proposed approach 
to estimate an animal-to-human extrapolation factor as described in Section 10.  The Agency is 
concerned about a component of the proposed approach involving use of the study design 
characteristics of a single animal study (See Section 10).  The Agency generally recommends a 
weight of the evidence approach for determining toxicological points of departure when multiple 
studies are available. For chlorpyrifos, there is a large database of study results performed 
across different animal life stages and so it may be more appropriate to determine points of 
departure and extrapolation factors based on an integrated analysis of these multiple studies 
instead of based on a single study. In your response, please comment on the approach proposed 
and provide guidance and suggestions for alternative approaches, if appropriate.  
 
Panel Response Summary 
 
The Panel agreed with the general principle of the weight of evidence approach as commonly 
applied in many areas of risk assessment.  The advantage of the weight of evidence approach is 
to provide more robust support for a range of uncertainty factors (UFs).  However, the Panel 
expects that when a well-evaluated PBPK/PD animal-to-human model is ready for use in risk 
assessment, the use of UFA would no longer be needed.   
 
The UFA proposed by DAS is based on the single study (Marty and Andrus 2010) with PND11 
and adult rats.  The Panel noted that while the data from the Marty and Andrus study may be 
more suitable for conducting benchmark dose analysis than many other studies, there were also 
limitations in the study’s possible application to other toxicity endpoints and human exposure 
scenarios.   
 

1) The peak inhibitions increased over time in a tissue- and dose-dependent manner based 
on the modeled pattern for RBC AChE and the steady state was not achieved until many 
days after repeated dosing. 
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2) The DAS UFA only pertains to the dietary exposure estimated from a model that did not 
include the prenatal period or infants with lactational exposures to chlorpyrifos.   

3) The current dietary model needs to fully capture beverage and water consumption.   
 
The Panel was critical of the DAS approach to estimate human variability with eight-person 
groups and proposed an alternative approach without regrouping.  The Panel indicated that the 
BMDL10 can be best estimated by applying the true definition of this concept directly to the 
results of the combined CARES PBPK/PD model.  Once a human BMDL10 estimate is predicted 
via the variability and uncertainty component of the model, it can be compared to the animal 
BMDL10 estimate.  The UFA can then be derived by comparing the animal and human BMDL10, 
both of which are derived from the same model, but with species-specific parameters.  This 
approach uses the model as it was intended, as a tool to integrate the variability and uncertainty 
in the process of incorporating in vitro and in vivo animal data to prediction of risks in the human 
population. 
 
QUESTION 6.2:  Please comment on the strengths and limitations of proposed approach to 
estimate a human variability extrapolation factor as described in Section 10. Please provide 
alternative approaches, if appropriate. 
 
Panel Response Summary 
 
The Panel stated that the model-derived human variability uncertainty factor (UFH) is estimated 
not from the uncertainty of the modeled mean response, but from the individual-to-individual 
variability. 
 
The Panel focused on different areas of model and data uncertainty.  Knowledge of target site-
specific chemical levels, e.g., concentrations at the active sites of biotransformation enzymes 
within the endoplasmic reticulum vs. concentrations within the organ as a whole, is limited.  This 
lack of knowledge is a significant cause of uncertainty in predicting the concentrations of the 
chemical actually available for metabolism.  Extrapolating from those in vitro conditions to 
estimating the biotransformation rates in the intact human tissues therefore has considerable 
uncertainty.  In addition, the Panel recognized that limited data from younger individuals is an 
important source of uncertainty.  The use of small numbers of human tissue samples to estimate 
human-specific metabolic rates, in particular, in very young individuals where the greatest 
differences from older age groups may exist, raises the uncertainty in the values of model inputs. 
 
The Panel recommended that the current case study analysis be expanded to accurately predict 
all pertinent human exposures for target populations of interest (e.g., early life stages), groups 
with specific exposure characteristics (e.g., farm workers and their families), and multiple routes 
of exposure (e.g., inhalation, dermal, ingestion from food, water, hand-to-mouth activities),  
These are all important factors for fully and adequately addressing the inter-individual variability 
and uncertainty.  DAS employed only two immature age-groups (six months and three years) in 
their modeling exercise. 
 
The Panel noted that the possibility of non-cholinergic neurodevelopmental disorders should also 
be considered in the future as a basis for pharmacodynamic differences in infants and children. 
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QUESTION 6.3:  The current effort by DAS is limited to food exposure and does not include all 
relevant exposure routes.  Please comment on strengths and weaknesses of using data-derived 
extrapolation factors described in the current effort for life stages (e.g., gestation or pregnancy) 
and/or for routes (dermal, inhalation) not considered in the current modeling effort. 
 
 Panel Response Summary 
 
The Panel recommended that data are needed to characterize all sources of exposure.   
The current DAS model should be expanded to accommodate all pertinent exposure scenarios 
(ingestion, dermal, and inhalation) and various life stages or conditions (pregnancy and 
gestation, lactation, and nursing infants).  
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DETAILED RESPONSES TO CHARGE QUESTIONS 
 
Charge Question 1:  Physiologically Based Pharmacokinetic/Pharmacodynamic 

(PBPK/PD) Modeling 
 
Question 1.1:  Model Structure. Please comment on the structure of the chlorpyrifos PBPK/PD 
model with specific consideration of the mechanistic basis for the acetylcholinesterase (AChE) 
inhibiting mode of action.  Please include in your comments consideration of age-dependant 
metabolism and the proposed approach to assess human variability.  
 
Panel Response 
 
With certain reservations, the Panel found that the mechanistic basis for the AChE-inhibiting 
mode of action of chlorpyrifos had been satisfactorily incorporated into the PBPK/PD model, 
noting that the model did not address non-cholinergic effects of chlorpyrifos.  The Panel 
generally supported the focus on inhibition of AChE and red blood cell (RBC) AChE as the most 
suitable marker and surrogate for the true target of the anticholinesterase effect of chlorpyrifos, 
specifically synaptic AChE in brain, spinal cord, and peripheral nervous systems.  However, the 
Panel identified several concerns with how DAS handled age-dependent metabolism in the 
model and the proposed approach to assess human variability.  Among other factors, limited 
numbers of samples to study age-dependent human metabolism (in particular with very young 
individuals) and the use of non-physiological conditions to estimate metabolic rates, limited the 
Panel’s confidence in that component of the model.  There were also concerns about the 
parameterization of the model based on the unpublished age-dependent metabolism study (Smith 
et al., 2011, Attachment A, DAS, 2011), especially with respect to paraoxonase (PON), the 
enzyme that hydrolyzes chlorpyrifos-oxon.   
 
The Panel had difficulty in evaluating the DAS model because the pharmacokinetic and 
pharmacodynamic components were grouped together in a way that made it hard to assess the 
validity of the structure and parameters of each component.  The Panel recommended that DAS 
provide the source of and details about all of the model parameters in an effort to be more 
transparent and complete.  Such information would significantly raise the general understanding 
of and confidence in the model.  Overall, the model would be greatly improved if the 
parameterization for PON was based on more accurate and relevant experimental data. 
  
General Considerations 
 
Toxicity testing in the 21st century.  The Panel’s responses to the charge questions are founded in 
the vision and recommendations embodied in the National Research Council’s (NRC) report, 
Toxicity Testing in the 21st Century: A Vision and a Strategy (NRC, 2007), which was completed 
in response to a EPA request.  The DAS modeling efforts under consideration by the SAP 
represent a major step toward implementing the recommendations of the NRC’s report.   
Understanding the relevance of the NRC report to this meeting is therefore important.  In brief, 
the NRC Committee of Testing and Assessment of Environmental Agents (NRC committee) 
recommended the use of a new toxicity system that uses cutting-edge technologies such as high-
throughput chemical screening and research on substances’ interactions with genetic material to 
predict the toxicity pathway(s) of a chemical rather than use expensive and time-consuming in 
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vivo animal studies (to extrapolate to humans) as currently required for human health risk 
assessment of pesticides.  The proposed system includes both the assessment of toxicity 
pathways and “targeted testing,” which is designed to clarify and refine information from 
toxicity pathway tests for use in chemical risk assessments.  Other key elements are dose-
response and extrapolation modeling, chemical characterization, population and exposure data, 
and risk contexts.  The following is a brief summary of each element found in the NRC report 
(NRC, 2007).  All parts of the toxicity assessment system are inter-related.  Dose-response and 
extrapolation (exposure) modeling, e.g., Dow’s LifeStage PBPK/PD model linked to a 
probabilistic exposure model such as CARES, would be used to estimate environmental 
exposures that would lead to significant perturbations of toxicity pathways observed in the 
cellular tests.  High quality population and human exposure data (e.g., biomonitoring data) are 
needed as inputs into dose-response and exposure models.  The risk context is used to determine 
when high-throughput screening is needed and when target toxicity testing is needed.  This step 
would reduce the need for a lengthy step-wise process of chemical characterization to testing to 
dose-response modeling. Accurately describing the normal physiology of an organism and 
predicting responses to perturbations, along with ultimate outcomes, are prime goals of modeling 
and experimental efforts.  Bio-mathematical models, such as Dow’s PBPK/PD model, need to 
incorporate relevant pharmacokinetic and pharmacodynamic factors implicated in the 
mechanism of toxicity and specific toxicity pathway. The PBPK/PD model would be linked to an 
exposure model that uses high quality population and human exposure data.  As a result of the 
NRC report, EPA established a National Center for Computational Toxicology that is developing 
new software and methods for predictive toxicology.  The National Institute of Environmental 
Health Sciences, through the National Toxicology Program’s Roadmap for the Future, initiated a 
partnership with the Chemical Genomics Center of the National Institutes of Health to develop 
and perform high- and medium-throughput screening assays to test more chemicals in less time 
and at lower costs.  The Panel referred to the NRC report many times throughout the meeting 
because of its relevance to all of the charge questions.   
 
Chlorpyrifos is a data-rich chemical.  The Panel noted that there is an exceptionally rich 
database on chlorpyrifos based on decades of biochemical and toxicological studies.  These 
studies show that the active metabolite of chlorpyrifos, chlorpyrifos-oxon, directly 
phosphorylates the active sites of several B-esterases including acetylcholinesterase (AChE).  
This reaction is the basis for the desired insecticidal event, quasi-irreversible inhibition of pest 
AChE, which is followed by death.  Although other pest enzymes also may be affected, there is 
no indication that such reactions contribute meaningfully to the pesticidal action.  In that sense 
AChE can be considered as the “target enzyme.”  Mammalian toxicity flows directly from 
inhibition of the same enzyme (i.e., AChE is the target enzyme in “off target” species as well), 
which is an “apical event” associated with various undesirable effects collectively defined as a 
hyper-cholinergic syndrome.  Chlorpyrifos may generate additional apical events by inhibiting 
different B-esterases or other non-cholinergic events. 
 
Dow’s chlorpyrifos LifeStage PBPK/PD model.  The current LifeStage PBPK/PD model for 
chlorpyrifos is the product of over a decade of effort by Timchalk and his research group at 
Battelle/Pacific Northwest Research laboratories.  His original model for rats was extrapolated to 
predict the time courses of blood chlorpyrifos, chlorpyrifos-oxon and a metabolite, TCPy, as well 
as inhibition of plasma butyrylcholinesterase (BChE), and RBC and brain AChE in adult rats and 
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humans.  The model was then adapted to pre-weanling rats by utilizing measured and 
allometrically scaled metabolic rate constants.  The age-dependence of chlorpyrifos metabolic 
activation and inactivation by human liver and/or plasma was quantified subsequently and 
incorporated into the PBPK/PD “Life-Stage model” that was utilized in the currently proposed, 
exposure dependent risk assessment.  The Panel commended the investigators for their modeling 
efforts to simulate chlorpyrifos dosimetry and effects on infants and children and noted how 
similar efforts could be extended to simulate dosimetry and effects of any chemical in infants 
and children.   
 
Mechanistic Basis for Mode of Action 
 
Acetylcholinesterase inhibition is a well-known and measurable effect of organophosphate 
insecticides and can lead to most of the toxic effects that follow chlorpyrifos exposure (Taylor, 
2001).  Some of these effects are likely to result from reduced activity of synaptic AChE in 
brain; others may reflect inhibition of the same enzyme autonomic ganglia and terminals of 
autonomic and motor nerves.  AChE in RBCs is the same gene product as the target AChE in the 
brain, so AChE inhibition in both brain and RBCs is a logical endpoint for measurement.  In 
practice, RBC AChE inhibition has long been used as a biomarker of exposure, because it is less 
convenient to sample true target tissues in animals and inappropriate or impossible in humans.  
With respect to the mechanistic basis for the mode of action there was general support on the 
Panel for the focus on inhibition of AChE, and with using RBC AChE as the most suitable 
marker and surrogate for the true target of the cholinergic effect of chlorpyrifos, i.e., synaptic 
AChE in the central and peripheral nervous systems.  Nonetheless, the Panel wished to 
emphasize the point that inhibition of red cell AChE is most properly viewed as a biomarker of 
exposure and NOT as a measure of effect. 
 
Plasma BChE is more sensitive than AChE in both animal and human studies, but BChE is 
subject to more individual variability as a function of body weight, height, sex, and genotype 
(Sidell and Kaminskis, 1975; Brock and Brock, 1990).  In contrast, RBC AChE has negligible 
variation (Lefkowitz et al., 2007), which strengthens the structure of the model by providing a 
fairly stable indicator of toxicity.  The Panel stated that it was appropriate and desirable for the 
model to include plasma BChE and RBC AChE inhibition as outputs so there would be a 
sensitive indicator of exposure, plasma BChE inhibition, in addition to a relevant surrogate 
marker for toxicity, RBC AChE inhibition. 
 
The Panel had difficulty in evaluating the incorporation of the AChE inhibition in the DAS 
model because the pharmacokinetic and pharmacodynamic components were not presented 
separately, and therefore, the validity of the structure and parameters for each component could 
not be assessed.  In particular, insufficient information was given concerning the source and 
variability of pharmacodynamic parameters such as the rate of AChE synthesis, AChE 
degradation, and aging of the enzyme-substrate complex.  Neither the DAS presentations nor 
report (DAS, 2011) explained whether these parameters were estimated from a previous model 
of in vivo modeling exercises or were drawn from actual in vitro experiments.  If the DAS 
source-to-outcome model for chlorpyrifos is to serve as a case study on how to implement the 
concepts outlined in the NRC report, then the Panel recommended that more transparency and 
completeness be provided concerning the source and details for all model parameters, of which 



 22 

there are 200 or more.   This would include the mean, median, and “normal” range values for all 
parameters.  Citations of the research that established these values would also be needed.  Such 
information would significantly improve general understanding and confidence in the model.  
 
Age-dependent Metabolism 
 
The Panel reviewed the DAS unpublished in vitro age-dependent chlorpyrifos metabolism study 
authored by Smith et al. (provided as Attachment A, DAS, 2011).  Results from this study 
revealed no apparent age-dependency of chlorpyrifos dearylation and desulfuration when data 
were expressed on a per mg protein basis. Likewise there appeared to be no change in ratio of 
activity between these pathways as maturation progressed.  On the other hand, when the data 
were analyzed in terms of total reaction rates per sample, age became a major factor.  This study 
confirmed what has been observed in other published studies that when the great increase in liver 
mass during early life is factored into the equation, the metabolism of chlorpyrifos-oxon by PON 
rises substantially (> 3.5 fold) from six months to adulthood.  In other words, chlorpyrifos 
metabolism showed a powerful age dependency, which appeared to depend entirely on the sheer 
abundance of hepatic enzymes, including PON.  This dependency was factored into the DAS 
model. 
 
The Panel identified several specific concerns with the parameterization of the PBPK/PD Life 
Stage model based on Smith et al. (2011).  
 
§ The DAS study was based on a small number of samples, which was considered by many 

Panel members to be a major limitation, even after recognizing the difficulty of obtaining 
multiple tissue samples at younger ages.   

 
§ One panel member stressed that the known genetic polymorphisms in several of the CYP 

enzymes involved in chlorpyrifos metabolism (e.g., CYP2D6), and the functional 
polymorphisms in PON will all contribute to variability in chlorpyrifos metabolism.  This 
makes it especially important to consider genotype and phenotype in datasets of small to 
modest size when assessing age-related differences in metabolism. 

 
§ The Vmax values for PON were determined in vitro at a pH of 8.5, which is well above 

the physiological pH of 7.4.  A higher pH could have altered the structure and function of 
PON. Thus, using those Vmax values in the model would lead to errors in estimating the 
detoxication contribution of that enzyme.  

 
§  In addition, the computed Vmax values were attributed to the detoxication contribution 

of PON alone.  Acid-denatured blanks do not distinguish PON-mediated hydrolysis from 
hydrolysis mediated by B-esterases (such as BChE), liver carboxylesterases, and plasma 
and liver cholinesterases, as well as any other alternative binding sites. Thus, the Vmax 
values used in the model are actually a combination of the PON hydrolysis of 
chlorpyrifos-oxon along with the stoichiometric binding of chlorpyrifos-oxon to the B-
esterases. This also results in an erroneous estimate of the detoxication contribution of 
PON.  A blank utilizing EDTA to chelate calcium, the PON co-factor, would have 
allowed the PON-mediated hydrolysis to be distinguished from the non-PON-mediated 



 23 

hydrolysis, and this was not done. The brief incubation time used, i.e., 5 minutes, would 
have allowed a large contribution of product from stoichiometric contributions from these 
B-esterases.  Therefore the reported Km and Vmax values are artificially inflated through 
the contributions of the stoichiometric detoxication along with the catalytic detoxication.  

 
§ As recognized by Timchalk et al. (2002), the stoichiometric binding of chlorpyrifos-oxon 

to the B-esterases is an important detoxication mechanism.  This binding was 
incorporated into the 2002 model and was also incorporated into the present model as 
independent parameters (indicated in Table 1 of the DAS report).  However, since the 
paraoxonase assay method used in the Smith et al. (2011) manuscript failed to effectively 
eliminate the stoichiometric contributions of the B-esterases, as discussed in the point 
above, the B-esterase contributions to detoxication were also incorporated into the model 
as a part of the Vmax value for PON.  Therefore, the detoxication contribution of the B-
esterases has been incorporated into the model twice, which will lead to overestimation of 
the role of the B-esterases. 
   

§ Very high chlorpyrifos-oxon concentrations were used in the in vitro assays (i.e., 72-2400 
micromolar) because of the insensitivity of the endpoint of the assay (i.e., 
spectrophotometric detection of TCPy, one of the hydrolysis products). These are not 
concentrations that could be realistically achieved in vivo.  These high concentrations 
have also contributed to overestimations of Km and Vmax.  Using these Km and Vmax 
values would have led to the conclusion that PON activity is the driver of the variability 
in the model.  That conclusion should be reevaluated with more accurate PON kinetic 
parameters.   

 
§ Most of the chlorpyrifos-oxon arises from the relatively inefficient cytochromes P450 

(CYPs), which can only deliver substrate (i.e., chlorpyrifos-oxon) to PON after the 
desulfuration of chlorpyrifos.  Since PON is the second enzyme in a two-enzyme 
pathway, PON cannot produce product any faster than substrate is delivered to it.  It is 
highly unlikely that the in vitro concentrations assayed in the Smith et al. (2011) 
unpublished manuscript or the Km calculated (520 µM) could be provided to PON by the 
CYP’s in any in vivo situation. Even though the PON Vmax is theoretically high, it is not 
likely to be active at that rate because of limited substrate availability.  The Panel was 
unclear whether the CYP and PON reactions were coupled in the model to prevent 
inaccurate assessment of PON’s theoretical velocity. Therefore, it is possible that PON 
may be the driver only under unrealistic concentrations.  Reassessment of the model with 
more accurate kinetic parameters is needed to re-evaluate this conclusion.  

 
§ One Panel member showed data arising from a more sensitive in vitro assay technique 

using a low chlorpyrifos-oxon concentration of less than 200 nM in human serum.  If the 
proposed DAS model is accurate, this nM concentration would slightly exceed the high 
end of exposure projections for humans. These unpublished results demonstrated that at 
this lower nM substrate concentration, neither the Q192R genotype nor the PON 
phenotype (i.e., overall PON activity level with paraoxon or diazoxon as substrates) 
seemed to influence appreciably the level of chlorpyrifos-oxon hydrolysis. 
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§ To determine the “functional genotype” for the Q192R polymorphism in human serum, 
2M NaCl is routinely used in the in vitro assay to elevate PON activity and separate the 
genotypes more fully in a plot of paraoxon hydrolysis vs. diazoxon hydrolysis.  The 
presence of 2M NaCl elevates paraoxon hydrolysis by about 25-50% and elevates 
diazoxon hydrolysis about 4-fold; it is unknown how much chlorpyrifos-oxon hydrolysis 
would be elevated by salt.  Nevertheless this high concentration of salt should not be used 
in an assay to determine overall PON velocity and the kinetic parameters for the PBPK 
model.  Use of high salt in the Smith et al. (2011) study probably led to falsely high rates 
of chlorpyrifos-oxon hydrolysis.  

 
§ Normalizing CYP activities to protein in liver and brain to compare the two tissues for 

kinetic parameters would not be accurate because the microsomal protein content in these 
tissues will differ.  Since serum PON is believed to come from the liver, it is unclear why 
the serum PON would be age-dependent and the liver PON not age-dependent.  Further 
investigation should be considered to examine the age dependency or the lack thereof in 
these two tissues.  
 

§ Another limitation of the data set is a lack of information on the health, nutritional status, 
and recent exposures (e.g., pharmaceuticals, alcohol, diet, other xenobiotics) of the 
donors, or the condition/viability of the tissue itself.  Together these limitations generate 
questions concerning the metabolic activation and inactivation of chlorpyrifos by human 
infants.  Greater immaturity generally confers greater susceptibility to chemical toxicity.  
Neonates and infants younger than 6 months would be anticipated to be most sensitive to 
chlorpyrifos acute toxicity and potential neuro-developmental disturbances.  Low body 
fat, low plasma protein binding capacity, an immature blood-brain barrier, inefficient 
detoxication, nursing from chlorpyrifos-exposed mother, etc., could predispose neonates 
and infants to injury.  Toddlers and other young children may also be at higher risk. 
Additional literature sources should be consulted for accurate values for these parameters 
for input into the model. 
 

Other age-related concerns   
 
The stoichiometric binding of any organophosphate compound to B-esterases is an important 
detoxication mechanism and is a contributing factor in the age-related toxicity of many 
organophosphate compounds including chlorpyrifos.  While the model does address the 
detoxication contribution of the B-esterases, it does not consider any age-related variability for 
the B-esterases. With respect to the liver carboxylesterases, multiple animal studies report that 
juveniles have lower levels than adults.  This appears to be the case in human liver as well (Pope 
et al., 2005; Yang et al., 2009).  With respect to human plasma BChE, there is variability in 
adults, as indicated above, but it is not clear how the level of plasma BChE changes with age.  
 
The Panel indicated that models should span the entire life-stage of humans to be useful for risk 
assessments that address concerns for vulnerable lifestages and subpopulations.  The Panel stated 
that gestation and neonatal life required explicit attention in the model.  The DAS model does 
not consider pregnancy or early neonatal life (e.g., potential exposure via mothers’ milk).  The 
Panel stressed that this omission would be a glaring oversight given the mission of the National 
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Children’s Study (Hirschfeld, et al., 2011), which is to determine how early life exposures to 
toxicants translate into later effects in life.  The DAS report, however, reported that fat volume 
and blood volume strongly influenced predicted levels of RBC AChE inhibition (DAS, 2011).  
Research by Pavek et al. (2009) indicated that these parameters change during pregnancy, which 
supports the need for explicit consideration of this important life-stage.  In addition, 
pharmacokinetic models should also incorporate sex-specific physiological parameters instead of 
lumping males and females together, as done here.  The absence of gestational and lactational 
stages is a major deficit that prevents the chlorpyrifos PBPK/PD model from being an optimal 
prototype for other risk assessments as the Agency moves forward in the new toxicity paradigm.   
 
The Panel offered specific comments with regard to estimation of age-related changes in fat 
volume, noting that the presentation cited three sources for the values of that parameter (Butte et 
al. 2000, Lafortuna et al. 2005, and Valentin et al. 2002).  One of these, Valentin et al. (2002), 
could not be accessed as reference details were missing.  The data from the other two studies 
were deemed inadequate to represent the human population across all life-stages.  Butte et al. 
(2000) did cover certain early life-stages, but only examined children at six months, 12 months 
and 24 months.  It used the dual energy X-ray absorptiometry (DXA) technique to estimate the 
Bone Mineral Density and then computed fat-free mass versus fat mass.  Lafortuna et al (2005) 
examined normal weight adults in the range of 30 ± 5 yrs and obese adults in the range of 20 ± 7 
yrs.  This study used the bioimpedance method to estimate the participant’s percentage body fat.  
These two methods of determining body fat have different degrees of accuracy and precision 
(Norgan, 2005).  Therefore, the fat values in the data may not faithfully represent variability in 
the population.  
 
The Panel suggested that the potential influence of reduced plasma protein binding in neonates 
and infants should be examined.  Lowe et al. (2009) found that chlorpyrifos was highly (98%) 
bound to serum albumin (a surrogate protein for non-lipophilic blood proteins) in both rats and 
humans. These authors demonstrated that the lipid-containing fraction of whole blood increases 
through late pregnancy and by extension in the fetus.  
 
Assessment of Variability 
 
Model predictions of cholinesterase inhibition include many additional factors such as enzyme 
turnover rates (tissue specific synthesis and loss), enzyme catalytic rates, rates of dearylation, 
reactivation rates, and aging rates.  From a broad perspective, the Panel acknowledged the DAS 
had considered a number of factors that affect the rate of chlorpyrifos-oxon formation and 
metabolism in its “Variation PBPK/PD model.”  Predictions of the model provide a fair match to 
data from typical adults, according to the results of Nolan et al (1984).  These findings were 
incorporated into the LifeStage PBPK/PD model for chlorpyrifos.  The model output is mainly 
consistent with other relevant experimental databases.  Some significant deviations occur at 
higher dose levels (e.g., 2 mg/kg).  These deviations could be considered “conservative” in the 
sense that they either match the data or predict higher levels of active compound and higher 
levels of cholinesterase inhibition than actually observed.  One panelist commented on the 
judicious use of subjective terms like “conservative” since we do not know the full possible uses 
of the model.  The Panel indicated that the deviations probably represented a systematic error of 
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some sort, possibly the over-emphasized contributions of the B-esterases pointed out in the 
previous section of this response. 
 
The “Variation PBPK/PD model” used a very limited sensitivity analysis to identify parameters 
in the LifeStage model that drive variation in response.  There was some sense among the Panel 
that a more rigorous and wider ranging sensitivity analysis would be well justified.  Model 
parameters varied in the initial DAS study were tissue volumes, blood flows and perfusion rates, 
enzyme activity levels, tissue-partitioning coefficients, binding of cholinesterases, recovery and 
regeneration, as well as rates of transport of chlorpyrifos from stomach to gut or uptake from gut. 
This analysis showed that the most important parameters were brain and liver CYP metabolism 
and their effect on rates of formation of chlorpyrifos-oxon and TCPy, which depended strongly 
on PON activity in blood and liver, etc.  In fact, it appears that PON activity is the major driver 
of downstream outcomes including the magnitude of AChE inhibition in blood and brain, 
although there are flaws in the data supporting that conclusion (see earlier discussion). One panel 
member also mentioned that the chlorpyrifos brain: blood partition coefficient is a sensitive 
parameter that has been overlooked.  Variability of this parameter should have been incorporated 
to assess variability in brain AChE inhibition.  The variability of this parameter may have a 
significant impact on overall variability in toxicity and estimated uncertainty factors. 
 
Multiple panel members drew attention to the fact that the assessment of variability in the DAS 
model was only concerned with pharmacokinetic parameters.  Pharmacodynamic parameters are 
likely to be equally important.  In particular, variability in rates of AChE (and BChE) synthesis, 
degradation, regeneration, and aging rates could well impact overall variability in AChE 
inhibition and, hence, toxic outcomes in the general population.  In a PBPK/PD modeling study 
of diisopropylfluorophosphate (DFP) intoxication, Chen et al. (2009) demonstrated through a 
global sensitivity analysis that these pharmacodynamic parameters had the greatest influence on 
brain AChE activity.  Nong et al. (2008) used a Bayesian approach (i.e., Markov Chain Monte 
Carlo methods) to calibrate parameters for a carbaryl PBPK/PD model.  This calibration yielded 
a range of AChE inhibition and regeneration rate constants. 
 
In light of these considerations and the background information, the Panel was reluctant to 
embrace the conclusions in the DAS report that extrapolation from animals to humans and from 
adults to children and infants can utilize very small uncertainty factors, on the order of two-fold 
or less.  This point is further considered in the Panel response to Question 6.  
 
Question 1.2.  Dose Metrics: In Section 6, DAS proposes a number of dose metrics for use in the 
PBPK/PD effort.  These include peak levels of blood and brain AChE inhibition peak blood and 
brain levels of chlorpyrifos and its oxon metabolite, and urinary measures of 3,5,6-trichloro-2-
pyridinol TCPy), a chlorpyrifos metabolite.  Please comment on the utility, strengths, and 
limitations of these proposed internal dose metrics. 
 
Panel Response  
 
The Panel indicated that all of the named parameters could be supported scientifically as metrics 
for chlorpyrifos exposure with some limitations.   Peak brain AChE inhibition should be an 
indicator of potential toxicity, but obviously cannot be measured in humans.  Instead peak blood 
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AChE inhibition, which is highly variable among people so results must be interpreted with this 
variability in mind, is a potential surrogate marker for target tissues.  Peak chlorpyrifos 
concentrations may be useful for acute exposures, but the area under the curve may be more 
useful than the peak level for repeated exposures. While the peak chlorpyrifos-oxon 
concentration is potentially useful because chlorpyrifos-oxon is the active metabolite and the 
model could predict values for this parameter, chlorpyrifos-oxon is highly reactive and rarely 
measurable; therefore, there would be little confidence in any concentrations measured.  Urinary 
TCPy can be biased by pass-through TCPy that is absorbed as an environmental degradate; 
therefore, these measurements should be interpreted with caution. 
 
Subsequent discussion centered on the following three dose metrics: 1) the potential value of 
AUC determinations as a supplement (not replacement) for peak level measurements, 2) the 
value of tracking BChE inhibition, and 3) the utility of TCPy measurements. 
 
Potential value of AUC determinations 
 
The proposed internal dose metrics included peak levels of blood and brain AChE inhibition, 
peak blood and brain levels of chlorpyrifos and chlorpyrifos-oxon, along with urinary measures 
of TCPy.  These were all appropriate, but some Panel members, who were concerned with the 
possible risks of sustained low-level exposure, suggested that area under the curve (AUC) 
estimates would also be valuable.  The scale used for AUC estimates should not go to infinity, 
but rather be truncated to match the period of significant effects.  The Panel voiced the opinion 
that it is not necessary at this early stage of model development to narrow down the dose metrics 
in terms of AUC or peak values.  Rather, at the model validation stage, the dose metrics will be 
properly focused on the characteristics of data that are available for the purpose.  The basic 
expectation is that a sufficiently validated model would be able to predict those parameters that 
are of biological and toxicological importance, which cannot be measured accurately in 
experiments or surveys.  At this stage, the model construct should be versatile for such future, 
realistic, and reasonable uses.  While AUC is harder to measure accurately, it should be noted 
that in human studies there often is no way to be certain that peak inhibitions are captured.  Thus, 
it is premature to limit the model development to peak concentrations and effects. 
 
The Panel also suggested that the model would be very useful in looking at derived metrics, 
metrics that are not directly measurable but which can be obtained from the final fitted model.  
The question is which of the many derived metrics would be correlated to key health effects.  
The Panel recommended that the Agency should look not just at ‘dose metrics,’ which help to 
validate a model (e.g., by comparing model predictions to measurable quantities), but look also 
to ‘verification metrics’ to help confirm that the model is performing as it was intended.  Metrics 
for verification could include time-to-peak time to reach 90% of peak, or time for nearly 
complete elimination (e.g., 90% elimination). 
 
Value of BChE Inhibition as a Dose Metric 
 
Many on the Panel argued that BChE inhibition should be tracked in addition to AChE 
inhibition. This proposal generated lively discussion.  Some members took the view that plasma 
BChE activity is inherently more variable than RBC AChE activity.  This variability may stem 
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from at least two different sources: 1) genetic variants with altered catalytic properties that occur 
as balanced polymorphisms in most populations and 2) day-to-day regulation in response to 
hormones and other factors.  For these reasons it is likely that isolated measurements of BChE 
activity (i.e., random samples from a population) will show substantial variance.  It was also 
pointed out that BChE is probably best seen as a sentinel or surrogate marker for toxic effects 
since this enzyme has no identified physiological function other than an auxiliary role in 
acetylcholine hydrolysis and a metabolic role in detoxication of bio-active esters in the diet.  
Nonetheless, Panel attention was drawn to two reasons why BChE activity may be a useful and 
even important metric for a PBPK/PD model of chlorpyrifos.  First, as the DAS report 
demonstrates, BChE is critically important in detoxication of chlorpyrifos-oxon.  This role does 
not depend on an ability to catalyze the hydrolysis of the activated compound, but on irreversible 
stoichiometric binding.  The binding is extensive enough to be functionally significant because 
plasma BChE levels are substantial (about 3 mg/L) and because BChE is a highly sensitive 
target.  A second and closely related reason is that this high sensitivity to chlorpyrifos-oxon 
means that BChE can be used as a surrogate for other “non-cholinergic” targets that are difficult 
or impossible to measure, or even unknown. 
 
Another Panel member proposed that, with the well-documented concern for the role of BChE in 
neurodevelopment, it is unnecessary to preclude the validation of this parameter during model 
development (to the extent that data are available).  When the model is ready for risk assessment 
applications, all mechanistic data should be assembled.  Then, the most appropriate parameters 
should be chosen based on the concerns for BChE’s role in neurodevelopment.  In these 
considerations, the complexity and variability of human plasma BChE would be taken into 
account together with many other factors.  The key to model validation is to make use of as 
much data available as possible, not to exclude them.  
 
Utility of TCPy data 
 
For dose metric comparison with experimental data, the issue of ready detection needs to be 
balanced against the relevance to toxic effects.  While the urine samples are easy to collect and 
easy to measure for TCPy, the toxicological relevance of urinary TCPy for the present purpose is 
highly questionable.  Urinary TCPy is not a very useful dose metric because only a portion 
comes from dietary exposure to chlorpyrifos, for example, 5-20% as reported by Wilson et al. 
(2003) and 30-35% as reported by Lu et al. (2005).  The remainder comes directly from the diet 
and represents chlorpyrifos breakdown products in food.  Obviously the most relevant endpoints 
are the brain concentrations of the oxon metabolite or AChE inhibition in brain, which is the 
primary target organ of interest.  These measurements are not feasible in humans and hence 
unavailable as dose metrics.  Therefore, the blood concentrations of chlorpyrifos and its oxon 
metabolite or AChE inhibition in blood become the relevant internal metrics by default.  Direct 
measures of chlorpyrifos and, especially, its oxon metabolite, are often limited by the sensitivity 
of analytical methods, so at present it would be difficult to rely on these measures as primary 
dose metrics. Since the studies presented by Marty and Andrus (2010) showed similar dose 
response profiles for the inhibition of AChE in blood and brain, relying on AChE inhibition in 
RBC as a dose metric is appropriate. 
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Question 1.3: Although the current modeling effort focuses on AChE inhibition, there are data to 
suggest that chlorpyrifos exposure may also result in non-cholinergic effects.  As such, and if 
appropriate, please provide plausible additional and/or alternative dose metrics such as area 
under the curve (AUC) metrics or other temporal-based internal dose metrics that may be 
appropriate for evaluating potential non-cholinergic effects. 
 
Panel Response 
 
The Panel thought it reasonable to consider non-cholinergic effects in the long term; however, 
the current model structure is specifically designed for studying cholinergic effects.  Obtaining 
model output for AUC for chlorpyrifos and chlorpyrifos-oxon will be useful for use in simulating 
non-cholinergic effects.  Modeling BChE inhibition may also be useful as a potential measure of 
non-cholinergic toxicity.  While non-cholinergic effects may be of high interest and importance, 
there are no standard methods to measure non-cholinergic activity and no non-cholinergic 
mechanism has yet been validated. 
 
Evidence for non-cholinergic effects includes the discovery that tubulin can be phosphorylated 
by chlorpyrifos-oxon, with resulting dysfunction of microtubules and the axonal cytoskeleton 
(Jiang et al. 2010).  This work suggests that convalent binding of the Chlorpyrifos-oxon to 
tubulin and tubulin-associated proteins is a potential mechanism of neurotoxicity.  Yang et al. 
(2008) showed that chlorpyrifos and chlorpyrifos-oxon would inhibit axonal outgrowth of 
sensory neurons in tissue culture under conditions in which there was no detectable inhibition of 
AChE activity.  Their conclusion was that inhibition of axonal growth by OPs requires AChE, 
but disrupts its morphogenic functions rather than its catalytic functions.  Findings by both Jiang 
et al. (2010) and Yang et al. (2008) suggest that an exclusive focus on AChE inhibition may 
overlook important secondary mechanisms of neurotoxicity.  That said, the Panel indicated it 
was premature to recommend specific metrics for such “non cholinergic” toxicity, especially 
because there is still no convincing proof that these sorts of effects do occur in vivo without 
accompanying cholinesterase inhibition. 
 
The Panel discussed three points worth considering when gathering evidence for non-cholinergic 
effects. 
 

1) Panel members pointed out that obtaining AUC for chlorpyrifos and chlorpyrifos-oxon 
will be useful in modeling and predicting non-cholinergic effects when and if that proves 
feasible and necessary. If the concentration of chlorpyrifos that must be present in a 
target tissue to exert a non-cholinergic effect is known, then the model can identify what 
exposure level will be required to obtain toxic levels in that tissue.  

 
2) At least one Panel member pointed out that it might be worthwhile to model BChE 

inhibition, which is more sensitive to inhibition by chlorpyrifos, as a potential index of 
“off-target toxicity,” despite the greater natural genetic variability in this enzyme.  
 

3) A major concern is the enhanced susceptibility of early life stages to anti-cholinergic 
effects as there is rapid development of brain, spinal cord, and peripheral nervous system.  
In addition, there may be unique susceptibility of early life stages to non-cholinergic 
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effects of chlorpyrifos on the developing nervous system.  Gestation and early neonatal 
life stages should be included in the PBPK/PD modeling of chlorpyrifos and its 
metabolites. 
 

Charge Question 2:  Longitudinal Dietary Exposure Assessment 
 
QUESTION 2.1: Please comment on the methods used by DAS to investigate the relationships 
between dietary exposures and levels of chlorpyrifos and chlorpyrifos-oxon in blood.   Please 
include in your comments discussion on the strengths, weaknesses, impacts, and utility of the 
DAS proposal to focus on the immediate prior and subsequent days to high-end exposures and 
provide alternative approaches to assessing longitudinal (multi-day) exposures, if appropriate.  
Under what conditions and scenarios might this focus be inadvisable and/or lead to incorrect 
conclusions regarding exposures, doses, and risks?  
 
Panel Response  
 
The Panel concluded that the scope of DAS’ longitudinal dietary exposure was incomplete.  It 
should include dietary intake over many days (not just five days) and under various, correlated, 
eating behaviors.  The Panel recognized that limitations in the CARES and/or Lifeline model 
make such analyses difficult.  
 
The Panel acknowledged the progress DAS has made in the design of the chlorpyrifos PBPK/PD 
model, given the complexities of assessing dietary exposures and relating the likelihood of 
exposure at a population level to specific toxicological endpoints.  This modeling effort furthers 
the understanding of the relationship between exposures and toxicity, and improves risk 
assessment by moving away from chemical specific default values.  The utility of the immediate 
prior and subsequent days to high-end exposures in the model simulation demonstrated changes 
in chlorpyrifos and chlorpyrifos-oxon levels in blood and provided insight on how high-level 
chlorpyrifos exposure contributes to the overall AChE inhibition in RBCs and the brain.  DAS’ 
exposure scenario coincided with a recent paper by Samsam et al. (2005), which reported on 
persistent cognitive impairments observed in rats after chronic dietary chlorpyrifos exposure 
accompanying an acute dose high enough to induce AChE inhibition.  The Panel recommended 
to the Agency and DAS that the scope of a longitudinal dietary exposure assessment should span 
many days, not merely the consecutive days when measurements were made.  Recent studies (Lu 
et al., 2008; Riederer et al., 2009) have indicated an under-estimation of cross-sectional dietary 
consumption (in particular to commodities frequently being detected with pesticide residues) 
when compared to longitudinal data, and a seasonal-dependence for dietary organophosphate 
pesticide exposures.  Since dietary exposure and dose are related to the unknown and uncertain 
levels of pesticide residues in commodities as well as the probabilities of consuming those 
commodities, computing such random and episodic eating events would be very difficult to 
explain in models in a longitudinal study.  Although the CARES model, and likely  other models 
such as Lifeline, could be used as a tool for simulating consecutive days of dietary pesticide 
intakes, its application in the “source-to-outcome” modeling exercise highlights its significant 
difficulty in simulating “true longitudinal” dietary consumption patterns at the population level. 
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The Panel noted that the longitudinal dietary exposure estimation from CARES resulted in a 
pattern of sporadic peak daily exposures among a series of relatively low days of exposure.  
Applying this pattern to the five-day exposure history may provide a reasonable basis for 
evaluating longitudinal exposure, but this too contains known limitations.  For example, the 
CARES longitudinal exposure pattern generates random draws of residue data without 
considering the possibility of any day-to-day correlation.  The possibility of eating the same 
batch of food (with potentially high residue levels) for consecutive days was not computed.  
Additionally, individuals receiving high exposures, through unique, but specific patterns of food 
consumption, were not computed; therefore, the predicted exposure or dose would be 
inaccurately low.  Some of the realistic scenarios to consider include: consecutive days of similar 
exposures from consuming leftovers or eating from food supplies purchased in a batch.  These, 
and many other issues with the current approach, including the question whether a five-day 
chlorpyrifos exposure history is a reasonable basis for evaluating longitudinal exposure, have 
been the subject of many past SAP discussions. Those discussions should have been considered 
in this study.  For example, the Panel stated that it would be premature to conclude that a five-
day chlorpyrifos exposure history is a reasonable basis for evaluating longitudinal dietary 
exposure based on discussions held during other SAP meetings concerning probabilistic dietary 
exposure models (e.g., Lifeline™, Calendex™, CARES™, Stochastic Human Exposure and 
Dose Simulation Model for Multimedia, Multiroute/Pathway Chemicals (SHEDS-Multimedia), 
see http://www.epa.gov/scipoly/sap/meetings/index.htm).  

The Panel pointed out that the methods outlined in Section 5 of the DAS report focused on two 
possible relationships between successive-day exposures with one method resulting in essentially 
no correlation between day-to-day exposures and the other assuming a fairly strong correlation 
(See Figure 44 in DAS, 2011).  The panelist stated that both were incorrect and that the reality 
lies somewhere in between, perhaps closer to the highly correlated version than the completely 
random one.  The CARES approach has been adopted and given perhaps too much weight in the 
conclusion that single-peak exposure drives everything.  If day-to-day correlation were actually 
present, then longitudinal exposure modeling may offer an avenue for predicting continued 
AChE depression with associated chronic effects.  These effects may differ from those found in 
acute “poisoning” events and may affect the pharmacokinetics and pharmacodynamics of 
chlorpyrifos metabolism.  

The Panel suggested an alternative longitudinal dietary exposure scenario that would implement 
an admixture of the above-described uncorrelated and strongly correlated states (see also the 
discussion below on Markov chain approaches).  One could envision a drift from the highly 
correlated to the uncorrelated states over a period of several days as illustrated in the following 
scenario.  Assume that foodstuffs in a single purchase have unusually high levels of chlorpyrifos, 
and over the course of several days these foodstuffs would be consumed on a daily basis.  
Consider that the next purchase of foodstuffs would have low levels of chlorpyrifos.  If flour was 
the food stuff purchased on both occasions and flour from the first purchase was mixed with 
flour from the second purchase then the levels of chlorpyrifos would be reduced in the flour 
mixture.  Over time, but not instantaneously, the effects of consuming flour with high levels of 
chlorpyrifos from the first purchase would be mitigated. 

Other examples abound, such as purchasing a carton of strawberries, all of which come from the 
same grower and field.  The residues on these strawberries will be very similar (i.e., statistically 

http://www.epa.gov/scipoly/sap/meetings/index.htm�
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clustered).  Consumption of the strawberries on a daily basis will continue until they are all gone.  
If the first strawberry has residues, then the remaining will likely have residues, and vice versa.  
Thus, dietary exposure associated with eating strawberries from a single carton of strawberries 
will likely be correlated.  The Panel noted that Figures 44a and 44c in the DAS report depict 
uncorrelated doses drawn at random from a distribution of doses found in a population, while 
Figure 44b shows much more correlated doses.  A dietary profile that goes from 44b to 44a, for 
example, would be a more realistic “carry over” profile.  An individual may eat similar foods for 
consecutive days, although the tendency to do so, and thus the correlation in exposure, will 
decrease with time from the initial exposure. One panel member stated that “carry over” of a 
single day exposure to beyond 24-hours is the basic concept that distinguishes acute and repeated 
exposure toxicity evaluation.  Therefore, it would be a good start to consider, for example, a 
Markov chain approach with admixtures of correlated exposures and random exposures. 

The Panel recommended that the dietary exposure model (e.g., CARES, Lifeline) should 
consider highly correlated consumption behavior of specific foodstuffs.  This more generalized 
exposure model would be relevant to other AChE-inhibiting chemicals and perhaps other 
chemicals with a different mode of action.  One suggestion to improve estimation of longitudinal 
dietary exposure was to make use of the model output presented in Figure 46 of the DAS report, 
which showed dose dependent AChE inhibition with constant daily exposure.  This simulation 
indicated that more than five days may be needed to achieve steady-state AChE inhibition.  
Steady-state AChE inhibition can be substantially higher than that resulting from a single day 
exposure; i.e., 2.5-fold at 0.0001 mg/kg for infants and adults, 12-fold at 0.1 mg/kg for infants 
and 20-fold at 0.1 mg/kg for adults.  Depending on the exposure level, it could take more than 10 
days to achieve steady state AChE inhibition.  Thus, instead of modeling a 5-day dietary 
exposure for the longitudinal analysis with only one peak, an upper bound AChE inhibition to 
address the day-to-day linkage of high exposures can be estimated by extending the single day 
peak level from CARES output to the number of days that it takes to achieve a steady state. 

The Panel commented that only dietary exposure is considered in the current form of the 
chlorpyrifos PBPK/PD model.  Ultimately, the model should consider other exposure scenarios, 
including single and various frequencies of multiple days of exposure coupled with pertinent 
endpoints of action for each exposure duration, which were not presented in the DAS report.  
The DAS report focused on a single exposure scenario and a single set of toxicity endpoints.  
Instead, investigation should examine long-term exposure matched with long-term endpoints 
identified in the current toxicity database and these will be used in modeling for both animals 
and humans. 

The Panel encouraged DAS to develop innovative methods for displaying the model results.  For 
example, Figure 59 in the DAS report (DAS, 2011) was very difficult to follow.  DAS plotted 
dose on the 5th day on the x-axis, but the y-axis plots predictions over the entire five-day dietary 
period.  It is very difficult to interpret the figure without knowing the amount of "carry over" 
from the previous day.  One panelist suggested computing a Markov Chain transition matrix (see 
description in Parzen, 1962; Bailey, 1964) between the previous and current day's dose.  With a 
low dose on the previous day, chlorpyrifos concentration or inhibition on the current day will 
depend on the current dose.  With high dose on the previous day, the transition matrix will show 
how the current day's dose increases the chlorpyrifos concentration (or inhibition).  The source-
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to-outcome model would then be run to populate the transition matrix, as well as computing a 
transition matrix for days 3, 4, 5, or steady-state. 

One panelist had difficulty in responding to this charge question because the DAS report did not 
provide sufficient information to confirm or refute the conclusions made by DAS.  For example, 
this panelist pointed out that very little detailed information is available to confirm the 
conclusions drawn from Figures 51 and 52 (DAS, 2011, pp. 119-120).  This panelist did not 
understand the statement made in the Report that "...the top half of the population are not 
substantively affected by the uncertainty introduced by the absence of longitudinal data on 
dietary intakes.", and therefore questioned what preliminary model output can be used to confirm 
this statement. 

QUESTION 2.2: Please comment on the soundness of the conclusions reached by DAS with 
respect to the impact and importance of accounting for longitudinal dietary exposures to 
chlorpyrifos at the upper ends (e.g., >99th percentile) of the exposure distribution.  To what 
extent, if any, can the DAS conclusions be generalized to other AChE-inhibiting chemicals and 
under what conditions?  Please suggest how this issue of generalization to other pesticides could 
be investigated and explored?  
 
Panel Response  

The Panel agreed that it was important to account for longitudinal dietary exposures to 
chlorpyrifos at the upper ends (e.g., >99th percentile) of the exposure distribution.  However, the 
Panel stated that it would be premature to conclude that the chlorpyrifos analysis can be 
generalized to other chemicals or when multiple AChE-inhibiting chemicals are present in a 
single eating event.  For example, the CARES-PBPK/PD model predictions for chlorpyrifos may 
be erroneous if there are other pesticides also present with different affinities for BChE or AChE. 
 
The Panel indicated that the CARES-PBPK/PD model that DAS developed for chlorpyrifos 
could, conceptually, be applied to other AChE-inhibiting chemicals under the provision that 
those chemicals share some very similar physical, chemical, metabolic, and pharmacokinetic 
characteristic with chlorpyrifos.  Certainly some of the pharmacodynamic variables, when 
carefully validated, can be expected to be useful for chemicals with the same mode of action.  
However, chlorpyrifos is a unique case study because there are extensive data available for 
deriving the model input variables, which will not be the case for many other AChE- or BChE-
inhibiting chemicals.  The Panel noted that different exposure periods may be needed for other 
AChE-inhibiting chemicals.  For example, a five-day exposure period may be appropriate for 
chlorpyrifos, but not for malathion.   
 
The Panel noted the importance of considering the real-life scenario in which dietary exposures 
often involve multiple OP pesticides, or other chemicals, during a single eating event.  Under 
such circumstances, the outcomes from the CARES-PBPK/PD model for chlorpyrifos may need 
to be modified to account for the simultaneous presence of other pesticides with different 
affinities for binding BChE or AChE such as malathion.  Malathion has a stronger binding 
affinity for BChE than chlorpyrifos, and therefore may lead to a greater inhibition of AChE by 
the co-presence of chlorpyrifos.  The degree of AChE binding would also be different depending 
upon whether there are other cholinesterase-inhibiting chemicals present with chlorpyrifos.    
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Ultimately, a model to facilitate a full risk assessment required under the Food Quality 
Protection Act would have the capacity to address cumulative risks from aggregate exposures of 
organophosphate pesticides.  The current CARES-PBPK/PD model, as discussed, does not assess 
the cumulative risks posed by multiple OP pesticides.  It would have to consider the impact from 
both the pattern and level of exposure, which may warrant an alternative approach to the one 
used to assess exposures to a single chemical alone.  Therefore, the Panel considered it important 
that the source-to-outcome model development encompass multiple OP pesticides.   
 
Furthermore, pesticide risk assessment would also need to address the risk of non-dietary 
exposure to workers and their families and to children from hand-to-mouth exposures (indoors).  
A recent study (Beamer et al., 2009) has shown children, especially those younger than two years 
of age, receive a considerable non-dietary exposure from mouthing activities and from their close 
proximity to the floor.  Their upper end exposures from aggregate and cumulative standpoints 
should be estimated separately.  Similarly, as the DAS team made comparisons of CARES-
PBPK/PD model output to several human biomonitoring data sets, it is important that these 
aspects of their longitudinal exposure (i.e., other routes of exposure, in addition to diet) also be 
considered.  

Charge Question 3: Model Calibration and Evaluation with Direct Dosing Human Studies 
 
QUESTION 3:  Please comment on the model evaluation approach comparing the linked 
CARES-PBPK/PD source-to-outcome model predictions with the Kisicki et al. 1999 study.  In 
what ways could or should the model evaluation approach used by DAS be extended?  Are there 
other model evaluation methods with respect to this aspect of the DAS manuscript that the Panel 
suggests be performed?  To what extent does the Panel agree that the DAS model predictions are 
reasonably consistent with those of the Kisicki et al (1999) literature-reported values?   
 
Panel Response 
 
The Panel agreed that the data from the Nolan et al. (1982) and Kisicki et al. (1999) studies were 
scientifically suitable to be used in the model evaluation.  The Panel concluded the Nolan et al. 
(1982) study was suitable for calibrating the DAS PBPK/PD source-to-outcome model.  
However, the Panel noted that, for several reasons, the model was not “validated” using the 
Kisicki data.  For one, the Panel commented that since some of the model parameters were 
calibrated to the Kisicki data, it puts into question the independence of a model-to-data 
validation. 

The model evaluation that this question refers to is only the comparison of the LifeStage 
PBPK/PD model to the Kisicki et al. (1999) data.  In light of the limitations of the Nolan and 
Kisicki studies, the Panel concluded that the model fit to the Kisicki data was generally 
reasonable (by visual comparison), although the model fit for the highest dose was not 
particularly good, and the model’s ability to predict cholinesterase inhibition recovery was not as 
good as would be desired.  The charge question asked the Panel to comment on the 
“reasonableness” of a model evaluation without providing a compelling description of how the 
joined models will be used.  Without knowing how a model will be used, it is not possible to 
comment sufficiently on its reasonableness or appropriateness.  The Panel recommended that the 
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potential sources of uncertainties identified in these and other comparisons should be captured 
for assessing the overall model uncertainties if the model is used for risk assessment. This 
analysis will be useful to ensure goodness of fit at a dose range outside the potential human 
exposure range and for possible model adjustment that can reduce the uncertainties in model 
predictions at the range relevant to human exposures.   

Model Calibration 

The EPA Human Studies Review Board (HSRB) is a Federal Advisory committee tasked with 
reviewing any studies conducted by third parties involving the intentional dosing of humans with 
pesticides that EPA might use in its regulatory decisions. The HSRB reviewed both the Nolan et 
al. (1982) and the Kisicki et al. (1999) studies in 2009, and had access to the original reports of 
data provided to the Agency (HSRB report of the June 2009 meeting provided to the Panel).  The 
HSRB found that there were scientific limitations to both studies, but found the studies to have 
been conducted ethically and, therefore, there were no ethical barriers to EPA’s use of the 
studies.  

In the current source-to-outcome modeling effort, the Nolan study was used to calibrate the DAS 
PBPK/PD model.  The HSRB viewed the Nolan study as largely useful and reliable; however, 
they expressed several concerns with the scientific quality of the data.  The HSRB questioned the 
reliability of the chlorpyrifos data because levels in blood and urine were at the limit of 
detection.  They also questioned the accuracy of the TCPy measurements in blood because of the 
technique used and its ability to detect the appropriate TCPy conjugate.  The HSRB considered 
the cholinesterase measurements to be reliable, although they pointed to the lack of an untreated 
control group to assess inter-day variability, which was, not unexpectedly, quite high.  The 
HSRB also raised several scientific concerns with respect to the Kisicki study.  There were no 
detailed descriptions of the methods, e.g., whether there was urinary hydrolysis to release TCPy, 
how the data were analyzed, and why there was just 35% absorption.  The HSRB’s findings are 
detailed in the final report of the June 2009 HSRB meeting (see OPP Regulation Docket:  EPA-
HQ-OPP-2010-0588).   

During the meeting, DAS responded that two of the major issues raised by the HSRB were 
addressed in a written response provided to the Office of Pesticide Programs.  The response was 
not provided to the HSRB so there were no corrections to the HSRB report at the time of the 
SAP meeting.  DAS provided a copy of their response to the SAP (see OPP Regulatory Docket: 
EPA-HQ-OPP-2010-0588), which addressed two of the major HSRB concerns:  1) there was 
hydrolysis of urinary conjugates prior to quantification of TCPy, and 2) disparities in proportion 
of dose absorbed between the Kisicki (35%) and Nolan (70%) studies could have been due to 
differences in chlorpyrifos particle size between the two studies. The DAS response presented 
experimental detail that was not present in the original reports to EPA.  Therefore, only a few 
minor concerns continue to persist from the HSRB review regarding the reliability of the 
experimental data.  Based on the additional information provided in the DAS response to the 
June 2009 HSRB report, the Panel agreed that the data from the Nolan et al. (1982) and Kisicki 
et al. (1999) studies were scientifically adequate to be used in the model evaluation.   

 
Even though the Kisicki study was deemed scientifically useful, there were important limitations 
in the data.  The Panel discussed some of the limitations. The red blood cell AChE inhibitions 
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were calculated compared to each person’s baseline, but there was insufficient documentation on 
sample batching procedures.  No total mass balance analysis was performed.  There was some 
question about the dosage delivered to one individual.  The red blood cell cholinesterase 
depression (25%) in one individual at the 1 mg/kg dosage suggested inhibition, but this occurred 
at a later than expected time point (96 hours) and all samples were low on that day, so this 
observation probably did not reflect inhibition.  One participant in the high (2 mg/kg) dosage 
level experienced 28% inhibition at 12 hours, so this was a biologically plausible time and level 
of inhibition; unfortunately, this subject was lost to the study after this time point so did not 
provide information regarding the time course of the inhibition and potential recovery.  Despite 
these limitations, data reported by Kisicki et al. (1999) were useful to compare with the 
predictions of the CARES-PBPK/PD source-to-outcome model.  
 
Modeling Evaluation 
 
The Panel commented on the model evaluation approach comparing the linked CARES-
PBPK/PD source-to-outcome model predictions with the Kisicki et al. (1999) study.  According 
to the model file, LS_Human_Parameters.m Vd and Kel (lines 133 and 134) were optimized to 
the Kisicki data, so the model was not independently validated” on the Kisicki data as some of 
the model parameters were optimized to the same data.  While the predictions of the 
cholinesterase inhibition seemed fairly good, there were relatively few observations of 
cholinesterase inhibition.  Some significant deviations occurred at higher dose levels (e.g., 2 
mg/kg) and, to a lesser extent, for cholinesterase inhibition.  The model predictions appeared to 
agree better with the TCPy data, although it was difficult to draw conclusions from the 
agreement at this stage of the model evaluation.  The model description presented did not employ 
the exposure data from CARES, which might have provided better exposure estimates.  These 
deviations could be considered “conservative” in the sense that they either match the data or 
predict higher levels of active compound and higher levels of cholinesterase inhibition than 
actually observed.  One panel member commented on the judicious use of subjective terms like 
“conservative” since we do not know the full possible uses of the model.  The Panel indicated 
that the deviations probably represented a systematic error of some sort, possibly the over-
emphasized contributions of the B-esterases pointed out in the previous section of this response. 
 
The Panel recommended that the potential sources of uncertainties identified in these and other 
comparisons should be captured for assessing the overall model uncertainties if the model is used 
for risk assessment. This analysis will be useful to ensure goodness of fit at a dose range outside 
the potential human exposure range and for possible model adjustment that can reduce the 
uncertainties in model predictions at the range relevant to human exposures.   

This charge question asked the Panel to comment on the “reasonableness” of a model evaluation 
without providing a compelling description of how the joined models will be used.  The report 
showed examples/illustrations of how a joined model may be used but it did not address how this 
specific model will be applied.  Assessment of reasonableness and appropriateness of a model 
(or modeling platform) goes hand-in-hand with its intended use.  As such, one cannot answer 
whether the reported model evaluation is appropriate.  Nonetheless, the following comments and 
suggestions were made to illuminate general principles of model evaluation. 
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1) The term model evaluation should refer to a process that includes: 1) comparison of 
predictions from the entire modeling platform to data, when possible, 2) comparison of 
model components, e.g., the LifeStage PBPK/PD model, to data, and 3) diagnostic 
analysis of outputs from the entire model platform, and intermediate outputs from its 
subsidiary components.  To their credit, DAS did show many examples of comparing 
model components.  

2) The LifeStage PBPK/PD model evaluation was very sequential.  A model was coded, it 
was tuned to data, and then the model was compared to other data.  This is rarely how 
model development is done.  Model development and reconciliation to data is usually 
very iterative.  A conceptual model is developed; data are found; model parameters are 
proposed; predictions are compared to data; the model is refined; parameters are refined, 
and the process is repeated.  The Panel encouraged the developers of case studies to bring 
to light the messiness of this process (i.e., bouncing between model development, 
calibration, analysis of fidelity, and prediction).  An example would be the development 
and analysis shown in Dr. Hattis’ presentation during the public comment period (see 
OPP Regulatory Docket:  EPA-HQ-OPP-2010-0588. 

Specifically, the Panel thought it would have been useful to have seen results for: 

§ Model parameters developed for Kisicki and predictions compared to Nolan; 

§ Model parameters developed for both Kisicki and Nolan; 

§ Model predictions as derived from so called default parameters and predictions 
compared to data; 

§ Model predictions derived for each individual; 

§ Effect of the parameter uncertainty and variability on outcome predictions; 

§ Alternative model formulations calibrated to data and compared to the LifeStage 
model; and 

§ Separate modeling of males and females to determine if there are sex differences in 
disposition and response. 

The Panel listed a number of additional comments and questions. 

§ How was the calibration of the model performed using the Nolan study? 

§ What numerical method do you used to solve the mathematical equations?  What is 
the convergence accuracy?  The time steps for chlorpyrfos-oxon are fast compared 
to TCPy formation, which results in numerically stiff equations.  What is the 
assurance that numerical errors are minimized? 

§ Raw data should be plotted, but when there are just a few samples, the standard 
deviation can be misleading.  
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§ The discussion on the importance of activity was very interesting and well 
performed.  How can this discussion be applicable to the general approach to source 
to dose analysis (DAS, 2011, p. 71)?  In other words, how can the overall activity 
period be determined? 

§ The assumption of 100% absorption is conservative, but it does not yield a 
distribution. 

§ Some parts of the model may be able to be validated independently. The model 
needs an evaluation of assumptions and algorithms independently. 

§ Perhaps Figure 56 in the DAS report (DAS, 2011) could be expanded to a matrix to 
make the process clearer. 

§ There are questions about the estimated variability. 

§ There are many variables in the model adding to its complexity. The model was 
parameterized with Monte Carlo techniques to show variability across the 
population.  Inter-individual variability in enzymatic activity had the biggest 
influence on the outputs. The Panel suggested that modeling efforts focus on the 
more sensitive parameters to increase the efficiency of these efforts. 

§ Although the peak AChE inhibition resulting from a specific chlorpyrifos dose is 
the current interest in the regulatory agency, the “carry-over” AChE inhibition from 
one exposure to the next would be as important as the peak inhibition under the 
circumstance in which a longitudinal exposure scenario is considered. 

§ All models of this complexity will have some compromises. The model needs to be 
validated to its ultimate purpose.  The model will be valid only for a range of 
applications, and cannot be used outside that range of applications. 

§ If human exposure studies are feasible in the future, repeated dosing studies would 
yield useful information. 

§ The terms used in the source-to-outcome modeling should be explained in a manner 
that does not use jargon and proprietary terms.  

Charge Question 4: Comparison of Model Predictions with Human Monitoring Data 
 
QUESTION 4:  Please comment on the model evaluation approach used by DAS to compare the 
linked DAS source-to-outcome model dose predictions to (i) Eaton et al (2008), Whyatt et al. 
(2009) and Barr et al. (2010),  (ii) the Curwin (2007) and Lu (2008) literature values and (iii) 
NHANES data measurements.  To what extent does the Panel agree that the DAS model 
predictions are reasonably consistent with those of the literature-reported values and the 
NHANES data? Please suggest, if appropriate, other model evaluation methods or alternative 
approaches for comparing model predictions with actual human exposure that the Panel 
recommends to further evaluate the model predictions. Please include in your comments 
suggestions for what additional datasets should be used for comparison.   
 



 39 

Panel Response  
 
The Panel indicated that DAS made a strong effort to compare the results of the source-to-
outcome model and the validation model to data and past models reported in the public record.    
The DAS model provided similar results to other published models.   
 
The Panel discussed the DAS model in the context of the overall model evaluation approach 
proposed by DAS.  In an attempt to validate the modeling results, DAS proposed a direct 
comparison of the modeled results, scaled when appropriate, to observations made in field 
investigations as shown in Figure 1 (Figure 56 in the DAS report, DAS, 2011, p. 128).  The first 
step in their process was to evaluate the results of three different modeling systems.  Although 
not the point of this charge question, the fact that the results of the various modeling systems 
gave similar results was encouraging.  The Panel noted that comparing the calibrated model to 
the data used for calibration was a simple, perhaps preliminary step in the validation process.   
 
With regard to direct comparison with biological field sampling, the Panel responded that data 
available for comparison and validation studies were quite sparse.  Only two relatively small 
studies of blood and serum levels from two adjacent states (New York and New Jersey) have 
been published (Whyatt et al., 2009 and Barr et al., 2010). [Note:  Eaton et al. (2008) use the 
same data as Whyatt et al. (2009).]  More data exist for urinary markers of chlorpyrifos 
exposure.  The newest NHANES study, when released, will include data from about 1000 
subjects and thus, may offer better validation data.  Until that time, the data from these two 
studies are the best available.  It is difficult to argue with soft terms like “reasonably consistent,” 
especially when a large fraction of the data reported in the two investigations is below the 
reported detection limit.  The Panel would have preferred a more quantitative statement, but this 
was not possible given the data at hand. 
 
The Panel found the comparison between the DAS model and the NHANES data to be 
problematic.  The source-to-outcome predictions did not agree particularly well with the data.  
The Panel also commented on DAS’ omission of data at the limit of detection (LOD) in the 
comparisons.  Much of the TCPy data in NHANES are below the LOD.  Inclusion of the LOD 
values for NHANES would offer a clearer comparison.  Results from two smaller studies, 
Curwin et al. (2007) and Lu et al. (2008), were used to compare the source-to-outcome model 
results with field data.  While the Panel concluded that the method of comparison itself seemed 
valid, the conclusion that the predictions were consistent with observed values was overstated.  
As a result, the Panel found that the DAS comparison of the model to the published data of TCPy 
in urine was cursory.  The urinary concentrations of TCPy from the individuals in the Curwin et 
al. (2007) study were not appropriate to compare with model predictions because exposures other 
than dietary were included.   
 
The Panel thought the source-to-outcome model was inadequate to predict urinary TCPy values 
that could be compared to the published data.  Considering that the PBPK-PD model had been 
calibrated thoroughly, one would expect the model outputs, in terms of chlorpyrifos, 
chlorpyrifos-oxon, and TCPy in blood and AChE inhibition, to resemble the data from human 
volunteer exposure studies (see response to Charge Question 3).  Therefore, the inability of the 
CARES dietary exposure model to generate representative input data significantly reduces 
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confidence in the predictability of the PBPK-PD model.  The Panel reported on recently 
published data from Lu et al. (2010) that could be used as potential input values in the PBPK-PD 
model to assess how the model would perform compared to the observed values. 
 
Several Panel members expressed concern with using a simple multiplicative factor to estimate 
TCPy levels in pregnant women.  The Panel consensus was that using a simple multiplicative 
factor provided inaccurate and imprecise TCPy levels in pregnant women. 
 
Concern was expressed with regard to exposures to TCPy from the environment through the diet, 
and with non-dietary intake of chlorpyrifos, e.g., through inhalation.  The Panel indicated that 
additional work in this area of the model is important.  An additional concern focused on the 
comparison with occupational data.  The route of exposure in occupationally-exposed individuals 
would likely be quite different from the dietary pathway emphasized in the remainder of the 
report.  As a consequence, this analysis may be inappropriate as a demonstration of the validity 
of the model. 

 
Figure 1.  Steps in the source-to-outcome model and anlyses that provide a basis for the evaluation of the model 
outputs.  This figure is a reproduction of Figure 56 in the DAS report (DAS, 2011, p. 128). 

 
Discussion of the Blood Chlorpyrifos Measurements and Modeled Results 
 
The Panel noted that the Whyatt, Eaton, and Barr studies were relatively small, with less than 
100 maternal and cord bloods measurements in the former and less than 150 in the latter (Whyatt 
et al., 2009 and Barr et al., 2010).  Table 1 (Table 7 in the DAS report, DAS, 2011, p.131) 
provides a summary of the measured chlorpyrifos blood levels in the Whyatt et al. (2009), Barr 
et al. (2010), and Eaton et al. (2008) studies.  Inspection of the table indicated that the majority 
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of the measured values were less than the level of detection (LOD) for both maternal and cord 
blood samples.  In the Whyatt study, at least 75% of the samples were below the LOD, while in 
the Barr study, at least 50% of the cord blood samples were below the LOD, while at least 95% 
of the maternal blood samples were below the LOD.  In both the Whyatt and Barr studies, LOD 
values were variable and ranged from 0.5 to 1 ng/L (Dana Barr, personal communication).  
Barr’s lab analyzed both sets of samples.  Only summary data were listed in the Eaton 
presentation of the Whyatt data.  In comparison, the modeled values were not limited by 
laboratory analytical limits of detection and values thus were estimated for all individuals.  The 
DAS model tended to under predict the observed values by a factor of 2-3.  DAS deemed that the 
model fit “reasonably well.”  The Panel concurred both with the model fit to the studies, given 
the intrinsic variability of results near the LOD, and with the general approach of direct 
comparison. 
 
Table 1. Comparison of measured blood chlorpyrifos levels (ng/L) from selected biomonitoring studies with 
predictions from source-to-outcome model.  This figure is a reproduction of Table 7 in DAS report (DAS, 2011, 
p.131). 
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The Panel reasonably argued that an alternative approach to the comparison would be to exclude 
modeled values below the analytical limit of detection and compare the results only with those 
exceeding this value, but such is a small collection.  Although no statistical test-of-fit was made, 
by and large, a visual comparison suggested that there was no difference in the data.  One panel 
member pointed out that it is possible to use some statistical tests, such as the Shapiro-Francia 
Goodness of Fit test2

 

 (Royston, 1982a, b) to compare the predicted distribution of AChE 
concentration (in RBC or brain) to the left-censored data from animal or human studies. 

One panel member pointed out that some of the biomonitoring data used for comparison may not 
be completely appropriate as some, if not all, of the cohorts in the surveys were exposed to 
chlorpyrifos through other routes in addition to diet.  For example, chlorpyrifos was detected in 
the indoor and personal air among the inner city cohorts in the Whyatt et al (2009) study.  This 
was echoed by other members of the panel and reflected in early work by MacIntosh et al., 2001. 
 
Discussion of the Urinary Chlorpyrifos Metabolite Measurements and Modeled Results 
 
The Panel agreed that the NHANES data offers the most comprehensive dataset of urinary TCPy 
measurements.  DAS provided their comparison of the modeled results to urinary TCPy levels in 
Figure 57 of the report (DAS, 2011, p. 133) and reproduced below in Figure 2.  The Panel found 
the comparison problematic and did not think the source-to-outcome model results fit very well 
with the observed data  
 
Much of the TCPy data in the NHANES investigation is below the LOD.  Inclusion of the LOD 
values for NHANES could offer a better comparison.  Although the distribution would be flat, or 
artificial depending on the way the LOD values were treated, it could allow for a better estimate 
of the “lower tail.”  DAS assumed that only 5-20% of urinary TCP was from ingestion of 
chlorpyrifos (Figure 2).  Therefore the model’s predictions of TCP urinary concentrations from 
just chlorpyrifos exposure were adjusted upward to compare with measured levels.   
The dotted line representing the source-to-outcome model does not fit very well with the 
“observed” data, which are also the results of a “model” albeit a simple one relating urinary 
concentration via total modeled urinary output to total TCPy output.   

                                                
2 The Shapiro-Francia goodness-of-fit test statistic is a simplification of the Shipiro-Wilks’ test (Shapiro and Wilks, 
1965) that works for larger sample sizes. Both tests exploit the fact that if a set of data come from a normal 
distribution then the relationship between the observed order statistics (y(i)) and the corresponding expected order 
statistics (z(i)) will follow a straight line of the form y(i) = m + s z(i). 
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Figure 2.  Cumulative distributions of predictions of current urinary levels of TCPy from the source-to-outcome 
model for adults, observed levels in the U.S. population in the 2002 NHANES survey (30% of population have 
levels below the NHANES level of quantification and are not shown), and estimates of the portions of NHANES 
levels that come from chlorpyrifos dietary exposures.  This figure is a reproduction of Figure 57 in the DAS report 
(DAS, 2011, p. 133). 

 
DAS compared the predicted levels of urinary TCPy from the source-to-outcome model to the 
observed urinary TCPy levels from two monitoring studies, Curwin et al. (2007) and Lu et al. 
(2008).  These comparisons are shown in Table 2 below (Table 8 in the DAS report, DAS, 2011, 
p. 134).  The modeled predictions (at the 90% CI) range from 0.08-0.3 µg/L (adults) and 0.3-1.0 
µg/L (children).  Both the Curwin et al. (children and adults) and Lu et al. (children) studies 
reported mean TCPy levels that were greater (an order of magnitude) than the median TCPy 
levels predicted by the source-to-outcome model.  In children,  observed mean TCPy levels  (Lu 
et al., 2008; Curwin et al., 2007) were higher than the predicted TCPy levels by a factor of 10 
and 30, respectively, and for adults, by a factor of 55 to 60 (Curwin et al., 2007).   
 
DAS adjusted the predicted urinary TCPy levels upward due to the complicating presence of 
TCPy in the environment and as dietary residues on food.  Several researchers have indicated 
that only 5-20% of TCPy in urine is from dietary intake of chlorpyrifos residues (Barr et al., 
2005; Eaton et al., 2008; Wilson et al., 2003).  Following the adjustment, the predicted levels 
were much closer to the observed levels in children (within a factor of 1.6 to 6.4) and adults 
(within a factor of 2.9 to 11) as shown in slide #43 of the presentation by Mr. Paul Price (DAS) 
(“Source-to-Outcome Modeling” presentation is available in the OPP Regulatory Docket:  EPA-
HQ-OPP-2010-0588).  DAS concluded that the source to outcome predictions were consistent 
with 5-20% of observed levels, which they decided was consistent with the reported literature on 
environmental levels of TCPy.  One panelist indicated the degree of environmental degradation 
of chlorpyrifos is approximately 30-35% (Lu et al., 2005) and disagreed with the use of 5-20% 
used by DAS.  Overall, the Panel concluded that the method of comparison itself seemed valid, 
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but considered the conclusion that the modeled values were consistent with the observed values 
in the literature to be overstated.   
 
Table 2. Comparison of selected measured urinary TCPy concentrations (µg/L) from selected biomonitoring 
studies with source-to-outcome model predictions.  This figure is a reproduction of Table 8 from the DAS report 
(DAS, 2011, p. 134). 

 
 
The Panel indicated the real limitation of the source-to-outcome model for simulating 
population-based TCPy urinary levels may not be embedded in the PBPK/PD model component, 
but rather in the dietary exposure predicted by the CARES model.  That is, the CARES model 
used 5-day dietary exposure values (see discussion on longitudinal dietary exposure in Charge 
Question 2).  Therefore, the source-to-outcome model’s predicted range of urinary TCPy, 0.3 – 
1.0 μg/L (90% confidence interval) would not be representative of the much broader range of 
chlorpyrifos exposure in the general population.  It would also under-predict the mean urinary 
TCPy levels measured by Curwin et al. (2007) and Lu et al. (2008).  As reported by NHANES 
and Lu et al. (2008), there were significant portions of the study participants in the respective 
studies with no measured (below the LOD) TCPy levels.  In this regard, the source-to-outcome 
model over-estimated the baseline or low-end chlorpyrifos exposures.   
 
The Panel stated that the urinary concentrations of TCPy from the individuals in the Curwin et 
al. (2007) study were not appropriate to compare with model predictions because exposures other 
than dietary were included.  The study participants were farm workers and their families and 
therefore the urinary levels of TCPy represent aggregate exposures, not solely dietary exposures.  
The concept of aggregate, multimedia exposure to chlorpyrifos and cumulative exposure to 
chlorpyrifos and other AChE inhibitors was a recurring theme in the Panel’s discussion.  The 
Panel noted the current report was limited in this regard (aggregate exposure) and recommended 
that attention be given to include aggregate exposure in the modeling effort  to provide a more 
complete understanding of the exposure-response matrix. 
 
The Panel noted that the Curwin et al. (2007) and Lu et al. (2008) studies provided not only 
mean and median numbers, but the distributions of the dataset as well, see Table 2 below.  For 
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example, the study published by Lu et al. (2008) also contained seasonal distributions of urinary 
TCPy levels.  The Panel thought it would be a good exercise for DAS to compare the model 
simulation outcomes to those distributions of urinary TCPy levels under other circumstances, 
such as different seasons and spot vs. volume-weighted average measurements. 
 
The Panel drew attention to a recent paper with content relevant to the topics being discussed by 
this SAP (see Lu et al., 2010).   Lu et al. (2010) reported on the use of  the Exposure-Related 
Dose Estimation Model (ERDEM) which used the data from Nolan et al. (1982) and Timchalk et 
al. (2002) studies, In this regard, the Lu et al. ERDEM model is similar to the source-to-outcome 
model. The ERDEM model estimated predicted TCPy levels and these values were compared to 
the observed data.  The authors concluded that the ERDEM model grossly under-predicted the 
24-hour cumulative TCPy levels in urine as well as the subsequent absorbed dose estimates for 
most of the 26 cases except for two cases in which chlorpyrifos was detected in the 24-hour 
duplicate food samples.  The predicted urinary TCPy levels and the absorbed chlorpyrifos dose 
represented 75% of the observed values, which, when environmental degradation of chlorpyrifos 
is taken into account, becomes nearly coincident with the observed values.  Although this study 
was small, it was designed specifically for the purpose of using a PBPK model for estimating 
and validating human biomarker data.  This panel member recommended that both the Agency 
and DAS use the data published in the Lu et al. (2010) paper as potential input values in the 
PBPK-PD model to assess how the model would perform compared to the observed values. 
 
In conclusion, the Panel thought the source-to-outcome model was inadequate (in its current 
form) to simulate urinary TCPy values comparable to the published data because the CARES 
dietary exposure model did not generate representative input data.  Considering the PBPK-PD 
model had been calibrated thoroughly so the model outputs, in the forms of chlorpyrifos, 
chlorpyrifos-oxon, and TCPy in blood and AChE inhibition, would be close to the data from 
human volunteer exposure studies (see response to Charge Question 3), the inability of the 
CARES dietary exposure model to generate representative input data significantly reduces the 
confidence in the PBPK-PD model.   
 
Discussion of Model Predictions of the Relationship between TCPy in Urine and  
BChE in Occupationally Exposed Adults. 
 
DAS also decided to look at the relationship between urinary TCPy levels and BChE activity in a 
group of occupationally exposed workers.  They made use of both the LifeStage model and the 
variability model to evaluate this work.  The Panel found the relationship between this output 
and the main model to be unclear as the main model focused on dietary exposure while the 
principal exposure experienced by these workers was unlikely to be via the ingestion route.  The 
model comparisons suggested a relative good fit of the data at low urinary TCPy and low 
inhibition, but both the main model and the variability model over-predicted the activity 
reduction at high doses.  However, the value of this work was not apparent.  
 
More General Comments 
 
Observational biomonitoring data.  The Panel noted that conducting any new human controlled-
exposure studies is unlikely given the ethical considerations with such studies.  Thus, 
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observational biomonitoring data would be the main source for identifying the effects of 
chemical exposure in the future.  There are limitations in the model-to-biomonitoring 
comparisons and they should be purposefully noted to inform future biomonitoring data 
collections and give guidance as to what investigations are likely to prove fruitful.  Further, farm 
workers and their families are unique in their exposure pattern to chlorpyrifos from field 
applications.  Characterizing each exposure pattern should accompany the biological sample 
collections.  This would allow more informed comparisons to model predictions 
 
Model structure.  DAS made predictions of maternal blood concentrations of chlorpyrifos, but 
did so with a 1.3-fold adjustment factor to predictions from their model for a reference male to 
account for changes in pregnancy and cited work from Lowe et al. (2009).  The Lowe et al. 
(2009) manuscript did include a maternal and fetal component to the PBPK model and compared 
model predictions to maternal and cord blood concentrations of chlorpyrifos after delivery from 
Whyatt et al. (2005).  However, the human model, which was based on rat data, was not able to 
predict observed human cord blood concentrations.  The lack of an explicit description in the 
current DAS PBPK/PD model for maternal and fetal pharmacokinetics and pharmacodynamics 
to chlorpyrifos is a major deficit in the DAS approach.  Exploration of mechanisms that may 
explain the cord blood to maternal blood concentration ratio in humans compared to rats is 
important for developing a PBPK/PD model that will be accurate for use in health risk 
assessments of chlorpyrifos.  
 
The Panel considered the method of simply multiplying simulated chlorpyrifos blood 
concentrations by a factor of 1.3 to determine concentrations in pregnant women to be 
questionable.  Ostensibly, this was performed to correct for changes in blood lipid composition 
during pregnancy and hemodilution.  Changes in blood lipid have an impact on all partition 
coefficients. Partition coefficients have an impact on volume of distribution and hence clearance.  
Pregnant women also have a different physiology than non-pregnant women, e.g, tissue volumes, 
that may impact blood levels as well.  A single multiplicative factor might be too simplistic. 
 
The Panel noted that Dr. Dale Hattis (Clark University) presented information from an 
independent modeling of chlorpyrifos pharmacokinetics.  Although the model parameters were 
the same as the DAS model, there appeared to be a disparity between the predicted blood 
concentrations from Dr. Hattis’s work and those based on the work of Timchalk et al. (2002) 
upon which the DAS source-to-outcome model is based.  The source for the discrepancy is 
unclear, but indicates the need to carefully review the DAS modeling work for accuracy before 
use in health risk assessments. 
. 
Model-to-data comparisons.  The Panel noted that the while model predictions were “consistent” 
with the available data and that the explanations for differences were certainly plausible, there 
were data discrepancies that might be a result of some model misspecification errors.  For 
example, in Figure 3 below (the model uncertainty bounds are tighter than the corresponding 
bounds in the data for RBC TCPy (the error bars should be 1.63*stdev).  These differences may 
or may not be significant, but this was not clear.   
 
The Panel suggested that DAS should be more even-handed in describing the model’s 
performance.  To illustrate this point, the Panel remarked on two examples in the DAS report in 
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which DAS seemed to understate the possible importance of differences between the predicted 
values and the observed values.  DAS concluded that the predictions shown in Figure 57 of the 
DAS report (not shown) were “consistent” with NHANES.  The Panel did not agree with this 
interpretation.  In Figure 4 (Figure 58 in DAS, 2011, p. 136) differences were reported as “slight 
overestimates,” but the Panel suggested that the differences could be structural.   
 

 
Figure 3. AChE inhibition and TCPy in blood in volunteers (Kisicki et al., 1999) over time following a single oral 
dose of chlorpyrifos.  Triangles and error bars reflect actual data.  The black line indicates the mean predictions 
and the gray area illustrates the 5th and 95th percentiles of the predicted range of response for individuals over 
time from the Variation model.  This figure is a reproduction of Figure 32 in the DAS report (DAS, 2011, p. 80). 
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Figure 4. Observed relationships of cholinesterase inhibition and TCPy in urine for workers in a chlorpyrifos 
manufacturing plant and for control workers.  Predicted relationship (assuming major route of exposure is oral) 
using theVariation PBPK/PD model.  This is a reproduction of Figure 58 in the DAS report (DAS, 2011, p. 136). 

 
On page 161, top paragraph (shown below), DAS concluded that the final predictions are within 
an order of magnitude and that more data are required to be more precise.   
 

Page 161, DAS (2011) 
“Because of this, we conclude the final predictions of impacts of AChE in the general 
populations are within an order of magnitude but additional representative data are 
required in order to determine if the models are in fact more precise.” 
 

To be more objective, the Panel suggested that DAS state the intended fidelity of the models, in 
light of available data and other unknowns factors and uncertainties in its report and then discuss 
whether their goals were achieved (or not) at the end. 
 
The Panel suggested that DAS exercise the model to compute what data are likely to improve 
model fidelity and performance.  In a value of information analysis, the analyst should be able to 
compute the likely improvement to the model if more data were available.  This can be 
performed probabilistically based on the likelihood of values, and their variability.  This would 
greatly help the Agency determine what data should be obtained for future studies.  It also tells 
the Agency what is limiting in the model.  In addition, this panelist noted that there was little 
discussion in the DAS report to indicate how the chlorpyrifos case study may be extended to a 
general source-to-output analysis for other chemicals.  The Panel recommended that the Agency 
consider how the model be used for general source-to-outcome analysis.    
  
Charge Question 5:  Sensitivity Analyses, Variability, and Uncertainty 
 
QUESTION 5.1:  The four step procedure described above was intended to permit DAS to focus 
on the factors that were most important in determining variation in response.  Please comment 
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on the methods used by DAS to assess variation in response (e.g., identification of sensitive 
factors and collection and integration of empirical data on variation).  Please discuss the extent 
to which the methods described are appropriate and complete?   
 
QUESTION 5.2:  During the Scientific Advisory Panel meeting held in July 2010 in which 
EPA’s Office of Research and Development SHEDS/PBPK model was presented (see 
http://www.epa.gov/scipoly/sap/meetings/2010/072010meeting.html), the Panel reviewed ORD’s 
Bayesian Approach to quantitative uncertainty analysis. DAS in its source-to-outcome model did 
not attempt to perform a formal quantitative uncertainty analysis (QUA), but instead evaluated 
components of the model by performing model-to-model comparisons (e.g., multiple dietary 
exposure models and multiple models of longitudinal exposures) and by performing model-to-
measurement comparisons for internal dose (e.g., chlorpyrifos in blood and TCPy in urine) and 
AChEI in blood and plasma. Since formal Bayesian QUAs are only rarely conducted, are there 
other methods (short of rigorous Bayesian approaches) that the SAP can recommend for 
characterizing uncertainty due to limited data? 
 

 
Panel Response 

Rationale for a Unified Answer to Charge Questions 5.1 and 5.2  

The Panel addressed Charge Questions 5.1 and 5.2 in one, unified response.  Indeed, the 
members of the panel felt that there was an artificial “separation” of sensitivity and variability 
(or “variation,” to use the terminology of the DAS report) on one hand, and of uncertainty on the 
other, in the formulation of these two questions.  The Panel stated that, instead, the issues of 
sensitivity, uncertainty, and variability should be addressed in an integrated and consistent 
manner, that would consider explicitly and take into account the relationships and 
complementarities of these attributes for the system under study.  In fact, the Panel agreed that 
these considerations, and the corresponding analysis, should take place not only within the 
context of the biological “Variation Model,” that is primarily the focus of these particular 
questions, but within the context of the full multi-model framework (involving a sequence of 
both dietary exposure modeling and biological kinetics and dynamics modeling) employed in the 
overall effort presented in the DAS report.  The Panel recognized that not only the results of a 
sensitivity analysis can guide an efficient uncertainty and/or variability analysis, but that the 
latter can also provide useful sensitivity-relevant information.  Finally, the Panel agreed that the 
phrasing of Charge Question 5.2 was somewhat restrictive, as it appeared to presume that a 
Bayesian Quantitative Uncertainty Analysis was not an appropriate option for this study. 

The Panel concluded that the sensitivity, variability, and uncertainty analyses were incomplete as 
outlined in the DAS report, but emphasized the work represented a reasonable starting point.  
The Panel agreed that a systematic and explicit characterization of both variability and 
uncertainty, separately and for all individual components/steps of the exposure-to-biomarker 
modeling system, is needed and would substantially improve the analysis presented in the report.  
Implementing Bayesian analytical methods to enhance the study under review was also strongly 
recommended by the Panel, though there was a wide range of suggestions regarding the extent 
and the specifics of such an implementation.  The Panel recognized that gaps in the data make 
any analysis difficult, including employing the aforementioned Bayesian techniques.  The Panel 
agreed that, despite gaps in the data, it is nonetheless valuable to also analyze components of the 

http://www.epa.gov/scipoly/sap/meetings/2010/072010meeting.html�
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models when possible.  The Panel also agreed that local sensitivity analysis was inadequate and 
recommended exploring and applying methods for computationally-efficient global sensitivity 
analysis.  In relation to not only characterizing, but also reducing the uncertainties in the study, 
the Panel recommended a larger systematic effort to simplify the model using known 
assumptions, processes, and interactions in the exposure and the biological (pharmacokinetic and 
pharmacokinetic) processes. 
 
The concerns and recommendations of the Panel are discussed first, in relation to the general 
conceptual approach and the terminology employed in the DAS report, and second, in relation to 
various specific issues involving implementation aspects of this approach. 

General Considerations and Issues of Modeling Framework and Terminology 

In Charge Question 5, the Panel is asked to “comment on the methods used by DAS to assess 
variation in response (e.g., identification of sensitive factors and collection and integration of 
empirical data on variation)” and to “discuss the extent to which the methods described are 
appropriate and complete.”  The DAS approach involved the stepwise “expansion” of a human 
PBPK/PD model, considered as a component of a “source-to-outcome” model from a “Typical 
Adult Model,” to a “LifeStage Model” and then to a “Variation Model” incorporating inter-
individual physiological, behavioral and biochemical variability.  

Analysis of the inter-individual variation employed the following four steps:  

1) Local sensitivity analysis was used to identify the most influential parameters that drive 
variation in response predicted by the DAS LifeStage Model;  

2) Distributions of the identified influential parameters were assembled; 

3) Attempts were made to account for and address correlations between input parameters; 
and  

4) Comparisons were made of model-predicted variability to data distributions assembled 
from human volunteer studies.   

The Panel commented on the terminology used in Chapter 4 of the DAS report (DAS, 2011).  

1)  The modeling framework, though identified as a “source-to-outcome” model, is in 
reality, a “dietary residue-to-biomarker” model.  The fact that important routes and 
pathways of exposure other than dietary ingestion are not considered can have important 
impacts on any uncertainty analysis to be performed.  

2) Even with critical processes missing from the above mentioned framework, it is still a 
complex “pipeline” modeling system (i.e., a set of “models in series”) that involves 
computations in sequence, where outputs from one model become inputs for the next one 
and so on.  Therefore, sensitivities, uncertainties, and variability are “propagated” along 
the “pipeline.”  Consequently, there is a “convolution” process that can result in either 
reduction or magnification of the metrics characterizing these attributes (whether these 
metrics are point values or distributions) as they propagate from model to model. 
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Therefore, a systematic analysis must consider not only each component of the modeling 
system separately, but also the interlinked components together in the model sequence.  
In particular, “feedbacks” within the sequence of processes from exposure to outcome 
can be significant and should be incorporated in a comprehensive analysis of the system’s 
dynamics.  For example, not only can dietary intake affect physiology and biochemistry 
(metabolic etc. processes), but physiology and biochemistry can affect dietary intake.  It 
is important that such links within the system (and within the corresponding models 
describing the system components) are explicitly considered and addressed.  Uncertainty 
analysis for multi-model formulations (often called “integrated models”), however, 
present various challenges when compared to the analysis for single models (Babendreier 
and Castleton, 2005; van Asselt and Rotmans, 2002; Oughton et al., 2008). 

3) The use of vague and ambiguous terminology in the DAS report raises various concerns. 
One example is the need to distinguish “variation” from “variability.”  Calling the 
expanded version of the “LifeStage Model,” the “Variation Model,” is rather 
unconventional.  One could only speculate why the authors of the report did not endorse 
terminology that is standard in the field (such as, e.g., “Population PBPK Model”). 
Furthermore, usually “variation” is a generic term used to account collectively for all 
types of changes in a variable or a parameter, whether deterministic or random.  The 
Panel discussed the need for clarifications on how variability and uncertainty are 
specifically addressed and what aspects of variability are treated as part of an uncertainty 
analysis.  As pointed out in many studies, e.g., Isukapalli et al (2010), there should be a 
clear distinction between uncertainty and variability, as the treatment of these attributes 
could have significant policy implications.  Insight into specific variabilities and their 
impact on risk estimates can help in targeting decision-making towards a population-
based goal.  In contrast, insight into uncertainties and their impacts can help prioritize 
resources for reducing uncertainty.  This distinction has been widely recognized in both 
human and ecological health risk assessments (Barton et al., 2007; IPCS, 2006; Lester et 
al., 2007; USNRC, 2007). 

It is generally convenient to consider variability as natural (“irreducible”) stochastic 
heterogeneity and uncertainty as an epistemic concept that reflects various (quantifiable 
and potentially reducible) limitations in our knowledge regarding the states and processes 
of the system studied.  However, in practice, the “boundary” between variability and 
uncertainty is actually a moving one, and the location of this boundary reflects a 
compromise related to the effort that can be allocated towards minimizing uncertainty by 
collecting and analyzing information that explicitly quantifies variability. 

4) The Panel stressed that there are different types of uncertainty that should ideally be 
considered and addressed separately; specifically, model uncertainty (associated with 
lack of knowledge that affects the model formulation itself) and parametric/data 
uncertainty (associated with inadequate and/or noisy data for estimating parameters of 
the model).   

a) Model Uncertainty.  Model uncertainty can arise due to the choices made regarding 
the logical structure and detail of the model, the computational approach used to 
solve the model equations, and the model resolution.  This type of uncertainty is 
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significant when alternative sets of assumptions and approximations used for 
developing a model can result in significantly different conclusions.  For example, 
different types of PBPK models can be developed depending on the choice of 
compartment lumping, assumptions regarding mixing within a compartment (e.g., 
flow limited or diffusion limited), and assumptions regarding transport of the 
chemical of concern within a compartment.  If variability has already been 
incorporated in the model via probability distributions of the variables and 
parameters, model uncertainty may include inappropriate selection of such 
distributions and omission of correlations among inputs/parameters (Nilsen and 
Aven, 2003; Sander et al., 2006).  Uncertainties also arise when models or model 
components that are developed using assumptions and data appropriate for one set of 
variables are applied to other, substantially different scenarios (e.g., in vitro to in 
vivo extrapolation, interspecies extrapolation, high dose to low dose extrapolation).  
Another type of model uncertainty, completeness uncertainty, arises from factors 
that have not been identified (unknown processes affecting the output of the model) 
(Reinert and Apostolakis, 2006).  Model uncertainties are reduced by refining the 
model through improved understanding of the system being studied.  Their impact 
on output metrics is quantified through various available methods that include the 
“adjustment factor approach,” the application of the best available model, or by 
assigning degrees of confidence in each of model and weighting the simulation 
model outputs (Zio and Apostolakis, 1996; Moschandreas and Karuchit, 2002; 
Nilsen and Aven, 2003; Linkov and Burmistrov, 2003; Sohn et al., 2004; Reinert and 
Apostolakis, 2006; Barton et al., 2007; Redding et al., 2008).  

b) Parametric/Data Uncertainty.  Parametric/data uncertainty  reflects incomplete 
knowledge regarding the values of model parameters or input data (USNRC, 2007).  
This may be due to: random errors corresponding to limitations in the precision and 
accuracy of measurements, systematic biases, assumptions used to infer an actual 
quantity of interest from observed readings of a “surrogate” or “proxy” variable, and 
non-representativeness of data supporting the parameters.  Parametric uncertainties 
can also arise from uncertainties in measurement data used for model evaluation and 
can also result when model parameters are estimated from available data by 
deterministic or stochastic parameter estimation techniques (Moles et al., 2003).  In 
principle, parametric/data uncertainty can be reduced by gathering more data.  The 
impact of data and parameter uncertainties on output metrics is typically addressed 
by “propagating” these uncertainties through the model and identifying significant 
contributors to overall uncertainty (e.g. Isukapalli and Georgopoulos, 2001).  

5) The uncertainty, as well as sensitivity and variability analyses, can take place (and 
traditionally have indeed taken place) at substantially different levels of detail, depending 
on the objectives of the study and the resources (including laboratory and field data) 
available for the study.  Traditionally, four tiers of analysis are distinguished (see, e.g., 
Isukapalli et al., 2010).  When uncertainties are not explicitly characterized, a safety 
factor is used for characterizing upper bounds of the metrics of exposures or outcomes 
and risks (Stedeford et al., 2007), i.e., a Tier 0 Analysis.  A Tier 1 Analysis involves 
conducting uncertainty analysis in a local manner: a point estimate of exposure, dose, or 
risk etc., combined with local sensitivity analysis.  A Tier 2 Analysis involves 
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probabilistic characterization of uncertainties (with natural variability often lumped in the 
uncertainty distribution) and global sensitivity analysis.  A Tier 3 Analysis involves 
separate and explicit characterization of uncertainties and variabilities by techniques such 
as two-stage (also called two-dimensional) Monte Carlo methods.  Improvements in the 
performance of the uncertainty propagation can be achieved by using efficient sampling 
techniques, such as the Latin Hypercube Sampling (Helton and Davis, 2003; Rubinstein, 
1981).  More recent advances in efficient sampling techniques include Sequence 
Generators based on the methods of Sobol (Bratley and Fox, 1988), Halton (1960), and 
Faure (Kocis and Whiten, 1997).  These efficient sampling methods can cover the space 
of the input distributions in a more “representative” fashion with a smaller number of 
samples.  Efficient sampling is critical when a model is complex or when a relatively 
limited number of model simulations can be performed due to constraints in time and 
computational resources.  

The Panel agreed that the Agency should consider a Bayesian approach for quantitative 
uncertainty analysis of the exposure-to-biomarker model.  Panel members differed in their 
perception of the effectiveness of Bayesian methods for this type of problem.  One panelist 
suggested considering the uncertainty on point estimates of each of the important parameters as a 
multivariate distribution from which to draw samples for simulations.  This would be a poor 
substitute for a full Bayesian analysis, which might be cumbersome given the limited availability 
of data.  Nevertheless, the Panel recommended that the Agency study the discussion contained in 
the 2005 SAP report on use of the Bayesian approach to uncertainty analysis in models 
(http://www.epa.gov/scipoly/sap/meetings/2010/072010meeting.html).  Bayesian approaches can 
be used to support “calibration” of the model, ensuring that variability and uncertainty are 
incorporated into the model at the design stage.  The use of Bayesian here involves more the 
overlaying of distributions for variability and uncertainty on an essentially “mean” (or “typical” 
human) model.  An example of how Bayesian calibration has been used by the Agency can be 
seen in the draft Toxicological Review of Trichloroethylene for the Integrated Risk Assessment 
System (IRIS) (go to http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=215006, see Chapter 
3. Toxicokinetics, Section 3.5.5. Bayesian Estimation of Physiologically Based Pharmacokinetic 
(PBPK) Model Parameters, and Their Uncertainty and Variability) 

Many recommendations and suggestions were made by the Panel to clarify and enhance the 
scientific and technical approach outlined in the DAS report (DAS, 2011).  In some cases, the 
report was not explicit or sufficiently clear on the details of specific steps or calculations, the 
results of which are presented in a very concise manner.  In some other cases, it was obvious that 
only a portion of the results obtained by the study are presented explicitly in the report.  An 
example is visible in Figure 32 (on page 80 of the DAS report, DAS, 2011) where there is a large 
amount of information “encapsulated” in the results/comparisons; however, there is a 
substantially larger amount of information that should have been included in the report to allow a 
more comprehensive interpretation of each panel in that figure.  Perhaps, this information could 
have been provided in the Appendices.  The comments that follow include across-the-board 
recommendations that in some instances involve issues that may have been partially addressed in 
the report. 

 

http://www.epa.gov/scipoly/sap/meetings/2010/072010meeting.html�
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=215006�
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Recommendations and Suggestions by the Panel Members for Clarification and Improvement 
of the DAS Report with a Focus on Sensitivity, Variability, and Uncertainty Analysis 

1) Consider Explicitly Exposure Modeling and Two-Way Coupling of Models in the 
Analysis of Sensitivity and Variability/Uncertainty  

The Panel stressed the need to consider explicitly the limitations of the (dietary) exposure models 
used in the study.  The Panel further recommended the systematic and explicit characterization 
of the variability and the uncertainty in these exposure models (e.g., the CARES model), the 
propagation of this variability and uncertainty (represented by distributions of the outputs of the 
exposure model) through the biological (pharmacokinetic and pharmacodynamic) models, and 
the consideration of two-way coupling (including model “feedbacks”) in this 
variability/uncertainty analysis.  For example, an enhanced PBPK/PD model would include a 
lactation pathway, where the output of the PBPK/PD model for the mother would provide 
information for the dietary intake of the newborn. 

2) Perform Systematic Model Evaluations with Biomarker and Exposure Data for 
Uncertainty Analysis and Reduction 

The Panel strongly recommended the consideration of available exposure and biomarker data on 
chlorpyrifos and its metabolites from studies such as NHANES and NHEXAS for model 
evaluation and uncertainty reduction analyses (e.g., Xue et al., 2010). 

3) Expand and Refine the Modeling Framework of the Study in order to Better Understand 
and Reduce Uncertainties 

The Panel pointed out that real-world uncertainties in the system under study and in the models 
used to describe this system, are associated with many simplifying assumptions (and omissions 
of relevant processes) in the formulation and the application of both the exposure and the 
biological (pharmacokinetic and pharmacodynamic) modeling components.  To understand and 
reduce these uncertainties in the modeling, other routes of exposure in addition to dietary 
ingestion and simultaneous exposures to other chemicals that share common biological pathways 
with chlorpyrifos could be considered.  An example would be carbaryl and other cholinesterase 
inhibitors.  It would then be possible and informative to model the pharmacokinetics and 
pharmacodynamics of chlorpyrifos in the presence of these chemicals.  Characterization of 
uncertainties in the pharmacodynamics of the system due to the presence of other toxicants and 
food components is a potentially critical challenge in the overall uncertainty characterization 
effort.  Biological models also would be enhanced by adding the gestation phase in the model 
and consideration of both the pregnant subject and the fetus.  Other LifeStage PBPK/PD model 
formulations, which also incorporate the physiology of gestation are available, e.g., Sasso et al., 
(2010), are directly adaptable to chemicals relevant to the present study.  Such enhancements and 
associated analyses of the modeling components will eventually improve the credibility and 
context for the modeling framework of the study. 

4) Consider Alternative Descriptions and Metrics of Uncertainty 

The Panel recommended the consideration of other techniques, in addition to classical 
probability distributions, for describing uncertainties in the modeling components of the 
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framework employed in the DAS study.  Whereas classical probabilistic analysis is the most 
widely used method for characterizing uncertainty in physicochemical and biological systems, 
especially through probability distributions of uncertain parameters, various alternative ways of 
representing uncertainty are available in the literature and could in fact be particularly useful in 
the context of a complex system with multiple components, linking exposures to biological 
outcomes (Oberg and Bergback, 2005; Lester et al., 2007; Ionescu-Bujor and Cacuci, 2004; 
Cacuci and Ionescu-Bujor, 2004; Dorne et al., 2005; Isukapalli and Georgopoulos, 2001).  For 
example, interval analysis is an appropriate choice when only rough estimates of “bounds” on 
uncertain parameters are available (i.e., “unknown, but bounded”), which happens when studies 
report only a range for parameters without specifying a distribution (Hickey et al., 2001; 
Granvilliers et al., 2004).  This approach involves estimating the bounds in model outputs of 
interest based on corresponding bounds in the inputs and model parameters.  Several 
computational toolboxes exist for interval analysis (e.g., Jaulin, 2001).  The main limitation of 
this technique is that all the uncertainties are forced into one arithmetic interval and no further 
insight (e.g., into high percentiles) can be obtained.   

Fuzzy logic theory facilitates uncertainty analysis of systems where uncertainty arises due to 
vagueness or “fuzziness” in system attributes rather than due to randomness alone (e.g., when 
qualitative information is used in modeling). This extends conventional logic to handle “degrees 
of truth” and maps specific variables from a discrete set to a continuous form.  DAS should 
consider fuzzy logic methods where classical set theory is too restrictive.  For example, when 
values of parameters are explained as "high" or "low" rather than with actual values, there is no 
easy translation of such terms into classical set theory; classical set theory requires unique 
membership in well-defined bins or value ranges.  A useful reference to fuzzy logic methods is 
McKone and Deshpande (2005).  Fuzzy logic theory might be particularly useful because its 
applicability to PBPK modeling has already been demonstrated. 

Classical set theory has a “crisp” definition as to whether an element is a member of a set or not.    
On the other hand, fuzzy theory allows for a gradual degree of membership.  This approach was 
introduced by Zadeh (Zadeh et al., 1996; Zadeh, 1965) and in recent years has seen renewed 
interest in PBPK modeling (Nestorov, 2001; Seng et al., 2007; Gueorguieva et al., 2004), 
especially as a means of translating between fuzzy logic and probabilistic analysis.  Other 
approaches for uncertainty representation include fuzzy measure theory (Wang and Klir, 1992), 
fuzzy rough set theory (Klir and Yuan, 1995), possibility theory (Wolkenhauer, 1998), and belief 
measures (Gordon and Shortliffe, 1984; Halpern, 2003; Parsons, 2001; Buchanan and Shortliffe, 
1984).   

5) Consider Uncertainty Reduction through Bayesian Model Calibration 

The objective of a systematic sensitivity, variability, and uncertainty analysis is not only to 
qualitatively and quantitatively characterize these attributes of the system studied and of the 
corresponding integrated model, but also to use these characterizations for the purpose of 
uncertainty reduction through incorporation of new data and refinements of the component 
models of the integrated framework.  This can be seen as a systematic “model calibration.”  
Panel members recommended that it could be pursued via Bayesian techniques such as Markov 
Chain Monte Carlo methods (Gamerman and Lopes, 2006; Gelman, 2004; Balakrishnan et al., 
2003).  
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6) Consider Correlations of Input Variables in the Sensitivity/Uncertainty Analysis 

A majority of sensitivity/uncertainty analysis methods can only be applied directly when the 
inputs are independent.  When input variables are correlated, e.g., the organ/tissue volumes in a 
PBPK model, these variables can be represented as functions of independent random variables 
with appropriate transformation techniques that have been described and demonstrated in the 
literature (Devroye, 1986; Isukapalli and Georgopoulos, 2001).  

7) Clearly Distinguish Variability from Uncertainty, Improve its Characterization, and 
Perform Systematic Combined Two-Stage Variability/Sensitivity Analyses 

Separate characterization of uncertainty and variability is important for population exposure-to-
outcome modeling.  The Panel agreed that uncertainty and variability should be characterized 
explicitly and separately through the application of methods such as “two-stage” or “nested” 
Monte Carlo (Cohen et al., 1996; Simon, 1999; Frey and Rhodes, 1996).  In this approach, each 
uncertainty simulation includes a set of Monte Carlo runs that address variability.  In the context 
of exposure modeling, this is typically accomplished as follows (see Xue et al., 2006).  For each 
uncertainty simulation, the parameters for distributions that describe variability of parameters 
within the population are sampled from their corresponding distributions.  Subsequently, for each 
variability run, samples are generated from the parameter distributions in the uncertainty 
simulation.  The uncertainty and variability simulations are tracked separately so that they can be 
characterized separately.  For each uncertainty simulation, a cumulative distribution function 
(cdf) can be developed to characterize the variability.  Aggregation over the different uncertainty 
runs provides a “range of confidence” in the distributions describing the variability within 
population.  The two-stage Monte Carlo analysis allows identification of subgroups or conditions 
that could be of particular concern by focusing on a specific region of the distribution such as the 
95th percentile.  Likewise, it is possible to investigate the combination of factors that produce 
such a high output and approaches to mitigate those factors. 

The Panel suggested that the change of partition coefficients with area should be explicitly 
incorporated into the model, e.g., the different adipose tissue composition between children and 
adult (see Price et al. 2003).  Another suggestion was to explicitly account for the effect of 
factors such as age, gender, weight and height (as described in Haddad et al., 2006 and Verner et 
al., 2008) on the variability of organ/tissue physiology.  The physiological variability in the DAS 
model is determined by body weight only, except for fat tissue which varies further with the 
variability of body height.  

One panelist pointed out that using such a method would improve the model’s ability to capture 
inter-individual variability in organ volume/weight  as observed in brain weight  >25 kg (DAS, 
2011, Figure 14, p. 51).  Though the brain weight was given as an example during the discussion, 
it was subsequently suggested that liver weight (DAS, 2011, Figure 15, p.52)) is another 
appropriate example.  The simulation model does not seem to include the additional variability 
around the line in that figure (the line being a “deterministic” mean fit of the body weight versus 
tissue volume data).  The “scatter” around the line represents variability in tissue size among 
individuals of the same bodyweight.  This same panelist also pointed out that the description of 
metabolism requires additional microsomal data, including data specifically for the early days of 
life for both males and females (reported separately). 
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8) Consider Methods for Expanding from Local to Global Sensitivity Analysis  

The Panel agreed that the local sensitivity analysis employed in the DAS approach has 
substantial limitations and suggested the consideration/exploration of global sensitivity analysis 
methods.  Limitations of the local methods are summarized below, along with suggestions for 
available global methods to consider from the literature.  The Panel suggested an alternative 
option that combines globally sensitivity and uncertainty analysis with the use of surrogate 
models.  

As mentioned earlier, a gradient-based, local sensitivity analysis was used to estimate how the 
LifeStage PBPK/PD model behaves within a narrow range of parameter values and which 
parameters contribute most to sensitivity in the vicinity of a baseline (see pp. 67-68 in DAS, 
2011).  This approach obtains a “snapshot” of how the model behaves around the baseline and 
can describe general model behavior only if the model is linear.  When normalized sensitivity of 
a model output with respect to an input is large, care must be exercised in making decisions 
based on that output.  In some cases, this can even shed light on the validity of some underlying 
assumptions.  The Panel suggested that it would be very helpful to consider the sensitivity of 
other model outputs, such as AUC, time to reach peak or 90% of peak or 90% of final evacuation 
to model parameters.  The Panel also remarked that the local analysis was reporting on the 
Jacobian, but not on the Hessian sensitivity matrix.  Another Panel member performed additional 
local sensitivity analysis for a partition coefficient using the ACSLX model that was provided to 
the Panel; specifically, a 20% variation in brain: blood partition coefficient to study the 
corresponding impact on brain AChE inhibition.  The 20% variation resulted in a16% change in 
the brain chlorpyrifos-oxon concentration and 12% change in AChE inhibition, which suggested 
that brain AChE inhibition is sensitive to the values and variations of the partition coefficients.  
The Panel recommended that parameter sensitivity should be tested for other endpoints important 
to effects, e.g., RBC and brain AChE inhibition, as reported here; chlorpyrifos brain levels for 
potential non cholinergic effects, and biomonitoring for chlorpyrifos in blood and TCPy in 
plasma and urine.  

In addition to the “direct” method that was used to calculate local sensitivities in the DAS report, 
there are various other techniques that offer various computational advantages by automatically 
calculating local sensitivities at various baseline points. These techniques include Automatic 
Differentiation (Isukapalli et al., 2000; Bischof et al., 1996), Symbolic Differentiation (Sandu et 
al., 2003), and the Decoupled Direct Method (Dunker, 1984).   However, when the model is 
nonlinear, these methods may not be able to capture the impact of an input on an output of 
interest, since different sensitivity patterns occur in different regions of “input/parameter space” 
or “input/parameter domain.”  Thus, local sensitivity analysis must be performed for a large set 
of points in the parameter domain including different combinations of parameter inputs.  In 
performing a sensitivity analysis, there is a continuum of possible sets of runs to consider.  For 
example, assume there are N key parameters as the focus of the sensitivity analysis.  At one 
extreme, one could perform runs with each parameter varying between an upper and a lower base 
value while all other parameters are held at their nominal “expected" value.  This would require 
2* N runs of the model.  This approach is conceptually close to the analysis performed by DAS.  
At the other extreme, one could run the full factorial analysis, a Latin Hypercube (LH) design, 
which would require 2N runs.  With N greater than 5, the number of runs using the LH design 
becomes prohibitively large.  Many panel members focused on the use of a Bayesian approach to 
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perform the sensitivity analysis, Markov Chain Monte Carlo sampling, because with a few 
thousand runs more information could be obtained than the full 2N runs of the LH deterministic 
approach.   

For nonlinear models, local methods can only be used to rank the parameters in order of 
importance for the single set of input values on which the analysis was performed.  In contrast, a 
global first-order index considers the effect of varying a single parameter both individually and 
in conjunction with all combinations of parameters for all possible parameter sets. An analysis 
that does not consider interactions between input parameters implicitly assumes that the effect of 
varying two parameters simultaneously is given by the sum of their individual sensitivities.  This 
assumption holds for linear models, but is not valid for PBPK models, which incorporate 
nonlinear expressions, e.g., to represent rates of metabolism.  A local analysis is only applicable 
within a small “distance” from the point in the “parameter space” at which the analysis was 
performed.  A global (domain-wide) sensitivity analysis (GSA) is needed to study the system 
behavior over the entire range of parameter variation, often taking the uncertainty in the 
parameter estimates into account.  However, the results from GSA are difficult to interpret when 
the distributions of underlying input/parameters are changed significantly.   

The Panel noted that both the sensitivity and uncertainty analyses need to be considered together 
when studying simulation models.  A parameter may have large uncertainty, but the output may 
not be sensitive to the parameter.  Likewise, a parameter may have small uncertainty but the 
output may be highly sensitive to the parameter.  The collective impact of uncertainty and 
sensitivity depends on many factors.  A wide range of GSA techniques and applications is 
available in the literature (Saltelli, 2008; Saltelli et al., 2000).  These techniques include 
regression of Monte Carlo or model simulation runs based on efficient sampling (Cullen and 
Frey, 1999), High Dimensional Model Representation (HDMR) techniques (Li et al., 2001; 
Rabitz and Alis, 1999), Fourier Amplitude Sensitivity Test (FAST) (McRae et al., 1982), 
Extended FAST method (Saltelli et al., 1999), the method of Sobol (Sobol, 2001), Bayesian 
Analysis (Jonsson et al., 2007), and Probability Bounds Analysis (Ferson and Tucker, 2006; 
Nong and Krishnan, 2007).  Techniques used for PBPK models need to be numerically efficient, 
able to deal with non-monotonic output, and differential forms.  Most of the sensitivity analysis 
methods listed above satisfy these criteria and allow for variance decomposition and estimation 
of main and interaction effects (Saltelli and Bolado, 1998).  Generally, PBPK models have well 
in excess of 20 input parameters, which is a challenge for global methods. A possible alternative, 
whose accuracy should be tested, is to use a global screening method that is computationally less 
expensive, such as the Morris’ Test (Morris, 1991), to determine the most influential parameters 
and then to run a global quantitative method on only those parameters.  Morris’ Test provides a 
“one-at-a-time” design for screening model inputs that do not have significant impact on model 
outputs.  For a model with n inputs, this method involves statistical analysis of a set of r 
trajectories, each containing n + 1 points.  Efficient design of these trajectories for better 
representation of the input space has also been proposed (Campolongo et al., 2007).  Efficient 
factorial design based techniques can be used in conjunction with Morris’ Test (Pujol and Corre, 
2007).   
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9) Consider Combined Global Sensitivity/Uncertainty Analysis with a Surrogate Model 
Approach 

The Panel also suggested considering another general approach for performing combined global 
sensitivity and uncertainty analyses called the “surrogate” or “fast equivalent” model approach.  
This approach has been demonstrated with applications involving both exposure and PBPK 
models.  This approach is based on a representation of the original model in terms of an 
approximation that captures the essential elements of its behavior while aiming for the maximum 
possible simplicity.  This can be an approximation of either the deterministic model or of the 
probabilistic model that incorporates probability distributions of inputs and parameters.  
Examples of methods following this general approach, which have been demonstrated in 
exposure and PBPK modeling applications include:  the Stochastic Response Surface Method 
(SRSM) (Isukapalli et al., 2000, 1998) and the High Dimensional Model Representation 
(HDMR) (Li et al., 2002; Wang et al., 2005).  In the case of the SRSM, the uncertain model 
inputs are represented using a basis of standard normal distributions, since there is a direct, one-
to-one transformation between any two probability distributions (Devroye, 1986; Isukapalli and 
Georgopoulos, 2001).  The outputs are then approximated in terms of orthogonal series 
expansions of standard random variables with coefficients that can be calculated from a limited 
number of model runs.  The SRSM provides a set of sample points (combinations of different 
inputs) for running the model.  Once the model is run at these points, the model outputs can be 
used to estimate the coefficients of the orthogonal series expansions.  This is followed by the 
production of statistically equivalent polynomial approximation of the model outputs, which can 
be used to estimate statistical properties of the outputs as well as correlations among outputs, and 
among outputs and inputs.  The coefficients of the series expansions in the SRSM provide 
sensitivity information of model outputs with respect to the inputs.   

In case of the HDMR method, there are several variants possible.  The Cut-HDMR method (Li et 
al., 2001) aims to reduce a complex model in terms of look-up tables based on a limited number 
of model simulations.  The reduced models are fast models that can be used to perform Monte 
Carlo type analyses.  The Random-Sampling HDMR method (Wang et al., 2003; Li et al., 2002), 
on the other hand, relies on a set of random samples of model outputs in order to decompose the 
variance in terms of individual contributions.  Both the SRSM and the HDMR method use 
orthogonal series expansions that allow for relatively straightforward global sensitivity analyses. 
Orthogonol expansions can also be used as “reduced” or “surrogate” models approximating the 
original model in computationally intensive applications (e.g., for Bayesian Markov Chain 
Monte Carlo analysis) (Balakrishnan et al., 2003). 

10) Use the Outcomes of Sensitivity and Uncertainty Analysis to Parameterize and Simplify 
the Original Models in a Rationa l Manner 

The Panel remarked that the sensitivity and uncertainty analysis can provide valuable guidance 
in estimating parameters as well as in simplifying the models used in the study under review.  
One Panel member argued that the results of the local sensitivity analysis presented in the DAS 
report (DAS, 2011, p.67-68) suggested that the LifeStage model is insensitive to many 
parameters, which could mean that the model may be through the removal of non-influential 
processes.  For example, by identifying the most sensitive model parameters/inputs, resources 
can be focused to reduce uncertainty where it is most appropriate.  Furthermore, the 
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identification of non-influential parameters would help in calibrating other model parameters 
(without expending resources on estimating the non-influential parameters).  Lack of sensitivity 
of one output with respect to an input implies that the data gathered for that output should not be 
used for estimating the parameters for the input.  Therefore, sensitivity analysis should ideally be 
performed before estimating model parameters from available data.  This is especially important 
in the case of Bayesian parameter estimation techniques.  The performance of the estimation 
method can be improved significantly by using the most appropriate combination of data for 
estimating a given set of input parameters or by iteratively estimating appropriate parameters 
based on available data and sensitivity information.  Furthermore, based on the results of a global 
sensitivity analysis, a simulation model can be simplified by removing the non-influential 
parameters (and corresponding detailed descriptions of non-influential processes).  This is 
especially important when the removal of some processes makes the model easier to specify, to 
calibrate, or to run faster.  This is especially true when the number of such inputs is large and 
there is significant uncertainty in their estimates (Jonsson et al., 2007).  This caution applies to 
the processes of parameter estimation and of model reduction.  

Charge Question 6: Calculating Data-Derived Extrapolation Factors 
 
QUESTION 6.1:  Please comment on the strengths and limitations of DAS’s proposed approach 
to estimate an animal-to-human extrapolation factor as described in Section 10.  The Agency is 
concerned about a component of the proposed approach involving use of the study design 
characteristics of a single animal study (See Section 10).  The Agency generally recommends a 
weight of the evidence approach for determining toxicological points of departure when multiple 
studies are available.  For chlorpyrifos, there is a large database of study results performed 
across different animal life stages and so it may be more appropriate to determine points of 
departure and extrapolation factors based on an integrated analysis of these multiple studies 
instead of based on a single study.  In your response, please comment on the approached 
proposed and provide guidance and suggestions for alternative approaches, if appropriate.  
 
Panel Response:  
 
The Panel agreed with the general principle of the weight of evidence approach as commonly 
applied in many areas of risk assessment.  The advantage of the weight of evidence approach is 
to provide more robust support for a range of uncertainty factors (UFs).  However, the Panel 
expects that when a well-evaluated PBPK/PD animal-to-human model is ready for use in risk 
assessment, the use of UFA would no longer be needed.   
 
The UFA proposed by DAS is based on the single study (Marty and Andrus, 2010) with PND11 
and adult rats.  The Panel noted that while the data from the Marty and Andrus study may be 
more suitable for conducting benchmark dose analysis than many other studies, there were also 
limitations in the study’s possible application to other toxicity endpoints and human exposure 
scenarios.   
 

1) The peak inhibitions increased over time in a tissue- and dose-dependent manner based 
on the modeled pattern for RBC AChE and the steady state was not achieved until many 
days after repeated dosing. 
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2) The DAS UFA only pertains to the dietary exposure estimated from a model that did not 

include the prenatal period or infants with lactational exposures to chlorpyrifos.  
 

3) The current dietary model needs to fully capture beverage and water consumption.   
 
The Panel was critical of the DAS approach to estimate human variability with eight-person 
groups and proposed an alternative approach without regrouping.  The Panel indicated that the 
BMDL10 can be best estimated by applying the true definition of this concept directly to the 
results of the combined CARES PBPK/PD model.  Once a human BMDL10 estimate is predicted 
via the variability and uncertainty component of the model, it can be compared to the animal 
BMDL10 estimate.  The UFA can then be derived by comparing the animal and human BMDL10, 
both of which are derived from the same model, but with species-specific parameters.  This 
approach uses the model as it was intended, as a tool to integrate the variability and uncertainty 
in the process of incorporating in vitro and in vivo animal data to prediction of risks in the human 
population. 
 
The Panel stressed that there should be no limitations in accommodating the various sets of 
available chlorpyrifos data to derive a range of UFA for selecting dose metrics that are most 
pertinent as toxicity indicators for endpoints and scenarios.  A UFA selected for risk assessment 
should be carefully matched to the human exposure scenarios.  An obvious additional advantage 
of applying the model to many available data sets is that it can facilitate the identification of 
model limitations, both for future model improvement as well as for beginning to address model 
uncertainties throughout the process of model development. 
 
Perhaps the merit of this charge question is that the standard point of departure (POD)/UF 
approach will be employed before adoption of the PBPK/PD approach advocated by DAS.  
However, it is unclear why the PBPK/PD model can be valid for estimating the UFs, but not for 
directly estimating the human equivalence dose.  During the discussion, the Agency expressed 
the desire to estimate a set of UFA or UFH values for the purpose of transparency in risk 
communication at the transition stage going from the default UF paradigm to the PBPK/PD 
model application.  
 
The Panel encouraged the development of a well-evaluated and robust PBPK/PD model.  Such a 
model has the potential to advance the risk assessment process closer toward the direction 
envisioned in the NRC’s “Toxicity Testing in the 21st Century” (NRC, 2007).  As illustrated 
here, a PBPK/PD model can be used to directly estimate a range of human exposure doses at a 
pre-determined dose metric for the point of departure. In this case study it was 10% RBC AChE 
inhibition.  As long as the dose metric is determined, having a full set of animal testing data for 
establishing a point of departure would no longer be needed.  Taking AChE inhibition as an 
example, the focus of the current pesticide data requirements on  in vivo toxicity testing and in 
vitro studies can be shifted more toward delineating the biological and toxicological significance 
of tissue- or site- specific levels of AChE inhibition for modeling acceptable human exposure 
dose levels, characterizing the model variables and parameters that significantly impact the 
modeling outcome, and understanding the mode of action that is crucial for the selection of the 
most appropriate model dose metrics for the endpoints of concern.   
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Marty and Andrus Study 
 
The Panel recognized several areas of strength in the animal study by Marty and Andrus (2010) 
used for determining points of departure in adult and PND 11 rats.  These included:  
 

1) a relatively wide range (0.05-5 mg/kg) of chlorpyrifos doses, varying from no effect 
doses to toxic doses eliciting >50% AChE inhibition, 
 

2) sensitive measures of adverse effects relevant to the key mechanism of action,  
 

3) adequate numbers of animals per dose, 
 

4) a quite immature age group (11-day-old), 
 

5) potentially susceptible male and female pups for comparison with adults, 
 

6) single and repetitive dosage regimens, and 
 

7) an adequate statistical analyses.   
 
Data on blood chlorpyrifos, chlorpyrifos-oxon and TCPy concentrations were included in 
Summary Tables 1 – 2 (p. 43-48), Table 3 (p. 68), and Table 4 (p. 71) in the DAS report (DAS, 
2011).  The Panel agreed that the data derived from this study were suitable for calculating a 
benchmark dose.  Other studies have evaluated dose-response relationships for chlorpyrifos in 
immature and adult animals, but the availability of the raw data was limited, and some of these 
other studies used a limited number of animals.  As provided in the DAS presentations, there 
does appear to be some correspondence in dose-related AChE inhibition among studies including 
the Marty and Andrus data, and studies by Moser et al. (1998) and Timchalk et al. (2006) with 
relatively similar age groups (PND 12-17).  Relatively similar dose-related inhibition was also 
noted in another study with somewhat younger animals, seven days of age (Zheng et al., 2000).  
 
The Panel noted that while the data from the Marty and Andrus study were more suitable for 
conducting benchmark dose analysis, there were also limitations.  During the discussion, a DAS 
scientist stated that these measurements were made at or around the time of maximum AChE 
inhibition.  Thus, the post-dosing blood sampling times were apparently varied (no peak AChE 
inhibition), which might make the data less suitable for inter-age or dose comparisons.  
However, the acutely dosed 11-day-old pups consistently exhibited significantly higher blood 
CPF and TCP levels than adults, but no or relatively minor differences in AChE activities.   
 
Another limitation in this set of data is the relatively few points to develop the curve of inhibition 
and only two dose levels (2 and 5 mg/kg) eliciting significant group differences in degrees of 
inhibition, although the other studies, Moser et al. (1998) and Timchalk et al. (2006), which 
reported relatively similar dose-related inhibition, also had limited dose levels in which to 
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establish this relationship.  If substantial, usable data are available with similar endpoints across 
different life-stages, meta-analysis of these combined data may provide a more reasonable basis 
for a weight-of-evidence approach for establishing points of departure.    
 
DAS’ proposed UFA is based on the single study (Marty and Andrus, 2010) with PND11 and 
adult rats.  The Panel stated that it was important to keep in mind the limitations of the DAS 
proposed UFA when considering its possible application to other toxicity endpoints and human 
exposure scenarios.  The Panel described three realistic scenarios which the DAS proposed UFA 
does not address.   
 

1) The peak inhibitions increased over time in a tissue- and dose-dependent manner based 
on the modeled pattern for RBC AChE inhibition in adults and children presented in 
Figure 46 of the DAS report (DAS, 2011, p. 113).  Steady state inhibition was not 
achieved until many days of repeated dosing.  This pattern from repeated exposure would 
be a better basis for deriving a single UFA for RBC AChE inhibition than the outcome of 
a single exposure scenario.   
 

2) The DAS UFA only pertains to the dietary exposure estimated from a model that did not 
include the prenatal period or infants with lactational exposures to chlorpyrifos.  The 
Panel indicated that a complete dietary exposure model should include fetal exposures to 
chlorpyrifos through the mother's diet, and post-natal lactational exposures due to the 
mother's diet.  

 
3) It was unclear whether the current dietary model captures beverage consumption, 

including water consumption.   
 
Alternative to Estimating the Human Variability without Further Regrouping 
 
The Panel was critical of 8-person groups used to estimate human variability.  UFA was defined 
as the ratio of animal-to-human BMDL10 (the lower bound of BMD at 10% RBC AChE 
inhibition).  The animal BMDL10 was derived from a BMD curve-fitting approach, whereas the 
human BMDL10 was derived from PBPK/PD model simulation.  The model simulating 
distribution of individual human AChE inhibition was further grouped into 8-person groups to 
match the sample size in the animal data from the Marty and Andrus (2010) study.  The DAS 
report noted that this regrouping narrowed the range of human AChE inhibition as compared 
with the range of the original distribution of individual values.  The Panel questioned the 
necessity of associating human modeling outcome with the sample size of the animal study and 
suggested that the simulation results of an individual can be used to estimate the human 
variability without further regrouping.   A more detailed implementation of this alternative is 
provided below.   
 
The BMDL10 can be best estimated by applying the true definition of this concept directly to the 
results of the combined CARES PBPK/PD model.  The BMDL10 represents the lower 95th 
percentile of the benchmark dose for the health outcome.  In this case, the dose in which there is 
10% RBC AChE inhibition is the key biological parameter for establishing the point of departure 
for the risk assessment.  The Panel used Figure 65 in the DAS report (DAS, 2011, p. 153) as the 
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starting point to compute a BMDL10 from the dose response output from the linked CARES 
PBPK/PD chlorpyrifos model shown in Figure 5.  The scatter of points (“blue cloud”) is assumed 
to represent the relationship between the dose of chlorpyrifos experienced by each simulated 
individual and the predicted percentage of RBC AChE inhibition.  In one sense, the model result 
does describe the population and expected outcome.  Direct application of the BMDL10 
definition to these data involves first describing the mean relationship between dose and 
response.  The black line in Figure 5 represents the minimized sums of the squared error in 
response to each dose.  The line presented is for illustration purposes only and is not the true 
least squares fitted line.  If the points represent individual-to-individual variability in response at 
given dose, then the vertical spread of points at any specific dose, e.g., 0.1 mg/kg, would produce 
a distribution of expected responses in the population at that dose.  If instead a target percent 
RBC AChE inhibition level is chosen, say 10%, then the horizontal spread of doses at the 10% 
inhibition line would represent what R.A. Fisher described as the "fiducial distribution" of doses.  
Using parametric or non-parametric distribution fitting tools, one could estimate the dose at 
which p% (0<p<100) or less of the population would be expected to experience a 10% inhibition 
of AChE (Figure 5).  This is one estimate of the BMD10.  
 
To get the BMDL10, the model uncertainty has to be incorporated into the assessment.  
Conceptually, one has to estimate the uncertainty in the mean response relationship to get the 
"confidence interval" for the BMD10.  Using a Monte Carlo (2-D probabilistic risk assessment) 
approach, the uncertainty in model parameters (involving both fixed parameter uncertainty and 
the uncertainty in the hyper parameters for random parameter distributions) would be used to 
generate alternate "realizations" of the dose response relationship (an example of a second such 
realization is shown as the dashed line in Figure 5).  Each realization results in a slightly 
different mean dose response line which also impacts the fiducial distribution at the 10% 
inhibition line.  At the end of this exercise one has a "distribution of dose response relationship 
curves".  The exercise of computing the BMD10 described above can be performed for each 
realization, resulting in a distribution of BMD10 values.  From this distribution of BMD10 values, 
one computes the lower p-percentile, in this case the lower 10 percentile and this is the estimate 
of the BMDL10.  
 
This approach directly uses the model as a representation of what is truly happening in the 
population.  If the model has biases, for example, those resulting from the lack of data from 
nursing infants or lactating or pregnant women, then the BMDL10 estimates would also be 
biased.  The more realistic and believable the linked CARES PBPK/PD model, the more 
believable the BMDL10 estimate.  
 
Once a BMDL10 estimate is provided via the variability and uncertainty model, this can be 
compared to the animal BMDL10 estimate computed in the traditional way.  The linked CARES- 
PBPK/PD model integrates all of the age and other factors that typically confuse the comparison 
between animals and humans.  The extrapolation factor, computed as the ratio of the human to 
animal BMDL10 estimates, truly describes the required cross-species multiplier.  This approach 
uses the model as it was intended, as a tool to integrate the variability and uncertainty in the 
process of incorporating in vitro and in vivo animal data to prediction of the risks in the human 
population. 
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The Panel noted that this alternative approach to estimating the human variability without further 
regrouping highlights the flaws in the approach taken by DAS.  The DAS approach starts with 
the animal data rather than with the model.  It attempts to duplicate in the simulated human 
population what was done in the animal population in an attempt to get a BMD10 and eventually 
a BMDL10 estimate.  But grouping humans into samples of eight, as was done with the rats, is 
unnecessary, confusing, and misses the whole point of developing the human model. 
 
 

 
 

Figure 5.  Determination of the BMD10 using the linked CARES PBPK/PD model.  The blue cloud represents the 
outline of chlorpyrifos dose response in populations of infants exposed to a range of doses.  The ranges of 
predicted responses for 5,000 simulated infants at four dose rates (0.1, 0.2, 0.5, and 1.0 mg/kg) are given by the 
vertical light blue lines.  The black line illustrates the least squares fitted line (not a true least squares fitted 
line).  The dashed line represents alternate “realizations” of the dose response relationship using a Monte Carlo 
approach in model parameters (involving both fixed parameter uncertainty and the uncertainty in the hyper 
parameters for random parameter distributions).  The black circles show the range of mean responses in groups 
of eight infants (corresponding to the groups of eight test animals used in Marty and Andrus, 2010).  The vertical 
lines with heavy dark circles are not relevant to this discussion. The dose where 5% of the population is 
predicted to experience 10% or less inhibition is approximately 0.4 mg/kg.  This figure is adapted from Figure 65 
in the DAS report (DAS, 2011, p. 153). 

Alternative Approach for Deriving the Animal BMDL10 
 
Along with the above approach for deriving human variability, the Panel suggested an additional 
approach for deriving the animal BMDL10.  The Panel noted that the term “BMDL10” used by 
DAS may carry un-matched meanings between animals and humans.  On the one hand, the 
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human BMDL10 was derived from the DAS PBPK/PD model that incorporated biological 
variability, i.e., pharmacokinetic and pharmacodynamic variability.  On the other hand, the 
animal BMDL10 was derived from the curve-fitting bounds of the eight data points per group via 
a mathematical model in which the pharmacokinetic and pharmacodynamic variation among 
these test animals was not explicitly modeled.  Since the DAS PBPK/PD model structure and 
development originated with fitting model predictions to animal study data, the model should 
easily be applied to the animal data from this single dosing study.  The UFA can then be derived 
by comparing the animal and human BMDL10, both of which are derived from the same model, 
but with species-specific parameters.     
 
QUESTION 6.2:  Please comment on the strengths and limitations of proposed approach to 
estimate a human variability extrapolation factor as described in Section 10. Please provide 
alternative approaches, if appropriate. 
 

 

Panel Response 

The Panel indicated that derivation of the appropriate extrapolation factor depends on using the 
linked CARES-PBPK/PD model to compute the critical value, e.g., UFA, as noted in Charge 
Question 6.1.  In Charge Question 6.2, the critical value, UFH, is estimated not from the 
uncertainty of the mean response relationship model, but from the individual-to-individual 
variability in the response as shown in the scatter of points in Figure 65 of the DAS report (DAS, 
2011, p. 153).  More than 1000 simulated individuals would be needed to ensure accurate 
estimates of extreme events, for example, the 1% or 0.1% tail percentiles (the values at which 
99% or 99.9% of individuals would be unlikely to present the target response, e.g., a 10% RBC 
AChE inhibition).  The Panel commented that the model represents an impressive effort to 
consider all variables, which allows estimation and integration of variation among humans in 
their sensitivity to AChE inhibition following exposures to an anti-cholinesterase chemical; 
however, there were a number of comments on both model and data uncertainties.  Panelists 
expressed a common conceptual concern with regard to modeling human variability based on the 
uncertainty raised concerning the use of in vitro metabolism data from a single study (Marty and 
Andrus, 2010) used in evaluating the range of responses in humans.  Another consideration was 
that differential activation and inactivation of the ultimate toxicant is an important determinant in 
response to an organophosphate pesticide.  As suggested before, the input values for human-
relevant activation and inactivation rates used in this model were developed from non-
physiological conditions with substrate, cofactor, and ionic concentrations often outside those 
which would be feasible in a biological system.  Knowledge of site-specific chemical levels, e.g., 
concentrations at the active sites of biotransformation enzymes within the endoplasmic reticulum 
vs. concentrations within the organ as a whole, is limited.  This lack of knowledge is a significant 
cause of uncertainty in predicting the concentrations of the chemical actually available for 
metabolism; therefore, extrapolating from those in vitro conditions to estimating real-world 
biotransformation rates in the intact human tissues would have considerable uncertainty.  
 
Moreover, the use of small numbers of human tissue samples to estimate human-specific 
metabolic rates, particularly in the very young individuals where the greatest differences from 
older age groups may exist, raises the uncertainty in the constants used as inputs into the model.  
Although small numbers of samples were analyzed, Pope and coworkers (Pope et al., 2005) 
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reported that in vitro carboxylesterase activity in human liver at two months of age appeared 
both lower in total amount and higher in sensitivity to chlorpyrifos-oxon than carboxylesterase 
activity in tissues from older individuals (3 months to 36 years of age).  The Panel recognized 
that limited data from younger individuals is an important deficiency that should be addressed.  
Little is known about the potential exposures to pharmaceutical or environmental chemicals that 
may have influenced the metabolic capacity in the individuals from whom the samples were 
collected or the disease state of an individual that could have potentially influenced physiological 
factors and metabolic rates, etc.  The Panel remarked that difficulties with data from the direct 
human exposure studies available (see Panel response to Charge Question 3) along with the 
unlikely possibility of more human direct dosing data, make it difficult to further evaluate the 
impact on functional endpoint changes.  Thus, estimation of human variability and consideration 
of an UFH under these conditions remains a difficult task with high uncertainty.  Again, the Panel 
emphasized the importance of identifying factors, which may significantly contribute to model 
uncertainties during the model development so that they can be adequately accounted for when 
the model is ready for use in risk assessment.     
 
The Panel recommended that the current case study analysis be expanded to accurately predict 
all pertinent human exposures for target populations of interest (e.g., early life stages), groups 
with specific exposure characteristics (e.g., farm workers and their families), and multiple routes 
of exposure (e.g., inhalation, dermal, ingestion from food, water, hand-to-mouth activities),  
These are all important factors for fully and adequately addressing the inter-individual variability 
and uncertainty.   
 
In comparison, DAS employed only two immature age groups (six months and three years) in 
their modeling exercise.  Specific to the younger individuals, it would be preferable to include 
fetuses, neonates and infants younger than six months.  Studies in the literature have 
demonstrated that the younger the individual, the more immature he/she is physiologically and 
biochemically.  As a general rule, the most immature individuals are the most likely to differ 
from adults in susceptibility to injury by many drugs and other chemicals (NRC, 1993).  Many 
age-related processes contribute to increased deposition of chlorpyrifos in the immature brain: 
increased gastrointestinal absorption due to immaturity of the gastrointestinal mucosa, 
diminished plasma protein binding due to low albumin levels, increased concentrations of 
bilirubin and fatty acids, relatively low body fat stores, reduced metabolic detoxication potential 
(e.g., PON activity), low hepatic blood flow, and an immature blood:brain barrier.  The Panel 
recommended that the current case study analysis should be expanded to more accurately reflect 
different age- or lifestage-specific endpoints, which include developmental toxicity and various 
exposure scenarios of concern.   
 
Finally, the Panel noted that the possibility of non-cholinergic neurodevelopmental disorders 
should also be considered in the future as a basis for pharmacodynamic differences in infants and 
children. 
 
QUESTION 6.3:  The current effort by DAS is limited to food exposure and does not include all 
relevant exposure routes.  Please comment on strengths and weaknesses of using data-derived 
extrapolation factors described in the current effort for life stages (e.g., gestation or pregnancy) 
and/or for routes (dermal, inhalation) not considered in the current modeling effort. 
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Panel Response 
 
The Panel agreed that the DAS model for chlorpyrifos would eventually need to consider all 
routes of exposure.  Moreover, the model should be extended to cover other life stages and 
conditions such as gestation and pregnancy and lactation and nursing infants.  
 
The current DAS case study is limited to dietary exposure, excluding nursing infants.  The 
calculated UFA and UFH pertain only to the dose response relationship from dietary exposure 
with the exposure level in mg/kg.  It does not address oral exposure through hand-to-mouth 
activity, which is of particular importance for small children, nor does it address dermal or 
inhalation pathways.  Obviously, the UFs derived for one route cannot be directly applied to 
other routes of exposure (i.e., inhalation, dermal).  The important kinetic differences between 
oral dosing and other routes of exposure, first-pass metabolism, can have a dramatic influence on 
the extent and timing of the functional changes under consideration following OP exposure.   
More data are needed to better characterize all potential sources of chlorpyrifos exposure.  One 
panelist thought it might be worthwhile to conduct a comprehensive monitoring survey, to learn 
whether chlorpyrifos persists in the homes of the general population (as compared to 
occupational workers). 

Revised Model Name 
One panelist stressed the point that the model name/descriptor should clearly convey what it is 
and thereby make clear what it is not.  The current model is really a PBPK/PD model linked to a 
low-dose dietary exposure model of chlorpyrifos inhibition of cholinesterase.  It is not a model of 
high dietary exposure, as might occur through a food contamination incident (e.g., adulteration 
of milk with melamine), nor is it a model of non-cholinergic effects of chlorpyrifos.   

Grammatical/Typographical Errors in the DAS White Paper 
 

1) Page 27, 2nd paragraph, line 4. B-esterases are not just cholinesterases but have to also 
include carboxylesterases and other sensitive proteins.  

2) Page 78, line 2. Should be “…population was…” 
3) Page 78, line 3-4. Should read “…were 0.15 for…” 
4) Figure 33. Children are listed in title but adults in legend.  
5) Figure 34. The reverse is shown, i.e., adults in title but children in legend.  
6) Page 110, last line. Delete “were” at end.  
7) Figure 60. Typo in y-axis label.  
8) Page 148, 1st paragraph, line 3. Delete “…that a…” 
9) Page 148, last line. Should be “The animal data reflect…” 
10) Page 156, line 4. Should be “calculate”. 
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