

PORS 2009

AECOM

Anaerobic Digestion of Organic Solid Waste at WWTPs

Joerg Blischke

Outline

- Anaerobic Digestion of Organic Waste
 - » Business as Usual (BAU) Uncontrolled Digestion
 - » Controlled Digestion
 - Suitable Feestocks & Processes
 - Waste Characteristics and Challenges
 - Pre-treatment Technologies
 - Case Study: Toronto

Digestion of Organic Solid Waste at WWTPs

- » The BTA Process
- » Case Studies
- » Cost Comparison
- » GHG Emissions

AECOM

2

BAU - Organic Waste Disposal Why Diversion?

Anaerobic Digestion (AD) at WWTPs Suitable Feedstocks and Processes

Organic Feedstocks & Properties for AD

Manure, Sewage Sludge; Food Processing Waste

Industrial Sludge (e.g. Thin Stillage from EtOH Production); FOG

Commercial Food Wastes (Restaurants; Cafeterias)

Slaughter House Wastes

Commercial Food Wastes (Groceries; Packaged Waste)

Residential Source Separated Organic Waste; Organic Fraction of MSW Increase in total solids (TS) content

Decrease in homogeneity

Increase in contamination (non-digestible)

AD of Organic Solid Waste

Challenge

Organic solid waste (source separated organics or the organic fraction of MSW) is inhomogeneous and contains impurities (e.g. plastic bags, textiles, cardboard, stones, shells, glass, metals, batteries)

requiring pre-treatment prior to digestion.

<u>Solution</u>

Application of a "Wet Pre-Treatment Process" for effective removal of contaminants and homogenization.

PORS 22-24 Sept. 2009

Historic Development of Wet AD Technologies in Europe

AECOM

Toronto's Dufferin Anaerobic Digestion Demonstration Plant w/BTA Process

- n Commissioned 2002
- n 25,000 tpy SSO(Design); 2008: >40,000 tpy*
- n Area < 1 Ha
- n Building < 2,200m²

BTA technology

- City owned
 Contractor operated
- * Metric tons per year

Plastics: >10 Percent

Outline

- Anaerobic Digestion of Organic Waste
 - » Business as Usual (BAU) Uncontrolled Digestion
 - » Controlled Digestion
 - Suitable Feestocks & Processes
 - Waste Characteristics and Challenges
 - Pre-treatment Technologies
 - Case Study: Toronto

• Digestion of Organic Solid Waste at WWTPs

- » The BTA Process
- » Case Studies
- » Cost Comparison
- » GHG Emissions

Technology Application at WWTP

- For example: California has 137 WWTPs with anaerobic digesters and an estimated excess digestion capacity of 15 to 30%*.
- WWTPs are significant energy users with growing future energy demands due to additional treatment requirements (e.g. nutrient removal, UV).
- Co-locating an organic solid waste pre-treatment facility for digestion or co-digestion at a WWTP provides multiple infrastructure and economic synergies.

PORS 22-24 Sept. 2009

11 AECOM

Organic waste slurry to be fed into the digester

PORS 22-24 Sept. 2009

Source: BTA International

PORS 22-24 Sept. 2009

14 AECOM

PORS 22-24 Sept. 2009

Case Study: Pre-treatment of SSO for Co-digestion at WWTP, Leoben, A

Start-up: Spring 2009 Capacity: 18,000 MT/yr Waste input:

- Biowaste (residential SSO w/some yard waste);
- Commercial SSO (restaurants; grocery stores, dairy sludge);
- Grass clippings

AECOM

16

PORS 22-24 Sept. 2009

Source: BTA International

Case Study: Pre-treatment of SSO for Co-digestion at WWTP, Baden-Baden, D

Start-up: 1993 Capacity: 5,000 MT/yr Waste input:

- Biowaste (residential SSO mixed w/some yard waste);
- Commercial SSO (primarily from restaurants and cafeterias)

PORS 22-24 Sept. 2009

Source: BTA International

AECOM

Case Study: Pre-treatment of OFMSW for Co-digestion at WWTP, Puławy, PL

Start-up: 2001 Capacity: 22,000 MT/yr Waste input: Organic fraction of MSW

PORS 22-24 Sept. 2009

Source: Ecoservice

18 AECOM

Cost Comparison – Co-digestion vs. Conventional Biowaste Treatment

Type of Installation	Throughput [MT (wet)/yr]	Costs [Euro/MT (wet)]
Co-digestion Baden- Baden WWTP ^a	5,000	~ 56
Co-digestion Radeberg WWTP ^a	15,000	~ 50
Composting ^b	15,000 30,000	85 - 130 80 - 110
SSO AD ^b	10,000 20,000 30,000	125 - 185 100 - 135 85 - 110

^a Including disposal cost for additionally generated biosolids

^b Typically without disposal cost for residuals

PORS 22-24 Sept. 2009

Source: Schmitt et al. (2007) 19 AECOM

Anaerobic Digestion – Greenhouse Gas Emissions

- Greenhouse Gas Emission Mitigation Strategy
- Avoided Methane Emissions through AD of SSO or OFMSW most likely Eligible for Registration with Climate Action Reserve

Additional Slides

Characterizing Features of AD Processes

Number of Stages

- » Single-Stage
- » Two-Stage

• Feed Total Solids (TS) Content

- » Wet Process (<20% TS)
- » Dry Process (>20% TS)
- Operating Temperature
 - » Mesophilic Process (approx. 93 98 °F or 34 37 °C, respectively)
 - » Thermophilic Process (approx. 131 140 °F or 55 to 60 °C, respectively)

• Mixing

- » Gas Injection
- » Internal Mechanical Components (Agitator)
- » Re-Pumping / Re-Circulation

Reactor / Digester Type

- » Vertical Positioning
- » Horizontal Positioning

Process Flow

- » Continuous Process Flow (fully mixed or plug flow)
- » Discontinuous/Batch Process Flow

Organic Waste Recovery

- Commercial & Residential Source Separated Organics
- Objectives & Measures:
- Increase Waste Diversion towards the Zero Waste Goal
- Close the Carbon and Nutrient Loop
- Provide cheap feedstock for renewable energy production
- Develop and implement ordinance & organics collection program
- Educate food establishments, food processors, retailers and residents about organics collection

AECOM

23

Case Study Toronto: Green Bin Program

- Part of City's "Zero Waste to Landfill by 2012 Initiative"
- Green Bin Collection (weekly)
- **Objective:** Maximize Recovery of Source Separated Organics (SSO) through:
 - » User convenience; nothing else to buy
 - » Inclusive material list
 - Allow for plastic containers (difficult for composting)
 - Bi-weekly residual waste collection to encourage diversion

Accepted Material:

§ fruits

- § meat, shellfish, fish products
- § pasta, bread, cereal
- § dairy products, egg shells
- § coffee grounds, filters, tea bags
- § soiled paper towels, tissues
- § soiled paper food packaging: fast food
- paper packaging, ice cream boxes,
- muffin paper, flour and sugar bags
- § paper coffee cups, paper plates
- § household plants, including soil
- S diapers, sanitary products
- § animal waste, bedding (e.g. from bird/hamster cages), kitty litter
- § pet food

Toronto's Multi-Unit Residential Organics Collection Pilot Projects

PORS 22-24 Sept. 2009

Anaerobic Digestion – Aspects to Consider

- Utilization of Additional Biogas On-Site (boiler, CHP)
 - » Challenging due to permitted emission limits
- Effective Odor Control System Required to Comply with AQ Regulations => Public Nuisance
- AQ Regulations Limit the Amount of Volatile Organic Compounds (VOCs) Emitted from Composting Operations
 - » AD reduces the volatile solids content of organic waste prior to composting
 => Improvement in air quality and air quality compliance
- Effective Digester Mixing Required:
 - Prevent formation of dead zones, sedimentation, blankets and foam => Evaluation and Enhancement

PORS 22-24 Sept. 2009

