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Emergency Response in Region 9 
17 OSCs, 4 time zones 
 
 Carson City 

1 OSC 

Signal Hill, CA 

4 OSCs 

Equipment 
Warehouse 
 
 
 
 
 
 
 
             

Also responsible for: 
Guam 
Northern Mariana Islands 
Pacific Island Governments 
American Samoa 

San Francisco 

Regional Office 

13 OSCs 

Equipment 
Warehouse 



Why we need contam. soils management skills?  

 Estimated 3rd of our work is on contaminated soils 
sites. 

 Highest cost sites to remediate – often other 
stakeholders request assistance. 

 Often high toxicity and direct exposure (residential 
sites). 

 Interventions should preserve water quality – on-site 
techniques allay monetary and environmental costs. 
 



Reconsidering Cleanup Goals 

 Bioavailability in risk assessment 
 Removal objectives use Preliminary Remediation Goals 

(PRGs) for decision making in the “risk range” of 
contaminant concentrations  

 PRGs may not be an appropriate measure of risk at a 
mine site 
 Total metals may not be bioavailable 
 Risk assessment modeling traditionally assumes 80 to 100% 

absorption 

 Consult your toxicologist 



As Bioavailability Summary 
Number Description

II 2 2 Bingham Creek Channel 0.39 0.26 0.53 0.08
II 4 1 Murray Slag 0.55 0.38 0.73 0.10
II 6 1 Midvale Slag 0.23 0.17 0.30 0.04
II 6 2 Butte Soil 1 0.09 0.04 0.14 0.03
II 7 1 California Gulch Phase I Residential 0.08 0.03 0.14 0.03
II 7 2 California Gulch FeMnPbO 0.57 0.38 0.77 0.12
II 8 1 California Gulch AV Slag 0.13 0.07 0.19 0.04
II 9 1 Palmerton Location 2 0.49 0.34 0.66 0.10
II 9 2 Palmerton Location 4 0.61 0.44 0.80 0.11
II 11 1 Murray Soil 0.33 0.25 0.42 0.05
II 10 1 California Gulch AV Slag 0.18 0.15 0.22 0.02
II 10 2 NaAs (IV) 0.41 0.33 0.54 0.06
II 15 1 Clark Fork Tailings 0.51 0.42 0.62 0.06
II 15 2 NaAs (IV) 0.47 0.38 0.59 0.06
II 15 3 NaAs (Gavage) 0.50 0.41 0.63 0.07
III 1 1 VBI70 TM1 0.40 0.35 0.47 0.04
III 1 2 VBI70 TM2 0.42 0.36 0.49 0.04
III 1 3 VBI70 TM3 0.37 0.31 0.42 0.03
III 2 4 VBI70 TM4 0.24 0.20 0.28 0.02
III 2 5 VBI70 TM5 0.21 0.18 0.25 0.02
III 2 6 VBI70 TM6 0.24 0.19 0.28 0.03
III 3 1 Butte Soil 1 0.18 0.12 0.23 0.03
III 3 2 Butte Soil 2 0.24 0.20 0.28 0.02
III 4 1 Aberjona River Sediment - High Arsenic 0.38 0.36 0.41 0.02
III 4 2 Aberjona River Sediment - Low Arsenic 0.52 0.49 0.56 0.02
III 5 1 El Paso Soil 1 0.44 0.39 0.49 0.03
III 5 2 El Paso Soil 2 0.37 0.33 0.42 0.03
III 6 1 Soil Affected by CCA-Treated Wood Utility Poles 0.47 0.42 0.52 0.03
III 7 2 Dislodgeable Arsenic from Weathered CCA-Treated Wood 0.26 0.25 0.28 0.01

RBA LB UB SEPhase Experiment
Test Material

Presented by B. Brattin, Summary of EPA in-vivo As studies 

Ranges from  
8-61% in  
30 studies  



An Example: Iron King Mine Site 

 Iron King Mine Site is a large mine and smelter in 
Humboldt, AZ 

 Runoff and erosion from the mine contaminated 
neighboring residences with arsenic 
 Arsenic is high in the region (above state and EPA guidelines 

for cleanup) 





Bioavailability in Risk Analysis 

 EPA found that all residences in the study 
exceeded PRGs (22 ppm – Reg 9 PRG) 

 EPA found that background concentrations (35 
ppm) exceeded PRGs 

 EPA then considered bioavailability of arsenic as a 
means of reconsidering what the true protective 
level really is 
 Based on lines of evidence EPA selected a bioavailability 

default of 50% (departure from 80-100% typically used) 



Approach 

 EPA reported a best estimate of 30% and a high end 
estimate of 45% for the RBA of arsenic in soil for the 
Ironite product (based on in-vivo & in-vitro 
respectively). 

 Based on lines of evidence EPA tweaked the risk 
equations to include a bioavailability factor of 50% 
 Chose a cleanup goal of 80 parts per million instead of 22 

ppm. 



Electron Microprobe Analysis 

 EPA Region 9 conducted speciation of As using an 
electron microprobe 
 Determined that As was present as arsenopyrite – a low 

bioavailability form of As 

 Analysis provided confirmation that primary species 
in soil samples is in fact arsenopyrite. 



Arsenopyrite in Soil at Iron King 



Create a “Reactive Cover” 

 Various substances can be used to decrease 
bioavailability in-situ 
 Biosolids and Water Treatment Residuals (other OM) 
 Amendments 

 Limestone, use for arsenic, lead, zinc, cadmium 
 Phosphate, use for lead sites 

 Basis provided by bioavailability & ecotoxicity tests 



Biosolids 

 Produced by all municipalities 
 Use regulated under 40 CFR 503 
 70% of biosolids are now land applied 
 Cost - "subsidized" by municipality 

Courtesy of H. Compton, EPA & Dr. S. Brown, U. Wash. 



In-vitro bioavailability  

 Physiologically Based Extraction Test (PBET) & 
others 

 Correlated to past in-vivo bioavailability studies 



McCleur & Sheldon Tailings Site 

 The McCleur Tailings Site is an abandoned mine 
with high arsenic and lead concentrations in soil 
 Estimated bioavailability before and after treatment with 

biosolids, limestone and phosphate. 
 Demonstrated a reduction in bioavailability and leachability 
 Demonstrated that the site could be revegetated for erosion 

control 



Background 

 1863-1959:  Active gold, silver, copper, and lead 
mining in the historic Walker Mining District. 

 1975-6:  Partial Site restoration by University of 
Arizona and the U.S. Forest Service. 

 1999:  Environmental Investigation of mine sites 
in the Lynx Creek and Hassayampa Creek 
watersheds.   Surface water, soil, sediment and 
tailings samples were collected throughout two 
watersheds.   
 



Cleanup Goals 
 Reduce contaminated surface runoff and impacts to 

groundwater. 
 Improve site drainage to route run-on around sources.  

 Prevent fugitive dust emissions 
 Construct vegetative cover of natural materials (wood mulch, 

soil, and biosolids compost) and revegetate (hydroseed 
w/native plants & grasses) 

 Coordinate activities with Federal and State authorities, 
consider National Historic Preservation Act.  

 
 



McCleur Soil Characteristics – Tailings 

 Tailings A 
 Total Lead 3%,  
 30,000 ppm 
 Total Arsenic 300 ppm 
 pH 2.3 

 Tailings B 
 Total Lead 0.2%, 
 2,000 ppm 
 Total Arsenic 200 ppm 
 pH 2.7 



PBET Extractable 
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Reduction  in Lead Bioaccessability 

0
20
40
60
80

100

Soil A Soil B







McCleur Before & After 



 



Tailings Pile 



Drainage Ditch Filled with Sediment & Tailings 



Acid Mine Drainage at Toe of Tailings Pile 



The Problem 

 Fugitive dust and direct contact result in As & Pb 
exposures to wildlife and the public posing risks 

 Contaminated runoff enters receiving waters and 
groundwater 

 Increased exposure of pyritic (high iron and 
sulfide) mine waste to oxygen and water. 
 Metal sulfide minerals are oxidized and dissolve into water. 
 Microbially mediated acid generation occurs resulting in 

increased metal mobility. 

 
 



Cleanup Plan 

 Site Drainage Improvements 
 Grading 
 French drain system with lined trenches to reroute clean 

surface water around mine waste 

 Vegetative Cap 
 Barrier to direct exposure and fugitive dust 
 Reduction of storm water infiltration to minimize Acid Mine 

Drainage  (AMD) 

 Excavation and removal of contaminated 
sediments in stream channel 



Evapotranspiration Covers 

 Isolate and secure contaminants to prevent spread of 
contaminated materials 

 Design a soil-plant layer or cover to slow downward 
movement of rainwater maximizing storage 
 Stored water will evaporate or transpire controlling 

 Construct a 2- to 10-foot-thick layer of fine-grained soil 
over contaminated material 

 Plant native grass, shurbs, small trees to form extensive 
root systems 

 ET covers good in dry climates to cover tailings piles and 
may reduce acid mine drainage 



The Vegetative Cap 

 Organic mulch lower layer that isolates contaminated mine 
waste, slowly releases N and P, holds water, and helps plants 
grow long-term 

 Upper vegetated layer that acts as a sponge 
Use local source of borrow soil and Class A Biosolids 
Good growth media for establishing plants 
Plant uptake, transpiration and evaporation help prevent 

water infiltration into tailings 
 Multiple layers work together to seal in waste, store 

water, prevent erosion, and stem AMD generation 
 



Vegetative Cap 



Erosion Control 

 Revegetation of cap reduces sheet erosion during 
heavy rainfall. 

 Install fiber rolls around culverts and across all 
vegetated slopes. 
 Reduce loss of topsoil and sediment loading to waterways. 
 Blown Straw on surface to reduce impact energy of rainfall. 

 



Import Quantities 

 Approximately 4,390 cubic yards (cys) of Borrow 
Soil available at no cost from USFS. Located ~6 
miles from the site off of Walker Road 

 Approximately 1,200 cys of composted wood 
mulch available at no cost from Sun Dog Ranch 
Road Transfer Station 

 Approximately 364 cys (225 tons) of Exceptional 
Quality Class A sterile biosolid compost  



Workers Installing Drainage 



Workers Spreading Biosolids 



Tractor Disking in Biosolids 



Hydroseeding  



Biosolids Amendment 

 EPA consulted with Greg Kester, Biosolids Program 
Manager, CASA, and Lauren Fondahl, EPA Region 9 
Biosolids Coordinator 

 EPA’s cleanup  contractor sent RFPs to several 
biosolids applicators in Arizona, but only Synagro 
could provide Class A Biosolids 



Biosolids Amendment 

 Synagro Technologies Soils Composting Facility, 
Vicksburg, Arizona 

 Nutrient rich by-product of wastewater treatment 
 Decision to use Class A EQ rather than Class B 
 Cleanup contractor concerned with worker H&S 
 Concern about odors near residential area 
 Concern about runoff impacts to nearby Lynx Creek and Lynx 

Lake 



Biosolids Amendment 

 Class A Biosolids are essentially free of pathogens 
prior to land application  

 Exceptional Quality Biosolids have lower metals 
requirements than Class A or Class B Biosolids; same 
pathogen level as Class A Biosolids 

 Synagro’s Arizona Soils Composting Facility used the 
windrow process and composted biosolids with 
green waste 
 



Lesson Learned 

 The Biosolids material was dry and powdery 
 Application with tractor was not optimal due to the 

powdery consistency of the material 
 Some material lost during the AZ monsoon season 
 Deep cultivation methods should be used to mix 

the material into the upper 6-8 inches of topsoil – 
e.g., ripper blades on the back of a dozer  
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