

Steam Hydrogasification Research Overview

2010 Pacific Southwest Organic Residuals Symposium

Sep. 15, 2010

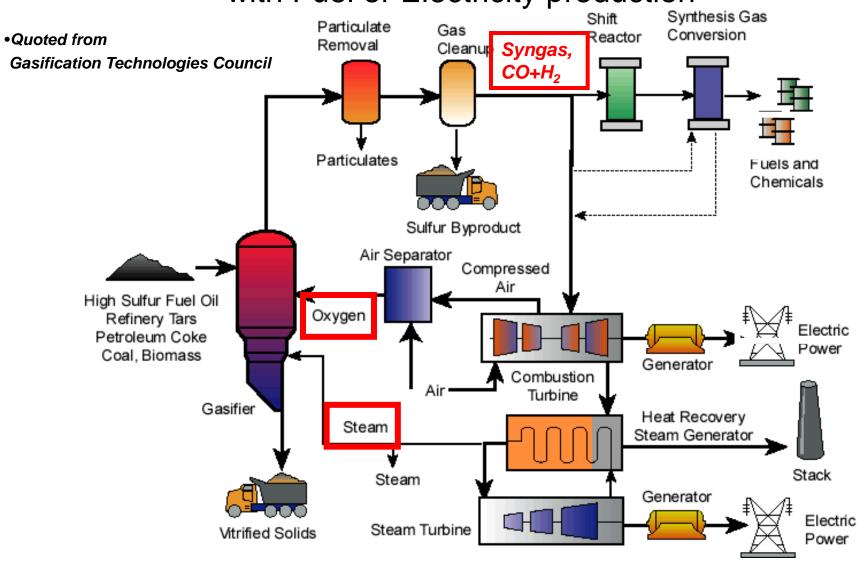
Chan Seung Park, PhD

Center for Environmental Research and Technology, University of California, Riverside

Content

- 1. Background of Gasification and GTL
- 2. Introduction to the Steam Hydrogasification Reaction
- 3. Applications/ Projects for Steam Hydrogasification Reaction

What is Gasification Process ?


 A thermo-chemical process converts any carboncontaining material into a synthesis gas, usually via partial oxidation (POX) reaction.

•
$$C_x H_y O_z$$
 + Oxygen \rightarrow CO₂ + H₂O : Combustion
• $C_x H_y O_z$ + less Oxygen \rightarrow CO + H₂ : POX

 The synthesis gas can be used as a fuel to generate electricity(IGCC) or used as a feedstock for synthetic fuel or chemicals (GTL Process)

JCR College of Engineering-Center for Environmental Research & Technology Typical Gasification Technology with Fuel or Electricity production

Hydrogasification Process

$C_x H_y O_z + 2H_2 \rightarrow CH_4 + Others$

- Gasification in Hydrogen Environment
- Used for SNG production from coal and biomass since 1930s.
- Internal hydrogen supply thru water gas reaction of the char or steam methane reforming of the product gas

Requires high pressure (~100atm) or catalyst.
 →Lack of commercial success or interest.

Steam Hydrogasification Process (SHR)

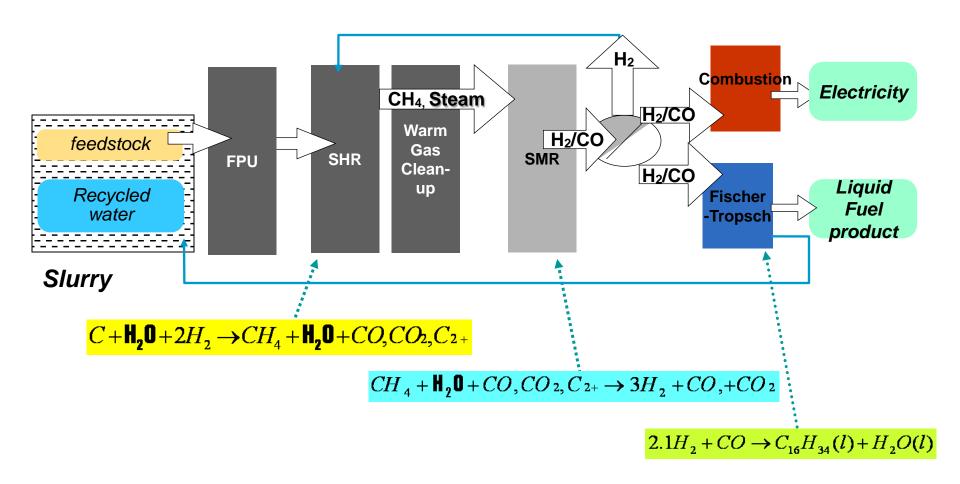
• The most unique feature of SHR is the introduction of water to reaction scheme

 $C_{x}H_{y}O_{z} + \mathbf{H_{2}O} + 2H_{2} \rightarrow CH_{4} + \mathbf{H_{2}O} + others$ Others : CO, CO₂, C₂₊

- Effect of steam on the hydrogasification of carbon had not been studied extensively
- Our initial research found that addition of water

 →Increased the reaction rate
 →High efficiency at lower temperature
 →High efficiency at lower pressure

Advantages of Steam Hydrogasification Process (SHR)


$C_xH_yO_z + H_2O + 2H_2 \rightarrow CH_4 + H_2O + CO, CO_2, C_2 +$

- Process can handle wet feedstock w/o drying.
 - Utilize a high pressure slurry pump to reduce costs
- No expensive oxygen plant required
 - Process is suitable for smaller scale, distributed facilities (ideal for biomass/waste, coal/biomass feedstock)
- Can control slurry feed for desired synthesis gas product distribution
 - Carbon, Water, Hydrogen input ratio
 - Does not require the Water-Gas Shift Process

UCR College of Engineering- Center for Environmental Research & Technology

CE-CERT Process

SHR – Steam Hydrogasification Reactor, SMR – Steam Methane Reformer

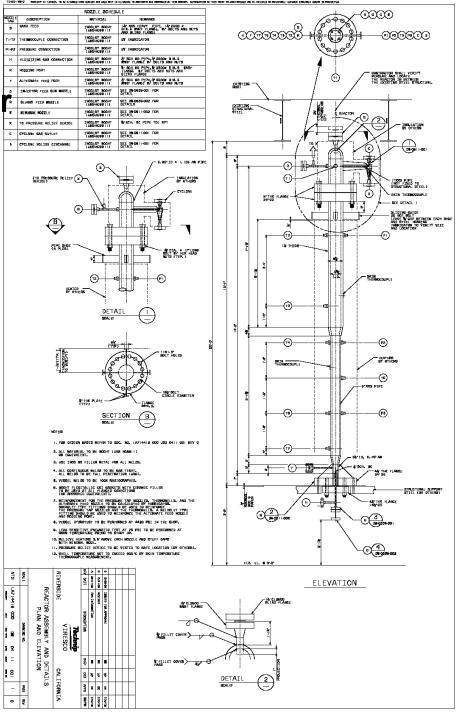
Process Reviewed by DOE/NETL

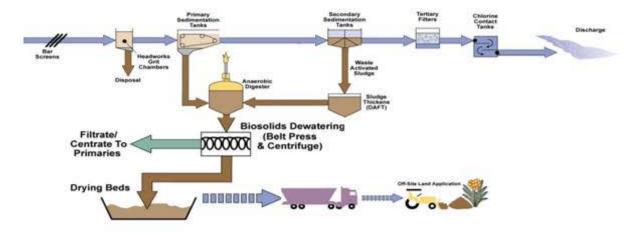
HYDROGASIFICATION/F-T PRODUCTION WITH ELECTRICITY & ELECTRICITY ONLY CASES CERT-1 THRU CERT-6 CONCEPTUAL STUDY			
DOE/NETL-401/CRADA			
For NETL internal distribution only			
CRADA Protected Information			
Final Report			
March 2010			

- Since 2007, For the Independent Review of the Process
- Verify the flow-sheet for the several different cases
- Estimate TPC (Total Project Cost) and perform economic analysis

Their conclusion is that the CE-CERT process has 12 % higher efficiency with 18 % lower capital cost than the most up-to-date conventional mainstream gasification technologies.

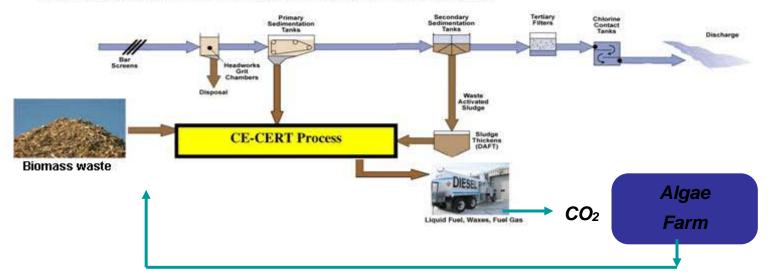
Laboratory Bench Scale SHR, 1lb/ hour


PDU scale Fluidized Bed Reactor 10 lb/ hr


Funded by PIER project from California Energy Commission (CEC)

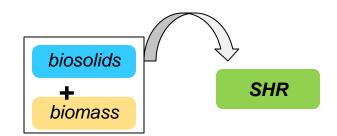
(Demonstration of Syngas Production from Biosolid-Biomass)

Period Oct. 09 - Sep.11


4/6/8 " OD x 22' height iHT800, 150 psi/825C ~20 sec gas residence Time @ 1ft/sec v

1. Current Process for the Municipal Waste Water Treatment

2. Suggested Process with Hydrogasification (CE-CERT process)



Co-mingling of biomass and biosolids

Biosolids samples (DAFT , Dissolved Air Floatation Thickener after the secondary sedimentation treatment) are from Riverside Regional Water Quality Control Treatment Plant

Table1 Proximate and Ultimate Analysis of biomass(pinewood) and biosolids

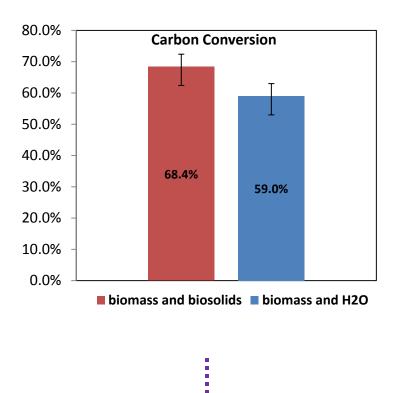
Analysis	Compound	pinewood	Biosolids
Proximate	Moisture	5.65	92.9
(wt%)	Volatile matter	81.52	4.9
	Fixed carbon	12.58	0.6
	Ash	0.25	1.6
Ultimate	С	47.56	40.8
(dry basis	Н	6.31	6.22
(wt%)	Ν	0.05	7.47
	0	45.81	23.14
	Balance*	0.27	22.37

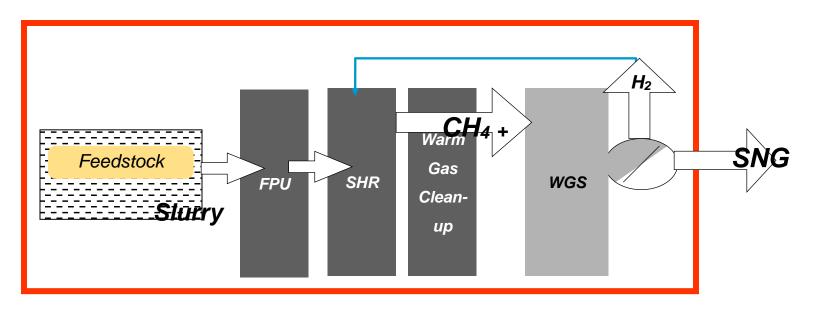
Balance includes other elements eg, S,Cl, metals

Feedstock Pretreatment Unit (FPU) by Hydrothermal Reaction to produce Pumpable Slurry

Initial studies

Figure 3 Carbon conversion of SHR in lab scale batch reactor at 700° C




Table3. Metal elements in biosolids (DAFT)

Metal Element	Concentration Mass (ppm)		
Iron (Fe)	14770		
Calcium (Ca)	11440		
Aluminum (Al)	3200		
Magnesium (Mg)	1620		
Potassium (K)	1620		
Titanium (Ti)	1010		
Sodium (Na)	690		
Zinc (Zn)	400		
Copper (Cu)	360		
Manganese(Mn)	178		
Strontium (Si)	100		
Bismuth(Bi)	16		
Nickel(Ni)	9		

It has been speculated that the enhanced conversion efficiency may be the result of a catalytic action in the SHR caused by the metal species in the biosolids.

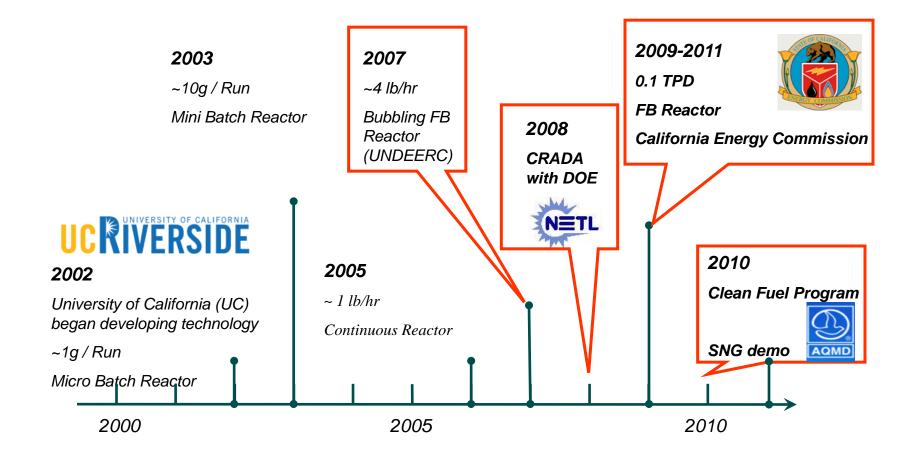
- **DOE SBIR Research** •
 - High ash, moisture Lignite feedstock
- AQMD Clean Fuel Program ullet
 - **Co-mingled Biomass+ Biosolid** _

IP & Publications

1. Patents

- Total 13 application since year 2002
- 4 Patents awarded
- In Year 2009, 1 new process patent applications

2. Publications


- Total 6 Pier Reviewed Paper Published
- In Year 2009, 1 Published, 3 in preparation.
- 4 Conference Presentations

3. Students/ Staff

- 2MS and 1 PhD in 2009
- 9 PhD Applicants.
- 2 Full Time Engineers
- 2 Visiting Scholars

	CTL w/ CE-CERT Process (CERT-2)	CTL w/ Conventional Entrained type Gasifier
Input	4000 TPD CTL Plant	3707 TPD CTL Plant
Out	107 MW electricity 7143 BPD (2.8 BPD/Metric Ton of Coal)	10.3 MW electricity 7143 BPD
HHV η	53.4%	47.6%
TPC/ TCR	\$1,026 MM/\$1,512 MM (Jan. 2008 \$)	\$1215 MM/\$1,764 MM
IRR*	17% (@ \$38/T) 20% (@ \$18/T)	7% (@ \$38/T) 12% (@ \$18/T)

*By Power Systems Financial Model prepared for NETL by Nexant, Inc

15%, interest rate, \$2.69 /gallon of diesel, 4% IRR for CERT-1