

Low Emission Digester Success Stories in the San Joaquin Valley

For the California Bioresources Alliance 7th Annual Symposium September 11, 2012

Dave Warner, Director of Permit Services San Joaquin Valley Air Pollution Control District

Federal & State Air Quality Regulations

- Federal Clean Air Act Requires the District to achieve clean air, or
 - Huge fees on local industry
 - Lose federal highway funds
 - Feds take over local air program
- Federal and State regulations require Best Available Control Technology (BACT) for new or modified equipment to minimize emissions increases

Benefits of the Use of Biogas

- Increased renewable energy
 - Power production
 - Pipeline injection
 - Mobile source fuel
- Displacing fossil fuels
- Reductions in greenhouse gas emissions
- Landfill diversion
- Job creation
- Potential for VOC reductions

Challenges to the Use of Biogas

- Contaminants (gas quality, water vapor, H2S, siloxanes in municipal/landfill biogas, etc.) have historically hindered use of add-on emission controls
- Turn-of-the-century BACT emissions level for NOx from biogas engines was 5-10 times higher than BACT for natural gas engines and ~20 times BACT for a central power plant
 - 2000-era BACT for biogas engines: 0.6 g-NOx/bhp-hr or 50 ppmv NOx (lean burn engine with no added controls)
 - BACT for natural gas engines: 5-9 ppmv NOx
 - BACT for central power plant: 2.5 ppmv NOx (gas turbine with SCR or equivalent)

Example: Dairy Potential

- 1.84 million Dairy Cows (milk & dry) in California
- 87% of California Dairy Cows 1.6 million Dairy cows in the San Joaquin Valley
- Estimated California Dairy Digester Potential: ~889 dairies; ~2,375,000 MW-hr per year
- Without advanced emission controls potential increase of ~5 tons-NOx/day in the SJV
- Total NOx Reductions from Stationary Sources in SJV Attainment Plan: 8.2 tons/day by 2023

Current Low Emission Biogas Engine Projects in the San Joaquin Valley

- Rich burn engines with NSCR
 - Dairy digester gas at Gallo Cattle Company in Atwater
 - Winery Waste Digester Gas at Woodbridge Winery
- Lean Burn Engines with SCR
 - Dairy digester gas at Fiscalini Farms in Modesto

NSCR (3-way Catalysts) for Biogas–Fired Engines

- Rich burn engines possibly lower efficiency than lean burn engines
- Inexpensive compared to other controls
- Precise control of air to fuel ratio required
- More sensitive to contaminants than SCR

Gallo Cattle Company Digester Gas-Fired Engine with NSCR

Summary of Latest Source Test for Gallo Dairy Digester Engines (Jan 2012)

Permit N-1660-7: 453 bhp digester gas-fired IC Engine with NSCR			
Parameter	Result	Permit Limit	
NOx, ppmvd @ 15% O2	4.6		
NOx, g/bhp-hr	0.085	0.6	
CO, ppmvd @ 15% O2	~164		
CO, g/bhp-hr	1.818	2.65	
VOC, ppmvd @ 15% O2 (as methane)	<0.14		
VOC, g/bhp-hr	<0.001	0.25	
Fuel H2S, ppmv	13.1	75	

Permit N-1660-9: 575 bhp digester gas-fired IC Engine with NSCR			
Parameter	Result	Permit Limit	
NOx, ppmvd @ 15% O2	5.47	9.0	
NOx, g/bhp-hr	0.090	0.15	
CO, ppmvd @ 15% O2	637.36	1,100	
CO, g/bhp-hr	6.378		
VOC, ppmvd @ 15% O2 (as methane)	0.25	20	
VOC, g/bhp-hr	0.001		
Fuel H2S, ppmv	13.1	59	

Summary of Latest Woodbridge Winery Biogas Engines (Nov 2011)

Permit N-2321-649: 122 bhp digester gas-fired IC Engine with NSCR			
Parameter	Result	Permit Limit	
NOx, ppmvd @ 15% O2	0.75	11	
NOx, g/bhp-hr		0.15	
CO, ppmvd @ 15% O2	2.12	70	
CO, g/bhp-hr		0.60	
VOC, ppmvd @ 15% O2 (as methane)	< 0.14	51	
VOC, g/bhp-hr		0.25	
Fuel H2S, ppmv	8.3	25	

Permit N-2321-650: 122 bhp digester gas-fired IC Engine with NSCR

Parameter	Result	Permit Limit
NOx, ppmvd @ 15% O2	1.83	11
NOx, g/bhp-hr		0.15
CO, ppmvd @ 15% O2	2.11	70
CO, g/bhp-hr		0.60
VOC, ppmvd @ 15% O2 (as methane)	< 0.14	51
VOC, g/bhp-hr		0.25
Fuel H2S, ppmv	8.3	25

SCR for Biogas–Fired Lean Burn Engines

- Lean burn engines generally have higher efficiency than rich burn engines
- Urea tank required
- Ammonia slip must be minimized
- More expensive than NSCR
- Generally SCR systems more resistant to contaminants than NSCR

Fiscalini Farms Dairy Digester Gas-Fired Engine with SCR

Summary of May 2012 Source Test for Fiscalini Farms and Dairy Engine

Permit N-6311-9: 1,057 bhp lean burn digester gas-fired IC Engine with SCR			
Parameter	Result	Permit Limit	
Pre-Catalyst NOx, ppmvd @ 15% O2	76.04	-	
Pre-Catalyst NOx, g/bhp-hr	1.109	-	
Post-Catalyst NOx, ppmvd @ 15% O2	5.63	11	
Post-Catalyst NOx, g/bhp-hr	0.082	0.15	
% NOx reduction	92.7%	-	
CO, ppmvd @ 15% O2**	112.82	210	
CO, g/bhp-hr	1.00	1.75	
VOC, ppmvd @ 15% O2 (as methane)	14.77	28	
VOC, g/bhp-hr	0.075	0.13	
Ammonia, ppm @ 15% O2	1.36	10	

Compressed Digester Methane as Vehicle Fuel

- One installation in the Valley, Hilarides Dairy
- No need to be near a pipeline
- Replaces combustion of diesel fuel, so no new NOx emissions.

Hilarides Dairy Bio-methane Powered Milk Trucks

Other Low-Emission Technologies for Biogas Issued Permits by the District

- SCR Systems for biogas from food and agricultural wastes
- Greenguard "Virtual Lean Burn" Engines

 Engines with EGR, very low exhaust O2, and NSCR to reduce emissions
- Hydrogen Injection ultra lean burn engines using hydrogen to stabilize combustion
- Biomethane Pipeline Injection

District Promotion of Low Emission Biogas Technologies

- Support demonstrations of solutions that will increase renewable energy production while meeting the Valley's air quality needs
- Provide District funding to renewable energy projects that further reduce emissions
- Work with other agencies to find ways to remove barriers and fund or partially fund promising low-NOx proposals
- Previously issued permits with flexible emission limits to applicants that wanted to test innovative low-emission biogas technologies

Air District Contacts

(559) 230-6000

Permitting issues:

- Dave Warner, Director of Permit Services
- Ramon Norman, Air Quality Engineer

Grants, funding issues:

- Samir Sheikh, Director of Emissions Reduction Incentive Programs
- Kevin Wing, Air Quality Grants Specialist

