

Session 4 Hazardous Waste Storage Units

Booz | Allen | Hamilton

Session 4 Agenda: Types of Hazardous Waste Storage Units

- Subpart I Containers
- Subpart J Tanks
- Subpart W Drip Pads
- Subpart DD Containment Buildings

 Subpart EE – Hazardous Waste Munitions and Explosives Storage

Subpart I - Containers

- Definition of Container
- Design Standards
- Operating Requirements
- Inspections

- Closure
- Empty Containers
- Air Emissions (discussed in Session 12)

Containers – Definition

- "... any <u>portable</u> device in which a material is stored, transported, treated, disposed of, or otherwise handled."
- Examples include: boxes, bags, drums, railcars, tanker trucks, roll-off boxes, test tubes, and vials
- Broad definition that encompasses all the different types of portable devices that may be used to handle hazardous waste

Containers – Design Standards

- Must be in good condition
 - Containers that are deteriorating (e.g., cracked, rusted) may not be used
 - Waste stored in defective containers must be transferred to containers in good condition
- Must be compatible with the waste
 - Containers must be made, of or lined with materials that will not react with the waste in the container
 - Incompatible wastes must not be placed in the same container
 - Appendix V in Part 264/265 provides a list of potentially incompatible wastes

§§264/265.171 & 172

Containers – Design Standards (cont.)

- Containment
 - Permitted container storage areas must have a secondary containment system
 - Secondary containment provides a backup system to prevent release into the environment should primary containment (i.e., the container) fail

Example: sloped concrete pad or other impervious base with curbing and drainage to a sump, tank, or other container

 Secondary containment system must be free of cracks, able to contain the spill, and emptied quickly

Containers – Operating Requirements

- Must be kept closed, except when adding or removing waste
- Must not be handled, opened, or stored in a manner that may cause them to leak
- Those holding ignitable or reactive wastes must be located at least 15 meters (50 feet) from the facility's property line

Containers – Inspection and Closure

- Inspections
 - Must be visually inspected at least once a week for leaking and deteriorating containers
- Closure
 - All hazardous waste and associated residues must be removed
 - Remaining containers, liners, bases, and soil contaminated with hazardous waste must be decontaminated or removed

Empty Containers

- Any hazardous waste remaining in either a RCRA empty container or inner liner is not subject to regulation
- A container or an inner liner removed from a container holding a non-acute hazardous waste if empty when:
 - All waste have been removed using practices commonly employed
 - No more than:
 - 2.5 cm (1 inch) of material remains in the container
 - 3% by weight remains for containers \leq 119 gallons
 - 0.3% by weight remains for containers > 119 gallons

Empty Containers (cont.)

- Containers holding compressed gases are considered empty when the pressure in the container approaches atmospheric pressure
- A container or inner liner of a container holding acutely hazardous waste is empty when:
 - The liner is removed
 - The container is triple rinsed with an appropriate solvent
 - An approved alternate method is used

Subpart J - Tanks

- Definition of Tank
- Design Standards
- Containment
- Operating Requirements
- Inspections

- Release Response
- Closure
- Air Emissions (Session 12)

Tanks - Definition

- "… a stationary device, designed to contain an accumulation of hazardous waste which is constructed primarily of non-earthen materials which provides structural support"
- Examples include: Sumps and USTs

Tanks – Design Standards

- System Integrity Assessment of Existing Tank Systems
 - Tanks in existence on or before July 14, 1986
 - Verify that the tank was designed and maintained to contain the wastes without failing, collapsing, or rupturing

Installation of New Tank Systems

- Must be inspected by an independent qualified expert prior to use to ensure that the tank was not damaged during installation.
- Tanks and ancillary equipment must be tested to make sure there are no leaks; any leaks discovered must be fixed

Tanks – Design Standards (cont.)

- Corrosion Protection for New Tank Systems
 - New tanks made wholly or partly of metal must be designed and installed with adequate corrosion protection if the system will be in contact with soil or water
 - An owner or operator must develop a written design plan or assessment that accounts for site specific information such as soil moisture and acidity
 - The unit must have one or more of the following corrosion protection methods:
 - Corrosion-resistant construction materials (e.g., fiberglass)
 - Corrosion-resistant coating in combination with cathodic protection
 - Electrical isolation devices

§§264/265.192

Tanks - Containment

- Secondary containment systems must be designed, installed, and operated to ensure that:
 - No waste is released to the surrounding soil, groundwater, or surface water
 - Construction material or liners are compatible with the waste to be stored or treated in the tank
 - The tank is capable of containing accumulated material until it is promptly removed (generally within 48 hours)
 - The tank has sufficient strength to prevent failure, and
 - The foundation can resist failure due to normal movement of the surrounding soils (e.g., settlement, compression, or uplift)

Tanks – Containment (cont.)

- Tanks must be equipped with a leak detection system capable of detecting failure in either the primary or secondary containment structures
- The leak detection system must be able to detect failure in either the main tank or secondary containment system within 24 hours
- Commonly used detection devices include:
 - Thermal conductivity sensors
 - Electrical resistivity sensors
 - Vapor detectors

Tanks – Containment (cont.)

- Owners and operators must meet these secondary containment requirements by using one of the following devices:
 - An external liner that completely surrounds the unit with an impermeable material
 - A vault (the tank rests in an underground area usually constructed with concrete floors and walls and an impermeable cover)
 - A double-walled tank (or a "tank within a tank")
 - An EPA-approved alternative design

Tanks – Operating Requirements

- Hazardous waste tanks must be operated in a manner that minimizes or eliminates releases
 - Chemicals that may cause any part of the tank's system to fail may not be placed in the unit
- Spills or overflows from the tank system must be prevented by using, at a minimum:
 - Spill prevention controls (e.g., check valves)
 - Overfill prevention controls (e.g., alarms and valve systems that automatically close when overfill is likely)
 - Sufficient room within an uncovered tank between the surface of the waste and top of the tank (i.e., minimum freeboard)

§§264/265.194

Tanks – Inspections

- Owners and operators must inspect their tanks daily to verify hazardous waste tanks and components are operated and maintained in satisfactory condition
 - If a leak detection system is used to alert facility personnel to leaks, then weekly inspections are allowed
- Inspectors must thoroughly identify leaks, deterioration, corrosion, or structural fatigue in any portion of the tank or system components
- In addition to visual inspections, owners and operators must take into account data received from leak detection monitors and other tests

Tanks - Release Response

- A tank system, or secondary containment system from which there has been a leak or spill must be taken out of operation immediately
 - Stop the flow of waste into the tank
 - Inspect the system to determine the cause of the release
 - Remove any waste remaining in the tank within 24 hours
 - Remove and properly dispose of any contaminated media
- The owner or operator must notify the implementing agency, or the NRC, and submit a follow-up written report within 30 days

Tanks – Closure

- When possible, a storage or treatment tank must be "clean closed" by removing or decontaminating:
 - All waste residues
 - Contaminated containment system components
 - Contaminated soils
 - Contaminated structures and equipment
- If clean closure is not possible, an owner or operator can close the unit leaving contamination in place
 - Close as a landfill with waste in place

§§264/265.197

Containers vs. Tanks

- Containers
 - Mobile
 - Requires secondary containment only under Part 264
 - Empty container provisions
 - Closure

 Remove hazardous waste residues and decontaminate structures

- Tanks
 - Not mobile; stationary
 - Requires secondary containment under Parts 264 and 265
 - No empty tank provisions
 - Closure
 - Clean close
 - Close as a landfill

Subpart W – Drip Pads

- Definition of Drip Pad
- Design Standards
- Operating Requirements
- Inspections
- Closure

Drip Pads – Definition

- " ... an engineered structure consisting of a curbed, freedraining base, constructed of non-earthen materials and designed to convey preservative kick-back or drippage from treated wood, precipitation, and surface water run-on to an associated collection system at wood preserving plants"
- Drip pads are hazardous waste management units that are unique to the wood preserving industry
 - Used exclusively for the collection and temporary accumulation or storage of excess wood preservative prior to its removal from the unit
 - Regulated units will be found only at wood preserving facilities

Subpart W – Drip Pads

Drip Pads – Definition (cont.)

§260.10

Drip Pads – Design Standards

- Pad
 - Constructed of non-earthen materials (e.g., concrete, metal)
 - Provide sufficient structural strength to prevent unit failure
- Drip Pad Surface
 - Constructed with a raised berm around perimeter to prevent waste run-off into the environment
 - Sloped toward a liquid collection unit
 - Treated with impermeable sealers, coatings, or covers to meet specific permeability performance standards

Drip Pads – Design Standards (cont.)

- Liquid Collection System
 - Must allow removal of waste for proper management and to prevent overflow
 - Must include run-on and run-off controls as necessary
 - Subject to regulation as a hazardous waste tank
- Liner and Leak Detection System
 - Is not subject to specific permeability criteria
 - Must signal releases from the drip pad at the earliest practicable time
 - Structurally sound and chemically compatible

§264.573 and §265.443

Drip Pads – Operating Standards

- Drip pads must be:
 - Free from cracks and show no signs of corrosion or other forms of deterioration
 - Cleaned frequently to allow for inspections of the entire drip pad surface without interference from accumulated wastes
- Drippage and precipitation must be emptied into a collection system as often as necessary to prevent waste from flowing over the curb around the perimeter of the unit
- Collection tanks must be emptied after storms to ensure that sufficient containment capacity is available for run-off

Drip Pads – Inspections

- Newly installed or upgraded existing drip pads must be inspected to verify that the unit was properly constructed and that no damage occurred prior to use
 - An independent, qualified, registered, professional engineer must certify that the drip pad achieves all applicable design standards
- Drip pads must be inspected weekly and after storms to:
 - Ensure the pad and the liquid collection systems are functioning properly
 - Check for deterioration or leaks from the units

Drip Pads – Closure

- Involves removal or decontamination of all associated waste residues, contaminated soils, and contaminated system components
- If all contaminated soils cannot be removed or decontaminated, the unit will be considered a landfill for purposes of closure

- Definition of Containment Building
- Design Standards
- Operating Requirements
- Inspections
- Response to Releases
- Closure

Containment Building – Definition

- "... a hazardous waste management unit that is used to store or treat hazardous waste under the provisions of subpart DD of parts 264 or 265"
- Completely enclosed structure (i.e., four walls, roof, floor) that is used to store or treat **non-containerized** waste
 - Generally used for the management of hazardous waste debris and other bulky and high volume hazardous wastes not amenable to storage or treatment in tanks or containers
 - Can be used as secondary containment for wastes stored in containers or tanks

Containment Building – Definition (cont.)

§260.10

Containment Building – Design Standards

- Building
 - Constructed of man-made materials
 - Provide sufficient structural strength to prevent unit failure
 - Completely enclosed (floor/walls/roof)
 - Have a decontamination area for personnel, equipment, and vehicles
- Doors/Windows
 - Placed so as not to come into contact with waste
 - Have dust controls to minimize fugitive emissions

Containment Building – Design Standards (cont.)

- Contact Surfaces
 - Chemically compatible with waste
- Primary Barrier (floor)
 - Constructed of man-made material (typically concrete)
 - Structurally sound
 - Chemically compatible with waste

Containment Building – Design Standards (if liquids are present)

- Primary barrier sloped toward liquid collection device
- Liquid collection system must allow for removal of waste for proper management
- Leak detection system must detect release of waste at earliest practicable time
- Secondary Barrier:
 - Structurally sound and chemically resistant to the waste
 - Must contain and allow for removal of accumulating wastes
 - Required only for "wet areas" within the unit

Containment Buildings – Operating Requirements

- Maintain the floor so that it is free of significant cracks, corrosion, or deterioration
- Repair or replace surface coatings or liners that are subject to wear from movement of waste, personnel, or equipment as often as needed
- Limit the height of wastes piled within the unit
- Maintain dust control devices at all openings to prevent emissions from the unit
- Provide a decontamination area within the building

§§264/265.1100 and 1101

Containment Buildings – Inspections

- Must be inspected at least once every seven days, with all activities and results recorded in the operating log
- Inspections involve:
 - Evaluating the units integrity
 - Assessing nearby soils and surface waters to detect any signs of waste release
 - Assessing information collected from monitoring and leak detection equipment

Containment Buildings – Release Response

- If a release is discovered, the owner or operator must:
 - Take the leaking portion of the unit out of service
 - Take all appropriate steps to repair the leak and contain the released waste
- Implementing agency must be notified of the discovery and the proposed schedule of repairs
- Upon completion of repairs and cleanup, a qualified, registered, professional engineer must verify that the facility has complied with the plan

Containment Buildings – Closure

- Removal or decontamination of all associated waste residues, contaminated soils, and contaminated system components and equipment
 - Includes the inner and outer building walls, filters used in dust control systems, forklifts, and other vehicles used in the building
- If it is determined that not all contaminated soils can be removed or decontaminated, the unit will be considered a landfill for purposes of closure

Subpart EE – Munitions and Explosive Storage

- Military Munitions (40 CFR Part 266, Subpart M)
 - Definition of Military Munition
 - Military Munitions are Solid Wastes When ...
 - Military Munitions Storage Standards
- Design and Operating Standards
- Closure

Subpart EE – Munitions an Explosives Storage

Military Munitions – Definition

- "Includes all types of both conventional and chemical ammunition products and their components; produced by or for the military for national defense and security" (62 <u>FR</u> 662; February 12, 1997)
- "Military" includes DOD, DOE, Coast Guard, National Guard, and parties acting as agents for DOD managing military munitions

Military munitions are solid waste when...

- Disposed of, burned, or incinerated
- Removed from storage for disposal
- Leaking, deteriorated, or damaged

- Determined to be solid waste by a military official
- Collected from a range and sent off site for treatment or disposal

Discharge of ammunition is a normal and expected use, not hazardous waste disposal

Subpart EE – Munitions an Explosives Storage

Military Munitions – Storage Standards

- Conditional exemption
 - Hazardous waste military munitions are subject to hazardous storage regulations, **except** when all of the conditions in §266.205(a)(1) are met
 - Chemical military munitions are **not exempt**
- Chemical military munitions are not subject to LDR storage prohibition of §268.50
- Hazardous waste storage units
 - Hazardous Waste Munitions and Explosives Storage (EE)
 - Containers (I)
 - Tanks (J)

§266.205

Subpart EE – Munitions an Explosives Storage

Subpart EE - Design and Operating Standards

- Hazardous waste munitions and explosives storage units must be designed and operated with containment systems, controls, and monitoring, that:
 - Minimize the potential for detonation or other means of release of hazardous waste or constituents
 - Provide a primary barrier designed to contain the waste
 - Provide that the waste and containers will not be standing in precipitation (for wastes stored outdoors)
 - Provide a secondary containment system for liquid wastes
 - Provide monitoring and inspection procedures that assure the controls and containment systems are working as designed

§§264/265.1201(a)

Subpart EE - Design and Operating Standards (cont.)

- Hazardous waste munitions and explosives may be stored in one of the following:
 - Earth-covered magazines
 - Above-ground magazines
 - Outdoor or open storage areas
- Stored in accordance with a SOP specifying procedures to ensure safety, security, and environmental protection
- Packaged to ensure safety in handling and storage
- Inventoried at least annually

§§264/265.1201(b) and (c)

Subpart EE – Munitions an Explosives Storage

Subpart EE - Closure

- Removal or decontamination of all associated waste residues, contaminated soils, and contaminated system components and equipment
- If not all contaminated soils can be removed or decontaminated, the unit will be considered a landfill for purposes of closure

Session 4 – Review

- Subpart I Containers
- Subpart J Tanks
- Subpart W Drip Pads
- Subpart DD Containment Buildings
- Subpart EE Hazardous Waste Munitions and Explosives Storage

