US EPA ARCHIVE DOCUMENT
Session 3: RCRA Air Emissions – Implementation, Issues, Examples, and Case Studies
Session 3: RCRA Air Emissions – Implementation, Issues, Examples, and Case Studies

- Case Study #1: Oopsies Waste Service vs. Mr. Sparkle Disposal
 - Leak Detection and Repair (LDAR)
 - Control Technology
 - Tanks
 - Record Keeping, Equipment Labeling, and Interaction with Local Air Quality Programs

- Case Study #2: Pretty Large Chemical
 - Process Flow Diagram
 - Permit Application Checklists
Goals

- Understand implementation challenges that facilities face
 - LDAR
 - Control technology
 - Tanks
- Discuss best and worst practices
 - Two hypothetical companies
- Exercise to complete permit application checklists
OWS

Oopsies Waste Service
Oopsies Waste Services

- Old incineration facility
- Many owners – in bankruptcy
- Multiple compliance investigations
MSD
Mr. Sparkle Disposal
Mr. Sparkle Disposal

- Five year old facility
- Located on a brownfield site
- Operated by a major publicly traded corporation
LDAR – Implementation Challenges

- Program “Ownership”
- Monitoring Techniques
- Open Ended Lines
- Difficult to Monitor and Repair
- Frequent Leakers
Program Ownership

- LDAR is a complicated and not related to production
- Program needs a champion
- Operations must take ownership of LDAR
- Contractors are helpful, but
 - They get paid to monitor, not to take compliance
 - They have the ability to delegate authority but not the responsibility
Monitoring Techniques

- Comparisons of “as written” vs. “in practice”
 LDAR techniques show significant differences
 - BAAQMD Study
 - NEIC enforcement
- Read Method 21 carefully
 - Monitor at the interface, not some distance away from the component
- Calibration gases and response factors
Open Ended Lines

- Difficult to make sure that every line is plugged
 - “Cigarette butt problem”
 - Cultural issues also play a factor

- Program design can improve compliance
 - Reduce number of open-ended lines
 - Reduce types of plugs

- Color-coding plugs and lines
- Tethering plugs to lines
Difficult to Repair or Monitor

- Older facilities were not designed with LDAR in mind
- It will be hard to monitor and repair components
 - IR Camera techniques can help to monitor components
- Facilities should set a standard for what is “difficult” to monitor or repair and apply it
Frequent Leakers

- Some components are in more severe need of service
- What is a good lifespan for gaskets, pumps, etc?
- Program design can improve compliance
 - Costs for exotic parts like mag drive pumps
Inspection Examples - OWS

- Uses a contractor for LDAR
 - “Oh, they keep the records”
 - “I’m not sure how they calibrate the instruments”
 - Contactor is paid by the component

- Open ended lines
 - Lots of uncapped lines
 - No system to audit open lines or improve compliance
Inspection Examples - MSD

- One staff member oversees LDAR
- Contractor uses MSD’s EMIS system to enter LDAR leak data
- Occasional audits performed by a third party using IR camera
- Program to measure compliance of open ended-lines and improve compliance
- Looked at leak frequency as part of its PHA
Control Devices

- The major control devices employed are:
 - Carbon Adsorbers
 - Oxidizers (Thermal and Catalytic)
 - Capture Systems
Control Device Selection

- Match the right technology to the process
- Using the wrong technology will be difficult at best
- Consider the nature of the process
 - Operating schedule
 - Variability of flow rate and VOC concentration
 - Difficulty in monitoring
Carbon Adsorbers
Carbon Adsorbers (cont’d)
When to Use Carbon – Fixed Bed

- Low flow rates
- Local control is desired
 - Isolated sources
 - Desirable not to mix streams
 - Economic / logistically easier for local control
- Open ended lines
 - Lots of uncapped lines
 - No system to audit open lines or improve compliance
When to Use Carbon – Regenerable

- Medium to high VOC concentration
- Consistent flow rates and/or concentrations
- Recovery of VOCs is desirable
- Steam supply and wastewater treatment must be available
Thermal Oxidizers
When to Use Oxidation

- Continuous streams
- Well characterized flow and concentration
 - Flow rate turndown is limited
 - Units can stay on “warm standby” but use fuel
When to Use Oxidation

- Low to moderate VOC concentrations
- Medium to high flow rates
- Economics will drive selection
 - Different thermal efficiencies available
 - Higher thermal efficiency means lower operating costs but higher capital costs
 - Lower thermal efficiency means higher turndown
Implementation Challenges - Carbon

- Changing out fixed-bed units
 - Having spare units on-site to make change-outs easy
 - Who does the change out? Who disposes of the carbon?
 - What to do with the vent stream while changing carbon?

- Monitoring fixed-bed units
 - Difficulty in monitoring variable streams

- Monitoring regenerable units
Implementation Challenges - Testing

- How to measure VOCs?
 - Method 18 and Method 25 vs. Method 25A
- % Control vs. ppm
 - Local air permits that may require more stringent control
- Measuring ppm vs ppmC
 - Must calculate control on a “actual VOC” basis
Closed Vent Systems

- Pressure control
 - Control devices will require pressure control
 - Too low and it pulls in outside air
 - Too high and it leaks, tanks overpressure
 - Difficult when tanks and processes are mixed

- Flow indicators for negative pressure systems
Inspection Examples - OWS

- Uses local carbon canisters
 - No monitoring records
 - No records of when canisters were placed into service

- Plans to upgrade to oxidizer system
 - No capital available
Inspection Examples - MSD

- Uses two oxidizers for control
- Vent header operates on pressure control to minimize flow; oxidizers are dispatched and idled as necessary
- Carbon canisters as backup
- Carbon canisters for local control where economical
Tanks
Tank Implementation Problems

- Floating Roof
- Fixed roof
- Containers
- Surface Impoundments
Internal Floating Roof

- Seal design
 - See rule details
 - Local requirements may be more stringent

- Seal inspection requirements

- Inspection for other items
 - Sampling hatches
Floating-Roof Tanks
Floating-Roof Tanks (cont’d)
External Floating Roof
Fixed-Roof Tanks
Fixed Roof Tanks

- Better suited for storing some materials than IFR/EFR
- Pressure/vacuum vents can leak/stick open
- Issues with pressure control
 - Vent control systems
 - Nitrogen padding
- Possible to use local carbon canisters
Miscellaneous

- Keeping Records
- Equipment Labeling
- Interaction with Local Air Quality Programs
Required Records per §265.1035(b)

- Implementation schedule that includes dates by which the closed-vent system and control device will be installed and in operation
- Up-to-date documentation of compliance with the process vent standards
- A performance test plan if an owner or operator chooses to use test data to determine the organic removal efficiency or total organic compound concentration achieved by the control device
- Documentation of compliance with 265.1033 (including a list of all information references and sources used in preparing the documentation)
Equipment Marking
Interaction with Local AQ Programs

- Local programs may require less or more stringent controls
- Possibility of permit requirements that conflict with RCRA AA/BB/CC
- Work with local programs to set facilities up for compliance
PLC
Pretty Large Chemical, LLC
PLC Case Study

- The next few slides will present information about PLC LLC’s operations
- Please also refer to the Process Flow Diagram (PFD) handout
- Attendees should fill out the Oklahoma DEQ RCRA AA/BB/CC Permit Application Checklists as/after we go through the next few slides
PLC Case Study

- Not all necessary information will be presented
- Think of this like reviewing information in a permit application – you may not have detailed regulatory applicability information from which to start
- What additional questions do you need to ask? Where is the application deficient?
Overview of PLC

- Pretty Large Chemical, LLC
- SOCMI operation
 - Continuous reaction and distillation process
 - Batch reaction and distillation process
- Subject to HON (MACT Subparts F, G, and H)
- BIF unit to handle on-site generated wastes
 - Still bottoms from batch operation
 - Off-spec benzene (also used to enhance BTU value)
Process No. 1

- Batch SOCMI; generates still bottoms as waste
 - Primary waste constituent is toluene
- Bottoms pumped to collection tank then to BIF collection / mixing tanks
 - 10,000 gal tank
 - Vented to common vent/tank header; controlled by oxidizer
Process No. 2

- Continuous SOCMI
- Generates off-spec and excess benzene as waste
- Benzene collected in day tank; benzene to be burned in BIF is transferred to BIF collection tanks
 - Day tank subject to SOCMI MACT (HON)
Process No. 3

- Emission Control System used for compliance with HON / MACT requirements
- Generates spent activated carbon as waste
- Stored in small canisters (55 gal drums) and roll-off boxes
- Off-site disposal
- Primary contaminants are benzene and toluene
Process No. 4

- Spent caustic from benzene storage
- Primary waste constituent is benzene
- Drawn directly from benzene day tank
- Off-site disposal
- Low volume waste stream
BIF Process

- Collection tank(s) for storing / blending wastes
- Blend tanks are sampled prior to burning
- Transferred to BIF feed tank
- Loading rack for truck transport of wastes for off-site disposal when BIF is not in service
Exercise

- Complete Oklahoma DEQ Permit Application Checklists for RCRA AA/BB/CC
 - Work solo or in groups
 - Note codes for applicable requirements (e.g., O-2a)

- Discussion of results
QUESTIONS?