RCRA SUBPART CC CHECKLIST FOR AIR EMISSIONS AT TSDs AND LARGE QUANTITY GENERATORS

1. (a) Is this facility a permitted TSD, interim Status TSD or Large Quantity Generators (LQG)?
 (b) Type? If permitted, date of permit

2. (a) Is this facility subject to the CC Rule?
 (b) If the answer is no, what is the reason? (Ref. 40 CFR 265.1080(b) (264.1080(b) exceptions or (265.1083(c) (264.1082(c)) exemptions, or the general exclusions in 265.1(g) (264.1(g)), as applicable.)

<table>
<thead>
<tr>
<th>40 CFR 1080(b) exceptions</th>
<th>40 CFR 265.1083(c) exemptions:</th>
<th>40 CFR 265.1 general excl/exempt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit did not receive HW after 12/6/96</td>
<td>Waste stream less than 500 ppmw average VO(c)(1). If so, was waste determination done per 265.1084?</td>
<td>Hazardous waste recycling unit exemption</td>
</tr>
<tr>
<td>Using containers of less than 26 gallons capacity</td>
<td>Organic content of waste already reduced by treatment. ((c)(2)(ii))</td>
<td>Satellite accumulation area</td>
</tr>
<tr>
<td>Unit undergoing closure</td>
<td>Tank is used for biological treatment ((c)(2)(iv)(A) or (B))</td>
<td>Totally enclosed treatment facility exemption</td>
</tr>
<tr>
<td>Units used in an on-site RCRA or CERCLA clean-up</td>
<td>All waste placed in unit meets 268.40 (LDR) limits ((c)(4)(i))</td>
<td>Elementary neutralization unit (corrosive)</td>
</tr>
<tr>
<td>Mixed Radioactive and hazardous waste</td>
<td>All waste placed in unit has been treated to limits as specified in 268.42((c)(4)(ii))</td>
<td>Waste water treatment in tanks exemption</td>
</tr>
<tr>
<td>Units with CAA, NESHAPS or NSPS controls</td>
<td>Tank is used for bulk feed to incinerator and requirements of 265.1083(5)(i)-(iii) are met</td>
<td>Emergency or spill management exemption</td>
</tr>
<tr>
<td>Tanks with process vents (Subject to Subpart AA)</td>
<td>Mass removal rate ((c)(2)(iii))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miscellaneous treatment ((c)(2)(v))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic reduction efficiency ((c)(2)(vi))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combustion Processes ((c)(2)(vii) or (viii))</td>
<td></td>
</tr>
</tbody>
</table>

If answer to question 2 is NO, do not complete the remainder of checklist.
Facility Name: ____________________________
EPA ID #: _______________________________

RCRA SUBPART CC CHECKLIST FOR
AIR EMISSIONS AT TSDs AND LARGE QUANTITY GENERATORS

(1) Is the average volatile organic concentration of each waste management unit more than 500 ppmw
determined on an average annual basis at point of waste origination? __YES__ __NO__ __NA__
If yes, list the number of the units and the concentration in the space below.

If no, is the determination in the facility operating record? __YES__ __NO__ __NA__

(2) How was waste determination done? ___Knowledge ___Sampling (Ref 40 CFR 265.1084 (264.1083))
(a) If Knowledge was used, is there any documentation on file? __YES__ __NO__ __NA__
(b) Is it adequate? __YES__ __NO__ __NA__
(c) If facility used sampling, was the sampling done by an EPA approved method? __YES__ __NO__ __NA__

Which Method?
(d) Does the facility have a written sampling plan? __YES__ __NO__ __NA__
(e) Is it adequate? __YES__ __NO__ __NA__
(f) Has the waste stream changed since the initial waste determination was done which would
cause the character of the waste to change or to exceed the threshold levels for applicability
of Subpart CC? __YES__ __NO__ __NA__
(g) If so, was a new waste determination done? __YES__ __NO__ __NA__

(3) Did the facility install controls on the units that are subject to the Subpart CC rule by December 6, 1996?
(40 CFR 265.1082(a)(1)) __YES__ __NO__ __NA__
If yes, proceed to question (5). If no, then answer the next question.

(4) (a) Did the facility have an implementation schedule in its on-site operating record? (40 CFR 265.1082) __YES__ __NO__ __NA__
(b) Was it in the operating record by December 6, 1996? __YES__ __NO__ __NA__
(c) Did the implementation schedule contain the following information:
 (1) Installation could not be completed by 12/6/96 __YES__ __NO__ __NA__
 (2) Show dates by which design and construction will be initiated & completed, and
 include supporting information, e.g., contract awards, purchase orders and
 performance tests. __YES__ __NO__ __NA__
 (3) Install equipment as soon as possible, but no later than 12/8/97 __YES__ __NO__ __NA__
 (d) Is facility meeting implementation schedule? __YES__ __NO__ __NA__
 (e) If no, is there documentation in the operating record that any schedule change cannot
 reasonably be avoided? __YES__ __NO__ __NA__
 (f) Has the RA extended the compliance schedule beyond 12/8/97, or was such a request submitted? __YES__ __NO__ __NA__
RCRA SUBPART CC CHECKLIST FOR AIR EMISSIONS AT TSDs AND LARGE QUANTITY GENERATORS

TANKS

1. **(a)** Does the facility have any waste stabilization tanks on site?
 (b) Are controls installed?
 (c) When will controls be installed?
 __YES__ __NO__ __NA__

Note: Waste stabilization tanks had until 12/8/98 to install controls.

Tank must meet 3 conditions for level 1 control:
1. Waste maximum organic vapor pressure less than cutoff for tank design capacity
2. No heating to or above temperatures at which vapor pressure is determined
3. No waste stabilization in tank

Vapor pressure is determined by knowledge or by measurement.

Comments:

2. Is HW having an average VO concentration of more than 500 ppmw placed in a tank with level 1 control?
 (40 CFR 265.1085(b)(1))
 __YES__ __NO__ __NA__

3. Is HW having an average VO concentration of 500 ppm or more being placed in a tank with level 2 controls?
 __YES__ __NO__ __NA__

(a) OPTION 1. Fixed roof with internal floating roof (IFR)

(i) Is the IFR designed so that it floats on the liquid surface? (Exception- when roof is supported by leg supports)
 __YES__ __NO__ __NA__

(ii) Is there a continuous seal between the wall of the tank and the floating edge that meets either of the following requirements:
 (A) A liquid-mounted seal, a metallic seal
 (B) Two continuous seals mounted one over the other.
 If choice is B, then the lower seal may be vapor mounted between the wall of the tank and the floating roof edge.
 __YES__ __NO__ __NA__

(iii) Specifications
 __YES__ __NO__ __NA__

(iv) Are all the openings in the IFR closed at all times?
 __YES__ __NO__ __NA__

(v) Are the automatic bleeder vents closed when the roof is floating, except when roof is being floated off or is landed on its leg supports?
 __YES__ __NO__ __NA__

(vi) Prior to filling the each tank, are the cover, access hatch, gauge float well, and lid openings bolted or fastened closed i.e. no visible gaps?
 __YES__ __NO__ __NA__

(vii) Are rim spaces open only when floating roof is not floating or when pressure beneath the rim exceeds the manufacture recommended setting?
 __YES__ __NO__ __NA__

(viii) Is filling or emptying continuous when IFR is sitting on leg supports?
 __YES__ __NO__ __NA__

(ix) Was the safety device in a closed position during normal operations?
 __YES__ __NO__ __NA__

(x) Was the safety device activated recently?
 __YES__ __NO__ __NA__

Why?

(xi) Were any of the defects applicable to the IFR:
 (A) The internal floating roof is not floating on the surface of the liquid
 (B) liquid has accumulated on top of IFR
 (C) any portion of the roof seals have detached from the roof rim
 (D) holes, tears, or other openings are visible in seal fabric
 (E) gaskets no longer close off waste surfaces from the atmosphere; or
 (F) the slotted membrane has more than 10 % open area
 If the answer to any of the above is yes, was leak repair done?
 __YES__ __NO__ __NA__

(xii) Was a defect detected during the facility’s last inspection?
 __YES__ __NO__ __NA__

(xiii) If yes, what was done?
 __YES__ __NO__ __NA__

(xiv) Did the facility notify the Regional Administrator of its annual inspection in writing at least 30 days before the inspection?
 __YES__ __NO__ __NA__

(xv) Did the facility empty or degas the IFR?
 __YES__ __NO__ __NA__

If yes, was the Regional Administrator informed?
 __YES__ __NO__ __NA__

(xvi) Was there an unplanned inspection?
 __YES__ __NO__ __NA__

If yes was the Regional Administrator informed?
 __YES__ __NO__ __NA__
Facility Name:
EPA ID #:

RCRA SUBPART CC CHECKLIST FOR
AIR EMISSIONS AT TSDs AND LARGE QUANTITY GENERATORS

CONTAINERS

Light liquid service: For a hazardous waste to be in light liquid service, the vapor pressure of one or more of the organic constituents in the material must greater than 0.3 Kilopascals at 20 degrees C and the total concentration of pure organic constituents having a vapor pressure greater than 0.3 Kilopascals at 20 degrees Centigrade is equal to or than 20 percent by weight.

LEVEL ONE:
Containers must be > 0.1 cubic meters (26.4 gal) and < or = to 119 gallons. If the organic waste is not in light liquid service, it can be above 119 gallons.

- Meet DOT standards
- Use a cover and closure device on the container and ensure that there are no visible gaps into the interior of the container. OR
- Use vapor suppressing barrier on or above the hazardous waste in the container.

LEVEL TWO:

- Containers are larger than 0.46 cubic meters (122 gal) and are in light liquid service.
- The container must meet DOT specifications.
- Operates with no detectable emissions from the container under Method 21.
- Demonstrated to be vapor tight within the last twelve months using Method 27.

LEVEL THREE
Container can be used for waste stabilization.

- Vent vapors from containers and remove or destroy them in a control device.
- Put container in a Procedure T enclosure and, vent vapors, and destroy them in a control device.

(1) What level of control is the facility using to comply with the Subpart CC container standards?
 _______ Level One _______ Level Two _______ Level Three

(2) Is the facility in compliance? _______ YES _______ NO _______ NA

List the option that the facility is complying with.

* NOTE: Most facilities will be in compliance if they store their waste in DOT approved 55 gallon drums.

(3) Is HW having an average Volatile Organic Concentration of more than 500 ppmw placed in containers with capacity above 0.1 cubic meter? _______ YES _______ NO _______ NA

(4) Are the containers equipped with a cover which operates with no detectable organic emissions when all container openings (e.g., lids, bungs, container openings, etc.,) are secured in a closed, sealed position? _______ YES _______ NO _______ NA

(5) Were all containers checked for leaks by Method 27 before HW was first placed into them? _______ YES _______ NO _______ NA

(6) Is HW having an average Volatile Organic Concentration of more than 500 ppmw placed in containers with capacity above 0.46 cubic meter? _______ YES _______ NO _______ NA

(7) Is that container equipped with a cover and complies with all the applicable DOT on packaging HW for transport under 49 CFR part 178? _______ YES _______ NO _______ NA

Note: A container that is managed in accordance with the requirements of 49 CFR part 178 for the purpose of complying with this subpart is not subject to any exceptions to the 49 CFR part 178 except as noted in paragraph (b).

(8) Concentration of more than 100 ppmw placed in a container that is attached to or forms a part of any truck, trailer, or railcar? _______ YES _______ NO _______ NA

SUBPART CC CHECKLIST 03/12298
1
(9) Has it been demonstrated within the last 12 months that the container referenced in (7) is organic vapor tight when all container closings are in a closed, sealed position (e.g., the container hatches or lids are gasketed and latched)?

YES NO NA

Note: For the purpose of meeting the requirements of this paragraph, a container is organic vapor tight if the container sustains a pressure change of not more than 750 pascals within 5 minutes after it has been pressurized to a minimum of 4500 pascals. This condition has to be demonstrated using method 27 of 40 CFR part 60.

(10) Is the owner of the facility treating HW in a container by either a waste stabilization process, any process that requires heating, or any process that produces an exothermic reaction?

YES NO NA

(11) If the answer to the question above is yes, is the container located in an enclosure that is vented to a closed vent system to a control device when it is open?

YES NO NA

(12) Is the enclosure a structure that has been designed and operated with requirements (b)(2)(A)&(B)?

YES NO NA

(13) Is the closed vent system designed and operated in accordance with the requirements of § 264.1087 of this subpart?

YES NO NA

(14) When transferring waste into a container having a capacity greater than 0.46 cubic meters, the following requirements are to be met: (mark items missing)

(a) the waste is transferred by pumping using a conveyance system that uses a tube (e.g., a hose, pipe)?

(b) Is the container cover in place and all other openings maintained in a closed sealed position except for the openings through which the tube enters the container?

(c) Is the tube continuously submerged below the surface of the waste at all times waste is flowing through the tube?

(d) Is the lower bottom edge of the tube outlet located at a distance no greater than the two inside diameters of the tube or 15.25 cm, whichever is greater from the bottom of the container at all times waste is flowing through the tube?

(e) Is the tube connected to a permanent port mounted on the bottom of the container so that the lower edge of the port opening inside the container is located at a distance equal to or less than 15.25 from the container bottom?
RCRA SUBPART CC CHECKLIST FOR
AIR EMISSIONS AT TSDs AND LARGE QUANTITY GENERATORS

SURFACE IMPOUNDMENTS

(1) Did the facility install emissions control (e.g., air-supported structure or a rigid cover) that is connected through a closed vent system to a control device on its surface impoundments? YES NO NA

(2) Did the facility install a floating membrane cover over its surface impoundment? YES NO NA

NOTE: A facility is allowed to install a floating membrane cover without additional controls when the HW is not mixed, stirred, agitated, circulated within the impoundment, not heated and not treated by using a waste stabilization process.

PROCESS VENTS APPLICATIONS

GENERAL

(1) Is this facility following interim status regulations or was the facility permit renewed or issued after December 6, 1996. Interim Status Regs Permitted after 12/6/96

(2) When will the present permit expire?

(3) For Interim Status facilities, have the rules been incorporated in the Part B application submission? YES NO NA

HAZARDOUS WASTE MANAGEMENT UNITS

(1) Are any hazardous waste management units using the following processes: distillation, fractionation, thin-film evaporation, solvent extraction, air stripping or steam stripping? YES NO NA

If yes, identify the process or processes

(2) Identify the units, waste streams and vents by numbers. permitted unit # recycle unit # waste stream # vent #

(3) Are any of the units RCRA exempt units? YES NO NA

WASTE STREAMS

Identify the waste streams, containing 10 ppmw or more on a time weighted annual average basis.

(a) What was the basis of the determination? Knowledge Sampling

If sampling, what method was used?

(b) What was the date of the initial determination?

(c) What was the date of other analyses?

Note: Analyses should be done on an annual basis or when there is a change to the waste stream.

(d) Is there documentation of the determination? YES NO NA

(e) Is the annual average concentration calculated correctly? YES NO NA

(f) Were there 4 grab samples in the analyses? YES NO NA

(g) Which of the process vents were considered?
RCRA SUBPART CC CHECKLIST FOR
AIR EMISSIONS AT TSDs AND LARGE QUANTITY GENERATORS

PERFORMANCE STANDARDS

(1) (a) Is the total hourly emission rate of the affected process vents greater than 3 lb/hr? ____YES NO NA
(b) How was the determination made? Knowledge Measurement
 If it was by measurement, what method was used? Method 2 Method 18
(c) If Method 2 or 18 was used, was a test plan prepared? ____YES NO NA
(d) If a test plan was prepared, is it on record? ____YES NO NA
(e) Has the owner/operator signed a statement that test conditions portray worst case actual operating conditions? ____YES NO NA
(f) What were the dates of the tests or calculations? ____YES NO NA
(g) Were these tests or calculations done initially annually at change of waste stream ____YES NO NA
(h) Are the calculations correct? ____YES NO NA

Data needed are flow rate, organic concentration, average mole rate

(i) Is the facility’s yearly emission rate greater than 3.1 tons/yr? ____YES NO NA
(j) Are the calculations correct? ____YES NO NA

Data needed are hourly rate and number of operating hours.

(2) (a) Is emission reduction required? ____YES NO NA
(b) Which method is the facility using to comply?
 (i) Install control devices to reduce emissions below 3 lb/hr and 3.1 ton/yr .
 (ii) Implement process changes or hours to meet 3 lb/hr and 3.1 ton/yr.
 (iii) Install control devices to reduce emissions by 95%.
(c) For each process vent affected, identify closed vent, and control device number
 Vent # Control Device# Unit #

RECORDKEEPING

(1) Was the reduction based on tests or calculations? Tests Calculations
(2) If control devices are not in place, is there an implementation schedule in the operating record? ____YES NO NA
(3) Are there any other documentation such as orders to purchase equipment, letters giving reasons for delay, etc.? ____YES NO NA
RCRA SUBPART CC CHECKLIST FOR
AIR EMISSIONS AT TSDs AND LARGE QUANTITY GENERATORS

CONDENSER

OPERATING PARAMETERS

List the operating parameters and the limits set for each in the permit or for interim status facilities, the limits the facility gave based on their engineering calculations 264/265.1035(b)(4) (iii)(E) or performance tests 264/265.1035(b)(2)(ii).

<table>
<thead>
<tr>
<th>Operating Parameter</th>
<th>Limit</th>
<th>Have they met these limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are all design documentation, monitoring, operating, and inspection information in the facility's operating records?
YES NO NA

STANDARD

Is the condenser operating at 95 Wt % efficiency?
YES NO NA
Is it reducing the emission limits to below 3 lb/hr and 3.1 tons/yr?
YES NO NA

MONITORING

The facility has to comply with A and either B or C

(A)
(i) Does the flow indicator record hourly ?
YES NO NA
(ii) At what point is the flow indicator installed?
YES NO NA
(iii) Is the flow indicator inspected at least once per day?
YES NO NA

(B)
(i) Is there a monitoring device equipped with a continuous recorder to measure the concentration of the organic compounds in the exhaust vent stream of the condenser?
YES NO NA
(ii) Is this device inspected daily?
YES NO NA

(C)
(i) Does the facility have a temperature monitoring device that is equipped with a continuous recorder?
YES NO NA
(ii) Is the device monitoring temperature at (a) the exhaust vent stream from the condenser and (b) in the coolant fluid exiting the condenser?
YES NO NA
(iii) Is the accuracy of the device +/- 1% of the temperature being monitored or +/- 0.5 degrees Centigrade (whichever is greater)?
YES NO NA
(iv) Is this device inspected daily?
YES NO NA

REPAIR

Are repairs being performed immediately upon daily inspection?
YES NO NA

EXCEEDANCES

(1)
(a) If the facility is monitoring the organics in the exhaust, was there a reading greater than 20 % above design outlet?
YES NO NA
 If yes, for what period of time?
(2)
(b)(1) If the facility is monitoring temperature, was the exhaust temperature ever above design average exhaust temperature by more than 6 degrees?
YES NO NA
 If yes, for what period of time?
(b)(2) Was the temperature of the coolant(out) ever above the design average temperature by more than 6 degrees?
YES NO NA
 If yes, for what period of time?
(c) If there were exceedances, what were the possible causes?

(d) What measures were taken to correct the exceedance(s)?

SUBPART CC CHECKLIST 03/12/98

1
CLOSED VENT SYSTEM ASSOCIATED WITH THIS CONTROL DEVICE

STANDARD

Were there any detectable emissions or visual emissions? __YES__ NO __NA

MONITORING

On how many occasions did the facility monitor this system? ________________

What were the dates? ________________

REPAIRS

1. Did the facility have any leaks on the closed vent system associated with this control device? __YES__ NO __NA
 If yes, was the 1st attempt at repairing the vent done within 5 days? __YES__ NO __NA

2. Were repairs to vent finished within 15 days from discovering the leak? __YES__ NO __NA
 If no, state the reasons. __

 __
RCRA SUBPART CC CHECKLIST FOR
AIR EMISSIONS AT TSDs AND LARGE QUANTITY GENERATORS

THERMAL VAPOR INCINERATOR

OPERATING PARAMETERS

List the operating parameters and the limits set for each in the permit or for interim status facilities, the limits the facility gave based on their engineering calculations 264/265.1035(b)(4) (iii)(E) or performance tests 264/265.1035(b)(2)(ii).

<table>
<thead>
<tr>
<th>Operating Parameter</th>
<th>Limit</th>
<th>Have they met these limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are all design documentation, monitoring, operating, and inspection information in the facility’s operating record? [] YES [] NO [] NA

STANDARD

1. Is the thermal vapor incinerator operating at 95 Wt % efficiency or greater? [] YES [] NO [] NA
2. Is the total organic compound (TOC)=20 ppmv based on sum of compounds, dry basis, corrected to 3% Oxygen? [] YES [] NO [] NA
3. Is there a Residence Time of 0.5 sec at 760 degrees Centigrade? [] YES [] NO [] NA

MONITORING

The facility has to comply with A and B

A (i) Does the flow indicator record hourly? [] YES [] NO [] NA
(ii) At what point is the flow indicator installed? [] YES [] NO [] NA
(iii) Is the flow indicator inspected at least once per day? [] YES [] NO [] NA

B (i) Does the facility have a temperature monitoring device that is equipped with a continuous recorder? [] YES [] NO [] NA
(ii) Is the device monitoring temperature located in the combustion chamber downstream of combustion zone? [] YES [] NO [] NA
(iii) Is the accuracy of the device +/- 1% of the temperature being monitored or +/- 0.5 degrees Centigrade (whichever is greater)? [] YES [] NO [] NA
(iv) Is this device inspected daily? [] YES [] NO [] NA

REPAIR

Are repairs being performed immediately upon daily inspection? [] YES [] NO [] NA

EXCEEDANCES

(a)(1) For thermal incinerator designed to operate at a minimum residence time of 0.5 sec at 760 degrees C. Was the temperature ever below 760 degrees C? [] YES [] NO [] NA
For how long? []

(a)(2) For thermal incinerators designed to operate with an organic emission reduction efficiency of 95 weight percent or greater. Was the combustion zone temperature more than 28 degrees below the design average combustion temperature? [] YES [] NO [] NA

(b) If there were exceedances, what were the possible causes? []

(c) What measures were taken to correct the exceedance(s)? []
CLOSED VENT SYSTEM ASSOCIATED WITH THIS CONTROL DEVICE

STANDARD

Were there any detectable emissions or visual emissions? ___YES___ NO ____NA

MONITORING

On how many occasions did the facility monitor this system?
What were the dates?

REPAIRS

1. Did the facility have any leaks on the closed vent system associated with this control device? ___YES___ NO ___NA
 If yes, was the 1st attempt at repairing the vent done within 5 days? ___YES___ NO ___NA

2. Were repairs to the vent finished within 15 days from discovering the leak? ___YES___ NO ___NA
 If no, state the reasons.

__
CATALYTIC VAPOR INCINERATOR

OPERATING PARAMETERS

List the operating parameters and the limits set for each in the permit or for interim status facilities, the limits the facility gave based on their engineering calculations 264/265.1035(b)(4) (iii)(E) or performance tests 264/265.1035(b)(2)(ii).

<table>
<thead>
<tr>
<th>Operating Parameter</th>
<th>Limit</th>
<th>Have they met these limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are all design documentation, monitoring, operating, and inspection information in the facility's operating record? __YES__ NO__NA

STANDARD

(a) Is the thermal vapor incinerator operating at 95 Wt % efficiency __YES__ NO__NA
(b) °[TOC]°=20 ppmw based on summation of compounds on a dry basis, 3% Oxygen __YES__ NO__NA
(c) °Rm of 0.5 sec at 760 degrees Centigrade __YES__ NO__NA

MONITORING

The facility has to comply with A and B

(A) (i) Does the flow indicator record hourly? __YES__ NO__NA
(ii) At what point is the flow indicator installed? __YES__ NO__NA
(iii) Is the flow indicator inspected at least once per day? __YES__ NO__NA

(B) (i) Does the facility have a temperature monitoring device that is equipped with a continuous recorder? __YES__ NO__NA
(ii) Is the temperature monitor sensor placed in the vent stream at the nearest feasible point: __________ the catalyst bed inlet __________ The catalyst bed outlet
(iii) Is the accuracy of the device +/- 1% of the temperature being monitored or +/- 0.5 degrees Centigrade (whichever is greater)? __YES__ NO__NA
(iv) Is this device inspected daily? __YES__ NO__NA

REPAIR

Are repairs being performed immediately upon daily inspection? __YES__ NO__NA

EXCEEDANCES

(a) Is the inlet temperature of the vent stream at the catalyst bed inlet > 28 degrees Centigrade below the design average temperature of the inlet vent stream? __YES__ NO__NA
If yes, for what period of time?
(b) Is the temperature difference across the catalyst bed less than 80% of the design average temperature difference? __YES__ NO__NA
(c) If there were exceedances, what were the possible causes? __________
(d) What measures were taken to correct the exceedance(s)? __________
CLOSED VENT SYSTEM ASSOCIATED WITH THIS CONTROL DEVICE

STANDARD

Were there any detectable emissions or visual emissions? __YES__ NO __NA

MONITORING

On how many occasions did the facility monitor this system? ______________________________
What were the dates? ______________________________

REPAIRS

1. Did your facility have any leaks on the closed vent system associated with this control device? __YES__ NO __NA
 If yes, was the 1st attempt at repairing the vent done within 5 days? __YES__ NO __NA
2. Were repairs to vent finished within 15 days from discovering the leak? __YES__ NO __NA
 If no, state the reasons for non-compliance. __
 __
RCRA SUBPART CC CHECKLIST FOR
AIR EMISSIONS AT TSDs AND LARGE QUANTITY GENERATORS

BOILER/PROCESS HEATER

OPERATING PARAMETERS

List the operating parameters and the limits set for each in the permit or for interim status facilities, the limits the facility gave based on their engineering calculations 264/265.1035(b)(4) (iii)(E) or performance tests 264/265.1035(b)(2)(ii).

<table>
<thead>
<tr>
<th>Operating Parameter</th>
<th>Limit</th>
<th>Have they met these limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are all design documentation, monitoring, operating and inspection information in the facility's operating record? ___YES___NO___NA

STANDARD

(a) Is the process heater operating at 95 Wt % efficiency? ___YES___NO___NA
(b) Are the [TOC]=20 ppmw or greater based on summation of compound on a dry basis, 3% Oxygen ___YES___NO___NA
(c) RTm of 0.5 sec at 760 degrees Centigrade

MONITORING

The facility has to comply with A and B or C

(A) (i) Does the flow indicator record hourly? ___YES___NO___NA
(ii) At what point is the flow indicator installed? ___YES___NO___NA
(iii) Is the flow indicator inspected at least once per day? ___YES___NO___NA

FOR BOILERS WITH HEAT INPUT CAPACITY < 44 MW

(B) (i) Does the facility have a temperature monitoring device that is equipped with a continuous recorder? ___YES___NO___NA
(ii) Is the device monitoring temperature, located in the furnace downstream of the combustion zone? ___YES___NO___NA
(iii) Is the accuracy of the device +/- 1% of the temperature being monitored or +/- 0.5 degrees Centigrade (whichever is greater)? ___YES___NO___NA
(iv) Is this device inspected daily? ___YES___NO___NA

FOR BOILERS WITH HEAT INPUT CAPACITY > 44 MW

(C) (i) Does the facility have a temperature monitoring device that is equipped with a continuous recorder? ___YES___NO___NA
(ii) Is a parameter indicating good combustion practices being monitored? ___YES___NO___NA
(iii) Is this device inspected daily? ___YES___NO___NA

REPAIR

Are repairs being performed immediately upon daily inspection? ___YES___NO___NA

EXCEEDANCES

(a) Is the Flame Zone Temperature > 28 degrees Centigrade below design average Flame Zone T? ___YES___NO___NA
 If yes, for what period of time?
(b) Is there a change in position as to where the vent stream is introduced as specified in the design data? ___YES___NO___NA
(c) If there were exceedances, what were the possible causes?
(d) What measures were taken to correct the exceedance(s)?
CLOSED VENT SYSTEM ASSOCIATED WITH THIS CONTROL DEVICE

STANDARD

Were there any detectable emissions or visual emissions? __YES__ NO __NA

MONITORING

On how many occasions did the facility monitor this system? ____________________________
What were the dates? ____________________________

REPAIRS

1. Did your facility have any leaks on the closed vent system associated with this control device? __YES__ NO __NA
 If yes, was the 1st attempt at repairing the vent done within 5 days? __YES__ NO __NA
2. Were repairs to vent finished within 15 days from discovering the leak? __YES__ NO __NA
 If no, state the reasons for non-compliance. ____________________________
FLARES

OPERATING PARAMETERS

List the operating parameters and the limits set for each in the permit or for interim status facilities, the limits the facility gave based on their engineering calculations 264/265.1035(b)(4) (iii)(E) or performance tests 264/265.1035(b)(2)(ii).

<table>
<thead>
<tr>
<th>Operating Parameter</th>
<th>Limit</th>
<th>Have they met these limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• There should be no visible emissions > 5 minutes/any 2 consecutive hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• A flame should be present at all times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If steam-assisted:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve < 60 ft/s and Ht > 300 BTU or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 ft/s < Ve < 400 ft/s and Ht > 1000 BTU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve < V max < 400 ft/s and Ht > 300 BTU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If air assisted:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve < Vmax and Ht = > 300 BTU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve < 60 ft/s and Ht => 300 BTU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If non-assisted:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve < 60ft/s and Ht => 200 BTU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 ft/s< Ve < 400 ft/s and Ht 1000 BTU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ve < Vmax < 400 ft/s and Ht > 200 BTU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MONITORING

The facility has to confirm compliance with A and B

(A) (i) Does the flow indicator record hourly? __YES__ NO __NA
(ii) At what point is the flow indicator installed? __YES__ NO __NA
(iii) Is the flow indicator inspected at least once per day? __YES__ NO __NA

(B) (i) Is there a heat sensing device for continuous ignition of pilot flame? __YES__ NO __NA
(ii) Is this device inspected daily? __YES__ NO __NA
(iii) Does this device have a continuous recorder? __YES__ NO __NA

REPAIR

Are repairs being performed immediately upon daily inspection? __YES__ NO __NA

EXCEEDANCES

(a) Has there been a period when the pilot flame was not ignited? __YES__ NO __NA
(b) If there were exceedances, what were the possible causes? __
(c) What measures were taken to correct the exceedance(s)? __
CLOSED VENT SYSTEM ASSOCIATED WITH THIS CONTROL DEVICE

STANDARD

Were there any detectable emissions or visual emissions? ____YES____ NO____ NA

MONITORING

On how many occasions did the facility monitor this system? _________________________________
What were the dates? _________________________________

REPAIRS

1. Did the facility have any leaks on the closed vent system associated with this control device? ____YES____ NO____ NA
 If yes, was the 1st attempt at repairing the vent within 5 days? ____YES____ NO____ NA
2. Were repairs to vent finished within 15 days from discovering the leak? ____YES____ NO____ NA
 If no, state the reasons. _________________________________

CARBON ADSORBER-REGENERATIVE

OPERATING PARAMETERS

List the operating parameters and the limits set for each in the permit or for interim status facilities, the limits the facility gave based on their engineering calculations 264/265.1035(b)(4) (iii)(E) or performance tests 264/265.1035(b)(2)(ii).

<table>
<thead>
<tr>
<th>Operating Parameter</th>
<th>Limit</th>
<th>Have they met these limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are all design documentation, monitoring, operating, and inspection information in the facility operating record? ___YES___NO___NA

STANDARD

(a) Is the control device operating at 95 Wt % efficiency? ___YES___NO___NA
(b) Is the control device operating to control emissions to below 3 lb/hr and 3.1 tons/yr? ___YES___NO___NA

MONITORING

The facility has to comply with A and either B or C and D

(A) (i) Does the flow indicator record hourly? ___YES___NO___NA
 (ii) At what point is the flow indicator installed? ___YES___NO___NA
 (iii) Is the flow indicator inspected at least once per day? ___YES___NO___NA
(B) (i) Is there a monitoring device equipped with a continuous recorder to measure the concentration of the organic compounds in the exhaust vent stream from the carbon bed? ___YES___NO___NA
 (ii) Is this device inspected daily? ___YES___NO___NA
(C) (i) Is there a device to measure a parameter that indicates regeneration, on a regular, predetermined cycle? ___YES___NO___NA
 (ii) Does this device have a continuous recorder? ___YES___NO___NA
 (iii) Is this device inspected daily? ___YES___NO___NA
(D) (i) Is the carbon being replaced at regular, predetermined time interval that is less than the carbon service life? ___YES___NO___NA

REPAIR

Are repairs being performed immediately upon daily inspection? ___YES___NO___NA

EXCEEDANCES

(a) If the facility is monitoring the organics in the exhaust, was there a reading greater than 20 % above design outlet? ___YES___NO___NA
 If yes, for what period of time?
(b) Was there any time period when the vent continued to flow through the control device beyond the predetermined carbon regeneration time? ___YES___NO___NA
 If yes, list the period(s)
(c) If there were exceedances, what were the possible causes?
(d) What measures were taken to correct the exceedance(s)?

__

__

__
CLOSED VENT SYSTEM ASSOCIATED WITH THIS CONTROL DEVICE

STANDARD

Were there any detectable emissions or visual emissions?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

MONITORING

On how many occasions did the facility monitor this system?
What were the dates?

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

REPAIRS

1. Did your facility have any leaks on the closed vent system associated with this control device?
 If yes, was the 1st attempt at repairing the vent done within 5 days?

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>NA</th>
</tr>
</thead>
</table>

2. Were repairs to vent finished within 15 days from discovering the leak?
 If no, state the reasons.

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
CARBON ADSORBER- NON-REGENERATIVE

OPERATING PARAMETERS

List the operating parameters and the limits set for each in the permit or for interim status facilities, the limits the facility gave based on their engineering calculations 264/265.1035(b)(4) (iii)(E) or performance tests 264/265.1035(b)(2)(ii).

<table>
<thead>
<tr>
<th>Operating Parameter</th>
<th>Limit</th>
<th>Have they met these limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are all design documentation, monitoring, operating, and inspection information in the facility operating record?

YES NO NA

STANDARD

(a) 95 Wt % efficiency or
(b) emission limits of 3 lb/hr and 3.1 tons/yr

MONITORING

The facility has to confirm with A and either B or C

(A) (i) Does the flow indicator record hourly?
(ii) At what point is the flow indicator installed?
(iii) Is the flow indicator inspected at least once per day?

(B) (i) Is there a monitoring device equipped with a continuous recorder to measure the concentration of the organic compounds in the exhaust vent stream from the carbon bed?
(ii) Is this device inspected daily?

(C) (i) Is the carbon being replaced at regular, predetermined time interval that is less than the carbon service life?

REPAIR

Are repairs being performed immediately upon daily inspection?

YES NO NA

EXCEEDANCES

(a) If facility is monitoring for organics in the exhaust, state date and time when it was monitored for breakthrough and the reading?
(b) If carbon was replaced with fresh carbon, state the date when this was done?
(c) If there were exceedances, what were the possible causes?
(d) What measures were taken to correct the exceedance(s)?

CLOSED VENT SYSTEM ASSOCIATED WITH THIS CONTROL DEVICE

STANDARD

Were there any detectable emissions or visual emissions?

MONITORING

On how many occasions did the facility monitor this system?

What were the dates?

REPAIRS

1. Did the facility have any leaks on the closed vent system associated with this control device?
 If yes, was the 1st attempt at repairing the vent done within 5 days?
 If no, state the reasons.

2. Were repairs to vent finished within 15 days from discovering the leak?
 If no, state the reasons.
RCRA SUBPART CC CHECKLIST FOR
AIR EMISSIONS AT TSDs AND LARGE QUANTITY GENERATORS

EQUIPMENT LEAK APPLICATIONS

1. APPLICABILITY
 (a) Is this facility an interim status facility or a permitted facility? YES NO NA
 (b) When will the permit expire? _____________
 (c) Have the rules been incorporated in the Part B application submission? YES NO NA
 (d) Are any of the units exempt? YES NO NA
 If yes, list units.

2. WASTE STREAMS
 (a) Are there waste streams that contain at least 10% organics by weight? YES NO NA
 (b) What was the method of your determination? Knowledge Sampling?
 (c) If knowledge was used, is it documented? YES NO NA
 (d) If sampling was used, did the facility use one of the following methods:
 ASTM methods: D2267-88 E169-87 E168-88 E260-85 Method 9060 8240
 (e) What was the date of the initial determination?
 (f) What were the dates of any other analyses?

Note: Analyses should be done annually or when there is a change to the waste stream.

3. (a) For each waste stream that does qualify, is the:
 fluid type in gas/vapor service light-liquid service heavy liquid service
 ____ Vapor pressure of constituents from standard texts
 ____ ASTM D-2879-86

FACILITY OPERATING RECORD

4. Does the facility have a list of the equipment and identification numbers that is affected by this rule? YES NO NA
5. Is there a list of the identification numbers of NDE pumps, valves, and compressors with the signature of the owner/operator? YES NO NA
6. Is there a list of PRD in gas/vapor service? YES NO NA
7. What are the test dates for NDE? ________________
 What was the background reading?
 What was the maximum instrument reading?
8. Is there a list of ID numbers for the equipment in vacuum service? YES NO NA
9. Is there a list of ID numbers of those valves which are “unsafe to monitor” or “difficult to monitor” with an explanation for each and plan for monitoring or schedule? YES NO NA
10. Is there a list of ID numbers using the skip period alternative monitoring schedule, with a schedule for monitoring and % leak determined? YES NO NA
11. For dual mechanical seal or compressor with barrier fluid systems with sensors, is the criteria and explanation of criteria for determining sensor failure? YES NO NA
12. Is there an analysis of the of design capacity, influent/effluent for each unit subject to these requirements, and an up-to-date analysis either by testing or knowledge if the equipment is covered or not? YES NO NA