

US EPA ARCHIVE DOCUMENT

Independent Study of CO2 Sales of Waste CO2 Stream from Freeport LNG Project

05-Jan-14

Convert to Solvent Based AGR, Compress and Dry CO2, Transport to Denbury for EOR Light Crude Oil Recovery

Proposed Pretreatment Facility

Freeport LNG Development, L.P.

CO2 Pipeline/Injection Well Assumptions

Pipeline Length	37	Basis:	Case 2-D2A, from DOE Baseline Report
Pipeline Diameter 12 inches		Compression Drying from Selexol Unit - same CO2 capacity as Freeport LNG	
Number of Injection Wells 1		Source:	
Depth of Well 1,000 meters		Cost and Performance of PC and IGCC Plants for a Range of Carbon Dioxide Capture	
Electricity for Compression (DOE Study)	8,500	27-May-11	DOE/NETL-2011/1498
Electricity for Inlet Blower	0		
CSS Cost Breakdown		Key Assumptions:	
		1. CO2 Compr/Drying extracted from DOE capex	
		2. Costs for add'l utilities controls, electrical, etc scaled to CO2/TIC	
		3. Escalated per HIS CERA Downstream O/G Index 2006/7 to 2013	
		4. Overnight Cost 2013 no escalation for construction or operating periods	
		5. Estimating contingency of 15% added to total estimate	
		6. Use of Solvent based AGR deletes need for inlet compression, surge tank, treatment/refrigeration	
		7. Added cost of Solvent over Amine is offset by savings in drying equipment, lower utilities	
		8. Use of Selexol or other Physical Solvent will require reconfiguring the PreTreatment Plant with dehydration upstream of AGR	
		9. The use of Selexol should reduce the cost of CCS. However, the net cost of reconfiguring the PT Plant has not been estimated.	

Economics Method is from ATKINS 044167600 Report CO2 BACT Study

Cost Type	Units	Cost	
Pipeline Costs ¹			
Pipeline Materials	Scaled from similar CO2 lines	Private Sources	\$15,000,000
Pipeline Labor			\$26,000,000
Pipeline Miscellaneous, commissioning, freight			\$1,500,000
Pipeline Right of Way, Surveys			\$4,000,000
Construction Management			\$1,200,000
Permits and Licenses			\$700,000
Total Pipeline Cost	per mile cost	\$1,308,108	\$48,400,000
Other Capital ²			
Inlet Compression / Ducting		\$0	\$0
CO2 Compression and Ductwork Equipment		\$26,000,000	\$27,000,000
Conversion Amine to Solvent bases AGR		\$0	\$0
CO2 Surge Tank		\$0	\$0
Pipeline Control System		\$340,000	\$0
Total Capex		\$75,400,000	
	per mile cost	\$2,054,054	\$76,000,000
O&M - Pipeline ³			
Fixed O&M		\$8,632	\$319,384
O&M - Compress and Dry			
Fixed O&M	% of installed	2.5%	\$675,000
Natural Gas for Amine Regeneration	\$/Mcf	\$3,000	\$0
Electricity for Compression	\$/Mcf	\$0.060	\$4,467,600
Electricity for Inlet Blower	\$/Mcf	\$0.060	
Amine Replacement		Engineering Estimate	\$0
Credit for Shutting Down			
Annual O&M Costs (Compression, Drying, Pipeline)			\$5,470,619
Geologic Storage Costs ²			
Capital			
Site Screening and Evaluation		\$0	\$0
Injection Wells	\$/inlet	\$240,714 x e ^{0.0008 x well}	\$0
Injection Equipment	\$/inlet	x # of injection wells) ^{0.5}	\$0
Liability Bond		\$5,000,000	\$0
Declining Capital Funds			
Pore Space Acquisition	\$/sh	0.334/short ton CO2	\$0
Total Capital Cost			\$76,000,000
O&M - Geologic			
Normal Daily Expenses (Fixed O&M)	\$/injection well	\$11,566	\$0
Consumables (Variable O&M)	\$/yr/short ton	\$2,995	\$0
Surface Maintenance (Fixed O&M)	see formula	x # of injection wells) ^{0.5}	\$0
Subsurface Maintenance (Fixed O&M)	\$/t- -de	\$7	\$0

Amortized CCS Cost

1.National Energy Technology Laboratory, "Carbon Dioxide Transport and Storage Costs in NETL Studies," DOE/NETL- 2013/1614, March 2013.

2.Costs are based on Revised Estimates based on Published DOE Studies

Total Capital Investment (TCI)	\$76,000,000
Capital Recovery Factor (CRF) = $i(1+i)^n / ((1+i)^n - 1)$	8.255%
i = interest rate	8.000%
n= equipment life, years	30
Amortized Installation Costs = CRF * TCI	\$6,273,631
Annual O&M Costs	\$5,470,619

Total CCS Annualized Cost \$11,744,250

Tons CO2 per Year Removed (AGR) 896,334

Average Annual Cost per Ton CO2 Removed \$13.10 per ton
(assume 100% of captured CO2 is compressed and sold to EOR operator)

ATKINS 044167600 Revised November 7, 2013

Independent Study of CO2 Sales of Waste CO2 Stream from Freeport LNG Project

04-Jan-14

Add CO2 purification, drying and compression to Existing Amine Based Design	
Proposed Treatment Facility	
Freeport LNG Development, L.P.	
CO2 Pipeline/Injection Well Assumptions	
Pipeline Length	37
Pipeline Diameter 12 inches	
Number of Injection Wells 1	
Depth of Well 1,000 meters	
Electricity for Compression (DOE Study)	8,500
Electricity for SulfaTreat, TEG Drying	1,500
Electricity for Inlet Blower	0
Total Power Requirements	10,000
CSS Cost Breakdown	

6 Use of existing Amine Design requires adding SulfaTreat to reduce CO2 sulfur and integrating TEG dryer in the Compression System

Economics Method is from ATKINS 044167600 Report CO2 BACT Study

Compare to Atkins

07/20/2012 Response

Cost Type	Units	Cost	
Pipeline Costs¹			
9976724 Pipeline Material	Scaled from similar CCUS lines	\$15,000,000	
22008464 Pipeline Labor		\$26,000,000	
Pipeline Miscellaneous, commissioning, freight		\$1,500,000	
74483175 Pipeline Right of Way, Surveys		\$4,000,000	
?? Construction Management		\$1,200,000	
?? Permits and Licenses		\$700,000	
\$ 39,468,363 Total Pipeline Cost	per mile cost	\$1,308,108	\$48,400,000
Other Capital²			
Inlet Compression / Cooling		\$0	\$0
CCUS Compression and Headers Equipment		\$26,000,000	\$27,000,000
Add SulfaTreat and TEG Drying		\$0	\$6,000,000
CO2 Surge Tank		\$0	\$0
Pipeline Control System		\$340,000	\$0
Total Compression/Drying Cost			\$32,000,000
\$ 67,096,316 Total Capex	per mile cost	\$2,200,000	\$81,400,000
\$ 8,478,332 Engineering			Included above
\$ 114,983,011 Total Capex			
O&M - Pipeline³			
?? Fixed O&M		\$8,632	\$319,384
O&M - Compress and Dry			
\$ 1,629,741 Fixed O&M	% of installed	2.5%	\$825,000
\$ 51,223 Natural Gas for Amine Regeneration		\$3,000	\$0
\$ 7,787,928 Electricity for Compression		\$0.060	\$5,256,000
\$ 34,433 Water Disposal		\$34,400	
\$ - Electricity for Inlet Blower		\$0.060	\$0
\$ 75,000 Amino Replacement	Engineering Estimate	\$0	
\$ - Credit for Shutting (down MTOs)			
\$ 9,578,325 Annual O&M Costs (Compression, Drying, Pipeline)			\$6,443,419
Geologic Storage Costs³			
Site Screening and Evaluation		\$0	\$0
Injection Wells	\$ 2240,714 x 0.00004 ⁴ / ton	\$0	
Injection Equipment	\$ (73897/280 x # of injection wells) ^{5,6,7}	\$0	
Liability Bond	\$ 1,000,000	\$0	
Total Capital Cost			\$81,400,000
O&M - Geologic			
Normal Daily Expenses (Fixed O&M)	\$/injection well	\$11,566	\$0
Consumables (Variable O&M)	\$/yr/shot	\$2,995	\$0
Surface Maintenance (Fixed O&M)	see formula	(73897/280 x # of injection wells) ^{5,6,7}	\$0
Subsidiary Maintenance (Fixed O&M)	\$	\$7	\$0
\$19,069,916 Total CCS Actualized Cost			\$13,162,808

Amortized CCS Cost

1 National Energy Technology Laboratory, "Carbon Dioxide Transport and Storage Costs in NETL Studies," DOE/NETL-2013/1614, March 2013.

2 Costs are based on Revised Estimates based on Published DOE Studies

\$ 114,983,011 Total Capital Investment (TCI)

\$81,400,000 Capital Recovery Factor (CRF) = $(1+i)^n / ((1+i)^n - 1)$

Akins reports 9% but formula says 8.26%

i = interest rate

8.000%

n = equipment life, years

30

n = equipment life, years

30