

US EPA ARCHIVE DOCUMENT

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**Comment 1**

On page 2 of the permit application, it is stated that "The proposed Sinton project has the potential to emit greater than 100,000 tons per year (tpy) CO<sub>2</sub>e. As such, a concurrent GHG permit is being submitted to EPA Region 6. As the facility is a new major source for PSD purposes, all proposed criteria pollutants emitted in amounts greater than or equal to the PSD significance emission rate (SER) are subject to PSD review.... As a result of the required PSD permitting due to the levels of GHG emissions, the following pollutants are also subject to PSD review: NO<sub>x</sub>, CO, PM, PM10 and PM2.5." Concurrent with the filing of this application, Corpus Christi Pipeline (CCPL) is filing a PSD and state NSR application with the TCEQ, proposing that the TCEQ perform PSD review for NO<sub>x</sub>, CO, PM, PM10, and PM2.5."

Since EPA is the permitting agency for GHG PSD permits in Texas, we are of the opinion that EPA is also the permitting authority for those criteria pollutants above the significant level once PSD is triggered solely to GHG emissions. We are in discussions regarding this matter with Texas. However, until the State makes a decision and we reach an alternative approach, EPA expects you to submit the applicability calculations with a five-step top down BACT analyses for the significant criteria pollutant(s) to EPA and you to consult with us on preparation and submission of air quality analyses to satisfy the requirements of 52.21(k), (m), (o), and (p), as may be applicable. We are sending this comment now before our discussions are completed with the State to avoid delay in the processing of your application.

**Response**

*Cheniere Corpus Christi Pipeline, L.P. (CCPL) requests a meeting with the EPA to discuss the issues identified in the comment above and requests additional time to complete the response to this comment following the meeting.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**Comment 2**

On page 2 of the permit application and other locations where the turbine is discussed, it is stated that the Sinton Compressor Station proposed "Two (2) 20,794 horsepower (15.5) MW) Solar Titan 134-20502S natural gas-fired turbines or its equivalent will be used to compress the natural gas for onward transport through the Corpus Christi Pipeline. One (1) 1,328 horsepower (0.99 MW) Waukesha VHP5904LTD natural gas-fired standby generator or its equivalent will also be located on-site for backup power supply." Please explain what is meant by "or equivalent". Is CCPL proposing a different Titan 134 and Waukesha or different manufacturer and model? If so, please supplement your BACT analysis with the additional turbine technical data that is being considered by Cheniere.

**Response**

*The design for the Sinton Compressor Station utilizes two (2) 20,794 horsepower (15.5) MW) Solar Titan 134-20502S natural gas-fired turbines and one (1) 1,328 horsepower (0.99 MW) Waukesha VHP5904LTD natural gas-fired standby generator. In the unlikely event these selected units were to prove inappropriate for the specific operation from an engineering standpoint, or if the manufacturers were to develop more efficient units with the same or better emissions prior to contract award, then similar or "equivalent" units may be substituted consistent with permitting requirements.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**Comment 3**

Two PSD permit applications for GHG emissions were submitted to the EPA for construction of new units at Cheniere Corpus Christi Liquefaction and Cheniere Corpus Christi Pipeline - Sinton Compressor Station. EPA is seeking supplemental information to assist in understanding your operations, evaluating the source determination for Cheniere's applications, and developing a comprehensive GHG PSD permit for Cheniere Corpus Christi Pipeline, L.P. Sinton Compressor Station. It is also recommended that the information provided be in a form that can be released to the public, in the event we rely upon such information in our source determination. Please provide, at a minimum, the information requested below. However, feel free to provide other information beyond that requested below, if you deem it necessary to describe the stationary source. Please provide a more detailed description of operations at the Sinton Compressor Station facility. Where does the natural gas from the Sinton Compressor Station move to next in the natural gas pipeline? Is the Corpus Christi Liquefaction project solely reliant upon natural gas received from the Sinton Compressor Station? Could the Sinton Compressor Station or Corpus Christi Liquefaction operate without the support of the other facility? Please provide flow diagrams showing how the two facilities are interconnected and why the two projects should not be aggregated for PSD permitting.

**Response**

*For the reasons discussed below, the Cheniere Corpus Christi Pipeline, L.P. (CCPL) Sinton Compressor Station should not be aggregated with the Corpus Christi Liquefaction, LLC (CCL) LNG Terminal for PSD permitting purposes.<sup>1</sup>*

**I. Overview**

*Federal regulations define a major stationary source for PSD permitting purposes as any building, structure, facility or installation that may emit a regulated NSR pollutant.<sup>2</sup> The regulations further define “building, structure, facility or installation” for source determination purposes as “all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control) . . . .”<sup>3</sup>*

---

<sup>1</sup> As discussed on multiple occasions with EPA Region 6 air permitting staff, a second compressor station – the Taft Compressor Station, also operated by CCPL – will be located along the same pipeline between the Sinton Compressor Station and the LNG Terminal. The Taft Compressor Station will be a minor source of all regulated NSR pollutants, including GHGs, and will be authorized, as necessary, under the Texas Minor NSR program.

<sup>2</sup> 40 C.F.R. § 52.21(b)(5).

<sup>3</sup> *Id.* § 52.21(b)(6).

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*Failure to meet any one of these three factors precludes source aggregation for PSD permitting purposes. Although the Sinton Compressor Station and the LNG Terminal belong to the same industrial grouping – Major SIC Group 49; Electric, Gas and Sanitary Services they are neither located on one or more contiguous or adjacent properties not under common control. Accordingly, the sources should not be aggregated.*

***II. The Sinton Compressor Station and the LNG Terminal are Not Located on One or More Contiguous or Adjacent Properties***

*The Sinton Compressor Station will be located approximately 21 miles from the LNG Terminal along an interstate natural gas pipeline. Neither CCPL nor CCL (or any related entity) owns the property between the Sinton Compressor Station and the LNG Terminal. As a result, the sources are not contiguous or adjacent and should not be aggregated for PSD permitting purposes.*

***A. The Plain Meaning of “Adjacent” is Limited to Consideration of Physical Proximity, Supporting a Separate Source Determination***

*The U.S. Supreme Court has referred to dictionary definitions to determine the plain meaning of words.<sup>4</sup> “Adjacent” is defined as “next to or adjoining something else . . .”<sup>5</sup>, “immediately preceding or following”<sup>6</sup>, “having a common endpoint or border.”<sup>7</sup> These definitions suggest that the plain meaning of the unambiguous term “adjacent” is limited to consideration of physical proximity. The Sinton Compressor Station is not next to or adjoining the LNG Terminal, nor do these two sources share a common endpoint or border. Instead, they are separated by approximately 21 miles of intervening, unrelated properties. Accordingly, they are not located on one or more contiguous or adjacent properties, and as a result they should not be aggregated for PSD permitting purposes.*

***B. The Regulatory History of the PSD Program Strongly Supports Limiting the Adjacency Determination to Consideration of Physical Proximity, Supporting a Separate Source Determination***

*In addition to a plain meaning that clearly suggests that adjacency is limited to physical proximity, the most significant EPA guidance applicable to the instant issue – the preamble to the 1980 amendments to the PSD rules that actually created the three-factor aggregation test – strongly supports limiting the adjacency determination to consideration of physical proximity. Specifically, in the preamble to the proposed amendments, EPA requested comment on whether another factor – the functional*

<sup>4</sup> See, e.g., *MCI Telecoms Corp. v. AT&T Co.*, 512 U.S. 218, 255 (1994).

<sup>5</sup> Oxford Dictionaries, available at [www.oxforddictionaries.com](http://www.oxforddictionaries.com) (last visited January 6, 2013).

<sup>6</sup> Merriam-Webster Dictionary, available at [www.merriam-webster.com](http://www.merriam-webster.com) (last visited January 6, 2013)

<sup>7</sup> *Id.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*relationship between the sources – should be added to the aggregation test (which as proposed included only common control and adjacency).<sup>8</sup>*

*Importantly, after considering the comments, in the final rule EPA elected not to add a functional relationship factor to the aggregation test because determining the functional relationship between sources “would be highly subjective” and would make “administration of the [aggregation test] substantially more difficult, since any attempt to ascertain those interrelationships would have embroiled the Agency in numerous, fine-grained analyses.”<sup>9</sup> Instead, EPA added the now familiar industrial grouping factor, creating the three-part test that has governed source aggregation ever since.<sup>10</sup>*

*It is rare for regulatory history to shine such a clear light on such a specific issue. EPA’s thoughtful analysis based on due consideration of public comment at the exact point in time when the very test at issue here was created strongly suggests that physical proximity should be the only consideration when assessing adjacency. The Sinton Compressor Station is separated from the LNG terminal by approximately 21 miles of intervening properties that are neither owned nor controlled by CCPL or CCL. Accordingly, the Sinton Compressor Station and the LNG Terminal are not located on one or more contiguous or adjacent properties, and as a result they should not be aggregated for PSD permitting purposes.*

**C. EPA Has Historically Not Aggregated Compressor Stations Along Interstate Pipelines**

*Although EPA was clear in the preamble to the 1980 PSD amendments that the functional relationship between sources should not be considered when making aggregation decisions, EPA did not indicate a precise distance between facilities that would qualify those facilities for separate treatment. Specifically, the preamble to the 1980 amendments provides:*

*EPA has stated in the past and now confirms that it does not intend “source” to encompass activities that would be many miles apart along a long-line operation. For instance, EPA would not treat all of the pumping stations along a multistate pipeline as one “source.” EPA is unable to say precisely at this point how far apart activities must be in order to be treated separately. The agency can answer that question only through case-by-case determinations.<sup>11</sup>*

---

<sup>8</sup> 45 Fed. Reg. 52,676, 52,694 (Aug. 7, 1980).

<sup>9</sup> *Id.* at 52,695.

<sup>10</sup> *Id.*

<sup>11</sup> 45 Fed. Reg. at 52,695.

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*Although EPA was not willing at the time to indicate a precise distance, EPA did note that activities separated by 20 miles are likely too far apart to be considered a single source.*

*The Sinton Compressor Station, which is separated from the LNG Terminal by 21 miles, will be one of many such stations located along an interstate natural gas pipeline. Consistent with EPA's historical approach to aggregation along interstate pipelines, as well as the fact that the Sinton Compressor Station will be sited further from the LNG Terminal than EPA's outer limit of 20 miles, the sources should not be aggregated for PSD permitting purposes.*

**D. U.S. Supreme Court Precedent Supports Limiting the Adjacency Determination to Consideration of Physical Proximity, Supporting a Separate Source Determination**

*The U.S. Supreme Court addressed the meaning of the term "adjacent" in *Rapanos v. United States*.<sup>12</sup> In *Rapanos*, the Court addressed regulations that included within the statutory term navigable waters (further defined by statute as "waters of the United States"), wetlands "adjacent" to such waters. Specifically at issue was whether an arguable wetland located 11 to 20 miles from the nearest navigable water could be considered "adjacent" to that navigable water by the U.S. Army Corps of Engineers.<sup>13</sup> In concluding that the wetland could not be considered "adjacent" to such a distant body of water, the Court stated that the Corps had extended the definition of adjacent "beyond reason."<sup>14</sup>*

*Here, aggregation of the Sinton Compressor Station and the LNG Terminal would extend the definition of adjacent even further beyond reason. The Sinton Compressor Station is separated from the LNG terminal by approximately 21 miles of intervening properties that are neither owned nor controlled by CCPL or CCL. Accordingly, the Sinton Compressor Station and the LNG Terminal are not located on one or more contiguous or adjacent properties, and as a result they should not be aggregated for PSD permitting purposes.*

**E. Recent EPA Guidance on Aggregation in the Oil and Gas Sector Limits the Adjacency Determination to Consideration of Physical Proximity, Supporting a Separate Source Determination**

*Consistent with EPA's original guidance on the aggregation test as set forth in the preamble to the 1980 PSD amendments, more recent guidance on source aggregation in the oil and gas sector further supports limiting the adjacency determination to consideration of physical proximity. Specifically, in 2009, EPA issued a memorandum on source determinations in the oil and gas industry. Known as the "McCarthy Memorandum" after its author, Gina McCarthy, Assistant Administrator, Office of Air and*

---

<sup>12</sup> 547 U.S. 715 (2006).

<sup>13</sup> *Id.* at 720.

<sup>14</sup> *Id.* at 746.

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*Radiation, the guidance directed permitting authorities to focus on the three-factor aggregation test when making case-by-case source determinations, rather than simply defaulting to physical proximity without considering all three-factors (although the memorandum went on to note that in some cases, proximity “may serve as the overwhelming factor”).<sup>15</sup>*

*Far from supporting the use of supplemental factors, such as EPA’s rejected functional relationship factor, discussed above, the McCarthy Memorandum cautions against such an approach, focusing permitting authorities instead on the three-factor test – same industrial grouping, contiguous or adjacent, and common control. As noted previously, if any one of these three factors is not met, aggregation is not appropriate. Here, not only is one of the three factors – contiguous or adjacent – not met, but the sources are separated by a significant distance, suggesting that even if the adjacency determination was not limited to consideration of physical proximity, proximity should serve as the overwhelming factor in this instance. Accordingly, the McCarthy Memorandum supports not aggregating the Sinton Compressor Station and the LNG Terminal for PSD permitting purposes.*

**F. State Guidelines on Source Determinations Under the SIP-Approved PSD Permitting Program Support a Separate Source Determination**

*As evidenced by its decision to treat the Sinton Compressor Station and the LNG Terminal separately for air permitting purposes, the TCEQ, which retained permitting authority for non-GHG pollutants under the SIP-approved portion of the Texas PSD program, has determined that the sources should be treated separately for PSD permitting purposes. That decision is supported by the TCEQ’s key aggregation guidance, entitled “Definition of a Site Guidance Document,” (“TCEQ Guidance”) which is consistent with the State’s approved SIP, current federal regulations and policy, court decisions and EPA petition orders.<sup>16</sup>*

*In comments on one of the first GHG PSD permits issued in the country (and the first issued in Region 6), EPA Region 6 made clear that aggregation decisions made by state permitting authorities under SIP-approved PSD programs should “comport with the State’s approved SIP, current Federal regulations and policy, court decisions, and EPA petition orders.”<sup>17</sup> As discussed in detail above, a separate source determination here is consistent with longstanding EPA guidance, dating back to the*

---

<sup>15</sup> Memorandum from Gina McCarthy, Assistant Adm’r, to Reg’l Admr’s Regions I-X (Sept. 22, 2009), available at <http://www.epa.gov/region7/air/nsr/nsrmemos/oilgaswithdrawal.pdf> (last visited January 7, 2013).

<sup>16</sup> “Definition of a Site Guidance Document,” Air Permits Division, TCEQ, August 2010, available at [http://www.tceq.texas.gov/assets/public/permitting/air/Guidance/Title\\_V/site.pdf](http://www.tceq.texas.gov/assets/public/permitting/air/Guidance/Title_V/site.pdf) (last visited January 7, 2013).

<sup>17</sup> Letter from Jeffrey Robinson, Chief, Air Permits Section, EPA Region 6 to Ms. Tegan Treadaway, Administrator, Office of Environmental Services, Louisiana Department of Environmental Quality, regarding LDEQ Proposed Title V Operating Permit Numbers 2560-00281-V1 and 3086-V0; and PSD Permit Number PSD-LA-751; Consolidated Environmental Management Inc., Nucor Steel Louisiana; Covenant St. James Parish, Louisiana, dated January 7, 2011, available at <http://www.epa.gov/region07/air/nsr/nsrmemos/nucor.pdf> (last visited January 7, 2013).

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*creation of the three-factor aggregation test, the plain meaning of adjacent, Supreme Court precedent, and more recent EPA guidance stressing the importance of the three-factor test in source determinations in the oil and gas sector.*

*Importantly, the TCEQ Guidance is consistent not only with the key considerations Region 6 outlined in the comments discussed directly above, but also with another line of EPA source determinations (discussed in the following section) that veer from both EPA's decision not to consider the functional relationship between sources in the preamble to the 1980 PSD amendments, and the 2009 McCarthy Memorandum's clear direction not to consider supplemental factors beyond the original three-factor test. Specifically, the TCEQ Guidance makes clear oil and gas sources located beyond a quarter mile from each other may still be considered adjacent, on a case-by-case basis, where they are "interdependent", a concept analogous to functional relationship.*

*Accordingly, because TCEQ's decision not to aggregate the sources was based on an approach consistent with two lines of EPA guidance, federal regulations and court decisions, the Sinton Compressor Station and the LNG Terminal should not be aggregated for PSD permitting purposes.*

**G. In the Alternative, the Sources are Not Functionally Related Under EPA Applicability Determinations, Supporting a Separate Source Determination**

*As noted above, EPA clearly rejected, after taking public comment on the issue, the functional relationship between sources as a factor to be considered in making aggregation determinations when the current test was originally developed as part of the 1980 amendments to the PSD rules. In addition, EPA reiterated this general position in the 2009 McCarthy Memorandum when it cautioned against looking beyond the three aggregation factors. However, despite this clear direction, the plain meaning of adjacent, and Supreme Court precedent, a separate line of EPA aggregation decisions suggests that the functional relationship between sources should be considered when determining whether sources are contiguous or adjacent. Assuming for the sake of argument that it is proper to consider the functional relationship between sources when making aggregation decisions (which, as the preceding discussion makes clear, it is not), because the Sinton Compressor Station and the LNG Terminal are not functionally related as that term has been defined by EPA, a single source determination still is not proper here.*

*The separate line of source determinations that address functional relationship when making the adjacency determination focuses on the following questions (limited to those that are applicable to the oil and gas sector):*

*Was the location of the new facility chosen primarily because of its proximity to the existing facility, to enable the operation of the two facilities to be integrated?*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*Will managers or other workers (e.g., production line staff, maintenance or repair crews, security or administrative personnel) shuttle back and forth to be involved actively in both facilities?*

*Will the production process itself be split in any way between the facilities (i.e., will one facility produce an intermediate product that requires further processing at the other facility, with associated air pollutant emission)?<sup>18</sup>*

*Applying the following detailed description of operations at the Sinton Compressor Station<sup>19</sup> to these questions and the questions included in Comment 3, above, makes clear that even if it is proper to consider functional relationship as part of the adjacency determination, the Sinton Compressor Station and the LNG Terminal would be considered separate sources.*

*First, the location of the Sinton Compressor Station was chosen as much for its proximity to a series of existing interstate natural gas pipelines as it was to the location of the LNG Terminal. Specifically, as depicted in the flow diagram (included in **Attachment 3**) showing how the two facilities are interconnected, the Tennessee, Transco, NGPL, and KM Tejas natural gas pipelines are all located in the immediate vicinity of the proposed Sinton Compressor Station. This location is important because during periods where the LNG Terminal is not exporting or importing natural gas, the Sinton Compressor Station will be available to provide a third function in the form of transportation services between the various interconnected pipelines. This service will be completely unrelated to operations at the LNG Terminal.*

*Second, the Sinton Compressor Station and the LNG Terminal will have completely separate operating organizations. As a result, managers and workers at one facility will not be involved in operations or maintenance at the other facility. In fact, under Federal Energy Regulatory Commission requirements, day-to-day operations of the pipeline (including the Sinton Compressor Station) and any shipper (e.g., the LNG terminal) are required to be separated and the pipeline is not allowed to give preferential treatment to one shipper over another.*

*Third, the production process will not be split in any way between the facilities. Unlike some LNG export facilities where certain pretreatment (removal of liquid hydrocarbons, water, carbon dioxide and sulfur compounds) is performed at a separate site, no treatment will be performed at the Sinton*

---

<sup>18</sup> See Letter from Richard R. Long, Director, Air Program, Region 8, to Lyn Menlove, Manager, New Source Review Section, Utah Division of Air Quality (May 21 1998) (responding to a request for guidance in defining “adjacent” for Title V and NSR source aggregation purposes).

<sup>19</sup> See Appendix C to the Sinton Compressor Station GHG PSD application for a separate description of operations.

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*Compressor Station because all such equipment and liquefaction/regasification operations will be located at the LNG Terminal.*

*Fourth, where natural gas from the Sinton Compressor Station moves to next in the natural gas pipeline depends on which function the station is performing. In export mode, if gas was flowing from some combination of the Tennessee, Transco, NGPL and KM Tejas interconnects, it would pass through the Sinton Compressor Station and into the LNG Terminal or the TETCO interconnect. Importantly, operation of the Sinton Compressor Station (and its associated emissions) might or might not be necessary to enable these flows, depending on the compression capacity provided by the combination of interconnects pushing gas at any given point in time. In export mode, gas may divert to the TETCO interconnect and never reach the LNG Terminal. In import mode, although gas would flow through the Sinton Compressor Station and into some combination of the Tennessee, Transco, NGPL and KM Tejas interconnects, the Sinton Compressor Station's compression capacity (and associated emissions) would not be necessary. In other words, the gas will merely pass through the station on its way to the four pipelines located in the vicinity of the station, without the need for any compression (or associated emissions) to be provided by the Sinton Compressor Station. In fact, when gas is moving only into the TETCO interconnect during import, it would not even pass through the Sinton Compressor Station, let alone require the station to provide compression capacity. Finally, if functioning to transport gas between interconnected pipelines, gas could flow through the Sinton Compressor Station in either direction and into some combination of the various interconnects, but it will never reach the LNG Terminal.*

*Fifth, the LNG Terminal is not solely reliant upon natural gas received from the Sinton Compressor Station. In export mode, natural gas received by the LNG Terminal would originate from some combination of the five pipelines that are planned to be interconnected to the Corpus Christi Pipeline; as discussed above, operation of the Sinton Compressor Station might or might not be needed to enable these flows. In import mode, natural gas received by the LNG Terminal would originate in the form of LNG from overseas markets and then flow into some combination of the five pipelines; operation (and associated emissions) of the Sinton Compressor Station would not be needed to enable these flows. And, if transporting gas between the interconnected pipelines, it is possible that no gas would flow into or out of the LNG Terminal but would flow between some combination of the five pipelines; operation of the Sinton Compressor Station might or might not be needed to enable these flows, but again, such flows would never reach the LNG Terminal.*

*Finally, both the Sinton Compressor Station and the LNG Terminal can operate without the other's support. In export mode, the LNG Terminal can operate on natural gas from the TETCO interconnect without support from the Sinton Compressor Station, and depending on the compression capacity provided by the combination of the four other interconnects pushing gas at any given point in time, operation of the Sinton Compressor Station might or might not be needed to enable these flows. In*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*import mode, the LNG Terminal can operate without the support of the Sinton Compressor Station. And if transporting gas between interconnected pipelines, the Sinton Compressor Station can operate without the support of the LNG Terminal.*

*For all of these reasons, even assuming that the functional relationship between sources is properly considered in making the adjacency determination, the functional relationship between the Sinton Compressor Station and the LNG Terminal is not sufficient to support aggregation.*

***The Sinton Compressor Station and LNG Terminal Are Not Under Common Control***

*As noted above, federal regulations define “building, structure, facility or installation” for source determination purposes as “all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control) . . .”<sup>20</sup> Because control is not a defined term under the regulations, EPA has historically relied on the common meaning, citing Webster’s Dictionary to define control as “to exercise restraining or directing influence over,” “to have power over,” “power of authority to guide or manage,” and “the regulation of economic activity.”<sup>21</sup>*

*EPA has identified three methods for establishing common control for purposes of source aggregation under NSR and Title V permitting rules (1) common ownership; (2) operations control; and (3) control relationship.<sup>22</sup> Regarding common ownership, according to EPA, common control can be established where one company is the parent company to the other, or one company owns part of the other company.<sup>23</sup> In the absence of common ownership, common control can be established if one entity has the power to direct the management and policies of a second entity through contractual agreement or a voting interest.<sup>24</sup> Finally, common control may exist in the absence of common ownership if there is a contract for service relationship or a support/dependency relationship between the two.<sup>25</sup>*

---

<sup>20</sup> *Id.* § 52.21(b)(6).

<sup>21</sup> See Letter from William Spratlin, Air, RCRA and Toxics Division Director, EPA Region 7, to State and Local Air Directors (September 18, 1995) (“Spratlin Letter”), available at <http://www.epa.gov/region7/air/nsr/nsrmemos/control.pdf> (last visited, January 14, 2013).

<sup>22</sup> See Letter from Richard R. Long, Director, Air Program, Region 8, to Julie Wrend, Air Pollution and Control Division, Colorado Department of Public Health and Environment (November 12, 1998), available at <http://www.epa.gov/region7/air/nsr/nsrmemos/coorstri.pdf> (last visited January 14, 2013).

<sup>23</sup> See Letter from Gregg M. Worley, Chief, Air Permits Section, EPA Region 4 to James Capp, Chief, Air Protection Branch, Environmental Protection Division, Georgia Department of Natural Resources (December 16, 2011), available at <http://www.epa.gov/region7/air/nsr/nsrmemos/ps2011.pdf> (last visited January 14, 2013); *see also* Letter from Kathleen Cox, Associate Director, Office of Permits and Toxics, Air Protection Division, EPA Region 3 to Troy Breathwaite, Air Permits Manager, Virginia Dept. of Environmental Quality, Tidewater Regional Office (January 10, 2012), available at <http://www.epa.gov/region7/air/nsr/nsrmemos/gpc2012.pdf> (last visited January 14, 2013).

<sup>24</sup> Long Letter at 1.

<sup>25</sup> *Id.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*In cases where common control is not obvious from common ownership or clear operational control, EPA refers to a series of factors used to establish whether common control exists between the two sources. Often referred to as the “Spratlin” factors after a 1995 letter authored by William Spratlin, then Director of the Air, RCRA and Toxics Division at EPA Region 7, this non-exhaustive list serves as a screening tool.<sup>26</sup> If the source meets one or more of the following indicators of control, then one source is likely under the control of the other source or under common control by both companies and the sources will not be considered separate for permitting purposes.*

*Do the facilities share common workforces, plant managers, security forces, corporate executive officers, or board of executives?*

*Do the facilities share equipment, other property or pollution control equipment? What does the contract specify with regard to pollution control responsibilities of the contractee? Can the managing entity of facility make decisions that affect pollution control at the other facility?*

*Do the facilities share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage, or other administrative functions?*

*Do the facilities share intermediates, products, byproducts, or other manufacturing equipment? Can the new source purchase raw materials from a sell products or byproducts to other customers? What are the contractual arrangements for producing goods and services?*

*Who accepts responsibility for compliance with air quality control requirements? What about violations of the requirements?*

*What is the dependency of one facility on the other? If one shuts down, what are the limitations on the other to pursue outside business interests?*

*Does one operation support the operation of the other? What are the financial arrangements between the two entities?<sup>27</sup>*

*Here, the plain meaning of the undefined and unambiguous term “control” as applied to the facts, as well as application of the Spratlin Factors supports a separate source determination.*

---

<sup>26</sup> Spratlin Letter at 1-2.

<sup>27</sup> *Id.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*As noted above, in assessing common control for source determination purposes, EPA has historically relied on the common meaning, citing Webster's Dictionary to define control as "to exercise restraining or directing influence over," "to have power over," "power of authority to guide or manage," and "the regulation of economic activity."<sup>28</sup> Here, for the same reasons that support lack of a functional relationship between the two sources, discussed above, and based on the facts applied below to the Spratlin factors, neither source has the ability to exercise restraining or directing influence over the other source, holds power over the other source, or has the authority to guide or manage the other source.*

*Although CCPL and CCL share an ultimate parent corporation – Cheniere Energy, Inc., – neither CCPL nor CCL is the parent of the other, and neither CCPL nor CCL owns any part of the other. More importantly, as noted above, because FERC requires all shippers on an open access pipeline to be treated equally, in order to meet FERC requirements, control of the Sinton Compressor Station must be kept separate from control of the LNG Terminal. As a result, even if it wanted to, the corporate parent would be unable to influence any operational or control decisions.*

*Accordingly, based on the plain meaning of "control" and the FERC requirements mandating separate control for the two sources, common control does not exist, and the Sinton Compressor Station and the LNG Terminal should not be aggregated for PSD permitting purposes.*

*In addition, application of the Spratlin factors to the sources at issue here strongly supports a separate source determination. First, the facilities do not share common workforces, plant managers, security forces or board of directors. Although there is some overlap in corporate officers, the open access status of the pipeline and the underlying FERC mandate for separate control and operation of the two facilities prevent an officer common to both entities from inappropriately influencing control over one entity by virtue of his or her position, in the same way that the common parent corporation would be unable to influence control or operation at one facility in a way that would benefit the other.*

*Second, the facilities do not share equipment, other property or pollution control equipment and one source has no ability to make decisions that affect pollution control at the other source. Third, the sources do not share common payroll activities, employee benefits, health plans, retirement funds, insurance coverage or other administrative functions. Fourth, as discussed in detail above, the Sinton Compressor Station is free to enter into arrangements with other pipelines for transportation services and the LNG Terminal cannot influence the Sinton Compressor Station's ability to enter into any such arrangements. Fifth compliance with air quality control requirements and responsibility for their violation rests with each source. Sixth, as also explained in detail above under the functional*

---

<sup>28</sup> See Letter from William Spratlin, Air, RCRA and Toxics Division Director, EPA Region 7, to State and Local Air Directors (September 18, 1995) ("Spratlin Letter"), available at <http://www.epa.gov/region7/air/nsr/nsrmemos/control.pdf> (last visited, January 14, 2013).

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

*relationship analysis, the Sinton Compressor Station is not dependent on the LNG Terminal. Specifically, if the LNG Terminal shuts down, the Sinton Compressor Station has no limitation on its ability pursue outside business interests, such as providing transportation services to the various other pipelines. Finally, the arrangements between the two entities are dictated in large part by the FERC requirements discussed above.*

*For all of these reasons, the Sinton Compressor Station and the LNG Terminal are not under common control, and as a result, they should not be aggregated for air permitting purposes.*

**IV. Because Both Sources Trigger PSD Independently, Aggregation is Unnecessary**

*Practically speaking, aggregation is completely unnecessary because both the Sinton Compressor Station and the LNG Terminal are major PSD sources on their own. The only instance where aggregation matters for two sources that independently trigger PSD is where combining the emissions of a single pollutant from the two sources would result in that pollutant exceeding its significance level and requiring BACT and effects review, where it would not otherwise have if emissions from the two sources were not aggregated. Here, no such result would occur. Accordingly, aggregation of the Sinton Compressor Station and LNG Terminal at this late stage would be a pointless exercise that would serve only to delay permit issuance.*

*For all of these reasons, the Sinton Compressor Station and the LNG Terminal should not be aggregated for PSD permitting purposes.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**Comment 4**

Being mindful of EPA's PSD and Title V Permitting Guidance for GHG dated March, 2011, of page 17 which states the following:

"The CAA and corresponding implementing regulations require that a permitting authority conduct a BACT analysis on a case-by-case basis, and the permitting authority must evaluate the amount of emissions reductions that each available emissions-reducing technology or technique would achieve, as well as the energy, environmental, economic and other costs associated with each technology or technique. Based on this assessment, the permitting authority must establish a numeric emissions limitation that reflects the maximum degree of reduction achievable for each pollutant subject to BACT through the application of the selected technology or technique. However, if the permitting authority determines that the technical or economic limitations on the application of a measurement methodology would make a numerical emissions standard infeasible for one or more pollutants, it may establish design, equipment, work practices or operational standards to satisfy the BACT requirement."

In addition to the proposed tons per year emission limit provided in the permit application, please propose output based or efficiency based limits for all GHG emission sources (e.g., lb or ton CO<sub>2</sub>/MMBtu). Please provide an analysis that substantiates any reasons for infeasibility of a numerical emission limitation. For the emission sources where numerical emission limitations are infeasible, please propose an operating work practice standard that can be practically enforceable.

**Response**

*Based on regulatory guidance from 40 CFR 60 Part 98 Subpart C, Table C-1, CCPL proposes an emission limit of 0.058 ton CO<sub>2</sub>/MMBtu for each of the two (2) natural gas compression turbines. To ensure proper combustion, fuel flow meters will be installed to continuously monitor and record fuel flow. Additionally, the gas turbines will be operated using good combustion practices in accordance with manufactured recommendations.*

*Based on EPA's PSD and Title V Permitting Guidance for GHG, metrics should focus on longer-term averages (e.g. 30- or 365-day rolling average) rather than short-term averages (e.g. 3- or 24-hr rolling averages when determining numerical emission limits. A numerical emission limitation is not feasible for the standby generator as this unit is an intermittent source that will operate on a short-term, as-needed basis during periods of maintenance and testing, not more than 100 hours per year. However, combustion control for the standby generator will be continuously maintained with good combustion practices in accordance with manufactured recommendations. In accordance with EPA guidance, the following combustion practices will be implemented as standard work practice for the standby generator:*

**Response to Comments****Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.  
Greenhouse Gas Prevention of Significant Deterioration Permit  
Sinton Compressor Station**

- Operator Practices – *Maintenance of a written site specific operating procedures manual in which operating procedures, including startup, shutdown, and malfunction are well documented in accordance with the manufacturer's specifications. The operating procedures will be updated as applicable with any equipment operating practice changes. The operating procedures manual shall be maintained in an area allowing easy access to operations personnel and made available upon request.*
- Maintenance Knowledge – *The standby generator will be maintained in accordance with manufacturer's specifications by personnel with training specific to the equipment.*
- Maintenance Practices – *Maintenance of a written site-specific procedure manual for optimum maintenance practices will be kept in accordance to the manufacturer's specifications for the standby generator. Periodic evaluations, inspections, and overhauls as appropriate of the standby generator will be conducted. The maintenance practices will be updated as applicable with any equipment or operating practice changes. The modification of these practice changes, scheduled periodic evaluations inspections and overhaul, as appropriate, and any deviations from the prescribed maintenance practices will be well documented in maintenance logs. The maintenance practices manual shall be maintained in an area allowing easy access to operations personnel and made available upon request.*
- Fuel Quality Analysis – *CCPL will burn only pipeline quality natural gas in the standby generator. Additional fuel quality analysis to determine variations in composition will be conducted as needed and in accordance with any applicable fuel handling procedures.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**Comment 5**

Will the proposed condensate storage tank (EPN: TK-0001) emit or have the potential to emit GHG emissions? Also, will there be GHG emissions associated with the truck loading operations (EPN: TRKLD)? If so, please supplement BACT analysis to include these storage tanks and emissions calculations.

**Response**

*No GHG emissions are anticipated for TK-0001 or the truck loading activities located downstream of TK-0001.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**Comment 6**

In Section B.4 of the permit application, it is stated that GHG BACT that the equipment associated with the project will be outfitted with the best available engineering design and with the latest available technology to ensure energy efficiency. Please provide supplemental benchmark comparison data pertaining to energy efficiency and performance of the proposed turbine and generator to similar sources in similar industries. What operating parameters will be monitored to assure proper combustion? Please provide a monitoring, recordkeeping and compliance strategy for the proposed equipment.

**Response**

*The units selected for CCPL's Sinton Compressor Station will be designed to meet the exact operating parameters of the station and to limit inefficient operations. Per Solar's published information, the Titan 130 gas turbine for compressor and mechanical drive applications is designed to deliver a simple-cycle thermal efficiency of 36 percent. Published data for the similarly sized (approximately 21,000 horsepower) Rolls Royce Avon turbine indicates 30 percent thermal efficiency in gas compression service and 29 percent in electric generation service.*

*To ensure proper combustion efficiency the gas turbines will be maintained with good combustion practices in accordance with manufactured recommendations, while burning only pipeline quality natural gas. Fuel consumption for each turbine will be continuously monitored and recorded with fuel flow meters.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**Comment 7**

In Appendix C "Turbine and Engine Specs", it appears as though incorrect "Predicted Emission Performance" and "Predicted Engine Performance" specification sheets were submitted for the proposed 20,794 horsepower Solar Titan 134-20502S gas turbine. Please check the application to determine whether the correct specification sheets were submitted or provide the correct specification sheets for the proposed Solar Titan turbine.

**Response**

*The updated manufactured specifications for the Titan 130-20302S turbines are included as Attachment 7 to this letter.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**Comment 8**

In the Emissions Calculations section of the application, please provide supporting data that discusses the process simulation used and the assumptions and rationale used to calculate the emissions for each blowdown event.

**Response**

*As the proposed facility has no operational history, the blowdown emission calculations were based upon conservative assumptions for the anticipated pipe volume using process knowledge. Each blowdown simulation was estimated for 5-, 10-, and 15-minute events. From the results of each scenario, the worst-case simulation was assumed as a conservative approach. Based on process knowledge from other existing facilities, annual blowdown emissions were estimated based on one blowdown per unit per month for each of the unit blowdown stacks and one blowdown per three months for the station discharge and station suction blowdown stacks.*

*The results of each blowdown simulation have been included as **Attachment 8** to this letter to supplement the blowdown emission summaries provided in Section 4 of the EPA GHG application.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**Comment 9**

In the Section B.4.2.3 and B.4.3.4 of the permit application, the CO2 and CH4 BACT Analysis states that "no additional controls are being proposed for the blowdown stacks." Were any operating practices evaluated that could be utilized to reduce emissions when taking compressor off-line such as keeping compressor pressureized when off-line, connecting blowdown vent line to fuel gas system, etc.? Please provide supplemental data that discusses the feasibility of utilizing blowdown recovery for the proposed project.

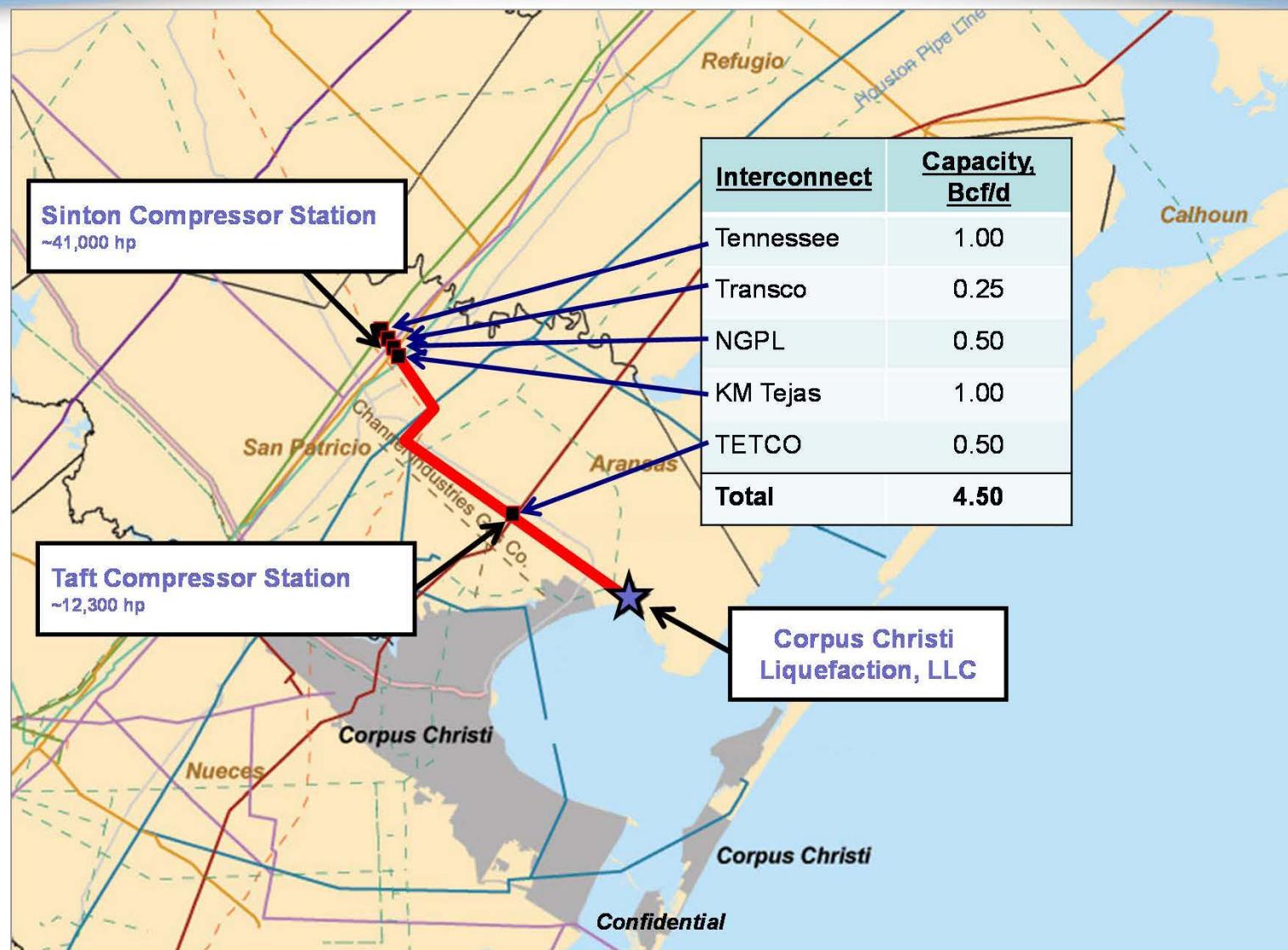
**Response**

*As a part of station design to minimize blowdown gas, CCPL has decided to utilize an additional seal gas booster system for the gas compressors at Sinton Compressor Station. This system will allow compressors to remain pressurized for longer durations once the compressor is shut down. If the unit is restarted prior to the end of the duration, no gas will be blown down. In addition, CCPL will have the capability to burn potential blow down gas as fuel, provided at least one turbine is on-line. The current state of commercially available technology and potential variability of operating conditions including compressing at varying and high ratios make complete blowdown gas recovery through compression infeasible. The combination of the two proposed systems, seal gas boost allowing compressors to remain pressurized, and burning potential blow down gas as fuel gas will mitigate and minimize GHG releases due to blowdown gas. Attachment 9 to this letter describes the BACT analysis for the blowdown stacks.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**Comment 10**

Please provide the fugitive component count, service and emission calculations.


**Response**

*An analysis of the estimated fugitive component count, service and emissions is included as **Attachment 10** to this letter to supplement the fugitive emissions summary provided in Section 4.0 of the EPA GHG application.*

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**ATTACHMENT 3**

# Corpus Christi Pipeline Design Details



**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**ATTACHMENT 7**

# Solar Turbines

A Caterpillar Company

## PREDICTED EMISSION PERFORMANCE

|                       |                 |          |  |
|-----------------------|-----------------|----------|--|
| Customer              |                 |          |  |
| Job ID                |                 |          |  |
| Inquiry Number        |                 |          |  |
| Run By                | Elev.           | Date Run |  |
| Kevin M Frank         | 25 ft           | 6-Oct-11 |  |
| Engine Model          |                 |          |  |
| TITAN 130-20502S      |                 |          |  |
| CS/MD 59F MATCH       |                 |          |  |
| Fuel Type             | Water Injection |          |  |
| SD NATURAL GAS        | NO              |          |  |
| Engine Emissions Data |                 |          |  |
| REV. 0.0              |                 |          |  |

| NOx EMISSIONS | CO EMISSIONS | UHC EMISSIONS |
|---------------|--------------|---------------|
|---------------|--------------|---------------|

|                         |          |             |       |       |               |       |             |              |
|-------------------------|----------|-------------|-------|-------|---------------|-------|-------------|--------------|
| 1                       | 20794 HP | 100.0% Load | Elev. | 25 ft | Rel. Humidity | 75.0% | Temperature | 40.0 Deg. F  |
| PPMvd at 15% O2         | 25.00    |             |       |       | 50.00         |       |             | 25.00        |
| ton/yr                  | 63.98    |             |       |       | 77.91         |       |             | 22.31        |
| Ibm/MMBtu (Fuel LHV)    | 0.100    |             |       |       | 0.122         |       |             | 0.035        |
| Ibm/(MW-hr)             | 0.94     |             |       |       | 1.15          |       |             | 0.33         |
| (gas turbine shaft pwr) |          |             |       |       |               |       |             |              |
| Ibm/hr                  | 14.61    |             |       |       | 17.79         |       |             | 5.09         |
| 2                       | 19166 HP | 100.0% Load | Elev. | 25 ft | Rel. Humidity | 75.0% | Temperature | 70.0 Deg. F  |
| PPMvd at 15% O2         | 25.00    |             |       |       | 50.00         |       |             | 25.00        |
| ton/yr                  | 59.80    |             |       |       | 72.81         |       |             | 20.85        |
| Ibm/MMBtu (Fuel LHV)    | 0.099    |             |       |       | 0.121         |       |             | 0.035        |
| Ibm/(MW-hr)             | 0.96     |             |       |       | 1.16          |       |             | 0.33         |
| (gas turbine shaft pwr) |          |             |       |       |               |       |             |              |
| Ibm/hr                  | 13.65    |             |       |       | 16.62         |       |             | 4.76         |
| 3                       | 16249 HP | 100.0% Load | Elev. | 25 ft | Rel. Humidity | 75.0% | Temperature | 100.0 Deg. F |
| PPMvd at 15% O2         | 25.00    |             |       |       | 50.00         |       |             | 25.00        |
| ton/yr                  | 53.28    |             |       |       | 64.88         |       |             | 18.58        |
| Ibm/MMBtu (Fuel LHV)    | 0.097    |             |       |       | 0.118         |       |             | 0.034        |
| Ibm/(MW-hr)             | 1.00     |             |       |       | 1.22          |       |             | 0.35         |
| (gas turbine shaft pwr) |          |             |       |       |               |       |             |              |
| Ibm/hr                  | 12.17    |             |       |       | 14.81         |       |             | 4.24         |

### Notes

1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F and between 80% and 100% load.
3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO<sub>2</sub>, PM10/2.5, VOC, and formaldehyde.
5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

# Solar Turbines

A Caterpillar Company

## PREDICTED EMISSION PERFORMANCE

|                |               |          |          |                       |                 |  |  |
|----------------|---------------|----------|----------|-----------------------|-----------------|--|--|
| Customer       |               |          |          | Engine Model          |                 |  |  |
| Job ID         |               |          |          | TITAN 130-20502S      |                 |  |  |
| Inquiry Number |               |          |          | CS/MD 59F MATCH       |                 |  |  |
| Run By         | Kevin M Frank | Date Run | 6-Oct-11 | Fuel Type             | Water Injection |  |  |
|                |               |          |          | SD NATURAL GAS        | NO              |  |  |
|                |               |          |          | Engine Emissions Data |                 |  |  |
|                |               |          |          | REV. 0.0              |                 |  |  |

| NOx EMISSIONS | CO EMISSIONS | UHC EMISSIONS |
|---------------|--------------|---------------|
|---------------|--------------|---------------|

|                         |          |             |       |       |               |       |             |              |
|-------------------------|----------|-------------|-------|-------|---------------|-------|-------------|--------------|
| 1                       | 20794 HP | 100.0% Load | Elev. | 25 ft | Rel. Humidity | 75.0% | Temperature | 40.0 Deg. F  |
| PPMvd at 15% O2         | 15.00    |             |       |       | 25.00         |       |             | 25.00        |
| ton/yr                  | 38.39    |             |       |       | 38.95         |       |             | 22.31        |
| Ibm/MMBtu (Fuel LHV)    | 0.060    |             |       |       | 0.061         |       |             | 0.035        |
| Ibm/(MW-hr)             | 0.57     |             |       |       | 0.57          |       |             | 0.33         |
| (gas turbine shaft pwr) |          |             |       |       |               |       |             |              |
| Ibm/hr                  | 8.76     |             |       |       | 8.89          |       |             | 5.09         |
| 2                       | 19166 HP | 100.0% Load | Elev. | 25 ft | Rel. Humidity | 75.0% | Temperature | 70.0 Deg. F  |
| PPMvd at 15% O2         | 15.00    |             |       |       | 25.00         |       |             | 25.00        |
| ton/yr                  | 35.88    |             |       |       | 36.40         |       |             | 20.85        |
| Ibm/MMBtu (Fuel LHV)    | 0.059    |             |       |       | 0.060         |       |             | 0.035        |
| Ibm/(MW-hr)             | 0.57     |             |       |       | 0.58          |       |             | 0.33         |
| (gas turbine shaft pwr) |          |             |       |       |               |       |             |              |
| Ibm/hr                  | 8.19     |             |       |       | 8.31          |       |             | 4.76         |
| 3                       | 16249 HP | 100.0% Load | Elev. | 25 ft | Rel. Humidity | 75.0% | Temperature | 100.0 Deg. F |
| PPMvd at 15% O2         | 15.00    |             |       |       | 25.00         |       |             | 25.00        |
| ton/yr                  | 31.97    |             |       |       | 32.44         |       |             | 18.58        |
| Ibm/MMBtu (Fuel LHV)    | 0.058    |             |       |       | 0.059         |       |             | 0.034        |
| Ibm/(MW-hr)             | 0.60     |             |       |       | 0.61          |       |             | 0.35         |
| (gas turbine shaft pwr) |          |             |       |       |               |       |             |              |
| Ibm/hr                  | 7.30     |             |       |       | 7.41          |       |             | 4.24         |

### Notes

1. For short-term emission limits such as lbs/hr., Solar recommends using "worst case" anticipated operating conditions specific to the application and the site conditions. Worst case for one pollutant is not necessarily the same for another.
2. Solar's typical SoLoNOx warranty, for ppm values, is available for greater than 0 deg F, and between 50% and 100% load for gas fuel, and between 65% and 100% load for liquid fuel (except for the Centaur 40). An emission warranty for non-SoLoNOx equipment is available for greater than 0 deg F and between 80% and 100% load.
3. Fuel must meet Solar standard fuel specification ES 9-98. Emissions are based on the attached fuel composition, or, San Diego natural gas or equivalent.
4. If needed, Solar can provide Product Information Letters to address turbine operation outside typical warranty ranges, as well as non-warranted emissions of SO<sub>2</sub>, PM10/2.5, VOC, and formaldehyde.
5. Solar can provide factory testing in San Diego to ensure the actual unit(s) meet the above values within the tolerances quoted. Pricing and schedule impact will be provided upon request.
6. Any emissions warranty is applicable only for steady-state conditions and does not apply during start-up, shut-down, malfunction, or transient event.

|                                             |                                            |
|---------------------------------------------|--------------------------------------------|
| Customer                                    |                                            |
| Job ID                                      |                                            |
| Run By<br><b>Kevin M Frank</b>              | Date Run<br><b>6-Oct-11</b>                |
| Engine Performance Code<br><b>REV. 3.53</b> | Engine Performance Data<br><b>REV. 1.1</b> |

|                                    |
|------------------------------------|
| Model<br><b>TITAN 130-20502S</b>   |
| Package Type<br><b>CS/MD</b>       |
| Match<br><b>59F MATCH</b>          |
| Fuel System<br><b>GAS</b>          |
| Fuel Type<br><b>SD NATURAL GAS</b> |

### DATA FOR NOMINAL PERFORMANCE

|                          |                     |        |        |
|--------------------------|---------------------|--------|--------|
| Elevation                | feet                | 25     |        |
| Inlet Loss               | in H <sub>2</sub> O | 4.0    |        |
| Exhaust Loss             | in H <sub>2</sub> O | 4.0    |        |
|                          |                     | 1      | 2      |
| Engine Inlet Temperature | deg F               | 40.0   | 70.0   |
| Relative Humidity        | %                   | 75.0   | 75.0   |
| Driven Equipment Speed   | RPM                 | 8342   | 8294   |
| Specified Load           | HP                  | FULL   | FULL   |
| Net Output Power         | HP                  | 20794  | 19166  |
| Fuel Flow                | mmBtu/hr            | 146.36 | 137.84 |
| Heat Rate                | Btu/HP-hr           | 7039   | 7192   |
| Therm Eff                | %                   | 36.149 | 35.379 |
| Engine Exhaust Flow      | Ibm/hr              | 407162 | 380087 |
| PT Exit Temperature      | deg F               | 917    | 953    |
| Exhaust Temperature      | deg F               | 917    | 953    |

|                                          |                                             |        |
|------------------------------------------|---------------------------------------------|--------|
| Fuel Gas Composition<br>(Volume Percent) | Methane (CH <sub>4</sub> )                  | 92.79  |
|                                          | Ethane (C <sub>2</sub> H <sub>6</sub> )     | 4.16   |
|                                          | Propane (C <sub>3</sub> H <sub>8</sub> )    | 0.84   |
|                                          | N-Butane (C <sub>4</sub> H <sub>10</sub> )  | 0.18   |
|                                          | N-Pentane (C <sub>5</sub> H <sub>12</sub> ) | 0.04   |
|                                          | Hexane (C <sub>6</sub> H <sub>14</sub> )    | 0.04   |
|                                          | Carbon Dioxide (CO <sub>2</sub> )           | 0.44   |
|                                          | Hydrogen Sulfide (H <sub>2</sub> S)         | 0.0001 |
|                                          | Nitrogen (N <sub>2</sub> )                  | 1.51   |

|                     |               |       |                  |        |                    |        |
|---------------------|---------------|-------|------------------|--------|--------------------|--------|
| Fuel Gas Properties | LHV (Btu/Scf) | 939.2 | Specific Gravity | 0.5970 | Wobbe Index at 60F | 1215.6 |
|---------------------|---------------|-------|------------------|--------|--------------------|--------|

*This performance was calculated with a basic inlet and exhaust system. Special equipment such as low noise silencers, special filters, heat recovery systems or cooling devices will affect engine performance. Performance shown is "Expected" performance at the pressure drops stated, not guaranteed.*

## Compression Requirements

|           | Suct<br>Psig | Disch<br>Psig | Ts<br>F | Td  | Flow<br>MMSCFD | Ambient<br>Temp F | Compressor<br>Power HP | Turbine     | Comp   |
|-----------|--------------|---------------|---------|-----|----------------|-------------------|------------------------|-------------|--------|
| MP 94-1   | 750          | 1180          | 60      | 127 | 500            | 40                | 11076                  | T130        | C51-4  |
|           | 850          | 1320          | 75      | 142 | 700            | 100               | 15925                  | <b>T130</b> |        |
|           | 850          | 1210          | 60      | 114 | 750            | 40                | 13569                  | T130        |        |
|           | 850          | 1370          | 75      | 147 | 500            | 100               | 12088                  | T130        |        |
|           | 850          | 1180          | 60      | 109 | 600            | 40                | 9543                   | T130        |        |
|           | 850          | 1120          | 60      | 111 | 1000           | 40                | 18321                  | <b>T130</b> |        |
| MP 94-2   | 750          | 1370          | 75      | 166 | 500            | 100               | 15574                  | <b>T130</b> | C51-4a |
|           | 750          | 1210          | 60      | 137 | 750            | 40                | 19763                  | <b>T130</b> |        |
|           | 750          | 1180          | 60      | 127 | 500            | 40                | 11159                  | T130        |        |
|           | 750          | 1320          | 75      | 160 | 500            | 100               | 14556                  | T130        |        |
|           | 750          | 1180          | 60      | 127 | 400            | 40                | 8770                   | T130        |        |
| MP-76     | 825          | 1100          | 60      | 102 | 200            | 40                | 2768                   | C50         | C40-2  |
|           | 825          | 1160          | 60      | 111 | 500            | 40                |                        |             | C50    |
|           |              |               |         |     | 2x250          |                   | 4162                   | C50         |        |
|           | 825          | 1300          | 75      | 145 | 200            | 100               | 4556                   | C50         |        |
|           | 775          | 1000          | 60      | 104 | 750            | 40                |                        |             | C50    |
|           |              |               |         |     | 3x250          | 40                | 3394                   | C50         |        |
|           |              |               |         |     | 2x375          | 40                | 5749                   | <b>C50</b>  |        |
| MP-16     | 875          | 980           | 60      | 77  | 300            | 40                | 1706                   | C50         | C40-2a |
|           | 875          | 1210          | 75      | 123 | 300            | 100               | 4840                   | <b>C50</b>  |        |
|           | 875          | 1190          | 75      | 121 | 200            | 100               | 3071                   | C50         |        |
| Titan 130 | Ambient      | Power HP      |         |     | Cent 50        | Amb               | Power                  |             |        |
|           | 40           | 20794         |         |     |                |                   | 40                     |             | 6387   |
|           | 70           | 19166         |         |     |                |                   | 70                     |             | 5832   |
|           | 100          | 16249         |         |     |                |                   | 100                    |             | 4959   |

Power figures are Nominal +/- 3%

# Solar Turbines

A Caterpillar Company

## Solar Turbines Incorporated Terms and Conditions of Sale

Solar Turbines Incorporated (herein "Seller") is based in San Diego, California, with subsidiary and affiliated company offices located throughout the world. **These Terms and Conditions of Sale are issued in connection with a written offer, such as a sales proposal, (hereinafter "offer") by Seller to supply certain goods (and incidental services) to Buyer. Unless otherwise specifically stated in the offer, these Terms and Conditions of Sale establish the rights, obligations and remedies of Seller and Buyer that apply to the offer and any resulting Order (as defined in Article 1 below).**

**1. ACCEPTANCE.** The issuance of a purchase order document against the offer shall constitute an acceptance of the offer and not a counteroffer and shall create a contract of sale (herein "Order"). Provisions contained in purchase order documents issued against the offer that materially modify, add to, or change the provisions of the offer shall not be a part of the Order unless expressly agreed by Seller in Seller's written acknowledgement.

**2. MODIFICATIONS/CHANGES.** Requests by Buyer for any modifications or changes to the Order, including, without limitation, changes in specifications, quantities, delivery obligations and terms of payment, must be made in writing. All such requests are subject to Seller's written acceptance and may result in adjustments to price and/or delivery schedules.

### 3. PRICES AND PAYMENTS.

**3.1 Prices.** Unless otherwise specifically stated in the offer, all prices are in U.S. dollars and are valid for a period of thirty (30) days from the date of the offer. Prices do not include sales, use or excise taxes, import or export duties, special financing fees, value added taxes, income or royalty taxes, consular fees, special permits or licenses or similar charges (collectively, "taxes") (however, Seller shall be responsible for its own corporate income taxes and taxes related to its employees' work hereunder). Buyer shall either pay any and all such taxes and charges or Buyer shall provide Seller with acceptable exemption certificates. If Buyer fails to provide such certificates at least sixty (60) days prior to the scheduled ready to ship date, Seller shall provide Buyer proof that such taxes were paid, and it shall be Buyer's duty to recover such taxes. All prices are based on delivery in accordance with the delivery term specified in the offer, and do not include any charges for services such as preservation packaging, insurance, brokerage fees, marine survey, load out and tie down, site installation, or equipment start-up, unless such delivery term provides for such services under Incoterms 2000, or as otherwise agreed in writing by Seller.

**3.2 Invoicing/Payment.** Seller will submit invoices to Buyer according to the payment schedule stated in the offer, or as otherwise expressly agreed by Seller in writing. Unless otherwise specifically stated in the offer or expressly agreed by Seller in writing: (i) Seller may split invoice for units that are shipped individually when such units are separately priced in the Order; (ii) all payments shall be made in U.S. dollars; (iii) at Seller's option, all payments shall be made by commercial letter of credit acceptable to Seller or made by wire transfer prior to shipment. Open account terms are subject to Seller's credit review and approval. In the event that open account payment is approved by Seller, all payments shall be due net thirty (30) days from the date of Seller's invoice (provided, however, that Seller may at any time and in its sole discretion grant or cancel Buyer's open account payment terms). If Buyer fails to meet its payment obligations, Seller may discontinue manufacture and/or delivery of goods and treat such as a material breach by Buyer entitling Seller to the cancellation charges in Article 9. Any invoice amount not paid when due shall be subject to a late payment charge equal to one and one-half percent (1.5%) of the delinquent amount per month or the maximum amount permitted by law, whichever is less, prorated on a daily basis for each day that such amount remains unpaid.

**3.3 Security Interest.** Buyer grants Seller a security interest in all goods identified to or delivered under the Order until payment of the total Order price is received. Buyer shall, at the request of Seller, execute and deliver to Seller any instruments (including Uniform Commercial Code Financing Statements) that Seller may deem necessary to protect its security interest in the goods.

**4. TITLE & RISK OF LOSS.** Seller warrants title to all goods hereunder, and its transfer of ownership is rightful and free from any security interest or other lien or encumbrance of third parties. Unless otherwise expressly agreed in writing by Seller, title and risk of loss to the goods (or, in the case of partial or split shipments, the applicable items) shall pass to the Buyer when such goods or items are delivered in accordance with the applicable delivery term. Partial shipments of minor components and/or split shipments of multiple units are allowed. Claims for damages or shortages attributable to Seller must be in

writing and received by Seller within thirty (30) days after receipt of goods, and must be accompanied by Seller's packing slip and full particulars of any such claim.

**5. TESTS/INSPECTION.** Buyer may observe Seller's normal factory inspections and test of the goods, as well as tests specifically stated in the Order, on a non-interference basis at times scheduled for Seller's convenience and subject to Seller's standard security procedures. Special tests and inspections may be arranged at Buyer's written request, upon acknowledgement from Seller and adjustment of the price. Buyer may inspect the goods and any unit and review all test results and documentation prior to shipment and, unless good cause for rejection is shown, the goods and any unit thereof shall be deemed accepted upon satisfactory completion of such factory tests and readiness for shipment.

### 6. WARRANTY.

**6.1 Goods.** Except as otherwise specified below, Seller warrants the goods during the Warranty Period (as defined below), on a unit-by-unit basis, to be free from defects in workmanship and material used in their manufacture. The "Warranty Period" commences upon the delivery of the goods, on a unit-by-unit basis, in accordance with the applicable delivery term, and expires on the earlier of: (i) the date which is eighteen (18) months after readiness of the unit for shipment; or (ii) the date which is twelve (12) months after the unit is first placed into service, or would be capable of being placed into service but for any cause beyond the reasonable control of Seller (e.g., lack of fuel supply). The foregoing warranty coverage shall be subject to the following conditions, qualifications, remedies and exclusions:

- a. A warranty claim, substantially in accordance with Seller's warranty claim procedures, is submitted to Seller in writing promptly upon discovery of the claimed defect;
- b. The goods are stored, installed, operated and maintained in accordance with good engineering practices and any applicable industry standards, and Seller's recommended procedures and specifications (including, without limitation, the applicable operation and maintenance manual(s) for the unit(s) and any applicable fuel, air, water, packaging or preservation specifications or recommendations communicated or otherwise made available to Buyer in writing);
- c. Any defective part(s) of the goods are promptly returned to Seller in accordance with Seller's standard warranty claim instructions, transportation charges prepaid;
- d. Examination of such part(s) by Seller confirms the existence of a defect within the Warranty Period;
- e. Seller's obligations under this warranty are limited to repair or replacement of the confirmed defective part(s), as Seller elects, free of charge at Seller's place of business or repair center; and excluding freight and site labor costs to remove, repair or replace such part(s). All replacement parts and repaired parts are warranted through, but not beyond, the original Warranty Period;
- f. The above warranty shall not apply to or include: (i) normal maintenance services or adjustments; (ii) the removal or reinstallation of warranted goods or the costs associated therewith; (iii) any goods that have been repaired or altered, other than by Seller, in any way so as to adversely affect their operation or reliability in Seller's judgment; or (iv) the effects of corrosion, erosion, degradation, wear and tear, or failure occasioned by operation, condition of service more severe than specified in the Order or otherwise not in accordance with Seller's written recommendations; and
- g. Construction works, fabrications, major off-package accessories, ancillary equipment, and driven equipment not of Seller's manufacture are warranted only to the extent of the original manufacturer's or supplier's warranty, copies of which shall be made available upon request.

**6.2 Service Activities.** Except as otherwise specified below, Seller warrants the onsite service activities performed or provided by Seller in connection with the supply of the goods, including, without limitation, inspection, start-up, technical representation, erection, installation, commissioning, supervision, construction, or other services provided by the Seller under the Order

("Services") will be performed in a workmanlike manner. The foregoing warranty coverage shall be subject to the following conditions, qualifications, remedies and exclusions:

a. The Services are warranted for thirty (30) days from the date the applicable Services are furnished.

b. All claims for defective Services under this warranty must be made in writing immediately upon discovery, but in any event no later than thirty (30) days from the date the Services are furnished. Upon submission and substantiation of a claim, Seller shall, at its option, either: (i) correct the defective services; or (ii) refund an equitable portion of the price of the Services.

### 6.3 Additional Qualifications and Limitations to Warranty.

a. Seller warrants that the goods and any Services will conform only to those national, federal, state or local laws, ordinances, regulations, codes and standards, as specifically stated in the offer or agreed to in writing by Seller.

b. THE ABOVE WARRANTIES ARE IN LIEU OF ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, all other representations to the original Buyer, and all other obligations or liabilities, including liability for incidental or consequential damages. No person is authorized to give any other warranties or to assume any other liability on Seller's behalf unless agreed to in writing by Seller.

c. Seller's sole liability and responsibility, and Buyer's sole and exclusive remedy, with respect to any and all warranties shall be limited to the respective remedies set forth above. All such remedies will be subject to the limitations of Article 14 below.

**7. EXCUSABLE DELAY.** Seller shall not be liable for any delay in performance, any nonperformance, or any other deviation in performance of Seller's obligations, nor for any loss or damage to the goods supplied hereunder, when occasioned directly or indirectly by any cause or causes beyond the reasonable control of Seller or its subcontractors or suppliers, including, but not limited to, acts of God; acts of criminals or public enemy; war; riot; official or unofficial acts, orders, regulations or restrictions of any foreign or domestic government or agency thereof; acts of Buyer or its employees or representatives; strikes or labor difficulties involving employees of Seller or any other party; failure, shortage or delay in Seller's usual sources of labor or material supply. Seller shall have a reasonable extension of the time for performance when delayed by any such cause.

### 8. SUSPENSION OR DELAY.

**8.1** Buyer's request for suspension of the Order or a delay in shipment/delivery ("Buyer delay") must be provided in writing to Seller, and is not effective until acknowledged in writing by Seller. Notwithstanding the foregoing, Buyer actions or inactions that effectively prevent Seller's progress shall be deemed a Buyer delay. A Buyer delay may result in adjustments to prices, payments, delivery terms, and delivery schedules. The time required for subsequent completion of the Order may exceed the number of days of delay due to Seller's scheduling constraints. If the cumulative duration of any and all Buyer delays exceeds sixty (60) days, then the Order shall be deemed terminated by the Buyer, and Seller shall be entitled to cancellation charges as set forth in Article 9.

**8.2** In the event: (i) a Buyer delay occurs sixty (60) or fewer days prior to the scheduled readiness to ship date; (ii) a Buyer delay occurs at a point where production/fabrication has proceeded to the point that Seller determines that it cannot reasonably reschedule completion, or (iii) Seller reasonably determines that the goods will be ready for delivery in accordance with the applicable delivery term/location but Buyer will be unable or unwilling to take possession (e.g., when a job site is not ready for delivery due to no fault of Seller); then the Order shall be completed and the provisions in 8.2.a and 8.2.b shall apply.

a. Buyer shall have the right to designate an alternative delivery location. If Buyer fails to identify an alternative delivery location within fourteen (14) days after the notice of readiness to ship, then Seller shall be entitled to deliver the goods to a storage facility designated by Seller. Upon Seller's notice to Buyer thereof, the delivery location (and the delivery term, if applicable) will be modified accordingly, and the Order price will be adjusted to the extent necessary to account for any difference in applicable freight or other charges resulting from the modified delivery location/term.

b. Upon delivery of the goods in accordance with the modified delivery location/term: (i) title and risk of loss to the goods shall transfer to Buyer; (ii) Buyer shall be solely responsible for arranging and paying for storing the

goods, subsequent loading, unloading, transportation and insuring the goods directly with the third parties providing such services; and (iii) the payment milestones shall be automatically modified to allow Seller to invoice Buyer for any remaining portion of the Order price, which shall be due and payable in accordance with the invoice.

**9. TERMINATION/CANCELLATION.** In the event of termination or cancellation of the Order by Buyer (other than due to a material breach by Seller), or termination by Seller due to a material breach by Buyer, Buyer shall pay Seller cancellation charges in accordance with the following cancellation schedule.

| TERMINATION/CANCELLATION SCHEDULE |                  | CANCELLATION CHARGE              |
|-----------------------------------|------------------|----------------------------------|
| FROM                              | CALENDAR DAYS TO | (STRAIGHT LINE % OF ORDER PRICE) |
| Order                             | 15 ARO           | 5                                |
| 16 ARO                            | 30 ARO           | 5-10                             |
| 31 ARO                            | 60 ARO           | 10-20                            |
| 61 ARO                            | 91 before RTS    | 20-70                            |
| 90 before                         | on or after RTS  | 70-90                            |
|                                   | RTS              |                                  |

ARO: after receipt of Order or other authorization to proceed with manufacturing (e.g., letter of commitment)

RTS: scheduled ready to ship date

All construction works, fabrications, major off-package accessories, and ancillary equipment to be supplied, and engineering, installation and construction work to be performed by Seller, as separately priced in the Order, shall be subject to termination charges of twenty-five percent (25%) over and above Seller's total costs, including costs associated with termination of subcontracts and purchase orders, and for any disposition of such goods/work.

In no event shall the cancellation charge exceed the Order price, and any payments made by Buyer up to the date of termination shall be credited against the applicable cancellation charge. The parties agree that the cancellation charges identified above are a fair and reasonable estimation of the damages to be incurred by Seller as a result of any such cancellation/termination, and are not intended to be compensation or consideration for any goods. Accordingly, upon any such cancellation or termination, Seller shall retain all goods, in whatever stage of completion.

**10. PATENT INFRINGEMENT.** Seller will defend, indemnify and hold Buyer harmless from any claim that the goods infringe upon a third party's rights in a registered United States patent or trademark, provided (i) Buyer promptly notifies Seller in writing of any such claim, (ii) Buyer gives Seller the sole right to defend, settle and control the defense of the suit or proceeding, (iii) Buyer provides all necessary information and assistance for such defense or settlement, and (iv) Buyer takes no position that is material and adverse to Seller's defense of such claim. In the event Seller is obligated to defend such suit or proceeding, Seller will pay costs and damages finally awarded or agreed upon by Seller that are directly related thereto. Seller may, at Seller's own discretion and expense: (i) procure for Buyer the right to continue using the goods, (ii) replace the goods with non-infringing goods, or (iii) modify the goods to make them non-infringing. Seller will have no liability or obligation to defend if the claim, suit or proceeding is based on or arises out of a configuration, modification or change to the goods that is made, specified or requested by Buyer. The foregoing indemnity constitutes Seller's sole responsibility for infringement claims. Notwithstanding the above, Buyer agrees to defend, indemnify and hold Seller harmless from any claim of infringement for goods designed or manufactured to Buyer's specifications if such design, manufacture or specification constitutes the basis for such actual or alleged infringement claim.

**11. RIGHTS TO DRAWINGS AND DATA.** All engineering designs, data, and specifications ("Technical Information") delivered to Buyer are proprietary and shall (a) only be used by Buyer for goods sold as part of this Order and, (b) not be disclosed or reused without Seller's prior written consent. Seller grants Buyer a royalty free, non-exclusive license to use the Technical Information that is specifically identified and purchased as a part of the Order for Buyer's internal business purposes, including the right to share such Technical Information with Buyer's contractors and their subcontractors for the sole purpose of providing services to Buyer (and no other purpose), but only if such contractors and their subcontractors execute confidentiality agreements that are acceptable to Seller; provided, however, that Seller assumes no responsibility for such use. Notwithstanding the above, Buyer and its contractors and their subcontractors shall not use any Technical Information for commercial purposes of any kind. Any right granted herein shall be non-transferable except that Buyer may transfer such right to any successor owner or operator of the goods sold by Seller in this Order.

**12. ASSIGNMENTS.** Seller shall have the right to assign any rights or obligations under the Order to any of its affiliated or subsidiary companies. Any assignment of Buyer's rights or obligations under the Order shall be null and void unless Seller consents in writing.

**13. ON-SITE ACTIVITY.** In the event the Order calls for any Services to be performed on-site, the following conditions shall apply in addition to the conditions specified in Seller's Customer Services Rate Sheet:

**13.1 Buyer Assistance.** Buyer shall provide such assistance as Seller may reasonably require to facilitate timely completion of the Order. If Seller is unable to perform through no fault of its own or as a result of Buyer's failure to cooperate or provide assistance, Seller shall be excused from performance. In such event, Seller may, at its option, terminate the Order in accordance with Article 9, or continue to perform to the extent possible and shall be entitled to an equitable adjustment in the Order price and/or schedule. Buyer assistance shall be free of charge and include but shall not be limited to, the following:

a. Buyer shall provide reasonable security and protection for all persons, property and equipment employed or used by Seller in the performance of the Order.

b. Buyer shall make available to Seller the use of any required utilities, including electrical power, transport and water.

c. Buyer shall assist Seller in obtaining access to roads, railways, pumping stations, power lines, pipelines, canals, and the like necessary in the performance of the Order.

d. Buyer shall provide Seller with fuels and lubricants in sufficient quantity and quality to meet the requirements of each phase of the Order.

e. Buyer shall assist Seller in obtaining any permits, licenses, or authorizations necessary to complete the Order and Buyer shall be responsible for obtaining all environmental permits including without limitation, air permits, permits to construct and/or operate and those relating to land use.

f. Buyer shall provide Seller with safe access to the goods as may be necessary to perform services in accordance with the Order.

g. In the event Seller's agents, subcontractors, employees or other representatives have to perform work outside the United States, Buyer shall provide assistance to facilitate their entry, movement within or exit from any country where performance is rendered, including assisting Seller in obtaining necessary residence and work permits. Buyer shall be responsible for the payment of any applicable income taxes or other employee fees or taxes.

h. In the event Seller's agents, subcontractors, employees or other representatives have to perform any portion of the Order at a remote site or in offshore waters in the United States, Buyer shall provide the following in accordance with accepted international industry standards and norms and at no cost to Seller: (i) all transportation for such persons from an agreed staging point to and from the site; (ii) all messing, housing, sanitation facilities, and emergency medical care; and (iii) all transportation and necessary special handling equipment to move Seller's goods, tools, and equipment from an agreed staging point to and from the site.

**13.2 Differing Site Conditions.** If Seller, in the course of performing the Order discovers (i) subsurface or latent physical conditions at the site differing materially from those indicated in the Order, or (ii) unknown physical conditions at the site, of any unusual nature, differing materially from those ordinarily encountered in the work of the character provided for in the Order, then Seller shall inform Buyer and Buyer shall promptly investigate the conditions. If the conditions do so differ and cause an increase in Seller's cost of or time for performance of any part of the work under the Order, whether or not changed as a result of such conditions, an equitable adjustment in the Order price and/or schedule shall be made and the Order shall be modified accordingly.

**13.3 Independent Contractor.** At all times while performing the Order, Seller shall be deemed to be an INDEPENDENT CONTRACTOR and not an employee or agent of Buyer. Equipment operators and other Buyer employees, agents, subcontractors, or servants assigned to assist Seller may receive temporary instructions, directions, or control from Seller but shall, at all times, be considered the employees, agents, subcontractors, or servants of Buyer and not of Seller.

#### 14. LIMIT OF LIABILITY.

**14.1** Neither Buyer nor Seller or their affiliates, subcontractors, agents and/or employees shall be liable for any special, indirect, punitive, exemplary, incidental, or consequential loss or damages of any nature (including, but not limited to, loss of use, loss of profit, losses resulting from or related to downtime of the goods or the cost of replacement power or compression), howsoever caused and whether based on warranty, contract, tort (including negligence) strict liability or any other theory of the law.

**14.2** The total liability of Seller, its affiliates, subcontractors, agents and employees arising out of the performance or nonperformance of the Order or any of its obligations (including, without limitation, obligations in connection with the design, manufacture, sale, delivery, storage, erection or use of the goods or the rendition of any work or other services in connection therewith), whether based on warranty, contract, tort (including negligence), strict liability or any other theory of the law, shall not exceed in the aggregate a sum equal to one times the Order price of the discrete unit involved in the applicable claim.

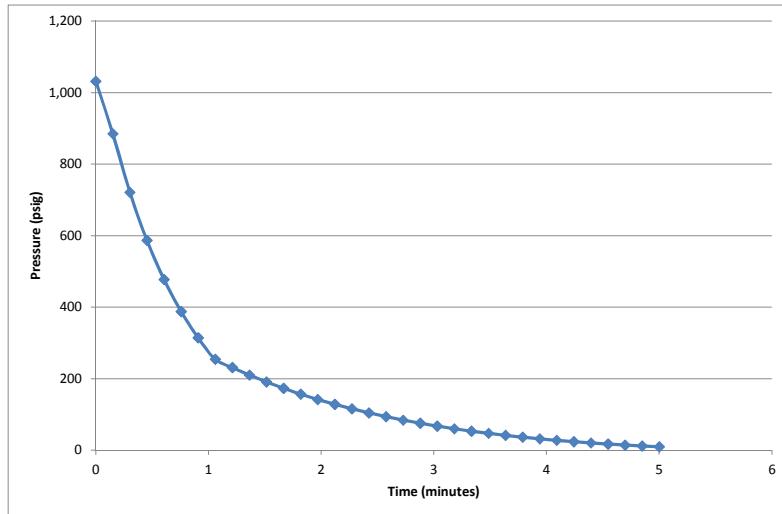
**14.3** The limitations of liability set forth in this Article 14 shall prevail over any conflicting or inconsistent provisions contained in any documents comprising the Order.

**15. REGULATORY COMPLIANCE/APPLICATION RESTRICTIONS.** Buyer shall comply with all applicable laws and regulations related to the purchase of the goods and services under the Order including but not limited to, safety and environmental regulations, technical standards, and all applicable U.S. laws and regulations pertaining to any exportation of the goods (e.g., the United States Export Administration Act and the rules and regulations issued thereunder). Further, Buyer shall not use or operate the goods in a manner other than that intended in Seller's offering without Seller's prior written consent. The goods shall not be exported, re-exported or transshipped contrary to United States law. When Buyer is the exporter of record, it is Buyer's responsibility to acquire any required export license, to submit any required export declaration, and to provide any documentation required in connection with the export of the goods from the United States. Seller will assist in the supply of information required in the application process. Seller shall have no responsibility to review and confirm Buyer's compliance with any applicable laws and regulations relating to exports from the United States, and shall not be liable for any delays in delivery or suspensions in performance resulting directly or indirectly from the inability, due to causes beyond Seller's reasonable control, to obtain on a timely basis any necessary or applicable government authorizations (e.g., export licenses).

**16. DISPUTES/APPLICABLE LAW.** Buyer and Seller shall use their best efforts to resolve any dispute or claim that may arise under the Order in an amicable manner. Except for Seller's claims for non-payment by Buyer hereunder, in the event either party believes the other party is in breach of or is noncompliant with any of the provisions of the Order, such party shall promptly notify the other in writing of such claim and the receiving party shall take reasonable measures to remedy such breach or noncompliance within thirty (30) days after receipt of notice. If the dispute is not resolved within such time, then the party initiating the claim shall demand a meeting of the parties, which meeting shall be held promptly in San Diego, California, unless the parties otherwise agree. Persons attending such meeting shall have decision-making authority regarding the dispute to attempt, in good faith, to negotiate a resolution of the dispute. The parties agree to participate in such negotiations and, if agreeable, mediation related thereto, for a period of thirty (30) days. If the parties are not successful in resolving the dispute through the negotiations, or mediation, if used, then the parties may seek an adjudicated resolution through the appropriate court. Should any provision of the Order be declared invalid, such declaration shall not invalidate or void the remaining provisions of the Order. The Order, having a reasonable relationship to the State of California, shall be governed by the laws of the State of California, without regard to conflict of law principles.

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

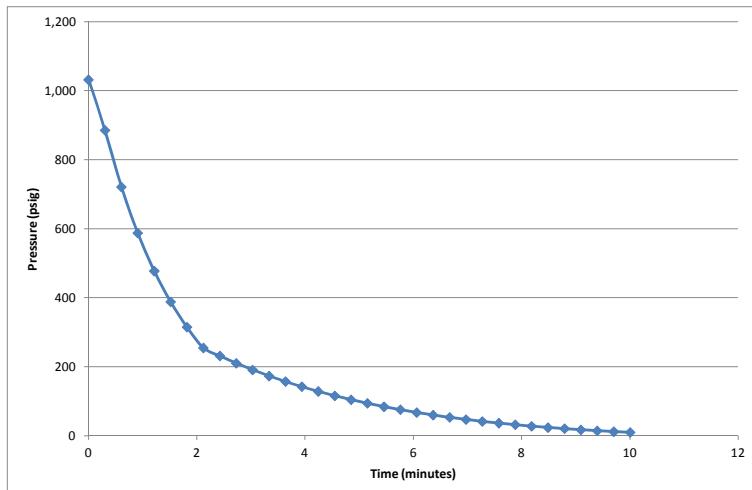
**ATTACHMENT 8**


## BLOW DOWN SYSTEM CALCULATIONS

## PIPE VOLUME CALCULATIONS

| SECTION:          |             | COMPRESSOR UNIT A |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        | BDV TAG:                    |         |         |          |            |              |
|-------------------|-------------|-------------------|----------|--------|-------|--------|--------|--------|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------|-----------------------------|---------|---------|----------|------------|--------------|
| Section           | Description | Line              | NPS (in) | Piping | Sch / | OD(in) | ID(in) | WT(in) | Length | Transv             | Cylinder           | Heads              | Volume             | Normal             | Press  | Temp                        | Pseudo- | Pseudo- | Z Factor | Moles      | Temp x Moles |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        |                             | reduced | reduced | Press    | Temp       | (lbmol)      |
|                   |             |                   |          | Number | Class | BWG    |        |        | (ft)   | (ft <sup>2</sup> ) | (ft <sup>3</sup> ) | (ft <sup>3</sup> ) | (ft <sup>3</sup> ) | (ft <sup>3</sup> ) | (psig) | (°F)                        | Press   | Temp    |          |            |              |
| Comp Suction      | Piping      |                   | 36"      | D      | 40    | 36.000 | 34.500 | 0.750  | 100    | 6.492              | 649.181            |                    | 649                | 30770              | 750    | 80                          | 1.129   | 1.551   | 0.908    | 94         | 50964        |
| Comp Discharge    | Piping      |                   | 30"      | D      | STD   | 30.000 | 29.250 | 0.375  | 200    | 4.666              | 933.274            |                    | 933                | 61201              | 1200   | 160                         | 1.793   | 1.780   | 0.920    | 185        | 114792       |
| Cooler Inlet      | Piping      |                   | 16"      | D      | XS    | 16.000 | 15.000 | 0.500  | 20     | 1.227              | 24.544             |                    | 25                 | 1610               | 1200   | 160                         | 1.793   | 1.780   | 0.920    | 5          | 3019         |
| Cooler Inlet      | Piping      |                   | 16"      | D      | XS    | 16.000 | 15.000 | 0.500  | 20     | 1.227              | 24.544             |                    | 25                 | 1610               | 1200   | 160                         | 1.793   | 1.780   | 0.920    | 5          | 3019         |
| Cooler Outlet     | Piping      |                   | 16"      | D      | XS    | 16.000 | 15.000 | 0.500  | 20     | 1.227              | 24.544             |                    | 25                 | 1720               | 1200   | 120                         | 1.793   | 1.666   | 0.893    | 5          | 3112         |
| Cooler Outlet     | Piping      |                   | 16"      | D      | XS    | 16.000 | 15.000 | 0.500  | 20     | 1.227              | 24.544             |                    | 25                 | 1720               | 1200   | 120                         | 1.793   | 1.666   | 0.893    | 5          | 3112         |
| Cooler Discharge  | Piping      |                   | 30"      | D      | STD   | 30.000 | 29.250 | 0.375  | 50     | 4.666              | 233.318            |                    | 233                | 16355              | 1200   | 120                         | 1.793   | 1.666   | 0.893    | 51         | 29582        |
| Compressor Bypass | Piping      |                   | 24"      | D      | 40    | 24.000 | 22.624 | 0.688  | 125    | 2.792              | 348.960            |                    | 349                | 24462              | 1200   | 120                         | 1.793   | 1.666   | 0.893    | 76         | 44245        |
| Compressor Bypass | Piping      |                   | 24"      | D      | 40    | 24.000 | 22.624 | 0.688  | 125    | 2.792              | 348.960            |                    | 349                | 16540              | 750    | 80                          | 1.129   | 1.551   | 0.908    | 51         | 27395        |
| Cooler            | Tubing      | Tubes             | 1"       |        | 14    | 1.000  | 0.834  | 0.083  | 9000   | 0.004              | 34.143             |                    | 34                 | 2239               | 1200   | 160                         | 1.793   | 1.780   | 0.920    | 7          | 4200         |
| Cooler            | Tubing      | Tubes             | 1"       |        | 14    | 1.000  | 0.834  | 0.083  | 9000   | 0.004              | 34.143             |                    | 34                 | 2239               | 1200   | 160                         | 1.793   | 1.780   | 0.920    | 7          | 4200         |
|                   |             |                   |          |        |       |        |        |        |        | 2680               | 160466             |                    |                    |                    |        |                             | Total   |         | 491      | 287640     |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        | T Average                   |         |         | °F       | 125.15     |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        | P Average                   |         |         | psig     | 1,032.00   |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        | Std Vol                     |         |         | SCF      | 186,500.28 |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        | Molecular Weight            |         |         | lb/lbmol | 16.70      |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        | Pseudo Critical Pressure    |         |         | psia     | 677.6      |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        | Pseudo Critical Temperature |         |         | °R       | 348.3      |              |

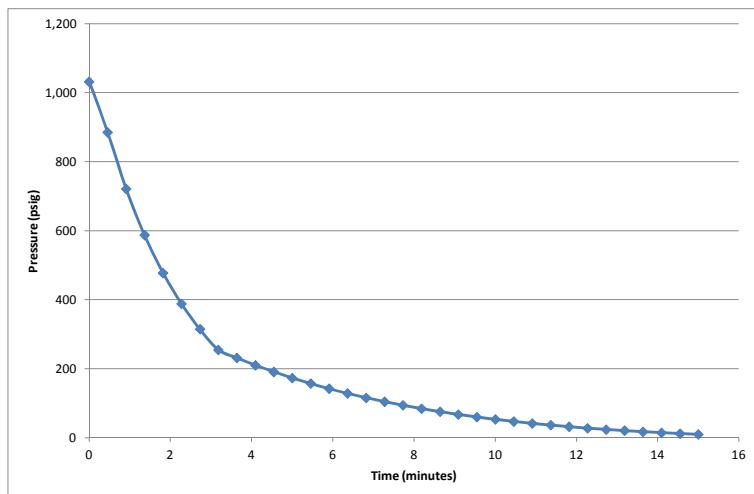
## BLOWDOWN CALCULATIONS


| Reference Data                             | Initial         | Change             |
|--------------------------------------------|-----------------|--------------------|
| Orifice Diameter, Inches                   | 2.674           | 2.674              |
| Choke Area                                 | in <sup>2</sup> | 5.616              |
| Inlet Pipe OD                              | in              | 8"                 |
| Inlet Pipe Class                           |                 | D                  |
| Schedule                                   |                 | 40                 |
| Inlet Pipe ID                              | in              | 7.981              |
| Pseudo Critical Pressure                   |                 | 675.500            |
| Pseudo Critical Temperature                |                 | 347.900            |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.335              |
| Settleout Z                                |                 | 0.948              |
| Gas Molecular Weight                       |                 | 16.700             |
| Gas Gravity                                |                 | 0.576              |
| Cp/Cv Ratio                                |                 | 34.621             |
| Time Increment, seconds                    |                 | 9.091              |
| Critical Ratio, Pct                        |                 | 0.052              |
| Expansion Factor, F <sub>cr</sub>          |                 | 1.314              |
| Gravity Correction Factor                  |                 | 1.020              |
| Vent Header Back Pressure, psig            |                 | 0.000              |
| Initial Blowdown Volume, ft <sup>3</sup>   |                 | 2,680.155          |
| Mole to Blowdown, LB-Moles                 |                 | 491.437            |
| Settleout Pressure, psig                   |                 | 1,032.003          |
| Ave. Settleout Temp., deg R/deg F          |                 | 585.303 °R / 125°F |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh | Inventory Moles | Vented Moles | Total Vent |
|---------------|---------------|-----------------------|---------|---------------------------------|------------|-----------------|--------------|------------|
| 0.00          | 0             | 1032.00               | 1032.0  | 0.014                           | 12906400   | 491.437         | -            |            |
| 0.15          | 9             | 885.40                | 885.4   | 0.016                           | 11098744   | 405.556         | 85.9         | 85.9       |
| 0.30          | 18            | 721.49                | 721.5   | 0.020                           | 9077632    | 331.703         | 73.9         | 159.7      |
| 0.45          | 27            | 587.43                | 587.4   | 0.024                           | 7424571    | 271.299         | 60.4         | 220.1      |
| 0.61          | 36            | 477.78                | 477.8   | 0.030                           | 6072536    | 221.895         | 49.4         | 269.5      |
| 0.76          | 45            | 388.10                | 388.1   | 0.036                           | 4966711    | 181.487         | 40.4         | 309.9      |
| 0.91          | 55            | 314.75                | 314.7   | 0.045                           | 4062259    | 148.438         | 33.0         | 343.0      |
| 1.06          | 64            | 254.75                | 254.8   | 0.055                           | 1560661    | 121.407         | 27.0         | 370.0      |
| 1.21          | 73            | 231.71                | 231.7   | 0.060                           | 1430585    | 111.022         | 10.4         | 380.4      |
| 1.36          | 82            | 210.58                | 210.6   | 0.065                           | 1311260    | 101.503         | 9.5          | 389.9      |
| 1.52          | 91            | 191.21                | 191.2   | 0.071                           | 1201788    | 92.777          | 8.7          | 398.7      |
| 1.67          | 100           | 173.46                | 173.5   | 0.078                           | 1101348    | 84.780          | 8.0          | 406.7      |
| 1.82          | 109           | 157.20                | 157.2   | 0.086                           | 1009183    | 77.452          | 7.3          | 414.0      |
| 1.97          | 118           | 142.29                | 142.3   | 0.094                           | 924601     | 70.737          | 6.7          | 420.7      |
| 2.12          | 127           | 128.64                | 128.6   | 0.103                           | 846968     | 64.584          | 6.2          | 426.9      |
| 2.27          | 136           | 116.13                | 116.1   | 0.112                           | 775699     | 58.948          | 5.6          | 432.5      |
| 2.42          | 145           | 104.68                | 104.7   | 0.123                           | 710259     | 53.787          | 5.2          | 437.7      |
| 2.58          | 155           | 94.19                 | 94.2    | 0.135                           | 650156     | 49.060          | 4.7          | 442.4      |
| 2.73          | 164           | 84.58                 | 84.6    | 0.148                           | 594938     | 44.734          | 4.3          | 446.7      |
| 2.88          | 173           | 75.80                 | 75.8    | 0.162                           | 544190     | 40.775          | 4.0          | 450.7      |
| 3.03          | 182           | 67.76                 | 67.8    | 0.178                           | 497532     | 37.154          | 3.6          | 454.3      |
| 3.18          | 191           | 60.41                 | 60.4    | 0.196                           | 454611     | 33.844          | 3.3          | 457.6      |
| 3.33          | 200           | 53.70                 | 53.7    | 0.215                           | 415106     | 30.819          | 3.0          | 460.6      |
| 3.48          | 209           | 47.57                 | 47.6    | 0.236                           | 378719     | 28.056          | 2.8          | 463.4      |
| 3.64          | 218           | 41.98                 | 42.0    | 0.259                           | 345176     | 25.536          | 2.5          | 465.9      |
| 3.79          | 227           | 36.88                 | 36.9    | 0.285                           | 314225     | 23.239          | 2.3          | 468.2      |
| 3.94          | 236           | 32.24                 | 32.2    | 0.313                           | 285633     | 21.149          | 2.1          | 470.3      |
| 4.09          | 245           | 28.02                 | 28.0    | 0.344                           | 259184     | 19.248          | 1.9          | 472.2      |
| 4.24          | 255           | 24.19                 | 24.2    | 0.378                           | 234678     | 17.523          | 1.7          | 473.9      |
| 4.39          | 264           | 20.73                 | 20.7    | 0.415                           | 211930     | 15.962          | 1.6          | 475.5      |
| 4.55          | 273           | 17.60                 | 17.6    | 0.455                           | 190766     | 14.551          | 1.4          | 476.9      |
| 4.70          | 282           | 14.78                 | 14.8    | 0.499                           | 171025     | 13.282          | 1.3          | 478.2      |
| 4.85          | 291           | 12.25                 | 12.3    | 0.545                           | 152554     | 12.144          | 1.1          | 479.3      |
| 5.00          | 300           | 10.00                 | 10.0    | 0.595                           | 135210     | 11.129          | 1.0          | 480.3      |

## BLOWDOWN CALCULATIONS


| Reference Data                             | Initial         | Change     |
|--------------------------------------------|-----------------|------------|
| Orifice Diameter, Inches                   | <b>1.891</b>    | 1.891      |
| Choke Area                                 | in <sup>2</sup> | 2.808      |
| Inlet Pipe OD                              | in              | <b>8"</b>  |
| Inlet Pipe Class                           |                 | <b>D</b>   |
| Schedule                                   |                 | <b>40</b>  |
| Inlet Pipe ID                              | in              | 7.981      |
| Pseudo Critical Pressure                   |                 | 675.500    |
| Pseudo Critical Temperature                |                 | 347.900    |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.237      |
| Settleout Z                                |                 | 0.948      |
| Gas Molecular Weight                       |                 | 16.700     |
| Gas Gravity                                |                 | 0.576      |
| Cp/Cv Ratio                                |                 | 34.621     |
| Time Increment, seconds                    | <b>18.182</b>   |            |
| Critical Ratio, Pcrit                      |                 | 0.052      |
| Expansion Factor, Fcr                      |                 | 1.314      |
| Gravity Correction Factor                  |                 | 1.020      |
| Vent Header Back Pressure, psig            | <b>0.000</b>    |            |
| Initial Blowdown Volume, ft <sup>3</sup>   | 2,680.155       |            |
| Mole to Blowdown, LB-Moles                 |                 | 491.437    |
| Settleout Pressure, psig                   |                 | 1,032.003  |
| Ave. Settleout Temp., deg R/deg F          | 585.303         | °R / 125°F |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi      | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh     | Inventory Moles | Vent Moles  | Total Vent   |
|---------------|---------------|-----------------------|--------------|---------------------------------|----------------|-----------------|-------------|--------------|
| 0.00          | 0             | 1032.00               | 1032.0       | 0.014                           | 6453201        | 491.437         | -           | 85.9         |
| 0.30          | 18            | 885.40                | 885.4        | 0.016                           | 5549372        | 405.556         | 85.9        | 159.7        |
| 0.61          | 36            | 721.49                | 721.5        | 0.020                           | 4538816        | 331.703         | 73.9        | 220.1        |
| 0.91          | 55            | 587.43                | 587.4        | 0.024                           | 3712286        | 271.299         | 60.4        | 343.0        |
| <b>1.21</b>   | <b>73</b>     | <b>477.78</b>         | <b>477.8</b> | <b>0.030</b>                    | <b>3036268</b> | <b>221.895</b>  | <b>49.4</b> | <b>269.5</b> |
| 1.52          | 91            | 388.10                | 388.1        | 0.036                           | 2483355        | 181.487         | 40.4        | 309.9        |
| 1.82          | 109           | 314.75                | 314.7        | 0.045                           | 2031130        | 148.438         | 33.0        | 370.0        |
| 2.12          | 127           | 254.75                | 254.8        | 0.055                           | 780330         | 121.407         | 27.0        | 414.0        |
| 2.42          | 145           | 231.71                | 231.7        | 0.060                           | 715293         | 111.022         | 10.4        | 442.4        |
| 2.73          | 164           | 210.58                | 210.6        | 0.065                           | 655630         | 101.503         | 9.5         | 450.7        |
| 3.03          | 182           | 191.21                | 191.2        | 0.071                           | 600894         | 92.777          | 8.7         | 468.2        |
| 3.33          | 200           | 173.46                | 173.5        | 0.078                           | 550674         | 84.780          | 8.0         | 475.5        |
| 3.64          | 218           | 157.20                | 157.2        | 0.086                           | 504591         | 77.452          | 7.3         | 480.3        |
| 3.94          | 236           | 142.29                | 142.3        | 0.094                           | 462301         | 70.737          | 6.7         | 480.3        |
| 4.24          | 255           | 128.64                | 128.6        | 0.103                           | 423484         | 64.584          | 6.2         | 480.3        |
| 4.55          | 273           | 116.13                | 116.1        | 0.112                           | 387849         | 58.948          | 5.6         | 480.3        |
| 4.85          | 291           | 104.68                | 104.7        | 0.123                           | 355129         | 53.787          | 5.2         | 480.3        |
| 5.15          | 309           | 94.19                 | 94.2         | 0.135                           | 325078         | 49.060          | 4.7         | 480.3        |
| 5.45          | 327           | 84.58                 | 84.6         | 0.148                           | 297469         | 44.734          | 4.3         | 480.3        |
| 5.76          | 345           | 75.80                 | 75.8         | 0.162                           | 272095         | 40.775          | 4.0         | 480.3        |
| 6.06          | 364           | 67.76                 | 67.8         | 0.178                           | 248766         | 37.154          | 3.6         | 480.3        |
| 6.36          | 382           | 60.41                 | 60.4         | 0.196                           | 227306         | 33.844          | 3.3         | 480.3        |
| 6.67          | 400           | 53.70                 | 53.7         | 0.215                           | 207553         | 30.819          | 3.0         | 480.3        |
| 6.97          | 418           | 47.57                 | 47.6         | 0.236                           | 189359         | 28.056          | 2.8         | 480.3        |
| 7.27          | 436           | 41.98                 | 42.0         | 0.259                           | 172588         | 25.536          | 2.5         | 480.3        |
| 7.58          | 455           | 36.88                 | 36.9         | 0.285                           | 157113         | 23.239          | 2.3         | 480.3        |
| 7.88          | 473           | 32.24                 | 32.2         | 0.313                           | 142817         | 21.149          | 2.1         | 480.3        |
| 8.18          | 491           | 28.02                 | 28.0         | 0.344                           | 129592         | 19.248          | 1.9         | 480.3        |
| 8.48          | 509           | 24.19                 | 24.2         | 0.378                           | 117339         | 17.523          | 1.7         | 480.3        |
| 8.79          | 527           | 20.73                 | 20.7         | 0.415                           | 105965         | 15.962          | 1.6         | 480.3        |
| 9.09          | 545           | 17.60                 | 17.6         | 0.455                           | 95383          | 14.551          | 1.4         | 480.3        |
| 9.39          | 564           | 14.78                 | 14.8         | 0.499                           | 85512          | 13.282          | 1.3         | 480.3        |
| 9.70          | 582           | 12.25                 | 12.3         | 0.545                           | 76277          | 12.144          | 1.1         | 480.3        |
| 10.00         | 600           | 10.00                 | 10.0         | 0.595                           | 67605          | 11.129          | 1.0         | 480.3        |

## BLOWDOWN CALCULATIONS

| Reference Data                             | Initial         | Change     |
|--------------------------------------------|-----------------|------------|
| Orifice Diameter, Inches                   | 1.544           | 1.544      |
| Choke Area                                 | in <sup>2</sup> | 1.872      |
| Inlet Pipe OD                              | in              | 8"         |
| Inlet Pipe Class                           |                 | D          |
| Schedule                                   |                 | 40         |
| Inlet Pipe ID                              | in              | 7.981      |
| Pseudo Critical Pressure                   |                 | 675.500    |
| Pseudo Critical Temperature                |                 | 347.900    |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.193      |
| Settleout Z                                |                 | 0.948      |
| Gas Molecular Weight                       |                 | 16.700     |
| Gas Gravity                                |                 | 0.576      |
| Cp/Cv Ratio                                |                 | 34.621     |
| Time Increment, seconds                    |                 | 27.273     |
| Critical Ratio, Pcrit                      |                 | 0.052      |
| Expansion Factor, Fcr                      |                 | 1.314      |
| Gravity Correction Factor                  |                 | 1.020      |
| Vent Header Back Pressure, psig            |                 | 0.000      |
| Initial Blowdown Volume, ft <sup>3</sup>   | 2,680.155       |            |
| Mole to Blowdown, LB-Moles                 |                 | 491.437    |
| Settleout Pressure, psig                   |                 | 1,032.003  |
| Ave. Settleout Temp., deg R/deg F          | 585.303         | °R / 125°F |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi      | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh     | Inventory Moles | Vent Moles  | Total Vent   |
|---------------|---------------|-----------------------|--------------|---------------------------------|----------------|-----------------|-------------|--------------|
| 0.00          | 0             | 1032.00               | 1032.0       | 0.014                           | 4302157        | 491.437         | -           | 85.9         |
| 0.45          | 27            | 885.40                | 885.4        | 0.016                           | 3699597        | 405.555         | 73.9        | 159.7        |
| 0.91          | 55            | 721.49                | 721.5        | 0.020                           | 3025887        | 331.702         | 60.4        | 220.1        |
| 1.36          | 82            | 587.43                | 587.4        | 0.024                           | 2474862        | 271.298         | 40.4        | 310.0        |
| <b>1.82</b>   | <b>109</b>    | <b>477.78</b>         | <b>477.8</b> | <b>0.030</b>                    | <b>2024180</b> | <b>221.894</b>  | <b>49.4</b> | <b>269.5</b> |
| 2.27          | 136           | 388.10                | 388.1        | 0.036                           | 1655569        | 181.486         | 33.0        | 343.0        |
| 2.73          | 164           | 314.74                | 314.7        | 0.045                           | 1354084        | 148.437         | 27.0        | 370.0        |
| 3.18          | 191           | 254.75                | 254.8        | 0.055                           | 520219         | 121.406         | 10.4        | 380.4        |
| 3.64          | 218           | 231.70                | 231.7        | 0.060                           | 476860         | 111.021         | 9.5         | 389.9        |
| 4.09          | 245           | 210.58                | 210.6        | 0.065                           | 437085         | 101.502         | 8.7         | 398.7        |
| 4.55          | 273           | 191.21                | 191.2        | 0.071                           | 400594         | 92.776          | 8.0         | 406.7        |
| 5.00          | 300           | 173.46                | 173.5        | 0.078                           | 367114         | 84.779          | 7.3         | 414.0        |
| 5.45          | 327           | 157.20                | 157.2        | 0.086                           | 336392         | 77.451          | 6.7         | 420.7        |
| 5.91          | 355           | 142.29                | 142.3        | 0.094                           | 308199         | 70.736          | 6.2         | 426.9        |
| 6.36          | 382           | 128.64                | 128.6        | 0.103                           | 282321         | 64.583          | 5.6         | 432.5        |
| 6.82          | 409           | 116.13                | 116.1        | 0.112                           | 258565         | 58.947          | 5.2         | 437.7        |
| 7.27          | 436           | 104.67                | 104.7        | 0.123                           | 236751         | 53.786          | 4.7         | 442.4        |
| 7.73          | 464           | 94.18                 | 94.2         | 0.135                           | 216717         | 49.060          | 4.3         | 446.7        |
| 8.18          | 491           | 84.58                 | 84.6         | 0.148                           | 198311         | 44.734          | 4.0         | 450.7        |
| 8.64          | 518           | 75.80                 | 75.8         | 0.162                           | 181395         | 40.775          | 3.6         | 454.3        |
| 9.09          | 545           | 67.76                 | 67.8         | 0.178                           | 165842         | 37.154          | 3.3         | 457.6        |
| 9.55          | 573           | 60.41                 | 60.4         | 0.196                           | 151536         | 33.843          | 3.0         | 460.6        |
| 10.00         | 600           | 53.70                 | 53.7         | 0.215                           | 138367         | 30.818          | 2.8         | 463.4        |
| 10.45         | 627           | 47.57                 | 47.6         | 0.236                           | 126238         | 28.056          | 2.5         | 465.9        |
| 10.91         | 655           | 41.98                 | 42.0         | 0.259                           | 115057         | 25.536          | 2.3         | 468.2        |
| 11.36         | 682           | 36.88                 | 36.9         | 0.285                           | 104740         | 23.239          | 2.1         | 470.3        |
| 11.82         | 709           | 32.24                 | 32.2         | 0.313                           | 95210          | 21.148          | 1.9         | 472.2        |
| 12.27         | 736           | 28.02                 | 28.0         | 0.344                           | 86393          | 19.248          | 1.7         | 473.9        |
| 12.73         | 764           | 24.19                 | 24.2         | 0.378                           | 78225          | 17.523          | 1.5         | 475.5        |
| 13.18         | 791           | 20.73                 | 20.7         | 0.415                           | 70642          | 15.961          | 1.4         | 476.9        |
| 13.64         | 818           | 17.60                 | 17.6         | 0.455                           | 63588          | 14.551          | 1.3         | 478.2        |
| 14.09         | 845           | 14.78                 | 14.8         | 0.499                           | 57007          | 13.282          | 1.1         | 479.3        |
| 14.55         | 873           | 12.25                 | 12.3         | 0.545                           | 50850          | 12.144          | 1.0         | 480.3        |
| 15.00         | 900           | 10.00                 | 10.0         | 0.595                           | 45069          | 11.129          |             |              |

| Case      | Stack       | Height Above |        | Stack Gas Flow |        |       |          | Stack Temperature |     | Temperature Correction Factor | Stack Pressure |         | Pressure Correction Factor | Corrected Stack Flow |               | Stack Area | Stack   |
|-----------|-------------|--------------|--------|----------------|--------|-------|----------|-------------------|-----|-------------------------------|----------------|---------|----------------------------|----------------------|---------------|------------|---------|
|           | Diameter in | Ground ft    | MW     | lb/hr          | MMSCFD | SCFS  | Ibmol/hr | °F                | R   | psig                          | psia           | ft3/sec | ft3/min                    | ft2                  | Velocity ft/s |            |         |
| Emergency | 84          | 15           | 16.700 | 642,609        | 350    | 4,051 | 38,478   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 4,755                | 285,312       | 38.485     | 123.562 |
| 5 min     | 84          | 15           | 16.700 | 568,715        | 310    | 3,585 | 34,054   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 4,208                | 252,504       | 38.485     | 109.353 |
| 10 min    | 84          | 15           | 16.700 | 284,358        | 155    | 1,793 | 17,027   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 2,104                | 126,252       | 38.485     | 54.677  |
| 15 min    | 84          | 15           | 16.700 | 189,573        | 103    | 1,195 | 11,351   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 1,403                | 84,169        | 38.485     | 36.451  |

|                | MOLECULAR<br>WEIGHT<br>LB/LBMOL | MOL<br>FRACTION | MASS<br>FRACTION | GAS VOLUME | GAS MASS |
|----------------|---------------------------------|-----------------|------------------|------------|----------|
|                |                                 |                 |                  | LBMOL      | LBM      |
| METHANE        | 16.042                          | 0.968           | 0.895            | 475.47     | 7,627.41 |
| ETHANE         | 30.069                          | 0.015           | 0.051            | 7.53       | 226.53   |
| PROPANE        | 44.096                          | 0.002           | 0.011            | 0.95       | 41.82    |
| ISO-BUTANE     | 58.122                          | 0.000           | 0.003            | 0.19       | 10.85    |
| N-BUTANE       | 58.122                          | 0.000           | 0.003            | 0.20       | 11.43    |
| ISO-PENTANE    | 72.149                          | 0.000           | 0.000            | 0.08       | 5.67     |
| N-PENTANE      | 72.149                          | 0.000           | 0.000            | 0.05       | 3.55     |
| N-HEXANE       | 86.175                          | 0.000           | 0.005            | 0.16       | 13.55    |
| CYCLOHEXANE    | 84.159                          | 0.000           | 0.000            | 0.00       | 0.00     |
| N-HEPTANE      | 100.202                         | 0.000           | 0.000            | 0.00       | 0.00     |
| BENZENE        | 78.112                          | 0.000           | 0.000            | 0.00       | 0.00     |
| TOLUENE        | 92.138                          | 0.000           | 0.000            | 0.00       | 0.00     |
| ETHYLBENZENE   | 106.165                         | 0.000           | 0.000            | 0.00       | 0.00     |
| XYLENE         | 106.165                         | 0.000           | 0.000            | 0.00       | 0.00     |
| STYRENE        | 104.149                         | 0.000           | 0.000            | 0.00       | 0.00     |
| CARBON DIOXIDE | 44.100                          | 0.010           | 0.026            | 4.75       | 209.57   |
| WATER          | 18.015                          | 0.000           | 0.000            | 0.00       | 0.00     |
| NITROGEN       | 28.014                          | 0.004           | 0.004            | 2.07       | 57.96    |
| <b>TOTAL</b>   | 16.70                           | 1.000           | 1.000            | 491        | 8,208    |
| THC            |                                 | 0.986           | 0.969            | 485        | 7,941    |
| NMHC           |                                 | 0.019           | 0.074            | 9          | 313      |
| NMNEHC (VOCs)  |                                 | 0.003           | 0.023            | 2          | 87       |
| HEXANE         |                                 | 0.000           | 0.005            | 0          | 14       |

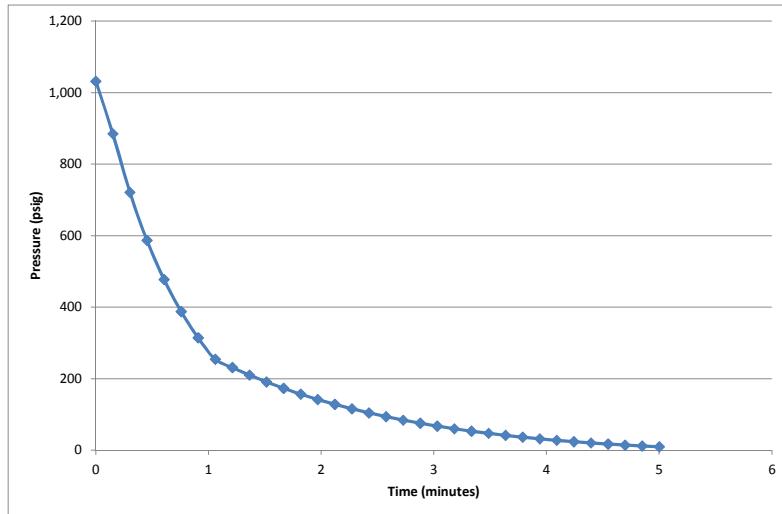
## Cheniere Corpus Christi Pipeline, L.P.

| Company                                | Facility                  |                       |
|----------------------------------------|---------------------------|-----------------------|
| Cheniere Corpus Christi Pipeline, L.P. | Sinton Compressor Station |                       |
| Descriptive Name of Emission Point     | TEMP Subject Item ID      | Emission Point ID No. |
| Titan 130 - Unit A Blowdown Stack      | N/A                       | EQT001                |

| Emissions Per Event <sup>(1)</sup> |           |           |           |
|------------------------------------|-----------|-----------|-----------|
| Pollutant                          | 5 min     | 10 min    | 15 min    |
|                                    | (lb/hr)   | (lb/hr)   | (lb/hr)   |
| CO <sub>2</sub>                    | 2,514.84  | 1,257.42  | 838.28    |
| CH <sub>4</sub>                    | 91,528.92 | 45,764.46 | 30,509.64 |
| CO <sub>2</sub> -e                 | -         | -         | -         |

| Emissions Per Year <sup>(1)</sup> |          |          |           |
|-----------------------------------|----------|----------|-----------|
| Pollutant                         | 3 Events | 6 Events | 12 Events |
|                                   | TPY      | TPY      | TPY       |
| CO <sub>2</sub>                   | 0.31     | 0.63     | 1.26      |
| CH <sub>4</sub>                   | 11.44    | 22.88    | 45.76     |
| CO <sub>2</sub> -e                | 240.58   | 481.16   | 962.31    |

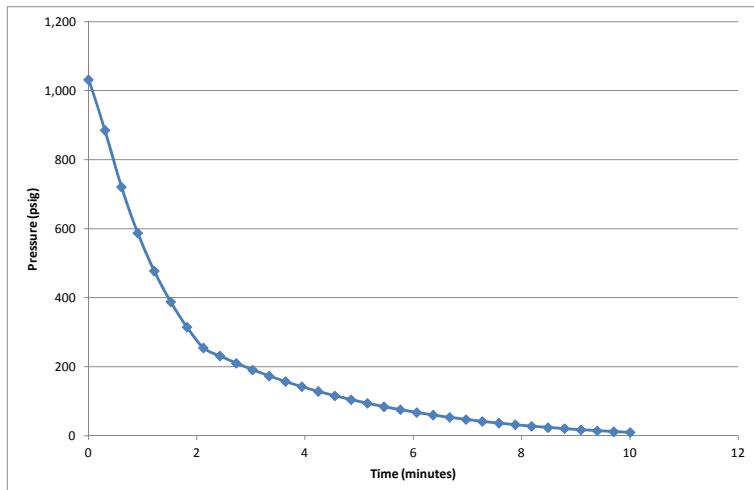
(1) Emission calculation methodology based upon process simulations using worst case scenario.


## BLOW DOWN SYSTEM CALCULATIONS

## PIPE VOLUME CALCULATIONS

| SECTION:          |             | COMPRESSOR UNIT 0 |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        | BDV TAG: |                             |         |          |            |              |
|-------------------|-------------|-------------------|----------|--------|-------|--------|--------|--------|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------|----------|-----------------------------|---------|----------|------------|--------------|
| Section           | Description | Line              | NPS (in) | Piping | Sch / | OD(in) | ID(in) | WT(in) | Length | Transv             | Cylinder           | Heads              | Volume             | Normal             | Press  | Temp     | Pseudo-                     | Pseudo- | Z Factor | Moles      | Temp x Moles |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        |          | reduced                     | reduced | Press    | Temp       | (lbmol)      |
|                   |             |                   | Number   |        | Class | BWG    |        |        | (ft)   | (ft <sup>2</sup> ) | (ft <sup>3</sup> ) | (ft <sup>3</sup> ) | (ft <sup>3</sup> ) | (ft <sup>3</sup> ) | (psig) | (°F)     | Press                       | Temp    |          |            |              |
| Comp Suction      | Piping      |                   | 36"      | D      | 40    | 36.000 | 34.500 | 0.750  | 100    | 6.492              | 649.181            |                    | 649                | 30770              | 750    | 80       | 1.129                       | 1.551   | 0.908    | 94         | 50964        |
| Comp Discharge    | Piping      |                   | 30"      | D      | STD   | 30.000 | 29.250 | 0.375  | 200    | 4.666              | 933.274            |                    | 933                | 61201              | 1200   | 160      | 1.793                       | 1.780   | 0.920    | 185        | 114792       |
| Cooler Inlet      | Piping      |                   | 16"      | D      | XS    | 16.000 | 15.000 | 0.500  | 20     | 1.227              | 24.544             |                    | 25                 | 1610               | 1200   | 160      | 1.793                       | 1.780   | 0.920    | 5          | 3019         |
| Cooler Inlet      | Piping      |                   | 16"      | D      | XS    | 16.000 | 15.000 | 0.500  | 20     | 1.227              | 24.544             |                    | 25                 | 1610               | 1200   | 160      | 1.793                       | 1.780   | 0.920    | 5          | 3019         |
| Cooler Outlet     | Piping      |                   | 16"      | D      | XS    | 16.000 | 15.000 | 0.500  | 20     | 1.227              | 24.544             |                    | 25                 | 1720               | 1200   | 120      | 1.793                       | 1.666   | 0.893    | 5          | 3112         |
| Cooler Outlet     | Piping      |                   | 16"      | D      | XS    | 16.000 | 15.000 | 0.500  | 20     | 1.227              | 24.544             |                    | 25                 | 1720               | 1200   | 120      | 1.793                       | 1.666   | 0.893    | 5          | 3112         |
| Cooler Discharge  | Piping      |                   | 30"      | D      | STD   | 30.000 | 29.250 | 0.375  | 50     | 4.666              | 233.318            |                    | 233                | 16355              | 1200   | 120      | 1.793                       | 1.666   | 0.893    | 51         | 29582        |
| Compressor Bypass | Piping      |                   | 24"      | D      | 40    | 24.000 | 22.624 | 0.688  | 125    | 2.792              | 348.960            |                    | 349                | 24462              | 1200   | 120      | 1.793                       | 1.666   | 0.893    | 76         | 44245        |
| Compressor Bypass | Piping      |                   | 24"      | D      | 40    | 24.000 | 22.624 | 0.688  | 125    | 2.792              | 348.960            |                    | 349                | 16540              | 750    | 80       | 1.129                       | 1.551   | 0.908    | 51         | 27395        |
| Cooler            | Tubing      | Tubes             | 1"       |        | 14    | 1.000  | 0.834  | 0.083  | 9000   | 0.004              | 34.143             |                    | 34                 | 2239               | 1200   | 160      | 1.793                       | 1.780   | 0.920    | 7          | 4200         |
| Cooler            | Tubing      | Tubes             | 1"       |        | 14    | 1.000  | 0.834  | 0.083  | 9000   | 0.004              | 34.143             |                    | 34                 | 2239               | 1200   | 160      | 1.793                       | 1.780   | 0.920    | 7          | 4200         |
|                   |             |                   |          |        |       |        |        |        |        | 2680               | 160466             |                    |                    |                    |        |          | Total                       |         | 491      | 287640     |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        |          | T Average                   |         | °F       | 125.15     |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        |          | P Average                   |         | psig     | 1,032.00   |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        |          | Std Vol                     |         | SCF      | 186,500.28 |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        |          | Molecular Weight            |         | lb/lbmol | 16.70      |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        |          | Pseudo Critical Pressure    |         | psia     | 677.6      |              |
|                   |             |                   |          |        |       |        |        |        |        |                    |                    |                    |                    |                    |        |          | Pseudo Critical Temperature |         | °R       | 348.3      |              |

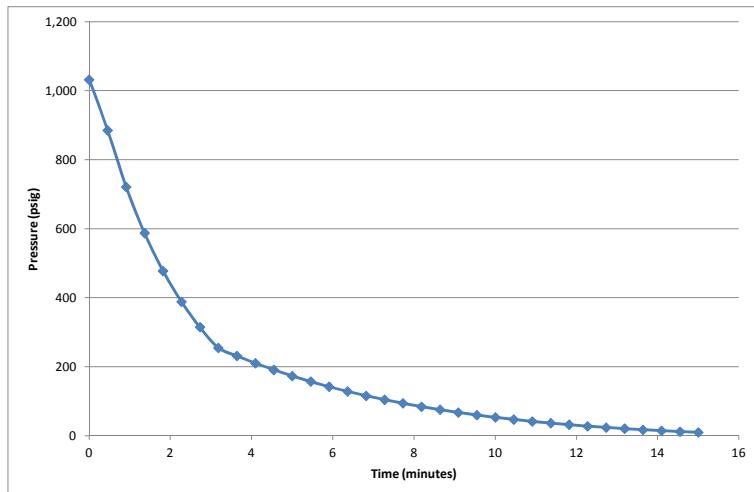
## BLOWDOWN CALCULATIONS


| Reference Data                             | Initial         | Change             |
|--------------------------------------------|-----------------|--------------------|
| Orifice Diameter, Inches                   | 2.674           | 2.674              |
| Choke Area                                 | in <sup>2</sup> | 5.616              |
| Inlet Pipe OD                              | in              | 8"                 |
| Inlet Pipe Class                           |                 | D                  |
| Schedule                                   |                 | 40                 |
| Inlet Pipe ID                              | in              | 7.981              |
| Pseudo Critical Pressure                   |                 | 675.500            |
| Pseudo Critical Temperature                |                 | 347.900            |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.335              |
| Settleout Z                                |                 | 0.948              |
| Gas Molecular Weight                       |                 | 16.700             |
| Gas Gravity                                |                 | 0.576              |
| Cp/Cv Ratio                                |                 | 34.621             |
| Time Increment, seconds                    |                 | 9.091              |
| Critical Ratio, Pct                        |                 | 0.052              |
| Expansion Factor, F <sub>cr</sub>          |                 | 1.314              |
| Gravity Correction Factor                  |                 | 1.020              |
| Vent Header Back Pressure, psig            |                 | 0.000              |
| Initial Blowdown Volume, ft <sup>3</sup>   |                 | 2,680.155          |
| Mole to Blowdown, LB-Moles                 |                 | 491.437            |
| Settleout Pressure, psig                   |                 | 1,032.003          |
| Ave. Settleout Temp., deg R/deg F          |                 | 585.303 °R / 125°F |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh | Inventory Moles | Vented Moles | Total Vent |
|---------------|---------------|-----------------------|---------|---------------------------------|------------|-----------------|--------------|------------|
| 0.00          | 0             | 1032.00               | 1032.0  | 0.014                           | 12906400   | 491.437         | -            |            |
| 0.15          | 9             | 885.40                | 885.4   | 0.016                           | 11098744   | 405.556         | 85.9         | 85.9       |
| 0.30          | 18            | 721.49                | 721.5   | 0.020                           | 9077632    | 331.703         | 73.9         | 159.7      |
| 0.45          | 27            | 587.43                | 587.4   | 0.024                           | 7424571    | 271.299         | 60.4         | 220.1      |
| 0.61          | 36            | 477.78                | 477.8   | 0.030                           | 6072536    | 221.895         | 49.4         | 269.5      |
| 0.76          | 45            | 388.10                | 388.1   | 0.036                           | 4966711    | 181.487         | 40.4         | 309.9      |
| 0.91          | 55            | 314.75                | 314.7   | 0.045                           | 4062259    | 148.438         | 33.0         | 343.0      |
| 1.06          | 64            | 254.75                | 254.8   | 0.055                           | 1560661    | 121.407         | 27.0         | 370.0      |
| 1.21          | 73            | 231.71                | 231.7   | 0.060                           | 1430585    | 111.022         | 10.4         | 380.4      |
| 1.36          | 82            | 210.58                | 210.6   | 0.065                           | 1311260    | 101.503         | 9.5          | 389.9      |
| 1.52          | 91            | 191.21                | 191.2   | 0.071                           | 1201788    | 92.777          | 8.7          | 398.7      |
| 1.67          | 100           | 173.46                | 173.5   | 0.078                           | 1101348    | 84.780          | 8.0          | 406.7      |
| 1.82          | 109           | 157.20                | 157.2   | 0.086                           | 1009183    | 77.452          | 7.3          | 414.0      |
| 1.97          | 118           | 142.29                | 142.3   | 0.094                           | 924601     | 70.737          | 6.7          | 420.7      |
| 2.12          | 127           | 128.64                | 128.6   | 0.103                           | 846968     | 64.584          | 6.2          | 426.9      |
| 2.27          | 136           | 116.13                | 116.1   | 0.112                           | 775699     | 58.948          | 5.6          | 432.5      |
| 2.42          | 145           | 104.68                | 104.7   | 0.123                           | 710259     | 53.787          | 5.2          | 437.7      |
| 2.58          | 155           | 94.19                 | 94.2    | 0.135                           | 650156     | 49.060          | 4.7          | 442.4      |
| 2.73          | 164           | 84.58                 | 84.6    | 0.148                           | 594938     | 44.734          | 4.3          | 446.7      |
| 2.88          | 173           | 75.80                 | 75.8    | 0.162                           | 544190     | 40.775          | 4.0          | 450.7      |
| 3.03          | 182           | 67.76                 | 67.8    | 0.178                           | 497532     | 37.154          | 3.6          | 454.3      |
| 3.18          | 191           | 60.41                 | 60.4    | 0.196                           | 454611     | 33.844          | 3.3          | 457.6      |
| 3.33          | 200           | 53.70                 | 53.7    | 0.215                           | 415106     | 30.819          | 3.0          | 460.6      |
| 3.48          | 209           | 47.57                 | 47.6    | 0.236                           | 378719     | 28.056          | 2.8          | 463.4      |
| 3.64          | 218           | 41.98                 | 42.0    | 0.259                           | 345176     | 25.536          | 2.5          | 465.9      |
| 3.79          | 227           | 36.88                 | 36.9    | 0.285                           | 314225     | 23.239          | 2.3          | 468.2      |
| 3.94          | 236           | 32.24                 | 32.2    | 0.313                           | 285633     | 21.149          | 2.1          | 470.3      |
| 4.09          | 245           | 28.02                 | 28.0    | 0.344                           | 259184     | 19.248          | 1.9          | 472.2      |
| 4.24          | 255           | 24.19                 | 24.2    | 0.378                           | 234678     | 17.523          | 1.7          | 473.9      |
| 4.39          | 264           | 20.73                 | 20.7    | 0.415                           | 211930     | 15.962          | 1.6          | 475.5      |
| 4.55          | 273           | 17.60                 | 17.6    | 0.455                           | 190766     | 14.551          | 1.4          | 476.9      |
| 4.70          | 282           | 14.78                 | 14.8    | 0.499                           | 171025     | 13.282          | 1.3          | 478.2      |
| 4.85          | 291           | 12.25                 | 12.3    | 0.545                           | 152554     | 12.144          | 1.1          | 479.3      |
| 5.00          | 300           | 10.00                 | 10.0    | 0.595                           | 135210     | 11.129          | 1.0          | 480.3      |

## BLOWDOWN CALCULATIONS


| Reference Data                             | Initial         | Change     |
|--------------------------------------------|-----------------|------------|
| Orifice Diameter, Inches                   | <b>1.891</b>    | 1.891      |
| Choke Area                                 | in <sup>2</sup> | 2.808      |
| Inlet Pipe OD                              | in              | <b>8"</b>  |
| Inlet Pipe Class                           |                 | <b>D</b>   |
| Schedule                                   |                 | <b>40</b>  |
| Inlet Pipe ID                              | in              | 7.981      |
| Pseudo Critical Pressure                   |                 | 675.500    |
| Pseudo Critical Temperature                |                 | 347.900    |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.237      |
| Settleout Z                                |                 | 0.948      |
| Gas Molecular Weight                       |                 | 16.700     |
| Gas Gravity                                |                 | 0.576      |
| Cp/Cv Ratio                                |                 | 34.621     |
| Time Increment, seconds                    | <b>18.182</b>   |            |
| Critical Ratio, Pcrit                      |                 | 0.052      |
| Expansion Factor, F <sub>cr</sub>          |                 | 1.314      |
| Gravity Correction Factor                  |                 | 1.020      |
| Vent Header Back Pressure, psig            | <b>0.000</b>    |            |
| Initial Blowdown Volume, ft <sup>3</sup>   | 2,680.155       |            |
| Mole to Blowdown, LB-Moles                 |                 | 491.437    |
| Settleout Pressure, psig                   |                 | 1,032.003  |
| Ave. Settleout Temp., deg R/deg F          | 585.303         | °R / 125°F |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi      | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh     | Inventory Moles | Vent Moles  | Total Vent   |
|---------------|---------------|-----------------------|--------------|---------------------------------|----------------|-----------------|-------------|--------------|
| 0.00          | 0             | 1032.00               | 1032.0       | 0.014                           | 6453201        | 491.437         | -           | 85.9         |
| 0.30          | 18            | 885.40                | 885.4        | 0.016                           | 5549372        | 405.556         | 85.9        | 159.7        |
| 0.61          | 36            | 721.49                | 721.5        | 0.020                           | 4538816        | 331.703         | 73.9        | 220.1        |
| 0.91          | 55            | 587.43                | 587.4        | 0.024                           | 3712286        | 271.299         | 60.4        | 343.0        |
| <b>1.21</b>   | <b>73</b>     | <b>477.78</b>         | <b>477.8</b> | <b>0.030</b>                    | <b>3036268</b> | <b>221.895</b>  | <b>49.4</b> | <b>269.5</b> |
| 1.52          | 91            | 388.10                | 388.1        | 0.036                           | 2483355        | 181.487         | 40.4        | 309.9        |
| 1.82          | 109           | 314.75                | 314.7        | 0.045                           | 2031130        | 148.438         | 33.0        | 370.0        |
| 2.12          | 127           | 254.75                | 254.8        | 0.055                           | 780330         | 121.407         | 27.0        | 380.4        |
| 2.42          | 145           | 231.71                | 231.7        | 0.060                           | 715293         | 111.022         | 9.5         | 389.9        |
| 2.73          | 164           | 210.58                | 210.6        | 0.065                           | 655630         | 101.503         | 8.7         | 398.7        |
| 3.03          | 182           | 191.21                | 191.2        | 0.071                           | 600894         | 92.777          | 8.0         | 406.7        |
| 3.33          | 200           | 173.46                | 173.5        | 0.078                           | 550674         | 84.780          | 7.3         | 414.0        |
| 3.64          | 218           | 157.20                | 157.2        | 0.086                           | 504591         | 77.452          | 6.7         | 420.7        |
| 3.94          | 236           | 142.29                | 142.3        | 0.094                           | 462301         | 70.737          | 6.2         | 426.9        |
| 4.24          | 255           | 128.64                | 128.6        | 0.103                           | 423484         | 64.584          | 5.6         | 432.5        |
| 4.55          | 273           | 116.13                | 116.1        | 0.112                           | 387849         | 58.948          | 5.2         | 437.7        |
| 4.85          | 291           | 104.68                | 104.7        | 0.123                           | 355129         | 53.787          | 4.7         | 442.4        |
| 5.15          | 309           | 94.19                 | 94.2         | 0.135                           | 325078         | 49.060          | 4.3         | 446.7        |
| 5.45          | 327           | 84.58                 | 84.6         | 0.148                           | 297469         | 44.734          | 4.0         | 450.7        |
| 5.76          | 345           | 75.80                 | 75.8         | 0.162                           | 272095         | 40.775          | 3.6         | 454.3        |
| 6.06          | 364           | 67.76                 | 67.8         | 0.178                           | 248766         | 37.154          | 3.3         | 457.6        |
| 6.36          | 382           | 60.41                 | 60.4         | 0.196                           | 227306         | 33.844          | 3.0         | 460.6        |
| 6.67          | 400           | 53.70                 | 53.7         | 0.215                           | 207553         | 30.819          | 2.8         | 463.4        |
| 6.97          | 418           | 47.57                 | 47.6         | 0.236                           | 189359         | 28.056          | 2.5         | 465.9        |
| 7.27          | 436           | 41.98                 | 42.0         | 0.259                           | 172588         | 25.536          | 2.3         | 468.2        |
| 7.58          | 455           | 36.88                 | 36.9         | 0.285                           | 157113         | 23.239          | 2.1         | 470.3        |
| 7.88          | 473           | 32.24                 | 32.2         | 0.313                           | 142817         | 21.149          | 1.9         | 472.2        |
| 8.18          | 491           | 28.02                 | 28.0         | 0.344                           | 129592         | 19.248          | 1.7         | 473.9        |
| 8.48          | 509           | 24.19                 | 24.2         | 0.378                           | 117339         | 17.523          | 1.6         | 475.5        |
| 8.79          | 527           | 20.73                 | 20.7         | 0.415                           | 105965         | 15.962          | 1.4         | 476.9        |
| 9.09          | 545           | 17.60                 | 17.6         | 0.455                           | 95383          | 14.551          | 1.3         | 478.2        |
| 9.39          | 564           | 14.78                 | 14.8         | 0.499                           | 85512          | 13.282          | 1.1         | 479.3        |
| 9.70          | 582           | 12.25                 | 12.3         | 0.545                           | 76277          | 12.144          | 1.0         | 480.3        |
| 10.00         | 600           | 10.00                 | 10.0         | 0.595                           | 67605          | 11.129          |             |              |

## BLOWDOWN CALCULATIONS

| Reference Data                             | Initial         | Change     |
|--------------------------------------------|-----------------|------------|
| Orifice Diameter, Inches                   | 1.544           | 1.544      |
| Choke Area                                 | in <sup>2</sup> | 1.872      |
| Inlet Pipe OD                              | in              | 8"         |
| Inlet Pipe Class                           |                 | D          |
| Schedule                                   |                 | 40         |
| Inlet Pipe ID                              | in              | 7.981      |
| Pseudo Critical Pressure                   |                 | 675.500    |
| Pseudo Critical Temperature                |                 | 347.900    |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.193      |
| Settleout Z                                |                 | 0.948      |
| Gas Molecular Weight                       |                 | 16.700     |
| Gas Gravity                                |                 | 0.576      |
| Cp/Cv Ratio                                |                 | 34.621     |
| Time Increment, seconds                    |                 | 27.273     |
| Critical Ratio, Pcrit                      |                 | 0.052      |
| Expansion Factor, F <sub>cr</sub>          |                 | 1.314      |
| Gravity Correction Factor                  |                 | 1.020      |
| Vent Header Back Pressure, psig            |                 | 0.000      |
| Initial Blowdown Volume, ft <sup>3</sup>   | 2,680.155       |            |
| Mole to Blowdown, LB-Moles                 |                 | 491.437    |
| Settleout Pressure, psig                   |                 | 1,032.003  |
| Ave. Settleout Temp., deg R/deg F          | 585.303         | °R / 125°F |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi      | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh     | Inventory Moles | Vent Moles  | Total Vent   |
|---------------|---------------|-----------------------|--------------|---------------------------------|----------------|-----------------|-------------|--------------|
| 0.00          | 0             | 1032.00               | 1032.0       | 0.014                           | 4302134        | 491.437         | -           | 85.9         |
| 0.45          | 27            | 885.40                | 885.4        | 0.016                           | 3699582        | 405.556         | 73.9        | 159.7        |
| 0.91          | 55            | 721.49                | 721.5        | 0.020                           | 3025878        | 331.703         | 60.4        | 220.1        |
| 1.36          | 82            | 587.43                | 587.4        | 0.024                           | 2474857        | 271.299         | 40.4        | 309.9        |
| <b>1.82</b>   | <b>109</b>    | <b>477.78</b>         | <b>477.8</b> | <b>0.030</b>                    | <b>2024179</b> | <b>221.895</b>  | <b>49.4</b> | <b>269.5</b> |
| 2.27          | 136           | 388.10                | 388.1        | 0.036                           | 1655570        | 181.487         | 33.0        | 343.0        |
| 2.73          | 164           | 314.75                | 314.7        | 0.045                           | 1354086        | 148.438         | 27.0        | 370.0        |
| 3.18          | 191           | 254.75                | 254.8        | 0.055                           | 520220         | 121.407         | 10.4        | 380.4        |
| 3.64          | 218           | 231.71                | 231.7        | 0.060                           | 476862         | 111.022         | 9.5         | 389.9        |
| 4.09          | 245           | 210.58                | 210.6        | 0.065                           | 437087         | 101.503         | 8.7         | 398.7        |
| 4.55          | 273           | 191.21                | 191.2        | 0.071                           | 400596         | 92.777          | 8.0         | 406.7        |
| 5.00          | 300           | 173.46                | 173.5        | 0.078                           | 367116         | 84.780          | 7.3         | 414.0        |
| 5.45          | 327           | 157.20                | 157.2        | 0.086                           | 336394         | 77.452          | 6.7         | 420.7        |
| 5.91          | 355           | 142.29                | 142.3        | 0.094                           | 308200         | 70.737          | 6.2         | 426.9        |
| 6.36          | 382           | 128.64                | 128.6        | 0.103                           | 282323         | 64.584          | 5.6         | 432.5        |
| 6.82          | 409           | 116.13                | 116.1        | 0.112                           | 258566         | 58.948          | 5.2         | 437.7        |
| 7.27          | 436           | 104.68                | 104.7        | 0.123                           | 236753         | 53.787          | 4.7         | 442.4        |
| 7.73          | 464           | 94.19                 | 94.2         | 0.135                           | 216719         | 49.060          | 4.3         | 446.7        |
| 8.18          | 491           | 84.58                 | 84.6         | 0.148                           | 198313         | 44.734          | 4.0         | 450.7        |
| 8.64          | 518           | 75.80                 | 75.8         | 0.162                           | 181397         | 40.775          | 3.6         | 454.3        |
| 9.09          | 545           | 67.76                 | 67.8         | 0.178                           | 165844         | 37.154          | 3.3         | 457.6        |
| 9.55          | 573           | 60.41                 | 60.4         | 0.196                           | 151537         | 33.844          | 3.0         | 460.6        |
| 10.00         | 600           | 53.70                 | 53.7         | 0.215                           | 138369         | 30.819          | 2.8         | 463.4        |
| 10.45         | 627           | 47.57                 | 47.6         | 0.236                           | 126240         | 28.056          | 2.5         | 465.9        |
| 10.91         | 655           | 41.98                 | 42.0         | 0.259                           | 115059         | 25.536          | 2.3         | 468.2        |
| 11.36         | 682           | 36.88                 | 36.9         | 0.285                           | 104742         | 23.239          | 2.1         | 470.3        |
| 11.82         | 709           | 32.24                 | 32.2         | 0.313                           | 95211          | 21.149          | 1.9         | 472.2        |
| 12.27         | 736           | 28.02                 | 28.0         | 0.344                           | 86395          | 19.248          | 1.7         | 473.9        |
| 12.73         | 764           | 24.19                 | 24.2         | 0.378                           | 78226          | 17.523          | 1.5         | 475.5        |
| 13.18         | 791           | 20.73                 | 20.7         | 0.415                           | 70643          | 15.962          | 1.3         | 476.9        |
| 13.64         | 818           | 17.60                 | 17.6         | 0.455                           | 63589          | 14.551          | 1.1         | 478.2        |
| 14.09         | 845           | 14.78                 | 14.8         | 0.499                           | 57008          | 13.282          | 1.0         | 479.3        |
| 14.55         | 873           | 12.25                 | 12.3         | 0.545                           | 50851          | 12.144          | -           | 480.3        |
| 15.00         | 900           | 10.00                 | 10.0         | 0.595                           | 45070          | 11.129          | -           | -            |

| Case      | Stack       | Height Above |        | Stack Gas Flow |        |       |          | Stack Temperature |     | Temperature Correction Factor | Stack Pressure |         | Pressure Correction Factor | Corrected Stack Flow |               | Stack Area | Stack   |
|-----------|-------------|--------------|--------|----------------|--------|-------|----------|-------------------|-----|-------------------------------|----------------|---------|----------------------------|----------------------|---------------|------------|---------|
|           | Diameter in | Ground ft    | MW     | lb/hr          | MMSCFD | SCFS  | Ibmol/hr | °F                | R   | psig                          | psia           | ft3/sec | ft3/min                    | ft2                  | Velocity ft/s |            |         |
| Emergency | 84          | 15           | 16.700 | 642,609        | 350    | 4,051 | 38,478   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 4,755                | 285,312       | 38.485     | 123.562 |
| 5 min     | 84          | 15           | 16.700 | 568,715        | 310    | 3,585 | 34,054   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 4,208                | 252,504       | 38.485     | 109.353 |
| 10 min    | 84          | 15           | 16.700 | 284,358        | 155    | 1,793 | 17,027   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 2,104                | 126,252       | 38.485     | 54.677  |
| 15 min    | 84          | 15           | 16.700 | 189,572        | 103    | 1,195 | 11,351   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 1,403                | 84,168        | 38.485     | 36.451  |

|                | MOLECULAR<br>WEIGHT<br>LB/LBMOL | MOL<br>FRACTION | MASS<br>FRACTION | GAS VOLUME | GAS MASS |
|----------------|---------------------------------|-----------------|------------------|------------|----------|
|                |                                 |                 |                  | LBMOL      | LBM      |
| METHANE        | 16.042                          | 0.968           | 0.895            | 475.47     | 7,627.41 |
| ETHANE         | 30.069                          | 0.015           | 0.051            | 7.53       | 226.53   |
| PROPANE        | 44.096                          | 0.002           | 0.011            | 0.95       | 41.82    |
| ISO-BUTANE     | 58.122                          | 0.000           | 0.003            | 0.19       | 10.85    |
| N-BUTANE       | 58.122                          | 0.000           | 0.003            | 0.20       | 11.43    |
| ISO-PENTANE    | 72.149                          | 0.000           | 0.000            | 0.08       | 5.67     |
| N-PENTANE      | 72.149                          | 0.000           | 0.000            | 0.05       | 3.55     |
| N-HEXANE       | 86.175                          | 0.000           | 0.005            | 0.16       | 13.55    |
| CYCLOHEXANE    | 84.159                          | 0.000           | 0.000            | 0.00       | 0.00     |
| N-HEPTANE      | 100.202                         | 0.000           | 0.000            | 0.00       | 0.00     |
| BENZENE        | 78.112                          | 0.000           | 0.000            | 0.00       | 0.00     |
| TOLUENE        | 92.138                          | 0.000           | 0.000            | 0.00       | 0.00     |
| ETHYLBENZENE   | 106.165                         | 0.000           | 0.000            | 0.00       | 0.00     |
| XYLENE         | 106.165                         | 0.000           | 0.000            | 0.00       | 0.00     |
| STYRENE        | 104.149                         | 0.000           | 0.000            | 0.00       | 0.00     |
| CARBON DIOXIDE | 44.100                          | 0.010           | 0.026            | 4.75       | 209.57   |
| WATER          | 18.015                          | 0.000           | 0.000            | 0.00       | 0.00     |
| NITROGEN       | 28.014                          | 0.004           | 0.004            | 2.07       | 57.96    |
| <b>TOTAL</b>   | 16.70                           | 1.000           | 1.000            | 491        | 8,208    |
| THC            |                                 | 0.986           | 0.969            | 485        | 7,941    |
| NMHC           |                                 | 0.019           | 0.074            | 9          | 313      |
| NMNEHC (VOCs)  |                                 | 0.003           | 0.023            | 2          | 87       |
| HEXANE         |                                 | 0.000           | 0.005            | 0          | 14       |

## Cheniere Corpus Christi Pipeline, L.P.

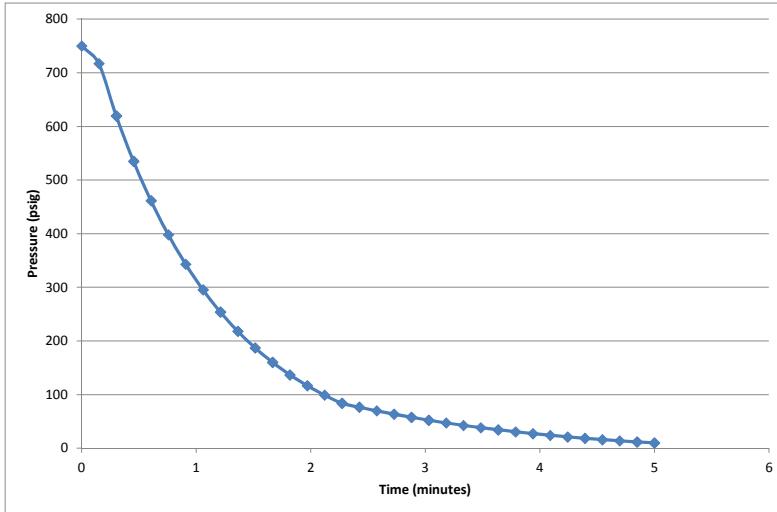
| Company                                | Facility                  |                       |
|----------------------------------------|---------------------------|-----------------------|
| Cheniere Corpus Christi Pipeline, L.P. | Sinton Compressor Station |                       |
| Descriptive Name of Emission Point     | TEMP Subject Item ID      | Emission Point ID No. |
| Titan 130 - Unit B Blowdown Stack      | N/A                       | EQT002                |

| Emissions Per Event <sup>(1)</sup> |           |           |           |
|------------------------------------|-----------|-----------|-----------|
| Pollutant                          | 5 min     | 10 min    | 15 min    |
|                                    | (lb/hr)   | (lb/hr)   | (lb/hr)   |
| CO <sub>2</sub>                    | 2,514.84  | 1,257.42  | 838.28    |
| CH <sub>4</sub>                    | 91,528.92 | 45,764.46 | 30,509.64 |
| CO <sub>2</sub> -e                 | -         | -         | -         |

| Emissions Per Year <sup>(1)</sup> |          |          |           |
|-----------------------------------|----------|----------|-----------|
| Pollutant                         | 3 Events | 6 Events | 12 Events |
|                                   | TPY      | TPY      | TPY       |
| CO <sub>2</sub>                   | 0.31     | 0.63     | 1.26      |
| CH <sub>4</sub>                   | 11.44    | 22.88    | 45.76     |
| CO <sub>2</sub> -e                | 240.58   | 481.16   | 962.31    |

(1) Emission calculation methodology based upon process simulations using worst case scenario.

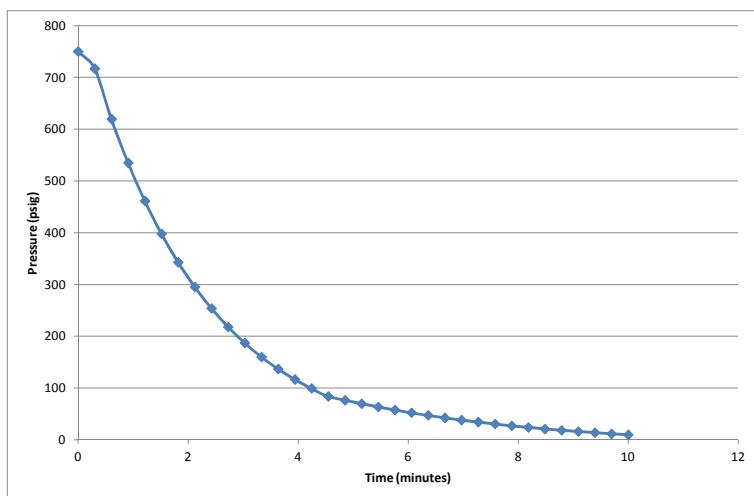
## BLOW DOWN SYSTEM CALCULATIONS


## PIPE VOLUME CALCULATIONS

|          |                 |  |  |  |  |  |  |  |  |  |  |  |  |          |  |
|----------|-----------------|--|--|--|--|--|--|--|--|--|--|--|--|----------|--|
| SECTION: | COMPRESSOR UNIT |  |  |  |  |  |  |  |  |  |  |  |  | BDV TAG: |  |
|----------|-----------------|--|--|--|--|--|--|--|--|--|--|--|--|----------|--|

| Section             | Description | Line   | NPS (in) | Piping | Sch /  | OD(in) | ID(in) | WT(in) | Length | Transv             | Cylinder           | Heads              | Volume             | Normal | Press                       | Temp  | Pseudo-  | Pseudo-    | Z Factor | Moles | Temp x Moles |
|---------------------|-------------|--------|----------|--------|--------|--------|--------|--------|--------|--------------------|--------------------|--------------------|--------------------|--------|-----------------------------|-------|----------|------------|----------|-------|--------------|
|                     |             |        |          |        |        |        |        |        |        | Sect Area          | Volume             | Volume             | Volume             | Volume | Press                       | Temp  | reduced  | reduced    |          |       |              |
|                     |             | Number |          | Class  | BWG    |        |        |        | (ft)   | (ft <sup>2</sup> ) | (ft <sup>3</sup> ) | (ft <sup>3</sup> ) | (ft <sup>3</sup> ) | (psig) | (°F)                        | Press | Temp     | (lb/mol)   |          |       |              |
| Comp Suction Header | Piping      | 48"    | D        | STD    | 48.000 | 47.250 | 0.375  | 1000   | 12.177 | 12176.739          | 12177              | 577149             | 750                | 80     | 1.129                       | 1.551 | 0.908    | 1770       | 955945   |       |              |
|                     |             |        |          |        |        |        |        |        |        |                    | 12177              | 577149             |                    |        |                             | Total |          | 1770       | 955945   |       |              |
|                     |             |        |          |        |        |        |        |        |        |                    |                    |                    |                    |        | T Average                   |       | °F       | 80.00      |          |       |              |
|                     |             |        |          |        |        |        |        |        |        |                    |                    |                    |                    |        | P Average                   |       | psig     | 750.00     |          |       |              |
|                     |             |        |          |        |        |        |        |        |        |                    |                    |                    |                    |        | Std Vol                     |       | SCF      | 671,630.39 |          |       |              |
|                     |             |        |          |        |        |        |        |        |        |                    |                    |                    |                    |        | Molecular Weight            |       | lb/lbmol | 16.70      |          |       |              |
|                     |             |        |          |        |        |        |        |        |        |                    |                    |                    |                    |        | Pseudo Critical Pressure    |       | psia     | 677.6      |          |       |              |
|                     |             |        |          |        |        |        |        |        |        |                    |                    |                    |                    |        | Pseudo Critical Temperature |       | °R       | 348.3      |          |       |              |

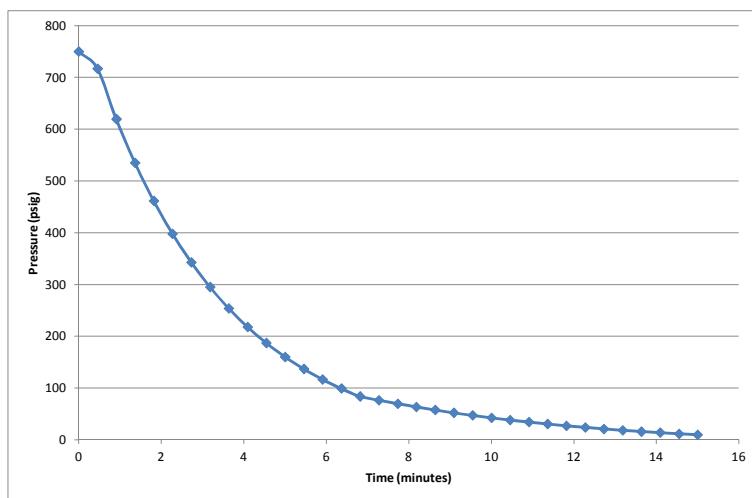
## BLOWDOWN CALCULATIONS


| Reference Data                             | Initial         | Change     |
|--------------------------------------------|-----------------|------------|
| Orifice Diameter, Inches                   | 5.245           | 5.245      |
| Choke Area                                 | in <sup>2</sup> | 21.606     |
| Inlet Pipe OD                              | in              | 12"        |
| Inlet Pipe Class                           |                 | D          |
| Schedule                                   |                 | 40         |
| Inlet Pipe ID                              | in              | 11.938     |
| Pseudo Critical Pressure                   |                 | 675.500    |
| Pseudo Critical Temperature                |                 | 347.900    |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.439      |
| Settleout Z                                |                 | 0.991      |
| Gas Molecular Weight                       |                 | 16.700     |
| Gas Gravity                                |                 | 0.576      |
| Cp/Cv Ratio                                |                 | 10.672     |
| Time Increment, seconds                    |                 | 9.091      |
| Critical Ratio, Pct                        |                 | 0.143      |
| Expansion Factor, F <sub>cr</sub>          |                 | 1.132      |
| Gravity Correction Factor                  |                 | 1.020      |
| Vent Header Back Pressure, psig            |                 | 0.000      |
| Initial Blowdown Volume, ft <sup>3</sup>   |                 | 12,176.739 |
| Mole to Blowdown, LB-Moles                 |                 | 1,769.777  |
| Settleout Pressure, psig                   |                 | 750.000    |
| Ave. Settleout Temp., deg R/deg F          |                 | 540.150    |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh | Inventory Moles | Vented Moles | Total Vent |
|---------------|---------------|-----------------------|---------|---------------------------------|------------|-----------------|--------------|------------|
| 0.00          | 0             | 750.00                | 750.0   | 0.019                           | 32524185   | 1769.777        | -            |            |
| 0.15          | 9             | 717.16                | 717.2   | 0.020                           | 31127557   | 1553.356        | 216.4        | 216.4      |
| 0.30          | 18            | 619.57                | 619.6   | 0.023                           | 26976945   | 1346.228        | 207.1        | 423.5      |
| 0.45          | 27            | 535.00                | 535.0   | 0.027                           | 23379785   | 1166.720        | 179.5        | 603.1      |
| 0.61          | 36            | 461.70                | 461.7   | 0.031                           | 20262277   | 1011.147        | 155.6        | 758.6      |
| 0.76          | 45            | 398.18                | 398.2   | 0.036                           | 17560464   | 876.318         | 134.8        | 893.5      |
| 0.91          | 55            | 343.12                | 343.1   | 0.041                           | 15218916   | 759.468         | 116.9        | 1,010.3    |
| 1.06          | 64            | 295.41                | 295.4   | 0.047                           | 13189595   | 658.199         | 101.3        | 1,111.6    |
| 1.21          | 73            | 254.06                | 254.1   | 0.055                           | 11430867   | 570.434         | 87.8         | 1,199.3    |
| 1.36          | 82            | 218.22                | 218.2   | 0.063                           | 9906652    | 494.371         | 76.1         | 1,275.4    |
| 1.52          | 91            | 187.16                | 187.2   | 0.073                           | 8585679    | 428.450         | 65.9         | 1,341.3    |
| 1.67          | 100           | 160.25                | 160.2   | 0.084                           | 7440847    | 371.320         | 57.1         | 1,398.5    |
| 1.82          | 109           | 136.92                | 136.9   | 0.097                           | 6448669    | 321.807         | 49.5         | 1,448.0    |
| 1.97          | 118           | 116.70                | 116.7   | 0.112                           | 5588791    | 278.897         | 42.9         | 1,490.9    |
| 2.12          | 127           | 99.18                 | 99.2    | 0.129                           | 4843570    | 241.708         | 37.2         | 1,528.1    |
| 2.27          | 136           | 84.00                 | 84.0    | 0.149                           | 2331263    | 209.478         | 32.2         | 1,560.3    |
| 2.42          | 145           | 76.69                 | 76.7    | 0.161                           | 2164917    | 193.966         | 15.5         | 1,575.8    |
| 2.58          | 155           | 69.90                 | 69.9    | 0.174                           | 2009789    | 179.560         | 14.4         | 1,590.2    |
| 2.73          | 164           | 63.60                 | 63.6    | 0.188                           | 1865077    | 166.187         | 13.4         | 1,603.6    |
| 2.88          | 173           | 57.75                 | 57.8    | 0.203                           | 1730030    | 153.776         | 12.4         | 1,616.0    |
| 3.03          | 182           | 52.33                 | 52.3    | 0.219                           | 1603947    | 142.264         | 11.5         | 1,627.5    |
| 3.18          | 191           | 47.30                 | 47.3    | 0.237                           | 1486174    | 131.591         | 10.7         | 1,638.2    |
| 3.33          | 200           | 42.64                 | 42.6    | 0.256                           | 1376101    | 121.702         | 9.9          | 1,648.1    |
| 3.48          | 209           | 38.33                 | 38.3    | 0.277                           | 1273155    | 112.545         | 9.2          | 1,657.2    |
| 3.64          | 218           | 34.33                 | 34.3    | 0.300                           | 1176803    | 104.074         | 8.5          | 1,665.7    |
| 3.79          | 227           | 30.64                 | 30.6    | 0.324                           | 1086543    | 96.243          | 7.8          | 1,673.5    |
| 3.94          | 236           | 27.24                 | 27.2    | 0.351                           | 1001906    | 89.013          | 7.2          | 1,680.8    |
| 4.09          | 245           | 24.10                 | 24.1    | 0.379                           | 922452     | 82.346          | 6.7          | 1,687.4    |
| 4.24          | 255           | 21.21                 | 21.2    | 0.409                           | 847765     | 76.208          | 6.1          | 1,693.6    |
| 4.39          | 264           | 18.55                 | 18.5    | 0.442                           | 777454     | 70.567          | 5.6          | 1,699.2    |
| 4.55          | 273           | 16.11                 | 16.1    | 0.477                           | 711151     | 65.393          | 5.2          | 1,704.4    |
| 4.70          | 282           | 13.88                 | 13.9    | 0.514                           | 648506     | 60.661          | 4.7          | 1,709.1    |
| 4.85          | 291           | 11.85                 | 11.8    | 0.554                           | 589186     | 56.346          | 4.3          | 1,713.4    |
| 5.00          | 300           | 10.00                 | 10.0    | 0.595                           | 532872     | 52.426          | 3.9          | 1,717.4    |

## BLOWDOWN CALCULATIONS


| Reference Data                             | Initial         | Change        |
|--------------------------------------------|-----------------|---------------|
| Orifice Diameter, Inches                   | <b>3.709</b>    | 3.709         |
| Choke Area                                 | in <sup>2</sup> | 10.803        |
| Inlet Pipe OD                              | in              | <b>12"</b>    |
| Inlet Pipe Class                           |                 | <b>D</b>      |
| Schedule                                   |                 | <b>40</b>     |
| Inlet Pipe ID                              | in              | 11.938        |
| Pseudo Critical Pressure                   |                 | 675.500       |
| Pseudo Critical Temperature                |                 | 347.900       |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.311         |
| Settleout Z                                |                 | 0.991         |
| Gas Molecular Weight                       |                 | 16.700        |
| Gas Gravity                                |                 | 0.576         |
| Cp/Cv Ratio                                |                 | 10.672        |
| Time Increment, seconds                    |                 | <b>18.182</b> |
| Critical Ratio, Pcrit                      |                 | 0.143         |
| Expansion Factor, F <sub>cr</sub>          |                 | 1.132         |
| Gravity Correction Factor                  |                 | 1.020         |
| Vent Header Back Pressure, psig            |                 | <b>0.000</b>  |
| Initial Blowdown Volume, ft <sup>3</sup>   |                 | 12,176.739    |
| Mole to Blowdown, LB-Moles                 |                 | 1,769.777     |
| Settleout Pressure, psig                   |                 | 750.000       |
| Ave. Settleout Temp., deg R/deg F          | 540.150         | °R / 80°F     |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi      | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh      | Inventory Moles | Vent Moles   | Total Vent   |
|---------------|---------------|-----------------------|--------------|---------------------------------|-----------------|-----------------|--------------|--------------|
| 0.00          | 0             | 750.00                | 750.0        | 0.019                           | 16262057        | 1769.777        | -            | 216.4        |
| 0.30          | 18            | 717.16                | 717.2        | 0.020                           | 15563749        | 1553.356        | 216.4        | 216.4        |
| 0.61          | 36            | 619.58                | 619.6        | 0.023                           | 13488452        | 1346.229        | 207.1        | 423.5        |
| 0.91          | 55            | 535.00                | 535.0        | 0.027                           | 11689878        | 1166.721        | 179.5        | 603.1        |
| <b>1.21</b>   | <b>73</b>     | <b>461.70</b>         | <b>461.7</b> | <b>0.031</b>                    | <b>10131130</b> | <b>1011.148</b> | <b>155.6</b> | <b>758.6</b> |
| 1.52          | 91            | 398.18                | 398.2        | 0.036                           | 8780227         | 876.320         | 134.8        | 893.5        |
| 1.82          | 109           | 343.12                | 343.1        | 0.041                           | 7609456         | 759.470         | 116.9        | 1,010.3      |
| 2.12          | 127           | 295.41                | 295.4        | 0.047                           | 6594798         | 658.201         | 101.3        | 1,111.6      |
| 2.42          | 145           | 254.06                | 254.1        | 0.055                           | 5715436         | 570.435         | 87.8         | 1,199.3      |
| 2.73          | 164           | 218.22                | 218.2        | 0.063                           | 4953330         | 494.372         | 76.1         | 1,275.4      |
| 3.03          | 182           | 187.16                | 187.2        | 0.073                           | 4292844         | 428.452         | 65.9         | 1,341.3      |
| 3.33          | 200           | 160.25                | 160.2        | 0.084                           | 3720429         | 371.321         | 57.1         | 1,398.5      |
| 3.64          | 218           | 136.92                | 136.9        | 0.097                           | 3224341         | 321.809         | 49.5         | 1,448.0      |
| 3.94          | 236           | 116.70                | 116.7        | 0.112                           | 2794401         | 278.898         | 42.9         | 1,490.9      |
| 4.24          | 255           | 99.18                 | 99.2         | 0.129                           | 2421791         | 241.709         | 37.2         | 1,528.1      |
| 4.55          | 273           | 84.00                 | 84.0         | 0.149                           | 1165635         | 209.479         | 32.2         | 1,560.3      |
| 4.85          | 291           | 76.69                 | 76.7         | 0.161                           | 1082461         | 193.967         | 15.5         | 1,575.8      |
| 5.15          | 309           | 69.90                 | 69.9         | 0.174                           | 1004898         | 179.561         | 14.4         | 1,590.2      |
| 5.45          | 327           | 63.60                 | 63.6         | 0.188                           | 932542          | 166.188         | 13.4         | 1,603.6      |
| 5.76          | 345           | 57.75                 | 57.8         | 0.203                           | 865018          | 153.777         | 12.4         | 1,616.0      |
| 6.06          | 364           | 52.33                 | 52.3         | 0.219                           | 801976          | 142.265         | 11.5         | 1,627.5      |
| 6.36          | 382           | 47.30                 | 47.3         | 0.237                           | 743090          | 131.592         | 10.7         | 1,638.2      |
| 6.67          | 400           | 42.64                 | 42.6         | 0.256                           | 688053          | 121.703         | 9.9          | 1,648.1      |
| 6.97          | 418           | 38.33                 | 38.3         | 0.277                           | 636580          | 112.546         | 9.2          | 1,657.2      |
| 7.27          | 436           | 34.33                 | 34.3         | 0.300                           | 588404          | 104.074         | 8.5          | 1,665.7      |
| 7.58          | 455           | 30.65                 | 30.6         | 0.324                           | 543274          | 96.244          | 7.8          | 1,673.5      |
| 7.88          | 473           | 27.24                 | 27.2         | 0.351                           | 500956          | 89.014          | 7.2          | 1,680.8      |
| 8.18          | 491           | 24.10                 | 24.1         | 0.379                           | 461228          | 82.347          | 6.7          | 1,687.4      |
| 8.48          | 509           | 21.21                 | 21.2         | 0.409                           | 423885          | 76.208          | 6.1          | 1,693.6      |
| 8.79          | 527           | 18.55                 | 18.5         | 0.442                           | 388729          | 70.567          | 5.6          | 1,699.2      |
| 9.09          | 545           | 16.11                 | 16.1         | 0.477                           | 355578          | 65.394          | 5.2          | 1,704.4      |
| 9.39          | 564           | 13.88                 | 13.9         | 0.514                           | 324255          | 60.662          | 4.7          | 1,709.1      |
| 9.70          | 582           | 11.85                 | 11.8         | 0.554                           | 294595          | 56.347          | 4.3          | 1,713.4      |
| 10.00         | 600           | 10.00                 | 10.0         | 0.595                           | 266438          | 52.426          | 3.9          | 1,717.4      |

## BLOWDOWN CALCULATIONS

| Reference Data                             | Initial         | Change        |
|--------------------------------------------|-----------------|---------------|
| Orifice Diameter, Inches                   | <b>3.028</b>    | 3.028         |
| Choke Area                                 | in <sup>2</sup> | 7.202         |
| Inlet Pipe OD                              | in              | <b>12"</b>    |
| Inlet Pipe Class                           |                 | <b>D</b>      |
| Schedule                                   |                 | <b>40</b>     |
| Inlet Pipe ID                              | in              | 11.938        |
| Pseudo Critical Pressure                   |                 | 675.500       |
| Pseudo Critical Temperature                |                 | 347.900       |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.254         |
| Settleout Z                                |                 | 0.991         |
| Gas Molecular Weight                       |                 | 16.700        |
| Gas Gravity                                |                 | 0.576         |
| Cp/Cv Ratio                                |                 | 10.672        |
| Time Increment, seconds                    |                 | <b>27.273</b> |
| Critical Ratio, Pcrit                      |                 | 0.143         |
| Expansion Factor, F <sub>cr</sub>          |                 | 1.132         |
| Gravity Correction Factor                  |                 | 1.020         |
| Vent Header Back Pressure, psig            |                 | <b>0.000</b>  |
| Initial Blowdown Volume, ft <sup>3</sup>   |                 | 12,176.739    |
| Mole to Blowdown, LB-Moles                 |                 | 1,769.777     |
| Settleout Pressure, psig                   |                 | 750.000       |
| Ave. Settleout Temp., deg R/deg F          | 540.150         | °R / 80°F     |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi      | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh     | Inventory Moles | Vented Moles | Total Vent   |
|---------------|---------------|-----------------------|--------------|---------------------------------|----------------|-----------------|--------------|--------------|
| 0.00          | 0             | 750.00                | 750.0        | 0.019                           | 10841468       | 1769.777        | -            | 216.4        |
| 0.45          | 27            | 717.16                | 717.2        | 0.020                           | 10375912       | 1553.355        | 216.4        | 216.4        |
| 0.91          | 55            | 619.57                | 619.6        | 0.023                           | 8992358        | 1346.226        | 207.1        | 423.6        |
| 1.36          | 82            | 535.00                | 535.0        | 0.027                           | 7793290        | 1166.716        | 179.5        | 603.1        |
| <b>1.82</b>   | <b>109</b>    | <b>461.70</b>         | <b>461.7</b> | <b>0.031</b>                    | <b>6754110</b> | <b>1011.143</b> | <b>155.6</b> | <b>758.6</b> |
| 2.27          | 136           | 398.17                | 398.2        | 0.036                           | 5853497        | 876.314         | 134.8        | 893.5        |
| 2.73          | 164           | 343.12                | 343.1        | 0.041                           | 5072975        | 759.464         | 116.9        | 1,010.3      |
| 3.18          | 191           | 295.41                | 295.4        | 0.047                           | 4396530        | 658.195         | 101.3        | 1,111.6      |
| 3.64          | 218           | 254.06                | 254.1        | 0.055                           | 3810284        | 570.429         | 87.8         | 1,199.3      |
| 4.09          | 245           | 218.22                | 218.2        | 0.063                           | 3302209        | 494.366         | 76.1         | 1,275.4      |
| 4.55          | 273           | 187.16                | 187.2        | 0.073                           | 2861883        | 428.446         | 65.9         | 1,341.3      |
| 5.00          | 300           | 160.25                | 160.2        | 0.084                           | 2480271        | 371.316         | 57.1         | 1,398.5      |
| 5.45          | 327           | 136.92                | 136.9        | 0.097                           | 2149545        | 321.803         | 49.5         | 1,448.0      |
| 5.91          | 355           | 116.70                | 116.7        | 0.112                           | 1862918        | 278.893         | 42.9         | 1,490.9      |
| 6.36          | 382           | 99.18                 | 99.2         | 0.129                           | 1614511        | 241.705         | 37.2         | 1,528.1      |
| 6.82          | 409           | 83.99                 | 84.0         | 0.149                           | 777081         | 209.475         | 32.2         | 1,560.3      |
| 7.27          | 436           | 76.69                 | 76.7         | 0.161                           | 721633         | 193.963         | 15.5         | 1,575.8      |
| 7.73          | 464           | 69.90                 | 69.9         | 0.174                           | 669924         | 179.557         | 14.4         | 1,590.2      |
| 8.18          | 491           | 63.60                 | 63.6         | 0.188                           | 621686         | 166.184         | 13.4         | 1,603.6      |
| 8.64          | 518           | 57.75                 | 57.8         | 0.203                           | 576671         | 153.773         | 12.4         | 1,616.0      |
| 9.09          | 545           | 52.33                 | 52.3         | 0.219                           | 534643         | 142.262         | 11.5         | 1,627.5      |
| 9.55          | 573           | 47.30                 | 47.3         | 0.237                           | 495386         | 131.589         | 10.7         | 1,638.2      |
| 10.00         | 600           | 42.64                 | 42.6         | 0.256                           | 458695         | 121.700         | 9.9          | 1,648.1      |
| 10.45         | 627           | 38.32                 | 38.3         | 0.277                           | 424379         | 112.543         | 9.2          | 1,657.2      |
| 10.91         | 655           | 34.33                 | 34.3         | 0.300                           | 392262         | 104.071         | 8.5          | 1,665.7      |
| 11.36         | 682           | 30.64                 | 30.6         | 0.324                           | 362176         | 96.241          | 7.8          | 1,673.5      |
| 11.82         | 709           | 27.24                 | 27.2         | 0.351                           | 333964         | 89.011          | 7.2          | 1,680.8      |
| 12.27         | 736           | 24.10                 | 24.1         | 0.379                           | 307479         | 82.344          | 6.7          | 1,687.4      |
| 12.73         | 764           | 21.20                 | 21.2         | 0.409                           | 282583         | 76.206          | 6.1          | 1,693.6      |
| 13.18         | 791           | 18.55                 | 18.5         | 0.442                           | 259146         | 70.565          | 5.6          | 1,699.2      |
| 13.64         | 818           | 16.11                 | 16.1         | 0.477                           | 237045         | 65.392          | 5.2          | 1,704.4      |
| 14.09         | 845           | 13.88                 | 13.9         | 0.514                           | 216164         | 60.660          | 4.7          | 1,709.1      |
| 14.55         | 873           | 11.85                 | 11.8         | 0.554                           | 196390         | 56.345          | 4.3          | 1,713.4      |
| 15.00         | 900           | 10.00                 | 10.0         | 0.595                           | 177619         | 52.424          | 3.9          | 1,717.4      |

| Case      | Stack       | Height Above |        | Stack Gas Flow |        |       |          | Stack Temperature |     | Temperature Correction Factor | Stack Pressure |         | Pressure Correction Factor | Corrected Stack Flow |               | Stack Area | Stack   |
|-----------|-------------|--------------|--------|----------------|--------|-------|----------|-------------------|-----|-------------------------------|----------------|---------|----------------------------|----------------------|---------------|------------|---------|
|           | Diameter in | Ground ft    | MW     | lb/hr          | MMSCFD | SCFS  | Ibmol/hr | °F                | R   | psig                          | psia           | ft3/sec | ft3/min                    | ft2                  | Velocity ft/s |            |         |
| Emergency | 96          | 20           | 16.700 | 1,193,416      | 650    | 7,523 | 71,460   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 8,831                | 529,866       | 50.265     | 175.689 |
| 5 min     | 96          | 20           | 16.700 | 1,433,165      | 781    | 9,034 | 85,816   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 10,605               | 636,312       | 50.265     | 210.984 |
| 10 min    | 96          | 20           | 16.700 | 716,581        | 390    | 4,517 | 42,908   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 5,303                | 318,155       | 50.265     | 105.492 |
| 15 min    | 96          | 20           | 16.700 | 477,725        | 260    | 3,012 | 28,605   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 3,535                | 212,105       | 50.265     | 70.328  |

|                | MOLECULAR<br>WEIGHT<br>LB/LBMOL | MOL<br>FRACTION | MASS<br>FRACTION | GAS VOLUME | GAS MASS  |
|----------------|---------------------------------|-----------------|------------------|------------|-----------|
|                |                                 |                 |                  | LBMOL      | LBM       |
| METHANE        | 16.042                          | <b>0.968</b>    | 0.895            | 1,712.26   | 27,468.06 |
| ETHANE         | 30.069                          | <b>0.015</b>    | 0.051            | 27.13      | 815.79    |
| PROPANE        | 44.096                          | <b>0.002</b>    | 0.011            | 3.42       | 150.62    |
| ISO-BUTANE     | 58.122                          | <b>0.000</b>    | 0.003            | 0.67       | 39.09     |
| N-BUTANE       | 58.122                          | <b>0.000</b>    | 0.003            | 0.71       | 41.15     |
| ISO-PENTANE    | 72.149                          | <b>0.000</b>    | 0.000            | 0.28       | 20.43     |
| N-PENTANE      | 72.149                          | <b>0.000</b>    | 0.000            | 0.18       | 12.77     |
| N-HEXANE       | 86.175                          | <b>0.000</b>    | 0.005            | 0.57       | 48.80     |
| CYCLOHEXANE    | 84.159                          | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| N-HEPTANE      | 100.202                         | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| BENZENE        | 78.112                          | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| TOLUENE        | 92.138                          | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| ETHYLBENZENE   | 106.165                         | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| XYLENE         | 106.165                         | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| STYRENE        | 104.149                         | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| CARBON DIOXIDE | 44.100                          | <b>0.010</b>    | 0.026            | 17.11      | 754.72    |
| WATER          | 18.015                          | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| NITROGEN       | 28.014                          | <b>0.004</b>    | 0.004            | 7.45       | 208.73    |
| <b>TOTAL</b>   | 16.70                           | 1.000           | 1.000            | 1,770      | 29,560    |
| THC            |                                 | 0.986           | 0.969            | 1,745      | 28,597    |
| NMHC           |                                 | 0.019           | 0.074            | 33         | 1,129     |
| NMNEHC (VOCs)  |                                 | 0.003           | 0.023            | 6          | 313       |
| HEXANE         |                                 | 0.000           | 0.005            | 1          | 49        |

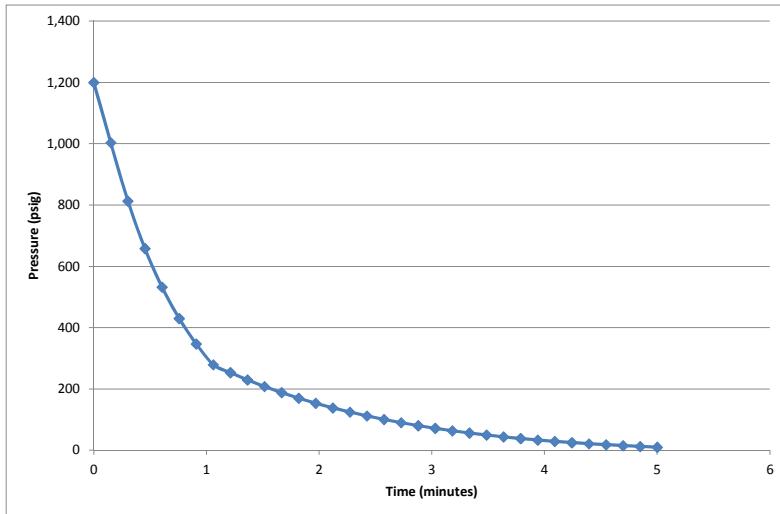
| Company                                | Facility                  |                       |
|----------------------------------------|---------------------------|-----------------------|
| Cheniere Corpus Christi Pipeline, L.P. | Sinton Compressor Station |                       |
| Descriptive Name of Emission Point     | TEMP Subject Item ID      | Emission Point ID No. |
| Station Suction Blowdown Stack         | N/A                       | EQT003                |

| Emissions Per Event <sup>(1)</sup> |            |            |            |
|------------------------------------|------------|------------|------------|
| Pollutant                          | 5 min      | 10 min     | 15 min     |
|                                    | (lb/hr)    | (lb/hr)    | (lb/hr)    |
| CO <sub>2</sub>                    | 9,056.64   | 4,528.32   | 3,018.88   |
| CH <sub>4</sub>                    | 329,616.72 | 164,808.36 | 109,872.24 |
| CO <sub>2</sub> -e                 | -          | -          | -          |

| Emissions Per Year <sup>(1)</sup> |          |          |          |
|-----------------------------------|----------|----------|----------|
| Pollutant                         | 2 Events | 3 Events | 4 Events |
|                                   | TPY      | TPY      | TPY      |
| CO <sub>2</sub>                   | 0.75     | 1.13     | 1.51     |
| CH <sub>4</sub>                   | 27.47    | 41.20    | 54.94    |
| CO <sub>2</sub> -e                | 577.58   | 866.38   | 1,155.17 |

(1) Emission calculation methodology based upon process simulations using worst case scenario.

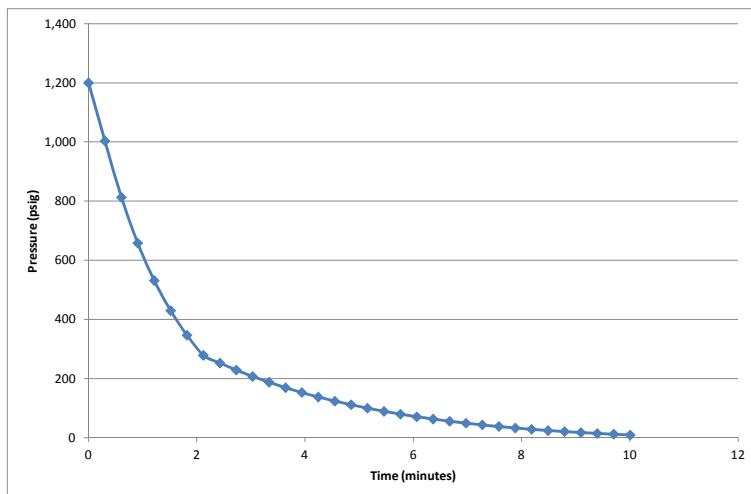
## BLOW DOWN SYSTEM CALCULATIONS


## PIPE VOLUME CALCULATIONS

|          |                 |          |  |
|----------|-----------------|----------|--|
| SECTION: | COMPRESSOR UNIT | BDV TAG: |  |
|----------|-----------------|----------|--|

| Section               | Description | Line | NPS (in) | Piping | Sch /  | OD(in) | ID(in) | WT(in) | Length | Transv             | Cylinder           | Heads              | Volume             | Normal | Press                       | Temp  | Pseudo-  | Pseudo-      | Z Factor | Moles | Temp x Moles |
|-----------------------|-------------|------|----------|--------|--------|--------|--------|--------|--------|--------------------|--------------------|--------------------|--------------------|--------|-----------------------------|-------|----------|--------------|----------|-------|--------------|
|                       |             |      |          |        |        |        |        |        |        |                    |                    |                    |                    |        |                             |       | reduced  | reduced      |          |       |              |
| Number                | Class       | BWG  |          |        |        |        |        |        | (ft)   | (ft <sup>2</sup> ) | (ft <sup>3</sup> ) | (ft <sup>3</sup> ) | (ft <sup>3</sup> ) | (psig) | (°F)                        | Press | Temp     | (lb/mol)     |          |       |              |
| Comp Discharge Header | Piping      | 48"  | D        | STD    | 48.000 | 47.250 | 0.375  | 1000   | 12.177 | 12176.739          | 12177              | 853571             | 1200               | 120    | 1.793                       | 1.666 | 0.893    | 2661         | 1543886  |       |              |
|                       |             |      |          |        |        |        |        |        |        |                    | 12177              | 853571             |                    |        |                             | Total |          | 2661         | 1543886  |       |              |
|                       |             |      |          |        |        |        |        |        |        |                    |                    |                    |                    |        | T Average                   |       | °F       | 120.00       |          |       |              |
|                       |             |      |          |        |        |        |        |        |        |                    |                    |                    |                    |        | P Average                   |       | psig     | 1,200.00     |          |       |              |
|                       |             |      |          |        |        |        |        |        |        |                    |                    |                    |                    |        | Std Vol                     |       | SCF      | 1,009,919.18 |          |       |              |
|                       |             |      |          |        |        |        |        |        |        |                    |                    |                    |                    |        | Molecular Weight            |       | lb/lbmol | 16.70        |          |       |              |
|                       |             |      |          |        |        |        |        |        |        |                    |                    |                    |                    |        | Pseudo Critical Pressure    |       | psia     | 677.6        |          |       |              |
|                       |             |      |          |        |        |        |        |        |        |                    |                    |                    |                    |        | Pseudo Critical Temperature |       | °R       | 348.3        |          |       |              |

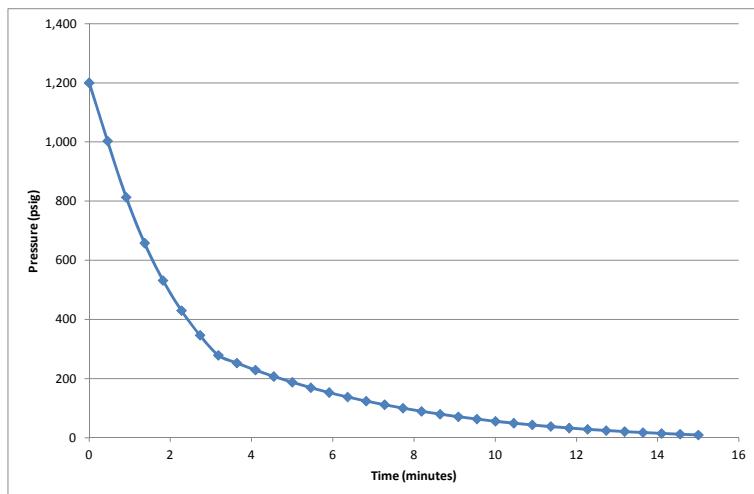
## BLOWDOWN CALCULATIONS


| Reference Data                             | Initial         | Change     |
|--------------------------------------------|-----------------|------------|
| Orifice Diameter, Inches                   | 5.804           | 5.804      |
| Choke Area                                 | in <sup>2</sup> | 26.458     |
| Inlet Pipe OD                              | in              | 12"        |
| Inlet Pipe Class                           |                 | D          |
| Schedule                                   |                 | 40         |
| Inlet Pipe ID                              | in              | 11.938     |
| Pseudo Critical Pressure                   |                 | 675.500    |
| Pseudo Critical Temperature                |                 | 347.900    |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.486      |
| Settleout Z                                |                 | 0.916      |
| Gas Molecular Weight                       |                 | 16.700     |
| Gas Gravity                                |                 | 0.576      |
| Cp/Cv Ratio                                |                 | 40.988     |
| Time Increment, seconds                    | 9.091           |            |
| Critical Ratio, Pct                        |                 | 0.044      |
| Expansion Factor, F <sub>cr</sub>          |                 | 1.353      |
| Gravity Correction Factor                  |                 | 1.020      |
| Vent Header Back Pressure, psig            | 0.000           |            |
| Initial Blowdown Volume, ft <sup>3</sup>   | 12,176.739      |            |
| Mole to Blowdown, LB-Moles                 | 2,661.184       |            |
| Settleout Pressure, psig                   | 1,200.000       |            |
| Ave. Settleout Temp., deg R/deg F          | 580.150         | °R / 120°F |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh | Inventory Moles | Vented Moles | Total Vent |
|---------------|---------------|-----------------------|---------|---------------------------------|------------|-----------------|--------------|------------|
| 0.00          | 0             | 1200.00               | 1200.0  | 0.012                           | 72949616   | 2661.184        | -            | 485.4      |
| 0.15          | 9             | 1003.43               | 1003.4  | 0.014                           | 61144421   | 2175.765        | 485.4        | 892.3      |
| 0.30          | 18            | 813.04                | 813.0   | 0.018                           | 49710514   | 1768.901        | 406.9        | 1,223.1    |
| 0.45          | 27            | 658.25                | 658.3   | 0.022                           | 40414730   | 1438.119        | 330.8        | 1,492.0    |
| 0.61          | 36            | 532.41                | 532.4   | 0.027                           | 32857241   | 1169.193        | 268.9        | 2,032.9    |
| 0.76          | 45            | 430.10                | 430.1   | 0.033                           | 26712991   | 950.556         | 218.6        | 2,227.9    |
| 0.91          | 55            | 346.93                | 346.9   | 0.041                           | 21717706   | 772.804         | 177.8        | 2,437.6    |
| 1.06          | 64            | 279.30                | 279.3   | 0.050                           | 8347230    | 628.291         | 144.5        | 2,661.184  |
| 1.21          | 73            | 253.31                | 253.3   | 0.055                           | 7627069    | 572.747         | 55.5         | 2,888.4    |
| 1.36          | 82            | 229.56                | 229.6   | 0.060                           | 6968597    | 521.995         | 50.8         | 3,116.981  |
| 1.52          | 91            | 207.86                | 207.9   | 0.066                           | 6366488    | 475.625         | 46.4         | 3,344.606  |
| 1.67          | 100           | 188.04                | 188.0   | 0.073                           | 5815872    | 433.261         | 42.4         | 3,573.267  |
| 1.82          | 109           | 169.93                | 169.9   | 0.080                           | 5312296    | 394.562         | 38.7         | 3,801.829  |
| 1.97          | 118           | 153.39                | 153.4   | 0.087                           | 4851686    | 359.213         | 35.3         | 4,029.442  |
| 2.12          | 127           | 138.28                | 138.3   | 0.096                           | 4430316    | 326.929         | 32.3         | 4,257.065  |
| 2.27          | 136           | 124.49                | 124.5   | 0.106                           | 4044779    | 297.449         | 29.5         | 4,484.688  |
| 2.42          | 145           | 111.89                | 111.9   | 0.116                           | 3691956    | 270.534         | 26.9         | 4,712.311  |
| 2.58          | 155           | 100.40                | 100.4   | 0.128                           | 3368993    | 245.967         | 24.6         | 4,940.934  |
| 2.73          | 164           | 89.91                 | 89.9    | 0.141                           | 3073278    | 223.550         | 22.4         | 5,168.557  |
| 2.88          | 173           | 80.34                 | 80.3    | 0.155                           | 2802418    | 203.100         | 20.5         | 5,397.180  |
| 3.03          | 182           | 71.61                 | 71.6    | 0.170                           | 2554222    | 184.452         | 18.6         | 5,625.803  |
| 3.18          | 191           | 63.66                 | 63.7    | 0.188                           | 2326682    | 167.456         | 17.0         | 5,853.426  |
| 3.33          | 200           | 56.41                 | 56.4    | 0.207                           | 2117956    | 151.974         | 15.5         | 6,081.049  |
| 3.48          | 209           | 49.82                 | 49.8    | 0.228                           | 1926354    | 137.880         | 14.1         | 6,308.672  |
| 3.64          | 218           | 43.82                 | 43.8    | 0.251                           | 1750326    | 125.062         | 12.8         | 6,536.295  |
| 3.79          | 227           | 38.37                 | 38.4    | 0.277                           | 1588446    | 113.415         | 11.6         | 6,763.918  |
| 3.94          | 236           | 33.43                 | 33.4    | 0.305                           | 1439399    | 102.845         | 10.6         | 6,991.541  |
| 4.09          | 245           | 28.94                 | 28.9    | 0.337                           | 1301978    | 93.267          | 9.6          | 7,219.164  |
| 4.24          | 255           | 24.89                 | 24.9    | 0.371                           | 1175064    | 84.604          | 8.7          | 7,446.787  |
| 4.39          | 264           | 21.23                 | 21.2    | 0.409                           | 1057622    | 76.785          | 7.8          | 7,674.410  |
| 4.55          | 273           | 17.94                 | 17.9    | 0.450                           | 948693     | 69.747          | 7.0          | 7,871.033  |
| 4.70          | 282           | 14.98                 | 15.0    | 0.495                           | 847380     | 63.434          | 6.3          | 8,098.656  |
| 4.85          | 291           | 12.35                 | 12.3    | 0.544                           | 752842     | 57.796          | 5.6          | 8,326.279  |
| 5.00          | 300           | 10.00                 | 10.0    | 0.595                           | 664284     | 52.786          | 5.0          | 8,553.902  |

## BLOWDOWN CALCULATIONS


| Reference Data                             | Initial         | Change        |
|--------------------------------------------|-----------------|---------------|
| Orifice Diameter, Inches                   | <b>4.104</b>    | 4.104         |
| Choke Area                                 | in <sup>2</sup> | 13.229        |
| Inlet Pipe OD                              | in              | <b>12"</b>    |
| Inlet Pipe Class                           |                 | <b>D</b>      |
| Schedule                                   |                 | <b>40</b>     |
| Inlet Pipe ID                              | in              | 11.938        |
| Pseudo Critical Pressure                   |                 | 675.500       |
| Pseudo Critical Temperature                |                 | 347.900       |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.344         |
| Settleout Z                                |                 | 0.916         |
| Gas Molecular Weight                       |                 | 16.700        |
| Gas Gravity                                |                 | 0.576         |
| Cp/Cv Ratio                                |                 | 40.988        |
| Time Increment, seconds                    |                 | <b>18.182</b> |
| Critical Ratio, Pcrit                      |                 | 0.044         |
| Expansion Factor, F <sub>cr</sub>          |                 | 1.353         |
| Gravity Correction Factor                  |                 | 1.020         |
| Vent Header Back Pressure, psig            |                 | <b>0.000</b>  |
| Initial Blowdown Volume, ft <sup>3</sup>   |                 | 12,176.739    |
| Mole to Blowdown, LB-Moles                 |                 | 2,661.184     |
| Settleout Pressure, psig                   |                 | 1,200.000     |
| Ave. Settleout Temp., deg R/deg F          |                 | 580.150       |
|                                            |                 | °R / 120°F    |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi      | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh      | Inventory Moles | Vent Moles   | Total Vent     |
|---------------|---------------|-----------------------|--------------|---------------------------------|-----------------|-----------------|--------------|----------------|
| 0.00          | 0             | 1200.00               | 1200.0       | 0.012                           | 36475130        | 2661.184        | -            | 485.4          |
| 0.30          | 18            | 1003.43               | 1003.4       | 0.014                           | 30572420        | 2175.761        | 485.4        | 892.3          |
| 0.61          | 36            | 813.04                | 813.0        | 0.018                           | 24855377        | 1768.894        | 406.9        | 1,223.1        |
| 0.91          | 55            | 658.25                | 658.3        | 0.022                           | 20207421        | 1438.111        | 330.8        | 1,710.6        |
| <b>1.21</b>   | <b>73</b>     | <b>532.41</b>         | <b>532.4</b> | <b>0.027</b>                    | <b>16428633</b> | <b>1169.184</b> | <b>268.9</b> | <b>1,492.0</b> |
| 1.52          | 91            | 430.10                | 430.1        | 0.033                           | 13356479        | 950.547         | 218.6        | 2,032.9        |
| 1.82          | 109           | 346.92                | 346.9        | 0.041                           | 10858817        | 772.794         | 177.8        | 1,888.4        |
| 2.12          | 127           | 279.30                | 279.3        | 0.050                           | 4173594         | 628.282         | 144.5        | 2,088.4        |
| 2.42          | 145           | 253.31                | 253.3        | 0.055                           | 3813512         | 572.738         | 55.5         | 2,139.2        |
| 2.73          | 164           | 229.56                | 229.6        | 0.060                           | 3484275         | 521.987         | 50.8         | 2,185.6        |
| 3.03          | 182           | 207.86                | 207.9        | 0.066                           | 3183220         | 475.617         | 42.4         | 2,227.9        |
| 3.33          | 200           | 188.04                | 188.0        | 0.073                           | 2907912         | 433.254         | 38.7         | 2,266.6        |
| 3.64          | 218           | 169.93                | 169.9        | 0.080                           | 2656123         | 394.554         | 35.3         | 2,302.0        |
| 3.94          | 236           | 153.39                | 153.4        | 0.087                           | 2425818         | 359.206         | 32.3         | 2,334.3        |
| 4.24          | 255           | 138.28                | 138.3        | 0.096                           | 2215134         | 326.922         | 29.5         | 2,363.7        |
| 4.55          | 273           | 124.49                | 124.5        | 0.106                           | 2022366         | 297.443         | 26.9         | 2,390.7        |
| 4.85          | 291           | 111.89                | 111.9        | 0.116                           | 1845955         | 270.528         | 18.6         | 2,458.1        |
| 5.15          | 309           | 100.40                | 100.4        | 0.128                           | 1684474         | 245.962         | 17.0         | 2,493.7        |
| 5.45          | 327           | 89.91                 | 89.9         | 0.141                           | 1536617         | 223.544         | 15.5         | 2,509.2        |
| 5.76          | 345           | 80.34                 | 80.3         | 0.155                           | 1401187         | 203.094         | 14.1         | 2,523.3        |
| 6.06          | 364           | 71.61                 | 71.6         | 0.170                           | 1277090         | 184.447         | 12.8         | 2,536.1        |
| 6.36          | 382           | 63.66                 | 63.7         | 0.188                           | 1163320         | 167.451         | 11.6         | 2,547.8        |
| 6.67          | 400           | 56.41                 | 56.4         | 0.207                           | 1058958         | 151.969         | 10.6         | 2,558.3        |
| 6.97          | 418           | 49.82                 | 49.8         | 0.228                           | 963158          | 137.876         | 9.6          | 2,567.9        |
| 7.27          | 436           | 43.82                 | 43.8         | 0.251                           | 875145          | 125.058         | 8.7          | 2,576.6        |
| 7.58          | 455           | 38.37                 | 38.4         | 0.277                           | 794205          | 113.412         | 7.8          | 2,584.4        |
| 7.88          | 473           | 33.42                 | 33.4         | 0.305                           | 719683          | 102.842         | 7.0          | 2,591.4        |
| 8.18          | 491           | 28.94                 | 28.9         | 0.337                           | 650972          | 93.264          | 6.3          | 2,597.8        |
| 8.48          | 509           | 24.89                 | 24.9         | 0.371                           | 587516          | 84.601          | 5.6          | 2,603.4        |
| 8.79          | 527           | 21.23                 | 21.2         | 0.409                           | 528796          | 76.782          | 5.0          | 2,608.4        |
| 9.09          | 545           | 17.94                 | 17.9         | 0.450                           | 474332          | 69.745          | -            | -              |
| 9.39          | 564           | 14.98                 | 15.0         | 0.495                           | 423675          | 63.432          | -            | -              |
| 9.70          | 582           | 12.34                 | 12.3         | 0.544                           | 376407          | 57.794          | -            | -              |
| 10.00         | 600           | 10.00                 | 10.0         | 0.595                           | 332128          | 52.784          | -            | -              |

## BLOWDOWN CALCULATIONS

| Reference Data                             | Initial         | Change     |
|--------------------------------------------|-----------------|------------|
| Orifice Diameter, Inches                   | 3.351           | 3.351      |
| Choke Area                                 | in <sup>2</sup> | 8.820      |
| Inlet Pipe OD                              | in              | 12"        |
| Inlet Pipe Class                           |                 | D          |
| Schedule                                   |                 | 40         |
| Inlet Pipe ID                              | in              | 11.938     |
| Pseudo Critical Pressure                   |                 | 675.500    |
| Pseudo Critical Temperature                |                 | 347.900    |
| Beta Ratio, d <sub>2</sub> /d <sub>1</sub> |                 | 0.281      |
| Settleout Z                                |                 | 0.916      |
| Gas Molecular Weight                       |                 | 16.700     |
| Gas Gravity                                |                 | 0.576      |
| Cp/Cv Ratio                                |                 | 40.988     |
| Time Increment, seconds                    |                 | 27.273     |
| Critical Ratio, Pcrit                      |                 | 0.044      |
| Expansion Factor, F <sub>cr</sub>          |                 | 1.353      |
| Gravity Correction Factor                  |                 | 1.020      |
| Vent Header Back Pressure, psig            |                 | 0.000      |
| Initial Blowdown Volume, ft <sup>3</sup>   | 12,176.739      |            |
| Mole to Blowdown, LB-Moles                 |                 | 2,661.184  |
| Settleout Pressure, psig                   |                 | 1,200.000  |
| Ave. Settleout Temp., deg R/deg F          | 580.150         | °R / 120°F |



| Time, minutes | Time, seconds | P <sub>i</sub> , psig | dP, psi      | P <sub>o</sub> / P <sub>i</sub> | Rate, scfh      | Inventory Moles | Vent Moles   | Total Vent     |
|---------------|---------------|-----------------------|--------------|---------------------------------|-----------------|-----------------|--------------|----------------|
| 0.00          | 0             | 1200.00               | 1200.0       | 0.012                           | 24316754        | 2661.184        | -            | 485.4          |
| 0.45          | 27            | 1003.43               | 1003.4       | 0.014                           | 20381613        | 2175.761        | 406.9        | 892.3          |
| 0.91          | 55            | 813.04                | 813.0        | 0.018                           | 16570251        | 1768.894        | 330.8        | 1,223.1        |
| 1.36          | 82            | 658.25                | 658.3        | 0.022                           | 13471614        | 1438.111        | 218.6        | 1,710.6        |
| <b>1.82</b>   | <b>109</b>    | <b>532.41</b>         | <b>532.4</b> | <b>0.027</b>                    | <b>10952422</b> | <b>1169.184</b> | <b>268.9</b> | <b>1,492.0</b> |
| 2.27          | 136           | 430.10                | 430.1        | 0.033                           | 8904319         | 950.547         | 177.8        | 1,888.4        |
| 2.73          | 164           | 346.92                | 346.9        | 0.041                           | 7239211         | 772.794         | 144.5        | 2,032.9        |
| 3.18          | 191           | 279.30                | 279.3        | 0.050                           | 2782396         | 628.282         | 55.5         | 2,088.4        |
| 3.64          | 218           | 253.31                | 253.3        | 0.055                           | 2542341         | 572.738         | 50.8         | 2,139.2        |
| 4.09          | 245           | 229.56                | 229.6        | 0.060                           | 2322850         | 521.987         | 46.4         | 2,185.6        |
| 4.55          | 273           | 207.86                | 207.9        | 0.066                           | 2122147         | 475.617         | 38.7         | 2,227.9        |
| 5.00          | 300           | 188.04                | 188.0        | 0.073                           | 1938608         | 433.254         | 32.3         | 2,266.6        |
| 5.45          | 327           | 169.93                | 169.9        | 0.080                           | 1770749         | 394.554         | 26.9         | 2,302.0        |
| 5.91          | 355           | 153.39                | 153.4        | 0.087                           | 1617212         | 359.206         | 22.4         | 2,334.3        |
| 6.36          | 382           | 138.28                | 138.3        | 0.096                           | 1476756         | 326.922         | 29.5         | 2,363.7        |
| 6.82          | 409           | 124.49                | 124.5        | 0.106                           | 1348244         | 297.443         | 24.6         | 2,390.7        |
| 7.27          | 436           | 111.89                | 111.9        | 0.116                           | 1230636         | 270.528         | 20.4         | 2,437.6        |
| 7.73          | 464           | 100.40                | 100.4        | 0.128                           | 1122982         | 245.962         | 18.6         | 2,456.1        |
| 8.18          | 491           | 89.91                 | 89.9         | 0.141                           | 1024411         | 223.544         | 15.5         | 2,493.7        |
| 8.64          | 518           | 80.34                 | 80.3         | 0.155                           | 934125          | 203.094         | 14.1         | 2,523.3        |
| 9.09          | 545           | 71.61                 | 71.6         | 0.170                           | 851393          | 184.447         | 12.8         | 2,536.1        |
| 9.55          | 573           | 63.66                 | 63.7         | 0.188                           | 775547          | 167.451         | 11.6         | 2,547.8        |
| 10.00         | 600           | 56.41                 | 56.4         | 0.207                           | 705972          | 151.969         | 10.6         | 2,558.3        |
| 10.45         | 627           | 49.82                 | 49.8         | 0.228                           | 642105          | 137.876         | 9.6          | 2,567.9        |
| 10.91         | 655           | 43.82                 | 43.8         | 0.251                           | 583430          | 125.058         | 8.7          | 2,576.6        |
| 11.36         | 682           | 38.37                 | 38.4         | 0.277                           | 529470          | 113.412         | 7.8          | 2,584.4        |
| 11.82         | 709           | 33.42                 | 33.4         | 0.305                           | 479788          | 102.842         | 7.0          | 2,591.4        |
| 12.27         | 736           | 28.94                 | 28.9         | 0.337                           | 433982          | 93.264          | 6.3          | 2,597.8        |
| 12.73         | 764           | 24.89                 | 24.9         | 0.371                           | 391677          | 84.601          | 5.6          | 2,603.4        |
| 13.18         | 791           | 21.23                 | 21.2         | 0.409                           | 352530          | 76.782          | 5.0          | 2,608.4        |
| 13.64         | 818           | 17.94                 | 17.9         | 0.450                           | 316221          | 69.745          |              |                |
| 14.09         | 845           | 14.98                 | 15.0         | 0.495                           | 282450          | 63.432          |              |                |
| 14.55         | 873           | 12.34                 | 12.3         | 0.544                           | 250938          | 57.794          |              |                |
| 15.00         | 900           | 10.00                 | 10.0         | 0.595                           | 221419          | 52.784          |              |                |

| Case      | Stack       | Height Above |        | Stack Gas Flow |        |        |          | Stack Temperature |     | Temperature Correction Factor | Stack Pressure |         | Pressure Correction Factor | Corrected Stack Flow |               | Stack Area | Stack   |
|-----------|-------------|--------------|--------|----------------|--------|--------|----------|-------------------|-----|-------------------------------|----------------|---------|----------------------------|----------------------|---------------|------------|---------|
|           | Diameter in | Ground ft    | MW     | lb/hr          | MMSCFD | SCFS   | Ibmol/hr | °F                | R   | psig                          | psia           | ft3/sec | ft3/min                    | ft2                  | Velocity ft/s |            |         |
| Emergency | 96          | 20           | 16.700 | 1,193,416      | 650    | 7,523  | 71,460   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 8,831                | 529,866       | 50.265     | 175.689 |
| 5 min     | 96          | 20           | 16.700 | 3,214,495      | 1,751  | 20,264 | 192,479  | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 23,787               | 1,427,206     | 50.265     | 473.223 |
| 10 min    | 96          | 20           | 16.700 | 1,607,262      | 875    | 10,132 | 96,240   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 11,893               | 713,609       | 50.265     | 236.613 |
| 15 min    | 96          | 20           | 16.700 | 1,071,508      | 584    | 6,755  | 64,160   | 80                | 540 | 1.174                         | 0              | 14.700  | 1.000                      | 7,929                | 475,740       | 50.265     | 157.742 |

|                | MOLECULAR<br>WEIGHT<br>LB/LBMOL | MOL<br>FRACTION | MASS<br>FRACTION | GAS VOLUME | GAS MASS  |
|----------------|---------------------------------|-----------------|------------------|------------|-----------|
|                |                                 |                 |                  | LBMOL      | LBM       |
| METHANE        | 16.042                          | <b>0.968</b>    | 0.895            | 2,574.70   | 41,303.26 |
| ETHANE         | 30.069                          | <b>0.015</b>    | 0.051            | 40.80      | 1,226.69  |
| PROPANE        | 44.096                          | <b>0.002</b>    | 0.011            | 5.14       | 226.48    |
| ISO-BUTANE     | 58.122                          | <b>0.000</b>    | 0.003            | 1.01       | 58.78     |
| N-BUTANE       | 58.122                          | <b>0.000</b>    | 0.003            | 1.06       | 61.87     |
| ISO-PENTANE    | 72.149                          | <b>0.000</b>    | 0.000            | 0.43       | 30.72     |
| N-PENTANE      | 72.149                          | <b>0.000</b>    | 0.000            | 0.27       | 19.20     |
| N-HEXANE       | 86.175                          | <b>0.000</b>    | 0.005            | 0.85       | 73.38     |
| CYCLOHEXANE    | 84.159                          | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| N-HEPTANE      | 100.202                         | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| BENZENE        | 78.112                          | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| TOLUENE        | 92.138                          | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| ETHYLBENZENE   | 106.165                         | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| XYLENE         | 106.165                         | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| STYRENE        | 104.149                         | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| CARBON DIOXIDE | 44.100                          | <b>0.010</b>    | 0.026            | 25.73      | 1,134.85  |
| WATER          | 18.015                          | <b>0.000</b>    | 0.000            | 0.00       | 0.00      |
| NITROGEN       | 28.014                          | <b>0.004</b>    | 0.004            | 11.20      | 313.86    |
| <b>TOTAL</b>   | 16.70                           | 1.000           | 1.000            | 2,661      | 44,449    |
| THC            |                                 | 0.986           | 0.969            | 2,624      | 43,000    |
| NMHC           |                                 | 0.019           | 0.074            | 50         | 1,697     |
| NMNEHC (VOCs)  |                                 | 0.003           | 0.023            | 9          | 470       |
| HEXANE         |                                 | 0.000           | 0.005            | 1          | 73        |

## Cheniere Corpus Christi Pipeline, L.P.

| Company                                | Facility                  |                       |
|----------------------------------------|---------------------------|-----------------------|
| Cheniere Corpus Christi Pipeline, L.P. | Sinton Compressor Station |                       |
| Descriptive Name of Emission Point     | TEMP Subject Item ID      | Emission Point ID No. |
| Station Discharge Blowdown Stack       | N/A                       | EQT004                |

| Emissions Per Event <sup>(1)</sup> |            |            |            |
|------------------------------------|------------|------------|------------|
| Pollutant                          | 5 min      | 10 min     | 15 min     |
|                                    | (lb/hr)    | (lb/hr)    | (lb/hr)    |
| CO <sub>2</sub>                    | 13,618.20  | 6,809.10   | 4,539.40   |
| CH <sub>4</sub>                    | 495,639.12 | 247,819.56 | 165,213.04 |
| CO <sub>2</sub> -e                 | -          | -          | -          |

| Emissions Per Year <sup>(1)</sup> |          |          |          |
|-----------------------------------|----------|----------|----------|
| Pollutant                         | 2 Events | 3 Events | 4 Events |
|                                   | TPY      | TPY      | TPY      |
| CO <sub>2</sub>                   | 1.13     | 1.70     | 2.27     |
| CH <sub>4</sub>                   | 41.30    | 61.95    | 82.61    |
| CO <sub>2</sub> -e                | 868.50   | 1,302.75 | 1,737.01 |

(1) Emission calculation methodology based upon process simulations using worst case scenario.

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**ATTACHMENT 9**

## **CO<sub>2</sub> BACT for Blowdown Stacks**

The station suction and discharge blowdown stacks and unit blowdown stacks for the compression turbines are used in the event of process upsets. Based on process knowledge from other existing facilities, annual blowdown emissions were estimated based on one blowdown per unit per month for each of the unit blowdown stacks and one blowdown per three months for the station discharge and station suction blowdown stacks. The total CO<sub>2</sub> emissions from the blowdown stacks are anticipated to be no more than 6.30 tpy.

### **Identification of Potential CO<sub>2</sub> Control Technologies (Step 1)**

| GHG Emission Reduction Measure | Description                                                                      |
|--------------------------------|----------------------------------------------------------------------------------|
| Seal Gas Booster System        | A seal gas booster system which helps maintain longer periods of pressurization. |

### **Eliminate Technically Infeasible Options (Step 2)**

CCPL is planning to implement an additional seal gas booster system for the gas compressors. This system will allow compressors to remain pressurized for longer durations once the compressor goes into shutdown mode. Once the unit is restarted within the extended pressurization period, no gas will be blown down.

### **Rank of Remaining Control Technologies (Step 3)**

This reduction measure will be implemented; therefore, no additional ranking is required.

### **Evaluation of Most Stringent Controls (Step 4)**

The seal gas booster system provides a positive flow of clean, dry gas to the compressors' dry gas seals during compressor shutdowns, while maintaining pressurization to reduce the possibility of potential blown down gas. There is no adverse energy or environmental impacts associated with the implementation of a seal gas booster system.

### **Selection of CO<sub>2</sub> BACT (Step 5)**

CO<sub>2</sub> BACT for the blowdown stacks will be a seal gas booster system which will allow the gas compressors to remain pressurized for longer durations once the compressors go into shutdown mode, reducing the potential for gas to be blown down. A numerical BACT emission limitation is not feasible for the blowdown stacks as the number of scheduled events is based on process knowledge from similar existing facilities.

### **CH4 BACT for Blowdown Stacks**

The station suction and discharge blowdown stacks and unit blowdown stacks for the compression turbines are used in the event of process upsets. Based on process

knowledge from other existing facilities, annual blowdown emissions were estimated based on one blowdown per unit per month for each of the unit blowdown stacks and one blowdown per three months for the station discharge and station suction blowdown stacks. The total CH4 emissions from the blowdown stacks are anticipated to be no more than 229.07 tpy.

### **Identification of Potential CH4 Control Technologies (Step 1)**

| GHG Emission Reduction Measure      | Description                                                                      |
|-------------------------------------|----------------------------------------------------------------------------------|
| Seal Gas Booster System             | A seal gas booster system which helps maintain longer periods of pressurization. |
| Burn Potential Blowdown Gas as Fuel | Burn potential blowdown gas as fuel for the turbines.                            |

### **Eliminate Technically Infeasible Options (Step 2)**

CCPL is planning to implement an additional seal gas booster system for the gas compressors. This system will allow compressors to remain pressurized for longer durations once the compressor goes into shutdown mode. Once the unit is restarted within the extended pressurization period, no gas will be blown down.

In addition CCPL will have the capability to burn potential blowdown gas as fuel for the turbines, which will minimize potential CH4 emissions.

### **Rank of Remaining Control Technologies (Step 3)**

Both reduction measures will be implemented; therefore, no additional ranking is required.

### **Evaluation of Most Stringent Controls (Step 4)**

The seal gas booster system provides a positive flow of clean, dry gas to the compressors' dry gas seals during compressor shutdowns, while maintaining pressurization to reduce the possibility of potential blown down gas. In addition, the capability to burn potential blowdown gases will reduce the possibility of releasing CH4 directly to the atmosphere. There is no adverse energy or environmental impacts associated with the implementation of a seal gas booster system that would affect the GHG BACT selection process for the blowdown stacks.

### **Selection of CH4 BACT (Step 5)**

CH4 BACT for the blowdown stacks will be a seal gas booster system which will allow the gas compressors to remain pressurized for longer durations once the compressors go into shutdown mode, reducing the potential for gas to be blown down. The facility will also have the capability to burn potential blowdown gases as fuel in turbines, provided that at least one turbine is on-line.

**Response to Comments**  
**Application Completeness Determination for Cheniere Corpus Christi Pipeline, L.P.**  
**Greenhouse Gas Prevention of Significant Deterioration Permit**  
**Sinton Compressor Station**

**ATTACHMENT 10**

| Component Name     | Stream Type       | Number of Components | Emission Factor | Uncontrolled Emissions Rates |          |
|--------------------|-------------------|----------------------|-----------------|------------------------------|----------|
|                    |                   |                      |                 | lb/hr                        | lb/hr    |
|                    |                   |                      |                 |                              | Ton/year |
| Valves             | Gas               | 70                   | 9.92E-03        | 0.69                         | 3.04     |
| Pumps              | Gas               | 0                    | 5.29E-03        | 0.00                         | 0.00     |
| Flanges/Connectors | Gas               | 140                  | 8.60E-04        | 0.12                         | 0.53     |
| Compressors        | Gas               | 2                    | 1.94E-02        | 0.04                         | 0.17     |
| Relief Valves      | Gas               | 10                   | 1.94E-02        | 0.19                         | 0.85     |
| Open-ended Lines   | Gas               | 7                    | 4.41E-03        | 0.03                         | 0.14     |
| Connectors         | Gas               | 0                    | 4.40E-04        | 0.00                         | 0.00     |
| Others             | Gas               | 0                    | 1.94E-02        | 0.00                         | 0.00     |
| Process Drains     | Gas               | 7                    | 1.94E-02        | 0.14                         | 0.59     |
| Valves             | Water / Light Oil | 15                   | 2.16E-04        | 0.00                         | 0.01     |
| Pumps              | Water / Light Oil | 1                    | 5.20E-05        | 0.00                         | 0.00     |
| Flanges/Connectors | Water / Light Oil | 26                   | 6.00E-06        | 0.00                         | 0.00     |
| Compressors        | Water / Light Oil | 0                    | 3.09E-02        | 0.00                         | 0.00     |
| Relief Valves      | Water / Light Oil | 2                    | 3.09E-02        | 0.06                         | 0.27     |
| Open-ended Lines   | Water / Light Oil | 7                    | 5.50E-04        | 0.00                         | 0.02     |
| Connectors         | Water / Light Oil | 7                    | 2.43E-04        | 0.00                         | 0.01     |
| Others             | Water / Light Oil | 0                    | 3.09E-02        | 0.00                         | 0.00     |
| Process Drains     | Water / Light Oil | 7                    | 3.09E-02        | 0.22                         | 0.95     |
| Valves             | Light Oil         | 15                   | 5.50E-03        | 0.08                         | 0.36     |
| Pumps              | Light Oil         | 1                    | 2.87E-02        | 0.03                         | 0.13     |
| Flanges/Connectors | Light Oil         | 25                   | 2.43E-04        | 0.01                         | 0.03     |
| Compressors        | Light Oil         | 0                    | 1.65E-02        | 0.00                         | 0.00     |
| Relief Valves      | Light Oil         | 2                    | 1.65E-02        | 0.03                         | 0.14     |
| Open-ended Lines   | Light Oil         | 7                    | 3.09E-03        | 0.02                         | 0.09     |
| Connectors         | Light Oil         | 7                    | 4.63E-04        | 0.00                         | 0.01     |
| Others             | Light Oil         | 0                    | 1.65E-02        | 0.00                         | 0.00     |
| Process Drains     | Light Oil         | 7                    | 1.65E-02        | 0.12                         | 0.51     |
|                    |                   | THC                  | 96.74           | 1.73                         | 7.59     |
|                    |                   | NMHCs                | 3.82            | 0.07                         | 0.30     |
|                    |                   | NMNEHCs(VOCs)        | 1.06            | 0.02                         | 0.08     |
|                    |                   | HEXANE               | 0.17            | 0.00                         | 0.01     |

| Company                                | Facility                  |                       |
|----------------------------------------|---------------------------|-----------------------|
| Cheniere Corpus Christi Pipeline, L.P. | Sinton Compressor Station |                       |
| Descriptive Name of Emission Point     | TEMP Subject Item ID      | Emission Point ID No. |
| Fugitive Emissions                     | NA                        | FUG01                 |

| Pollutant                        | Emission Factor | Reference                                 | Emission Rates |                |                     |
|----------------------------------|-----------------|-------------------------------------------|----------------|----------------|---------------------|
|                                  |                 |                                           | Avg<br>(lb/hr) | Max<br>(lb/hr) | Annual<br>(tons/yr) |
| CH <sub>4</sub>                  | NA              | Client Provided                           | -              | 1.66           | 7.29                |
| CO <sub>2</sub> e <sup>(1)</sup> | NA              | 40 CFR 60 Part 98<br>Subpart A, Table A-1 | -              | -              | 153.09              |

(1) Global Warming Potentials (GWP) taken from 40 CFR 60 Part 98 Subpart A, Table A-1

(2) All emission factors taken from Table 4 for Oil and Gas Production Operations in "Emissions for Equipment Leak Fugitive Components"

(Jan, 2008) - Addendum to RG-360A