US ERA ARCHIVE DOCUMENT

A2. Testimony of Kenzi Karasaki (referenced in Chapter 2). Excerpt from Hearing Transcript, Vol. 39, Petitions of the Keweenaw Bay Indian Community, et al. on Permits Issued to Kennecott Eagle Minerals Company (Michigan Department of Environmental Quality, July 15, 2008). (electronic only)

10 ₅₀₀	1	9	STATE OF M	ICHIGAN	
dj.	2	STATE OFFICE OF	ADMINISTRA:	TIVE HEARINGS	AND RULES
	3	In the matter of:		File Nos.:	GW1810162 and MP 01 2007
4	4	The Petitions of the Kewe Bay Indian Community, Hu		Part:	31, Groundwater
	5	Mountain Club, National Wildlife Federation, and			Discharge
(5	Yellow Dog Watershed			632, Nonferrous Metallic
-	7	Environmental Preserve, on permits issued to Kenn			Mineral Mining
	3	Eagle Minerals Company.	/	Agency:	Department of Environmental Quality
-	9			Case Type:	Water Bureau
10				odde Type.	and Office of Geological
					Survey
12					
13	3	HEARING	- VOLUME N	NO. XXXIX (39)	1
124	1	BEFORE RICHARD A. 1	PATTERSON,	ADMINISTRATIV	/E LAW JUDGE
15	5	Constitution Hall, 9	525 West Al	llegan, Lansir	ng, Michigan
16	5	Tuesday,	July 15, 2	2008, 8:30 a.r	n.
17	7				
18	3	APPEARANCES:			
19)	For the Petitioner		J. EGGAN (P323	
20)	Keweenaw Bay Indian Community:	222 North	Mashington Schwart Washington Sc Michigan 48933	z and Cohn LLP quare, Suite 400
21	L		(517) 377-		5-1600
22	2				
23	3				
24	Į				
2 =	•				

Page 8032

Į			
	1		Lansing, Michigan
	2		Tuesday, July 15, 2008 - 8:33 a.m.
	3		JUDGE PATTERSON: Are we ready?
	4		MR. HAYNES: Yes, we are, your Honor. Petitioners
	5		call Dr. Kenzi Karasaki on rebuttal.
	6		REPORTER: Do you solemnly swear or affirm the
	7		testimony you're about to give will be the whole truth?
	8		DR. KARASAKI: Yes, I do.
	9		KENZI KARASAKI, Ph.D.
	10	havin	g been called as a rebuttal witness by the Petitioners and
	11		sworn:
	12		DIRECT EXAMINATION
	13	BY MR.	HAYNES:
	14	Q	Dr. Karasaki, would you say your name and spell it for the
	15		record, please?
	16	A	Kenzi Karasaki, K-a-r-a-s-a-k-I, last name; first name
	17		K-e-n-z-I.
	18	Q	Dr. Karasaki, could you give us a brief description of your
	19		educational history?
I	20	A	Well, I went to Tokyo University, School of Engineering, and
I	21		got a bachelor's degree in petroleum engineering. And I
I	22		went to UC Berkeley to do my master's degree under Paul
I	23		Witherspoon. I did groundwater hydrology. The department
	24		was in School of Engineering, material science and mineral
	25		engineering department. And I went on to do a Ph.D. in Page 8036
1			

" 1		hydrology again at UC Berkeley, same stayed at the same
2		school. And my Ph.D. thesis was on well test analysis in
3		fractured media.
4	Q	And just for the record, your educational background and
5		work experience, awards, journal publications and conference
6		proceedings are contained in your resume, are they not?
7	A	Yes, they are.
8		MR. HAYNES: And for the record, that resume has
9		been marked as Petitioner's Exhibit 187. That's a different
10		number than I gave counsel yesterday, but it's because of
11		the two exhibits that were admitted yesterday. And by
12		stipulation, your Honor, that resume has been admitted.
13	Q	Dr. Karasaki, what was your thesis for your Ph.D.?
14	A	It was the title was "Well Test Analysis in Fractured
15		Media." What it is is
16	Q	And what are fractured media generally?
17	A	Generally it's fractured bedrock, fractured, faulted bedrock
18		hydrology. And especially when you want to characterize a
19		fractured rock, you drill a borehole and you do well
20		testing; namely, pump tests or sometimes you can do
21		injection. And my thesis was about how to analyze the
22		fractured rock and mainly on analytical solutions and
23		theory. But I did a numerical analysis as well and did some
24		field example calculation and characterization.
25	Q	Dr. Karasaki, we have you have prepared a series of Page 8037

÷ 1		slides to assist you in your testimony today.
2		JUDGE PATTERSON: I don't have a copy of that.
3		MR. HAYNES: Oh, all right. May I approach?
4		JUDGE PATTERSON: You may.
5	Q	Dr. Karasaki, you've prepared a series of slides to assist
6		you in your testimony today, did you not?
7	A	Yes, I did.
8	Q	And we have up on the screen right now slide 2, which
9		contains the outline of your education and employment
10		history. And I want to get back to your Ph.D. thesis. You
11		obtained your Ph.D. in 1986; is that right?
12	А	That's correct.
13	Q	Okay. And after you obtained your Ph.D., did you engage in
14		a postdoctoral fellowship?
15	A	Yes, I did.
16	Q	And where was that at?
17	A	Lawrence Berkeley National Laboratory.
18	Q	And what was your work generally as part of your postdoc
19		work?
20	A	Again fractured rock hydrology.
21	Q	And since your postdoctoral work, Dr. Karasaki, where have
22		you been employed?
23	A	Lawrence Berkeley National Laboratory.
24	Q	And what is your title at the Lawrence Berkeley National
25		Laboratory? Page 8038

. 1	A	Staff scientist.
2	Q	Can you describe for Judge Patterson what the Lawrence
3		Berkeley National Laboratory is?
4	A	I want to make it clear that I don't represent the lab. But
5		it was founded as a one of Manhattan Project labs
6		nuclear lab. And now it has diversified into medicine,
7		other engineering areas, but physics, biochemistry and earth
8		sciences. And I'm in earth sciences division. But Lawrence
9		Berkeley National Lab gets most of its funding, about 80
10		percent, I think, from Department of Energy, its energy lab.
11	Q	Now, can you, Dr. Karasaki, describe for us in general your
12		work experience as it relates to your testimony today?
13	A	Yes. I worked and am working on projects that relates to
14		fractured rock characterization and fractured rock hydrology
15		in the application mainly for groundwater contamination,
16		groundwater resources and geothermal energy. And the
17		biggest funding sources now are from agencies that look into
18		geologic disposal of nuclear wastes. And that will be in
19		many countries that would be in fractured bedrock.
20	Q	I see. We have up on the screen slide 3 for your
21		presentation,
22	A	Yes.
23	Q	which contains, I believe, some relevant work experience.
24		On the first bullet, you describe your experience in
25		fracture hydrology for underground tunnels and mines. Could Page 8039

1		I
1		you explain what those are, please? Start with the Yucca
2		Mountain.
3	A	Yucca Mountain is our nation's proposed nuclear waste
4		repository where about 500 meters underground tunnels will
5		be right now there is a eight mile long exploratory
6		tunnel drilled or bored using a tunnel boring machine. And
7		it's in an unsaturated zone, which is kind of unique
8		compared to other countries' approaches. But you drill a
9		lot of boreholes to look at, again, flow in fractures. It's
10		highly fractured tufaceous rock. And LBL has been involved
11		in characterizing how much and where and how long the water
12		and contaminants take to flow through the mountain.
13	Q	I see. And "LBL," Dr. Karasaki, is the Lawrence Berkeley
14		Laboratory; is that right?
15	А	Yes.
16	Q	And then you also list on the first bullet of slide 3 the
17		Stripa Mine. What is that?
18	Α	Back in early 80's and maybe a little bit early 90's, there
19		was a multinational collaboration research program at Stripa
20		Mine, which is an abandoned iron mine. And we used that to
21		again study and characterize how water flows in fractured
22		rock for the application of
23	Q	And the next item
24	Α	I'm sorry for the application of nuclear waste
25		storage.
1		Page 8040

1	Q	Okay. And then the next item is labeled "Grimsel in
2		Switzerland." What is that?
3	A	Again this is another effort to do research of fractured
4		rock hydrology in an underground tunnel. In this case,
5		there was an underground power plant beneath the Swiss Alps
6		or right at to the Swiss Alps downgradient from a dam.
7		And we used or Swiss used the tunnels to get access to
8		the fractures, to look at fractures and characterize
9		fracture flow. And we were LBL, Lawrence Berkeley
10		National Lab, was involved worked with Swiss to jointly
11		learn how water flows in fractures.
12	Q	Fine. And the next item that you list is the AECL in
13		Canada. Would you describe for Judge Patterson what that
14		is?
15	A	AECL means, I think, Atomic Energy of Canada Limited. And
16		that's a group that looked into again the possibility of
17		storing high level radioactive wastes underground in bedrock
18		of Canadian Shield. And there was an underground rock
19		laboratory in Burnett or some town near Winnipeg to look
20		at again study fractured bedrock hydrology and transport.
21	Q	And then lastly in bullet number one the first bullet,
22		you list the projects at Kamaishi, Tono and Horonobe in
23		Japan. What are those about?
24	A	Okay. They are all run by Japanese Atomic Energy Research
25		Institute. Kamaishi is an abandoned iron mine. And we used Page 8041

ı		
1 1		their drifts and tunnels that are already there to access to
2		the bedrock fractured bedrock and faults and do testing
3		and learn how water flow in fractured bedrock. And Tono and
4		Horonobe, underground rock labs solely built from into
5		pristine rock to again study water flow in bedrock. And
6		we've been involved working with the Japanese on these
7		issues.
8	Q	I see. You also indicate that you've developed a fracture
9		network flow and transport simulator. Would you explain
10		what that is, please?
11	A	Yes. This was part of my Ph.D. thesis, too. And it's a
12		numerical model to simulate fracture flow in underground
13		water flow groundwater flow in fracture connected and
14		disconnected fracture network represented by line elements
15		and finite element 3-D finite element. And I also looked
16		at transport, which means matter or contaminant movement in
17		connected fractures. And this code I used that code for
18		my thesis. And right now there's a version, I think, that
19		sort of branched off by a person who used to work with me.
20		Now he's Itasca person in France and in Finland and also
21		other in South American countries this code is being
22		used.
23	Q	I see. And you have published have you published
24		articles on fractured rock characterization technology?
25	A	Yes. Most of my publications are on fractured rock Page 8042

1		characterization.
	•	
2	Q	And then have your your slides also talk about a
3		dedicated fracture hydrology research site in Raymond,
4		California. Can you describe for us what that is?
5	A	Yes. We have a cooperative project with Canada, AECL. And
6		initially it was being done underground rock lab in Canada,
7		but that was not really what we really wanted. And we
8		wanted to have our own site developed in the United States.
9		So I was the principal investigator on this. We decided to
10		go to the Sierra foothills at the town called Raymond near
11		Fresno. And we developed a fractured rock characterization
12		site that we worked about four years. We drilled about nine
13		boreholes and conducted geologic mapping, all sorts of
14		geophysics, radar, seismics, and we did pump tests, slug
15		tests, we did tracer tests, tried to learn how water flows
16		in fractured bedrock.
17	Q	Have you contributed to a book published by the National
18		Research Council called Rock Fractures and Fluid Flow?
19	A	Yes. I was asked by the editor, Jane Long (phonetic), to
20		contribute to the book. And, yes, there was a section about
21		well testing in fractured rock, and I had a section in
22		there.
23	Q	And is the National Research Council a part of the National
24		Academy of Sciences?
25	A	I believe so, yes. Page 8043

1		
1	Q	All right. And during your career, you have participated in
2		numerous conferences and workshops, technical review panels
3		on and technical review panels on fracture hydrology; is
4		that right?
5	A	Yes.
6	Q	And you have a do you have a title called Research Area
7		Leader of Characterization and Monitoring at LBNL?
8	A	Yes, I do.
9	Q	And what does that title signify?
10	A	Well, I am the leader of the it's a very loosely type
11		group where by discipline, yes, I am supposed to be the
12		leader in looking at and characterizing again rocks and
13		monitoring what happens in rocks but mainly in hydrology.
14		I'm in the hydrology department so characterizing hydrology
15		and monitoring hydrology of it doesn't have to be
16		fractured but rocks.
17	Q	And you been the principal investigator on a fault zone
18		hydrology project at LBNL?
19	A	Yes. I got a sizeable project starting last year. I've
20		been looking at learning we are still learning how to
21		characterize fault zones. And Japanese authority thought it
22		is an important subject. The United States already has sort
23		of decided that Yucca Mountain would be the nuclear waste
24		repository location would be located. But in Japan, they
25		don't have the site yet. But they recognize there would be Page 8044

1		a lot of faults. And faults will dominate hydrology in
2		that in the vicinity of faults. So they decided we
3		have by letter agreement with Japanese to work on nuclear
4		repository siting and characterization issue. So they
5		decided to fund us to further look into fault zone
6		characterization. And we spent one year, last year so far,
7		looking at what's published about fault zone hydrology. And
8		I think in the next slide I can talk about it. But it will
9		go on. We will be doing surface characterization and
10		trenching, geologic mapping, geophysics, drilling at a site
11		actually in it will be our property. We identified a
12		sizeable fault, not the Hayward fault, which is huge and
13		it's going it's supposed to be I'm going off the
14		topic. So anyway but there's a site that we will be
15		developing under this funding to look at fault zone
16		hydrology.
17	Q	Dr. Karasaki, for your testimony today, have you reviewed
18		the testimony of various witnesses that have testified at
19		this hearing?
20	А	Yes, I did.
21	Q	And did you review the testimony of Mr. Ware?
22	Α	Yes, I did.
23	Q	And did you review the testimony of Mr. Beauchamp?
24	А	Yes, I did.
25	Q	Did you review the testimony of Dr. Carter? Page 8045

i		
1	А	Yes.
2	Q	Did you review the testimony of Mr. Wozniewicz?
3	A	Yes, I did.
4	Q	Did you review the testimony of Mr. Zawadzki?
5	A	Yes, I did.
6	Q	Did you review the testimony of Mr. Wiitala?
7	A	Yes.
8	Q	Did you review the testimony of Mr. Thomas?
9	A	Yes.
10	Q	And did you review the testimony of Dr. Council?
11	A	Yes, I did.
12	Q	And have you reviewed certain reports that were prepared by
13		Kennecott as part of its permit application?
14	A	Yes, I did.
15	Q	And were those among those reports, did they include
16		Appendix B-2
17	A	Yes.
18	Q	of the environmental impact statement? And did you
19		review Appendix B-3?
20	A	Yes, I did.
21	Q	And did you review Appendix B-4, which is the Golder bedrock
22		hydrogeology modeling?
23	A	Yes, I did.
24		MR. HAYNES: And for the record, those exhibits
25		respectively are DEQ Exhibit 32 starting at page 206, DEQ Page 8046

1 Exhibit 32 starting at page 632 and DEQ Exhibit 33. 2 And for purposes of your testimony, Dr. Karasaki, have you 3 prepared what we might refer to as fracture hydrology 101? 4 Α Yes, I did. 5 And can you describe for Judge Patterson the general 6 characteristics of fracture in fault zone hydrology? 7 Α Fracture bedrock hydrology or fracture hydrology is a 8 very difficult subject. And as I mentioned, there have been 9 many, many projects solely dedicated to look at fracture 10 flow, fracture transport, "transport" meaning contaminant or 11 radionucleids, mass moving through the system. And it's not 12 a solved problem. We have been -- I've been working on this 13 subject for the last close to 30 years -- 29 years. 14 it's challenging. 15 And there's -- there's not much you can do other 16 than drill boreholes and test them. You can do geophysics. 17 Of course, if you get underground like the abandoned mines 18 we used or the shafts and drifts that are dedicated for 19 underground rock laboratory to look at fracture flow, the 20 common understanding among us fractured rock hydrologists is 21 that it's full of surprises once you go down underground. 22 So you want to avoid that. You want to look at and predict 23 hopefully in the right way how and how much and where water 24 is flowing and going. So we've been working on it hard, but 25 it's not solved. And what we have learned so far by Page 8047

-1			
	· 1		outline, there's a large this tradition of permeability,
Ì	2		I can elaborate on that on the next slide. But it can be
	3		spread about 7 orders of magnitude.
	4	Q	Dr. Karasaki, when you say "permeability," can you describe
	5		what that means?
	6	A	Yes. It's basically a measurement of easiness of water to
	7		flow in rocks.
	8	Q	And when you say "an order of magnitude," can you tell us
	9		what that means?
	10	A	Okay. We typically use meter squared or meter per second if
	11		it's hydraulic conductivity, which is synonymous to
	12		permeability even though the units are different and
	13		hydraulic conductivity only refers to pretty much water.
	14		But orders of magnitude mean like it can be if I use the
	15		non-dimensional unit, if I say 1, it can be 1, it can be 10,
	16		it can be 100, it can be a million or it can be 10 million.
	17		So 10 million is 7 orders of magnitude spread. So the
	18		contrast of permeability can easily be 1 to several million.
	19	Q	I see. And do faults generally have dual properties?
	20	A	Yes. What we have been finding so far, as I said, we have
	21		started to on this sizeable project with the Japanese
	22		looking at fault zone issues. And the first year we spent
	23		all the time looking at published literature that talks
	24		about fault zone and related hydrology. And I have a slide
	25		regarding that. But we find that faults are most often or Page 8048

the ones we could find have drill properties that means —
fault is consisted of basically mother — host rock is not
really fault, but that's both sides of the fault. And in
the middle, there's the section called core, which is very
fine, gouged up when two sides of the rock slide each other
and they create rock powder basically. And then that forms
a core. And that is usually very low permeability.

But at the same time, on both sides of the fault, there is a region called damaged zone. And that is highly fractured. And that is very permeable and permeable alongside the fault plane. And the core is very low permeability. When water tries to cross the fault, it can't. It's very hard to cross the fault. But it's very easy for water to flow alongside the fault on both sides. And that's what we have found.

I see. And when you say in your fourth bullet that, "One feature on each scale often dominants hydrology," what do you mean by that?

Well, that's pretty much common understanding among hydrologists now. Rocks are heterogenous, heterogenous meaning again you look at one spot and you'll find one characteristic or, let's say, a number of 10. You look at next. You might find 10,000. And right next to it could be million or .1. So that's very heterogenous. It's not like uniform sand where you can look at everywhere. You sample

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

one core, and you know all the formation. That's like homogenous system. But fractured rock is very heterogenous.

And you -- what happens is you have different scales which you -- sort of artificial, because the rocks are rocks, and it's there and have been sitting there. But us humans, we have to have some measure. So usually for us a small scale is like drilling and taking a core. That's a very small scale.

And then next scale is -- well, you can have various scales. But you can have next scale to be a thickness of a formation. And the next scale can be a basin, a groundwater basin, where within that area groundwater collects into one river or type. And then you can go even bigger. So it depends on who you talk to. There's a local scale, regional scale, core scale type. each scale, when you look at it, fractured rock because of the heterogeneity by nature -- you know, if you have -let's say you take samples and you got a sample that says 1 and another says 10, another says million. If you average, it doesn't matter. It's million. Million takes over. So at each scale you -- there's a larger number takes over. fracture -- fractured rock that pretty much dominates, dictates the property of that scale. So if you have a core that has a fracture and you measure the permeability of a core, that fracture in the core dominates the number for the Page 8050

Network Reporting - 1-800-632-2720

1 permeability or easiness of water to flow. 2 And another scale, if you do a well test, again 3 there will be undoubtedly in the fractured rock. And bigger size -- there's a fracture or two 5 that is -- we used to call and still do killer fracture. 6 Killer fracture dominates the hydrology of that scale. 7 if you go deeper, there's a fault. As you go -- look at 8 larger and larger scale, there is a feature that pretty much 9 dominates the hydrology of that scale. That's what I mean. 10 Thank you. Your next bullet talks about a small response, 11 and that the small response does not always mean that 12 there's a low K. "K" means permeability, doesn't it? 13 Yes, it does. 14 Could you explain that bullet for us, please? 15 Again I have slides later to expand on all of these 16 But what we have learned -- again I said it pretty much. 17 hasn't -- it's still ongoing work. But it's a misnomer or a 18 misunderstanding or myth for hydrologist sometimes say that, 19 "Oh, I did do a test here. And I listened at a different 20 well. And at this well, I heard it loud and clear. 21 this other well here located at the opposite side, I hardly 22 heard anything." That means the permeability between 23 this -- where I did the pumping and where I monitored the 24 pressure, it must be low permeability. That's a myth. 25 can be totally the other way around. You can have a high Page 8051

1 permeability and have low response. I can expand on that 2 later. But it's a common myth. 3 And your next slide -- or your next bullet talks 4 about slug tests. Would you explain for Judge Patterson 5 what a slug test is? 6 I think he has heard in previous testimonies, too. 7 But slug test, I call it "quick and dirty." And what is it is -- easiest way is, after you drill a well, you pour a 9 bucket of water, and all of a sudden the well level rises 10 higher than the groundwater level. And because it's higher, 11 it wants to get out. So the water level slowly goes back to 12 where it used to be. So if you monitor the transient or 13 prime dependent water level in the well, you can analyze 14 that and hopefully you try to get the parameter like a 15 permeability or storage coefficient or a S sub s, we call 16 What that is is like a capacitance of the rock. 17 And another way is you can evacuate. You can sink 18 in a bucket and then pull it up, and then the level goes 19 Or you can throw in a cylinder -- heavy cylinder and 20 put it in simulating putting in water, but sometimes you're 21 not allowed to put in water. Then you can put in a mass, a 22 cylinder, to displace water. It's the same effect as 23 pouring water in, because the water level rises. 24 way you can do is, if you can get fancy, you can put packers 25 in to isolate the section. But the same thing, you can --Page 8052

1		you pour in water basically or you evacuate water. So you
2		make a sudden change in the well bore and look at the
3		dissipation of the change as a function of time. You
4		observe how the level goes. And you hope to get a property
5		of the rock you are testing. That's a slug test.
6	Q	And one of the purposes of the slug test is to determine
7		or to help you determine the permeability of the rock?
8	A	That's correct.
9	Q	And I think we'll go into another slide about that later.
10		Lastly on your hydrology fracture hydrology 101, as we're
11		calling it, you talk about long-term tests and long-term
12		tests are a must. What do you mean by that?
13	A	Well, it relates back to the slug test, too. But slug
14		tests, because it's quick and dirty, it only tests a very
15		small radius. And it is prone to give you a wrong reading
16		because there are a lot of well bore near well bore
17		heterogeneities. We call them skin. When you drill, you
18		basically damage anulus zone of well bore. And that can
19		affect the readings for a slug test.
20		The last bullet, when I say "long-term" is I
21		didn't say pump test, but pump test or you can evacuate
22		inject. But that's unpractical. So you this pretty much
23		means pump test. You pump out. In order to characterize a
24		large volume of rock, the only way is to pump long term and
25		hopefully, if you can afford, many locations. So the longer Page 8053

1		you pump, the larger volume you test.
2	Q	All right. Dr. Karasaki, slide number 6 you prepared is
3		a contains a bar graph. And what does your what does
4		the slide how does this slide assist you in describing
5		the characteristics of fractured rock?
6	A	Well, this is data from data taken from Tono that I
7		mentioned previously. It's an underground rock lab being
8		built in Japan. And they have been drilling boreholes,
9		probably 30, 40 boreholes, deeper holes. And they do
10		testing pump tests and some slug tests, too. And this is
11		just to show and this is the I had raw data, so it's
12		easy to plot. So I used this. But this is very typical.
13		You ask any fracture hydrologist. This is a distribution of
14		permeabilities from bedrock. And you in this case, Y
15		axis means number of tests. So there were 30 near 30
16		tests that yielded permeability of 10 to the minus 9. By
17		the way, X axis is the log scale. Again minus 9 means 10 to
18		the minus 9 meters per second.
19	Q	And would you explain for the record what a log scale is for
20		those of us that don't ordinarily work in these areas?
21	A	Oh, log scale is again in this case, you just write on
22		the X axis the power of 10 numbers such that okay if
23		you have 100, log base 10 of 100 is 2, 1,000 is 3, 10,000
24		is 4 and 1 is 0.
25	Q	And then for negative log scales, what does that mean? Do Page 8054

* 1		you have like
2	A	Again so if you have minus 1, it's 1 over 10. Minus 2 is 1
3		over 100. So minus 9 is 1 over 10 to the 9th power.
4	Q	I see. And the 10 to the minus power is a way that
5		hydrologists typically describe permeabilities?
6	А	These days in metric system. There was a way back when
7		there's a unit that's called Egyptian bucket per lunar
8		month. And it's very difficult. And right now it's
9		standardized pretty much to meter per second.
10	Q	I see. And so if we look at this chart, Dr. Karasaki, going
11		from right to left, we have decreasing levels of
12		decreasing amounts of permeability; correct? From right to
13		left?
14	A	From right to left, yes; correct.
15	Q	And explain the distribution here again
16	A	Yes.
17	Q	now that we've gone through the X and Y axes.
18	A	Okay. It's called sort of bell shape. And what it is, it
19		looks like a mountain. And you have foothills on both
20		sides. And again this is plotted on log scale. And this is
21		from one bedrock. If you do a lot of tests, you pretty much
22		get this kind of distribution. There's a darker purple or
23		brownish color that's a little skewed. That's another so
24		I was just talking about the purple one. But there is a
25		brownish one that's another bedrock different distribution. Page 8055

1 But what I wanted to -- the point I wanted to make on this 2 slide is that this is pretty much common understanding among 3 us fracture hydrologists that fracture permeabilities or 4 properties basically are widely distributed. You cannot 5 just test one and you think you got one number for that 6 You have a big distribution. And what happens is put 7 it all together. The largest permeability -- in this case, 8 you found 10 to the minus 5. And probably that's the only 9 And that pretty much dominates the whole system. 10 if you didn't test it -- let's say, "Oh, you know, I'm done. 11 I've done already 20, so I'm packing up and not doing it," 12 then you may not catch that minus 5. Or in this case, maybe 13 you may not have caught minus 4 that may be sitting out 14 there. 15 Dr. Karasaki, on slide number 7, the title of this 16 says "Larger scale, larger permeability." This slide shows 17 a chart with a lot of what appear to be data points. 18 you explain what this chart purports to show? 19 Α Again this is from Professor Illman's paper in 2006. 20 But this is again pretty much common understanding among 21 fracture hydrologists or hydrologists in general. 22 test larger and larger scale -- see, in like layer cake, 23 very homogenous rock like oil reservoir -- but nowadays oil 24 reservoirs are finding, if you look hard enough, it's very 25 But first assumption you could almost get Page 8056

1		
1		away by testing a core and trying to tell what the property
2		is for the formation. That's a layer cake, nice formation.
3		But fractured rock, because the rock matrix don't doesn't
4		let water flow very much, fractures dominate. And those
5		features and fractures, the larger a scale you look at, the
6		larger feature you find and larger feature meaning larger
7		permeability. So Professor Illman plotted he gathered
8		data from different people's publication, and he plotted it.
9		But this effort was done by other like Professor Neumann and
10		many other people who looked at the scale dependency of the
11		parameter.
12	Q	And on this chart, Dr. Karasaki,
13	A	Yes.
14	Q	the X scale says it's log 10 scale in meters. And can
15		you explain for us what the numbers mean?
16	A	Yes. This is like again log 10 scale of 0 means that
17		it's 1 meter size, 10 to the power of 1 0 is 1. And so 0
18		is 1 meter size sample. 1 is 10 meter size sample. 2 is
19		100 meter sample. 3 is kilometer sample. So and minus 1
20		is 10 centimeter. This is about the size of a core.
21	Q	The 10 centimeters?
22	A	Yes.
23	Q	I see.
24	A	Or even less. Probably 10 centimeter size is pretty big
25		core. So smaller than that would be the core size. Page 8057

I		
1	Q	And then the Y axis, what does that axis show?
2	A	Is the permeability. This is different from the meter per
3		second. This is actually permeability. This is meter to
4		the squared. And the hydraulic conductivity was the
5		previous slide. But this is for people who are not
6		really hydrologists, you can just think of this as
7		easiness like permeability, easiness of water to flow.
8	Q	And then the chart shows seems to it has two lines
9		that trend from the lower left to the upper right, and it
10		would seem to bound some of the data.
11	A	Yes.
12	Q	What does those lines mean?
13	Α	This is what I think Professor Illman drew to bound these
14		data to indicate there's a trend. If you look at smaller
15		scale to larger scale, there's a trend that permeability
16		goes up. The larger scale you look at you find there's
17		larger permeability.
18	Q	I see. Let's go the next slide. Dr. Karasaki, we now turn
19		to some we have a slide that depicts a borehole schematic
20		for hole 04EA084 from this project. And you have annotated
21		this figure, have you not?
22	A	Yes, I did.
23	Q	And can you explain for Judge Patterson what this figure
24		shows and what your annotations mean?
25	A	Yes. I Page 8058

2

3

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

MR. LEWIS: If I may first, Mr. Haynes -- sorry to interrupt -- renew our objection, your Honor, based on the scope of the rebuttal. As Dr. Karasaki testified, he has reviewed the various Golder reports that Mr. Wozniewicz and Mr. Zawadzki talked about. These slides are all addressed to the modeling and characterization of the groundwater flow in the bedrock. The underlying reports were submitted with the mine permit application materials a long time ago long before the petitions were filed in this case. Wozniewicz and Mr. Zawadzki in their testimony reviewed what they did, the methodology, the analysis that was already reflected in those reports. So there's nothing new in their testimony. And, in fact, there's been no identification at this point as to what specific new information was presented by Kennecott witnesses to which Mr. Karasaki is providing fair rebuttal.

Furthermore, the Petitioners already had Dr.

Prucha testify at some length about the work done by Golder,

by Mr. Wozniewicz and Mr. Zawadzki criticizing that work at

some length. So I think it's clear that this is not

responding to anything new presented by the Intervenor which

the Petitioners did not already know about and which they

could not have presented in their case in chief, that it is

duplicative and they're attempting to bolster the evidence

they already put in and ought not be allowed on that basis,

Page 8059

Network*Reporting*

4

5

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1 your Honor.

MR. HAYNES: Your Honor, this is merely Dr. Karasaki is going to testify specifically in rebuttal to the testimony of Mr. Wozniewicz and Mr. Zawadzki. And as we get into the testimony, we'll see that. But in order to understand Dr. Karasaki's testimony, we have to have some sort of a foundation. And if it's mildly duplicative, I don't think that goes beyond the bounds of proper rebuttal. What we are doing is either explaining Mr. Wozniewicz's and Mr. Zawadzki's testimony or we are directly addressing it, which is the test for rebuttal testimony. if -- this an area that Mr. -- Dr. Prucha did not specifically go into. And again it's foundational. think I'm going to take about three minutes on this slide and then move on to other general matters that relate to specific rebuttal testimony relating to Mr. Wozniewicz and Mr. Zawadzki.

MR. LEWIS: Again, just to be clear, my objection is as to the content of the entire set of slides, not only to what's already been testified about. And the entire content of these slides is what I'm talking about in terms of this is information that was already presented in the Golder reports and the mine permit application materials. This was made an issue by the Petitioners in their petitions. It was part of their case in chief. They've

NetworkReporting

3

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

already presented testimony on this issue. And this is cumulative, and it's improper rebuttal testimony. And there's not going to be any new information identified that already -- was not already presented in those Golder reports and analysis.

MR. HAYNES: Your Honor, if I may, rebuttal testimony is not required to address new information. Rebuttal testimony is supposed to address testimony brought forward by the Respondent here. And we have -- we had presented to us for Mr. Wozniewicz 41 slides in his presentation in which he attempted to explain the groundwater investigation at the site. We got these slides the morning of or the day before his testimony. Dr. Karasaki is going to be addressing and has in his presentation several of these slides that we will be directly addressing. That's proper rebuttal. And the same is true for Mr. Zawadzki. We had 21 slides from Mr. Zawadzki, who attempted to explain some of the modeling outputs -- the groundwater outputs from the work that was done. And Dr. Karasaki will be either explaining that from a proper hydrological perspective or directly addressing it, which is the scope of -- which is the proper scope of So this is entirely proper. This is not something that we needed to -- that we could have addressed on direct, because we didn't have Mr. Wozniewicz and Mr. Page 8061

NetworkReporting

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Zawadzki's testimony at that point.

MR. EGGAN: I would add, Judge, that the case that we cited in our response to their bench memorandum, the Figgures Case, addresses the point that counsel continues to raise, and that is their contention is that we can't raise information that we could have somehow raised in our case in chief. We are not doing that. But what I would simply state that, in People versus Figgure, the Supreme Court said the test of whether rebuttal evidence was properly admitted is not whether the evidence could have been offered in a case in chief but rather whether the evidence is responsive to evidence introduced or a theory developed by one's opponent. And that is precisely what Dr. Karasaki is doing. He is responding directly to Wozniewicz and Zawadzki's If you recall, they brought in animations of testimony. packer tests being inserted into boreholes and talked about just how their testing was effective. And I think we should be allowed to respond to that.

JUDGE PATTERSON: What about the argument that it's duplicative? How is it different from what Dr. Prucha testified to?

MR. HAYNES: Well, it's not duplicative in the sense that Dr. Karasaki is going to be talking specifically about Wozniewicz's and Zawadzki's justification of their work. And they took some of the Golder reports and said, Page 8062

"Here's how we did it" and explained -- or attempted to explain to this tribunal how it worked. And Dr. Karasaki is not going to be dealing with the modeling aspect. He's going to be dealing specifically with the testing that was done. And so it is -- of course, there's some overlap. But that's not the test, as Mr. Eggan explained. The overlap is not the test. It's whether the testimony is responsive to evidence introduced by the opponent.

MR. LEWIS: Well, you have the legal memoranda, your Honor. I think the Petitioners' view of the law here is that there are no boundaries, that they're entitled to engage in endless repetition and calling new witnesses repeatedly to cover the same subject matters. And I don't believe that's the proper reading of the law that's been submitted to the court.

Secondly, I believe that it's clear that Dr.

Prucha did address all of these areas. All they're doing

now is bringing in another witness to attempt to bolster his

testimony.

MR. HAYNES: Again, your Honor, and I hate to belabor this point, but we have called Dr. Karasaki specifically to rebut evidence introduced by Wozniewicz and Zawadzki. That's his purpose here. It's not necessarily -
MR. HAYNES: Based on that, I think it's proper rebuttal. I'll overrule the objection.

Page 8063

1 MR. HAYNES: Thank you. Dr. Karasaki, --Yes. 4 -- on slide number 8, we have a schematic of borehole 5 And can you -- and as you testified, you've 6 annotated this slide. And can you explain for Judge 7 Patterson -- to Judge Patterson what your annotations mean 8 here on this slide? 9 First, that purple circle is where the pressure is 10 I'm not really bringing this as pointing out a 11 problem with the system that Golder used. It's just to show 12 what it's like when we are doing tests in fractured rock. 13 It is still a cartoon, but it depicts that -- the system and 14 the workings in underground. 15 So when you do a pump test, you evacuate water --16 pump out water in the well. And you monitor -- you have a 17 pressure sensor; in this case, pressure sensor is in this 18 pipe right here (indicating). So water is evacuated from 19 this inner pipe to the surface. So the water level in this 20 inner pipe goes down. And that means lower pressure. And 21 the pressure is monitored here. It is a vibrating wire 22 transmitter or transducer. And then there's a little lead 23 line that comes out to through here. And this is where 24 pressure is monitored. 25 But what we really want to monitor is the pressure Page 8064

° 1		in here. Well, better yet, right at here the old the oil
2		industry calls "sand phase" but it's not sand rock phase
3		right here; that's where we want to monitor the pressure.
4		But the typically it depends. This schematic shows it's
5		monitored here. There's plumbing here that can constrict
6		water flow that you can actually be monitoring the pressure
7		in this inner pipe, not out here (indicating), which where
8		we use our base our analysis on. And other things,
9		it's similar. There can be well bore near well bore
10		heterogeneity like this constriction in the fracture, or
11		something gets stuck like a drilling might or cuttings that
12		get stuck in near well bore. When you do well test I
13		mean slug test you measure these parameters. You really
14		don't measure something out here because of the near bore
15		near well bore heterogene skin and we call it "skin." Or
16		constriction; same thing. Constriction in the plumbing
17		where we don't have our analysis method account for.
18		MR. HAYNES: Next slide, please.
19	Q	Dr. Karasaki, in slide 9 slide 9 has a great deal of
20		has many equations which I'm not going to ask you to explain
21		because we may be here for a week.
22		JUDGE PATTERSON: Thank you for that.
23		MR. HAYNES: You're welcome.
24		JUDGE PATTERSON: We all went to law school to
25		avoid this. Page 8065

1 MR. HAYNES: I think we all did, your Honor. 2 But these equations are -- appear to be taken from some work 3 that you did in the past; is that right? 4 A Yes. 5 And the equations -- what do the equations explain in regard 6 to slug tests? 7 Α Well, this is an analytical solution that developed when you 8 do a slug test. And there's a well in the middle, and it's 9 a schematic and right around it is a heterogeneity due to 10 the -- again, we -- borehole damaged drilling, or just 11 naturally you can have heterogeneous or non-natural -- oh, 12 it can be natural. But basically there's some different 13 parameter property region around near the well bore other than the actual system parameter. Did the mathematics to 14 15 develop the solution for the slug test analysis. And what I 16 found is basically when you do slug tests -- and the 17 solution is basically -- it's actually in the oil industry 18 it's called "drill stem test." And you -- what you do is 19 you prematurely terminate slug test and it's like a pressure 20 build-up analysis, but I don't get into detail. 21 So this is the solution basically I use to 22 calculate, but what I want you to focus on is the slug test 23 This is the synthetic actual case. 24 is where it's a homogenous; slug test gives you actual 25 permeability of ten to the minus seven. But case B and C Page 8066

² 1		are the cases where you have near well bore heterogeneities.
2		This was to show how my method worked good, but in the
3		reason I brought out is that for slug test you actually end
4		up measuring or getting the effects from near well bore
5		region that you underestimate the permeability of the real
6		system. So this slide is just to show analytically using
7		equations that you indeed end up underestimating the
8		permeability when you use slug tests when there is near well
9		bore heterogeneity.
10	Q	Dr. Karasaki, we now have slide 10 which talks which has
11		a series of which appears to have a series of drawings
12		and relationships between those drawings in permeable
13		structures and fault zones. Can you explain briefly what
14		this slide how this slide helps us understand
15		permeability?
16	A	Yes; yes. This is the still ongoing subject matter. Just
17		like fracture hydrology, this is fault zone hydrology. I
18		brought it up. But this figure is a famous figure by Caine
19		who looked at he's more geologist who looked at the fault
20		development. And he looks at you know, faults starting,
21		cracking the rock cracking in the middle. And then if I
22		said "core," that the crushed part in the middle that
23		produced that's produced by sliding rocks against each
24		other, and that's core. As you have more core developed,
25		you have low permeability region that's call core. Page 8067

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

And then another way of developing a fault is to When it slides, you have -- on both have a damage zone. sides you develop a fracture damage zone. As you develop more and more, develop damage zone and develop core, you end up with this combined conduit barrier fault. And Caine published and saying maybe he has observed these faults somewhere and he lists places where he observed these. these are surface-based and core-based investigations, and we did under this project that I mentioned that started last year for five years on fault zone hydrology project. here we spent basically doing -- writing white paper and looking at literature and those literature that we could find that talked about fault and fault zone hydrology at the same time -- because we were not really interested in just geologic description of fault; we wanted to find publication that talks about hydrology with relation to faults.

And we couldn't find literature that talks about this conduit barrier fault. Okay. Back. All the literature that we could find was talking about this combined conduit and barrier fault; meaning, at least in our mind right now -- and we will find out; we'll be going to the field next year -- starting this year to do further characterization. Initially we hoped that geology -- geologic information alone will let you know what fault hydrology is. You know, it's nice. If you can just look at Page 8068

Network Reporting

15 1		the rock type or ask geologist, you know, to look at the
2		fault and ask him and if he could tell you what the
3		permeability of fault is, that would be the greatest thing,
4		because drilling boreholes and doing testing costs a lot of
5		money.
6		So we had hoped that we could actually classify
7		faults using geologic information. At least in the
8		literature we couldn't find it; we could not correlate it.
9		And what we found was that all the faults that are published
10		in relation to hydrology, they have dual properties. One
11		core in the middle is highly nonconductive to water, so when
12		water tries to flow across it, it has hard time; it can't
13		it does cross, unless it's solidly impermeable. But another
14		property that fault has is the permeability high damage zone
15		alongside the fault plane that lets water flow freely almost
16		alongside the fault.
17		MR. HAYNES: All right. Could we go to slide 11,
18		please?
19	Q	Dr. Karasaki, slide 11 has another chart that talks about
20		well, the slide seems to have cut off a portion here. But
21		this slide does this slide talk about steady state
22		responses for permeability?
23	A	That's correct.
24	Q	And what and can you describe briefly what the point of
25		this slide is for Judge Patterson? Page 8069

Α

Yes. This is the bullet -- this concerns to the bullet that I talked about, that low response does not necessarily mean lower permeability. This is -- I lifted out a figure from Anderson's paper in water resources research -- no,

"Advances in Water Resources" in 2006, relatively new. He developed analytical solution for steady state when there's a -- this is a cross-section of, let's say, to make it simple, water level. Let's say water level. When you have a well bore and you do pump test in here and you cut the rock and take a cross section, here's the water level that develops. But if you -- he developed a solution for the case when he has a fault, when there's a fault here.

And if you look at the cross-section of water.

And if you look at the cross-section of water level, what happens -- what he found is that -- across the fault. So the other side of the pump test well of the fault, if you observe the water level, the fault can be highly conductive or very low conductivity, or dual property fault like it's called -- he calls it general fault -- all of them have very low response as opposed to -- if you didn't have a fault -- I could have had the broken line drawn, the response of water level would be here (indicating). But low permeability fault, high permeability fault, or dual property fault all produces very small response across the fault.

MR. HAYNES: The next slide.
Page 8070

1	Q	Dr. Karasaki, slide number 12 now has a chart that deals
2		with transient responses. Can you briefly describe the
3		significance of this slide?
4	A	Yes. This is basically same it says the same thing as
5		the previous slide, but this is a transient case and there's
6		no analytical solution for transient case, so I used a
7		numerical model to basically simulate what Anderson's paper
8		did in transient state. So "transient" meaning the pressure
9		change as a function of time. So again, here's the pumping
10		well and pressure change when you're pumping actually,
11		this is a drawdown, so if you pump, the water level goes
12		down, but you don't want to usually plot negative numbers so
13		it's flipped to a positive number. But this is like water
14		level going down, going down and then you stop
15		pumping and then it recovers back. And this is a numerical,
16		but this is the water level behavior at the pumping well for
17		different cases of permeability of fault that I described
18		previously. The same situation.
19	Q	And the pumping wells here are shown in the solid lines;
20		correct?
21	A	That's correct.
22	Q	And then what are the dashed lines?
23	A	Dashed lines are the observations at well observation
24		well across the fault, just like the previous slide.
25	Q	And what do the what do the intersection of those lines Page 8071

1		at, you know, between 10 and 15 days show? When the lines
2		tend to come together.
3	A	Oh, that's oh, right here. Oh, well, right here you stop
4		pumping, and it goes back to the previous phase. But what I
5		wanted to point out in this figure is that the observation
6		while you are pumping, this is the pressure behavior of
7		observation, or water level behavior. And again, this is
8		the axis is flipped, so this is like water level going down.
9		But this is when there's no fault you have drawdown or water
10		level going down as high as 25 meters. But for the cases
11		where you have faults, you have water level going down very
12		little, like less than ten meters. So again and no
13		matter what kind of fault type you have, you have high
14		permeability fault, low permeability fault, sandwich fault.
15		It's much lower than you would expect without the fault. So
16		seeing again, observing very little response does not
17		necessarily mean there's a low permeability in between
18		pumping well and observation well.
19	Q	Thank you. Dr. Karasaki, we have put up slide 13, which is
20		Figure 8.1 from Appendix B-3. For the record, DEQ Exhibit
21		32, page 476. And this is one of the figures that you
22		studied in preparation for your testimony?
23	А	Yes.
24	Q	And explain for Judge Patterson what this figure generally
25		shows. Page 8072

1		
1	A	This is was used by one of the Golder's testimony too, I
2		believe, but this shows that here's a solid dark line here.
3		This is where there was a pump test was done; the only
4		one pump test they conducted. It was done in here. And
5		they describe on the plane view plan view what
6		observations or drawdowns or responses they observed in
7		different wells that they used to observe.
8	Q	And what was your understanding of the response at well 20?
9	А	They described it's very low response.
10	Q	And in your view, is that description excuse me. Did
11		they ascribe what the cause of that low response was?
12	A	Yes, they said there's low permeability rock, or it's low
13		permeability; very little connection between these two
14		points.
15	Q	And then, Dr. Karasaki, you have modified this figure a bit.
16		Can you explain what the modification shows?
17	A	Well, yes. You can my previous two slides I explained
18		you can have very small response even when there is a highly
19		conductive feature in between the two, because it takes up
20		all the drawdown. Basically what it is, is water by
21		pump doing pump tests you drill draw water from the
22		rock. And the water comes through the easiest path, and if
23		there's a easiest path like fault permeable fault along
24		the plane fault, water happily comes through the fault and
25		exits at the pump here. So it doesn't bother the rock Page 8073

	* 1		upward. So again, it can be lower permeability here too,
	2		but it can be higher permeability and you can get exact same
	3		result.
	4	Q	Dr. Karasaki, slide 14 is a copy of slide 21 from Mr.
	5		Wozniewicz's testimony, and how is this how are the
	6		conclusions from Mr. Wozniewicz related to your testimony?
	7	A	I looked at his testimony and their report, and one of the
	8		things the results that he lists is that there's one
	9		localized conductivity in lower bedrock. And if you look at
	10		the report, there was only one test done. You do one test
	11		in one find one localized zone conductivity zone,
	12		that's surprising. I was just surprised that they didn't do
	13		two, three, ten pump tests to investigate if there are more
	14		than one localized zone.
	15	Q	In your view, Dr. Karasaki, what is the minimum number of
	16		tests that should have been done do you have an opinion
ì	17		as to the minimum number of tests that should have been done
	18		to arrive at a conclusion that there's one localized
	19		moderate conductivity interval here?
	20	A	Well, you know, as a researcher, we like to have as many as
	21		we can, and in some places we had like 50, a hundred tests
	22		and we still scratch our head. And actually at Raymond site
	23		we had over 4,000 responses, pairs taken. And in my mind I
	24		would install I'm struggling. I have identified a couple
	25		of big features, but if I was asked to really tell you how Page 8074
- 1			I

* 1		much if I construct a mine there and how much water is
2		coming in, I still am not clear. So the more the better.
3		But one if you ask any hydrologist any particularly
4		fracture hydrologist; if you say, "Are you happy with one?"
5		I'm sure everybody says "no." And how many? Again, it's
6		hard to say. But again, you have to be economical as well.
7		So if I if you really ask me a number, it's just I have
8		to give you like ten, yes.
9	Q	And the second point in Mr. Wozniewicz's slide here talks
10		about the lack of correlation between the 18 structures
11		identified in core and zones with modern hydraulic
12		conductivity. Do you explain that in a later slide?
13	A	Yes.
14	Q	Okay. All right. Well, let's go to, then, slide 15. Slide
15		15 talks about hole 54, and you have annotated this slide
16		first of all, tell us what is depicted on this slide.
17	A	Yes. Actually, I added the right-hand figure here just to
18		illustrate what is missing, but I had and I looked at
19		the in their report this similar looking figures, like
20		four or five of I think it was four. But this hole had
21		interesting feature here. They annotated there was flow
22		even at non-pumping condition. And this is okay. So
23		this is a geologic column, and I think this is the caliper.
24		That means the radius or diameter I don't know which
25		of well bore. You do that to look at how borehole's surface Page 8075
		-

* 1		is shaped. So this is the caliper. And this I believe is
2		the temperature along the borehole, and this is the fluid
3		conductivity and resistivity in the borehole. And this is
4		where I think he they did fluid I mean heat-pulse flow
5		meter survey where
6	Q	What is a heat-pulse flow meter survey?
7	A	You typically have this little heater in lowered in the
8		well bore, and you run electricity through it. It'll
9		generate heat and raise the temperature in the water packet,
10		and you look at the loss by measuring the temperature,
11		observing the temperature right above and below, you can
12		infer how much water flow in the well bore.
13	Q	And what does this column dealing with the heater show us?
14	A	It's annotated here. It says I think it's kind of hard
15		to see it. But when I read it without my contact, there was
16		flow observed here (indicating). And they actually
17		annotated with these arrows; they indicated they found water
18		inflows
19	Q	I see. And then you've added
20	Α	based on pumping condition doing heat-pulse flow meter
21		survey.
22	Q	And you just mentioned that you've added a figure to this
23		slide on the right-hand. What is that figure?
24	Α	Yeah, I just wondered why in the next figure you will see
25		some boreholes they did this slug test along the borehole, Page 8076

1		I
· 1		but in this hole, they didn't do it and I just wondered why.
2		You have a borehole, you see some signatures like high fluid
3		conductivity; meaning, formation waters coming in and
4		heat-pulse flow meter says there are a few signatures with
5		these lines indicating. I just wondered why they did not
6		do. So if you click once more, I said this part is missing;
7		they didn't do the flow slug test in here.
8	Q	And you found that unusual?
9	A	If I was you know, I've learned that there are like a
10		hundred boreholes. It's like a heaven. If you wanted to
11		really characterize it, you would try to find the again,
12		you want to find the killer guy, killer fracture or killer
13		fault and you go after that. But you somehow this was
14		selected out of 109. And there were I guess eight hydrology
15		boreholes, but then they ended up really testing one and
16		also some boreholes that they didn't even bother to do slug
17		tests. And this the last column of figure is missing for
18		hole 54. And the next one too.
19	Q	All right. We've now gone to slide 16, which talks about
20		hole 77 and hole 84?
21	A	Uh-huh (affirmative).
22	Q	And for hole 77, you apparently have added a figure here
23		that shows the slug test was missing; is that right?
24	A	Yes. Again, same thing. You know, this is hole 84 that
25		they did slug tests. And a pump test right here sorry Page 8077

= 1		pump tests here and some slug tests, and
2	0	
	Q	And did you find it unusual that there was no slug test done
3		for hole 77?
4	A	For the same reason as the hole 54. And actually, there was
5		another one, hole 74 or -3 that wasn't even listed like this
6		geologic column and all this thing, and apparently they
7		didn't do anything. So this is just to illustrate, again,
8		they saw some signature of inflow, of flow doing heat-pulse
9		flow meter, but curiously they didn't do but not just
10		this one; there were, again, like hole 54 and another one
11		that didn't even have these columns that wasn't tested. So
12		if you I know there's a limitation in budget, but if you
13		have selected eight or nine, you would test them all. And
14		somehow, you know, these things are missing, and it just
15		puzzles me.
16	Q	I see. And in hole we now go to slide 17, which has a
17		it's Table 3.2, and you've annotated this table to
18		illustrate what?
19	A	Yes; yes. Again, this sort of summarizes the a couple of
20		figures that I showed previously. Hole 54 and I failed
21		to actually bracket hole 74. This is the one that's missing
22		the whole column that I showed you and the tests, I showed
23		that they didn't do tests. It says, "Not used." And so
24		these are the nine I understand the boreholes they used
25		for hydrology testing, I understand. But somehow the ones, Page 8078

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

54, 74, 77, 17, 20; these were not — they are annotated like saying, "Not used. Not used." And then some says, "Flow logging." But flow logging is the test that you do along the borehole. It's again, a quick and dirty method to find the inflow points. You can look at the temperature anomaly. You can look at the fluid conductivity anomaly. Or maybe heat-pulse flow meter survey is somewhat borehole logging.

So it's quick and dirty because, again, you don't see outpour in the rock. You only see the perturbation or the heterogeneity or properties at the borehole. logging is basically that. So it's quick and dirty, but it really doesn't see into the rock. So I do have problems -you know, if I was told, "Okay. There is actually 109 but you can only have nine," but then you don't end up using all of them and you only -- I guess one pump test that was done in 84 and the rest were flow logging or slug tests. Dr. Karasaki, slide 18 is a reproduction of slide 23 from Mr. Wozniewicz's testimony. And this slide is Table 7.1 from DEQ Exhibit 33, Appendix B-4 at page 33. describe your views about this particular table and what it represents? I'm puzzled, because everybody knows in our field that not all fractures conduct water. I had mentioned about Raymond site where I had nine boreholes, logged more than hundred

Network Reporting

Page 8079

fractures in each of them, and only two or three fractures conducted water. So it's a common knowledge that structures or geologic signatures, fractures, not all of those conduct water. But water-conducting fractures are -- water-conducting locations in bedrocks are always fractures. So this table is sort of showing the common understanding we know, but it looks like -- what's curious is it almost looks like this is listing all the features that are there and it almost sounds like all the features that are observed don't conduct water or very little water.

And that's very curious because, again -- I have to explain it slowly. Yes, we all understand if you list all the fractures, all the features and try to look at fractures -- I mean flow, permeability, not all of them conduct water. As I said, only one or two in hundred conducts water, but those conducting ones are features. And I understand at least there was one feature in 84 that was tested and in the previous testimony that there was two bullets about results that said one feature of moderate feature was observed. And I'm wondering why it's not listed in here if this was listing all the features.

So if I were to do this, I would list the features that conducts water. Yeah, there may be thousand features that don't conduct water, but we want to focus on the features that conduct water. And those water-conducting Page 8080

features in fractured bedrock where a matrix is so tight and you observe water inflow, that's a feature; that's a fracture or fault. No doubt. Now, if there is -- if you say -- if they say they can't find it, then they missed -- be an error in the measurement. And sometimes we do this still. We use different runs or you go into borehole and do a geologic survey and you have depth measurement in one system, and you go in and you lower a packer string and you hope to know where you seat the packer.

But that measurement system is different. You can have -- if in a deep borehole system, you can have packer string stretch and you -- again, you measure by pack -- drill pipe or pipe sections. "Oh, okay. I added two or five ten-meter pipes, so it must be 50 meters." But it can be off by a little, but it can add up. So what I'm saying is in fractured bedrock if you see water inflow, that's a feature, not the other way around. So this table is kind of odd in the sense that it's listing features, but almost depicting like all the features don't conduct water.

On. Karasaki, you have analyzed Golder's bedrock

- 22 A Yes. I looked at their report.
- 23 Q And also the testimony of Mr. Wozniewicz and Mr. Zawadzki

hydrogeologic model; is that right?

- concerning the model; correct?
- 25 A Yes.

Page 8081

1		
1	Q	And do you have some do you have some opinions about the
2		adequacy of that model based upon their testimony and your
3		review of the model?
4	Α	Yes. It's mainly based on the input data. I'm not really a
5	1	modeler. I have done a lot of modeling, but I don't
6		consider myself a modeler, because model is only as good as
7		your input data.
8	Q	And what are your opinions about the input data used for the
9		Golder model?
10	A	That's the part that I have been talking about where you
11		know, fracture hydrology's such a difficult subject. Doing
12		one test, one pump test and several slug tests and determine
13		the property of 87-square-kilometer model is a little bit
14		stretching, if I put it mildly.
15	Q	I see. And what about the inflow rates used for the Golder
16		modeling effort?
17	A	Excuse me?
18	Q	What about the inflow rates and their sensitivity to
19		permeability on slide 19?
20	A	Inflow rates? Oh, what see, this is a more general
21		statement. Maybe we should move on to regarding this
22		bullet, move on to the next slide in talking about the
23		sensitivity and the resulting inflow of into a mine using
24		the model.
25	Q	All right. Let's go to slide 20. And, Dr. Karasaki, slide Page 8082

1		20 is
2	A	We can go back to that's right.
3	Q	I'm sorry?
4	А	We can go back to the previous slide later; right? Yeah.
5	Q	Well, we'll walk through the slides.
6	A	Okay.
7	Q	Slide 20, Dr. Karasaki, represents what?
8	A	This is a cartoon but pretty much what depicts the
9		controlling parameters of the model that was constructed by
10		Golder and to predict water inflow into mine. And if I
11		could go on. These wiggles or I call them "resistors"
12		basically the knobs one could tweak in the model, and
13	Q	What do you mean by "tweaking knobs"?
14	A	Changing levels, like resistor is one over permeability, but
15		I thought "resistor" is easier terminology and easier to
16		understand. Like water when you make an opening, water
17		wants to come in. And in the model I guess this is very
18		simplistic, but this is pretty much the essence of the model
19		that was constructed. And when lower bedrock has a
20		permeability or resistor when water comes tries to
21		come into the mine, there's a resistor or permeability
22		one over permeability, the inverse of permeability and the
23		upper bedrock has the same thing.
24		And if there's a fault, the fault has a resistor;
25		same thing. And fault, if it's connected to the surface, or Page 8083

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

not, sort of is depicted by this resistor too. If fault goes to the quaternary here, then there's -- actually where it meets the river, that's basically very little resistance. And if the fault is somehow ending up here within the lower bedrock, down here in the lower bedrock the resistor is very large. Same thing. The boundary condition for the Golder model had top boundary condition with the modified one that was testified had resistor basically in between the quaternary and the bedrock. So by tweaking these; I mean, changing numbers to low resistivity to high resistivity you can control the amount of water that gets -- ends up into the mine. So these five parameters are sensitive in deciding what -- how much water going into the mine. All right. Let's go to the next slide. Dr. Karasaki, slide 21 is a reproduction of slide 17 of Mr. Zawadzki's slide show, which deals with mine flow predictions, and you have annotated this slide dealing with the sensitivity analysis. And can you explain your annotations for us, please? I annotated putting the title here, and I said not so sensitive analyses, because one of the reasons that they find in their sensitivity analyses that -- it didn't even go to their worst case or upper bound scenario by changing the upper bedrock permeability by a factor of five. these sensitivities are run by changing the parameter by a factor of five. But as I showed you in the slides where Page 8084

1		there was a bell-shaped distribution of permeabilities for
2		spanning seven orders of magnitude, doing sensitivity study
3		by doing this factor of five or minus five is way too small.
4	Q	And what factor would you have recommended to be used for
5		the sensitivity analysis here?
6	A	Well, in
7		MR. LEWIS: Let me place an objection, your Honor,
8		on foundation and qualifications. We've gone quite a bit
9		down this road with Dr. Karasaki's opinions as to the
10		modeling now, and before we started down that road, the
11		foundation question, he elicited the response from Dr.
12		Karasaki that he's not a modeler; that his opinions are
13		limited to the input to the model. And we're now, per se,
14		talking about the modeling, so
15		MR. HAYNES: Well, on the other hand, doing the
16		sensitivity model sensitivity analysis in a model, as I
17		understand it, your Honor, involves inputs, and certainly
18		Dr. Karasaki can testify about the appropriateness of inputs
19		used to adjust the sensitivity of the model based upon his
20		extensive experience in studying fracture flaws.
21		JUDGE PATTERSON: And I believe he testified he
22		has that extensive experience with modeling, even though he
23		doesn't consider himself a modeler. I think there's a
24		proper foundation. It may go to the weight of his
25		testimony. Page 8085

* 1	Q	Dr. Karasaki?
2	А	Yes.
3	Q	What would you recommend for this kind of a system for
4		looking at the factors and how the using what factors
5		would you use for adjusting the sensitivity of this model?
6	A	Well, yes. If you ask a number, minimum two plus, minus two
7		as a magnitude, but what's best is to sample from the
8		distribution you would have collected by doing many tests.
9		If you
10	Q	And did you see that in Mr. Zawadzki or Mr. Wozniewicz's
11		testimony? Did you see that that was done here?
12	Α	It looks like only one pump test was done; and slug tests,
13		as I said, there has problem of the near well bore skin
14		effects. And also the influence radius is very small. So
15		to decide the property you go out miles and miles out
16		without data and when you have a model
17		By the way, I want to make one comment about being
18		a modeler thing. Modeler is as your Honor has mentioned,
19		I have done a lot of modeling and I do right now I'm
20		doing all this modeling. But modeler has a little bit
21		different connotation in my mind that when you say
22		"modeler," modeler in a big organization, a modeler's
23		work is to just use input data you were given and you run
24		the model. And that sort of gives the connotation I kind of
25		don't subscribe to. I don't I want to look at and I want Page 8086

1		to collect in the field my data, or at least supervise the
2		data collection and make sure that there's enough data
3		collected. And then I use that data and do the modeling.
4		So modeler in general maybe I'm just biased, but when I
5		say "modeler," like modelers just go out and just use
6		whatever parameter they were given and happily run the
7		models. That to me is a modeler, so that's why I say I'm
8		not a modeler. But I have done a lot of modeling and still
9		do a lot of modeling.
10	Q	I see. And for the sensitivity analysis here getting
11		back to the question, Dr. Karasaki what factor would you
12		have used before the sensitivity analysis besides the plus
13		or minus five that was used by Mr. Wozniewicz and Mr.
14		Zawadzki?
15	A	So basically I would use a hundred times bigger or minimum
16		hundred times bigger, or minus hundred. But again, ideally
17		you'd collect a distribution of parameters or the numbers,
18		permeabilities from the field, and then you sample from
19		those. And undoubtedly if you do enough samples and data
20		collection, this is not this bar would go up here
21		(indicating) and this bar would go down undoubtedly because
22		there's a spread.
23		And another problem I have with this sensitivity
24		analysis is that when you it's okay. This sensitivity is
25		okay to actually in my mind sensitivity analysis is to Page 8087

3

4

5

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Α

find where data most counts. You know, if you have a big sensitivity -- if you tweak a knob a little bit and the model results change drastically, that means that parameter is very important to your model; at least to your model.

Maybe not to the real world, but to your model result. If you tweak a little bit, model results change quite a lot, then that parameter is important. Then believing that your model is correct, then you have to go out and measure and collect more parameters that are sensitive to a model.

That's one; that's the one use of sensitivity analysis.

And then another thing you have to do after sensitivity analysis -- and sometimes people just use it synonymously -- is you look at the range of outcome of the model by combining different parameter variations. So you would -- you know, these cases here, one case upper bedrock hydrology conductivity was changed. Next case number of connected permeability feature -- actually, I can get to that later. But third one hydraulic conductivity of permeable feature changed, but they were changed independently one by one; just tweak a knob, put it back. Let's go to another; tweak your knob and tweak it and put it back. And in your view, Dr. Karasaki, is that the proper way to do a sensitivity analysis?

Again, doing sensitivity analysis one by one is fine, but

Network Reporting

Page 8088

1		
1		looking at the model uncertainty and the spread of the
2		uncertainty you have to test the combination of parameter
3		variations.
4		MR. HAYNES: All right. Your Honor,
5	A	So these excuse me. If I can explain a little bit. So
6		upper bedrock, lower bedrock, hydraulic conductivity of
7		these permeable features; they're not mutually exclusive
8		issues. They can concur, co-happen, coexist. So higher
9		permeability of these three things happen. So again, if you
10		have bell-shaped distribution of observations and then you
11		sample from those and run the model, then you have this
12		spread of outcome of inflow. But if you're just one shot or
13		one tweak one knob, that's not really a complete modeling
14		in my mind.
15		MR. HAYNES: Your Honor, we're going to move into
16		a slightly different area. Perhaps this is a good time to
17		take a break.
18		JUDGE PATTERSON: Okay. I agree.
19		(Off the record)
20	Q	Dr. Karasaki, before we left for the break, we were going to
21		go to slide 22, which is a reproduction of slide 18 of Mr.
22		Zawadzki's testimony and this slide talks about the
23		sensitivity of certain features that were tested by Golder;
24		is that right?
25	А	Yes. Page 8089

	1	Q	And what is your evaluation of Mr. Zawadzki's opinions here?
	2	A	Well, this slide and next slides too, they gave a couple
	3		of three different cases where sensitivity was tested.
	4		And this slide says there's a assuming they used big
	5		fracture sitting a hundred meters away from the mine didn't
	6		change the result much. I could have done that without
	7		said that without doing the modeling, because if you go back
	8		to slide 20, the resistor or the knob is set very low or
	9		high resistivity between the mine and the supposed fault
	10		that they put in. Without doing it, you can say, "Yeah,
	11		there's no change." Because again, the lower bedrock
	12		permeability or resistor is set too high, or permeability is
	13		set too low, very low.
	14	Q	And are you aware of other features in the area such as the
	15		intrusive that in which the mine is going to be located?
	16	A	Yes.
	17	Q	And is that a feature that you would have recommended to be
	18		connected for the purpose of doing the inflow analysis?
	19	A	Intrusive rock itself probably is not that permeable, but
	20		when it intrudes into the mother rock or host rock, it
	21		usually, you know, damages and crack develops cracks and
	22		rubble zones around it. So, yes, that's probably the first
	23		place I would go and test it.
	24	Q	And did you see any testing for the intrusive zone?
	25	A	No. Page 8090
1			

1	Q	For slide 23 I think we've already been over some of
2		this, but in terms of the combination of parameters, this
3		slide 23 in your presentation is a reproduction of slide 19
4		of Mr. Zawadzki's presentation. And do you did you see
5		in Mr. Zawadzki's testimony or in his slides any indication
6		that the combination of parameters was tested?
7	A	No.
8	Q	And in your view, they should have been?
9	А	Yes.
10	Q	Now, for slide 24, slide 24 is a series of is several
11		figures taken from Appendix B-4, and what do these figures
12		show in your mind?
13	A	This is a slide from Mr. Zawadzki's presentation or
14		Wozniewicz's Mr. Wozniewicz's presentation. And I just
15		lifted that as is. But they argue that their model matches
16		very good, but if you click once, if you'll look at here
17		and it's hard to see, but this is the data. The above one
18		is the data. And this is their prediction of base case.
19		And to me, this is not a good match.
20	Q	And what is the what is the relevance of having a good
21		match?
22	A	Well, it's very important to match toward the later time.
23		That tells you the bigger volume of rock. And in this case
24		they do say, "Well, you know, if you start pumping, it drew
25		down so fast. And they lowered the pumping rate and further Page 8091

* 1		and further down it went down so fast it must be low
2		permeability." But the thing is when you match it at the
3		end, this recovery, they couldn't keep up. Their model
4		couldn't keep up with the recovery of real data.
5	Q	And what is the significance of that?
6	A	I think they are under-predicting the permeability and,
7		therefore, inflow.
8	Q	I see. And the right-hand slide here from Mr. Zawadzki's
9		excuse me the right-hand figure from Mr. Zawadzki's slide
10		11, which is your slide 24, what does that show?
11	A	This is their match of the recovery plot, and there's a
12		data if you go to one click here, their match to data
13		is this dark dots. I think originally it's blue dots, dark
14		blue, but now it's like black. And what I'm circling here
15		is their model is not matching this hump, early time at all.
16		As they "improve" their model, they go farther and farther
17		away. This (indicating) hump goes farther and farther away.
18		I think this is the derivative plot. I don't get into
19		detail, but basically this is a low plot of this is the
20		permeability.
21	Q	On the "Y" axis?
22	A	On "Y" axis and this is the time. And, yes, what's
23		important is matching this part.
24	Q	When you say "this part," what do you mean?
25	A	There's a later time. Page 8092
		raye 0032

* 1	Q	All right. And just for the record, the figure that you're
2		pointing to is Appendix B-4, Figure 8.4; correct? That's
3		the right-hand
4	А	If it's from my report.
5	Q	Yes.
6	А	And again, I lifted the whole this whole slide from Mr.
7		Wozniewicz's presentation. Maybe it was
8	Q	I think it's page 11 from Mr. Zawadzki's presentation.
9		MR. EGGAN: It is.
10	Q	All right. And if we can go to slide 25, which is an
11		enlargement of the figure you were just talking about; is
12		that right?
13	A	Yes.
14	Q	And what you have an annotation here that talks about the
15		downward curvature. Could you explain what you mean by
16		that?
17	A	Yes. This is a relatively new approach in analyzing well
18		tests. And this is, again, derivative and this indicates
19		permeability. But one assumption this does is it's a radial
20		flow, but the
21	Q	And when you say "radial flow," what do you mean?
22	A	It's like in from oil industry initially, it's a layer
23		cake, nice. When you drill a well, the pressure propagates
24		radially in a circular in circle; concentric circles.
25		And the flow is all happily coming evenly from all radial Page 8093

10

11

12

13

15

16

1	directions. But they analyzed this plot to determine the
2	property of the conductive feature and they end up assigning
3	that number to a flat feature, which is 1-D. So anyway,
4	this plot is if it's ideally radial, this gives you total
5	in the larger rock property. I would say property of larger
6	volume of rock. So as you go further and further out, but
7	unfortunately the build-up is shut off here (indicating), so
8	it ends here.

But the curvature, what this means is that this feature or the permeability or water supply is increasing, but it's stopped after test was done before the full recovery was done, so it stopped here. But if I look at this purplish bluish curvature going downward, I would read it that there is more water supply, more connection to the system than their determination of limited length of feature and low permeability.

17 Q Thank you.

18 MR. HAYNES: Next slide, please.

Dr. Karasaki, your slide 26 is, for the record, figure

8.14 C from Appendix B-3 at page 491. And what -- can you

explain this -- the figure for us or your understanding of

this -- of your -- of this figure?

Well, again this is used to show the -- their

conceptualization of the pressure behavior, or this, again,

is a recovery behavior. But you can think of it as

Page 8094

1		
1		depicting "permeability," quote, unquote. And they say
2	Q	Excuse me. I want to back up for just a second. This
3		figure 8.14 C deals with the conceptual model for the
4		pumping test response from well 084; is that right?
5	A	That's correct.
6	Q	All right. Please continue.
7	A	So bottom line, they used this figure to show that there is
8		very little, small permeability, low connection to here
9		but
10	Q	What do you mean by "here"?
11	A	"By here"? Probably to well 20, right here.
12	Q	All right.
13	A	And these are, too, other observation wells. But if you
14		look at this curvature, again, even the observation well
15		which they didn't show the match the time line match
16		shows the downward curvature. Downward curvature on this
17		type of plot means increased connection to a larger feature,
18		larger permeability. And it's not like they say, it's
19		limited. Here too, if you believe in this plot in the sense
20		that this is really used for radial system but it can
21		indicate connectivity. If you believe this plot, if you go
22		here, you have much higher permeability. This permeability
23		goes up downward, by the way. Why access the lower you
24		go, you have higher permeability.
25	Q	And when you say "here," you're pointing with the laser Page 8095

25

Okay.

1 pointer to a series of X's that are lavender -- I quess 2 lavender. 3 These are the, I believe, other observations here, 4 From hole 20? 0 5 -- including 20, yes. 6 I see. And again, explain for us what the plots of the 7 lavender X's means to you. 8 Α See, one, they didn't carry the test slowly enough to see 9 this response develop. So if you -- ideally you would -- in 10 the observation wells too at this far out, you want to see 11 it develop doing like this (indicating). But here the test 12 was only seven days, so the pressure didn't get far enough 13 one -- or long enough. It wasn't tested long enough. 14 even if you take this data as is and push it back to the 15 transmisivity of permeability plot, you get higher 16 permeability. 17 The next slide, Dr. Karasaki, your slide 27, is a table 4.5 18 from Appendix B-2 that deals with slug tests; is that right? 19 Yes. 20 And on this table, you have analyzed a subset of these slug 21 tests. And what does your analysis show? 22 It's very interesting and curious. Can I draw? 23 Of course.

Network*Reporting*

Flip the chart up, and keep your microphone on.
Page 8096

1		(Witness draws diagram)
2	A	This is test borehole 084, so in their mind their
3		borehole and there's some feature here. And then first
4		they did slug tests for the entire region and got one
5		number, which is this. Let's say transmisivity of 2.8. And
6		then they moved down and assumed lower and upper bedrock
7		boundary. They tested this length and got this number.
8	Q	Which is what?
9	A	1.9. And so they tested this. They got 2.8. They got
10		tested this. They got 1.9 no; no 1.9. So subtracting
11		it you get 0.9, which is their permeability that they,
12		quote, unquote, "inferred". So upper bedrock, which was
13		most sensitive parameter in their sensitivity study, this
14		parameter was inferred by subtracting this number by
15		subtracting this number permeability from this number, and
16		they got this number. And it's all inferred all
17		pretty much all the slug tests they actually didn't
18		conduct slug tests in upper bedrock. They inferred from
19		subtracting large sections' permeability no lower
20		sections of permeability from large section and inferred
21		this permeability for upper bedrock.
22	Q	And what is the significance of having inferred permeability
23		for the upper bedrock?
24	A	You wouldn't do it. You have to measure it. But another
25		thing interesting thing that points this points out is Page 8097

1		that they further went down and did tests, and then they
2		tested from 213 to 302. They tested I may be off, but
3		let's say they tested this much.
4		(Witness marks on diagram)
5		So they further went down in sections subset from 100 to
6		213, so it's lower. So they did this much. And actually,
7		lo and behold, they got fooled. So when they tested this,
8		they got 1.9, which is 2, with the other 10 to the minus 9,
9		but I'm ignoring that. So they got 4 no 2 here. They
10		tested the subset. They got 4. You can't even imagine
11		you can't subtract if you subtract it, you get negative
12		number. So this again, this is unphysical. You cannot
13		have a subset and higher permeability. That means the slug
14		test analysis or slug test inherently is error-prone. And
15		what happened is they backed off a further subset of this
16		section, and they got a little bit smaller number than this
17		subset.
18	Q	And the number you're talking about here is 3.14?
19	A	Yes.
20	Q	And that's for the test number 4, which is the interval from
21		257 to 260; correct?
22	A	Correct. So further subsets
23		THE WITNESS: Let's go to the next click and
24		once more.
25	А	And then actually, again, this subtraction is this one Page 8098

* 1		you can't even subtract, but here you can subtract. So for
2		the benefit of doubt that the slug tests is working and slug
3		tests give you the right number okay so let's assign
4		this transmisivity to this section, and the rest so 4
5		minus 3 is 1. 1 time is 10 to the minus 6 permeability or
6		transmisivity has to be assigned to the lower bedrock.
7		THE WITNESS: So if you go to the next slide
8		oh, can you go to another one? Could you click that?
9	A	Okay. It's part here. Actually
10	Q	Dr. Karasaki,
11	A	Yes.
12	Q	let me back up here. We're now on slide 29, which is
13		page 22 from the Wozniewicz slides, and you have added two
14		red lines to what I think is the lower bedrock area; is that
15		right?
16	A	Correct.
17	Q	And tell us what the significance of those red lines is
18		based upon your analysis.
19	A	Okay. So assuming their slug test analysis valid, for those
20		two slug tests that was conducted that you can subtract at
21		least and you subtract out this portion, which plots
22		pretty high here, and they admit that's a moderately high
23		feature. But the rest, 4 minus 3 1, 1 times 10 to the 6 and
24		to plot permeability, you divide that by section length. So
25		going without going through all the math, the rest Page 8099

1		
1		remaining of that conductance of permeability, if plotted in
2		permeability and bedrock, it'll stay here. So it's much
3		higher. It's one order of magnitude higher than they have
4		plotted for the lower bedrock.
5	Q	I see.
6		MR. HAYNES: And then could we go back one slide
7		to 28?
8	Q	Dr. Karasaki, on slide 28 you have taken table 7.1 from
9		Appendix B-3 at page 389 and analyzed that table for
10		purposes of have you taken that table and analyzed it for
11		purposes of determining permeabilities in the lower bedrock?
12	A	Yes. I when you look at this table, again, it their
13		distinction between Upper and Lower Bound changes, I guess,
14		or anyway, based on their base case, Upper Bound is 90
15		no; no. Upper bedrock is at 90, so this goes in sort of
16		lower bedrock. And by the way, this hole 107 is the only
17		hole that they carried out slug tests in upper bedrock, so
18		this part is upper bedrock. But lower bedrock here, I pick
19		this number and, if you look at this number, it says 1.8
20		times no; no 8.9 times 10 to the minus 8. So it's
21		almost 10 to the 7th minus 7th. So if you go to the next
22		slide, if you plot it on here
23		THE WITNESS: Could you click? This was the
24		previous one.
25	А	Oh, yeah, here, they will plot here. This is Page 8100

l .		
* 1	Q	And when you say "here," we're on slide 29 your slide 29,
2		and you plotted the lower bedrock hydraulic conductivity on
3		what is slide 22 from the Wozniewicz slide,
4	А	That's correct.
5		MR. HAYNES: which, for the record, is Table
6		is taken from Table 7.1 and 7.2 of the 2005 Golder Report.
7	Q	What is the significance of this plot?
8		(Witness marks on diagram)
9	A	Okay. Again, here's the well hole 107, and then this is the
10		upper and lower bedrock boundary. And they did slug test
11		between 97 to 113 or something here, and they got the
12		transmisivity of 1.5 10 to the minus 6 1.5 times 10 to
13		the minus 6. If they had packer down here instead, they
14		should have they will at least get this much anyway,
15		because you are including this much of feature in your
16		packer minimum. So I used this transmisivity and smeared it
17		out, averaged it out over the entire lower bedrock. What
18		you get is that pink line. So actually, without this is
19		just simple arithmetic. If you had the packer down here
20		well, as it is, it plots here very high in lower bedrock.
21		But just as you had packer down here and tested it and got
22		the same number, you would probably get large number but
23		same number. The pink line is the lower bedrock
24		permeability or the plot.
25	Q	So for purposes of comparing the average permeability for Page 8101

1		
1		the lower bedrock, you would, based upon Golder's data, move
2		the average permeability
3	A	about one order.
4	Q	about one order of magnitude; correct?
5	A	Correct.
6	Q	So it would be more permeable than what Golder shows?
7	A	Correct, based on their data.
8	Q	Based on their data. All right. Thank you. Dr. Karasaki,
9		you testified earlier that you had a chance to review the
10		testimony of Mr. Wozniewicz and Mr. Zawadzki and others. On
11		slide 30 we have a two quotes from Mr. Wozniewicz and Mr.
12		Zawadzki that deal with characterization of the rock mass.
13		Can you read those quotes into the record with the page, and
14		then give us your opinions as to the validity of those
15		statements?
16	A	Yes. Mr. Wozniewicz testified, saying that, "We define
17		these bulk properties that represent the bulk of the
18		majority of the rock mass because we could represent with
19		the porous medium approach." And
20	Q	That's from page 4947 of the transcript; correct?
21	A	Correct.
22	Q	And what does that mean to you?
23	Α	I didn't see any basis for being able to represent the rock
24		as porous medium. And again, upper bedrock permeability was
25		inferred. And by packing off the entire section and getting Page 8102

81 1		one number and saying, "Oh, we can represent this as porous
2		medium" without even testing, is very strange. And 107 that
3		I showed, that maybe we can go back that table, that
4		was the only one that I could see that was tested in
5		sections. And here you see a permeability spread of
6		let's see at least if you go from here, minus 6
7	Q	When you say "here to here," what do you mean?
8	A	Oh. A depth of 97.54 to 114.24 meters. Section is 1.5 to
9		the 10th of the minus of 6. I should use permeability;
10		sorry. Scratch that. And the highest transmisivity of
11		permeability 100 conductivity you know, I can use
12		either way. But if you look at these I shouldn't say
13		"these." Okay. From they were the scans and all
14		consistent sections, as you can see, 17 meters' separations,
15		so I can compare either numbers, transmisivity or hydraulic
16		conductivity. My point is the spread is almost two orders
17		of magnitude.
18	Q	And would that suggest a porous medium?
19	A	It's not homogenous. I have seen porous medium rock that
20		has high heterogeneity but bedrock and having and this is
21		very moderate. I think, if they go down to smaller
22		sections, they will have seen, again, orders of magnitude
23		spread. But even this looking at this, it's hard to
24		justify, "Okay. We can represent the whole thing as one
25		porous medium block." Page 8103

1	Q	All right. Thank you.
2		MR. HAYNES: Let's go back to slide 30.
3	Q	Dr. Karasaki, the second quote on slide 30 is one from Mr.
4		Zawadzki at page 4962 of the transcript. Could you read
5		that into the record and give your opinion of that, please?
6	Α	"At the same time FEFLOW can simulate what's
7		called equivalent porous media type of flow, which is
8		flow that would be typically encountered in
9		unconsolidated sediments like silt, salt or clays. And
10		we decided that that approach would be valid for the
11		upper bedrock and for the matrix in the rock matrix in
12		the lower bedrock unit," Mr. Zawadzki, page 4962.
13	Q	And what is your view about Mr. Zawadzki's point here?
14	A	Again it's saying statements similar statement as Mr.
15		Wozniewicz. And they decided that that approach would be
16		valid. But based on I don't see supporting data to that
17		statement.
18		MR. HAYNES: Let's go to slide 31.
19	Q	Dr. Karasaki, slide 31 is table 4.4 from Appendix B-2 at
20		page 232 of DEQ Exhibit 32, and this is a table that deals
21		with hydraulic tests in borehole 083. The title of your
22		slide talks about, "A priority porous medium assumption."
23		What do you mean by that?
24	A	Again it's just I'm repeating almost the prior
25		statement prior case. That was 84, I believe. But Page 8104

1		
* 1		again, they test the entire section from 15 meters to 239
2		and then test a lower bedrock section or some section below,
3		in this case 80 meters to 79.55 to 239.87, and they do the
4		subtraction and get the inferred upper rock bedrock
5		permeability.
6	Q	And what is the significance of that, Dr. Karasaki?
7	A	Again it's our priority assumption that you can treat the
8		upper bedrock as one unit of one parameter, one number.
9	Q	And in your view, is that a proper way to conduct these
10		analyses?
11	A	No.
12	Q	Dr. Karasaki, the next slide is taken from Mr. Wozniewicz's
13		slides. It's page 37 of his presentation and which contains
14		conclusions from the pumping tests his conclusions from
15		the pumping tests. And do you have views about each of the
16		points that he makes here?
17	A	Yes, I do.
18	Q	And let's read the first conclusion into the record, and
19		then I'd like to hear your view about Mr. Wozniewicz's
20		conclusion.
21	A	Yes:
22		"The large drawdown (196 meters) for a pumping
23		rate of only 1.6 gpm for the highest localized
24		hydraulic conductivity zone consistent with low
25		hydraulic conductivity for bulk of rock mass in Page 8105

1		vicinity of proposed major mine openings."
2	Q	And, Dr. Karasaki, what is your view about his statement
3		there?
4	A	Again, I talked about the borehole and the near well bore
5		skin constriction. Large drawdown can be caused by plumbing
6		or near well bore heterogeneities and
7	Q	All right. And let's go to the second point from Mr.
8		Wozniewicz. Could you read that into the record, please?
9	A	"The moderate hydraulic conductivity zone isolated for
10		pumping test in borehole 04EA-84 appears to be
11		sub-horizontal and local in extent."
12	Q	And what is your view about that conclusion?
13	A	I don't think I am convinced that it's limited extent or low
14		permeability based on their match of the derivative plot and
15		also their recovery regular time line plot that they the
16		mismatch of it.
17	Q	And Mr. Wozniewicz's next point and I'll read this into
18		the record.
19	A	Okay.
20	Q	It says:
21		"The high TDS suggested feature not well connected
22		to Upper Bedrock where much lower TDS observed (due to
23		relatively low hydraulic conductivity of the bulk of
24		the rock mass.)"
25		What's your view about that conclusion, Dr. Karasaki? Page 8106

		l l
1	A	Well, yes. TDS difference
2	Q	And by the way, what is TDS?
3	A	Total dissolved solids.
4	Q	All right.
5	A	And in their case, in the lower in Eagle Rock case, in
6		the lower bedrock, there's high salinity, high
7		conductivity electroconductivity water high dissolved
8		solids in that. And upper bedrock ore in the quaternary,
9		it's fresh water. And there's a difference in contrast in
10		TDS, but that doesn't mean that there's they are
11		isolated.
12	Q	And why is that?
13	A	Well, their data show their environmental head there is
14		at hydrostatic, meaning there's no driving force. So if
15		you don't have a driving force between zones, no heads,
16		it'll happily sit if you can you can have saltwater at
17		the bottom. You can have freshwater at the top. It'll
18		happily sit there without a driving force. You can have a
19		big conductor in between. So it's not a conclusive evidence
20		that there is a division, or somehow big resistor has to be
21		there in between.
22	Q	Mr. Wozniewicz's next point is that, "The interpretation of
23		the measured hydraulic response suggest feature on the order
24		of 145 meters in length." What's your view about that
25		conclusion? Page 8107
		tage of or

* 1	A	Again, as I showed in the previous or few pages back
2		slide, their match is actually poor in a Cartesian plot.
3		And even in log-log that squishes everything for high
4		numbers and high time long time, everything is squished
5		because it's log-log. You can see a signature of the
6		curvature that's going heading down, that meaning it's
7		finding water source, finding connection. So I think the
8		match is poor, and the conclusion, based on the match, is
9		in my mind, is very poor.
10	Q	Mr. Wozniewicz's next conclusion is that, "Very small
11		responses observed in host rock in Lower Bedrock to the east
12		near proposed decline in the Upper Bedrock." What's your
13		view about that conclusion, Dr. Karasaki?
14	А	Yes. I made this point previously too. Simply put, it's a
15		myth. You see, small response doesn't guarantee you low
16		permeability. It can be high permeability and you have low
17		response.
18	Q	All right. And then Mr. Wozniewicz's last point is that:
19		"Rapid drawdown indicates moderately conducted
20		fractures of limited extent and drains quickly, so
21		system reduces to drainage from the bulk of the rock
22		mass with low hydraulic conductivity."
23		What's your view about that conclusion, Dr. Karasaki?
24	A	Again, if you pump fast and water can't keep up with it, it
25		appears that there's low permeability. But again, if you Page 8108

1 1		have new borehole or well bore plumbing constriction, you
2		the water can't keep up coming in. And it's a good
3		indication. This could be a nonlinear problem. Their
4		recovery couldn't match it. The drawdown they were able to
5		match with low permeability, but the recovery
6		THE WITNESS: If we can, go back to that plot.
7		Maybe it's too time-consuming?
8	A	But the recovery
9	Q	I think that'll be too time-consuming.
10	А	Their model could not keep up with the speed of recovery of
11		real data.
12	Q	Now, Dr. Karasaki, you have some additional comments based
13		upon your review of the testimony of Mr. Wozniewicz and Mr.
14		Zawadzki. On slide 33 could you well, I'll read into the
15		record what Mr. Wozniewicz testified to, and then I'd like
16		your comment on it. Mr. Wozniewicz testified at page 4856
17		of the transcript as follows:
18		"So what that suggests is that that moderately
19		conductive feature is in poor hydraulic communication
20		with the upper bedrock, which has a much higher much
21		lower TDS, so there's so it's consistent with our
22		conceptual model, where we have relatively low
23		hydraulic conductivity for the bulk of the rock mass."
24		And what's your view about that comment by Mr. Wozniewicz?
25	A	Yes. This is almost a repeat from the previous comment, but Page 8109

* 1	12	that TDS numbers are different doesn't mean that water
2		there's no connection in between. Because as their data
3		show that the uniform environmental head, there's no
4		pressure difference between rocks to drive the water. But
5		actually, if the it's in environmental head is in
6		hydrostatic. That means they are connected. But I have
7		seen markedly different pressures, high abnormal
8		pressures, high pressures, abnormal low pressures in
9		formations that indicate no connection or low connection
10		between formations. But if you have hydrostatic uniform
11		equivalent environmental head, that means actually the
12		system is connected.
13	Q	So in your view, the is the lower bedrock connected with
14		the upper bedrock hydraulically?
15	A	I think so.
16	Q	Next we have some other testimony from Mr. Wozniewicz on
17		slide 34, and I'll read that, and I'd like your view about
18		Mr. Wozniewicz's testimony. First, he says:
19		"The very small responses in the host rock in the
20		lower bedrock to the east indicates relatively low
21		hydraulic conductivity material between the pumping
22		zone and the eastern monitoring zone."
23		That's at page 4865 to -66 of the transcript. Next he says,
24		"We considered the hydraulic we put a borehole
25		on out on towards the decline for the test, and the Page 8110

1 results of the pump test is a relatively low hydraulic conductivity between the pumping zone and that zone 3 towards the decline" at page 4892 of the transcript. 4 What is your view about his conclusions there? 5 Again, this is one of the points I made previously that it's 6 a myth that the small response means low hydraulic conductivity. It can be totally opposite and have high 8 hydraulic conductivity in between. 9 And next, Mr. Zawadzki testified at page 4975 of the 10 transcript: 11 "We wanted to more reasonably simulate that 12 leakage in the revised model, so we replaced that 13 boundary with what's a head-dependent boundary, which 14 in some way is like specified head boundary but 15 introduces another resistance to flow but is related to 16 the hydraulic conductivity of the overburden material." 17 And what is your view about that conclusion, Dr. Karasaki? 18 He mentions resistance. That's the key. If you 19 put -- and he didn't tweak that resistance in his -- the 20 sensitivity study, which he should have, I think, in my 21 So if you have a high resistance, there's hydraulic 22 separation between -- you can put artificial hydraulic 23 separation between upper -- no -- quaternary to upper 24 bedrock or to fault zone if the fault goes to the upper 25 bedrock. Page 8111

25

1 Q Now, Dr. Karasaki, you also testified that you reviewed Dr. 2 Carter's testimony, did you not? 3 Α Yes, I did. 4 And Dr. Carter talked about apertures; is that right? 0 5 Yes. And in your view, after having read Dr. Carter's testimony, 7 can you identify the assumptions that Dr. Carter made 8 concerning the apertures and the calculation of apertures in 9 the crown pillar? 10 He assumed that all fractures conduct water and all Α 11 fractures have equal permeability. 12 And in your view, are those assumptions correct? 13 No. As I pointed out, with my experience -- and I'm sure 14 people in fracture hydrology all disagree with that. 15 With each of those assumptions? 16 Yes. 17 And why is that? 18 Because probably -- as I said -- and they pointed out, structures -- not -- all structures don't conduct water. 19 out of 100 or 200 conducts water fracture. And fractures, 20 21 as I said -- they showed you the example data -- they have 22 So assuming that they have all constant 23 permeability and fractured rock is -- it's -- we don't do 24 that.

Network Reporting

Page 8112

Dr. Karasaki, you have also prepared some conclusions, and

- 1			
	1		I'd like you to go through those. First, in terms of the
	2		characterization effort that you've reviewed, in your view,
	3		has it been adequate?
	4	A	No.
	5	Q	And can you describe can you explain your conclusions in
	6		view of the single pump test the single seven-day pump
	7		test that was performed and how that relates to the
	8		characterization effort?
	9	A	You know, it's acutely inadequate, in my mind, to have just
	10		one pump test in one zone that you happen to test and in
	11		base model 87 square kilometers of rock and assign one
	12		parameter to all the knows you know, the discretized
	13		elements in the model, probably hundred thousands of them to
	14		assign one number based on seven-day one pump test.
	15	Q	And was the pump test as far as you know, was the radius
	16		of that pump test approximately 200 meters
	17	A	Well, that's what I can't
	18	Q	the radius of influence?
	19	A	Yes, radius of influence. I think it was in one of the
	20		testimonies he said 200 meters. So it took seven days to
	21		get to 200 meters in that.
	22	Q	And how is the radius of influence of a pump test related to
	23		the time of the pump test?
	24	A	Okay. If you want to go to 10 times bigger radius, you have
	25		to pump 100 times longer. Page 8113
			Lago 0110

8 1	Q	That is, the length of time is the square of the radius?
2	A	That's correct.
3	Q	And so for the one pump test that we know covered a radius
4		of influence of 200 meters, if you were to cover a mile, how
5		long would that pump test have to occur?
6	A	It takes over 14 month.
7	Q	All right. And for the 87-1/2 87 square kilometers that
8		were modeled in by Golder, what would be the length of a
9		pump test of a single pump test that would have to
10		what would be the length of that pump test in order to model
11		87 square kilometers?
12	A	Well, theory says in practice it's different. But if you
13		just extend that theory, it's about 6 miles per side. Then
14		it's you have to pump 64 times longer no 36 times
15		longer, so 14 months times 36, about 50 years. But before
16		you do 50 years, you hit the boundary, either or some
17		features, and it becomes pretty much steady state. You
18		can't really influence using one borehole to influence all,
19		you know, 87 square kilometers.
20	Q	And do you have experience with designing the distribution
21		of such pump tests?
22	A	Designing and making suggestions, yes.
23	Q	Yes. And for the area that was modeled by Golder here, is
24		there a distribution that you can recommend for performing
25		pump tests? Page 8114

e 1	А	Again, if we talk economics and not really many more new
	11	
2		holes and I would select different holes or at least more
3		holes than are already there, but I'd barely you would
4		drill outward wells for observation purposes as well too.
5	Q	And one of your other conclusions deals with the existence
6		of permeable faults. What is your conclusion, Dr. Karasaki?
7	А	Again, when there's I have seen some mentioning in the
8		testimony and reports and the possibility of existence of
9		faults, and my experience has been at least faults have draw
10		properties having low permeability in the core and high
11		permeability around parallel to the plane. You cannot
12		the tests that they have done from the tests, you cannot
13		deny the existence. You have to really go in there and test
14		existing boreholes or other boreholes or drill other holes
15		to make sure there are now big killer features.
16	Q	And also, one of your conclusions deals with the adequacy of
17		the current bedrock model, Dr. Karasaki. What are your
18		views about what are your conclusions about the adequacy
19		of the current bedrock model?
20	A	Again, the input data they used is based on one pump test.
21		And slug tests, again, that looks at having problems with
22		limited radius and the skin effect. So the input data is
23		inadequate, and the match to their input data, in my mind,
24		is poor.
25	Q	And what about the combination of the sensitive parameters? Page 8115

Upper Bound inflow, but ideally you should first collect data that has distributions and sample from distributions and predict the distribution of inflows. Q And do you have a conclusion about the likelihood of the size of the inflow into the mine based upon the data that you reviewed and the testimony that you reviewed? A Yes. Q And what is your conclusion? It's very likely that inflow is much, much higher than the prediction. And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?			
data that has distributions and sample from distributions and predict the distribution of inflows. Q And do you have a conclusion about the likelihood of the size of the inflow into the mine based upon the data that you reviewed and the testimony that you reviewed? A Yes. Q And what is your conclusion? It's very likely that inflow is much, much higher than the prediction. And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	1	A	Oh, that's another thing. They predict one inflow and one
and predict the distribution of inflows. And do you have a conclusion about the likelihood of the size of the inflow into the mine based upon the data that you reviewed and the testimony that you reviewed? A Yes. And what is your conclusion? It's very likely that inflow is much, much higher than the prediction. And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	2		Upper Bound inflow, but ideally you should first collect
And do you have a conclusion about the likelihood of the size of the inflow into the mine based upon the data that you reviewed and the testimony that you reviewed? A Yes. And what is your conclusion? It's very likely that inflow is much, much higher than the prediction. And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	3		data that has distributions and sample from distributions
size of the inflow into the mine based upon the data that you reviewed and the testimony that you reviewed? R A Yes. Q And what is your conclusion? It's very likely that inflow is much, much higher than the prediction. And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	4		and predict the distribution of inflows.
you reviewed and the testimony that you reviewed? 8 A Yes. 9 Q And what is your conclusion? 10 A It's very likely that inflow is much, much higher than the prediction. 12 Q And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? 15 A First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. 20 And do you have a recommendation concerning the circulatio data from drillers' logs?	5	Q	And do you have a conclusion about the likelihood of the
8 A Yes. 9 Q And what is your conclusion? 10 A It's very likely that inflow is much, much higher than the prediction. 12 Q And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? 15 A First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. 22 Q And do you have a recommendation concerning the circulation data from drillers' logs?	6		size of the inflow into the mine based upon the data that
And what is your conclusion? It's very likely that inflow is much, much higher than the prediction. And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	7		you reviewed and the testimony that you reviewed?
It's very likely that inflow is much, much higher than the prediction. And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	8	A	Yes.
prediction. And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	9	Q	And what is your conclusion?
And lastly, Dr. Karasaki, you have several recommendations that you would give to properly model the bedrock flow at this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	10	A	It's very likely that inflow is much, much higher than the
that you would give to properly model the bedrock flow at this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	11		prediction.
this site, and what are those? First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	12	Q	And lastly, Dr. Karasaki, you have several recommendations
First, you have to it's the characterization that's important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	13		that you would give to properly model the bedrock flow at
important. You have to use existing wells properly or, if you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	14		this site, and what are those?
you can afford it, drill wells and conduct additional longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	15	А	First, you have to it's the characterization that's
longer-term pump tests. It might hit boundary, so it may get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	16		important. You have to use existing wells properly or, if
get steady state at some point. But at least over a month ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulatio data from drillers' logs?	17		you can afford it, drill wells and conduct additional
ideally two or three months, would give you larger radius influence and look at larger volume of rock. And do you have a recommendation concerning the circulation data from drillers' logs?	18		longer-term pump tests. It might hit boundary, so it may
influence and look at larger volume of rock. And do you have a recommendation concerning the circulation data from drillers' logs?	19		get steady state at some point. But at least over a month,
22 Q And do you have a recommendation concerning the circulatio 23 data from drillers' logs?	20		ideally two or three months, would give you larger radius of
data from drillers' logs?	21		influence and look at larger volume of rock.
1	22	Q	And do you have a recommendation concerning the circulation
24 A Oh, yes, that's if you can't afford to do pump tests, t	23		data from drillers' logs?
	24	A	Oh, yes, that's if you can't afford to do pump tests, the
first thing I would look at is drillers' logs' lost Page 8116	25		

1		circulation. That's an indication of a fault zone, a
2		high-permeability zone.
3	Q	And what do you mean by "lost circulation"?
4	A	Oh. When you're drilling, in order to cool the bit
5		cutting bit and also carry up the cuttings, you use fluid,
6		and you circulate it. But if there's a large permeability
7		zone, you as you push in and pump and circulate the
8		drilling fluid, it gets lost in the formation, and the
9		drillers typically note those occurrences. And that's a
10		very good indication of a high-permeability zone in
11		existence. And I wish and usually we would. We do
12		look take a look at it before we even design a pump test.
13	Q	And would you perform stochastic modeling?
14	A	Yes.
15	Q	And what is stochastic modeling?
16	A	Yes. Again, this is again, there's no really one number
17		to be predicted, because the parameters are so spread. So
18		again, modeling is only last resort, and I'd rather do more
19		characterization than just use a model. But if you do
20		modeling, you can't just decide on one parameter and get one
21		number out of it. You have to again, as we know it,
22		fractured rock is highly heterogenous, so those cells and
23		they they're the numerical grids that they assign
24		parameters instead of the same I mean, just one parameter
25		to lower bedrock and one parameter to upper bedrock. You Page 8117

	1		distribute it and make it heterogenous as the real world and
	2		do stochastic modeling and see what the result spread would
	3		be.
	4	Q	And would you test the sensitivity on the combination of
	5		parameters?
	6	Α	Most definitely I would.
	7	Q	And what about constructing a model for the quaternary and
	8		bedrock flow?
	9	A	That's what I would do, you know. If you have a model that
	10		has is limited capability, maybe you can split it. But
	11		it's one system, and artificially dividing into two models
	12		and transferring input inflow or flow between the two, that
	13		already a priority decides input to the other, so it's odd.
	14		You should really do it in one model.
	15	Q	And what about regional models? What would you do there?
	16	A	Yeah, that's what we typically do too. When we look at the
	17		large volume of rock, there are, you know, boundaries
	18		that topographically controlling the pressure that or
	19		water coming in to the area. So monitors like to cut the
	20		boundary just based on, you know, size of their memory or
	21		the convenience of how fast it'll converge to a solution.
	22		You artificially set up boundary to your liking. But
	23		actually, there's nature, and the system is such that it's
	24		all connected. It's probably connected all the way to the
	25		higher mountains. Page 8118
ı			raye ollo

1		
* 1		And what typically done is to set up a larger area
2		that gives you better control over the boundary and do
3		larger-scale modeling, regional-scale modeling. And they
4		use that as a boundary condition for inner model for their
5		87-kilometer model, which actually, if you can do it all
6		one, that's the best, but today's computer capability is
7		still not there. So if I were to, you know, do a staged
8		model, I'd do a big regional model to assign a boundary
9		condition; at least test the boundary condition that you
10		assume. In their case, it's no-flow boundary conditions to
11		the bottom and to the sides. That's no flow. But that,
12		again, is just by convenience decided.
13		MR. HAYNES: Thank you, Dr. Karasaki. I have no
14		further questions at this time.
15		MR. EGGAN: Dr. Karasaki, I do have a few
16		questions for you.
17		DIRECT EXAMINATION
18	BY MR.	EGGAN:
19	Q	And I want to begin with the recommendations you offer on
20		slide 37, and look at the second bullet point, which is "to
21		conduct pump tests in hole 54, 62, 77, 107 and others with
22		broken zones." Why did you select those particular holes,
23		52 excuse me 54, 62, 77, 107? Why did you select
24		those?
25	A	Those were the ones that out of 9 holes, supposedly Page 8119

hydrology characterization holes, that they didn't test	
2 so and I see features based on their logs, some	
general features in there, especially like the one I showed in 107	
4 at a depth of 97 meters to 114 meters. There's a big	
5 feature there. So I would certainly go in there and test	
6 them if I was limited to the holes that there already are.	
⁷ Q Well, that would have been my question. Do you think	
8 that if you were doing this, would you feel constrained	
9 to just use those holes, or might you select other locations	
10 for pump tests?	
11 A Most definitely I if I had, you know, my way, I would	
12 drill places where faults are suspected.	
13 Q Okay. One of the witnesses who came and testified in this	
case and I believe it was Mr. Trevor Carter indicated	
that it really isn't standard to investigate fracture	
systems before construction begins. Essentially and I'm	
paraphrasing what he said. But essentially he was	
18 suggesting we can just wait until after the mine	
19 construction begins and test from beneath. Do you have an	
20 opinion about that?	
MR. LEWIS: Objection to the form of the questi	on.
I believe that mischaracterizes Dr. Carter's testimony.	
MR. EGGAN: Well, I can give you the transcript	
pages, Counsel. It's 3644 and 3645. And what he said was	
essentially, "We can wait until we finish and test it from Page 8120	

² 1		below." I said I'm paraphrasing.
2		MR. LEWIS: Well, let me look at those pages, Mr.
3		Eggan. All right?
4		MR. EGGAN: Fine.
5		MR. LEWIS: Why don't you let me look at them? I
6		don't think I brought that transcript today; if you'd be so
7		kind.
8		MR. EGGAN: I think Mr. Haynes has them.
9		MR. HAYNES: What page are we on?
10		MR. EGGAN: 3644 and -45.
11		MR. HAYNES: Mr. Lewis?
12		MR. EGGAN: I'd be happy to just rephrase the
13		question. All I'm trying to
14		MR. LEWIS: Fine with me
15		MR. EGGAN: get at is just
16		MR. LEWIS: excuse me, Mr. Eggan if you're
17		willing to do so.
18		MR. EGGAN: What I would suggest is that I
19		rephrase.
20		JUDGE PATTERSON: That's fine.
21		MR. EGGAN: The testimony does speak for itself.
22	Q	Essentially what I'm asking you is, should in your
23		opinion do you have an opinion about whether we should
24		wait until construction begins to begin this sort of
25		analysis and testing? Page 8121
		- -

* 1	A	Yes, I do have an opinion. In our field it's almost a
2		cliche. It's full of surprises. That's in fractured
3		bedrock. So in order to minimize surprises, it's best to do
4		a characterization as much as you can from the surface.
5		It's like
6	Q	When you say "in order to minimize surprises," what kind of
7		surprises are we talking about?
8	А	Meaning basically big killer fractures. You do some
9		predictions based on your model or limited data input
10		data characterization. You make a prediction. You go down
11		in there, and you find totally opposite things or totally
12		unthinkable things. That's pretty common in our field. And
13		doing, again, one pump test is like again, this is almost
14		like cliche now in the field too. It's like asking five
15		blindfolded men touching an elephant, and in this case only
16		one man is asked to describe an elephant. And so you really
17		have to drill more than one or test conduct more than
18		one pump test and try to characterize the system in
19		fractured bedrock and faulted bedrock.
20		MR. EGGAN: I don't have any other questions.
21		Thank you.
22		MR. WALLACE: I just have a couple, Dr. Karasaki.
23		My name is Bruce Wallace.
24		THE WITNESS: Yes.
25		MR. WALLACE: I represent Huron Mountain Club. Page 8122

* 1		DIRECT EXAMINATION
2	BY MR.	WALLACE:
3	Q	In this trial we have on many occasions looked at
4		photographs of certain core samples that were taken from
5		around the perimeter of the orebody, and they showed various
6		areas of broken rock and rubblized rock and so forth. And
7		I'm trying to understand, if we wanted to know how much
8		water could be predicted to flow through that broken-up rock
9		that we see in these core samples, would we want to pump
10		test on a number of at a number of places over an
11		extensive period of time around where those samples were
12		taken? Is that what you're saying?
13	Α	Yes. But if you are on a limited budget, those rubblized
14		ones are probably connected. So if you go into one and pack
15		it off and do a long-term pump test, I would feel actually
16		reasonably comfortable having more observation points as
17		well. But the more the better. But sometimes those
18		rubblized zones, it may be so permeable, you know, your
19		equipment may not work sometimes. But, yes, that's where
20		you want to go after. Because again, big one kills it
21		dominates the whole thing.
22	Q	So you're saying, if you have a sample a core sample that
23		shows a lot of broken rock, that you could save money, at
24		least, by pump testing right there; is that
25	А	Correct. Page 8123

1	Q	And did that occur in this case, as far as you know, sir?
2	A	No.
3		MR. WALLACE: Thank you.
4		MR. LEWIS: Hello, Dr. Karasaki. I'm Rod Lewis.
5		THE WITNESS: Hi.
6		MR. LEWIS: We met yesterday. I represent
7		Kennecott Mine Company in this proceeding.
8		CROSS-EXAMINATION
9	BY MR.	LEWIS:
10	Q	I ask you, when were you first contacted to do any work on
11		this matter, Doctor?
12	A	When?
13	Q	Yes.
14	A	It's a memory test? I think it was wow either May or
15		June. I don't remember.
16	Q	Who contacted you?
17	A	Dr. Prucha.
18	Q	And were you ultimately did you have a discussion with a
19		counsel for one of the parties about being retained to work
20		on the case?
21	A	Yes.
22	Q	And which party was that or which attorney?
23	А	I had a discussion with
24		THE WITNESS: Oh, I'm sorry. I don't know your
25		last name. Page 8124

25

1 Α -- Michelle. That was the initial discussion. And when was that, sir? 3 Α Sometime in June, I believe. 4 And what were you asked to do? 5 I was -- it's possible that I might be called for -- they 6 might want me to be an expert witness on this case. 7 Q When did you first receive any materials to review? 8 Those are the -- again, sometime in May, I think. 9 look at my e-mail records, and I might be able to tell you 10 exactly. 11 And you listed earlier the material that you reviewed, Dr. 12 Karasaki, and my list is that you reviewed the testimony of 13 Mr. Ware, Mr. Beauchamp, Mr. Chase, Mr. Wozniewicz, Mr. 14 Zawadzki, Mr. Wiitala and Mr. Council, and you also listed a 15 Mr. Thomas. Can you tell me who Mr. Thomas is? 16 Memory test? I could guess, but I can't. 17 And in addition to that testimony that you reviewed, you 18 reviewed the Golder Report's Appendices B-2, B-3 and B-4; 19 correct? 20 Α I remember B-2 and B-3. B-4 is the -- if you give me the 21 title, I think, yes, I did. 22 It's titled "Bedrock Groundwater Inflow Model"? 23 Yes, I did. 24 And other than that testimony and those reports, did you

Network*Reporting*

Page 8125

review any other materials as to the mining project itself

		· · · · · · · · · · · · · · · · · · ·
1		in relation to your testimony?
2	A	No.
3	Q	In looking at your CV, Mr. Karasaki, it looks like all of
4		your work experience in this field that you've been talking
5		about after college has been with this laboratory; is that
6		correct?
7	A	Yes.
8	Q	You've had no other work experience other than working at
9		that laboratory?
10	А	Yes. There was part-time work that I did for a Japanese
11		company that inspects pipeline.
12	Q	Was that while you were employed by the laboratory?
13	A	Yes.
14	Q	Other than that, did you have any other job experience other
15		than working at the laboratory and the other thing you just
16		mentioned since your college was completed?
17	Α	I wouldn't call it work. It was similar to this. I have
18		been paid to attend and review papers or be a panel member,
19		and there was an associated with it by Japanese companies
20		and also companies from Finland.
21	Q	Are you being paid for your work on this case?
22	A	For this one, yes not yet.
23	Q	Have you been a paid witness in other legal cases?
24	Α	No.
25	Q	You've never worked in the mining industry, Dr. Karasaki? Page 8126

* 1	A	No.
2	Q	You've never been involved, I'm assuming, with
3		characterizing the potential hydraulic conductivity of an
4		area surrounding a mine before the mining commences?
5	A	No.
6	Q	In other words, what I said is correct?
7	A	Correct.
8	Q	Thank you. Now, in your discussion about your experience as
9		far as I think it was characterized as fractured rock,
10		hydrogeology it appears that it's all been related to
11		research; is that correct?
12	A	Yes.
13	Q	And it's also been related, it looks like, to looking at
14		potential repositories for nuclear material?
15	A	That's correct.
16	Q	And this Yucca Mountain was one of the examples of that?
17	A	Yes.
18	Q	Can you tell me, for the investigation of bedrock hydrology
19		for a potential nuclear repository, what's the time scale
20		that's being considered for the let's call it safekeeping
21		of those materials?
22	A	It's debatable, depending on which side of the fence you're
23		on; anywhere from 10,000 to a million years.
24	Q	And you know what the time scale for this mine is, do you
25		not? Page 8127

* 1	A	Operation is 10 years.
2	Q	And you understand that, when the mining is completed, that
3		the mine will be backfilled and then allowed to re-flood?
4	A	Yes.
5	Q	Now, also on the as far as your work that you've done and
6		your experience in research as it relates to nuclear
7		repositories, what's the ultimate concern about the
8		safekeeping of those materials?
9	A	Radioactive, radionucleids escaping and contaminating the
10		groundwater, getting to people's well waters and getting
11		people exposed to radiation.
12	Q	Now, you've talked about some of your experience in this
13		research involving characterization of fractured rock for
14		nuclear potential nuclear repositories. And I take it
15		from your testimony, Dr. Karasaki, that you don't feel you
16		can ever really properly characterize the hydraulic
17		properties of the fractured rock to suit you?
18	A	Well, there are many boundary conditions. One is budget,
19		time within that restraint and constrains. You do the best.
20	Q	But ultimately, even if you do the hundreds I think you
21		referred to doing hundreds of drillings and pumping tests
22		and so forth or maybe you said more than hundreds you
23		still conclude that there may be surprises underground; is
24		that right?
25	A	You try to avoid that as much as you can. Yes, I said that. Page 8128

1	Q	And I think you talked also about some of your experience in
2		some and I think they were older mines which are no
3		longer in use; is that right?
4	A	Correct.
5	Q	And those are essentially a research laboratory?
6	A	Correct.
7	Q	Those are I assume they're mines that have open voids
8		beneath the earth?
9	A	Yes.
10	Q	And they're within fractured rock?
11	A	Yes.
12	Q	How many such older mines have you worked in? I forget.
13		You had two or three examples, I think; is that right?
14	A	You mean in relation to my research of fractured rock on an
15		older mine?
16	Q	Yes, the research; yes.
17	A	Three.
18	Q	Three? What were the conditions as far as water in those
19		mines?
20	A	Stripa, it depends. Now, initially some are wet; some
21		are dry. But initially we actually worked with Golder to
22		look at the actual flow in a Stripa Mine. And we all went
23		in there and did the fractured network modeling and all.
24		But we found basically what matters is the fault. It's not
25		the little fractures that we happily model and put it into Page 8129
		Tage 0127

simulator and crank numbers. It's actually the big guy controls there's a feature that controls the big one. So in answer to your question, some sections of the mine is dry; some section is really wet. And you worked with Golder in doing some of that work? And you worked with Golder in doing some of that work? And you werk with"? At the Stripa. You just said at the Stripa Mine. A That is like we were one of the participants in the research program multinational research program, and DOE is was funding us and I believe Golder too. But it's not like we were working for Golder. No, I didn't mean to imply that. A Okay. My question was, you worked with them? Yeah. It depends on how you mean "with," but we worked on the same dataset. Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. A Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground? Page 8130			
in answer to your question, some sections of the mine is dry; some section is really wet. And you worked with Golder in doing some of that work? And you worked with Golder in doing some of that work? And What do you mean "work with"? At the Stripa. You just said at the Stripa Mine. That is like we were one of the participants in the research program multinational research program, and DOE is was funding us and I believe Golder too. But it's not like we were working for Golder. No, I didn't mean to imply that. Nokay. My question was, you worked with them? Yeah. It depends on how you mean "with," but we worked on the same dataset. Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	1		simulator and crank numbers. It's actually the big guy
dry; some section is really wet. Q And you worked with Golder in doing some of that work? A What do you mean "work with"? Q At the Stripa. You just said at the Stripa Mine. That is like we were one of the participants in the research program multinational research program, and DOE is was funding us and I believe Golder too. But it's not like we were working for Golder. No, I didn't mean to imply that. A Okay. My question was, you worked with them? Yeah. It depends on how you mean "with," but we worked on the same dataset. A Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	2		controls there's a feature that controls the big one. So
And you worked with Golder in doing some of that work? A What do you mean "work with"? At the Stripa. You just said at the Stripa Mine. That is like we were one of the participants in the research program multinational research program, and DOE is was funding us and I believe Golder too. But it's not like we were working for Golder. No, I didn't mean to imply that. No, I didn't mean to imply that. A Okay. Yeah. It depends on how you mean "with," but we worked on the same dataset. Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	3		in answer to your question, some sections of the mine is
Mhat do you mean "work with"? At the Stripa. You just said at the Stripa Mine. That is like we were one of the participants in the research program multinational research program, and DOE is was funding us and I believe Golder too. But it's not like we were working for Golder. No, I didn't mean to imply that. Nokay. My question was, you worked with them? A Yeah. It depends on how you mean "with," but we worked on the same dataset. Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	4		dry; some section is really wet.
7 Q At the Stripa. You just said at the Stripa Mine. 8 A That is like we were one of the participants in the 9 research program multinational research program, and DOE 10 is was funding us and I believe Golder too. But it's not 11 like we were working for Golder. 12 Q No, I didn't mean to imply that. 13 A Okay. 14 Q My question was, you worked with them? 15 A Yeah. It depends on how you mean "with," but we worked on 16 the same dataset. 17 Q Okay. I think you indicated earlier too, Dr. Karasaki, in 18 reference to your ability to use some of these older mines 19 as underground laboratories, that there was an advantage in 20 doing so is that correct? as opposed to characterizing 21 the mass from the surface, is what I'm getting at. 22 A Yes. 23 Q And why is there an advantage to your ability to 24 characterize the hydraulic properties of the rocks 25 surrounding the mine by being underground?	5	Q	And you worked with Golder in doing some of that work?
That is like we were one of the participants in the research program multinational research program, and DOE is was funding us and I believe Golder too. But it's not like we were working for Golder. No, I didn't mean to imply that. No, I didn't mean to imply that. My question was, you worked with them? Yeah. It depends on how you mean "with," but we worked on the same dataset. My Q Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	6	A	What do you mean "work with"?
research program multinational research program, and DOE is was funding us and I believe Golder too. But it's not like we were working for Golder. No, I didn't mean to imply that. Nokay. Yeah. It depends on how you mean "with," but we worked on the same dataset. Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	7	Q	At the Stripa. You just said at the Stripa Mine.
is was funding us and I believe Golder too. But it's not like we were working for Golder. No, I didn't mean to imply that. Yeah. It depends on how you mean "with," but we worked on the same dataset. No, I didn't mean to imply that. No, I	8	A	That is like we were one of the participants in the
like we were working for Golder. 12 Q No, I didn't mean to imply that. 13 A Okay. 14 Q My question was, you worked with them? 15 A Yeah. It depends on how you mean "with," but we worked on the same dataset. 17 Q Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so — is that correct? — as opposed to characterizing the mass from the surface, is what I'm getting at. 22 A Yes. 23 Q And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	9		research program multinational research program, and DOE
No, I didn't mean to imply that. No, I didn't mean to imply that. Nokay. My question was, you worked with them? Yeah. It depends on how you mean "with," but we worked on the same dataset. Nokay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	10		is was funding us and I believe Golder too. But it's not
13 A Okay. 14 Q My question was, you worked with them? 15 A Yeah. It depends on how you mean "with," but we worked on 16 the same dataset. 17 Q Okay. I think you indicated earlier too, Dr. Karasaki, in 18 reference to your ability to use some of these older mines 19 as underground laboratories, that there was an advantage in 20 doing so is that correct? as opposed to characterizing 21 the mass from the surface, is what I'm getting at. 22 A Yes. 23 Q And why is there an advantage to your ability to 24 characterize the hydraulic properties of the rocks 25 surrounding the mine by being underground?	11		like we were working for Golder.
My question was, you worked with them? Yeah. It depends on how you mean "with," but we worked on the same dataset. Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	12	Q	No, I didn't mean to imply that.
Yeah. It depends on how you mean "with," but we worked on the same dataset. Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. A Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	13	A	Okay.
the same dataset. 17 Q Okay. I think you indicated earlier too, Dr. Karasaki, in 18 reference to your ability to use some of these older mines 19 as underground laboratories, that there was an advantage in 20 doing so is that correct? as opposed to characterizing 21 the mass from the surface, is what I'm getting at. 22 A Yes. 23 Q And why is there an advantage to your ability to 24 characterize the hydraulic properties of the rocks 25 surrounding the mine by being underground?	14	Q	My question was, you worked with them?
Okay. I think you indicated earlier too, Dr. Karasaki, in reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	15	A	Yeah. It depends on how you mean "with," but we worked on
reference to your ability to use some of these older mines as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. A Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	16		the same dataset.
as underground laboratories, that there was an advantage in doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	17	Q	Okay. I think you indicated earlier too, Dr. Karasaki, in
doing so is that correct? as opposed to characterizing the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	18		reference to your ability to use some of these older mines
the mass from the surface, is what I'm getting at. Yes. And why is there an advantage to your ability to characterize the hydraulic properties of the rocks surrounding the mine by being underground?	19		as underground laboratories, that there was an advantage in
22 A Yes. 23 Q And why is there an advantage to your ability to 24 characterize the hydraulic properties of the rocks 25 surrounding the mine by being underground?	20		doing so is that correct? as opposed to characterizing
23 Q And why is there an advantage to your ability to 24 characterize the hydraulic properties of the rocks 25 surrounding the mine by being underground?	21		the mass from the surface, is what I'm getting at.
characterize the hydraulic properties of the rocks surrounding the mine by being underground?	22	A	Yes.
surrounding the mine by being underground?	23	Q	And why is there an advantage to your ability to
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24		characterize the hydraulic properties of the rocks
	25		

0 1	A	Well, you can look at the fractures, which actually, in
2		terms of predicting mine inflow, it probably won't help you
3		much at all. But if you are really into I'm not the only
4		one who worked on this research topic, of course, nuclear
5		waste repository program. There are a lot of people who
6		actually want to look at fractures in their hand and do
7		really microscopic analyses on that or rock mechanics people
8		who wants to look at how fractures develop around mines.
9		They want to be in the real mine. But for me, I when I
10		want to look at a big picture, going in under in the mine
11		may not help that much. But for other disciplines in some
12		other applications, yes, it's very beneficial to be in and
13		around.
14	Q	Mr. Karasaki, I wanted to ask you about one of your papers.
15		It's titled "Project Summary." It's got on EPA
16		letterhead an EPA symbol on it, and the title is
17		"Hydrogeologic Characterization of Fractured Rock
18		Formations. A Guide for Groundwater Remediators." Are you
19		one of the authors on that paper?
20	A	I believe so.
21		MR. HAYNES: Counsel, just for the record, what's
22		the date of the paper?
23		MR. LEWIS: May 1996.
24	Q	I wanted to ask you on page 11 of that paper, Dr. Karasaki,
25		about a couple statements there. There's a section titled Page 8131

a 1		"Borehole Flow Logging." And the first paragraph says:
2		"Flow logging is a critical necessity in the
3		
		characterization study. It provides a means to
4		identify and quantify the transmisivities of only the
5		relatively few fractures or fracture zones which are,
6		in fact, conductive."
7		You agree with that, I take it?
8	A	My knowledge has advanced since not entirely. But still,
9		borehole loading, freeloading is as I mentioned, it's the
10		first thing you do.
11	Q	So do you now disagree with that statement?
12	A	Not entirely agree now or transmisivity part is very
13		difficult. So for that part, if it says and it sounds
14		like it says I'm probably a fourth author on that; right?
15		That if it says, "From flow logging you can get permeability
16		or transmisivity," I don't agree with that.
17	Q	Did you agree with it in 1996 when the paper was published?
18	A	Whenever somebody offers to be a coauthor, it's an honor,
19		and I do review it but not word by word to an extent and
20		again, my knowledge and understanding of fractured rock
21		evolved, so at that time, yes, I have; yes.
22	Q	In that same section further down it says:
23		"After this initial profiling, the method of
24		profiling multiple wells during the pumping of a single
25		well should be implemented. The highest-yielding well Page 8132

8 1		should be used as the pumping well."
2		Do you I take it you agree with that?
3	A	In the context of when you're single pumping means
4		pumping one well at a time. I agree with that. But you
5		should pump then to another well and do the test, and that's
6		what we did actually at that site. That was the early
7		research project that was partially funded by EPA, but there
8		was a bigger funding from DOE that continued on, and we
9		learned more.
10	Q	So your thinking has changed on this point as well?
11	A	If it says you can just get away with one single pump test,
12		I totally disagree. But if it says you pump from one well
13		at a time, I agree.
14	Q	Well, I'll read it again just to be clear:
15		"After this initial profiling" and it's
16		referring to the flow logging "the method of
17		profiling multiple wells during the pumping of a single
18		well should be implemented. The highest-yielding well
19		should be used as the pumping well."
20	A	Yes, pumping single well, well, instead of pumping two
21		wells.
22		JUDGE PATTERSON: Mr. Lewis, would this be a good
23		time to break? It's noon. I have to meet with the
24		technical people here.
25		MR. LEWIS: Sure; fine with me, your Honor; yes. Page 8133

-1			
	1		JUDGE PATTERSON: Back at 1:00?
	2		MR. LEWIS: Yes.
	3		(Off the record)
	4		JUDGE PATTERSON: Mr. Lewis?
	5		MR. LEWIS: Yes, thank you.
	6	Q	Dr. Karasaki, have you had any experience with mine
	7		engineering methods for controlling potential water inflows
	8		in mines?
	9	A	No.
	10	Q	One of your slides, Dr. Karasaki, you talked about
	11		offered some opinions about the duration of testing that you
	12		thought ought to be done here. Do you recall that?
	13	A	Yes.
	14	Q	And remind me you threw out a couple numbers there do
	15		you recall what they are without looking at the slide again?
	16	A	I suggested over a month would be good. Seven days is
	17		short.
	18	Q	So the difference of opinion is between seven days and over
	19		a month?
	20	A	The longer the better.
	21	Q	Sure; sure. Always more the better as in everything having
	22		to do with rock characterization, I take it.
	23	A	To look at longer larger volume of rock, we have to do
	24		longer-term test.
	25	Q	And I wanted to ask you also, sir, a couple of things. I Page 8134

l		
* 1		think you indicated that it was your impression that there
2		was no pumping test done on a couple of holes. And I wanted
3		to ask you about that. Two of the holes you said and you
4		had some slides on this that you indicated there were no
5		pumping tests was hole 54 and hole 77. Do you recall that?
6	A	The fact that I showed the slide or the content of it?
7	Q	Let me see if I can find it here, Doctor.
8		JUDGE PATTERSON: It's 14 and 15.
9		MR. LEWIS: Thank you, your Honor.
10		JUDGE PATTERSON: Or 15 and 16.
11		MR. LEWIS: Yes.
12	Q	Slides 15 and 16, you talked about hole 54 and hole 17 and
13		you say they should have been tested. Okay?
14	A	Yes.
15	Q	And when I look at the Golder Report, Appendix B-2, on page
16		12, and this has been I think Mr. Haynes already probably
17		referenced this perhaps as a DEQ exhibit, but just for
18		reference to the record, these appendices B-2, B-3 and B-4
19		are all in Intervenor Exhibit 7. They've been identified in
20		the record before. And this is the Appendix B-2, Dr.
21		Karasaki, one of the reports you indicated you had reviewed
22		for your testimony. And if we look on page 12, it says near
23		the bottom of the page, they talk about heat-pulse flow
24		meter testing of various holes, Dr. Karasaki.
25		MR. HAYNES: Your Honor, if counsel wouldn't mind, Page 8135
1		

1 I'd like to have the witness look at the page? 2 JUDGE PATTERSON: Yeah; sure. 3 Sir, are you on page 12? I may have misspoke and said 21. 4 Page 12, sir? 5 Yes. And near the bottom of the page, the section on heat-pulse 7 flow meter, do you see that? 8 Yes. 9 It indicates in the first paragraph, second sentence, "For 10 all of the boreholes, no flow or very minor flow was 11 recorded under static conditions;" right? 12 Yes. 13 And then if we go to the next paragraph, it says, "In two of 14 the boreholes, 04EA-73 and 04EA-77, it was not possible to 15 establish a constant flow rate, and the borehole fluid 16 levels could only be drawn down to the pump inlet." Do you 17 see that, sir? 18 Yes. 19 So it does indicate that pumping was done, but there was so 20 little pumping to be done that no constant rate could be 21 established. 22 Pumping for heat-pulse flow meter and pump tests are 23 different -- two different things. 24 But it is pumping, is it not? 25 Α Yes. Page 8136

Network*Reporting*

1	Q	Okay. And if we look at the next page then, page 13, Dr.
2		Karasaki, we see there a reference to the other hole you
3		indicated for which no pumping had been done. I believe it
4		says for all or for boreholes 04EA-47, 04EA-54 and
5		that's the one we're talking about and another and
6		04EA-84, the pumping rates maintained at approximately 3.8,
7		1.9 and 3.8 liters per minute, (1, 0.5 and 1 gallons per
8		minute). Do you see that, sir?
9	А	Yes.
10	Q	And that indicates, does it not, that the pumping in the
11		borehole 54 that you referred to was in fact done, and the
12		rate indicated for that pumping was only 0.5 gallons per
13		minute?
14	A	That's what it says.
15	Q	While we're on this document, Dr. Karasaki, I'd like to
16		refer you also to page 21. And at the top of the page
17		there and this is in reference to your earlier testimony
18		that apparently you were under the impression that Golder
19		did not have access to the drill logging information. In
20		particular, you commented about that drill logging
21		
		information about potential water loss during drilling might
22		information about potential water loss during drilling might be important. Do you recall that, sir?
	A	
22	A Q	be important. Do you recall that, sir?

» 1		it not, at the top of page 21 that in addition to the single
2		packer test, a double packer test was performed between
3		41.45 and 44.19 meters? This interval was selected based on
4		partial loss of circulation in this depth range that could
5		indicate a localized zone of relatively high hydraulic
6		conductivity. That's what it says, does it not?
7	А	Yes.
8	Q	So it appears that Golder did in fact use such information
9		and did in fact target their investigation on such zones,
10		does it doesn't that isn't that what that indicates to
11		you, Dr. Karasaki?
12	Α	Yes.
13	Q	On another point, Doctor, I believe you offered some
14		testimony as to perhaps the sensitivity analysis that Golder
15		had done indicating that you felt they were incorrect not to
16		have looked at the influence of the boundary conditions and
17		incorrect not to have looked at that and removed the what
18		you called the resistance? Was that your opinion?
19	A	Could you repeat that, please?
20	Q	Sure; sure. You showed on a slide what you called
21		resistance to flow, I think. Do you recall that?
22	A	Yes.
23	Q	And I believe you indicated tell me if I'm wrong that
24		you believed that one of the parameters that Golder should
25		have varied in their investigation was to remove any Page 8138

1 resistance to flow at the boundaries of the model. Is that 2 your opinion or not? 3 Α No. 4 Do you understand that they did in fact do that in their 5 various modeling analyses? 6 Α This figure? You're talking about this figure? 7 Yes; yes. 8 I don't have any resistance to the boundary except -- this 9 is not even boundary either. 10 What slide are you on, sir? What number? 11 Α 20. 12 Thank you. Q 13 I thought this was what you were talking about. 14 If we look at the next slide, 21, your slide 21, --15 Α Yes. 16 -- and you see the sensitivity parameters that Golder looked 17 at are labeled along the bottom; true? 18 Yes. 19 I thought you had indicated that for the one that's labeled 20 "boundary conditions," that they had failed to remove the 21 resistance to flow and you were being critical about that. 22 No. Α 23 So you understand that they did remove the resistance 24 to flow, both at the top of the model and the sides of the 25 models during their sensitivity testing?

Network Reporting

Page 8139

1		
1	A	To the top, with a modified value condition, they are
2		talking about I don't recall them tweaking the
3		resistance. Other boundary conditions are insensitive with
4		the rates.
5	Q	All right. Could we look at Mr. Zawadzki's slides, please?
6		Slide 16, I think. This is a slide that Mr. Zawadzki used
7		to review his testimony, Dr. Karasaki.
8	A	Yes.
9	Q	And this particular slide is where he was discussing the
10		sensitivity analysis. And you'll see the bottom item number
11		6 as to boundary conditions, it says, "Top and lateral
12		boundaries replaced with specified head boundary," does it
13		not?
14	A	It says so; yes.
15	Q	And by doing that, you're removing any resistance to flow,
16		are you not?
17	A	The way this says sounds like it, but in his testimony he
18		says he replaced with a modified boundary condition where
19		you have a resistor. I think I have his quotes in here. My
20		34 slide, he said, "which in some way is like specified head
21		boundary but introduces another resistance to flow."
22	Q	And you understand, sir, I think we're talking about two
23		different things. One thing Golder did was they modeled the
24		prediction for mine inflow. You understand that; right?
25	А	Yes. Page 8140

- 1	Q	And they came up with a number which was ultimately 60
2		gallons per minute inflow. Are you aware of that?
3	A	Yes.
4	Q	And I believe that Mr. Zawadzki, what he was talking about
5		where you referenced him is what they did to the model for
6		the ultimate predictions that derived the 60 gpm. Are you
7		aware of that, sir?
8	A	Yes.
9	Q	And what I'm talking to you about now is not what went into
10		the model for the ultimate predictions, but the sensitivity
11		testing that Golder did on the model; right? And that's the
12		slide we were looking at earlier. And if we go to your
13		slide, sir, slide 21 of your slides, that well, let's go
14		to slide 17 of Mr. Zawadzki. Your slide 21 was this same
15		slide; right? And this slide represents the results of
16		Golder's sensitivity testing. You understand that?
17	A	Yes.
18	Q	Okay. And again the parameter on the right-hand side of the
19		chart there on the bottom is boundary conditions; right?
20	A	Yes.
21	Q	And we just looked at Mr. Zawadzki's prior slide, and again
22		he's talking about the sensitivity analysis now right?
23		not the final prediction of mine inflow but the sensitivity
24		analysis. And he says there again that the top and lateral
25		boundaries were replaced with a specified head boundary. Page 8141

1		i
* 1		Are you with me so far, I think, aren't you, sir?
2	A	Okay. Yes.
3	Q	And that is the source then, if we look back at this graph,
4		what he's showing us there in the yellowish bar on the right
5		for boundary conditions is when he did that, when he removed
6		the resistance to flow, how much did that change the
7		picture; right?
8	A	Yes. That's my whole point of bringing up this resistor
9		cartoon. If you have a resistor between upper bedrock, the
10		feature, and upper bedrock or the boundary, you don't have
11		flow. So you have less flow. So
12	Q	Right. And so he looked at that in his sensitivity
13		analysis.
14	A	Not in combination.
15	Q	Well, let's go back. We're just talking about the boundary
16		conditions, aren't we, sir?
17	A	Yes.
18	Q	I understand your point about not in combination. I'm not
19		asking you about that.
20	A	Oh. Okay. Then, yes, he did. I understand; yes.
21	Q	Okay. Just on the boundary conditions. And what I was
22		trying to get to, sir, is that the results of the
23		sensitivity analysis, when he removes any resistance to flow
24		from above or the sides of the mine, it shows that the model
25		does not change very much. The prediction does not change Page 8142

* 1		very much.
2	A	Yes, that's because upper bedrock is held to low
3		permeability. So it's now acting as a resistor. So taking
4		out outer resistor doesn't make you any change.
5	Q	Right; right. Can we go to Mr. Wozniewicz slide 19, please?
6		Something else you said confused me a bit, Dr. Karasaki.
7		And I thought you indicated more than once that Golder only
8		performed pumping tests on one hole; is that your
9		understanding?
10	A	The parameter they ended up using for the model; yes.
11	Q	But you're aware that they did do pumping tests on more than
12		one hole?
13	A	Actually I'm not. I thought it was only 84, but I stay
14		corrected if
15	Q	Okay. Well, that's why I showed you this slide. And this
16		was Mr. Wozniewicz' testimony where he reviewed the various
17		testing they relied on for their modeling, and you see that
18		he says on the second bullet point or he did say, "As part
19		of the flow logging, they performed short-duration pumping
20		tests over the entire open borehole length for five
21		boreholes." You were not aware of that?
22	A	I don't know. I think the sentence reads flow logging, I
23		know they did the entire borehole. I know the
24		short-duration pump tests are now only done what I can
25		look at. Maybe there are other data that I didn't get to Page 8143

25

1 From the reports I can read, I didn't know but -see. 2 So if it's in the reports, it's just something you missed or 3 didn't notice? 4 Α If it's short-duration, they ended up not using it and 5 probably was important. 6 Well, do you know that they didn't use it, Dr. Karasaki? 7 Yes. 8 In fact Mr. Wozniewicz testified they used all this 9 information. Do you have some greater knowledge about this? 10 They didn't use the parameter. And the way I read it, 11 they -- again, I -- if you could show me which results they 12 got from pump tests? And pump tests sometimes -- yes. Sorry. 14 Let's go back to slide 19 unless we're still there. 15 Let's look at slide 20, please. This is the 16 next slide after the one we just looked at, Dr. Karasaki. 17 By the way, were you -- you said you reviewed Mr. 18 Wozniewicz' testimony and Mr. Zawadzki's testimony. 19 review that in some detail? 20 Α Yes, as much as I can. 21 Were you given copies of their slides to review? 22 Α Yes. 23 So you would have reviewed these slides? 24 Α Yes.

Network Reporting

Page 8144

And as to these pumping tests that you apparently did not

1 know were done, you'll see in the second bullet point there, Dr. Karasaki, that they give more detail as to those 3 short-duration pumping tests. They tell us where they set 4 the pumps; they tell us they pump from the entire open 5 interval, and they tell us about the results, that "In two of the boreholes, the sustainable rate from the entire borehole was below the lower limit of 8 pump, 0.5 gallons per minute for a drawdown of 15 to 20 9 meters, and that in three of the boreholes, pumping 10 rates between 0.5 to one gallon per meter were 11 maintained for several hours for a drawdown between 15 12 and 20 meters. Measured flow rates consistent with low 13 hydraulic conductivity." 14 You were not aware of that when you testified today either, 15 Dr. Karasaki? 16 For this short-duration pumping test, no. 17 And it sounded like perhaps you were not aware that Golder 18 had, in fact, looked specifically at the so-called 19 identified structures that were identified in the drilling for this operation. And I wanted to ask you, were you aware 21 that Mr. Wozniewicz testified that they did, in fact, target 22 and identify those structures for testing? And we can see 23 on the next slide the results of the -- the first bullet 24 point that Mr. Wozniewicz talked about again as reflected in 25 his report was that they could only identify one localized Page 8145

Network Reporting

1		moderate conductivity interval, that being in the massive
2		sulfide in the lower bedrock. And you understand that was
3		the hole 84 that they selected for the longer term pumping,
4		don't you?
5	A	Yes.
6	Q	And then as to the second point, that they did, in fact,
7		target these 18 structures, the identified structures in the
8		rock, and that they found no apparent correlation between
9		the 18 structures identified in the core and zones with
10		moderate hydraulic conductivity, were you aware of that
11		before you testified today?
12	A	When you say "target," what do you mean "target," please?
13	Q	All right. Let's look at slide 23. Now, this is some of
14		the information that Mr. Wozniewicz presented. It's not all
15		of it. This happens to be a table that you talked about
16		earlier today; right?
17	A	Yes.
18	Q	And it is a table that's titled "Comparison of Structure
19		Data With Hydrogeologic Data"; right?
20	A	Yes.
21	Q	And, in fact, what they did here and what Mr. Wozniewicz
22		talked about was they specifically went after these
23		so-called structural zones identified in the drilling to
24		look at them as far as their potential conductivity. And it
25		shows, does it not, the conductivity in these various zones Page 8146

1		on this table, Dr. Karasaki?
2	A	Again could you define "target"?
3	Q	My question now is, this table shows the conductivity for
4		these identified zones. You can see that, can't you?
5	A	Yes. I showed it.
6	Q	Yeah, I know you did. I know you did. That's why I was a
7		little confused as to why I thought you indicated that
8		Golder had not investigated the zones.
9	A	They inferred. But again the purpose of this table appears
10		to show that these features and structures don't conduct
11		water. But that's totally wrong. Features do conduct
12		water. Not all features conduct water.
13	Q	Well, they show the conductivities on the graph, do they
14		not, on the table? They've got on the right-hand margin,
15		you know, the units we've been talking about, the 10 to the
16		minus 9, 10 to the minus 8 units as far as meters per second
17		conductivity; right?
18	A	They were inferred maybe.
19	Q	Well, are you guessing, Dr. Karasaki? Because their
20		testimony was these are measured conductivities.
21	A	Okay. Let's go back. This I should answer your
22		question. Please ask me again.
23	Q	This slide shows, does it not, that they actually did
24		measure and report the conductivities for these structural
25		zones? Page 8147
		tage off/

1		
1	A	Measure, I'm not sure. But they list features and they
2		associate inferred permeabilities to it.
3	Q	All right. Now, Dr. Karasaki, you talked earlier about your
4		experience in fractured rock in connection with research
5		having to do with repositories for nuclear wastes. That
6		tell me if I'm wrong here, but most of your experience has
7		been in what you call granitic rock?
8	A	Some sedimentary rocks.
9	Q	Some sedimentary?
10	А	Yes.
11	Q	Did you, in connection with your review of the case
12		materials in preparation for your testimony, investigate the
13		nature of the conductivities of the sedimentary rocks around
14		the proposed mine?
15	A	Around the proposed mine? Nature of metasedimentary rocks?
16	Q	Yes, in terms of their hydraulic conductivity.
17	А	If there are separate reports measuring those hydraulic
18		conductivities, I'm not aware of. The ones that are
19		reported the ones I saw, yes, I am aware.
20	Q	And what's your understanding about the various reports
21		about the hydraulic conductivity of sedimentary rocks in the
22		region around the Eagle Mine?
23	Α	Metasedimentary, very low permeability, matrix rock
24		matrixwise, low permeability, very much like granite.
25	Q	And are you aware of the literature about the fractures in Page 8148

	* 1		the metasedimentary rocks in the region around the proposed
	2		Eagle Mine and as to their potential conductivity, Dr.
	3		Karasaki?
	4	A	Only the ones that are mentioned in the documents I
	5		reviewed.
	6	Q	All right. So you did not go beyond what was reported in
	7		the for the actual drilling and hydraulic testing around
	8		the mine?
	9	A	Could you repeat that again?
	10	Q	You only looked at the data that was collected in terms of
	11		doing the hydraulic investigation for this mine area?
	12	A	Correct.
	13		MR. LEWIS: Could we look at slide 25, please?
	14		Could you blow up the bottom half, please?
	15	Q	Can't blow it up, Dr. Karasaki.
	16	A	That's okay. I can go take a look.
	17	Q	This was presented earlier again as part of Mr. Wozniewicz's
	18		testimony. You spent a lot of time talking about fractures.
	19		And I think you said one or two out of a hundred can be
	20		conductive?
	21	A	Yes.
	22	Q	And you spent some time talking about the potential
	23		fractures around the mine and offered your views as to
	24		whether they would be conductive or not conductive. And I
	25		wanted to ask you if you were aware of this literature Page 8149
п			

1		talking about the nature of the fractures in the
2		metasedimentary rocks in this region. In particular, if we
3		look at the second bullet point, reference to technical
4		report number 3, groundwater investigations in Marquette
5		Iron Mining District, Michigan, Intervenor Exhibit 141,
6		wherein they state that:
7		"No large open fractures have been reported in any
8		of the operating mines. Although hydraulically tight
9		faults are common in the area, interconnected
10		supercapillary fractures in the bedding of the major
11		structures probably account for the largest percentage
12		of water found in the mines where subsidence has not
13		disrupted the flow pattern for the bedrock remains
14		intact. No relation is apparent between the amount of
15		water pumped from the mine and the head of the water in
16		the initial overburden."
17		Were you aware of this characterization of the
18		metasedimentary rocks in this region, Dr. Karasaki, before
19		you testified today?
20	A	I read this slide from Mr yes, I read this slide before
21		I came here. Yes.
22	Q	Now, granitic rocks, they are not sedimentary, are they,
23	*	sir?
24	A	No.
25	Q	And you understand that the host rock around the Eagle Page 8150
4		

1 deposit is, in fact, a sedimentary or metasedimentary-type 2 rock? 3 Α Yes. 4 (Off the record interruption) 5 MR. LEWIS: That's all I have, your Honor. MR. REICHEL: Good afternoon, Doctor. My name is 7 Robert Reichel. I represent the Department of Environmental 8 I have just a few questions for you, sir. 9 THE WITNESS: Okay. 10 CROSS-EXAMINATION 11 BY MR. REICHEL: 12 I believe you testified earlier today, sir, that you were 13 first contacted about this proceeding of this case by Dr. 14 Robert Prucha; is that correct? 15 Α Yes. 16 How do you know Dr. Prucha? 17 I think it dates back to 1986, '87. He was a graduate 18 student at the same time I was at Berkeley -- UC Berkeley. 19 And when Dr. Prucha contacted you about this case, what did 20 he tell you about the nature of this case? 21 Nature? Α 22 What did he tell you this controversy or dispute was about? 23 He said he -- it's very complimentary. He thinks I'm the 24 expert in fractured rock bedrock hydrology. So he wanted me to look at the reports that Golder produced and wanted to Page 8151

Network Reporting

1		hear my opinion. If
2	Q	Go ahead.
3	A	That's okay.
4	Q	Did Dr. Prucha tell you at that time and I believe you
5		said this would have been about May of this year
6		approximately?
7	A	Yeah. My
8	Q	This is not a memory test. But sometime within the last few
9		months?
10	А	Yes.
11	Q	Okay. Did Dr. Prucha tell you at that time when you first
12		learned about this controversy that he had already testified
13		in this case criticizing the decision of the Department of
14		Environmental Quality to issue this mining permit?
15	A	No.
16	Q	He didn't?
17	A	Maybe then my time line is off. Maybe it was before when
18		he talked to me, there was no mention about him testifying.
19	Q	Okay. Did he did you come to understand at some point
20		that he has testified in this case?
21	A	Yes.
22	Q	And when he talked to you about this situation, did he tell
23		you that he had formed certain opinions about the nature of
24		the characterization the hydrologic characterization that
25		had been done at this site? Page 8152

1	A	No, not really. He really wanted me to express and hear my
2		opinion on the way the characterization was done and if
3		there was anything I would do differently. That was the way
4		he put it.
5	Q	Now, in your various slides today and your testimony, I
6		noticed that sometimes you refer to the term "K," the
7		capital letter K; correct? And what does that stand for,
8		sir?
9	А	Permeability. Oh, actually hydraulic conductivity is the
10		more accurate term.
11	Q	Okay. Well, that's and you're the hydrologist, I'm not.
12		But it's your understanding, sir tell me if I'm wrong
13		that K is a in your profession is a term has a
14		specific technical meaning, does it not; hydraulic
15		conductivity?
16	A	I would use that hydraulic conductivity with a capital K.
17	Q	Yes.
18	А	And usually a small k means permeability. And that's a
19		meter squared unit. And it's intrusive to the rock. And
20		hydraulic conductivity includes the properties of fluid
21		mainly, in this case, water. So there's a subtle
22		difference.
23	Q	They're not necessarily the same thing, are they?
24	А	I would for people who are not in our field, I would use
25		it synonymously except for the magnitude like they are Page 8153

	1		roughly 10 to the 7th difference in terms of numbers,
	2		permeability of 10 to the minus 17 is, I think again, I
	3		can get corrected but hydraulic conductivity of water is
	4		10 to a minus 10. So there's a unit conversion.
	5	Q	I'm just trying to understand, sir. In your opinion, is
	6		permeability are permeability and K interchangeable?
	7	A	Roughly, yes, unless it's highly, you know, changing fluid
	8		properties, yes. And knowing you have to know the fluid
	9		property to tell about hydraulic conductivity. But again
	10		that usually means that water properties of density and
	11		gravity term and viscosity term, which don't change much
	12		over the temperature range we are talking about here.
	13		MR. REICHEL: Nothing further at this time. Thank
	14		you, Doctor.
	15		MR. HAYNES: Dr. Karasaki, I have a few questions
	16		following up on some questions that counsel asked you.
	17		REDIRECT EXAMINATION
	18	BY MR.	HAYNES:
	19	Q	Mr. Lewis inquired about your experience in characterizing
	20		the hydraulic conductivity around mines. Do you recall that
	21		line of questions? Whether you had experience in that area?
	22		MR. LEWIS: That's not what I asked him, Mr.
	23		Haynes.
	24		MR. HAYNES: Well, that's what my notes say.
	25		Maybe my notes aren't accurate. Page 8154
- 1			

1		
1	Q	Let me ask directly, Dr. Karasaki. In your view, is
2		characterizing the hydraulic conductivity of fractured rock
3		around mines any different from characterizing hydraulic
4		conductivity of fractures in any other area?
5	A	No. You drill boreholes, and you do pump tests.
6	Q	Mr. Lewis asked you about Appendix B-2, page 21, about a
7		sentence that talks relating to hole 83 about partial loss
8		of circulation at a range that was picked for a packer test.
9		Do you recall that on page 21?
10	A	Yes.
11	Q	In your review of Appendix B-2, did you see any other
12		references to ranges where packer tests were performed based
13		upon loss of circulation other than this particular this
14		item for any of the other holes that had packer tests done?
15	A	Not that I know of, no.
16	Q	And so in your view, picking a packer test interval one time
17		for the holes that were used here, is that sufficient is
18		that a sufficient quantity to do it once?
19		MR. LEWIS: Objection to foundation, your Honor.
20		First, one would have to know how many occurrences there
21		were of such a thing to form an opinion as to whether one is
22		sufficient or not.
23		MR. HAYNES: Well, I think the witness has a
24		foundation. He's read the reports. I'm talking about a
25		finite number of boreholes. And I'm asking whether Page 8155
1		· · · · · · · · · · · · · · · · · · ·

1		performing one test based upon one reading of loss of
2		circulation in the hole is sufficient.
3		MR. LEWIS: Well, same objection. If there was
4		only one, I would assume that would be sufficient unless he
5		knows how many such instances there were. There's no
6		foundation for the question.
7		MR. HAYNES: I asked yes, there is, your Honor.
8		I asked the witness if he had seen any other instances of
9		packer tests performed where there was a loss of circulation
10		in the other boreholes in this report. And his answer was
11		no. So that lays the foundation.
12		JUDGE PATTERSON: Okay. I'll overrule the
13		objection.
14	Q	Dr. Karasaki?
15	A	Yes. I lost your question. But maybe
16	Q	Let me restate it.
17	A	Yes.
18	Q	You testified on direct examination in response to some of
19		my questions that you would expect to design the
20		investigation using the driller's logs notes for loss of
21		circulation; correct?
22	A	Yes.
23	Q	And you testified that, in your review of the reports, you
24		noted that there was only one such interval design from the
25		loss of circulation? Page 8156

* 1		MR. LEWIS: Objection to the form. He testified
2		he reviewed one report and did not notice any such other
3		instances.
4		MR. HAYNES: I think that's the same thing, your
5		Honor.
6		MR. LEWIS: No. You said "reports." I assume
7		you're referring to something more than this individual
8		report. And that's all he said that he reviewed. He
9		further testified he didn't recall seeing this instance.
10		But at any rate, my objection is that you're asking him
11		about having reviewed other reports and looked for such
12		information. And he hasn't testified that he has done so.
13	Q	Let me lay the foundation, Dr. Karasaki. In your review of
14		Appendices B-2, B-3 and B-4,
15	A	Yes; yes.
16	Q	did you see any other information suggesting that the
17		packer test intervals were based on the interval where there
18		was a partial loss of circulation water other than for hole
19		83?
20	A	No, not that I can recall.
21	Q	Okay. And in your view, Dr. Karasaki, if one has the
22		driller's logs strike that. I'll move on to another
23		question. Mr. Lewis asked you about the short duration pump
24		tests that Mr. Wozniewicz testified about. What is your
25		understanding of what a short duration pump test is? Page 8157

- 1			
	* 1	A	Well, I was surprised they call it pump test. Because in
	2		pump tests, you measure and maybe they didn't record
	3		but not recorded the time versus pressure or drawdown.
	4		And this was done. When you do heat-pulse flow meters, in
	5		order to induce inflow to the borehole, you want to draw
	6		down a little bit so that water will come in. They do it
	7		two ways; natural ways without pumping and pumping. And
	8		pumping, yes, you pump a little bit. But they're calling it
	9		pump tests. It's interesting. And, yes, if you do it a
	10		long time, you know, it can be very low inflow. If you do
	11		it a long time, you begin to see beyond the heterogeneities
	12		and you begin to see through the small or low permeability
	13		and then see a large picture. But short duration like this
	14		and especially for this alternative to just induce flow so
Ì	15		that you can measure flow direction for heat-pulse flow
	16		meter, nobody is going to call it a pumping test. But if
	17		you had a pump in there and you switched it on, then they
	18		call it a pump test maybe a pump test. But it wasn't
	19		analyzed.
	20	Q	It wasn't analyzed. And is that kind of, as they call it, a
	21		short duration pump test equivalent to the pump test that
	22		you recommended then at least 10 be done at this site?
	23	A	No, nowhere near.
	24		MR. HAYNES: Thank you. No further questions at
	25		this time. Page 8158

	* 1	MR. EGGAN: No further questions, Judge.
	2	MR. WALLACE: I have nothing further.
	3	MR. LEWIS: Nothing further, your Honor.
	4	MR. REICHEL: Nothing, Judge.
	5	JUDGE PATTERSON: Thank you very much.
	6	(Off the record)
	7	MR. HAYNES: Your Honor, before we start with the
	8	next witness, I neglected to do one bit of housekeeping with
	9	Dr. Karasaki. Petitioners move to admit as a demonstrative
	10	exhibit only the slides from Dr. Karasaki, which would be
	11	Petitioner's Exhibit 188 for demonstrative purposes.
	12	MR. LEWIS: No objection.
	13	MR. REICHEL: No objection.
	14	JUDGE PATTERSON: No objection, it will be
	15	entered.
	16	(Petitioner's Exhibit 632-188 received)
	17	MR. HAYNES: Petitioners call Dr. Ann Maest in
	18	rebuttal.
	19	REPORTER: Do you solemnly swear or affirm the
	20	testimony you're about to give will be the whole truth?
	21	DR. MAEST: Yes, I do.
	22	ANN S. MAEST, Ph.D.
	23	having been called as a rebuttal witness by the Petitioners and
	24	sworn:
	25	Page 8159
- 1		