US ERA ARCHIVE DOCUMENT

Wisconsin's Initiative for Sustainable Cleanups (WISC)

A GREENER CLEANUP WORKSHOP

February 9, 2010 U.S. EPA Region 5 77 West Jackson Blvd, Chicago

Annette Weissbach
WDNR Remediation & Redevelopment Program
Northeast Region

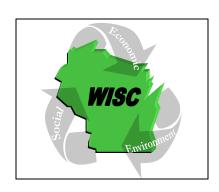
Disclaimer

These presentations are being provided as part of a U.S. Environmental Protection Agency workshop. The presentations do not constitute U.S. EPA policy or final interpretation. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

Links to non-EPA web sites do not imply any official EPA endorsement of, or a responsibility for, the opinions, ideas, data, or products presented at those locations or guarantee the validity of the information provided. Such links are provided solely as a pointer to information that might be useful or interesting to the audience.

Remarks made by EPA or State Agency staff during the Workshop were made in their personal capacity and do not necessarily reflect the official position of the U.S. EPA or any other agency.

Some documents excerpted in these presentations are working, internal documents, not for publication or reliance in use.



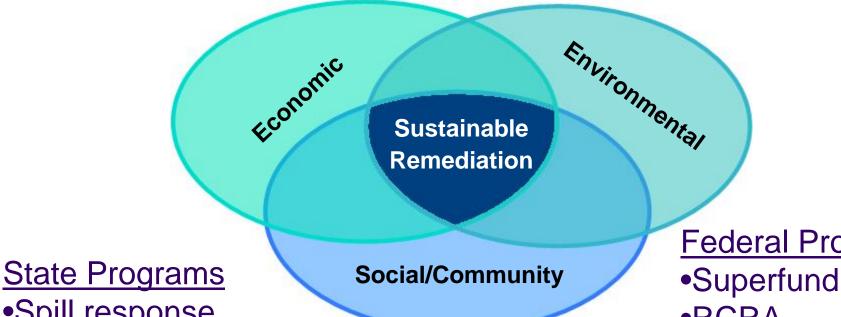
WISC Guiding Principle

"Sustainability should be considered in remedy selection and implementation, but must not compromise environmental protection."

WISC Goals

- Develop guidance document
 - Develop meaningful sustainability performance metrics.
 - Easy to use and implement and broadly applied to state and federal remedial activities.
 - Provide a pathway for greener optimization of existing systems.

Current Status

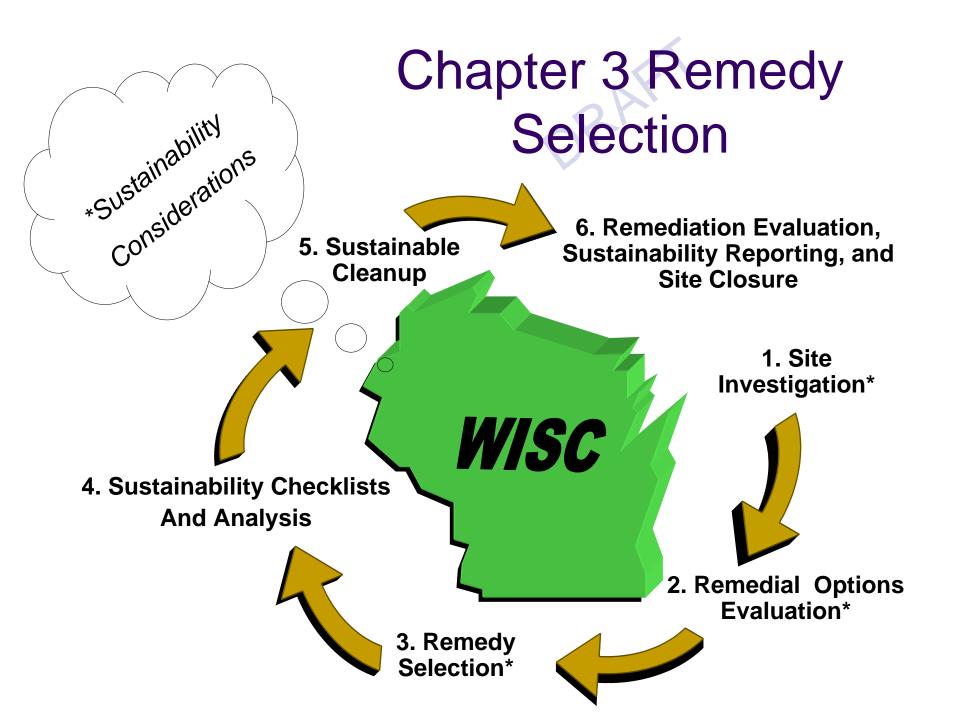

WDNR Selected AECOM based on qualifications from 24 environmental and engineering firms

- Project was funded in Wisconsin's FY 2009 budget
- WISC DNR PM guidance document being drafted
- Recommendations for sustainable options for selected state funded remediation sites

WISC Guidance Chapters

- 1. History and goals of WISC
- 2. Sustainable remediation overview
- 3. Remedy selection
- 4. Baseline creation
- 5. Process optimization
- 6. Alternative energy
- 7. Sustainability matrix

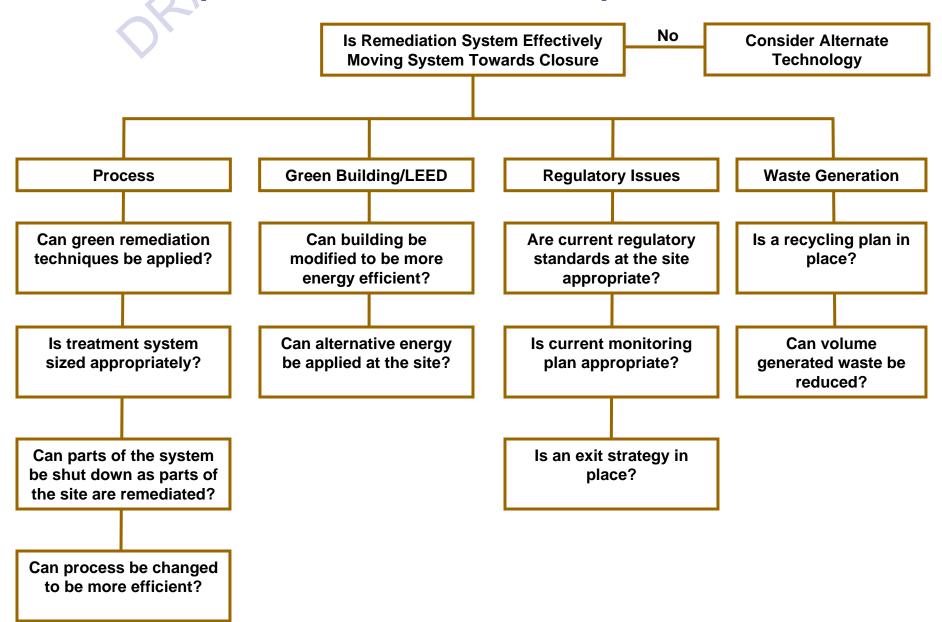
Chapter 1 History and Goals


- Spill response
- State-funded
- Responsible/Voluntary Party
- Land recycling
- Landfill cleanups
- Abandoned containers

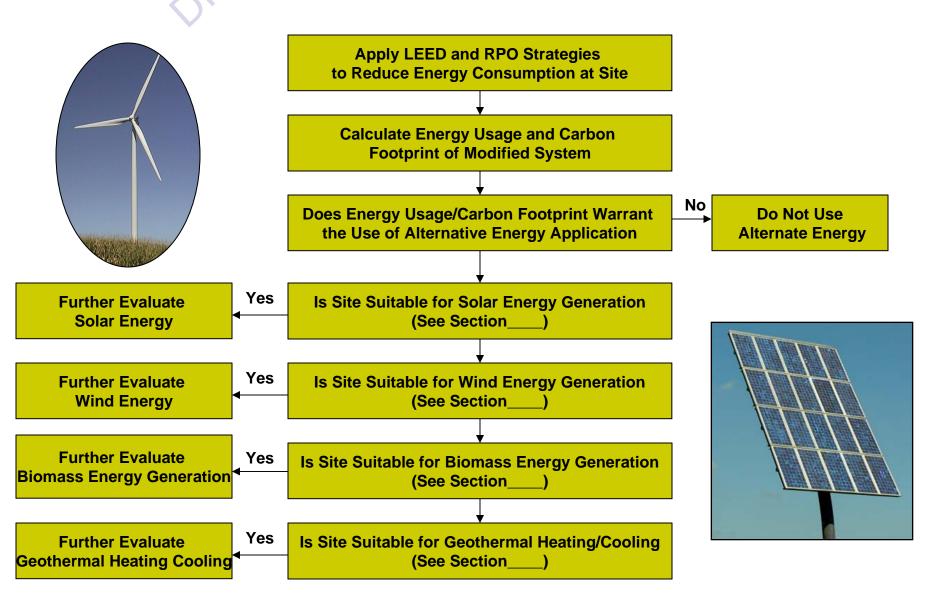
- Federal Programs
- •RCRA
- •LUST
- Federal facilities
- Brownfields
- Emergency removals

SUSTAINABLE REMEDIATION PROCESS

Chapter 2 Sustainable Remediation Overview


Chapter 4 Baseline Creation

Prepare a baseline for new or existing sites:


- Sustainability metrics
- Available tools
- Carbon footprint/greenhouse gas components
- Energy usage
- Life cycle costing
- Water usage and waste generation

Chapter 5 Process Optimization

Chapter 6 Alternative Energy

Six Selected State Lead Sites

Site	Site Status	Remedial Process	Contaminants
N.W. Mauthe	Superfund	Pump and Treat	Chromium, Chlorinated VOCs
Wisconsin Chrome	State Lead	Pump and Treat/Injection	Chromium and Chlorinated VOCs
Minocqua Cleaners	State Lead	Pump and Treat/Injection	Chlorinated VOCs
Refuse Hideaway	Superfund	Leachate Collection System, Methane Collection System	Methane, Leachate
Delafield Landfill	State Lead	Leachate Collection System, Methane Collection System	Methane, Leachate
Pentawood	Superfund	LNAPL Recovery, Bioventing, Pump and Treat	LNAPL, Pentachlorophenol, Fuel Oil

NW Mauthe (Appleton)

hapte	[
1.0	INTRODUCTION
2.0	SITE DESCRIPTION
3.0	CURRENT CONDITIONS
4.0	BASELINE EVALUATION. 4.1 CARBON FOOTPRINT
5.0	LIMITED REMEDIAL PROCESS OPTIMIZATION STUDY
6.0	ALTERNATIVE ENERGY ANALYSIS
7.0	POTENTIAL SUSTAINABLE ACTIVITIES
8.0	SUSTAINABILITY MATRIX

N.W. Mauthe Draft Site Specific Sustainable Remediation System Evaluation

Prepared for: Wisconsin Department of Natural Resources Busconsin Department of Natural Resources 101 South Webster Street Madison, WI 53703

Prepared by: AECOM 200 Indiana Avenue Stevens Point, WI 54481

September 2009

NW Mauthe Carbon Footprint calculation

Carbon Footprint Calculations

Baseline Conditions

Mauthe 725 South Outagamie Street Appleton, WI 54914-5072

Scope 1															
								Gro							
				Emission Factors			Mass			1	25	296		Total	
Gaseous Fuels Burned		Usage	Usage												
On-Site	Year	(therms/yr)	(TJWyr)	kg CO ₂ /TJ	kg CH ₄ /TJ	kg N ₂ O/TJ	kg CO ₂	kg CH ₄	kg N₂O	kg CO ₂ e/kg CO ₂	kg CO ₂ e/kg CH ₆	kg CO ₂ e/kg N ₂ O	kg CO₂e	lb CO₂e	ton CO ₂ e
Natural Gas	2008	1,714	0.18	64,200	10	0.6	11,606.94	1.81	0.11	11,606.94	45.20	32.11	11,684.24	25,763.76	12.88
_		See Note 1		See Note 2	See Note 2	See Note 2					See Note 3	See Note 3			

Scope 2															
								Gre							
					Emission Factor	8		Mass		1	25	296		Total	
Purchased Electricity	Year	Usage (kWh)	Usage (GWh)	lb CO₂/GWh	Ib CH ₄ /GWh	Ib N ₂ O/GWh	Ib CO ₂	ь сн ₄	Ib N ₂ O	lb CO ₂ e/lb CO ₂	lb CO ₂ e/lb CH ₄	Ib CO ₂ e/Ib N ₂ O	kg CO:e	lb CO₂e	ton COye
	2008	13,488	0.013488	1.66	19.24	27.59	0.02	0.26	0.37	0.02	6.49	110.15	52.92	116.66	0.06
		See Note 1		See Note 4	See Note 4	See Note 4					See Note 3	See Note 3			

Scope 3															
										Get					
				Emission Factors			Mass		1	1 25		Total			
Sampling/O8M		Usage	Usage												
Vehicle Usage	Year	(miles/yr)	(gal/yr)	kg CO₂/gallon	kg CH _d /gallon	kg N₂O/gallon	kg CO ₂	kg CH ₄	kg N₂O	kg CO ₂ e/kg CO ₂	kg CO2e/kg CH ₄	kg CO2e/kg N ₂ O	kg CO₂e	lb CO₂e	ton CO₂e
Unleaded Gasoline	2008	3,000	165.67	8.81	0.0036	0.0004	1,468.33	0.61	0.07	1468.33	15.18	19.54	1,503.05	3,314.22	1.66
_				See Note 5	See Note 5	See Note 5					See Note 3	See Note 3			

Assumptions: Unleaded gasoline used for consultent transport to conduct O&M activities

60 site visits/year 50 miles/visit (roundtrip) 18 miles/gallon (for field vehicle)

Totals										
kg CO ₇ e	Ib CO ₂ e	ton CO ₂ e								
13,240.21	29,194.64	14.60								

Sustainability Matrix

Sustainability Matrix												
ROMONIA E E E E E	Bas	eline ³	THE RESERVE OF THE PERSON NAMED IN	tion 1	Opt	ion 2	Option 3					
Sustainability Metrics ^{1,2}	Annual	Life Cycle	Annual	Life Cycle	Annual	Life Cycle	Annual	Life Cycle				
Stewardship System Optimization (Qualitative) Restoration Timeframe (yrs)												
Carbon Footprint/Air Emissions Tons CO2e Tons CO2 Sequestered Dust/Particulates												
Energy Usage Electricity (kWh) Natural Gas												
Cost Current Cost Cost of Modification												
Water Water Usage/Resource depletion (Gallons) Water Recycled/Reused (Gallons)												
Land & Ecosystems Total Area disturbed or requires institutional controls (acres) Area returned to unrestricted beneficial use or												
habitat enhancement (acres) Community Benefits (qualitative)												
Materials & Waste Generation Recycled material (tons) or qualitative Waste materials generated (tons) Landfill capacity used (Yds)												

Path Forward

- ✓ Implement sustainable remediation at select state lead sites and monitor effectiveness.
- ✓ Provide training on sustainable remediation WISC guidance across R&R program.
- Get feedback from internal and external stakeholders and revise as appropriate.
- ✓ Establish formal recognition program which is key for Responsible Parties/Voluntary Parties.

Path Forward (cont.)

Suggestions being evaluated:

- Regulatory innovation to encourage implementing sustainable remediation
- ✓ Pilot Green Tier/EMS programs within DNR
- ✓ Explore a "LEED"-like system for WISC cleanups
- ✓ Research other types of incentives
- ✓ Evaluate need for rule changes

Brief other state agencies on the initiative – Departments of Agriculture, Trade and Consumer Protection & Commerce; Governor's Greenhouse Gas Task Force

WDNR WISC team members

Mark Giesfeldt, Director, R&R Program, WDNR Phone: (608) 267-7562 email: mark.giesfeldt@wisconsin.gov

Tim Panzer, Section Chief, Fiscal & Information Technology Phone: (608) 266-2699 email: timothy.panzer@wisconsin.gov

Staff: Jennifer Borski, Melissa Enoch, Gina Keenan, Dan Kolberg, Larry Lester, Bruce Urben, Annette Weissbach, Jill Zalesny, Chris Zenchenko

(retired) Bob Strous, Section Chief, Fiscal & Information Technology (retired) Marie Stewart, State Funded Response Contracts Manager