

Weston Solutions, Inc. Suite 500 750 East Bunker Court Vernon Hills, IL 60061-1865 847-918-4000 • Fax 847-918-4055 www.westonsolutions.com

1000000

2 March 2005

Ms. Jena Sleboda (SRF-5J) Work Assignment Manager U.S. Environmental Protection Agency 77 West Jackson Boulevard P.O. Box 30630 Chicago, Illinois 60604

U.S. EPA Contract No.: 68-W7-0026 Work Assignment No.: 236-TATA-05FV Document Control No.: RFW236-2A-ASQP

Subject: Final Ecological Risk Assessment Manistique Harbor and River Site Manistique, Michigan

Dear Ms. Sleboda:

Weston Solutions, Inc. (WESTON®) is pleased to submit to the U.S. EPA, three copies of the Final Ecological Risk Assessment, Revision 1 for the Manistique Harbor and River AOC in Manistique, Michigan.

Should you have any questions or require additional information, please feel free to contact us.

Very truly yours,

WESTON SOLUTIONS, INC.

Steven R. Booko Steven R. Bosko Site Manager

ann 11. Benton

James M. Burton, P.E. Program Manager

SRB:JMB/tg Enclosure cc: P. Vogtman, U.S. EPA (letter only)

n employee When Company 4880-LTR. WPD

RFW236-2A-ASQP

WESTON SOLUTIONS, INC.

1

MANISTIQUE HARBOR AND RIVER SITE MANISTIQUE, MICHIGAN

ECOLOGICAL RISK ASSESSMENT

REVISION 1 - 2 March 2005

WORK ASSIGNMENT NO. 236-TATA-O5FV

÷ .,

MANISTIQUE HARBOR AND RIVER SITE MANISTIQUE, MICHIGAN

ECOLOGICAL RISK ASSESSMENT

REVISION 1 – 2 March 2005

WORK ASSIGNMENT NO. 236-TATA-O5FV

Prepared for

U.S. EPA Contract No. 68-W7-0026 U.S. Environmental Protection Agency 77 West Jackson Boulevard Chicago, Illinois 60604

Revision 1 – 2 March 2005 – Document Control Number RFW236-2A-ASQP

Prepared By:

N.

Steven R. Bosko Site Manager

Date: 3/2/05

Approved By:

Emy M. (Si

James M. Burton, P.E. Program Manager

Date: 3/2/05

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA in accordance with U.S. EPA Region V Response Action Contract (RAC) – U.S. EPA Contract No. 68-W7-0026 and contains confidential business information. It shall not be released or disclosed in whole or is part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: TOC Revision: 1 Date: 2 March 2005 Page: 1 of 5

TABLE OF CONTENTS

Section .		<u>Title</u>	Page	
E	XEC	UTIVE SUMMARY	IS-1	
1	IN	TRODUCTION	1-1	
	1.1	PURPOSE	1-1	
	1.2	BACKGROUND	1-1	
	1.3	PRE-DREDGING ECOLOGICAL RISK ASSESSMENT	1-2	
	1.4	OBJECTIVES	1-2	
	1.5	APPROACH	1-3	
	1.6	REPORT ORGANIZATION	1-4	
2	PR	OBLEM FORMULATION	2-1	
	2.1	ENVIRONMENTAL SETTING	2-1	
		2.1.1 Physical	2-1	
		2.1.2 Biological	2-2	
	2.2	IDENTIFICATION OF EXPOSURE PATHWAYS	2-3	
	2.3	CONCEPTUAL EXPOSURE MODEL	2-4 ·	
	2.4	ASSESSMENT AND MEASUREMENT ENDPOINTS	2-4	
		2.4.1 Assessment Endpoints	2-5	
		2.4.2 Measurement Endpoints	2-6	
	2.5	IDENTIFICATION OF TARGET RECEPTORS	2-6	
		2.5.1 Benthic Organisms	2-7	
		2.5.2 Feral Fish Populations	2-7	
		2.5.3 Bald Eagle	2-8	
		2.5.4 Mink	2-8	
3	SIT	TE INVESTIGATION	3-1	
	3.1	SEDIMENT SAMPLING	3-2	
	3.2	SURFACE WATER SAMPLING	3-3	
	3.3	FISH SAMPLING	3-4	
		3.3.1 Resident Fish	3-4	
		3.3.2 Caged Fish	3-5	
		3.3.3 Semi-Permeable Membrane Device	3-6	

E\WO\RAC\23634880-TOC.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

•

]

Manistique Harbor and River Site Ecological Assessment Report Section: TOC Revision: 1 Date: 2 March 2005 Page: 2 of 5

<u>Section</u>		<u>Title</u> <u>P</u>	age
4	CHA	RACTERIZATION OF EXPOSURE	4-1
	4.1 E 4. 4. 4.2 E 4. 4.	STIMATION OF ENVIRONMENTAL EXPOSURE .1.1 Sediment .1.2 Surface Water .1.3 Tissue STIMATION OF RECEPTOR UPTAKE .2.1 Bale Eagle .2.2 Mink	4-1 4-2 4-2 4-3 4-4 4-6 4-7
5	CHAI	RACTERIZATION OF EFFECTS	5-1
	5.1 D 5. 5. 5.2 D	DERIVATION OF TRVs FOR BENTHIC ORGANISMS AND FISH.1.1 Sediment TRVs.1.2 Fish Tissue TRVsDERIVATION OF TRVs FOR BIRDS AND MAMMALS	5-1 5-2 5-6 5-7
6	RISK	CHARACTERIZATION	6-1
	6.1 H 6.2 S 6. 6. 6. 6. 6. 8. 0.3 U	IAZARD QUOTIENT METHOD UMMARY OF RESULTS .2.1 Benthic Organisms .2.2 Fish .2.3 Bald Eagle .2.4 Mink NCERTAINTY	6-1 6-2 6-3 6-3 6-3 6-3 6-4
	6. 6. 6.4 R	 3.1 Uncertainties Associated With Data Evaluation and Reduction	6-4 6-5 6-6 6-9
7	REFE	RENCES	7-1

I:\WO\RAC\236\34880-TOC.WPD

J

<u>79</u>

୍ଷ

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: TOC Revision: 1 Date: 2 March 2005 Page: 3 of 5

LIST OF TABLES

Table	Title	Page
2-1	Listed Species and Natural Communities Occurring in Schoolcraft County.	2-10
2-2	Listed Species and Natural Communities Occurring in Schoolcraft County a Lake Michigan	long 2-12
2-3	Ecological Conceptual Site Model	2-13
2-4	Assessment and Measurement Endpoints	2-14
4-1	Data Summary	. 4-8
4-2	Parameters Used in Bald Eagle Intake Calculations	4-10
4-3	Parameters Used in Mink Intake Calculations	4-11
5-1	Sediment Screening Benchmarks	. 5-9
5-2	TRVs for PCBs for Target Fish Species	5-10
5-3	TRVs for Bald Eagle and Mink	5-11
6-1	Hazard Quotients for Sediment	6-10
6-2	Hazard Quotients for Whole Fish	6-11
6-3	Bald Eagle Risk Calculations	6-12
6-4	Mink Risk Calculations	6-13

E\WO\RAC\236\34880-TOC.WPD

This document was prepared by Westen Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

]

]

e Q

Manistique Harbor and River Site Ecological Assessment Report Section: TOC Revision: 1 Date: 2 March 2005 Page: 4 of 5

LIST OF FIGURES

<u>rigure</u> <u>Title</u>	Title		
1-1 Area Location Map			
1-2 Site Location Map			
3-1 River, Inner Harbor, and Outer Harbor Location M	ſap		
3-2 Sediment Sampling Location Map			
3-3 Surface Water Sampling Location Map			
3-4 Caged Fish / SPMD Sampling Location Map			

US EPA ARCHIVE DOCUMENT

~)

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: TOC Revision: 1 Date: 2 March 2005 Page: 5 of 5

LIST OF APPENDIX

- Appendix A Analytical Data Tables
- Appendix B ERED Summary

7

]

]

]

]

J

]

J

]

1

Appendix C Toxicological Profile for PCBs

HWORACV23634880-TOC.WPD

Manistique Harbor and River Site Ecological Risk Assessment Report Section: Executive Summary Revision: 1 Date: 2 March 2004 Page: ES-1 of 6

EXECUTIVE SUMMARY

INTRODUCTION

A baseline ecological risk assessment (ERA) was prepared to evaluate the post-dredging conditions in the Manistique Harbor and River Area of Concern (AOC). The Manistique Harbor and River AOC has been impacted by point and non-point sources of pollution. The harbor and river sediments contained elevated levels of polychlorinated biphenyls (PCBs) primarily from industrial and paper milling operations. Dredging commenced in 1996 and was completed in 2000. Information and data collected during the post-dredging site investigation in September 2004 serves as the basis for this task. The site investigation data, combined with the results of the ERA and the Human Health Risk Assessment, will provide the information needed for development of the overall long-term management strategy for the Manistique Harbor and River.

PROBLEM FORMULATION

The problem formation establishes the goals, breadth, and focus of the baseline ERA. It also establishes assessment endpoints or specific ecological values to be protected. The environmental setting is characterized, the complete exposure pathways are determined, and the assessment and measurement endpoints are selected.

Aquatic habitat in the Manistique Harbor and River site supports a variety of seasonal sport fish including northern pike, yellow perch, channel catfish, smallmouth bass, rock bass, walleye, chinook salmon, coho salmon, pink salmon, brown trout and steelhead. Land habitat in the area is primarily sandy beach, low shrubs, and developed sites, which can be used by shorebirds and gulls. Bald eagles forage along the shoreline in the vicinity of the AOC. Waterfowl habitat is available primarily on the eastern shore of the river near U.S. 2, where the dead end channel creates a marsh. There is little

Manistique Harbor and River Site Ecological Risk Assessment Report Section: Executive Summery Revision: 1 Date: 2 March 2004 Page: ES-2 of 6

available wildlife habitat elsewhere in the AOC, since the entire site lies within the City of Manistique and the shoreline and nearby areas are relatively developed (Triad Engineering and TerraFirma Environmental, 2002).

Complete exposure pathways include birds and mammals exposed through dietary ingestion of PCBs in sediment that accumulate in the food foraged by the bird or mammal, and any incidental ingestion or direct contact with PCB-contaminated media that occurs through the diet or through foraging or nesting activities. Benthic invertebraes can be significantly exposed through direct contact and dietary ingestion of PCBs in sediment, sediment pore water, and surface water. Fish can be exposed through dietary ingestion of PCB in sediment that accumulate in the food foraged by the fish, and any incidental ingestion or direct contact that occurs through the diet or through foraging. Exposure to PCBs dissolved in the water column can also occur through gills, dermis, and food ingestion.

Assessment and measurement endpoints primarily focus on the potential "link" between wildlife and food sources from within the Manistique Harbor and River and secondarily on direct contact exposures for organisms living in or on the Manistique Harbor and River. The assessment objective and the measurement endpoint (as measures of exposure) being used are summarized below:

- Protection of benthic organisms Comparison of sediment concentrations with toxicity-based benchmark values.
- Protection of feral fish population Comparison of tissue concentrations with residue-effect concentrations.
- Protection of populations of piscivorus birds Food-chain modeling and comparison to TRVs for the bald eagle.
- Protection of populations of piscivorus mammals Food-chain modeling and comparison with TRVs for the mink.

The target receptors were selected based on the concept that it is neither feasible nor cost-effective to measure constituent effects on all species inhabiting the aquatic and terrestrial habitat associated

HWOWRACV23634880ES.WPD

This document was propared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

with the Manistique Harbor and River site. In addition, these target receptors (i.e., benthic organisms, feral fish, benthic organism, mink and bald eagle) were evaluated in the pre-dredging qualitative ERA (Terra Inc., 1994).

SITE INVESTIGATION

The September 2004 sampling activities focused on the collection of physical, chemical, and biological samples. The constituent of potential concern at this site is PCBs. The environmental media sampled for PCB analysis included sediment, surface water, resident fish, caged fish, and semi-permeable membrane devices (SPMDs). The ERA focuses on those media that ecological receptors can be exposed to - sediment and wholebody fish. Surface water is not evaluated in the ERA because PCBs were not detected in this medium.

CHARACTERIZATION OF EXPOSURE

For target receptors or communities that are exposed directly to the media in which they live (such as benthic invertebrate and fish), uptake is expressed in terms of measured concentrations of constituents in the media in which they reside (for example the concentration of constituents in sediment are used to directly estimate the intake received by benthic organisms) or residual contaminant concentrations in tissue. For target receptors that are exposed through the food chain, daily exposure intake models were developed which express exposure in terms of constituent intake per kilogram of body weight per day (mg/kg-day). The ingestion of fish and incidental ingestion of sediment represent the primary routes of exposure to the bald eagle and the mink. In this ERA, trophic level 3 and trophic level 4 fish tissue has been assumed to compose 100 percent of a receptor's diet, and the receptors are assumed to obtain 100 percent of their diet from the harbor and river.

I:\WO\\RAC\236\34880ES.WPD

RFW236-2A-ASQP

Manistique Harbor and River Site Ecological Risk Assessment Report Section: Executive Summary Revision: 1 Date: 2 March 2004 Page: ES-4 of 6

CHARACTERIZATION OF EFFECTS

Ecological toxicity reference values (TRVs) for PCBs and for the individual Aroclors were obtained from the literature. TRVs based on media concentrations are used for benthic organisms and fish and TRVs based on dose are used for bird and mammal receptors. TRVs were obtained from the sources listed below.

- Oak Ridge National Laboratory (ORNL) Risk Assessment Information System (RAIS) online database (http://risk.lsd.ornl.gov/rap_hp.shtml).
- U.S. EPA Region 9 Biological Technical Assessment Group (BTAG) (http://www.dtsc.ca.gov/ScienceTechnology/eco.html#BTAG).
- Final Baseline Human Health and Ecological Risk Assessment. Lower Fox River and Green Bay, Wisconsin. Remedial Investigation and Feasibility Study (The Retec Group, 2002).
- U.S. Army Corps of Engineers/U.S. Environmental Protection Agency Environmental Residue-Effects Database (ERED). (http://www.wes.army.mil/el/ered)

Multiple benchmarks are used to evaluate effects on benthic organisms. The use of multiple benchmarks provides an indication of the likelihood and nature of effects. For example, exceedance of only one conservatively estimated benchmark may provide weak evidence of real effects, whereas exceedance of multiple benchmarks of varying conservatism may provide strong evidence of real effects (Jones et al., 1996).

Exposure of fish to potentially deleterious concentrations of PCBs is evaluated based on tissue residues. The U.S. Army Corps of Engineers/U.S. Environmental Protection Agency (2004) Environmental Residue-Effects Database (ERED) was consulted for toxicity data for fish. The ERED contains information on the broad range of biological effects caused by the presence of a particular contaminant in the tissue of an organism. Both no observed effect dose (NOED) and lowest observed effect dose (LOED) concentrations were selected as no effect and the effect TRVs for fish exposure based on the similarity of the test species and the target species for this site.

Manistique Harbor and River Site Ecological Risk Assessment Report Section: Executive Summary Revision: 1 Date: 2 March 2004 Page: ES-5 of 6

There are no U.S. EPA-established, acceptable daily doses for ecological receptors; therefore, dosebased TRVs were developed from the available scientific literature. Both no effect TRVs, consistent with a chronic no-effect level, and effect TRVs, consistent with a low effect level, are used to evaluate effects to the bald eagle and mink. Allometric modeling from Sample and Arenal (1999) was used for interspecies extrapolations when the test species is different from the wildlife or target receptor species.

RISK CHARACTERIZATION

The hazard quotient (HQ) method is used as an indicator of the risks posed to surrogate ecological receptors from exposure to site-related contaminants (U.S. EPA, 1996c). The hazard quotient compares exposure values to TRVs, and can be expressed as the ratio of a potential exposure level to the TRV.

To assess the potential for adverse effects on benthic organisms from exposure to potentially toxic sediment, the range of detected sediment concentrations in the Manistique Harbor and River were compared to sediment screening benchmarks. The average concentration of PCBs did not exceed the highest benchmark, but average concentration did exceed the threshold concentrations. While these results show a potential for adverse impacts to benthic organisms from sediment exposure, these risks may be localized at particular "hotspots", rather than distributed throughout the harbor and river. Note that no PCBs were detected in the Inner Harbor, and the highest detected concentration was measured in the Outer Harbor.

Exposure of fish to potentially deleterious concentrations of PCBs is evaluated based a comparison of tissue residues to residue effects concentrations. The mean and 95% UCL concentration of total PCBs in the whole body fish tissue for the target species collected from the Manistique Harbor and River were compared to tissue NOEDs and LOEDs for similar fish. For the bottomdweller (i.e., omnivorous) fish species, the HQs range from 0.017 to 6.9, indicating potential risk to these species.

```
I:\WO\\RAC\236\34880ES.WPD
```

Manistique Harbor and River Site Ecological Risk Assessment Report Section: Executive Summary Revision: 1 Date: 2 March 2004 Page: ES-6 of 6

The HQ exceeded one for the sucker species but not for the channel catfish. The HQs based on the LOED and the 95% UCL tissue concentration did not exceed one for any of the bottomfeeder species. For the predator (i.e., carnivorous) fish species, the HQs range from 0.07 to 0.6. For the predatory fish species, the HQs were less than 1.0 and therefore indicate no risk.

The bald eagle may be exposed to PCBs through ingestion of fish and incidental ingestion of sediment. The HQ based on the no effect TRV was 0.51 for total PCBs and the HQ based on the effect TRV was 0.036 for total PCBs. All HQs for the individual Aroclors were less than 1. These HQs were less than one and therefore indicate no risk to the eagle. For the mink, the HQ based on the no effect TRV was 1.2 for total PCBs and the HQ based on the effect TRV was 0.6 for total PCBs. For Aroclor 1248, the HQ based on the no effect TRV was 1 and the HQ based on the effect TRV was 0.1. The HQs based on the no effect TRV exceeded one for the total PCBs indicating potential risk. However, the HQs based on the effect TRV for total PCBs and for the individual Aroclors were less than 1, suggesting that this potential risk is limited.

Overall, the HQ analysis indicates that exposure to PCBs by piscivorous birds and mammals poses little to no risk to the eagle and the mink. The HQ analysis indicates potentially unacceptable levels of risk to benthic organisms and bottomdwelling species. However, the substrate provided by the harbor and river is not expected to support a thriving benthic community. The highest tissue residue concentrations were measured in bottomdwelling species, which have high lipid contents. The higher the lipid content, the higher the resistance to the toxicant because a higher proportion of the hydrophobic compound is associated with the lipid and is not available to cause toxicity (Meador, 2002). In contrast, lipid levels positively correlate with bioaccumulation and the half-life of absorbed contaminants in receptor species (Geyer et al., 1997). Thus, while receptors with high lipid content will both absorb and retain chemicals to a greater extent, there is potential for increased risk to predators consuming prey with high lipid contents. Since there is a potential for adverse effects on benthic organisms and fish, continued monitoring of sediment and fish tissue is recommended.

Manistique Harbor and River Site Ecological Assessment Report Section: 1 Revision: 1 Date: 2 March 2005 Page: 1-1 of 5

SECTION 1 INTRODUCTION

1.1 PURPOSE

The purpose of this document is to present an ecological risk assessment for the post-dredging conditions in the Manistique Harbor and River Area of Concern (AOC). This document was prepared by Weston Solutions, Inc. (WESTON[®]) under U.S. EPA Region V Work Assignment No. 236-TATA-05FV.

1.2 BACKGROUND

The Manistique Harbor and River Area of Concern (AOC) is located on the Manistique River near the City of Manistique, Schoolcraft County, Michigan (Figures 1-1 and 1-2). The Manistique Harbor and River AOC has been impacted by point and non-point sources of pollution. The harbor and river sediments contained elevated levels of polychlorinated biphenyls (PCBs) primarily from industrial and paper milling operations. Dredging was initiated in 1996 in an area adjacent to the former paper mill. The former paper mill was determined to be a source area for the PCBs. From 1997 through 2000, extensive dredging was performed in the South Bay of Manistique Harbor and in the Manistique River. Dredging was focused on areas containing PCBs above the site action level of 10 parts per million (ppm), with priority given to areas with higher PCB contamination levels. By the end of the 2000 field season, the average levels of PCBs in the sediment were below the U.S. EPA action level of 10 ppm, and the dredging of the site was completed (Lockheed Martin, 2003).

Over a period of years, some fraction of the residual mass of PCBs in the Manistique Harbor and River may migrate into the water column or be buried or mixed into the river and harbor sediments via dynamic sediment processes or bioturbation. With time the harmful effects of these residual

I:\WO\RAC\236\34880-S1.WPD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 1 Revision: 1 Date: 2 March 2005 Page: 1-2 of 5

sediments (uptake into the water column and increased bioavailability of PCBs) will be reduced. After dredging, new, clean sediments are expected to accumulate more rapidly than current sedimentation rates because of the increased depth of the harbor and channel. This resedimentation (at a rate of approximately 1.5 inches per year) is also expected to reduce the impact of the remaining PCB residuals (Interagency Review Team, Assessment of Remediation Technologies, Manistique River and Harbor Area of Concern, Final Report, U.S. EPA 1995a).

1.3 PRE-DREDGING ECOLOGICAL RISK ASSESSMENT

A qualitative ERA was prepared prior to dredging of the Manistique Harbor and River (Terra Inc., 1994). The qualitative ERA evaluated potential impacts of PCBs in sediment on benthic organisms, feral fish, bald eagles, and mink. Average PCB concentrations in sediment fell in "probable effect range" or the "marginally polluted range" for generic sediment screening values for the protection of benthic organisms. Measured water column PCB data was below lethal and subchronic non-lethal endpoints for fish. The report stated that it was difficult to predict with any confidence the adverse impacts that contaminated sediments would have on the local bald eagle population. Based on the bioaccumulation model used in this assessment to estimate fish tissue concentrations, the assessment concluded that risk to the mink can be reduced by lowering the surface sediment concentrations. The ERA determined that though dredging without capping would result in lowered PCB concentrations, residual concentrations would remain that have the potential for adverse effects to ecological receptor organisms under both baseline conditions and after dredging to a 10 ppm level.

1.4 OBJECTIVES

The Manistique River and Harbor Qualitative Ecological Risk Assessment (Terra Inc., 1994) identified concentrations of PCBs in sediment at levels that may cause an adverse impact to

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 1 Revision: 1 Date: 2 March 2005 Page: 1-3 of 5

ecological receptors at the Manistique AOC. This document presents an ERA for the post-dredging conditions. The primary objectives of this ERA are to:

- Evaluate PCB levels in sediment, surface water, and fish tissue after completion of dredging.
- Assess the potential for adverse impact to ecological receptors, focusing on exposures to avian and terrestrial piscivores.
- Develop conclusions and recommendations for additional investigation or no further action, as appropriate, based on the findings from the ERA.

This ERA will also provide information needed for development of the overall long-term management strategy for the Manistique AOC.

1.5 <u>APPROACH</u>

The methodology used to assess the potential ecological risks at the Manistique AOC draws upon guidance set forth in the following documents:

- Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments (U.S. EPA, 1997).
- Guidelines for Ecological Risk Assessment (U.S. EPA, 1998).
- Framework for Ecological Risk Assessment (U.S. EPA, 1992).

The U.S. EPA's *Framework* document (1992) defines an ERA as a process that evaluates the likelihood that adverse ecological effects are occurring or may occur as a result of exposure to one or more stressors. This document provides the basic process and principles to be used in an ERA, which include problem formulation, analysis (including characterization of exposure and

Manistique Harbor and River Site Ecological Assessment Report Section: 1 Revision: 1 Date: 2 March 2005 Page: 1-4 of 5

characterization of effects), and risk characterization. The U.S. EPA (1997) has developed an eightstep ERA process for Superfund that is based on this ecological risk assessment framework. The steps are:

Screening Level Problem Formulation and Ecological Effects Evaluation
Screening Level Preliminary Exposure Estimate and Risk Calculation
Baseline Risk Assessment Problem Formulation
Study Design and Data Quality Objectives
Field Verification of Sampling Design
Site Investigation and Analysis of Exposure and Effects
Risk Characterization
Risk Management

The first two steps in the assessment process are streamlined versions of the complete framework process, and are intended to allow a rapid determination that a site poses nor or negligible risks, or to identify which contaminants and which exposure pathways require further evaluation. Steps 3 through 7 are a more detailed version of the ecological risk assessment framework, and these steps are the followed in this ERA for the Manistique Harbor and River site.

1.6 **REPORT ORGANIZATION**

The ERA report is organized as follows:

- Executive Summary Section 1 – Introduction Section 2 – Problem Formulation Section 3 – Site Investigation Section 4 – Characterization of Exposure Section 5 – Characterization of Effects
- Section 6 Risk Characterization and Uncertainty
- Section 7 References

E\WO\RAC\23634880-S1.WPD

RFW236-2A-ASQP

Manistique Harbor and River Site Ecological Assessment Report Section: 1 Revision: 1 Date: 2 March 2005 Page: 1-5 of 5

Appendices include the following:

Appendix A – Analytical Data Tables Appendix B - ERED Summary Appendix C - Toxicological Profile for PCBs

The tables and figures cited in the text are provided at the end of the section in which they are first referenced.

I:\WO\RAC\236\34880-S1.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

FIGURES

]

]

1

7

]

]

: .

) 1

j

Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-1 of 15

SECTION 2 PROBLEM FORMULATION

In Step 3 of the ERA process, the problem formation establishes the goals, breadth, and focus of the baseline ERA. The problem formulation also establishes assessment endpoints or specific ecological values to be protected. The questions that need to be addressed are defined based on potentially complete exposure pathways and ecological effects. A conceptual model of the site is developed that shows the complete exposure pathways evaluated in the ERA and the relationship of the measurement endpoints and the assessment endpoints. The problem formulation for this site involves identifying the exposure pathways by which PCBs have or may migrate through the Manistique Harbor and River and ultimately to link these routes of migration to receptors and habitat in, on, and around the site.

2.1 ENVIRONMENTAL SETTING

The environmental setting is characterized to identify specific areas on or adjacent to the Manistique Harbor and River that contain ecological receptors and habitat. The characterization also identifies whether the site may be environmentally important, contain sensitive species (i.e., threatened or endangered) or contain habitat that sensitive species may utilize. The following description of the Manistique River and Harbor AOC was obtained from the 2002 Remedial Action Plan Update (Triad Engineering and TerraFirma Environmental, 2002).

2.1.1 Physical

The AOC lies primarily within the City of Manistique, beginning at the dam and extending through the Manistique Harbor to Lake Michigan. The east side of the river and harbor is primarily utilized for residential, business and recreational uses. The region of Schoolcraft County along the Lake

I:\WO\RAC\236\34880-S2.WPD

DOCUMENT EPA ARCHIVE 3 Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-2 of 15

Michigan shoreline and including the AOC is fairly level and characterized by low sandy or gravely ridges alternating with swales and swamps. Soils surrounding the AOC are primarily sand undertain by limestone and dolomite.

The Manistique River substrate in the vicinity of the Manistique Papers, Inc. flume upstream of the U.S. 2 highway bridge is comprised primarily of limestone bedrock strewn with large boulders. The substrate below the US 2 highway bridge adjacent to the flume consists of rocks and smaller boulders overlying the limestone bedrock, with sand deposition occurring in the area of slower moving water on the east side of the River. Between the end of the rapids and the US 2 highway bridge the substrate is primarily sand and silt overlying limestone bedrock. The substrate downstream of the channels in the River and Harbor is a combination of sand and silt with some gravel, bedrock, cobble and slab wood. The deposition zones in the river and harbor continue to accumulate silt, primarily from erosion of bank materials in the upper watershed due to forestry practices.

Surveys conducted by MDNR in 1976, 1978 and 1985 documented that the substrate in the Manistique Harbor had been altered due to accumulation of sawdust and wood chips. These materials originated primarily from lumber-making and paper-making (from wood pulp) activities that historically occurred on the lower Manistique River. With the closing of the sawmills, improved wastewater treatment, and the switch from pulpwood to recycled magazines (materials including magazines plus mixed papers) as raw material at the paper mill, the discharge of the woody materials has been eliminated.

2.1.2 Biological

Aquatic habitat in the AOC downstream of the dam supports a variety of seasonal sport fish including northern pike, yellow perch, channel catfish, smallmouth bass, rock bass, walleye, chinook salmon, coho salmon, pink salmon, brown trout and steelhead. The area in the vicinity of the flume where the elevation of the river drops approximately 26 feet and flows over shelves of limestone and

HWO/RAC\23634880-S2.WPD

gravel bars is considered an excellent spawning location for many of the fish species. The remaining length of the river and harbor is basically at the level of Lake Michigan and is not considered important for spawning of fish.

Land habitat in the AOC is primarily sandy beach, low shrubs, and developed properties that can be used by shorebirds and gulls. In addition, bald eagles forage along the shoreline in the vicinity of the AOC. Waterfowl habitat is available primarily on the eastern shore of the river near U.S. 2, where the dead end channel creates a marsh. Waterfowl have also been observed along the river shoreline and around the islands created by the boat channels. There is little available wildlife habitat elsewhere in the AOC, since the entire site lies within the City of Manistique and the shoreline and nearby areas are relatively developed.

Table 2-1 presents the listed species and quality natural communities known to occur in Schoolcraft County. Table 2-2 presents the listed species and quality natural communities in the Schoolcraft County watersheds along Lake Michigan.

2.2 IDENTIFICATION OF EXPOSURE PATHWAYS

Exposure pathways describe the path a constituent takes from its source into the environment and ultimately to a receptor. The purpose of characterizing the exposure is to identify only complete exposure pathways for media and receptors from all possible routes of exposure that may exist at this site. Complete exposure pathways are more likely to contribute to potential risks resulting from that exposure. Exposure pathways considered to be complete exposures for the Manistique Harbor and River site are summarized as follows:

• Benthic Invertebrates—Benthic invertebrates can be significantly exposed through direct contact and dietary ingestion of PCBs in sediment, sediment pore water, and surface water.

I:\WO\RAC\236\34880-S2.WPD

RFW236-2A-ASQP

Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-4 of 15

- Fish ——Fish can be exposed through dietary ingestion of PCB in sediment that accumulate in the food foraged by the fish, and any incidental ingestion or direct contact that occurs through the diet or through foraging. Exposure to PCBs dissolved in the water column can also occur through gills, dermis, and food ingestion.
- Birds/Mammals—Birds and mammals can be exposed through dietary ingestion of PCBs in sediment that accumulate in the food foraged by the bird or mammal, and any incidental ingestion or direct contact to PCBs in environmental media that occurs through the diet or through foraging or nesting activities. Birds and mammals that have the greatest degree of exposure are those that hunt and consume other organisms (especially fish) for food.

2.3 <u>CONCEPTUAL EXPOSURE MODEL</u>

A conceptual site model defines exactly how exposure to constituents might affect an ecosystem (Norton et al., 1992). The general taxonomic groups (i.e., mammals, birds, invertebrates, fish) potentially at risk from exposure at the Manistique River and Harbor and the associated fate and transport mechanisms have been summarized in a conceptual exposure pathway model (Table 2-3).

2.4 ASSESSMENT AND MEASUREMENT ENDPOINTS

The selection of assessment and measurement endpoints and their testable hypotheses is the final component in the problem formulation. Assessment and measurement endpoints primarily focus on the potential "link" between wildlife and food sources from within the Manistique Harbor and River and secondarily on direct contact exposures for organisms living in or on the Manistique Harbor and River. The food sources for species of avian and mammalian wildlife include fish, aquatic plants, invertebrates, algae and/or plankton from the water column. Exposure to wildlife through food-chain or trophic transfer as well as through direct contact exposure was considered in developing assessment and measurement endpoints.

HWORAC\23634880-S2.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-5 of 15

2.4.1 Assessment Endpoints

Assessment endpoints are defined as explicit expressions of the environmental value that is to be protected (U.S. EPA, 1992). Each assessment endpoint represents a specific target receptor (or community) and function of interest to resource or risk managers. Multiple assessment endpoints are chosen to represent different trophic levels within a food web. Evaluation of target receptors from several trophic levels provides a more robust assessment of potential risks and addresses the range of sensitivities ultimately associated with site exposures. Because habitats and receptors at a site are unique, there is no standard list of assessment endpoints that can be used. The criteria (Suter, 1989; 1990; 1993) used to select assessment endpoints are as follows:

- Biological relevance to the ecosystem.
- Susceptibility to exposure and sensitivity to toxicity.
- Unambiguous operational definition (without this criteria, endpoints provide no direction for testing and modeling, and the results of an assessment tend to be ambiguous).
- Capability of being measured.
- Population abundance, community structure, or ecosystem productivity are examples of typically evaluated assessment endpoints.

Given the presence of PCBs in sediment and the potential for ecological exposure to occur from sediment, a set of assessment endpoints were developed for the purposes of achieving the specific goals of the ERA. The assessment endpoints represent potentially significant impacts to the Manistique River and Harbor eccosystem and are based on their ability to integrate modeled, field, or laboratory data with the individual assessment endpoint. Elevated levels of PCBs sediment and surface water are known to be toxic to fish and benthic organisms; thus toxicity to aquatic organisms and benthic invertebrates is an assessment endpoint for PCBs. The primary ecological threat of PCBs in ecosystems is not through direct exposure or acute toxicity. Instead, PCBs bioaccumulate

I:\WO\RAC\236\34880-S2.WPD

RFW236-2A-ASQP

in food chains and PCBs have been implicated as a cause of reduced reproductive success in piscivorous birds and mink (U.S. EPA, 1997). Therefore, reduced reproductive success in high trophic level species exposed through their diet is an important assessment endpoint for PCBs.

2.4.2 Measurement Endpoints

Measurement endpoints are the measurable environmental characteristics that are predictive of the selected assessment endpoint. Measurement endpoints approximate or predict conditions at a site (Maughan, 1993) and link the conditions to the assessment endpoint. Measurement endpoints can include both measures of effect (e.g., toxicity testing) and measures of exposure (e.g., concentrations in sediment). Because toxicity testing is outside the scope of this ERA, the measurement endpoints are not directly measured but are evaluated though calculations which evaluate exposure compared to the effects on the measurement endpoints. The criteria considered in the selection of measurement endpoints for the Manistique Harbor and River site include:

- Readily measured or evaluated.
- Corresponds to or is predictive of an assessment endpoint.
- Appropriate to the scale of the river and harbor, the exposure pathways, and the temporal dynamics.
- Low natural variability.
- **Rapidly responding and sensitive to selected receptors.**

Measurement endpoints (as measures of exposure) and the assessment objective being answered for this ERA are summarized by target receptor in Table 2-4.

2.5 IDENTIFICATION OF TARGET RECEPTORS

Target receptors were selected based on the concept that it is neither feasible nor cost-effective to measure constituent effects on all species inhabiting the aquatic and terrestrial habitat associated with

HWOWRACV23634880-S2.WPD

Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-7 of 15

the Manistique Harbor and River site. Consequently, target receptors have been selected and evaluated as surrogate species with a high level of sensitivity and exposure to constituents at the site. These target receptors are selected to provide the most conservative estimation of exposure for similar species within the same feeding guild. In addition, these target receptors (i.e., benthic organisms, feral fish, benthic organism, bald eagle, and mink) were evaluated in the pre-dredging qualitative ERA (Terra Inc., 1994). Also important to note is that even though target receptors were selected for evaluation in the ERA, these species are selected to represent exposures that other (similar) species with comparable feeding guilds may be receiving, and thus, serve as "surrogate" receptors.

2.5.1 Benthic Organisms

Historical activities, including sawmill operations and routine dredging, have severely altered the substrate available for the colonization of the river and harbor (Terra Inc., 1994). The substrate in the Manistique River and Harbor includes an accumulation of sawdust and wood chips from sawmills. Grain size analysis of the sediments indicate that the sediments are primarily fine sands, with some silty fine sands (Appendix A). While the substrate provided by the river and harbor does not provide habitat needed for a thriving benthic community, PCBs are known to adversely impact benthic organisms. Thus, the benthic organism population was selected as a receptor group in this evaluation.

2.5.2 Feral Fish Populations

The effects of persistent chlorinated hydrocarbons, such as PCBs, on the health of feral fish populations have been the focus of numerous scientific studies, especially in the Great Lakes (Terra, Inc., 1994). In studies with chlorinated hydrocarbons, the embryo/larval stage has been demonstrated to be the most sensitive period in an animal's life cycle (Terra Inc., 1994). Thus, the resident fish population was selected as a receptor group in this evaluation.

I:\WO\RAC\236\34880-S2.WPD

Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-8 of 15

2.5.3 Baid Eagle

The bald eagle (Haliaeetus leucocephalus), our national symbol, is federally designated threatened species (though the bald eagle is proposed for delisting). Bald eagles are generally restricted to coastal areas, lakes, and rivers. Bald eagle are known to occur within Schoolcraft County. Primarily carrion feeders, bald eagles eat dead or dying fish when available but will also catch live fish swimming near the surface or fish in shallow waters. Primary breeding sites include proximity to large bodies of open water and large nest trees with sturdy branches and areas of old growth timber with an open and discontinuous canopy. Bald eagles will migrate out of areas where lakes are completely frozen over winter but will remain as far north as the availability of open water and a reliable food supply allow (U.S. EPA 1993b). The bird's life span in the wild can reach 30 years. The birds travel over great distances, but normally return to nest within 100 miles of where they were originally raised.

While as a group birds tend to be more resistant to the acutely toxic effects of PCBs on mammals, the most sensitive endpoint in birds exposed to PCBs appears to be the egg and the effect on developing embryo (Terra Inc., 1994). The bald eagle is selected as a receptor species because of its status as a threatened species, its position at the top of the food chain, and its piscivorus feeding habits.

2.5.4 Mink

The mink (*Mustela vison*) is the most abundant and widespread carnivorous mammal in North America. Mink are found associated with aquatic habitats of all kinds, including rivers streams, lakes, ditches, swamps, marshes, and backwater areas. Mink prefer irregular shorelines to more open exposed banks and use brushy or wooded cover adjacent to the water where cover for prey is abundant and where downfall and debris provide den sites. Mink are active year round. The home range of a mink encompasses both their foraging areas around waterways and their dens. Mink are generally no more than 200 meters from water. During the mating season, males may range over

H

Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-9 of 15

1000 hectares. Numerous studies have demonstrated that mink are among the most sensitive of the tested mammalian species to the toxic effects of PCBs (U.S. EPA, 1997). The mink is selected as a receptor species because of its PCB sensitivity, its position at the top of the food chain, and its piscivorus feeding habits.

I:\WO\RAC\236\34880-S2.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Table 2-1 Listed Species and Natural Commonities Occurring in Schoolcraft County Manistique Harbor and River Site Manistique, Michigan

Scientific Name	Common Name	Federal Status	State Status	
Accipiter gentilis	Northern Goshawk		SC	
Acipenses folvescens	Lake Stargeon		Т	
Aspletium trichemence-chaonem	Green Spiceswort		Т	
Beloris frigge	Frigge Fritillery		SC	
Butco lincolus	Red-shouldered Hawk		Т	
Calypeo bulboan	Calypeo or Fairy-alipper		Т	
Cases allocatescens	Greenish-white Sedge		Т	
Carex concises	Beauty Sedge		SC	
Canax aligna	Black Sodge		Е	
Creex novel-angline	New England Sedge		Т	
Charadrian anciedas	Piping Plover	LE	E	i
Citaina pitcheri	Pitcher's Thistle	LT	Т	
Clematis occidentalis	Purple Clematic		SC	
Collinsia pervidera	Sual Blue-cycd Mary		Т	
Commissions noveberacensis	Yellow Rail		Т	
Dustination compression	Flat Out Grain		SC	
Degelionie internedia	Wild Out-grass		SC	
Dendroice discolor	Prairie Warbler		E	
Dendroice kirtlandii	Kirthned's Warbler	LE	Е	
Draha cana	Ashy Whitlow-grant		Т	
Dry worthern facest	Dry Woodland, Upper Midwest Type			
Dry-menic northern forest				
Elescharis nitida	Siender Spike-rush		Е	
Exys Vandingii	Blanding's Turtle		SC	
Bucanalus alderi	Land Small		SC	
Falco columburius	Martin		Т	
Gerie inner	Common Loon		Т	
Olyptanys insculpta	Wood Turtle		SC .	
Great blue heren reckery	Great Blue Heron Rockery			
Guppya statkii	Land Snail		SC	
Haliantas leucacephalas	Build Engle	LT,PDL	Т	
Huperzia selago	Fir Clubmons		SC	
intendental weights	Alkaline Shoredones Pond/marsh, Great Lakes Type			
intermittant wolland	Infortile Pond/marsh, Great Lakes Type			
iris lacustris	Dwarf Lake Iris	LT	T	
instrychus exilis	Louit Bittern		Т	
Juncus warevi	Vancy's Runh		T	

14008AC2040488-73-1.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whale or in part without the express, written permission of U.S. EPA.

5

]

Manistique Harbor and River Site Ecological Assesament Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-11 of 15

Table 2-1 (Continued) Listed Species and Natural Communities Occurring in Schoolcraft County Manistique Harbor and River Site Manistique, Michigan

Scientific Name	Common Name	Federal Status	State Status
Limestone pavement lakeshore			
Listera auriculata	Auricled Twayblade		SC
Littorella uniflora	American Shore-grass		SC
Lycacides idas nabokovi	Northern Blue		Т
Mesic northern forest			
Myriophyllum farwellii	Farwell's Water-milfoil		Т
Open dunes	Beach/shoredunes, Great Lakes Type		
Oryzopsis canadensis	Canada Rice-grass		Т
Pandion haliactus	Osprey		Т
Patterned fen	Rich Shrub/herb Fen, Upper Midwest Type		
Petasites sagittatus	Sweet Coltsfoot		Т
Planogyra asteriscus	Eastern Flat-whorl		SC
Potamogeton confervoides	Alga Pondweed		SC
Pterospora andromedea	Pine-drops		Т
Rallus clegans	King Rail		Е
Rich conifer swamp	-		
Scirpus clintonii	Clinton's Bulrush		SC
Scirpus torreyi	Torrey's Bulrush		SC
Senecio indecorus	Rayless Mountain Ragwort		Ť
Solidago houghtonii	Houghton's Goldenrod	LT	Т
Somatochlora incurvata	Incurvate Emerald		SC
Spring	Geographical Feature		
Stellaria longipes	Stitchwort		SC
Sterna hirundo	Common Tern		Т
Tanacetum huronense	Lake Huron Tansy		Т
Thalictrum venulosum var. confine	Veiny Meadow-rue		SC
Trimerotropis huroniana	Lake Huron Locust		Т
Vaccinium cespitosum	Dwarf Bilberry		Т
Vertigo elatior	Land Snail		SC
Vertigo hubrichti	Land Snail		SC
Vertigo paradoxa	Land Snail		SC
Williamsonia fletcheri	Ebony Boghaunter		SC
Wooded dune and swale complex			

State Status

E = endangered T = threatened SC = special concern Federal Status LE = listed endangered LT = listed threatened PDL = proposed delist

Source: MNFI, 2005. Current as of 1/4/2005. http://web4.msue.msu.edu/mnfi/

I:\WO\RAC\236\34880-T2-1.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harber and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-12 of 15

Table 2-2 Listed Species and Natural Communities Occurring in Schooleraft County Watersheds along Lake Michigan Manistique Harbor and River Site Manistique, Michigan

Watershed ID 4000112 58 5 (Tacsosh-Whitefish) Scientific Name Acipenser falvescens Olyptemys insculpta Holineetus leucocephulus Pandion halinetus	Common Name Lake Stargeon Wood Turtle Baid Eagle	Federal Status	State Status T		
Scientific Name Acipenser falvescens Olyptemys insculpta Holineetus Icucocephulus Pandion Indiaetus	Common Name Lake Sturgeon Wood Turtle Baid Eagle	Federal Status	State Status T		
Acipenser falvescens Olyptemys insculpta Holineetus leucocephulus Pandion halinetus	Lake Stargeon Wood Turtle Baid Eagle		Т		
Olyptemys insculpta Holinectus leucocephnlus Pandion Indiaetus	Wood Turtle Baid Eagle				
Holineetus leucocephulus Pandion Indiaetus	Baid Eagle		SC		
Pandion Indiastas		lt,pdl	т		
	Osprey		Т		
Ramaculus Ispponicus	Lapland Buttercup		Т		
Southern Soudplain forest	•••				
Wooded date and swele complex					
Watershed ID 4060106 49 19 (Manistique)					
Scientific Name	Common Name	Federal Status	State Status		
Cotumicans noveboracensis	Yellow Rail		Т		
Gavia instat	Common Loop		Т		
Juncus vascyi	Vaccy's Rush Rich Shrub/herb Fen, Upper		т		
Patterned for					
	Midwest Type				
Watershed ID 4060107 41L 28 (Breveert-Millecoquins)		· _ · · · · · ·			
Scientific Name	Common Name	Federal Status	State Status		
Citainen pitcheri	Pitcher's Thistle	LT ·	Т		
Great blue heron rookery	Great Blue Heron Rookery				
Interdenel wetland	Alkaline Shoredunes				
	Pond/marsh, Great Lakes				
	Type				
iris locaștris	Dwarf Lake Iris	LT	т		
Menenazia terebuta	Lichen				
Tanacetam harontase	Lake Huron Tansy		т		
Wooded dusc and swale complex					
State Santas	Federal Status				
E - andregend	LT - listed durastened				
T - Senatural	PDL - proposed delist				
SC - special exerem					

Nata

This is a fining of all haven economics of developeral, and special concern specias and high quality material communities occurring within a watershed. The species and economicity information is derived from the 100% detabase. The watersheds are based on the 14 digit Hydrologic Unit Codes (HUC).

The figure is based on the polygon representation of the economous. Consequently my single occurrence may span watershed beamduries and he finted in more than one watershed. This first is based on basen and vestified sightings of threatment, and appendix concern species and represents the must complete data set wailable. It should not be considered a comprehensive fixing of overy potential species found within a watershed. Because of the inhorest difficulties in surveying for threatened, endangered, and speciel concern species and inconsistent of investory affect amount to Note species may be present in a watershed and not appear on this first. Source: MINFL 2005. Current as of 1/4/2005.

1

http://web4.menc.men.edu/mefc/

EWORACID63488-T2-2.WPD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

]

Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-13 of 15

Table 2-3Ecological Conceptual Site ModelManistique Harbor and River SiteManistique, Michigan

	Exposure Routes				
Taxonomic Group	Sediment	Surface Water ²	Direct Contact ³	Incidental Ingestion ⁴	Dietary Ingestion ⁵
Birds	X		X	X	X
Mammals	Х		X	x	X
Aquatic invertebrates	X		X	x	X
Fish	X		X	X	X

Notes:

¹Sediment exposure by birds and mammals is expected to occur only within shallow water areas (i.e., less than four foot water depth).

² PCBs were not detected in surface water samples; therefore this exposure route is not complete.

³ Direct contact assumes contact with the receptor other than through ingestion.

⁴ Incidental ingestion assumes indirect ingestion of contaminated media while grooming, eating, or foraging for food.

⁵ Dietary ingestion assumes ingesting contaminants after uptake of constituents into sources of food (i.e., fish).

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.
Table 2-4 Assessment and Measurement Endpoints Manistique Harbor and River Manistique, Michigan

14 m 1

1.11

Feeding Guild	Assessment Endpoint	Endpoint Objective	Surrogate Species or Community	Measures of Exposure	Measurement Endpoint	
Benthic organisms	Benthic invertebrates are an important food source for many higher trophic level predators. They also provide an i m p o r t a n t r o l e a s decomposers/detritivores in nutrient cycling. Assessment endpoint = preservation of the productivity (taxa richness and abundance) of benthic organisms.	Are PCBs levels in sediment and surface water adversely affecting benthic and aquatic communities?	NA	Comparison of sediment and aqueous media concentrations with toxicity-based screening values.	Protection of benthic communities from reproductive or growth impairment from direct exposure to sediment and surface water.	
Omnivorous fish	Omnivorous fish are an important prey item for higher trophic level predators. Through predation, they may also regulate population levels in lower trophic level fish and invertebrates. Assessment endpoint = preservation of the productivity (taxa richness and abundance) of omnivorous fish.	Are PCB levels in sediment and surface water adversely affecting fish populations? Are PCBs bioaccumulating in fish?	Catfish white sucker, longnose sucker,and shorthead redhorse	Tissue concentrations in fish. SPMD assays	Protection of omnivorous fish populations from reproductive or growth impairment from direct exposure to sediment and surface water.	
Carnivorous fish	Carnivorous fish provide an important function for the aquatic environment by regulating lower trophic populations through predation. They are also an important prey item for many top level mammal and bird carnivores. Assessment endpoint = preservation of the productivity (taxa richness and abundance) of carnivorous fish.	Are PCBs in sediment and surface water adversely affecting carnivorous fish populations? Are PCBs bloaccumulating in fish?	Walleye, smallmouth bass	Tissue concentrations in fish. SPMD assays	Protection of carnivorous fish populations from reproductive or growth impairment from direct exposure to sediment and surface water.	

Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 2-15 of 15

Table 2-4 Assessment and Measurement Endpoints Manistique Harbor and River Manistique, Michigan (Continued)

Feeding Guild	Assessment Endpoint	Endpoint Objective	Surrogate Species or Community	Measures of Exposure	Measurement Endpoint
Piscivorous mammal	Carnivorous mammals provide an important functional role to the environment by regulating lower trophic level prey populations. Assessment endpoint = Survival, growth, and reproduction of piscivorus mammals.	Are levels of PCBs in the diet of the mink excess of dietary levels indicative of reproductive or growth impairment in other species of piscivorous mammals? Are levels of PCBs in the sediments in excess of levels indicative of reproductive or growth impairment in other species of piscivorous mammals?	Mink	Food-chain modeling and comparison with TRVs.	Protection of the mink from reproductive or growth impairment within its foraging range from exposure through their diet.

Notes:

- Measurement endpoints are based on measures of exposure in the absence of site-specific field or toxicity testing.

Ē

- Endpoint objectives identify the primary questions of adverse impact that are being asked for each target receptor.

Manistique Harbor and River Site Ecological Assessment Report Section: 3 Revision: 1 Date: 2 March 2005 Page: 3-1 of 7

SECTION 3 SITE INVESTIGATION

A post-dredging site investigation was performed in September 2004 to collect the data and other resources needed to perform human health and ecological risk assessments for the post-dredging conditions in the Manistique Harbor and River site. The *Quality Assurance Project Plan (QAPP)* (WESTON 2004a) detailed the sampling activities that would be completed to support the risk assessments and a long-term monitoring program. A statistical sediment sampling strategy was developed in the QAPP. The approximately 1.7 mile long reach of the Manistique Harbor and River was divided into three distinct study areas, the River, Inner Harbor, and Outer Harbor, for the purposes of the investigation. Figure 3-1 illustrates the boundaries of these three areas. The investigation results are documented in the *Field Summary Report* (WESTON 2004b) and the *Data Evaluation Report* (WESTON 2005). The sampling activities focused on the collection of physical, chemical, and biological samples. The environmental media sampled included sediment, surface water, resident fish, caged fish, and semi-permeable membrane devices (SPMDs). All analytical data from this investigation is provided in the *Data Evaluation Report* (WESTON 2005). The focus of the analysis for each environmental sample type is:

- Sediment to focus on changes in the areas with residual PCBs (≥1 part per million), known as the Area of Interest (AOI), with limited focus on areas with non-detected levels of PCBs, identified as the Background Zone (BZ).
- Surface Water to determine if PCB concentrations in the water column are of concern and to evaluate the bioavailability of PCBs.
- Adult Resident Fish to evaluate risk through the fish consumption pathway.
- Yearling Fish to evaluate risk through the fish consumption pathway.
- Caged Fish to assess if sediment-bound PCBs are potentially available to aquatic biota under the conditions in the field.

L\WO\RAC\236\34880S-3.WPD

RFW236-2A-ASQP

Manistique Harbor and River Site Ecological Assessment Report Section: 3 Revision: 1 Date: 2 March 2005 Page: 3-2 of 7

Semi-Permeable Membrane Device (SPMD) - to assess if sediment-bound PCBs are potentially available to aquatic biota under the conditions in the field. SPMDs are especially useful for situations where caged fish will not survive.

The field events were conducted during two mobilization events. The objective of the first mobilization was to perform resident fish sampling, collect of collocated sediment and surface water samples, and deploy of the caged fish and SPMDs. The first mobilization was performed from 22 to 30 August 2004. The objectives of the second mobilization included collection of sediment samples from both BZ and AOI locations; sampling of surface water within the River, Inner Harbor, and Outer Harbor areas, and the retrieval of the caged fish and SPMDs. The second mobilization was performed from 7 September 2004 through 28 September 2004. The following subsections present a brief description of the sampling approach for each environmental medium. Detailed information on the site investigation and the analytical results in presented in the *Quality Assurance Project Plan (QAPP)* (WESTON 2004a), the *Field Summary Report* (WESTON 2004b) and the *Data Evaluation Report* (WESTON 2005).

3.1 SEDIMENT SAMPLING

The sampling design included the collection of 432 AOI samples, 100 BZ samples, and 10 sediment samples collocated with the caged fish samples. All sediment samples were collected using ponar sampling methodology, with a ponar dredge sampler used to collect a surficial sediment sample. The sampling design provided the geographic coordinates for each sediment sampling location; however, relocation of the sampling location was necessary in some instances to accommodate physical barriers (rocks, wood planks, ect). In all cases, U.S. EPA FIELDS personnel operated a global positioning system (GPS) unit and collected the geographic coordinate data at the actual sampling locations.

I:\WO\RAC\236\34880S-3.WPD

Of the 542 sediment locations contained in the sample design, 514 locations were successfully sampled. The remaining twenty eight locations could not be sampled due to: no sample recovery (rocks, wood planks, ect.) at 22 locations, sample locations outside of the study area at 4 locations (SD100, SD294, SD363, and SD429), a sample location collocated with another sample location (1 sample - SD009 and SD166), and a sample location way point accidentally deleted from file (1 location - SD484). Sediment sampling locations are provided in Figure 3-2. The sediment samples were submitted for analysis of PCBs through the U.S. EPA Contract Laboratory Program (CLP), total organic carbon (TOC) through the U.S. EPA Central Region Laboratory (CRL) and grain size (approximately 10% of locations) through Coleman Engineering of Iron Mountain, Michigan. The CLP laboratory for this investigation was Compuchem Environmental in Cary, North Carolina.

3.2 SURFACE WATER SAMPLING

Surface water sampling was completed during both the first and second mobilization. The sampling design included the collection of 30 grid locations selected from the River, Inner Harbor, and Outer Harbor (a total of 10 from each area) and twenty surface water samples collocated with the caged fish samples (10 samples at cage deployment, 10 samples at cage recovery). All surface water samples were collected using the peristaltic pump sampling methodology as described in the QAPP. At each sampling location, field measurements were collected for water depth and secchi disk transparency, and at each 2 foot depth interval for water temperature, pH, specific conductance, dissolved oxygen (DO), and current velocity. U.S. EPA FIELDS personnel collected the geographic coordinate data at each sampling location using a GPS unit.

Fifty surface water locations were proposed in the sample design; however, only 48 locations were successfully sampled. Two surface water samples (A2 and C2) were not collected at cage recovery because the caged fish samples were not recovered at these locations. Surface water sampling

Manistique Harbor and River Site Ecological Assessment Report Section: 3 Revision: 1 Date: 2 March 2005 Page: 3-4 of 7

locations are provided in Figure 3-3. The surface water samples were submitted for analysis of PCBs through the CLP laboratory, and TOC, dissolved organic carbon, total dissolved solids (TDS), and total suspended solids (TSS) through the U.S. EPA CRL.

3.3 FISH SAMPLING

3.3.1 Resident Fish

The sample design detailed in the QAPP called for the collection of a total of forty eight adult fish (24 predator species and 24 bottom feeder species) and fifteen composite yearling samples (five samples from each of the three areas, as identified in Figure 3-1. The target adult species were catfish (*Ictalurus punctatus*) or carp (*Cyprinus carpio*) for the bottom feeder fish and walleye (*Stizostedion vitreum*) for the predator fish. However, alternative species for both predator and bottom feeder fish were acceptable in the event that an adequate number of target species fish could not be obtained. These alternate fish species were listed in the Michigan Department of Environmental Quality (MDEQ) GLEAS 31 Procedure (MDEQ 1995) and included northern pike (*Esox lucius*), small mouth bass (*Micropterus dolomieui*), largemouth bass (*Micropterus salmoides*), and rock bass (*Ambloplites rupestris*) as predator species and sucker species (*Catostomidae sp.*) as bottom feeder species.

Electroshocking methods were used to collect the majority of the resident fish as outlined in the QAPP. Additional methods utilized included trot line and fyke net fishing techniques. A total of 29 adult fish were caught and sampled (15 predator species and 14 bottom feeder species). Twentysix of the fish were caught in the River and three were caught in the Inner Harbor. Fish collection did not yield any fish in the Outer Harbor. Fillet and carcass samples were then processed for each adult fish caught. Five yearling fish composite samples were also collected. Four of these samples were comprised of predator species and one sample was comprised of bottom feeder species. The yearling fish were grouped according to species and separated into groups large enough to provide 200 grams of sample. The fish tissue (adult fish fillet, adult fish carcass, and yearling composite)

I:\WO\RAC\236\34880S-3.WPD

RFW236-2A-ASQP

This document was prepared by Roy F. Weston, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

DOCUMENT EPA ARCHIVE

Manistique Harbor and River Site Ecological Assessment Report Section: 3 Revision: 1 Date: 2 March 2005 Page: 3-5 of 7

were submitted for analysis of PCBs, lipids, and moisture content through the CLP. The dorsal fin samples were submitted to the Lake Superior State University Aquatic Research Laboratory for age determination.

3.3.2 Caged Fish

The caged fish samples were deployed at the end of the first mobilization (26 - 27 August 2004) and were retrieved towards the end of the second mobilization (23 - 24 September 2004). The caged fish were deployed for a period of 28 days. Stone Creek, Inc. of Grant, Michigan supplied the channel catfish and the fish cages used for the study. Prior to deploying the caged fish, collocated surface water and sediment samples were collected at the planned location. The field parameters collected during this sampling were used to evaluate whether or not the location was suitable for the deployment of the caged fish. The caged fish were then deployed at the location and geographic position data were collected by U.S. EPA FIELDS. Caged fish locations A1 and A2 were adjusted because the originally planned locations were not deep enough to ensure that the cages would be fully submerged. The deployment locations of A1 and A2 were selected to ensure one location was present in the AOI (location A1) and one location was present in the BZ (location A2). Caged fish/SPMD sampling locations are presented in Figure 3-4. Each cage was weighted and deployed from a boat piloted by U.S. EPA FIELDS. Cages B1, B2, D1, and A2 were redeployed after the cages were disturbed by either fishing activities or strong storm surge; cage A1 was lost at this time. The cage at A2 was redeployed at location A1 since location A1 is within the AOL U.S. EPA divers assisted with the retrieval of the fish cages from 23 - 24 September 2004. All but two fish cages were recovered (the cage originally deployed A1 and the cage deployed at C2). Fish were recovered from the following cages: B1 (15 fish recovered; 4 replicate samples), B2 (7 fish recovered; 2 replicate samples), D1 (24 fish recovered; 6 replicate samples), and E2 (27 fish recovered; 7 replicate samples). Cages C1 and E1 were damaged and did not contain fish. All recovered fish were measured, weighed, and inspected for any deformities. The fish recovered from a cage location were

Manistique Harbor and River Site Ecological Assessment Report Section: 3 Revision: 1 Date: 2 March 2005 Page: 3-6 of 7

separated into groups large enough to provide 200 grams of sample (as many replicate samples as possible were prepared from each cage) and the fish were submitted for analysis of PCBs and lipids through the U.S. EPA CLP.

3.3.3 Semi-Permeable Membrane Device

The SPMDs were deployed at the same time and at the same locations as the caged fish. In general, six SMPDs were deployed in each cage, with the exception of four SPMDs deployed at B1 location and five SPMDs deployed at A2 location. At each location, three SPMDs were deployed along the horizontal plane (relative to the river/harbor floor) and three were deployed vertically in the water column. At locations C1, E1, and E2, the vertical SPMDs were mounted on a PVC pipe (5 to 10 feet in length) extending up from the cage. At the other locations, the vertical SPMDs were mounted on the fish cage, approximately two feet from the bottom of the cage. The SPMDs were deployed following the procedures listed in the QAPP. Two field atmospheric field blank samples were located approximately 15 feet above the ground at opposite ends of the harbor for the duration of the SPMD deployment.

As previously discussed, cages B1, B2, D1, and A2 were redeployed after the cages were disturbed by either fishing activities or strong storm surge. At locations D1 and A2, only the SPMDs were redeployed because the fish did not survive. The cage recovered along the beach (A2 location) was redeployed at the A1 location to ensure that at least one pair of SPMDs were located in the AOI in the western portion of the Outer Harbor.

From 23 - 24 September 2004, the SPMDs were recovered from all locations except A2 and C2. In addition, the vertical SPMD was not recovered at location B2. While the cage that was originally deployed at the A1 location was not recovered (only the redeployed fish cage from the A2 location was found in this area), one canister was found in the vicinity of the A1 location. The three SPMDs

Manistique Harbor and River Site Ecological Assessment Report Section: 3 Revision: 1 Date: 2 March 2005 Page: 3-7 of 7

in this canister were submitted for analysis as samples MH1-SPA1-07 through 09. The U.S. EPA divers observed the cages at locations C1, E1, and E2 (cages with PVC extensions for the vertical SPMDs) were on their side.

Following their retrieval, the SPMDs were sent to STS Laboratories for cleanup and dialysis (extraction). The extract was forwarded to a CLP laboratory for analysis of PCBs.

E\WO\RAC\23634880S-3.WPD

FIGURES

Ί

7

]

]

]

]

J

Ĵ

J

J

Ľ

J

j

EPA ARCHIVE DOCUMENT U |

Manistique Harbor and River Site Ecological Assessment Report Section: 4 Revision: 1 Date: 2 March 2005 Page: 4-1 of 11

SECTION 4

CHARACTERIZATION OF EXPOSURE

The characterization of exposure identifies the magnitude and frequency by which target receptors are exposed to contaminants that have migrated or may potentially migrate through various exposure pathways. This involves site-specific quantification of the levels of contaminants present in the environment as well as site-specific quantification of the levels of contaminants that may be entering each individual target receptor. The specific objectives of this characterization step are to identify the following:

- Magnitude and frequency of environmental exposures.
- Magnitude and frequency of receptor intake.

4.1 ESTIMATION OF ENVIRONMENTAL EXPOSURE

Estimation of environmental exposure involves the quantification of contaminants at the point of likely receptor exposure. Contaminant concentrations at these points (called exposure point concentrations or EPCs) are critical in determining constituent intake and subsequent risk to target receptors. EPCs are developed by the habitat and target receptors identified in the problem formulation. The exposure point concentration is intended to represent a reasonable maximum estimate of the concentration a receptor is likely to be exposed to over time. This approach to characterizing exposure facilitates the prioritization of risk management decisions for areas where ecological receptors are more likely to occur. The fish tissue and sediment data, including EPCs, are summarized in Table 4-1. All data used in the ERA (i.e., sediment and fish tissue) is presented in Appendix A.

I:\WO\RAC\236\34880-S4.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 4 Revision: 1 Date: 2 March 2005 Page: 4-2 of 11

4.1.1 Sediment

Two exposure point concentrations were evaluated for benthic organism exposure to sediment - the arithmetic average concentration and the 95 percent upper confidence limit (95% UCL) on the arithmetic mean. The 95% UCL was calculated according to the distribution assumption of the dataset (i.e., normal, lognormal, distribution-free) using EPA's ProUCL (Version 3.0) software (U.S. EPA, 2003b). For exposure of benthic organisms, all sediment locations in the harbor and river were used in the EPC calculations. In addition, sediment data was summarized by location (i.e., inner harbor, outer harbor, and river).

Two exposure point concentrations were evaluated for higher level organism exposure to sedimentthe maximum detected concentration and the 95% UCL on the arithmetic mean. The highest concentration of duplicate samples was used in the 95% UCL calculations. The 95 % UCL was calculated according to the distribution of the dataset (i.e., normal, lognormal, distribution-free) using EPA's ProUCL (Version 3.0) software (U.S. EPA, 2003b). The depth of the water in the harbor and river will restrict wildlife access to sediment. Higher level organism exposure to sediments considers only those samples collected from locations with a water depth of less than or equal to four feet. Thus, all sample locations with deeper water depths were not included in the EPC calculations. Maximum and average sediment concentrations are evaluated to account for possible sediment disturbance.

4.1.2 Surface Water

PCBs were not detected in surface water at concentrations above method detection limits. This environmental medium is not evaluated further.

E\WO\RAC\236\34880-S4.WPD

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 4 Revision: 1 Date: 2 March 2005 Page: 4-3 of 11

4.1.3 Tissue

The target receptors associated with the Manistique Harbor and River site are exposed through the ingestion of constituents in their food, called dietary exposure. Dietary exposure can occur with constituents that have migrated from the contaminants in environmental media into plant and animal tissues. This process of migration and exposure through the diet is called "food-chain bioaccumulation." Constituents are often measured directly in tissues as a way to estimate the exposure a target receptor might receive in their diet. Field measured tissue data was collected including adult and yearling resident fish. Fish tissue was collected from bottomfeeder (trophic level 3) and predator (trophic level 4) species. The target adult species were catfish or carp (Cyprinus carpio) for the bottom feeder fish and walleye for the predator fish. However, alternative species for both bottomfeeder and predator species were collected because an adequate number of target species fish could not be obtained. A total of 29 adult fish were caught and sampled (15 predators and 14 bottomfeeders). Bottomfeeder species collected included catfish (Ictalurus punctatus), white sucker (Catostomus commersonii), longnose sucker (Catostomus catostomus), and shorthead redhorse (Moxostoma macrolepidotum). Predator species collected included walleye (Stizostedion vitreum) and smallmouth bass (*Micropterus dolomieui*). Yearling composite samples included walleye, rock bass (Ambloplites rupestris), shorthead redhorse, and small mouth bass.

Two exposure point concentrations were evaluated for fish - the maximum detected concentration and the 95% UCL on the arithmetic mean. The highest concentration of duplicate samples was used in the 95% UCL calculations. The 95% UCL was calculated according to the distribution of the dataset (i.e., normal, lognormal, distribution-free) using EPA's ProUCL (Version 3.0) software (U.S. EPA, 2003b). Bioaccumulation of PCBs differs by fish species, so both maximum and average concentrations are evaluated to account for species differences. Whole fish concentrations were calculated based on the relative wet weights of the tissues. The PCB concentrations in the fillet and in the carcass were multiplied by their individual wet weights, the two products were added and then divided by the total fish wet weight. Non-detects were included at one-half the detection limit.

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

í,

EPA ARCHIVE DOCUMENT

Manistique Harbor and River Site Ecological Assessment Report Section: 4 Revision: 1 Dute: 2 March 2005 Page: 4-4 of 11

Composite whole fish samples were collected for yearling fish. Since wildlife consumes differing amounts of fish based on the trophic level of the fish, fish tissue was segregated into bottomfeeders (trophic level 3) and predators (trophic level 4).

4.2 ESTIMATION OF RECEPTOR UPTAKE

For target receptors or communities that are exposed directly to the media in which they live (such as benthic invertebrate and fish), uptake is expressed in terms of measured concentrations of constituents in the media in which they reside (for example the concentration of constituents in sediment are used to directly estimate the intake received by benthic organisms). For target receptors that are exposed through the ingestion, inhalation, or dermal contact exposure routes, daily exposure intake models were developed which express exposure in terms of constituent intake per kilogram of body weight per day (mg/kg-day). While dermal contact and inhalation can contribute significant constituent uptake to a receptor's total intake, limited information exists for quantifying these exposure routes when compared to the current availability of information for quantifying ingestion. Thus, only ingestion models were used to estimate uptake by avian and mammalian receptors.

The algorithm used to calculate exposure of avian and mammalian target receptors through ingestion of sediment and tissue follows the generic equation presented above and is described as follows:

$$EDI_{makes} = \frac{\left(C_{makes} \times IR_{makes}\right) \times DCF \times SUF}{BW}$$

where:

EDI___

- = Estimated daily intake of constituent through sediment or tissue ingestion (mg/kg/day), normalized for body weight.
- = Concentration of constituent in sediment or tissue (dry or wet weight basis) (mg/kg).

HWORAC\23634880-S4.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 4 Revision: 1 Date: 2 March 2005 Page: 4-5 of 11

IR_{medium} = Ingestion rate of sediment or tissue by receptor (dry or wet weight basis, on a consistent basis with the constituent concentration) (kilograms/day). For ingestion rates reported on a wet weight basis, calculation of ingestion rate on a dry weight basis is as follows:

 $IR_{dev} = IR_{wet} \times (1 - \% \text{ moisture}) (U.S. EPA 1993b).$

- DCF = Dietary Composition Factor (assumed percent dietary intake from the site).
- SUF = Site Use Factor (assumed percent use of the site).
- BW = Body Weight (kilograms).

Wet weight tissue concentrations can be converted to dry weight using the following equation (U.S. EPA, 1993b):

$$C_{\text{tissue}}(DW) = \frac{C_{\text{tissue}}(WW)}{\% \text{ Solids}}$$

where:

 $C_{tissue}(DW)$ = Concentration in tissue (dry weight). $C_{tissue}(WW)$ = Concentration in tissue (wet weight)% Solids= 1-% Moisture

Total ingestion exposure for a target receptor from multiple sources is considered cumulative. The generic equation for ingesting multiple sources of constituents from food, sediment, and water can be described as follows:

$$EDI_{total} = EDI_{sediment} + EDI_{water} + EDI_{food}$$

where:

EDI=Total estimated daily intake (mg/kg/day).EDI=Estimated daily intake of constituent sediment ingestion (mg/kg/day).

I:\WO\RAC\236\34880-S4.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 4 Revision: 1 Dute: 2 March 2005 Page: 4-6 of 11

EDI=Estimated daily intake of constituent water ingestion (mg/kg/day).EDI=Estimated daily intake of constituent from ingestion of food, either forage or prey (mg/kg/day).

While dermal contact and inhalation can contribute significant constituent uptake to a receptor's total intake, these routes are not quantified because limited information exists for quantifying these exposure routes when compared to the current availability of information for quantifying ingestion. Assumptions for each of the exposure parameters that comprise total intake were based on literature as well as site-specific information.

Exposure parameters that were considered in quantifying exposure to all target receptors are listed below.

- Intake rates and body weights.
- Dietary composition factor (percent).
- Tissue moisture (percent).
- Site use factor (percent).

In this ERA, wholebody fish tissue has been assumed to compose 100 percent of a receptor's diet. Specific intake equations and parameters for the target receptors selected in this risk assessment are presented in detail in the sections below.

4.2.1 Bald Eagle

The bald eagle inhabits the Manistique Harbor and River AOC and was selected as a target receptor for assessment of potential food-chain bioaccumulation from sediments into sensitive species of piscivorus birds. The ingestion of fish and incidental ingestion of sediment represent the primary routes of exposure to the eagle. While consumption of water is another potential exposure route,

E\WO\RAC\236\34880-S4.WPD

This document was prepared by Westen Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 4 Revision: 1 Date: 2 March 2005 Page: 4-7 of 11

PCBs were not detected in this medium; thus, surface water intake was not evaluated for this target receptor. The specific exposure parameters and references that were used in quantifying exposure of the bald eagle are presented in Table 4-2.

4.2.2 Mink

The mink inhabits the Manistique Harbor and River AOC and was selected as a target receptor for assessment of potential food-chain bioaccumulation from sediments into species of piscivorus mammals. The ingestion of fish and incidental ingestion of sediment represent the primary routes of exposure to the mink. While consumption of water is another potential exposure route, PCBs were not detected in this medium; thus, surface water intake was not evaluated for this target receptor. The specific exposure parameters and references that were used in quantifying exposure of the mink are presented in Table 4-3.

I:\WO\RAC\236\34880-S4.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

TABLE 4-1 DATA SUMMARY MANISTIQUE HARBOR AND RIVER SITE MANISTIQUE, SCHOOLCRAFT COUNTY, MICHIGAN

		Outpetied		Detected C	Concentration	Overfite	ion Limit					
	Analista	Sec.	حدي ا	Minimum	Mandaman		Maning	Mann	Standard Desistion	Distribution	95 UC1 *	Basis
						Sector Sector			where the state of the second state of the sec			
_			•			activities				η		
	Avector 1015	057		-	-	38	180	-	-	-	-	-
	Auctor 1221	0157	والرب	-	-	80	370	-	-	-	-	-
	Auctor 1232	0157	- uping	-	-	38	180	-	-	-	-	-
	Ander 1242	857	a gelig	-	-	30	180	-	-	-	-	-
	Arector 1245	0157	uphy .	-	-	38	180	-	-	-	-	-
	Ander 1254	1267		15	4100	38	130	197	671	Non-perametric	752	97.5% Chatrahev Odean, Sd) UCL
	American 1280	367	-	18	1200	38	130	-	157	Non-example:	140	95% Chelashev Alean, Sdi UCL
	Total PCBs	15/57		15	4100	78	270	237	678	Non-escandric	758	\$7.5% Chebrahav (Maan, Sch UC).
							SCD IN		Incatione)			
-	A						400				_	_
	Annular 1221			-	-		120	-	-	-		-
1				-	-		370	-	-	-		-
	Annalus 1242			-	-		100	_	-	-	_	
	Annalas 1248			-	64000		180	660	3002		100	67 SK Chatanhan Alasa SA UCI
-	America 1254	SPE14		76	12000		130	190	005	Non-parametric	464	97 St. Chatrahar Maan, Sd. UCI
	America 1200	278514		76	2500		130	133	ann	Non-personality	298	97 5% Chataghay Alaan Schuld
-	Total PCRs	100514		15	54000	78	220	740	1466	Non-permittic	1006	97.5% Chelsenber Gleen Schuld
								700				
	A											
				-	-	3	1400	*-	-	-	-	-
•				-	-		3/0	-	-	-	-	-
	American 1432			-	-			-	-	-	-	-
	Annalas 1242		_	-	5.000		100	-	-	Name and the second sec	1636	- 67 GK Chalamber (Mean Sch 11/1
J.	Annelar 1754	754013		15	12000		130	107	1078	Non-personality	538	97 SK Chatasher Gleen Still 11
-	America 1201	101403	_	75	8600		130	124		Non-parametric	255	95% Chebrahan Mana, Sol UCI
_	Total BCBs	1426403		15	54000	70	220	771	1751	Non-personality	1991	97 St. Chalanhar Alaan Schultt
7			_				210		3/30			TAR CARPENN WALLS, OUT OCC
-			•				SELU	ment 6	iciver)			
	Avector 1016			-	-	30	180	-		-	-	-
	ANGENT 1221			-	-		370	-	-	-	-	-
	Andrew 1232			-	-	3	180	~	•	-	-	• ·
7	Ander 1212			-	_	3	180	<u> </u>	-	-		
				19	10000	3	140		1705		2300	Sevis Charlynner (anner, Sa) U.L.
	Andrew 1204			10	4000	3	130	220	6/4	Non-personality		97.5% Chabyenev (Moon, SO) UCL
	Tetel BCBs			11.5			130	200	6 0/	Non-personality		With the second se
			_		13180				2300	unit-benefitier:	2550	
								FALLE V	AIEK			
	Another 1016	040			-	0.2	0.22	-	-	-	-	-
10				-	-	04	0.44	-	-	-	-	-
			-	-	-	92	0.22	-	-	-	-	-
_	American 1242		-	-	-	0.2	0.22	~	-	-	-	- (
	Annalar 1264			-	-	0.2	0.22	-	-	-	_	-
1	Annalas 1204			-	-	02	0.22	-	-	-	-	-
	Total DCDs			-	-	0.2	0.22	~	-	-	-	-
			<u> </u>				4044	T ENDLL				
									30601			
чÜ	Annual and a state								R IL-3			
	Annual TVT6	U 14		-	-			-	-	-	-	-
-				-	-	0.2		-	-	-	-	-
				-	-	0.000	0.000	-	-	-	-	-
-				-	-		0.000		-		-	
a.	Annales 1264					0.000	0.000	0.217	0.130	Gamma	0.340	Approximate Gamme UCL
	Annalas 1204				0.51		0.000	0.1/8	0.130	Manual	0.030	Approximate Gamma U.L.
	Total OC Ba	14114	_		4.13		0.000	0.10		German	0.675	Annual Course UC
			_					U.JW				
-	Annual State	-	-				0.000			_	_	_
	Annual Parts			-	-		0.2	-	-	-	-	_
	Annual 1421			-	-	0.000	0.000	-	-	-	-	-
-	Annalas 1232			-	-			-	-	-	-	_
	Annual Cont			-	-		0.000	0.000	-		-	— Charlenda e 1871
-	Annalas 1954	410			0.44			0.190	0.114	I contracted		
	Annalas Cable	14779		0.07	0.44			0.130	0.111		U. 130	ITUUL ISN Chabanhan Minan Californi
2	Total Content	1 1/13							0.44	Contract	0.101	Assessments (Marrie 120) U.L.
-		13/13			10.01			0.19	U. 10		4.41	

LINGRACIONPRIM-TI-LINTO

]

1

RPW2%-2A-ASQP

J

This document was propared by Westen Solutions, hec., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. RPA.

TABLE 4-1 (Continued) DATA SUMMARY MANISTIQUE HARBOR AND RIVER SITE MANISTIQUE, SCHOOLCRAFT COUNTY, MICHIGAN

ł		Detected		Detected C	oncentration	Quantitat	ion Limit					
	Analyte	Samples	Units	Minimum	Maximum	Minimum	Maximum	Meen	Standard Deviation	Distribution	95 UCL*	Besis
							YEARL	NG FIS	H TISSUE		_	
			_				Yearlir	ng Resid	ent TL-3			
V	Araciar 1016	0/1	ug/kg		-	99	90	-	-	-	-	-
	Arocior 1221	0/1	ug/kg		-	200	200	-		-	-	
	Arocior 1232	0/1	ug/kg	-	-	99	99	-		-		-
	Arocior 1242	0/1	ug/kg		-	99	99		-	-	-	-
	Arocior 1248	0/1	ug/kg	-		99	99	-	-	-		_ `
8	Aroclor 1254	0/1	ug/kg			99	98	-	-	-	-	-
Ł	Aroclar 1260	0/1	ug/kg	~	-	99	99	-		-	-	
	Total PCBs	0/1	ug/kg			99	99					
-							Yeartin	ig Resid	ent TL-4			
	Aroclor 1018	0/4	ug/kg	-	-	99	99	-	-	-	-	-
	Arocior 1221	0/4	ug/kg	-	-	200	200	-	-	-	-	-
	Aroclor 1232	0/4	ug/kg	-	-	99	99	-	-	-	-	-
ſ	Arocior 1242	0/4	ug/kg	-	-	99	99	-		. 🛥	-	-
-			_									
	- clor 1248	0/4	ug/kg	-		99	99	_	-			-
1	lor 1254	2/4	ug/kg	140	160	99	99	150	-	-	-	-
3	Procior 1260	1/4	ug/kg	-	39	99	99		-	-	-	-
1	TOTAL PCBs	2/4	ug/ig	140	199	89	89	109.5			_	en Carl Taxang Manager States In Disard States

* Calculated using ProUCL version 3.0 (U.S. EPA, 2003b) NA - Not available.

100 - 100 -

and the second s

TL-3 = Trophic Level 3. TL-4 = Trophic Level 4. 95 UCL = 95 percent upper confidence limit. ug/kg = microgram per kilogram. ug/L = microgram per liter. NA - Not available. All fish tissue presented on a wet weight basis. All sediment presented on a dry weight basis. All sediment presented on a dry weight basis. Only sample locations with water depth less "PCBs were not detected in samples collected from the inner harbor

INWORAC1236/34880-T4-1.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

١

Manistique Harbor and River Site Ecological Assessment Report Section: 4 Revision: 1 Date: 2 March 2005 Page: 4-10 of 11

Table 4-2 Parameters Used in Bald Eagle Intake Calculations Manistique Harbor and River Site Manistique, Michigan

Parameter	Average Adult	Units	Reference/Notes						
Intake Rate	Total - 0.47883; TL3 - 0.371; TL4 - 0.0929; PB- 0.00283 Other - 0.0121	kg/day (wet weight)	From Table D-2, Exposure Parameters for the 1 Representative Species Identified for Protection, EPA, 19 Final Water Quality Guidance for the Great Lakes System CFR Parts 9, 122, 123, 131 and 132, 23 March 1995.						
Intake Rate _{minat}	0.001125	kg/day (dry weight)	Ingestion of sediment is negligible; conservatively estimated at 1% of dry weight total ingestion rate, where: $IR_{indext-dry} = IR_{inservat} \times 0.01$ $IR_{inservat} = IR_{inservat} \times (1 - \% \text{ moisture})$						
Intake Rate	0.160	L/day	From Table D-2, Exposure Parameters for the Final Representative Species Identified for Protection, EPA, 19 Final Water Quality Guidance for the Great Lakes System, CFR Parts 9, 122, 123, 131 and 132, 23 March 1995.						
Tissue moisture	76.5 (62.5 - 80.8)	Percent	Average of all fish tissue; See Table A-2.						
Dictary composition factor	100	Percent	Based on a conservative assumption of 100% dietary intake from the site; assumes 100% intake of most contaminated fraction (i.e., highest contaminant concentration regardless of food type).						
Site use factor	100	Percent	Based on a conservative foraging territory range encompassing the site.						
Adult body weight	4.6	kg	From Table D-2, Exposure Parameters for the Five Representative Species Identified for Protection, EPA, 1995. Final Water Quality Guidance for the Great Lakes System, 40 CFR Parts 9, 122, 123, 131 and 132, 23 March 1995.						

Keter

kg 👘		Kilograms
Ř	=	Intake Rate
WT	-	Weight
ПЗ	=	Trophic level 3 fish
TLA	=	Trophic level 4 fish
PB .	-	Piecivorous birds
Other	-	non-equatic birds and summands

HWORAC123634880-54-2andT4-3.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

]

A.

Manistique Harbor and River Site Ecological Assessment Report Section: 4 Revision: 1 Date: 2 March 2005 Page: 4-11 of 11

Table 4-3Parameters Used in Mink Intake CalculationsManistique Harbor and River SiteManistique, Michigan

Parameter	Average Adult	Units	Reference/Notes
Intake Rate _{tissue}	Total - 0.1767; TL3 - 0.159 Other - 0.0177	kg/day (wet weight)	From Table D-2, Exposure Parameters for the Five Representative Species Identified for Protection, EPA, 1995. Final Water Quality Guidance for the Great Lakes System, 40 CFR Parts 9, 122, 123, 131 and 132, 23 March 1995.
Intake Rate _{sediment}	0.000415	kg/day (dry weight)	Ingestion of sediment is negligible; conservatively estimated at 1% of dry weight total ingestion rate, where: $IR_{sediment-dry} = IR_{tissue dry} \times 0.01$ $IR_{tissue dry} = IR_{tissue wet} \times (1 - \% \text{ moisture})$
Intake Rate _{water}	0.081	L/day	From Table D-2, Exposure Parameters for the Five Representative Species Identified for Protection, EPA, 1995. Final Water Quality Guidance for the Great Lakes System, 40 CFR Parts 9, 122, 123, 131 and 132, 23 March 1995.
Tissue moisture	76.5 (62.5 - 80.8)	Percent	Average of all fish tissue; See Table A-2.
Trophic level of prey	TL3 - 90; Other - 10	Percent of diet	From Table D-2, Exposure Parameters for the Five Representative Species Identified for Protection, EPA, 1995. Final Water Quality Guidance for the Great Lakes System, 40 CFR Parts 9, 122, 123, 131 and 132, 23 March 1995.
Dietary composition factor	100	Percent	Based on a conservative assumption of 100% dietary intake from the site; assumes 100% intake of most contaminated fraction (i.e., highest contaminant concentration regardless of food type).
Site use factor	100	Percent	Based on a conservative foraging territory range encompassing the site.
Adult body weight	0.80	kg	From Table D-2, Exposure Parameters for the Five Representative Species Identified for Protection, EPA, 1995. Final Water Quality Guidance for the Great Lakes System, 40 CFR Parts 9, 122, 123, 131 and 132, 23 March 1995.

<u>Notes:</u> kg

1996 Marco

13

200

kg	*	Kilograms
IR	=	Intake Rate
WT	-	Weight
TL3	22	Trophic level 3 fish
TLA	r -	Trophic level 4 fish
PB	s	Piscivorous birds
Other	÷	non-aquatic birds and mammals

I:\WO\RAC\236\34880-S4-2andT4-3.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 5 Revision: 1 Dute: 2 March 2005 Page: 5-1 of 11

SECTION 5

CHARACTERIZATION OF EFFECTS

The ecological effects characterization presents information on the toxicity of the PCBs to ecological species in more detail. A toxicological profile of PCBs is provided in Appendix C. This toxicity information has been specifically used to develop toxicity reference values (TRVs) for the selected target receptors and communities. Scientific literature were reviewed for media-specific and species-specific toxicity data. TRVs based on media concentrations are used for fish and benthic organisms and TRVs based on dose are used for bird and mammal receptors. TRVs were obtained from the sources listed below.

- Oak Ridge National Laboratory (ORNL) Risk Assessment Information System (RAIS) on-line database (http://risk.lsd.ornl.gov/rap_hp.shtml).
- U.S. EPA Region 9 Biological Technical Assessment Group (BTAG) (http://www.dtsc.ca.gov/ScienceTechnology/eco.html#BTAG)
- Final Baseline Human Health and Ecological Risk Assessment. Lower Fox River and Green Bay, Wisconsin. Remedial Investigation and Feasibility Study (The Retec Group, 2002).
- U.S. Army Corps of Engineers/U.S. Environmental Protection Agency Environmental Residue-Effects Database (ERED). (http://www.wcs.army.mil/el/cred)

5.1 DERIVATION OF TRV: FOR BENTHIC ORGANISMS AND FISH

TRVs based on media concentrations are not specific to individual species but instead are applicable to groups of organisms or communities occupying the same medium (e.g., invertebrates in sediment, aquatic biota in surface water). For example, ambient water quality criteria for chemicals in surface water are designed to be protective of all aquatic biota occupying the same aquatic community or body of water. TRVs based on media concentrations are expressed as a concentration (e.g., mgchemical/kg-sediment).

```
E\WORAC\23634880-S5.WPD
```

RFW236-2A-ASQP

Manistique Harbor and River Site Ecological Assessment Report Section: 5 Revision: 1 Date: 2 March 2005 Page: 5-2 of 11

5.1.1 Sediment TRVs

12 N 22

Various agencies have developed sediment quality criteria and benchmarks for the assessment of toxicological effects on sediment-associated biota (ORNL 2004). Note that these benchmarks are not remediation goals; remediation goals must consider the adverse effects on habitat and remobilization of contaminants caused by removal or remediation of sediments (Jones et al., 1996). The sediment benchmarks should not be considered as the sole measure of sediment toxicity; rather, field studies and toxicity tests are primary indicators of sediment toxicity (Jones et al., 1996). The sediment benchmarks provide a means for determining which chemicals are most likely causing toxicity as presented in Jones et al. (1996). The use of multiple benchmarks also provides an indication of the likelihood and nature of effects. For example, exceedance of only one conservatively estimated benchmark may provide weak evidence of real effects, whereas exceedance of multiple benchmarks of varying conservatism may provide strong evidence of real effects (Jones et al., 1996). Sediment benchmarks are presented in Table 5-1.

The sediment benchmarks were obtained from the ORNL RAIS (2004) database, and are a compilation of the following sources (ORNL, 2004):

Assessment and Remediation of Contaminated Sediments (ARCS) Program

Source: U.S. Environmental Protection Agency. 1996a. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius. EPA 905/R96/008. Great Lakes National Program Office, Chicago, IL. http://www.cerc.usgs.gov/clearinghouse/data/brdcerc0004.html) (http://www.cerc.usgs.gov/pubs/sedtox/sec-dev.html)

The majority of the data are for freshwater sediments. The representative effect concentration selected from among the high no-effect-concentrations (NEC) for *Hyalella azteca* and *Chironomus riparius* are presented in U.S. EPA (1996a). It is a concentration above which statistically significant adverse biological effects always occur. Effects may occur below these levels (U.S. EPA, 1996a).

I:\WO\RAC\236\34880-\$5.WPD

RFW236-2A-ASQP

stique Harbor and River Site **Ecological Assessment Report** Section: 5 Revision: 1 Date: 2 March 2005 Page: 5-3 of 11

The representative effect concentration selected from among the ER-Ls and TELs for Hyalella azteca and Chironomus riparius are presented in U.S. EPA (1996a). The TEC is the geometric mean of the 15th percentile in the effects data set and the 50th percentile in the no effects data set. It is a concentration that represents the upper limit of the range dominated by no effects data. Concentrations above the TEC may result in adverse effects to these organisms; concentrations below the TEC are unlikely to result in adverse effects. These are possible-effects benchmarks (U.S. EPA, 1996a).

The representative effect concentration selected from among the ER-Ms and PELs for Hyalella azteca and Chironomus riparius are presented in U.S. EPA (1996a). The PEC is the geometric mean of the 50th percentile in the effects data set and the 85th percentile in the no effects data set. It represents the lower limit of the range of concentrations usually associated with adverse effects. A concentration greater than the PEC is likely to result in adverse effects to these organisms. These are probableeffects benchmarks.

Canadian ISQG and PEL

Source: Environment Canada's Canadian Environmental Quality Guidelines web page at http://www.ec.gc.ca/ceqg-rcqe/English/Ceqg/Sediment/default.cfm and http://www.ccme.ca/assets/pdf/e1 06.pdf. Updated 2002.

The Water Quality Guidelines Task Group of the Canadian Council of Ministers of the Environment (CCME) developed chemical concentrations recommended to support and maintain aquatic life associated with bed sediments. These values are derived from available scientific information on biological effects of sedimentassociated chemicals and are intended to support the functioning of healthy ecosystems. The Sediment quality guidelines protocol relies on the National Status and Trends Program approach and the Spiked-Sediment Toxicity Test approach. The Interim Sediment Quality Guidelines (ISQG) correspond to threshold level effects below which adverse biological effects are not expected. The Probable Effects Levels (PEL) correspond to concentrations above which adverse biological effects are frequently found.

Consensus PEC and TEC

Source: MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. "Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems". Arch. Environ. Contam. Toxicol. 39: 20-31.

ENWORACV236/34EBD-SS.WPD

Manistique Harbor and River Site Ecological Assessment Report Section: 5 Revision: 1 Date: 2 March 2005 Page: 5-4 of 11

Consensus-based Sediment Quality Guidelines (SQG) represent the geometric mean of published SQGs from a variety of sources. Sources for Probable Effect Concentrations (PEC) include probable effect levels, effect range median values, severe effect levels, and toxic effect thresholds (see MacDonald et al. 2000 for references). PECs are intended to identify contaminant concentrations above which harmful effects on sediment-dwelling organisms are expected to occur more often than not. TECs are intended to identify contaminant concentrations below which harmful effects on sediment-dwelling organisms are not expected.

EPA Region 4

Source: U.S. Environmental Protection Agency Region IV. 1995b. *Ecological screening values, Ecological Risk Assessment Bulletin No. 2,* Waste Management Division. Atlanta, Georgia. (superceded by http://www.epa.gov/region04/waste/ots/ecolbul.htm#tbl3).

The higher of the EPA Contract Laboratory Program Practical Quantitation Limit and the Effects Value, which is the lower of the ER-L and the TEL. These are possible effects benchmarks.

EPA Region 5 ESLs - Sediment

Source: U.S. Environmental Protection Agency Region V. 2003a. August 2003 revision of the ESLs (formerly EDQLs) at http://www.epa.gov/reg5rcra/ca/ESL.pdf

The ESL reference database consists of Region 5 media-specific (soil, water, sediment, and air) Ecological Screening Levels (ESLs) for RCRA Appendix IX hazardous constituents. The ESLs are initial screening levels with which the site contaminant concentrations can be compared. The ESLs help to focus the investigation on those areas and chemicals that are most likely to pose an unacceptable risk to the environment. ESLs also impact the data requirements for the planning and implementation of field investigations. ESLs alone are not intended to serve as cleanup levels.

EPA Region 6 Ecological Screening Benchmarks: Freshwater Sediment

Source: Texas Natural Resource Conservation Commission. 2001. Guidance for Conducting Ecological Risk Assessments at Remediation Sites in Texas. Toxicology and Risk Assessment Section, Texas Natural Resource Conservation Commission, Austin, TX. RG-263 (revised).

RFW236-2A-ASQP

Manistique Harbor and River Site Ecological Assessment Report Section: 5 Revision: 1 Date: 2 March 2005 Page: 5-5 of 11

U.S. EPA Region 6 recommends use of benchmarks developed for the Texas Natural Resource Conservation Commission (TCEQ, 2001). These benchmarks are conservative screening level values intended to be protective of benthic biota. Values were compiled from a prioritized list of published values. The benchmark for PCBs is the Lowest Effects Levels (LELs) from Persaud et al. (1993).

FDEP TEL and PEL

Sources: Long, E.R. and L.G. Morgan 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. National Oceanic and Atmospheric Administration. Seattle, WA.

MacDonald, D.D. 1994. Approach to the Assessment of Sediment Quality in Florida Coastal Waters. Office of Water Policy, Florida Department of Environmental Protection, Tallahassee, Florida. (http://www.dep.state.fl.us/dwm/documents/sediment/volume1.pdf)

Sediment quality assessment guidelines developed for the State of Florida for 34 priority substances based on the approach recommended by Long and Morgan (1990). They are intended to assist sediment quality assessment applications, such as identifying priority areas for non-point source management actions, designing wetland restoration projects, and monitoring trends in environmental contamination. They are not intended to be used as sediment quality criteria.

NOAA ERL and ERM

Source: NOAA's National Status and Trends Program, Effects range low (ERL) and effects range median (ERM) Sediment Quality Guidelines. http://response.restoration.noaa.gov/cpr/sediment/SPQ.pdf

Ontario Low and Severe

Source: Persaud, D, R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of the Environment and Energy. August. ISBN 0-7729-9248-7. (Available at http://www.ene.gov.on.ca/envision/gp/B1_3.pdf)

E\WO\RAC\236\34880-S5.WPD

Manistique Harbor and River Site Ecological Assessment Report Section: 5 Revision: 1 Date: 2 March 2005 Page: 5-6 of 11

OSWER

Source: U.S. Environmental Protection Agency. 1996b. *Ecotox thresholds*. ECO Update 3 (2):1-12. Office of Solid Waste and Emergency Response. (http://www.epa.gov/superfund/programs/risk/eco_updt.pdf)

5.1.2 Fish Tissue TRVs

0

Exposure of fish to potentially deleterious concentrations of PCBs is evaluated based on tissue residues. The U.S. Army Corps of Engineers/U.S. Environmental Protection Agency (2004) has established the Environmental Residue-Effects Database (ERED), which is a compilation of data, taken from the literature, where biological effects (e.g., reduced survival, growth, etc.) and tissue contaminant concentrations were simultaneously measured in the same organism. The database contains information on a broad range of biological effects caused by the presence of a particular contaminant in the tissue of an organism, from the induction of particular enzymes or enzyme systems to whole-organism effects on survival, growth, or reproduction. Currently, the database is limited to those instances where biological effects observed in an organism are linked to a specific contaminant within its tissues. This database was searched for PCB effects on fish. Effects concentrations for PCBs in whole body and fillet body parts are summarized in Appendix B. Both no effect TRVs and effect TRVs for fish exposure were selected from the ERED database based on the similarity of the test species and the target species for this site. For the bottomfeeder (i.e., omnivorous) species, the lowest whole body tissue concentration of 0.14 mg/kg PCBs in zebra danio (Danio rerio) was selected as the no effect TRV. This is the lowest no observed effect dose (NOED) for reproduction and mortality of the omnivorous test species. The lowest LOED for reproduction and mortality was 1.1 m/kg for the zebra danio and was selected as the effect TRV for the omnivorous bottomfeeders. For salmonid species, NOEDs range from 0.16 mg/kg for growth in juvenile chinook salmon (Oncorhynchus tshawytscha) to 81 mg/kg for growth and survival of juvenile rainbow trout (Oncorhynchus mykiss). The median of the ordered NOEDs (0.98 mg/kg for mortality of chinook salmon) juveniles was selected as the no effect TRV for predator (carnivorous) species. The LOED of 2.3 mg/kg for growth of coho salmon (Oncorhynchus kisutch) was used as

RFW236-2A-ASQP

DOCUMENT EPA ARCHIVE 2 Manistique Harbor and River Site Ecological Assessment Report Section: 5 Revision: 1 Date: 2 March 2005 Page: 5-7 of 11

the effect TRV for predator (carnivorous) species. In channel catfish fingerlings, a whole body tissue concentration of 2.172 mg/kg was the NOED for mortality while for immature catfish, the whole body tisse concentration of 14.3 was the LOED for growth. Since toxicity data was available for channel catfish, these values were used as the no effect TRV and the effect TRV for this species. TRVs for target fish species are summarized in Table 5-2

5.2 DERIVATION OF TRVs FOR BIRDS AND MAMMALS

TRVs presented in the form of an acceptable daily dose are based on field and laboratory tests for birds, mammals, or other organisms and indicate the absence or presence of adverse ecological impact. For example, daily doses for mammal species such as mice, rats, or dogs are readily available in the literature for many chemicals at levels often indicative of adverse effects. For chemical exposures, dose is expressed in mg-constituent/kg-body weight/day as an administered dose (mg/kg-bw/day). There are no U.S. EPA-established, acceptable daily doses for ecological receptors; therefore, dose-based TRVs were developed from the available scientific literature.

The derivation of toxicity reference values for the bird and mammal target receptors is based on the methodology outlined in the Review of the Navy-EPA Region 9 BTAG Toxicity Reference Values for Wildlife document as prepared for the U.S. Army Biological Technical Assistance Group and U.S. Army Corps of Engineers by CH2M Hill (2000). The BTAG has developed TRVs for mammals and birds for 20 chemicals, with the most recent recommended values presented in a 11/21/2002 revision. The no effect TRV is consistent with a chronic no-effect level; the no-effect level is the highest dose at which no effect to the test organism was observed. The effect TRV is consistent with a low effect level. An effect level is the dose at which a specific biological effect was seen in the laboratory test organism. Effect TRVs were selected from approximately the middle range of all sublethal effects for a particular chemical.

E\WO\RAC\236\34880-S5.WPD

RFW236-2A-ASOP

Manistique Harbor and River Site Ecological Assessment Report Section: 5 Revision: 1 Date: 2 March 2005 Page: 5-8 of 11

Allometric modeling from Sample and Arenal (1999) was used for interspecies extrapolations (when the test species is different from the wildlife or target receptor species). Body weights for test organisms were based on those from the actual test study whenever possible. When body weights were not available for the actual test species, then the weight of the same species from another study was used. The equation presented below was used to estimate the TRV for target bird and mammal species.

$$TRV_{wildlife \, species} = TRV_{test \, species} \left[\frac{BW_{test \, species}}{BW_{wildlife \, species}} \right]^{1-b}$$

where:

TRV _{wildlife} species	= TRV for target avian or mammalian wildlife species.
TRV _{test species}	= NOAEL for avian or mammalian test species.
BW _{test species}	= body weight of avian or mammalian test species.
BW _{wildlife} species	= body weight of avian or mammalian wildlife species.
b	= allometric scaling factor that is specific to either birds or mammals.

Allometric scaling factors of 1.2 for birds and 0.94 for mammals were used (Sample and Arenal, 1999). TRVs for the bald eagle and the mink are summarized in Table 5-3.

I:\WO\RAC\236\34880-S5.WPD

RFW236-2A-ASQP

Table 5-1 Sediment Screening Benchmarks Manistique Harbor and River Site Manistique, Michigan All concentrations in mg/kg

أستنب

E.

	·	-			0		Caracteria			**	NO		OWNER	0			224	
	1 1		ARCO						·				- MALINER					
Auslyte	CAS Number	NEC	PEC	TEC	19QG	PEL	PEC	TEC	PEL	TEL_	ERL	ERM	BT	Lew	Severe	RA	RS ESL	R6-FW
CB-1016	12674112	•				•	•	•	•	•	· ·	•	•	0.007	0.53		•	0.007
CB-1221	11104282	-		•		•	•	•	•	-	•	•				0,06	•	•
CB-1212	11141165	•							•	•					•	•	•	•
CB-1242	53469219			-	•		•	•	-	•	•	•		•	•	•	•	a
CB.1248	12672296	•	•	•	•		•	-	•	-	•	-		0.03	1.1	•	•	0.03
CB-1244	11097691	_			0.06	0.34	•		-		•			0.06	0.34	•		0.06
1340	11006825							•	-	•	•		•	0.005	0.24	•	•	0.005
	1336363	0 194	0.24	0 01	0.0341	0 277	0.67	0.05	0.18	0.02	0.02	0.18	0.02	0.07	5.3	0,03	0,03	0,341
CDB (ROUB)	1 1000001	A 124	1 4.94			3 . Will !	1 <u> </u>	The second second										

Source' ORNL RAIS, 2004.

NEC - No effect concentration

PEC - Probable effect concentration

TEC - Theshold effect concentration

ISQG - Interim sediment quality guideline

PEL - Probable effect level TEL- Threshold effect level

ERL - Effects range low

ERM - Effect range median

ET - Effects threshold

ARCS - Assessment and Remediation of Contaminated Sediments

La la

أسيسا

FDEP - Florida Department of Environmental Protection

NOAA - National Oceanic and Atmospheric Administration

EPA - U.S. Environmental Protection Agency

R4 - U.S. EPA Region 4

R5 ESL - EPA Region 5 ecological screening level R6 FW - U.S. EPA Region 6 freekwater

OSWER - Office of Solid Waste and Emergency Response

I:\WOWRAC\23634880-TS-1.WPD

RFW236-2A-ABQP

.

.

This document was propared by Westen Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

DOCUMENT ARCHIVE ◄ п S

Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 5-10 of 11

Table 5-2 Toxicity Reference Values (TRVs) for PCBs for Target Fish Species Manistique Harbor and River Site Manistique, Michigan

E

Receptor Species	Receptor Species Test Species Whole Body Wet (mg/kg)		Effect Class	Toxicity Measure	Species Feeding Behavior	Author		
Channel catfish	Catfish-							
	Channel	2.172	Mortality	NOED	Omnivore	Hansen LG, WB Wiekhurst, J Simon, 1976		
	Catfish-			· · · · · · · · · · · · · · · · · · ·		Hansen, L.G., W.B. Wiekhorst and J. Simon,		
	Channel	14.3	Growth	LOED	Omnivore	1998		
White sucker/shorthead						Orn, S., P.L. Anderson, L. Forlin, M. Tysklind,		
redhorse/longnose	Zebra Danio	0.14	Mortality/Reproduction	NOED	Not Specified	L. Norrgren, 1998		
sucker						Orn, S., P.L. Anderson, L. Forlin, M. Tysklind,		
	Zebra Danio	1.1	Reproduction	LOED	Not Specified	L. Norrgren, 1998		
Walleye/smallmouth					Carnivore-aquatic insects,			
bass	Salmon-coho	2.3	Growth	LOED	fish, inverts	Gruger, E.H., T. Hurley and N.L. Karrick, 1976		
	Salmon -				Carnivore-aquatic insects,	Powell DB, RC Palm Jr. A Skillman, K		
	Chinook	0.98	Mortality	NOED	fish, inverts	Godtfredsen, 2003		

Source: ERED database; see Table B-1.

1:\WO\RAC\236\34880-T5-2.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

TABLE 5-3 TOXICITY REFERENCE VALUES (TRVs) FOR BALD EAGLE AND MINK MANISTIQUE HARBOR AND RIVER SITE MANISTIQUE, MICHIGAN

0000	Test Basedon	Test Species Chronic NOAEL Doce	Test Species Chronic LOAEL Deso	Toris Radaciat	Test Species Body Weinber (her)	Body Weight Reference	Target Wildlife Speaks -No Effect TRV (meffection)	Target Wildlife Species - Effect TRV (me/imiday)			
CORC	i tarahana				TIONS FOR BA						
	1 Chinhan			Bannduntin	1 1 10110 1000	U.S. EPA (1988)	1 13R-01	1.598+00			
Amples 1248	Bernet Cod	4 108-01	4 10E+05 C	Reproduction	1.618-01	Dunning (1964)	7 838-01	7.638+00			
EAmolog 1264	Bine asshed Thesenst	1.608-01	1.808400	Reportuniten	1.008400	11 8 EPA (1993a)	2 448-01	2 448+00			
Ampler 1240	Rise sected Planet	1 1 1 1 1 1 1	1.802+00 h	Reproduction	1.002+00	U.S. EPA (1993a)	2.448-01	2.448+00			
	Intel annual comments	TOXICITY	REFERENCE VAL	UE (TRY) CALC	ULATIONS FO	RMINK					
inca.	Mink	1 5.00 2-02	1 1.00E-01 4	Reproductive	E.008-01	U.S. EPA 19954	5.008-02	1.002-01			
Amelor 1242		6.908-02	6.90E-01 A	Reproduction	8.008-01	U.S. EPA 1995e	6.901-02	6,908-01			
Ampler 1254		1.405-01	6.90E-01 B	Reproduction	8.00E-01	U.S. EPA 1995e	1.408-01	6.908-01			
Arnelor 1260	Mink	1.40E-01 b	6.90E-01	Regroduction	8.00E-01	U.S. EPA 1995e	1.408-01	6.901-01			
P	The second se	·	······································								
Target Species:	Body Weights:	Units: W	sight References:								
			-								
Baid esgie	4.6	kg U.	5. EPA 1995c								
Mink	0.8	kg U.	5. EPA 1995o								
Accountings		Te	rget Avian Species TRV =	• TRV _{unt species} • (BW _u	as anta/BW ungat anta)	1-1.3					
COEC - Comin	nt of ecological concern	Te	rest Manual TRV = TRV	/* (BW	/BW) ^{1.4.94}						
LOARL & Low	Observed Advanse Effer	t Laval Re									
NOARL = No Of	served Adverse Effect Lo	val No	body weight adjustment	was performed when the	he test species is the p	ame as the target wild	life species (i.e., for m	ink)			
								•			

Natas

a - TRVs for test species obtained from ORNL's Textoological Benchmarks for Wildlife: 1996 Revieton . ES/ER/TM-56/R3.

b = TRV based on Aroclor-1254 as a surrogate.

e = U.S. EPA Region 9 Biological Technical Assistance Group (BTAG) Recommended Toxiolty Reference Values for Birds (Revision Date 11/21/2002).

d - Based on TRVs used in Fox River ERA (The Retec Group, 2002.).

e = McLane, M. and D. Hughes. 1980. Reproductive success of Screech owls fed Arcelor 1248. Arch. Environ. Contam. Toxicol. 9:661-665.

f = A LOAEL was not available; the NOAEL was extrapolated to a LOAEL by multiplying by a factor of 10.

References

Dunning, 1984. Body weights of 686 species of North American birds . West. Bird Banding Assos. Monogr. No. 1. Eldon Publ. Co. Cave Crit, AZ. 38 pp.

U.S. EPA, 1988. Recommendations for and Documentation of Biological Values for Use in Risk Assessment.

U.S. EPA, 1993a. Great Lakes water quality initiative oriteria documents for the protection of wildlife (proposed): DDT, Mercury, 2,3,7,8-TCDD, PCBs. EPA/822/R-93-007. Office Science and Technology, Washington, D.C.

U.S. EPA, 1995o. Final Water Quality Guidance for the Great Lakes System, 40 CFR Parts 9, 122, 123, 131and 132, 23 Marsh 1995.

Serspie, B.E., and C.A. Arenal. 1999. Allometric Models for Interspecies Extrapolation of Wildlife Toxicity Data . Bull. Environ. Contact. Toxicol. 62:653-663.

The Retes Group. 2002. Final Baseline Human Health and Ecological Risk Assessment. Lower Fox River and Green Bay, Wisconsin. Remedial Investigation and Feasibility Study. Propered for Wisconsin Department of Netural Resources, December 2002.

L:WOVRAC123634880-T5-J.WPD

RFW236-2A-ABQP

This document was prepared by Westen Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.
Manistique Harbor and River Site Ecological Assessment Report Section: 6 Revision: 1 Date: 2 March 2005 Page: 6-1 of 13

SECTION 6

RISK CHARACTERIZATION

The risk characterization integrates the information from the problem formulation and the exposure and ecological effects characterizations to estimate the nature and extent of potential ecological risk. The ecological risk characterization for this assessment is based on the hazard quotient (HQ) method as summarized below.

6.1 HAZARD QUOTIENT METHOD

The hazard quotient (HQ) method is used as an indicator of the risks posed to surrogate ecological receptors from exposure to site-related contaminants (U.S. EPA, 1996c). The hazard quotient compares exposure values to TRVs, and can be expressed as the ratio of a potential exposure level to the TRV:

$$HQ = \frac{Exposure}{TRV}$$

where:

Exposure = Exposure concentration at the exposure point (e.g., mg-contaminant/kgsediment) or the estimated contaminant dose at the exposure point (mg/kgbw/day).

TRV = Toxicity reference value, i.e., effect dose or effect criteria (in units that match the exposure concentration or exposure dose)

If the calculated HQ exceeds unity (i.e., >1), then it simply indicates that the target receptor may be at risk to an adverse effect from that chemical through that exposure route. Because TRVs incorporate a number of extrapolation factors, if a TRV is exceeded (meaning the HQ exceeds unity), it does not necessarily indicate that an adverse effect will occur. Further evaluation may be needed for those chemicals with a HQ that exceeds one. HQs were calculated for both the no effect TRV and effect TRV.

I:\WO\RAC\236\34880-S6.WPD

RFW236-2A-ASQP

EPA ARCHIVE DOCUMENT Manistique Harbor and River Site Ecological Assessment Report Section: 6 Revision: 1 Date: 2 March 2005 Page: 6-2 of 13

Exposures to the same chemical through multiple exposure routes (e.g., ingestion of sediment and tissue) or mediums were conservatively assumed to be additive. Consequently, a HQ for a specific chemical examines the potential for risk posed by that chemical through more than one exposure route or medium. The HQ is an expression of the additivity of non-carcinogenic health effects. For example, the HQ for an individual chemical over several media and routes of exposure is determined for a receptor as follows:

HQ_{chemical} = HQ_{reade 1} + HQ_{reade 2} + HQ_{reade 3} +HQ_{reade a}

Where:

=	Hazard quotient for a specific chemical.
=	Hazard quotient for the same chemical through exposure route 1.
=	Hazard quotient for the same chemical through exposure route 2.
=	Hazard quotient for the same chemical through exposure route 3.

For benthic organisms, the range of sediment benchmarks was used as TRVs to calculate HQs. For fish, both NOEDs and LOEDs were used as no effect TRVs and effect TRVs to calculate HQs. For the food web modeling, HQs were calculated for both the no effect TRV and the effect TRV.

6.2 <u>SUMMARY OF RESULTS</u>

Aquatic organisms may be exposed to PCBs directly or through the food chain. The potential risk to the target ecological receptors is characterized in this subsection.

6.2.1 Benthic Organisms

To assess the potential for adverse effects on benthic organisms from exposure to potentially toxic sediment, the range of detected sediment concentrations in the Manistique Harbor and River were compared to sediment screening benchmarks (Table 6-1). The average concentration of PCBs did not exceed the highest benchmark (i.e., Ontario severe effects levels), but the average concentration did exceed the threshold concentrations (i.e., ARCS TEC and Consensus TEC). While these results

L\WO\RAC\236\34880-S6.WPD

RFW236-2A-ASQP

Manistique Harbor and River Site Ecological Assessment Report Section: 6 Revision: 1 Date: 2 March 2005 Page: 6-3 of 13

show a potential for adverse impacts to benthic organisms from sediment exposure, these risks may be localized at particular "hotspots", rather than distributed throughout the harbor and river.

6.2.2 Fish

Exposure of fish to potentially deleterious concentrations of PCBs is evaluated based a comparison of tissue residues to residue effects concentrations (Table 6-2). The mean and 95UCL concentration of total PCBs in the whole body fish tissue for the target species collected from the Manistique Harbor and River were compared to tissue NOEDs and LOEDs for similar fish species. For the bottomdweller (i.e., omnivorous) fish species, the HQs range from 0.017 to 6.9. The HQ exceeded one for the sucker species but not for the channel catfish. The HQs based on the LOED and the 95 UCL tissue concentration did not exceed one any of the bottomfeeder species. For the predator (i.e., carnivorous) fish species, the HQs range from 0.07 to 0.6. For the predatory fish species, the HQs were less than 1.0 and therefore indicate no risk.

6.2.3 Bald Eagle

The bald eagle may be exposed to PCBs through ingestion of fish and incidental ingestion of sediment. The estimated daily dose and the potential risk to the bald eagle are presented in Table 6-3. The HQ based on the no effect TRV was 0.51 for total PCBs and the HQ based on the effect TRV was 0.036 for total PCBs. All HQs for the individual Aroclors were less than 1. These HQs were less than one and therefore indicate no risk.

6.2.4 Mink

The mink may be exposed to PCBs through ingestion of fish and incidental ingestion of sediment. The estimated daily dose and the potential risk to a mink are presented in Table 6-4. The HQ based on the no effect TRV was 1.2 for total PCBs and the HQ based on the effect TRV was 0.6 for total PCBs. For Aroclor 1248, the HQ based on the no effect TRV was 1 and the HQ based on the effect

I:\WO\RAC\236\34880-S6.WPD

Manistique Harbor and River Site Ecological Assessment Report Section: 6 Revision: 1 Date: 2 March 2005 Page: 6-4 of 13

TRV was 0.1. The HQs based on the no effect TRV exceeded one for the total PCBs indicating potential risk. However, the HQs based on the effect TRV for total PCBs and for the individual Aroclors were less than 1, suggesting that this potential risk is limited.

6.3 UNCERTAINTY

Virtually every step in the risk assessment process requires numerous assumptions, all of which contribute to uncertainty in the risk evaluation. The objectives of this uncertainty section are to:

- Provide to the appropriate decision makers a summary of those factors that significantly influence the risk results, evaluate their range of variability, and assess the contribution of these factors to the under- or overestimation of risk.
- Discuss the data underlying the assumptions that most significantly influenced the risk to highlight the strengths and weaknesses of the risk assessment results.

General and site-specific uncertainties in this ERA are discussed in the following subsections.

6.3.1 Uncertainty Associated With Data Evaluation and Reduction

Following is a discussion of uncertainties related to data evaluation and reduction.

Various types of data qualifiers are attached to analytical data by either the laboratory conducting the analyses or by the person performing data validation. A common data qualifier in data packages is the "J" qualifier. Data qualified with a J are estimated concentrations reported below the sample quantitation limit (SQL), but exceed the method detection limit (MDL). The concentration is considered an estimated value. In this ERA, estimated data were used the same way as positive data detected above the SQL. Sometimes, a level of bias is associated with the estimated data, indicating whether the concentration is biased high or low. Other times, the level of bias is unknown. The use of estimated data as the reported concentration may result in either an under- or overestimation of the actual concentration.

RFW236-2A-ASQP

Manistique Harbor and River Site Ecological Assessment Report Section: 6 Revision: 1 Date: 2 March 2005 Page: 6-5 of 13

The data set for a particular chemical generally will contain some samples with positive results and others with non-detect results. The non-detect results in this ERA have been included at one-half the SQL in the calculation of the 95% UCL. The SQL represents the lowest value at which the element or compound may be positively identified in a sample preparation. The chemical may be present at a concentration just below the SQL, or it may not be present in the sample at all. Including sample non-detects at one-half the SQL limit in the calculation of the 95% UCL may result in an underestimation or overestimation of the actual exposure concentration.

6.3.2 Uncertainty Associated With Problem Formulation and Characterization of Exposure

Following is a discussion of uncertainties related to problem formulation and exposure characterization.

- Conceptual model development may account for one of the most important sources of uncertainty in a risk assessment. If important relationships are missed or specified incorrectly, the risk characterization may misrepresent actual risks. The conceptual model developed for the Harbor and River includes those groups of species and feeding guild expected to be maximally exposed to PCBs in an aquatic environment (i.e., piscivores). Although some species were not evaluated directly, the potential for risk to those species was not expected to be greater than those evaluated.
 - The EPC used in risk assessments to estimate exposure intakes should be based on the arithmetic average concentration for a contaminant based on a set of site sampling results (U.S. EPA, 1997). Because of the uncertainty associated with estimating the true average concentration at a site, the 95% UCL of the arithmetic mean is used in risk assessments as a conservative estimate of the average concentration. The 95% UCL provides reasonable confidence that the true site average will not be underestimated. EPCs for sediment and fish tissue were based on the 95% UCL of the arithmetic mean. Note, the maximum detected concentration was selected to estimate the EPC if its concentration was less than the 95% UCL concentration.
 - For each target wildlife receptor, site use factor (SUF) and dietary composition factors (DCF) were conservatively assumed to be 100%. The use of 100% for these factors assumes that the target wildlife species forages for all of its food, all year round, from the harbor and river. These assumptions are very conservative considering the home ranges the mink and bald eagle. In addition, the receptor

I:\WO\RAC\236\34880-S6.WPD

RFW236-2A-ASQP

Manistique Harbor and River Site Ecological Assessment Report Section: 6 Revision: 1 Date: 2 March 2005 Page: 6-6 of 13

species may be foraging on other food sources and food types aside from fish in the Harbor and River, therefore the DCF would be less than 100%. As a result, use of 100% for the aforementioned factors will contribute to an overestimation of risk.

- Ingestion of sediment by the mink and bald eagle is negligible. In addition, most sediment within the Harbor and River would be inaccessible due to the water depth. Thus, including sediment exposure for these receptors results in an overestimation of risk.
- The bioavailability of PCBs in the environmental media and diet of the receptors (e.g., sediment and tissue) was estimated at 100%. In other words, 100% of the concentration of a detected chemical was assumed available for toxicity. In this ERA, bioavailability of PCBs was assumed to be similar to that observed in the toxicity studies reported in the literature. Thus, toxicity may be over- or underestimated, depending in part on the extent to which site-specific compound bioavailability differs from those in studies reported in the literature.
- Historical activities, including sawmill operations and routine dredging, have severely altered the substrate available for the colonization of the river and harbor (Terra Inc., 1994). The substrate in the Manistique River and Harbor includes an accumulation of sawdust and wood chips from sawmills. Grain size analysis of the sediments indicate that they are primarily fine sands, with some silty fine sands. The organic carbon content in the fine sands is low, about 0.1 percent, though higher organic carbon contents (> 1% to 38.6%) were measured in samples with sawdust and leaves. Thus, the substrate provided by the harbor and river is not expected to provide the habitat needed for a thriving benthic community.

6.3.3 Uncertainty Associated With Characterization of Effects

Toxicity of a contaminant is assessed by identifying TRVs in the literature specific to the contaminant and the measurement receptor being evaluated. The following is a discussion of the uncertainties associated with the TRVs.

The TRVs used in risk characterization of this ERA for upper trophic level classspecific guilds (i.e., mink and bald eagle) are provided in terms of dose ingested (mg/kg/day) and are based on laboratory studies. The no effect TRV is consistent with a chronic no-effect level; the no-effect level is the highest dose at which no effect to the test organism was observed. The effect TRV is consistent with a low effect level. An effect level is the dose at which a specific biological effect was seen

RFW236-2A-ASQP

j

I

Manistique Harbor and River Site Ecological Assessment Report Section: 6 Revision: 1 Date: 2 March 2005 Page: 6-7 of 13

in the laboratory test organism. Effect TRVs were selected from approximately the middle range of all sublethal effects for a particular chemical. Suter and others have evaluated data sets from multiple taxonomic groups to derive regressions or distributions describing how the endpoints for different taxa might vary (Suter, 1993). Uncertainties associated with the derivation of wildlife TRV based on data on laboratory animals is provided below (Sample, 1996).

- Variations in physiological or biochemical factors may exist among species; these factors may include uptake, metabolism, and disposition, which can alter the potential toxicity of a contaminant to a particular species.

- Inbred laboratory strains may have an unusual sensitivity or resistance to the tested compound. Behavioral and ecological parameters (e.g., stress factors such as competition, seasonal changes in temperature or food availability, diseased states, or exposure to other contaminants) may make a wildlife species' sensitivity to an environmental contaminant different from that of a laboratory or domestic species.

- Available studies on wildlife or laboratory species may not include evaluations of all significant endpoints for determining long-term effects on natural populations. Important data that may be lacking are potential effects on reproduction, development, and population dynamics following multigeneration exposures.

- If fewer steps are involved in the extrapolation process, then the uncertainty in estimating the wildlife NOAEL is lower. For example, extrapolating from a NOAEL for an appropriate toxic endpoint (i.e., reproductive or population effects) for white laboratory mice (i.e., test species) to white-footed mice (i.e., target wildlife species) that are relatively closely related and of comparable body size would have a high level of reliability. Conversely, extrapolating from a LOAEL for organ-specific toxicity (e.g., liver or kidney damage) in laboratory mice to a non-rodent wildlife species such as mink would have a low level of reliability in predicting population effects among these species.

Chronic TRVs for the eagle were adjusted to the target species using allometric methods. No allometric scaling was done for the mink TRVs since the test species is the same as the target receptor species. The allometric method approach incorporates the use of body scaling parameters (i.e., body weight) to estimate a toxic concentration for a class of organisms (e.g., the toxic dose to birds). There is uncertainty associated with applying a default scaling coefficient, and the applicability of allometric coefficients based on an acute toxicity data to chronic toxicity data is unknown (Sample and Arenal, 1999). Reviews on allometric scaling caution that there are several conditions that need to be met to apply allometric scaling with confidence. For example:

I:\WO\RAC\236\34880-S6.WPD

RFW236-2A-ASQP

Manistique Harbor and River Site Ecological Assessment Report Section: 6 Revision: 1 Date: 2 March 2005 Page: 6-8 of 13

- "[T]he allometric approach is the method of choice [for controlling plasma concentrations of a drug] and can be applied to the data, provided that the pharmacokinetics are first order in each species, the percentage of protein binding is similar and linear over the concentration range of interest, the elimination processes are physical (i.e., renal or biliary), and enough data are available for satisfactory linear regression." (Mordenti, 1986).

- "There is no guarantee that the allometric approach will work. Several reasons for the failure of the allometric equation to describe some data include (1) species differences in binding and metabolic pathways, (2) species differences in target cell sensitivity, (3) schedule dependency due to exposure time differences, and (4) laboratory differences..... When the metabolism produces active metabolites, the factors considered for the allometric model are not, in many cases, relevant. Indeed, it could be argued that the faster metabolism often associated with small animals will make them more vulnerable... because of the relatively higher production of toxic metabolites" (Mordenti and Chappell, 1989).

- "[A]mbiguous results can arise in the allometric when the body weights used of interspecies allometric predictions are not broad, defined, or specified. Any extrapolation outside the range of experimental body size could cause intrinsic errors. This is because these allometric regressions are empirically determined and apply only to the sizes within the ranges of the original data...On the other hand, when the allometric relationship is applied to a narrow range of animal sizes, the power model is less appropriate than the linear model.. Other problems of the allometric prediction arise from statistical complications. First, the potential transformation bias will reduce the quality of prediction." (Wen et al., 1990).

The Environmental Residue-Effects Database (ERED) is a compilation of data, taken from the literature, where biological effects (e.g., reduced survival, growth, etc.) and tissue contaminant concentrations were simultaneously measured in the same organism. Except for the channel catfish, residue-effects data was not available for the target species collected from the Harbor and River. For the omnivorous bottomdwelling species (except the channel catfish), the TRV is based on the zebra danio, an omnivorous species with the lowest NOED and LOED concentrations of all the species listed in the database for PCBs. The highest 95UCL total PCB concentration for the sucker species (2.01 mg/kg) does not exceed the NOED for the channel catfish (2.172 mg/kg). In addition, it is well known that the tissue concentration of a lipophilic toxicant causing the response is directly related to the amount of lipid in an organism. The higher the lipid content, the higher the resistance to the toxicant because a higher proportion of the hydrophobic compound is associated with the lipid and is not available to cause toxicity (Meador et al., 2002;

Manistique Harbor and River Site Ecological Assessment Report Section: 6 Revision: 1 Date: 2 March 2005 Page: 6-9 of 13

Geyer et al., 1993 and 1994). In contrast, lipid levels positively correlate with bioaccumulation and the half-life of absorbed contaminants in receptor species (Geyer et al., 1997). Thus, while receptors with high lipid content will both absorb and retain chemicals to a greater extent, there is potential for increased risk to predators consuming prey with high lipid contents. The average measured lipid contents in the sucker species ranged from 6.1 to 9.9 percent. Thus, use of effects data for a small cyprinid species to represent effects on larger bottomdwelling species may result in an overestimation of risk to the bottomdwelling species.

6.4 RISK DESCRIPTION

Overall, the HQ analysis indicates that exposure to PCBs by piscivorous birds and mammals poses little to no risk to the eagle and the mink. The HQ analysis indicates potentially unacceptable levels of risk to benthic organisms and bottomdwelling species. However, the substrate provided by the Harbor and River is not expected to support a thriving benthic community. The highest tissue residue concentrations were measured in bottomdwelling species, which have high lipid contents. The higher the lipid content, the higher the resistance to the toxicant. Since there is a potential for adverse effects on benthic organisms and fish, continued monitoring of sediment and fish tissue is recommended.

11. J

120

Table 6-1 Sediment Hazard Quotients Manistique Harbor and River Site Manistique, Michigan All concentrations in mg/kg

PCB Concentra Analyte Mean 951 ARCS PCBs (total) 0.74 1.4 Canadian PCB-1254 0.19 0.4		entration	Scre	ening Ben	chmark				Hazar	d Quotient: 95	UCL
Analyte	Mean	95UCL				Hezerd Ou	otient: Mean C	Concentration		Concentration	
ARCS		NEC	PEC	TEC	NEC	PEC	TEC	NEC	PEC	TEC	
PCBs (total)	0.74	1.696	0.194	0.24	0.03	3.8	3.1	25	8.7	7.1	57
Canadian			ISQG	PEL		ISQG	PEL		ISQG	PEL	
PCB-1254	0.19	0.464	0.06	0.34		3.2	0.56		7.7	1.4	
PCBs (total)	0.74	1.696	0.034	0.277		21.7	2.67	l	50	6.1	
Consensus			PEC	TEC		PEC	TEC		PEC	TEC	
PCBs (total)	0.74	1.696	0.67	0.05		1.1	15	ΙΓ	2.5	34	
FDEP			PEL	TEL		PEL	TEL		PEL	TEL	
PCBs (total)	0.74	1.696	0.18	0.02		4.1	37	1	9.4	85	
NOAA			ERL	ERM		ERL	ERM		ERL	ERM	
PCBs (total)	0.74	1.696	0.02	0.18		37	4.1		85	9.4	
OSWER			ET			ET			ET		
PCBs (total)	0.74	1.696	0.02			37	1		85		
Ontario			Low	Severe		Low	Severe		Low	Severe	
PCB-1248	0.55	1.432	0.03	1.5		18	0.37] [48	0.95	
PCB-1254	0.19	0.464	0.06	0.34		3	0.56] [7.7	1.4	ļ
PCB-1260	0.133	0.298	0.005	0.24		27	0.55] [60	1.24	
PCBs (total)	0.74	1.696	0.07	5.3		11	0.14	1	24	0.32	
EPA			R4	R5 ESL	R6-FW	R4	R5 ESL	<u>R6-FW</u>	R4	RS ESL	R6-FW
PCB-1248	0.55	1.432	•	•	0.03	•	•	18	•	•	48
PCB-1254	0.19	0.464		•	0.06	•	•	3.2	•		7.7
PCB-1260	0.133	0.298	•	•	0.005		•	27	•	•	60
PCBs (total)	0.74	1.696	0.03	0.03	0.341	25	25	2.2	57	57	5.0

See Table 5-1 for references for sediment benchmark values. 95UCL = 95% upper confidence limit

76 1

I:\WO\RAC\236\34880-T6-1.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 2 Revision: 1 Date: 2 March 2005 Page: 6-11 of 13

TABLE 6-2 Hazard Quotients for Whole Fish Manistique Harbor and River Site Manistique, Michigan

		Detected		PCB Concen	trations		Fish	TRV	Hazard Qu	otient: NOED	Hazard Qu	otient: LOED	
Species	Analyte	Samples	Minimum	Maximum	Mean*	95 UCL	NOED	LOED	Mean	95 UCL	Mean	95 UCL	
				ADULT 1	FISH TISS	UE							
Bottomfeeders (omni	vores)												
White Sucker	Total PCBs	6/8	0.04	1.16	0.371	0.62	0.14	1.1	2.7	4.4	0.3	zard Quotient: LOED fean 95 UCL 0.3 0.6 0.4 0.9 0.42 0.42 0.017 0.017 .070 0.100 .148 0.265 .074 0.087	
Shorthead Redhorse	Total PCBs	4/4	0.14	1.06	0.453	0.96	0.14	1,1	3.2	6.9	0.4	0.9	
Longnose Sucker	Total PCBs	1/1	0.46	-	0.46	0.46	0.14	1.1	3.3	3.3	0.42	0.42	
Channel Catfish	Total PCBs	1/1	0.25		0.25	0.25	2.172	14.3	0.1	0.1	0.017	0.017	
Predators (carnivore	s)												
Walleye	Total PCBs	10/15	0.05	0.43	0.161	0.231	0.98	2.3	0.2	0.2	0.070	0.100	
Smallmouth Bass	Total PCBs	2/2	0.07	0.61	0.34	0.61	0.98	2.3	0.3	0.6	0.148	0.265	
				YEARLING	<mark> FISH TI</mark> S	SUE							
Walleye	Total PCBs	2/4	0.14	0.199	0.1695	0.199	0.98	2.3	0.2	0.2	0.074	0.087	
NA - Not available.										· · · · · ·			

All fish tissue presented on a wet weight basis.

All concentrations in mg/kg

PCBs were not detected in bottomfeeder yearling fish tissue

95 UCL = 95 percent upper confidence limit.

If a 95UCL could not be calculated, the maximum detected concentration is presented.

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

DOCUMENT EPA ARCHIVE С П

6.....

TABLE 6-3 BALD EAGLE RISK CALCULATIONS MANISTIQUE HARBOR AND RIVER SITE MANISTIQUE, MICHIGAN

Law 1

Link

 \mathbf{Z}_{4}

	Experie	re Point Concept		Sodiment Ingestion	Tissue Ingestion	Total Ingestion		Hae	ard Quotient -	No Effect		Haa	ard Quetient	- Effect
COPEC	Sediment (dry wt)	TL-3 Three	TL-4 These	intako (mg/kg/day)	Latabe (mg/hg/day)	Intaine (mg/hg/day)	No Effect TRV ³ (mg/hg/dey)	Sediment	Tissue	Total	Effect TRV ³ (mg/kg/lisy)	Sediment	Tissue	Total
Aroslor 1248	0	340	61	0,002+00	2.96E-02	2.968-02	7.838-01	0.002+00	3.788-02	3.788-02 <	7.838+00	0.008+00	3,788-03	3.788-03 <1
Aroclor 1254 Aroclor 1260	0.752	256 79	130	1.84E-04 3.42E-05	2.40E-02 8.43E-03	2.428-02 8.47E-03	2.44E-01 2.44E-01	7.538-04	9.848-02 3.458-02	9.918-02 <	2,448+00	7.5315-05	9,84E-03	9.918-03 <1 3.478-03 <1
PCBe	0.798	621	270	1.958-04	5,738-02	5,75B-02	HQ-Ne Effect	8.938-04 1.738-03	1.71B-01 5.07B-01	1.728-01 < 5.098-01 <	HQ-Lew Effect	8.938-05	1.718-02 3.618-02	1.72-02 <1 3.622-02 <1

Notes

<! = Chemical has a heaterd quotient that is less than one.

NA - Not Applicable TRV - Toxicity Reference Value

HQ = Hasard Quotient

¹ EPCs for surface sediment are presented in Table 4-1.

¹ Tissue EPCs are based on the 95UCL wet weight concentration detected in fish (Table 4-1).

³ TRVs derived for the engle are presented in Table 5-3. TRV for Arcelor 1242 is based on TRV for Arcelor 1248.

1.1.1

_1

E___

			Experience Assumptions and Exection:
	Value	Units	
Distance * •	• 0.47583	ig/day-wat wi	
Dalasse * •	. 0.1125	kg/day-dry wt	IRtissue (dry wt.) = IRtissue (wet wt.)*(1-tissue muisture)
IRTL4 dame* -	0.09573	kg/day-wat wi	
IRTLJ times * =	0.38310	kgidag-wat wt	Eagle Intake Equation (Sediment) = ((CF x Ceed) x IReed dry wt x SUF x DCF) / BW
Baed *	- 0.001 125	kg/day-day wi	
Clinese	- dem-specific	ug/tg-wat wt	Eagle Intake Equation (Tissue) = (((OCF x CTL3tissue) x IR TL3 tissue-TL3] + ((OCF x CTL3tissue) x IR TL3 tissue-TL3] x SUF x DCF) / BW
Casel	- dem-specific	mg/tg-dry wi	
Tiesus moisture	4 76.9%	persint	HQ = Intake/TRV
Distary Composition Fastor (DCF)	100%		
Site Use Pastor (SUP)	- 100%		
Organies Conversion Pastor (OCP)	- 1.2-03	merine	
Body Weight (BW)	- 4.60	la la	
	s. The tiesue ingestic	un rate in based in 1	out weight. Sediment ingention rate conservatively assumed to be 1% of flood ingestion rate.
1	> Sum of PB and 17	L4 ingestion rates; i	See Tuble 4-2
) Sun of TL3 and e	wher ingention rate	s; See Tuble 4-3
	I Average value for	rall bostomfooder c	rr predator species; See Tuble 4-2
	a Dietary compositi	an factor who been	d on a conservative assumption of 100% fish from the harbor.
	f Site use factor we	a based on a conse	rvative 100% use of the river and harbor for the engine foreing range.

1:\WO\RAC\236\34880-T6-3andT6-4.WPD

RFW236-2A-ABQP

This document was propared by Westen Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

K

323

TABLE 6-4 MINK RISK CALCULATIONS MANISTIQUE HARBOR AND RIVER SITE MANISTIQUE, MICHIGAN

E I

Ce

	Exposure	Point Concentra	tions ¹	Sediment Ingestion	Tissue Ingestion	Total Ingestion		Hez	rd Quotient -	No Effect			Haza	rd Quotient	- Effect	
	Sediment (dry		TL-4	Intake	Intake	Intake	No Effect TRV ³					Effect TRV ³				
COPEC	()	TL-3 Timme"	l'inve	(mg/lg/day)	(mg/kg/day)	(mg/kg/day)	(mg/kg/day)	Sediment	Tissue	Total		(mg/kg/day)	Sediment	Tissue	Total	
														1		43877
Aroclor 1248	0	340	61	0.00E+00	6,89E-02	6.89E-02	6.90E-02	0.0E+00	1.0E+00	1.0E+00	Ā	6.90E-01	0.0E+00	1.0E-01	1.0E-01	<1
Aroclor 1254	0,752	256	130	3.90E-04	2.87E-02	2.91E-02	1.40E-01	2.8E-03	2.1E-01	2.1E-01	<1	6.90E-01	5.7E-04	4.2E-02	4.2E-02	<1
Aroclor 1260	0,140	79	89	7.27E-05	1.97E-02	1.97E-02	1.40E-01	5.2E-04	1.4E-01	1.4E-01	<1	6.90E-01	1.1E-04	2.8E-02	2.9E-02	<1
							HQ-Ne Effect	3.3E-03	1.3E+00	1.3E+00		HQ-Low Effect	6.7E-04	1.7E-01	1.7E-01	~1
PCBs	0.798	621	270	4.14E-04	5.96E-02	6.01E-02	5.00E-02	8.3E-03	1.2E+00	1.2E+00		1.00E-01	4.1E-03	6.0E-01	6.0E-01	<1

Notes:

 $\overline{<1}$ = Chemical has a hazard quotient that is less than one.

NA = Not Applicable

TRV = Toxicity Reference Value

HQ = Hazard Quotient

¹ EPCs for surface sediment are presented in Table 4-1.

² Tissue EPCs are based on the 95UCL wet weight concentration detected in fish (Table 4-1).

³ TRVs derived for the mink are presented in Table 5-3.

			Exposure Assumptions and Equation:
	Value	Units	
IRtinnae * 🛥	0.1767	kg/day-wat wt	
IRtissue * =	0.0415	kg/day-day wt	Rtissue (dry wt.) = Rtissue (wet wt.)*(1-tissue moisture)
IRTLA tissue * =	0.0177	kg/day-wat wt	
IRTL3 tissue * =	0.15900	kg/day-wat wt	Mink Intake Equation (Sediment) = ((CF x Csed) x IRsed dry wt x SUF x DCF) / BW
IRaed * -	0.000415	kg/day-dry wt	
Ctissus -	chem-specific	mg/kg-wot wt	Mink Intake Equation (Tissue) = {[(OCF x CTL3tissue) x IR TL3 tissue-TL3] + [(OCF x CTL3tissue) x IR TL3 tissue-TL3] x SUF x DCF} / BW
Cand =	chem-specific	mg/kg-dry wt	
Tissue moisture ⁴	76.5%	percent	HQ - Intake/TRV
Distary Composition Factor (DCF) * 😁	100%		
Site Use Factor (SUF) ^f =	100%		
Organics Conversion Factor (OCF) =	1. B-03	mg/µg	
Body Weight (BW) =	0.80	kg	
- 1	The sines in astic	a min in hanad in a	and an and the second second second to be 1% of find incertion rate
	hand on other ine	ention rate: See To	
. 1	7.3 incestion rate	San Table 4.7	
A A	Average value for a	all species: See To	4 ماند
• [Distany compositio	n factor was been	d on a conservative segmention of 100% fish from the barbor.
fs	ite use factor was	bened on a conse	version 100% use of the river and harbor for the minich forestee range.

L\WO\RAC\236\34880-T6-3andT6-4.WPD

RFW236-2A-ASOP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Manistique Harbor and River Site Ecological Assessment Report Section: 7 Revision: 1 Date: 2 March 2005 Page: 7-1 of 6

SECTION 7

REFERENCES

- Beyer, W.N., E. Connor, and S. Gerould. 1994. "Estimates of Soil Ingestion by Wildlife." Journal of Wildlife Management. Volume 58. Pages 375 through 382.
- CH2M Hill. 2000. Review of the Navy-EPA Region 9 BTAG Toxicity Reference Values for Wildlife. Prepared for the U.S. Army Biological Technical Assistance Group and the U.S. Army Corps of Engineers. Prepared by CH2MHill, Sacramento. March, 2000.
- Dunning, 1984. Body weights of 686 species of North American birds. West. Bird Banding Assoc. Monogr. No. 1. Eldon Publ. Co. Cave Crk, AZ. 38 pp.
- Eisler, R. 1986. Polychlorinated biphenyl hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biological Report 85 (1.7).
- Environment Canada's Canadian Environmental Quality Guidelines web page at http://www.ec.gc.ca/ceqg-rcqe/English/Ceqg/Sediment/default.cfm and http://www.ccme.ca/assets/pdf/e1_06.pdf. Updated 2002.
- Geyer, H., I. Scheunert, K. Rapp, I. Gebefügi, C. Steinberg, and A. Kettrup. 1993. The relevance of fat content in toxicity of lipophilic chemicals to terrestrial animals with special reference to dieldrin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Ecotoxicol. Environ. Safety 26:45-60.
- Geyer, H., I. Scheunert, R. Brüggeman, M. Matthies, C. Steinberg, V. Zitko, A. Kettrup, and W. Garrison. 1994. The relevance of aquatic organisms' lipid content to the toxicity fo lipophilic chemicals: toxicity of lindane to differenct fish species. *Ecotoxicol. Environ. Safety* 28:53-70.
- Geyer, H., I. Scheunert, R. Brüggeman, D. Langer, F. Korte, A. Kettrup, M. Mansour, C. Steinberg, N. Nyholm, and D. Muir. 1997. "Half-lives and bioconcentration of lindane (γ-HCH) in different fish species and their relationship with lipid content." *Chemosphere* 35:343-351.
- Jones, D.S., R.N. Hull, and G.W. Suter II. 1996. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment-Associated Biota: 1996 Revision. ES/ER/M-95/R2. Oak Ridge National Laboratory.
- Lockheed Martin, 2003. Final Report, Manistique Harbor Site, Manistique, Michigan. Prepared for U.S. EPA/ERTC. US EPA Work Assignment No. 0-027. March 2003.

Manistique Harbor and River Site Ecological Assessment Report Section: 7 Revision: 1 Date: 2 March 2005 Page: 7-2 of 6

- Long, E.R. and L.G. Morgan 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. National Oceanic and Atmospheric Administration. Seattle, WA.
- MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39: 20-31.
- MacDonald, D.D. 1994. Approach to the Assessment of Sediment Quality in Florida Coastal Waters. Office of Water Policy, Florida Department of Environmental Protection, Tallahassee, Florida. (http://www.dep.state.fl.us/dwm/documents/sediment/volume1.pdf)
- Maughan, J.T., 1993. Ecological Assessment of Hazardous Waste Sites. Van Nostrand. Reinhold, New York.
- McLane, M. And D. Hughes. 1980. Reproductive success of Screech owls red Aroclor 1248. Arch. Environ. Cont. Toxicol. 9:661-665.
- Meador, James P, Tracy K. Collier, and John E. Stein. 2002. Use of tissue and sediment-based threshold concentrations of polychlorinated biphenyls (PCBs) to protect juvenile salmonids listed under the US Endangered Species Act. Aquatic Conserv: Mar. Freshw. Ecosyst. 12: 493-516 (2002) Published online 11 July 2002 in Wiley InterScience (www.interscience.wiley.com).
- Michigan Department of Environmental Quality (MDEQ). 1995. Fish Contaminant Monitoring Program Fish Collection and Processing Procedure. MDEQ (GLEAS - Procedure #31) 31 January 1995.
- Michigan Natural Features Inventory (MNFI). 2005. On-line database. Current as of 1/4/2005.http://web4.msue.msu.edu/mnfi/
- National Oceanic and Atmospheric Administration (NOAA). 1998. NOAA's National Status and Trends Program, effects range low (ERL) and effects range median (ERM) Sediment Quality Guidelines. http://response.restoration.noaa.gov/cpr/sediment/SPQ.pdf.
- Mordenti, J. 1986. Man versus beast: pharmacokinetic scaling in mammals. J Pharm Sci 75:1028-1040.
- Mordenti, J. and W. Chappell. 1989. The use of interspecies scaling in toxicokinetics. In: Toxicokinetics and New Drug Development. Y. Yacobi, J. Skelly, and V. Batra (eds.). Pergamon Press, New York. Pp. 42-96.

- Norton, S.B., D.J. Rodier, J.H. Gentile, W.H. Van der Schalie, W.P. Wood, and M.W. Slimak. 1992. A Framework for Ecological Risk Assessment at the EPA. Envir.Tox. Chem. 11:1663-1672.
- Oak Ridge National Laboratory Risk Assessment Information System (ORNL RAIS). 2004. ORNL RAIS on-line database of ecological benchmarks (http://risk.lsd.ornl.gov/homepage/benchmark.shtml).
- Persaud, D., R. Jaagumagi, and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of the Environment and Energy. August. ISBN 0-7729-9248-7. (Available at http://www.ene.gov.on.ca/envision/gp/B1_3.pdf)
- The Retec Group. 2002. Final Baseline Human Health and Ecological Risk Assessment. Lower Fox River and Green Bay, Wisconsin. Remedial Investigation and Feasibility Study. Prepared for Wisconsin Department of Natural Resources. December 2002.
- Sample, B.E., D.M. Opresko, and G.W. Suter II. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. ES/ER/TM-125. Oak Ridge National Laboratory.
- Sample, B.E., and C.A. Arenal. 1999. Allometric Models for Interspecies Extrapolation of Wildlife Toxicity Data. Bull. Environ. Contam. Toxicol. 62:653-663.
- Suter, G.W. II. 1989. Ecological Endpoints. In: Ecological Assessments of Hazardous Waste Sites: a Field and Laboratory Reference Document. (Warren-Hicks W, Parkhurst BR, Baker SS Jr, eds.). EPA 600/3-89/013, U.S. Environmental Protection Agency, Washington D.C.
- Suter, G.W. II. 1990. Endpoints for Regional Ecological Risk Assessments. Environmental Management. 14: 19-23.
- Suter, G.W., II, 1993. Ecological Risk Assessment. Lewis Publishers, Chelsea, Mich.
- Toxicological Evaluation Research and Risk Assessment, Inc. (TERRA, Inc). 1994. Qualitative Ecological Risk Assessment for Manistique Harbor Revised Draft 25 April 1994.
- Texas Natural Resource Conservation Commission (TNRCC). 2001. Guidance for Conducting Ecological Risk Assessments at Remediation Sites in Texas. Toxicology and Risk Assessment Section, Texas Natural Resource Conservation Commission, Austin, TX. RG-263 (revised).

Manistique Harbor and River Site Ecological Assessment Report Section: 7 Revision: 1 Date: 2 March 2005 Page: 7-4 of 6

- Triad Engineering Incorporated and Terrafirma Environmental, Inc. 2002. Remedial Action Plan Update, Manistique River and Harbor Area of Concern, Manistique, Michigan. Prepared for Great Lakes Commission and Michigan Department of Environmental Quality. September 2002.
- United States Army Corps of Engineers/United States Environmental Protection Agency. 2004. Environmental Residue-Effects Database (ERED). (http://www.wes.army.mil/el/ered).
- United States Environmental Protection Agency (U.S. EPA), 1988. Recommendations for and Documentation of Biological Values for Use in Risk Assessment.
- United States Environmental Protection Agency (U.S. EPA). 1992. Framework for Ecological Risk Assessment. United States Environmental Protection Agency (U.S. EPA). 1992e. Framework for Ecological Risk Assessment. Risk Assessment Forum. EPA/603/R-92/001.
- United States Environmental Protection Ageny (U.S. EPA). 1993a. Great Lakes water quality initiative criteria documents for the protection of wildlife (proposed): DDT, Mercury, 2,3,7,8-TCDD, PCBs. EPA/822/R-93-007. Office Science and Technology, Washington, D.C.
- United States Environmental Protection Agency (U.S. EPA). 1993b. Wildlife Exposures Factors Handbook. Office of Health and Environmental Assessment and Office of Research and Development, EPA/600/R-93/187b.
- United States Environmental Protection Agency (U.S. EPA). 1995a. Interagency Review Team Assessment of Remediation Technologies, Manistique River and Harbor Area of Concern.
- United States. Environmental Protection Agency Region IV (U.S. EPA Region IV). 1995b. Ecological screening values, Ecological Risk Assessment Bulletin No. 2, Waste Management Division. Atlanta, Georgia. (superceded by http://www.epa.gov/region04/waste/ots/ecolbul.htm#tbl3).
- United States Environmental Protection Agency (U.S. EPA). 1995c. Final Water Quality Guidance for the Great Lakes System. 40 CFR Parts 9, 122, 131, and 132.March 23, 1995.
- United State Environmental Protection Agency (U.S. EPA). 1996a. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius. EPA 905/R96/008. Great Lakes National Program Office, Chicago, IL. <u>http://www.cerc.usgs.gov/clearinghouse/data/brdcerc0004.html</u> and <u>http://www.cerc.usgs.gov/pubs/sedtox/sec-dev.html</u>

Manistique Harbor and River Site Ecological Assessment Report Section: 7 Revision: 1 Dute: 2 March 2005 Page: 7-5 of 6

- United States Environmental Protection Agency (U.S. EPA). 1996b. OSWER (Office of Solid Waste and Emergency Response). 1996. Ecotox thresholds.. ECO Update 3 (2):1-12. (http://www.epa.gov/superfund/programs/risk/eco_updt.pdf)
- United States Environmental Protection Agency (U.S. EPA). 1996c. Proposed Guidelines for Ecological Risk Assessment. EPA/630/R-95/002B. August 1996.
- United States Environmental Protection Agency (U.S. EPA). 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. Emergency Response Team. Edison, NJ. 5 June 1997.
- United States Environmental Protection Agency (U.S. EPA). 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F. January 1998.
- United States Environmental Protection Agency Region 9, 2002. Recommended Toxicity Reference Values for Birds and Mammals (Revision Date 11/21/2002). Biological Technical Assessment Group (BTAG) (http://www.dtsc.ca.gov/ScienceTechnology/eco.html#BTAG).
- United States Environmental Protection Agency Region V (U.S. EPA Region V). 2003a. See the August 2003 revision of the ESLs (formerly EDQLs) at http://www.epa.gov/reg5rcra/ca/ESL.pdf

United States Environmental Protection Agency (U.S. EPA). 2003b. ProUCL (Version 3.0)

United States Environmental Protection Agency (U.S. EPA). 2003c. Manistique River Area of Concern. Last updated on Wednesday, April 9th, 2003 URL: http://www.epa.gov/glnpo/aoc/manistique.html

Wen, U., J. Kalff, and R. Peters. 1999. Pharmocokinetic modeling in toxicology: a critical perspective. *Environ Rev* 7:1-18.

- Weston Solutions, Inc. (WESTON). 2003. Final Comprehensive Post-Removal Summary Report. Manisitique Harbor and River Site (DRAFT). U.S. Route 2 Highway Bridge, Manistique, Michigan. Prepared for U.S. EPA Emergency and Remedial Response Branch Region V. TDD Number 0104-006A, Document Control Number 78-2A-ADDB.
- WESTON. 2004a. Quality Assurance Project Plan. Manistique Harbor and River Site, Manistique, Michigan. 12 August 2004, U.S. EPA Contract No.: 68-W7-0026, Work Assignment No.: 236-TATA-O5FV, Document Control No.: RFW236-2E-AQXU.

Manistique Harbor and River Site Ecological Assessment Report Section: 7 Revision: 1 Date: 2 March 2005 Page: 7-6 of 6

WESTON. 2004b. Field Summary Report, Manistique Harbor and River Site, Manistique, Michigan. 18 October 2004, U.S. EPA Contract No.: 68-W7-0026, Work Assignment No.: 236-TATA-05FV, Document Control No.: RFW236-2A-ARJZ

5000

WESTON. 2005. Data Evaluation Report. 17 February 2005, U.S. EPA Contract No.: 68-W7-0026, Work Assignment No.: 236-TATA-O5FV, Document Control No.: RFW236-2A-ASJY.

APPENDIX A

Analytical Data Tables

. سنة

TABLE A-1 FISH TISSUE DATA (WHOLE BODY) MANISTIQUE HARBOR AND RIVER SITE MANISTIQUE, MICHIGAN

_						Tissu	e Concentratio	n		
Sample ID	Species	Area	Age	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCB **	% Lipid - C	% Lipid - F	% Moisture
Adult Predato	Species									
MH1-AF01	WALLEYE	River	2+	0.13	0.07	< 0.099	0.17	1	0.6	
MH1-AF02	WALLEYE	River	2+	< 0.099	0.19	< 0.099	0.19	4.6	1.3	
MH1-AF03	WALLEYE	River	2+	0.09	0.07	0.04	0.09	2.6	1.3	
MH1-AF04	WALLEYE	River	3+	0.09	0.23	0.11	0.39	3.7	0.5	
MH1-AF05	WALLEYE	River	2+	< 0.099	0.07	< 0.099	0.07	4	0.3	
MH1-AF08	WALLEYE	River	2+	< 0.099	< 0.099	0.19	0.19	6.7	0.7	
MH1-AF14	WALLEYE	River	3+	< 0.099	0.11	0.05	0.14	5.4	0.35	81.5 F
MH1-AF18	WALLEYE	River	2+	< 0.099	0.09	0.13	0.13	5.9	0.4	
MH1-AF19	WALLEYE	River	2+	< 0.099	< 0.099	0.05	0.05		1.5	
MH1-AF21	WALLEYE	River	2+	< 0.099	0.09	< 0.099	0.09			79.3 F
MH1-AF22	WALLEYE	River	3+	< 0.099	0.06	0.06	0.06	-	-	
MH1-AF24	SMALLMOUTH BASS	River	4+	0.06	< 0.099	0.06	0.07	-	1.6	77 F
MH1-AF27	WALLEYE	River	3+	< 0.099	0.29	0.16	0.43	11.4	-	
MH1-AF28	SMALLMOUTH BASS	River	4+	< 0.099	0.44	0.19	0.61	13.8	1.6	
MH1-AF29	WALLEYE	River	3+	< 0.099	0.09	0.09	0.09	4.23	1.59	
Aduit Bottomf	eder Species			<u>مان پر محمد الل</u>		- k-170				
MH1-AF06	WHITE SUCKER	River	6+	0.54	0.51	0.13	1.16	3.8	1.9	
MH1-AF10	WHITE SUCKER	River	4+	0.34	0.18	0.04	0.54	7.9	1	79.3 F
MH1-AF12	WHITE SUCKER	Inner Harbor	9+	0.099 U	0.099 U	0.04	0.04	3.4	0.6	62.5 C: 77.9 F
MH1-AF15	WHITE SUCKER	River	8+	0.18	0.22	0.08	0.44	4.7	1	80.8 F
MH1-AF16	WHITE SUCKER	River	3+	0.17	0.10	0.04	0.27	5.4	0.7	79.2 F
MH1-AF17	WHITE SUCKER	River	3+	0.099 U	0.25	0.09	0.32	5.3	1	
MH1-AF23	WHITE SUCKER	River	3+	0.14	0.099 U	0.04	0.16	-		
MH1-AF26	WHITE SUCKER	River	3+	0.099 U	0.099 U	0.04	0.04	-		
MH1-AF07	SHORTHEAD REDHORSE	River	4+	0.09	0.10	0.099 U	0.15	8.2	2	
MH1-AF09	SHORTHEAD REDHORSE	River	3+	0.71	0.33	0.05	1.06	7.4	2.8	
MH1-AF13	SHORTHEAD REDHORSE	Inner Harbor	8+	0.33	0.14	0.05	0.46	6.1	3.3	69.3 F
MH1-AF20	SHORTHEAD REDHORSE*	River	7+	0.14	0.04	0.099 U	0.14		2.7	77.6 F
MH1-AF25	LONGNOSE SUCKER	River	7+	0.22	0.20	0.08	0.46	-		77.7 F
MH1-AF11	CHANNEL CATFISH	Inner Harbor	11+	0.099 U	0.15	0.12	0.25	9.6	4.7	74.9 F
Yearling Fish										
Yearling Preda	tor Species									
MH1-FY01	WALLEYE	River	Y	< 0.099	0.16 J	0.039 J	0.199		2.9	
MH1-FY02	ROCK BASS	Harbor	Y	< 0.099	< 0.099	< 0.099	ND			71.7
MH1-YF04	WALLEYE	River	Y	< 0.099	0.14	< 0.099	0.14		2.7	
MH1-YF05	SMALLMOUTH BASS	River	Y	< 0.099	< 0.099	< 0.099	ND		3.1	
Yearling Botto	mfeeder Species									
MH1-FY03	SHORTHEAD REDHORSE	River	Y	< 0.099	< 0.099	< 0.099	ND			
			·							

Upid content not available; based on average for other shorthead redhorse samples.
 ** Total PCB equals the sum of detected concentrations for yealing samples.

Whole fish concentrations were calculated based on the relative wet weights of the tissues. The PCB concentrations in the fillet and in the carcass were multiplied by their individual wet weights, the two products were added and then divided by the total fish wet weight. Non-detects were included at one-half the detection limit.

For adult fish, whole body PCB concentration equals sum of fillet plus carcass sample

ND = Not detected.

All concentrations in mg/kg Wet weight basis.

¢.)

I:\WO\RAC\236\34880TA-1andTA-2.XLS

RFW238-2A-ASFB RFW238-2A-ASQP

This document was prepared by Roy F. Weston, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Species	% Lipid - C	% Lipid - F	Total Lipids	% Moisture
	A	dult Fish		
Walleye	1	0.6	1.6	
Walleye	4.6	1.3	5.9	
Walleye	2.6	1.3	3.9	
Walleye	3.7	0.5	4.2	
Walleye	4	0.3	4.3	
Walleye	6.7	0.7	7.4	
Walleye	5.4	0.35	5.75	81.5
Walleye	5.9	0.4	6.3	
Walleye	-	1.5		
Walleye				7 9 .3
Walleye	11.4	-	-	
Walleye	4.23	1.59	5.82	
Walleye		-		
Average	4.95	0.85	5.02	80.4
Smallmouth Bass		1.6		77
Smallmouth Bass	13.8	1.6	15.4	
Average	13.8	1.6	15.4	77
Predator average	5.2	0.9	6.1	79.3
White Sucker	3.8	1.9	5.7	
White Sucker	7.9	1	8.9	79.3
White Sucker	3.4	0.6	4	77. 9
White Sucker	4.7	1	5.7	80.8
White Sucker	5.4	0.7	6.1	79.2
White Sucker	5.3	1	6.3	62.5
White Sucker	-		-	
White Sucker	-			
Average	5.08	1.03	6.12	75.9
Shorthead Redhorse	8.2	2	10.2	
Shorthead Redhorse	7.4	2.8	10.2	
Shorthead Redhorse	6.1	3.3	9.4	69.3
Shorthead Redhorse	_	2.7	_	77.6
Average	7.23	2.70	9.93	73.5
Longnose Sucker	_	-		11.1
Channel Cattish	9.6	4./	14.3	/4.9
Bottomfeeder average	<u> </u>	1.90	8.08	75.5
	Ye	arling Fish		
Walleye		2.9		
Walleye		2.7		
Average		2.8		
Smallmouth Bass		3.1		
Rock Bass				71.7
Shorthead Redhorse				

Table A-2 Average Lipid and Moisture Contents in Fish Tissue Manistique Harbor and River Site Manistique, Michigan

F-fillet

C - carcass

Blank spaces indicate no data available.

Only samples with both fillet and carcass % lipids measured were included in averaging. Lipids are wet weight percentages.

I:\WO\RAC\236\34880-TA-1andA-2.WPD

RFW236-2A-ASQP

This document was prepared by Weston Solutions, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S.

TABLE A-3 SEDIMENT DATA (Locations with Less than 4 ft water depth) MANISTIQUE HARBOR AND RIVER SITE MANISTIQUE, MICHIGAN

(

SediD	Depth (FT)	Area	RIO	Sed1016	Sed1016Q	Sed1221	Sed1221Q	Sed1232	Sed1232Q	Sed1242	Sed12420	Sed1248	Sed1248Q	Sed1254	Sed1254Q	Sed1260]	Sed12600	SedPCB (ug/kg)	SedPCBQ	TOC (%)	TOCO
MH1-SD006	2.45	BZ (OUTER	42		85	u i	42	uj	42	ω	42	u i	42	ui (42	л <u> </u> і	85	u l	0.13	1
MH1-SD009	2.75	AOI	RIVER	43	U	87	U	43	Ū .	43	Ū	80		43	U []	43	Ū	80		0.50	J
MH1-SD010	3.9	BZ	OUTER	41	W	84	UJ I	41	ŰĴ	41	UJ	41	W	41	UJ	41	UJ	84	U	0.14	1
MH1-SD013	2.9	BZ	OUTER	40	U I	82	U	40	0	40	U	40	U	40	u l	40	u T	62	U I	0.11	1
MH1-SD014	3	BZ	OUTER	40	U I	82	υ	40	U	40	U	40	<u>U</u>	40	U	40	U	82	U	0.13	J
MH1-SD019	3.5	BZ	OUTER	41	<u>u</u>	84	<u> </u>	41	U	41	U	41	U	41	<u> </u>	41	<u>v</u>	84	<u>v</u>	0.24	<u>ب</u> ا
MH1-SD020	2.8	BZ	RIVER	41	<u></u>	83	<u>u</u>	41	<u>v</u>	41	<u>U</u>	41	<u></u>	23	J	41	<u> </u>	23	h	0.41	<u>. </u>
MH1-SD023	3.4	똜		41	H	<u>83</u>	<u>v</u>	41	<u> </u>	41	<u>U</u>	41	<u>v</u>	41	<u></u>	<u>+i</u>		83	<u></u>	1.00	<u> </u>
MH1-SD034	2.9	<u>64</u>	OUTER	*	8 - 	<u>~</u>	<u>-</u>	40	<u></u>	40	H	41	H	40	<u>. </u>	A1	X	e7	<u>. </u>	0.10	÷
MITT-3003/	2.8	뜷ㅓ	OITER	1	<u>~</u>	*	<u>. </u>	40	<u>. </u>	40	<u></u>	40	H	40	<u></u>	40	¥	97	<u>~</u>	0.13	
MH1.SDOAR	10	똜ㅏ	OUTER		<u> </u>	<u></u>	ř.	41	<u>. </u>	41	ă	41	<u></u>	₩		<u>1</u>	∺	81	₩—	0.16	
1441-50080	1.0	詩	OUTER		ň – – – †	83	<u> </u>	21 21	<u>u</u>	41	<u></u>	41	<u>. </u>	41	<u></u>	7 -	<u> </u>	81	<u>16</u>	0 11	
MH1-SD061	3	₩Ē (OUTER	1	<u>0</u>	83	ŭ	41	<u>ŭ</u>	41	Ū	41	Ū	41	<u>ū</u> — 1	41	<u>. </u>	83	Ū I	0.13	<u> </u>
MH1-SD064	3.9	πĒ Ι	OUTER	41	Ū – I	84	0	41	Ŭ .	41	Ū	41	Ū	41	Ū ·····	41	ð I	84	Ū	0.12]
MH1-SD067	3.53	BZ	OUTER	43	Ū I	87	Ū l	43	Ŭ	43	Ū	43	Ū — –	43	Ū I	43	<u>i</u> – I	87	Ū –	0.11	<u>j</u>
MH1-SD068	3.5	BZ	OUTER	40	<u>u</u> .	81	0	40	Ū	40	U	40	U	40	υ	40	<u>; </u>	81	Ū -	0.12	J
MH1-SD092	3.9	BZ	INNER	41	บ	83	U I	41	Û	41	U	41	υ	41	U	41	U	83	U	0.15	J
MH1-SD101	4	AOI I	RIVER	53	U	110	U .	53	0	53	U	340	J	53	U	53	0	340		1.57	1
MH1-SD104	3.09	AOI	RIVER	43	U	88	u –	43	u	43	U	45		43	U	43	U I	45		4.71	1
MH1-SD134	3.73	AOI	RIVER	170	υ	350	U	170	U	170	U	2800	1	170	U	170	U	2800		14.3	1
MH1-SD135	0.8	AOI	OUTER	42	UJ I	86	ω	42	UJ 🗍	42	ບ	42	UJ	42	uj 🗌	42	UJ	86	U	0.21	<u>v</u>
MH1-SD135DP	0.8	AOI	OUTER	42	<u>u</u>	86	w	42	ບຸງ	42	<u>u</u>	42	w	42	u	42	UJ	86	Ľ	0.15	J
MH1-SD136	3.89	AOI	RIVER	140	<u></u>	280	<u>v</u>	140	<u>u</u>	140	<u>u</u>	830	1	140	<u>u</u>	140	<u>v</u>	830		13.0	
MH1-SD137	3.80	AOI	NIVER	180	<u> </u>	3/0	<u>u</u>	180	<u>v </u>	180	<u>H</u>	4100		180	<u></u>	180	<u> </u>	4100	<u> </u>	15.2	
Mr11-SD138	1.00	NOI 1	OUTER		<u></u>	64	<u>w</u>	41	<u>w</u>	41	00	41	00		<u>w</u>		<u>w</u>	04	<u> </u>	0.35	
MITI-SU139	1 03		OUTEP			97	<u>3</u>	43	<u>03</u>	43		43	<u></u>	42		41		97	H	0.44	
MH1-SD141	2.05	ACI -	OUTER	23	111 - 1	0/ AR	<u></u>	43	<u></u>	43		48	<u></u>	43	<u></u>	43		48	۲	0.50	<u> </u>
MH1-SD144	19		OUTER	42	₩ <u></u>	85	<u>.</u>	42	<u></u>	42	<u>~</u>	42	Ŭ	42	Hi	42	<u> </u>	85	h	0.33	.
MH1-SD145	3.97	AOI	RIVER	120	Ū	250	Ú	120	<u>ŭ</u>	120	ŭ	1200		120	Ū —	120	ŭ	1200	F	11.8	5
MH1-SD146	3.93	AOI	RIVER	38	U I	78	Ū	38	<u>ū</u>	38	Ū	38	Ū	38	Ū U	38	Ū	78	U	0.32	J
MH1-S0147	2.8	AOL	OUTER	46	u 1	93	U	46	Ū	46	U	46	U	46	U	46	Ū	93	U	0.11	7
MH1-SD148	4.35	AOI	RIVER	130	U	270	U	130	U	130	U	130	U	130	U	130	U	270	U	11.7	
MH1-SD149	2.1	AOI	OUTER	42	U	85	U	42	U	42	U	42	U	42	U	42	Ú	85	U	0.10	J
MH1-SD150	2.75	AOI	OUTER	43	UJ į	88	<u>u</u>	43	<u>uj</u>	43	UJ	31	J	43	UJ	43	UJ	31		0.22	1
MH1-SD151	2.65	AOI	OUTER	40	UJ U	81	ω.	40	ω	40	ω	40	U)	40	ω <u> </u>	40	UJ	81	U.	0.16	1
MH1-SD153	3.9	AOI	OUTER	42	U	86	U	42	U	42	U	42	U	170		42	U	170	ļ	0.12	<u> </u>
MH1-SD154	3.01	AOI	OUTER	42	<u>v </u>	85	U	42	<u>u</u>	42	<u>v</u>	42	<u>v</u>	42	<u>v</u>	42	<u>v</u>	85	lin – I	0.16	<u>, </u>
MH1-SD155	2.73	AOL I	OUTER	138	<u> </u>	80	<u>v</u>	369	<u>u</u>	39	<u></u>	39	<u> </u>	139	<u> </u>	38	<u>v</u>	60	<u> 8</u>	0.12	<u>. </u>
MALLA SDISS	13.1	AOI I	OUTER		8	84	<u>v</u>	41	<u> </u>	41	<u>.</u>	1 <u></u>	<u></u>	141 144	<u></u>	41	<u></u>	84	13 — —	0.16	<u></u>
MITT-SU160	2.00	AUI	OUTER	12	12	80	<u></u>	42	<u></u>	42	<u> </u>	42	10 <u>3</u>	42	<u> </u>	42	<u></u>	04	<u>₩</u>	0.10	Ľ
MH1-SD1000P	1 35		OUTER	41	1 7	83	<u> </u>	41	<u> </u>	41 ····	H	41	<u>tĭ−−−</u>	1 21	l ä —	41	<u>. </u>	BQ	1ă -	0.12	ă
MH1-SD164	2.7	AOL	OUTER	40	1 <u>0</u>	82	ŭ	40	6 ———	40	ŭ	40	tū	40	lu	40	<u>ŭ</u>	82	tō	0.13	<u>5</u>
MH1-SD165	119	ADI	OUTER	A1	ŭ	84	<u></u>	41	<u>5</u>	41	Ŭ.	41	t <u>u</u>	41	1 <u>0</u>	41	ŭ	84	tū	0.10	3
MH1-SD169	1.9	AOI	OUTER	40	U	81	Ŭ.	40	Ū.	40	Ū	40	U	40	Ū	40	Ū	81	U	0.10	J
MH1-SD173	2	AOL	OUTER	41	U	84	U	41	Ū	41	U	41	U	41	U	41	U	84	0	1.00	U
MH1-SD174	3.49	AOI	RIVER	46	U	94	υ	46	Ū	46	U	46	U	46	U	46	Ū	94	lu	0.47	1
MH1-SD181	0.6	AOI	RIVER	41	U	84	U	41	U	41	υ	41	U	41	U	41	U	84	U	0.16	J
MH1-SD182	1.35	AOI	RIVER	44	U	89	U	44	U	44	U	44	U	44	U	44	Ū	89	U	0.72	J
MH1-SD182DP	1.35	AOI	RIVER	45	U	92	U	45	U	45	U	86		45	u	45	U	88		0.62	1
MH1-SD347	2.9	AOI	OUTER	40	U	82	U	40	U	40	U	40	U	40	U	40	U	82	U	1.00	U
MH1-SD361	3.89	AOI	OUTER	43	U	87	U	43	U	43	U	43	U	43	U	43	<u>U</u>	87	U	0.12	J
MH1-SD362	13.45	AOI	DUTER	145	<u>N</u>	91	U	45	<u>u</u>	45	0	45	<u> </u>	45	<u>10</u>	45	<u>U</u>	91	P		
MH1-SD376	3.42	ION	OUTER	67	U	140	U	67	U	67	<u> </u>	700	J	67	<u>u</u>	67	<u>u</u>	700	h	16.0	
MH1-SD388	2.82	AOI	OUTER	42	<u></u>	86	<u>v</u>	42	<u>u</u>	42	<u>k</u>	42	<u> </u>	42	Y	42	<u>U</u>	86	۴	0.24	<u></u>
MH1-SU388DP	12.82	AUL	OUTER	143	<u></u>	86	<u></u>	43	<u>u</u>	143	<u> <u> </u></u>	143	<u> </u>	11200	<u>. </u>	49	<u></u>	1200	₩	0.19	₩ <u> </u>
MITI-SU369	13.09	HOI -	OUTER	143	Hi	00	H	143	₩ <u></u>	40	 	100	₩	43	<u> -</u>	44	8	00	P	0.10	<u>۴</u>
MITT-SU402	12.52		OUTER	42	<u></u>	84	<u> . </u>	12	<u></u>	42	<u>₩</u>	12	<u>₩</u>	11	 -	42	<u></u>	10	h	0.17	ř
MH1.SD624	1 95	120	OUTER	142	li –	100	K.	12	<u> </u>	42	<u>₩</u>	12	₩ <u> </u>	1/2	Hi	42	<u>H</u>	00	H	0.12	ř
Incore Linu	13.03	JAN 1	UUUER	174	19	100	<u>الا</u>	174	<u>الا</u>	176	19	174	<u>12</u>	172	12	174	v	102	14	Q. 12	<u> </u>

1:1WO\RAC1236134880TA-3.XLS

RFW236-2A-ASOP

This document was prepared by Roy F. Weston, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

TABLE A-3 SEDIMENT DATA (Locations with Less than 4 ft water depth) MANISTIQUE HARBOR AND RIVER SITE MANISTIQUE, MICHIQAN

All Concentrations in ug/kg Arocior 1016 concentration Sed1016 Sed1016Q Date qualifier for Aroclor 1016 Sed1221 Arocior 1221 concentration Sed1221Q Data qualifier for Aroclor 1221 8ed1232 Arociar 1232 concentration Sed1232Q Data qualifier for Arocior 1232 Arocior 1242 concentration Sed1242 Sed12421. **Detection limit for Arociur 1242** Data qualifier for Aroclor 1242 Bed1242Q Depth Water depth

I WE NHAR WITH SHOULD BE D

rand the films

Sed1248 Arockor 1248 concentration Sed12481Detection limit for Arockor 1248 Sed1248Data qualifier for Arockor 1248 Sed1254 Arockor 1254 concentration Sed1264Data qualifier for Arockor 1254 Sed1260Data qualifier for Arockor 1260 Sed760Data qualifier for Arockor 1260 Sed760Data qualifier for Arockor 1260 Sed76D Total PCBs Area Sample location in the AOI (area of interest) or BZ (background zons)

- RIO Sample location in river, inner harbor, or outer harbor
- TOC Total organic carbon
- TOCO Data qualifier for TOC

EPA ARCHIVE DOCUMENT SN

.....

DOCUMENT ARCHIVE ◄ EP SN

SediD	rio	Sed1016	Sed1016Q	Sed1221	Sed1221Q	Sed1232	Sed1232Q	Sed1242	Sed1242Q	Sed1248	Sed1248Ci	Sed1254	Sed1254Q	Sed1260	Sed1260Q	SedPCB (ugflug)	SedPCBQ	SedTOC (%)	SedTOCQ
MH1-SD001	RIVER	41	U	83	υ	41	Ų.	41	U	41	υ	41	ບໍ່	41	Ű	83	2	0.24	J
MH1-SD002	RIVER	45	<u>u</u>	91	0	45	<u>u</u>	45	ບ	45	<u>ບ</u>	45	U	45	U	91	U	0.28	
MH1-SD002DP	RIVER	42	υ	86	<u>U</u>	42	U	42	U	42	<u>U</u>	42	<u>v</u>	42	U	86	U	0.34	ų
MH1-SD003	DATER	40	<u>× </u>	04	<u>.</u>	40	<u>v</u>	40		40	<u> </u>	40	<u>.</u>	40	U	82	U	0.27	<u></u>
MIR (-SUUUA	RIVER	40	<u>v</u>	82	<u>17 — -</u>	40	<u>. </u>	44	<u>.</u>	40	J	40	hi	40	U	82	h	0.33	<u>-</u>
MH1.SD005	OITER	42		15	ŭ.	42	<u>.</u>	42	ŭ	42	<u> </u>	42		42	<u></u>	88	<u>lo</u>	0.13	<u> </u> -
MH1-SD007	RIVER		<u>u</u>	87	u .	43	U	43	U U	43	U	43	lu -	43		87	ŭ	0.15	<u>ti – – – – – – – – – – – – – – – – – – –</u>
MH1-SD008	OUTER	110	Ŭ	220	Ū	110	ŭ	110	Ŭ	1700	·	1700		240	<u> </u>	3640		13.6	·
MH1-SD008DP	OUTER	130	Ū	280	U	130	Ū	130	Ū	1600		860		130	U	2260		16.4	
MH1-SD009	RIVER	43	u	87	U	43	Ū	43	U	80		43	U	43	Ŭ	80		0.50	J
MH1-SD010	OUTER	41	101	84	0.1	41	UJ .	41	<u>w</u>	41	υ	41	UJ	41	ω.	84	υ	0.14	1
MH1-SD011	RIVER	40	U	81	U	40	U	40	U	40		40	U	40	U	81	U	0.26	, L
MH1-SD012	OUTER	43	ų	87	<u>u</u>	43	U	43	U	43	<u>u</u>	43	<u>u</u>	43	U	87	U	0.21	1
MH1-SD013	OUTER	40	U	82	<u>v</u>	40	U	40	<u>u</u>	40	<u>u</u>	40	<u>v</u>	40	U	82	U	0.11	1
MH1-SD014	OUTER	40	<u>v</u>	82	<u>v</u>	40	U	40	<u>U</u>	40	U	40	U	40	U	82	U	0.13	J
MH1-SD015	RIVER	43	<u></u>	6/ 24	<u></u>	43	U .	43	<u>u</u>	43	U	43	U	43	U	87	<u>u</u>	0.35	ų
	OUTER	42	<u> </u>	80	<u> </u>	2	<u>v</u>	49	<u>.</u>	210	· · · · ·	40	<u>.</u>	45	<u>u</u>	210		0.82	<u>k </u>
MH1-SOUIDUP	ION/ER	-0 	<u>. </u>	110	<u>K</u>	2	<u>.</u>	49	<u>v</u>	170	J	43		43	<u>u</u>	1/0	<u> </u>	0.87	
MH1-SD018	OITER	10	u		1 <u>6 — </u>	42	<u>8</u> -	12 ····	0	42	<u>.</u>		6	42	<u>u</u>	32	<u>K-</u>	0.12	۳
MH1-SD019	OUTER	41	ň –	84	1 <u>0 </u>	41	<u>u</u>	41	Ŭ -	41	u	41	lū -	41	H	84	Hi	0.14	<u> </u>
MH1-SD020	RIVER	41	Ŭ	83	Ū.	41	ŭ	41	Ŭ	41	ŭ	23	1 <u> </u>	41	ŭ	23	ř	0.41	li
MH1-SD021	RIVER	141	Ū	83	10	41	lu	41	Ŭ	41	Ŭ	41	Ů	41	lu	83	U	0.25	<u>1</u>
MH1-SD022	RIVER	41	Ú .	84	U	41	Ū	41	U	41	Ū ——	41	U	41	l <u>ů</u> – – – – – – – – – – – – – – – – – – –	84	Ú.	0.40	Ĵ
MH1-SD023	OUTER	41	U	83	U	41	U	41	Ų.	41	U	41	Ų.	41	U	83	U.	1.00	U
MH1-SD024	RIVER	42	U	85	U	42	U	42	0	42	U	42	U	42	U	85	U	0.30	1
MH1-SD025	RIVER	41	U	83	U	41	U	41	v	41	υ	41	U	41	U	83	<u>u</u>	0.19	1
MH1-SD026	RIVER	41	<u>UJ</u>	184	<u>w</u>	41	UJ	41	<u>w</u>	41	<u>w</u>	41	<u>w</u>	41	UJ	84	U	0.22	1
MH1-SD027	TRIVER	121	<u>v</u>	183	<u>p</u>	41	10	41	0	141	0	41	<u>v</u>	41	<u>v</u>	83	<u>v</u>	0.19	<u>p</u>
MH1-SD025	RIVER	41	<u>u</u>	04	<u></u>	41	<u>0</u>	41	<u>U</u>	41	<u>v </u>	<u> 11</u>	<u>lo</u>	41	<u>v</u>	64	<u>v</u>	0.17	<u>k — </u>
MH1-SU028UP	CUITED	10	<u>v</u>	06	<u>K</u>	47	<u>u</u> —	40	0	40	<u>v</u>	40	<u>lu</u>	40	<u><u>v</u></u>	82	<u>K</u>	0.15	ار
MIT1-SU029	CONTER	1/2	<u>v</u>	80	<u></u>	42	<u>N</u>	47	<u></u>	4/ 	U	4/	<u> </u>	4/	<u></u>	80	H	1.00	<u></u>
MH1-SD031	OUTER	42	<u>u</u>	86	<u>10</u>	42	<u>10 </u>	42	<u>u</u>	42	u	42	<u>u</u>	2	<u>.</u>	86	<u>10</u>	0.33	<u> </u>
MH1-SD032	OUTER	42	ŭ	las	<u>u</u>	42	<u>H</u>	42	Ŭ	42	u	10	ŭ	42	N	85	lŭ	0.35	<u>i </u>
MH1-S0033	RIVER	41	<u>u</u> –	84	10	41	lũ —	41	Ū.	41	ŭ –	41	lu .	41	lő – – – –	84	lu	0.25	li
MH1-SD034	OUTER	40	Ū.	82	lu	40	Ū –	40	Û.	40	Ū.	40	Ū	40	lū	82	l <u>u</u>	0.10	Ĵ.
MH1-SD035	RIVER	41	Ú .	84	U	41	Ū.	41	U	41	U	41	U	41	Ū	84	U	0.23	1
MH1-SD036	OUTER	41	υ	84	U	41	U	41	Ú	41	ų	41	U	41	υ	84	U	0.18	1
MH1-SD037	OUTER	41	U	83	U	41	U	41	U	41	U	41	U	41	Ų.	83	Ð	0.15	h
MH1-SD037DP	OUTER	40	U	82	<u>u</u>	40	U	40	<u>u</u>	40	<u>v</u>	40	U	40	U	82	υ	0.12	<u>u</u>
MH1-SD039	RIVER	45	<u>v </u>	91	<u>u</u>	45	<u>u</u>	45	U	45	U	45	<u>v</u>	45	<u>v</u>	91	0	0.43	J
MH1-SU041	OUTER	41	<u>P</u>	04	<u>k</u>	<u>.</u>	<u>v</u>	41	<u>v</u>	41	<u></u>	141		41	<u>v</u>	104	<u>fu</u>	0.11	<u>k</u>
MULL CD042	LON CO		<u>6</u>	0- 64	<u>K</u>		<u>[0</u>	1	<u></u>		<u>.</u>	142	10	41	<u>P</u>	104	<u> </u>	0.17	K
MH1-S0044	OITER	170	1 <u>0</u>	340	10	170	<u>[i</u>	170	ŭ	490	v	240	ti – – – – – – – – – – – – – – – – – – –	170	N	730	<u>۴</u> —–	113.0	P
MH1-SD045	OUTER	42	<u></u>	85	<u>18 — </u>	42	<u>10</u>	42	ŭ	42	10	42	lu	42	<u>10</u>	145	hu	0 13	<u>ti</u>
MH1-SD046	OUTER	tei -	10	63	lū —	10	1 <u>0</u>	41	Ū	41	15	41	บ	41	lu –	83	lu -	0.16	<u>.</u>
MH1-SD047	RIVER	41	lù.	84	U	41	lu	41	U	41	U	41	U	41	lū	84	NU	0.38	J
MH1-SD048	RIVER	40	lu .	81	U	40	U	40	U	40	V	40	U	40	U	81	U	0.17	1
MH1-SD049	RIVER	41	υ	84	U	41	U	41	U	41	U	41	U	41	U	84	U	0.13	1
MH1-SD050	OUTER	69	U	140	U	69	U	89	U	00	U	69	<u>u</u>	69	U	69	<u>u</u>	1.46	1 <i>1</i>
MH1-SD051	OUTER	45	U	92	<u>U</u>	45	U	45	<u>u</u>	45	U	45	<u>u</u>	45	U	92	lu	1.00	U
MH1-SD052	OUTER	40	<u>u</u>	82	<u>u</u>	40	<u>u</u>	40	U	40	<u>u</u>	140	<u>v</u>	40	u	182	<u>u</u>	0.12	<u>u</u>
MH1-SD052DP	OUTER	41	<u>v</u>	83	- <u>le</u>	41	<u>v</u>	41	U	41	<u>v</u>	41	<u></u>	41	<u>U</u>	83	<u>p</u>	0.11	<u>h</u>
MH1-S0053	OUTER	42	<u>v </u>	80	<u> </u>	2	<u>u</u>	42	<u>v</u>	1 <u>42</u>	<u>v</u>	42	0	42	<u>u</u>	85	<u> </u>	0.11	<u>P</u>
SMITT-SUUD4		12	N	1 5	<u> </u>	40	K	47	N	41	1X — —	10	<u>н</u>	40	<u> </u>	104	<u>k</u>	0.40	K -
BALLA COORD	OUTER		<u></u>	100			<u> </u>	41	11		10	42	1 6	41	<u> </u>	104	<u></u>	0.12	<u>K</u>
MH1-SD057	RIVER	141	<u>15</u>	84	- NJ	41	tu -	41	10	141	ti	41	tū —	141	ti	lõi —	tŭ	1 00	tu –
MH1-SD0570P	RIVER	41	1 <u>0</u>	183	ti	41	1 <u>0</u>	41	Ū	41	tu	41	Ū	41	<u>ti</u>	A3	ŭ	0.19	5
MH1-SD058	RIVER	44	tů	89	lõ	44	tõ	44	Ū	44	lū	44	lù	44 -	Ŭ	89	lŭ	0.32	L.
MH1-SD059	RIVER	57	Ū.	120	Ú	57	Ū.	57	υ	57	Ú	57	lu -	57	tū	57	U	2.10	<u> </u>
MH1-SD060	OUTER	41	U .	83	0	41	U	41	U	41	U	41	U	41	10	83	U	0.11	1
MH1-SD061	OUTER	41	U	83	U	41	U	41	U	41	U	41	Ų	41	U	83	<u>U</u>	0.13	J
MH1-SD062	RIVER	42	Ŭ	85	U	42	U	42	U	42	Ų	42	U	42	U	85	U	1.00	Ų
MH1-SD063	OUTER	43	U .	88	U	43	μ υ	43	0	140	յս	143	<u>v</u>	43	Ju	86	U	0.31	ا
MH1-SD064	OUTER	141	U	84	U	41	U .	41	U	41	U	41	<u>u</u>	41	U	84	U	0.12	1
MH1-SD065	RIVER	41	U	84	U	41	U	41	U	141	U	41	U	41	0	84	υ	0.14	1

Table A-4 diment Data (All Locations) istique Harbor and River Site Manietique Michinan

WORAC\23834880TA-4.3L8

RFWZ36-2A-ASOP

.

This decument was prepared by Roy F. Weston, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole of in part without the express, written permission of U.S. EPA.

Table A-4 (Continued) Bediment Data (All Locations) Maniatique Harber and River Bite Maniatique, Michigan

C1

~

]

.

•

ì

...

ą.

1200.0

>

.

E-diD	RIO	Bad1018	Bediéléű	Ged1221	Bed12210	Bed1232	Bed 1222Q	Bed1242	Sed1242Q	Bed1248	Bed1248Q	Bed1284	Bed1284Q	Bad1200	Sed12000	BedPCB	SedPCBO	BedTOC (%)	BedTOCO
M41-80646	BIVER	45	<u>.</u>	17	<u>.</u>	46	5	44	ม	مدا		40				(UB740) 182		10.40	,
111-0117	(•.0) ().	43	ů –	17	Ū	42	Ū	43	ū	43	ŭ	43	ŭ	45	lŭ –	47	ŭ	0 11	6 1
	6.7111.1	49	¥	1	u i	49	Υ.	40	v	40	Ú	40	U	40	ju –	01	Ū	0.12	0
NH14288		41	H	<u></u>	<u>y</u>	<u>41</u>	¥	<u>41</u>	<u>u</u>	111	U I	141	U I	41	U.	69	lu I	0 66	1 N
		*	¥		H	17	H	42	<u></u>	142	2	ier .	N	42	2	2	2	0 14	R 1
111			Ū	M	ŭ ·· -	41	υ	41	ŭ	4	ŭ	14	ŭ	14	ŭ		ŭ	0 14	្រោ
1.110 (1997)	DEN H.	4			V	42	ū	42	Ū	42	lū	49	ŭ	42	ŭ		lū	0.13	li li
111-11-14	(C. 14.	41	H	· · · · · ·	<u>v</u>	41	¥	41	u .	41	U	41	U	41	2	43	Ŭ	0.18	1 V
		2	H		K	<u>11</u>	¥	<u>1</u>	н К		10	107	L.	e 1	2	1 77	. .	8.10	I.
		1	Ŭ		Ŭ	41	Ŭ	4	ŭ		ŭ	49	ŭ		ŭ		ŭ	0.10	6 1
2 HE 1997	12.2.6.2	41	0		¥	41	ū –	41	ū	141	Ū	43	ŭ	41	Ŭ	H	lũ –	0 14	li l
		4	P		<u>v</u>	42	<u>v</u>	42	U.	42	<u>v</u>	41	ju l	42	N.		ν	0.34	1 4
		1	H · · · · · · · · · · · · · · · · · · ·	H	<u>.</u>	41	<u>v</u>		R.	12	2	111	le le	41	R.		2	0.16	1. 1
	OUTER	78	18			.	ŭ	4	N N	2	ŭ	12	2		E .		N.	100	6 1
HI-DOW	(•. 1)[-].	12	102		Ú.	42	U.	4	ů,	4	Ū.	4	101	4	น้ำ		lŭ	6 21	17
		47	ly	<u> </u>	<u>H</u>	42	<u>u</u>	41	<u>u</u>	42	U	48	ļu	48	ju –	66	ļu	0 10	1. I
		#	<u>×</u>	M	<u>R</u>	41	<u>.</u>	41	h	41	lo l	111	P I	41	le le	64	v	0 21	8 1
	OUTER		1 <u>0</u>		¥	44	<u>u</u>	4	8			110	Lu	2			h.	0.00	K
411-22-24	CUT R	41		1	Ū.	41	<u>.</u>	41	Ū.	41	ŭ	41	ŭ	41	ũ	-	lŭ	10 10	1
		42	<u>v</u>	H	<u>v</u>	42 -	¥.	42	Lu I	42	ju –	42	ų	47	u	86	μ	0 62	4
		43	R · · · · — –	¥	<u>R</u>	43	¥	63 –	<u>u</u>	165	lh In	49	le le	43	u	A7	lu .	0 00	11
	IOUTER	42	<u>₩</u>	19. –	<u>v</u>	41	<u>u</u>	42	LA LA		10		No.		lo Lo	100	le Le	10 14	5
AHI - 0205	NAT	172 -		M	tū -	42	10	41	Ū.	4	lŭ –	40	ŭ	a)	นั		ü	10 30	i.
	OUTER	42	101	M	ίΩ,	42	<u>.</u>	42	<u>u</u>	41	lū.	42	LU1	43	iu i	44	u	0 18	4
MH1-BOOBIDP	OVIER	41	<u> </u>	M	<u>ee</u>	41	<u>in</u>	<u>[4]</u>	ίų.	11	101	41	in in	41	LU	84	u l	0 37	1
		13	fi -		6	1	H		H.		IN .		Ľ			a.)	u	0 10	Ľ
	OUTER	40	ių i		10 .	44	lŭ -	44	Ň	-	υ.	46	ŭ	*	1Ú		ŭ	021	li l
	IOUTER	12	<u>lo</u> :	84	<u>10</u>	42	10	4	jü	42	ŭ	41	,ŭ	Ū.	μü	80	u l	011	1
	RATES	21	<u>12</u> .	100	¥.	61	IN .	<u><u><u></u></u></u>	U.		U.	A 1	u	61	0	51	U I	0.4.7	1
	Ki Hi		107 ·	110	8	2	123		101	1.00	101	11100	100	44	0.	2100	in the second se	0 10	1'
	IOUTER	6	ไม้ "	67	ιά ·	43	1Č	43	Ŭ.	4	U	43	iu i	42	1 0	67	0	0 22	L
111-0101	RIVER	<u> </u>	10 .	110	Ι <u>ΰ</u> '	42	Į <u>v</u>	H	Įū –	340	Li I	60	Įu –	64	ίu -	340	[1 6/	i i
		樫	¥	199	19 19	<u>4</u> ! _	臣	10 <u>7</u>	N.	490	1	107	lu Iu	6/	lu -	400		5 08	1
		116	15	192	벖	110	E	1900 - C	ix.	11000	K.		1.		R.	1070		4 92	R.
111 20164	TAMEN .	145	tõ –		15	43	ដើ	1	lŭ		1	43	li	4	10	44		1471	Lí –
	BIVE	NG.	10	170	μ.	63	10	[6]	ļū –	4000		1700	1	380	j,	6060		6.08	ji –
	IRMER-	招	Ъ.	1111	Įv.	11	뵨	12	N.	10000		2900	1.	110	1	6070		9 48	1
2 (1) (1) (1) (1) (1)		197	12	120	R.	140	£.	140	N. N	1900	Ľ.		Ľ.		. .	1000		2 60	ĸ
1111-0110	TAMEN.	16	lu l		lů.	43	lü	142	1č	10000	r -	2400	5	120	li i	100.0	1	1.20	Ľ
	INVER.		Ň.	11/2	lū –	63	1 <u>u</u>	165	ū	3400	i i	1200	L.	10	ſ	46.00		9 08	j.
1142111	IN III.	<u> </u>	N .	199	Ŕ	<u>\$1</u>	14	101	lu -		4	P 1	N I	91	V.	430	1	11.12	1
and stiller.		19 <u>-</u>	8 -	HÆ	ĸ	1942 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R		EV.	12	ĸ	193	2	60	P.	720		2 99	R.
	開始	1116	悦	155	10	1110	15	1110	ស៊	1900	ដ	110	ũ	100	1č	11000	1	19 47	Ľ
1111 1111	Defen	115	0	Î M RÎ	Īv	199	lū –	1140	ίΰ		ព	140	Ň	140	lu -	000		901	į,
	EMP.	1129	N -		μ.	1179	Ι <u>ν</u>	11/1	Įν.		Fi -	170	U I	110	lu .	490	1	a w	1
	協設	櫮	ĸ	1279	£		R	199	N.		R	100	2	140	12	000	1	9 04	P
同業の	保護	協	悟	100	i.	119	i.	1179		1700	Ľ	100	5	100	Li li	1700	1		L
	MARK	1n	10	1110	lõ.	in 🗌	R.	l n	Ň	10000	ſ	4899	li i	200	5	19190		114	ľ
	COMP.	110	N .		P.	199	N.	199	lu -	1000	h i	190	μ.	180	P .	1000	1	10.0	1
	10090	1 21	₩		<u>R</u>	197	벖	12	ίų.		R	42	2	4	N.	12.		0 44	R
	HUTCH.		м		<u>18</u>		LW	MI	<u>M</u>		<u> </u>		1A	ta,	ta	t walk	1	11.14	14

net was prépared by Rey F. Wendan, tre, augustants de 14 & 1946. E aduat nat la returnant au dévénant la advete au tapat appress des prepares, artikan parameteur al 14 % 1944.

Table A-4 (Continued) Sediment Data (All Locations) Manistique Harbor and River Site Manistique, Michigan

₹

Barger Mark Barger Mark Dia	SediD	RIO	5ed7018	Sed1616Q	5ed1221	Sec1221Q	Sed1232	Sed12320	Sed1242	Sed1242Q	Sed1248	Sed1248Q	3ed1254	Sed1254Q	Sed1260	Sed1260Q	SedPCB (ug/kg)	SedPCBQ	SedTOC (%)	SedTOCQ
	MH1-SD127	RIVER	110	V V	230	U	110	U	110	c	180	J	110	Ū	110	U	180		6.48	J
	MH1-SD129	RIVER	49	Ũ	100	V I	49	Ū	49	U	49	U	49	U	49	ų – I	49	υ	1.23	1
	MH1-SD130	RIVER	41	U	83	U I	41	U	41	U. I	41	U	41	V	41	U I	63	U	0.22	u 1
	MH1-SD131	RIVER	42	V	85	U	42	U	42	U	42	υ	42	U	42	U	65	U	0.30	1
	MH1-SD132	RIVER	42	V	85	<u>v</u>	42	<u>u</u>	42	U	42	U	42	V	42	Ų –	85	U	0.36	1
	MH1-SD133	RIVER	170	<u>v</u>	360	U I	170	U	170	U	5700		1200		170	Ū į	6900		13.9	J
	MH1-SD134	RIVER	170	V	350	U	170	U	170	ບ	2600	J	170	U	170	Ú I	2800		14.3	J
	MH1-SD136	OUTER	42	<u>u</u>	66	<u>u</u>	42	w.	42	UJ	42	UJ	42	UJ	42	UJ L	86	U	0.21	J
M11 M2 U M2 U M2 U M2 U M2 U M2 U M2	MH1-SD1350P	OUTER	42	u	86	<u>w</u>	42	<u>w</u>	42	w	42	UJ	42	UJ.	42	UJ	86	U	0,15	J
Att 50:30 Part (A) D <thd< th=""> D D</thd<>	MH1-SD136	RIVIER	140	<u>v</u>	280	V V	140	<u>u</u>	140	U	530	J	140	U	140	<u>v</u>	630		13.0	
Art 30:00 Corr Cor Cor Corr Corr	MH1-SD137	RIVER	180	U	370	<u>v</u>	180	<u> </u>	180	0	4100		180	υ	180	U	4100		15.2	
	MH1-SD136	OUTER	4	<u>w</u>	04	<u>8</u>	41	8	41	04	4)	03	41	LO LO	41	UJ UJ	84	U .	0.35	1
	MH1-SU139	DATER	140	<u></u>	33	<u>8</u>	41	<u></u>	41		47	<u></u>	41	<u> </u>	41	<u>w</u>	83	V	0.11	1 J
	MH1-SD140	ANCO	42	<u>.</u>	200	<u>8. (</u>		<u></u>	140	0	1900		140	<u>v</u>	140	<u>v</u>	1900		10,1	K I
Bit	MR11-SU141	PROFER		<u></u>	100	<u> </u>	100	03	43	W	43	<u></u>	187	<u></u>	43	<u>0</u>	8/	0	0.44	<u> </u>
Series 0 Corres 6 U Series 0 V Series 0	MH1.90141	OIDER	1.3	<u>ш — </u>	188	<u></u>	<u>n</u>	<u>.</u>	43		48	l	40	<u>й</u>	42	<u>. </u>	49		12.0	1 ···-
Series Particle <	MH1-SD144	OINER	12-1	11	1	<u></u>	42	3	2		42	<u> </u>	42	<u></u>	42	<u></u>	40		0.30	ř. – –
Arr Strige Arr Str	MH1-SD145	RIVER	1120	ŭ	250	1 5	120	<u>.</u>	120	<u></u>	1200	ř	120	<u>.</u>	120	<u></u>	1200	<u>۲</u>	11.8	ti
bit 00070 00178 de U de U </td <td>MH1-SD148</td> <td>RIVER</td> <td>138</td> <td>ů –</td> <td>78</td> <td>tõ 👘</td> <td>38</td> <td><u>.</u></td> <td>38</td> <td>ŭ</td> <td>34</td> <td>L</td> <td>134</td> <td>ň –</td> <td>24</td> <td>ň · · ·</td> <td>78</td> <td>hi</td> <td>0.92</td> <td>ti</td>	MH1-SD148	RIVER	138	ů –	78	tõ 👘	38	<u>.</u>	38	ŭ	34	L	134	ň –	24	ň · · ·	78	hi	0.92	ti
set solver Norma	MH1-SD147	OUTER	46	ŭ	93	<u> </u>	46	ŭ	46	Ū	46	ŭ	46	<u>u</u>	46	ŭ	90	ŭ	0 11	li l
Attribute D B U B	MH1-SD148	RIVER	130	Ū	270	1 <u>0</u>	130	<u>.</u>	130	Ŭ	130	ŭ	130	ŭ	130	ŭ	270	l <u>ü</u>	11 7	ř –
MH-SPORD OUTER 42 LU 80 LU 40 LU 80 LU 80 <td>MH1-SD149</td> <td>OUTER</td> <td>42 1</td> <td>Ŭ</td> <td>85</td> <td>Ū I</td> <td>42</td> <td>Ū –</td> <td>42</td> <td>Ū</td> <td>42</td> <td>Ū</td> <td>42</td> <td>Ŭ.</td> <td>42</td> <td>Ŭ</td> <td>85</td> <td>lū —</td> <td>0.10</td> <td>1</td>	MH1-SD149	OUTER	42 1	Ŭ	85	Ū I	42	Ū –	42	Ū	42	Ū	42	Ŭ.	42	Ŭ	85	lū —	0.10	1
AH-SENSI OUTER 40 U 61 U 60 U 60 U 61 U 73 U 73 U 81 U 81 U 81 U 81 U 81 U 82 U 83 U 83 U 82 U 83 U 83 U 82 U 82 U 83 U 84 U 84 U 84 U 85 U 85 U 85 U 85 U 85 U 85	MH1-SD150	OUTER	43	w	88	ΰ υ	43	LU LU	43	W	31	Ĵ	43	UJ	43	ίυ	31	· · · ·	0.22	Ĵ.
Marker Song MARE 173 U 150 U 73 U 74 U 64 U 612 U 62 U 63 U<	MH1-SD151	OUTER	40	μ.	61	luj -	40	UJ UJ	40	UJ .	40	UJ I	40	iui -	40	ŬJ	81	U	0.16	j.
ueth_SDissop MVER, I7 U 160 U 77 U 800 77.0 U 800 77.3 J ueth-SDiss OUTER, 42 U 862 U 42 U 42 U 42 U 42 U 42 U 863 U	MH1-SD152	RIVER	73	Ú .	150	Ū	73	ູ	73	U	73	Ú .	73	U	73	Ū —	73	U	8.16	Ĵ
HH-150153 OUTER 42 U 86 U 42 U 42 U 42 U 42 U 42 U 62 U 83 U 80 U 60 U 612 J MH-150156 OUTER 42 U 42 U 42 U 42 U 82 U 80 U 60 U 612 J 612 J 613 J 613 <th< td=""><td>MH1-SD152DP</td><td>RIVER</td><td>77</td><td>Ŭ</td><td>160</td><td>U</td><td>77</td><td>U</td><td>77</td><td>U</td><td>330</td><td>J</td><td>130</td><td></td><td>77</td><td>Ű</td><td>460</td><td></td><td>7.03</td><td>J</td></th<>	MH1-SD152DP	RIVER	77	Ŭ	160	U	77	U	77	U	330	J	130		77	Ű	460		7.03	J
Heri-Storis OUTER S2 U B5 U B2 U B2 <thu< td="" th<=""><td>MH1-SD153</td><td>OUTER</td><td>42</td><td>V.</td><td>86</td><td>U</td><td>42</td><td>U</td><td>42</td><td>U</td><td>42</td><td>U</td><td>170</td><td></td><td>42</td><td>Ū</td><td>170</td><td></td><td>0.12</td><td>J</td></thu<>	MH1-SD153	OUTER	42	V.	86	U	42	U	42	U	42	U	170		42	Ū	170		0.12	J
Heriscis OUTER 190 U B0 U 36 U 360 U 160 U 460 U 461 <	MH1-SD154	OUTER	102	U	85	U T	42	U	42	Ű	42	U	42	U	42	V	85	U	0.16	J
HH-S0158 RV-RE 1807 U S20 U 1807 U 1800 U <td>MH1-SD155</td> <td>OUTER</td> <td>39</td> <td>U</td> <td>80</td> <td>U</td> <td>39</td> <td>U</td> <td>39</td> <td>U</td> <td>39</td> <td>υ</td> <td>39</td> <td>U</td> <td>39</td> <td>U</td> <td>80</td> <td>U</td> <td>0.12</td> <td>J</td>	MH1-SD155	OUTER	39	U	80	U	39	U	39	U	39	υ	39	U	39	U	80	U	0.12	J
HH:SOTS RYDEX 142 U 62 U 64 U 40 U 40 U 40 U 62 U 0.19 J HH:SOTS OUTER 14 U 84 U 41 U 41 U 41 U 41 U 41 U 44 U 100 U 63 U 100 U 100 U 100 U 64 U 100 U 41 U 41 <td>MH1-SD158</td> <td>RIVER</td> <td>160</td> <td><u>v</u></td> <td>320</td> <td><u>u</u></td> <td>160</td> <td>U</td> <td>160</td> <td>U</td> <td>160</td> <td><u>u</u></td> <td>1300</td> <td></td> <td>160</td> <td>U</td> <td>1300</td> <td></td> <td>11.6</td> <td>1</td>	MH1-SD158	RIVER	160	<u>v</u>	320	<u>u</u>	160	U	160	U	160	<u>u</u>	1300		160	U	1300		11.6	1
MH1S0139 CVIEXI3* V I10 V 54 U 560 3.28 L MH1S0139 CVIEXI3* U B4 U 41 U 41 U B4 U 1.00 1.00 L B4 U 1.00 <td>MH1-SD157</td> <td>RIVER</td> <td>40</td> <td><u>v</u></td> <td>62</td> <td><u>u</u></td> <td>40</td> <td>U.</td> <td>40</td> <td><u>u</u></td> <td>40</td> <td><u>u</u></td> <td>40</td> <td>μ</td> <td>40</td> <td>υ</td> <td>82</td> <td><u>u</u></td> <td>0.19</td> <td><u>ب</u></td>	MH1-SD157	RIVER	40	<u>v</u>	62	<u>u</u>	40	U.	40	<u>u</u>	40	<u>u</u>	40	μ	40	υ	82	<u>u</u>	0.19	<u>ب</u>
HH1-S0180 OUTEX I1 U B4 U A1 U A1 U A1 U B4 U 1.00 U HH1-S0180 OUTEX I4 U B4 U A1 U A1 U B4 U 0.16 J HH1-S0180 OUTEX I4 U B4 U A1 U A1 U B4 U B4 U D.15 J HH1-S0180 OUTEX I4 U B5 U 62 U 42 U 43 U B5 U 0.15 J HH1-S0180 OUTEX I4 U B5 U	MH1-SD158	OUTER	54	<u>k</u>	110	<u>v</u>	54	0	54	<u>v</u>	410		150		54	U	560	L	3.29	
WTI-SURE OUTER, 1 WA PS WA PI WA PI <td>MH1-SD159</td> <td>UTER</td> <td>12</td> <td><u>v</u>.</td> <td>84</td> <td>Ľ.</td> <td>41</td> <td><u>v</u></td> <td>41</td> <td>0</td> <td><u>*</u></td> <td><u>k</u></td> <td>41</td> <td><u>v</u></td> <td>41</td> <td><u>8. </u></td> <td>84</td> <td><u>v</u></td> <td>1.00</td> <td><u>ب</u></td>	MH1-SD159	UTER	12	<u>v</u> .	84	Ľ.	41	<u>v</u>	41	0	<u>*</u>	<u>k</u>	41	<u>v</u>	41	<u>8. </u>	84	<u>v</u>	1.00	<u>ب</u>
MH132000000000000000000000000000000000000	MH1-SU160	IOU ER	41.	<u>w</u>	84	in in	41	<u>u</u>	41	<u></u>	41		41	<u></u>	41	0.1	64	<u>v </u>	0.18	<u>к — </u>
MI-1321/17 DU-13 DU-14 DU-14 DU-14 DU-14 DU-14 DU-14 DU-14 DU-14 DU-14 DU-15	MH1-SU160DP	COLLER O	44	<u>K</u>		<u>8</u>	42	<u>v</u>	42	<u>v</u>	44	<u>8</u>	41	0	44	8	50	<u>.</u>	0.12	ť
Ministrike Partice D DD DD <thdd< th=""> DD DD</thdd<>	MIT1-SU101	LOUISK BO	100	<u>K</u>	2200	K	100	<u>к</u>	100	<u></u>	11000	·	240	P	100	N	03	<u>v</u>	0.10	<u> </u>
Initialization Double 120 Double 12	MH1-SD102	CONTEP .	43	<u>к —</u> —	144	<u>K</u>	43	N N	42		22		43	h.	43	<u>. </u>	2100		0.18	fi
Alt Spritz Dirac Dirac <thdirac< th=""> <thdirac< th=""> Dirac</thdirac<></thdirac<>	MH1.SD1A	OUTER	40	ŭ	100 m	tő		<u></u>		ŭ	10	ū — — — — — — — — — — — — — — — — — — —	120	tă		ă	A2	h	0.10	ti
UNITESPITE UNITESPITE <td>MH1-SD165</td> <td>OUTER</td> <td>41</td> <td><u>.</u></td> <td>84</td> <td>tă 👘</td> <td>AT 1</td> <td>ū -</td> <td>41</td> <td>ŭ</td> <td>41</td> <td>ŭ –</td> <td>41</td> <td>ti –</td> <td>41</td> <td>ŭ</td> <td></td> <td>10</td> <td>0.10</td> <td>li.</td>	MH1-SD165	OUTER	41	<u>.</u>	84	tă 👘	AT 1	ū -	41	ŭ	41	ŭ –	41	ti –	41	ŭ		1 0	0.10	li.
UNIT STIME UNIT ST	MH1-SD167	RIVER	38	tů –	78	ti	38	ŭ	38	Ŭ.	36	ŭ	36	lŭ	38	ŭ	78	lu	0.35	ti
NHH 50196 OUTER 40 U 81 U 80 U 81 U	MH1-SD166	OUTER	75	ίν.	150	Ū.	75	Ū	75	Ũ	640	<u> </u>	75	lū —	75	Ū.	640	·····	7.08	r –
WHI 50170 PM/ER 67 U 160 U 87 U 2000 420 87 U 2000 637 U 2000 637 U 2000 633 C 87 U 2000 637 U 800 U 801 U 800 U 800 U 800 U 800 U 800 U 800 U 801 U <	MH1-SD169	OUTER	40	Ū.	81	Ū.	40	Ū	40	Û	40	U	40	10	40	Ů	81	tu	0.10	J
MH:ISDI71 MY:MER 39 U 80 U 80 U 80 U 80 U 80 U 30 U 39 U 30 U 30 U 300 U 30 U 300 U 301 U 010 010 010 010 010 010 010 010 010 010 010 010	MH1-SD170	RIVER	67	U	180	Ū	87	U	87	U	2000		420		87	Ū	2420		6.51	1
MH150772 OUTER IP U 160 U 170 U 460 3500 200 6300 28.1 MH150773 OUTER II U 84 U 41 U 41 U 44 U 10 U 10 00 00 10 00 00 6300 20.1 6300 20.1 20.0 10 00 <td< td=""><td>MH1-SD171</td><td>RIVER</td><td>39</td><td>U</td><td>80</td><td>Ū.</td><td>39</td><td>U</td><td>39</td><td>U</td><td>39</td><td>U</td><td>39</td><td>U</td><td>39</td><td>U</td><td>80</td><td>U.</td><td>0.22</td><td>J.</td></td<>	MH1-SD171	RIVER	39	U	80	Ū.	39	U	39	U	39	U	39	U	39	U	80	U.	0.22	J.
MH155073 OUTER 14 U 84 U 41 U 41 U 41 U 41 U 41 U 64 U 100 U MH150774 PWCR 46 U 64 U 46 U 46 U 46 U 64	MH1-SD172	OUTER	79	Ú	160	U	79	U	79	U	4800		3300		200		8300		28.1	
MH150774 RVER 46 U 46 U 46 U 46 U 64 U 0.077 J MH150774 RVER 46 U 46 U 46 U 46 U 64 U 0.077 J MH150776 RVER 40 U 820 U 110 U 200 J 1100 U 870 20.0 20.0 1100 U 100 U 870 20.3 Image: State	MH1-SD173	OUTER	41	U	84	U	41	U	41	U	41	U	41	U	41	U	84	U	1.00	<u>v</u>
MH:1-SD716 RWCRR 40 U 82 U 40 U 40 U 40 U 82 U 0.17 J MH:1-SD716 CUTER 110 U 220 U 110 U 100 1100 U 100 22.3 J MH:1SD707 CUTER 145 U 91 U 45 U 45 U 45 U 91 U 0.23 J MH:1SD707 CUTER 145 U 91 U 45 U 45 U 45 U 91 U 0.23 J MH:1SD707 RVRER 14 U 83 U 41 U 41 U 41 U 80 U 0.13 J MH:1SD707 RVRER 140 U 83 U 41 U 40 U 40 U 640 U 630 U 0.15 J MH:1SD716 RVRER 140 U 841 U 441 U 441 U 440 U 640 <td>MH1-SD174</td> <td>RIVER</td> <td>46</td> <td>V</td> <td>94</td> <td>Įų</td> <td>46</td> <td>U</td> <td>46</td> <td>U</td> <td>46</td> <td>U</td> <td>46</td> <td>U</td> <td>46</td> <td>U</td> <td>94</td> <td>U</td> <td>0.47</td> <td>J</td>	MH1-SD174	RIVER	46	V	94	Įų	46	U	46	U	46	U	46	U	46	U	94	U	0.47	J
MH1:SD176 OUTER 110 U 220 U 110 U 1200 J 1100 1100 13100 28.3 MH1:SD176 OUTER 145 U 91 U 45 U 45 U 91 U 0.23.3 J MH1:SD176 OUTER 45 U 91 U 45 U 45 U 91 U 0.23.3 J MH1:SD176 RVKER 17 U 160 U 77 U 840 L 250 77 U 860 5.15 MH1:SD176 MH1:SD177 DV 840 L 45 U 41 U 43 U 800 5.15 MH1:SD176 MH1:SD178 DV 870 U 41 U 41 U 41 U 43 U 0.15 J MH1:SD178 DV 91 U 45 U 45 U 45 U 80 0.355 J MH1:SD16 CUTER 45 U 844 U <td< td=""><td>MH1-SD175</td><td>RIVER</td><td>40</td><td>U</td><td>82</td><td><u>w</u></td><td>40</td><td>U</td><td>40</td><td>U U</td><td>140</td><td>μ</td><td>140</td><td>U</td><td>40</td><td>U</td><td>82</td><td>U</td><td>0.17</td><td>h</td></td<>	MH1-SD175	RIVER	40	U	82	<u>w</u>	40	U	40	U U	140	μ	140	U	40	U	82	U	0.17	h
MH1:S0177 DUTER 45 U 91 U 45 U 45 U 45 U 91 U 0.2.3 J MH1:S0176 RWER 17 U 160 U 77 U 77 U 640 1 220 77 U 660 5.15	MH1-SD178	OUTER	110	<u>v</u>	230	lu	110	U	110	U	2000	J	1100	L	110	U	3100		29.3	
MH1:SD178 IPW/ER I/T U 180 U 177 U 1800 1.5.5 MH1:SD178 IPW/ER I U 180 U 11 U 11 U 11 U 680 5.15 MH1:SD178 IPW/ER I U 832 U 41 U 41 U 43 U 63 U 0.13 J MH1:SD178 IPW/ER I40 U 822 U 43 U 441 U 43 U 63 U 0.13 J MH1:SD178 IPW/ER I41 U 43 U 44 U 45 U 69 0.68 J MH1:SD180 IPW/ER II U 84 U 0.16 J IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	MH1-SD177	OUTER	45	<u>k</u>	191	<u>lu</u>	45	<u>v</u>	45	<u>v</u>	45	<u></u>	45	<u>v</u>	45	U	91	ν	0.23	ų
MH1-SD179 PRVER (4) U 83 U 0.13 J MH1-SD179 PRVER (4) U 62 U 41 U 41 U 41 U 83 U 0.13 J MH1-SD179 PRVER (4) U 62 U 40 U 40 U 40 U 83 U 0.15 J MH1-SD170 PRVER (4) U 64 U 40 U 40 U 60 0.056 J MH1-SD180 CUTER (45 U 64 U 41 U 44 U 44 U 60 0.056 J MH1-SD180 RVER (44 U 64 U 41 U 44 U 41 U 64 U 0.16 J MH1-SD182 RVER (44 U 64 U 44 U 44 U 44 U 60 0.025 J MH1-SD182 RVER (45 U 60 U 45 U 45	MH1-SD178	RIVER	17	<u>k</u>	160	<u>k</u>	Π	<u>v</u>	<u>"</u>	<u> </u>	1840	1	250	h	<u>11</u>	<u> </u>	890	<u> </u>	5.15	ł
MHT/SDIT/MDF PWTCR IV IV </td <td>MH1-SD179</td> <td>RIVER</td> <td>41</td> <td><u>v</u></td> <td>83</td> <td><u> </u></td> <td>41</td> <td><u>.</u></td> <td>41</td> <td>U</td> <td>41</td> <td><u></u></td> <td>41</td> <td>12</td> <td>41</td> <td><u>v</u></td> <td>83</td> <td><u>v</u></td> <td>0.13</td> <td>Ľ</td>	MH1-SD179	RIVER	41	<u>v</u>	83	<u> </u>	41	<u>.</u>	41	U	41	<u></u>	41	12	41	<u>v</u>	83	<u>v</u>	0.13	Ľ
WMT1-SD118 U U U H3 U H3 U H4 U H5 U 600 0.0.85 J WMT1-SD118 U 1 U 41 U 41 U 44 U 44 U 41 U 44 U 64 U 0.16 J WH1-SD118 RV/ER 44 U 44 U 44 U 44 U 64 U 0.16 J WH1-SD118 RV/ER 44 U 44 U 44 U 44 U 66 U 0.72 J WH1-SD18 RV/ER 40 U 45 U 46 U 0.62 J WH1-SD18 RV/ER 40 U 45 U 82 U 0.17 J WH1-SD16 OUTER (45 U 91 U	MH1-SD1790P	HUVER.	140	<u>K</u>	82 -	<u>k</u>	40	<u></u>	40	0	40	<u> </u>	140	<u></u>	40	<u>K</u>	62	<u>۳</u>	0.15	<u> </u>
METI-SD181 PRVER 45 U 69 U 61 U 69 U 61 U 61 U 61 U 61 U 61	MH1-SD180	TOULER	45	<u>Ľ</u>	197	<u>8</u>	40	<u>.</u>	12	<u> </u>	109	<u>k — </u>	40	<u></u>		<u>8</u>		t:	0.66	<u> </u>
MRT1-SD184 UVEFR 42 U 44	MI1-SD181	INVER	144	<u>Ľ </u>	100	8	41 ·····	K	<u></u>	<u> </u>		H	144	8		<u>K</u>	80	<u></u>	0.10	ť
MENTSDIGAL FUTER 45 U 67 U 6	MINI-SU182	DN/EP	146	<u>K</u>		<u>k</u>	44	<u></u>		<u></u>	199	اک – – – –	145	H -	44	<u>K</u>	88	<u> </u>	0.74	H
TRATISSO INTER INTERNIE IN INTERNIE INTERN	AU1 201820	PARE	40	K	1842 —	Hi · · · ·	40		40	Hiron and the second se	40	h	140	<u></u>	40	H	00	h	0.17	H
MH1 SO1840P CUTER 43 U 43 U 43 U 43 U 43 U 43 U 460 J 43 U 460 J 460 J 460 J	MU1.90180	OUTEP	45	li	100	tă	45	ŭ		<u></u>	la	۲	45	hi	45	<u></u>	91	۲	0.57	ti
	MULLSD184DP	OUTER	la -	1ă	87	<u>ы — — — — — — — — — — — — — — — — — — — </u>		ŭ -	43	ŭ	480	1	13	Hi .	13	ti	460	<u> </u>	0.35	<u>tí – – – – – – – – – – – – – – – – – – –</u>
		1-10-1-11	17	14	1 <u>9</u> .	<u>س</u>	<u> </u>		<u> </u>		1	·		12.	<u> </u>			<u> </u>	10.00	14

1:WORAC123834880TA-430.5

This decement was prepared by Roy F. Weaton, Inc., scoreably for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

RFW238-2A-ASOP

DOCUMENT ARCHIVE EPA SN

DOCUMENT EPA ARCHIVE SN

Т

ledi0	ЭЩ С	Bed1010	Bed 18 18Q	Bed 1221	Bed12210	Bed (232	Offen and	Bod (242	Bed 13420	Bed1246	Sed1248Q	Sed1284	Bed 1284Q	Bed 1260	Bed 1200Q	SodrCS	loricho	BedTOC (%)	Sertoca
WHI 10166	OUTER	44	u	ja	lu 🛛	41	U	44	υ	44	U	44	u	44	0	60 (1997)	u	1.00	
	RIVER	¥	<u>y</u>	100	<u>u</u>	90	U	80	U	80	Ū	90	U.	90	Ū	60	Ū	100	
		. .	8.	1192	N.	7	N.		N.	99	U.		N.		N.		ln In	7.84	2
	(•) ¹ 111	4	₩ · · ·		ជ		12		ŭ	1210	lo lo	174	13		12	244	lo	12 64	ן א
VHI - OILO	• * it 1.1	4			<u>0 </u>	4	ŭ	44	Ŭ	44	U	44	ŭ	44	Ú.	80	lu l	0 20	
	RIMER.	4	<u> 4</u>	<u></u>	lu .	4	U	42	U.	42	ly.	42	ų.	42	Ū	00	Ŭ	1 20	[
			H		<u> .</u>	2	IN .	43	2	43	N.	49	<u>o</u>	43	10	88	U	0.22	i i
1111-1111	00101	4	Ŭ		ŭ	4	ŭ	43	ŭ		Ľ	20	Ľ	43	12	74	P .	30.0	K
7 112 111	0.0111.1	4	Ū	100	Ū.	<u>4</u>	lū	43	ŭ	43	ů.	43	li –	43	lũ	144 	lu l	0 17	Li I
11 J. I.		4	P	M	<u>v</u>	-	U	40	U I	40	Ŭ	40	Ŭ	44	ĮŪ.	44	Ŭ	0 82	i i
		1	<u>.</u>		<u>u</u>		12	49	N.	40	h	1160	. .	40	<u>v</u>	160	1	0.80	13
	OUT	13	ŭ	1960	80-	130	12	130	ŭ	880	L	100	۲ ۰	130	12	1350	1	1 A A	
	• 11 - L		0	120	<u>0</u>		lū	99	Ū	400	13	160	3	69	Ň	660		1.07	
NI 1921	e un el	4	¥		h	43	2	43	ų	43	ļγ.	43	ļu —	43	U	66	u	0 19	J 1
		R	¥	179	<u> </u>		N.		0	780	P		U	66	U	790	1	8.46	1. 1
	OUTER	49	ŭ	100	tu i	14	lŭ		ŭ	1900	l,	11800	5	1360	li li	14040	{	10.00	1
	6 m 4.	42	Ū	67	<u>.</u>	43	Ū .	49	ŭ	43	Ū.	43	lū –	43	ů.	87	υ.	0 36	6 I
	NMER.	42	<u>u</u>	M	<u>h</u> r	42	U	47	U.	(42 ·	lu .	47	U	42	lù .	ion	ų.	0,17	i 1
		49	<u>v</u>	H	HC .	40	L.	40	u 	140	u.	40	2	40	lo I	162	2	36.4	
ALL ADDADA	OUTER	1	<u>u</u>	144	15-	41	ŭ	4	ŭ	1	Ľ	1.	5	17	L.		۳	0 10	12 I
	(c))(a)	220	<u> </u>	400	10	220	lů –	220	ũ	1300	13	1300	Ľ.	220	iŭ -	4800		0.28	1.
	CHIER	<u>4</u>	<u>¥</u>	<u>.</u>	Li I	44	lu .	44	u	640	<u>ر</u>	130	1	44	lu l	770		0.00	i 1
	ALLER.	8	<u> </u>	<u>8/</u>	臣	43	in i	43	0	43	0	49	U L	43	U	87	u	01/	1
AH 2014	OUTER	40	lu L	94	ŭ		ŭ		5	12			ľ				U I	0 70	E I
	OUTER	<u>ii</u>		170	ប្រី	43	10	63	lū	7700	ſ	63	lu	43	ŭ	7700	1	10 30	li l
	OUTER	42	ĮΨ.	#6	Ų	47	U	47	υ.	63	þ.	4.7	u	4	μ.	63		0 40	ļi ļ
	÷	19	ų .	123	12 I		N.		N	**	lu .	1000	6	1.	U.	830	l	041	1
	OUTER	4	õ	44	lu U	42	ŭ		in and a second	47	li li		lu l		L.		Ľ.	01/	K I
	OUTER	6	lū	110	jų.	-	Ū.	-	i	480	17	110	lu l	0.0	lu l	480	0	2.04	r i
林 投給 。	GH LED.	4	Ψ.		μ.	42	u	43	lu .	230	4	47	lu 🛛	47	U	330		0 30	1
		11 I	łX –	盟	0	47	U .	42	N.		L.	4	U	43	10	1 46	l	0 80	R 1
	OUTER	i i	tö –	43	ŭ	i.	ŭ	41	U U	12	2	4	n i	41			u u	10 31	Ľ
	0 M I.I.	<u>1</u>	<u>ļ</u> v	42	<u>l</u> ũ	41	lu	41	lu -	141	lū	41	U.	41	lü	las .	Ü	10 20	6 3
	2/16	12	<u>v</u>	<u>#</u>	lu lu	42	U.	47	υ.	47	Įu	4	lu l	47	υ	44	Ú	0 18	i i
		4	LV.		in the second se	41	Ľ.	4		9	Ľ	4	12	47	6	**	2	0 14	1
	6.1111.1	12	ŭ		lõ	5	ŭ	47	ŭ	4	fu l	10	ŭ	4	Nu la	II	C.	0.17	L
	0.7 (°).	4	Īv	100	Ū.	4	ļu —	47	ü	42	lü	4	lü -	ū.	lū –	les .	lü	10 10	11 1
	SAIE	*	12	100 H	Ы	142	V	4	N.	47	2	44	2	41	19		U	1.00	V I
		ž –	£.	100	L.	**	12 12		2	12		14	Ľ.	12	2		2	100	in i
111 204	om it	192	1ŭ	1200	បើ	100	ស	1100	li li	1100	lu lu	1100	μ.	1160	N.	lation	E.	12.44	1. 1
	• 01 f.		19	120	10	in the second se	Ú.	96	Ū.		Ň	00	Ū.	105	ū	66	Ň	2 16	r i
Mil 1921		¥	te.	120	μ.	197	U.	97	2	67	lo lo	97	U	197	ν	97	hu i	2.00	1 4
		44	15	44	£.	199	R.	190	2	100	2	190	l.	190	2	300	2	20.6	1.
1112 10327	O'VIEL		to .	1200	1ŭ	129	ĥ	120	ĩ	130	li li	1.00	li li	1100	ŭ	340	Ľ.		r 1
	(* 1) L.	10	<u>l</u> ū	410	lū.	210	Ú.	210	Ū.	210	Ŭ.	110	Ū.	210	ŭ	4/0	Ň	17 1	1
	OVIED.	1	ĮΥ.		N.	111 I	2		N.		2		2		L.	1	2	0 61	μ
	87HP		1ŭ	1119	jo IA		N.		5	2	Ľ	37	R.		M.	12	PV .	1 04	1
THE WELL	OUT ON	100	1ŭ	1210	ស៊	lim	lu lu	100	lū	11000	ľ	100	ĸ.	-	٣	11000	1	14.33	L
11-01-12	OUTER.	49	N.	010	μ <u></u>	200	N.	360	Ú.	200	lu l	200	ju l	300	lu l	610	lu l	20 0	ji
11-0243	0.411		IV		<u>IV</u> ,	1145	IΛ	1142	in.	1140	in	220	1	1140	ļu .	1290	1	(12.2	1 1

Table A-4 (Continued) Sedmont Data (All Locations) Manistique Harbor and River Site Manistique, Mishigan

>

)

,

Table A-4 (Continued) Sediment Data (All Locations) Manistique Harbor and River Site Manistique, Michigan

€

€

SedilC	RIO	Sed1016	Sed1016Q	Sed1221	Sed1221Q	Sed1232	Sed1232Q	Sed1242	Bed1242Q	Sed1246	Sed1248Q	Sed1254	Sed1254Q	Sed1260	Sed1260Q	SedPCB (wellka)	SedPCBQ	SedTOC (%)	SedTOCO
411.50244		50	u	120	u –	50 -	<u>u</u>	50 0		490		170		50	a - 1	NAN		1.48	
UH1-SD245	OUTER	46	ŭ –	93	<u>.</u>		<u>. </u>	4	<u> </u>	45	<u>ii</u> — — — — — — — — — — — — — — — — — —	46	<u>. </u>	48	ŭ -	<u>n</u>		070	1
WH1-SD246	OUTER	47	<u>. </u>	96	0 1	47	<u>. </u>	47 1	<u>. </u>	47	<u>. </u>	47	<u>.</u>	47	č – 	96	.	0.70	<u>;</u>
VH1-SD247	OUTER	45	ū,	92	w - 1	45	<u> </u>	45		45	ù -	45	ŭ 👘	45	ŬJ -	2	i 1	0.36	<u>; </u>
MH1-SD248	OUTER	89	U T	180	0	80 1	<u> </u>	69 0	U C	89	U	89	Ú I	89	Ū I	99	0 - 1	7.08	<u> </u>
MH1-SD249	OUTER	170	Ũ	340	U	170	Ū	170	Ŭ I	170	Ū.	170	Ū	170	Ū 1	340	Ū 1	11.2	
MH1-SD249DP	OUTER	190	U	390	U	190	U	190	v — i	190	U.	190	U	190	0 -1	390	U	11.5	
MH1-SD250	OUTER	94	υ	190	U	94	U	94	0	94	U	94	U	94	U I	94	U III	5.3 9	
WH1-60251	OUTER	65	ບ	130	Ū i	66	Ū U	65	U	65	U	65	U	65	Ú I	65	U -1	1.55	
VH1-SD251DP	OUTER	62	Ü	130	0	62	U .	62	U	62	U	62	υ	62	υ	62	U III	2.28	
MH1-SD252	OUTER	56	U U	110	0	56	u	56	Ú U	740	1	210	1	56	U I	950		0.96	3
MH1-\$0253	OUTER	46	UJ	\$3	10	46	3	46	ພື່	46	3	\$	ÚJ	46	ΰu	93	U	0.54	J
MH1-SD254	OUTER	43	U	86	U	43	U	43	U	43	υ	43	υ	43	U	86 88	U I	0.24	J
MH1-SD255	OUTER	51	U	100	<u>v</u>	51	U	51	<u> </u>	51	U	51	<u>u</u>	51	U	51	U	1.31	1
MH1-SD256	OUTER	46	U	\$3		46	υ	46	U	46	U	46	U	46	Ų į	93	U	0.76	
MH1-SD257	OUTER	220	U	450	<u>v</u>	220	<u>v </u>	220	<u> </u>	220	U	220	U	220	<u>U</u>	450	<u> </u>	16.6	J
MH1-SD25/DP	OUTER	170	U	340	<u> </u>	170	<u>. </u>	170	<u> </u>	170	<u> </u>	170	U	170	<u>v</u>	340	U	13,8	J
MH1-50/256	OUTER D	13	<u>.</u>	150	8	<u>n</u>	<u>v</u>	/5	<u> </u>	75	<u>.</u>	/5	<u>8</u>	75	8	75	<u>v</u>	3.73	
	AITER	<u> </u>	H	120	<u></u>	~	<u>к — — </u>		<u>. </u>	*	<u> </u>	42 45	<u>v</u>	40	<u></u>	34		4 #1	
MILL-SU200	CULTER	45	<u> </u>	82	K	<u>****</u>	<u>. </u>		<u>. </u>	65	×	45	<u>8</u> ———	45	<u> </u>	<u>av</u>	۷	3.77	
LIH1.90282	OTTER	42		*	<u> </u>	42	<u>.</u>	<u></u>	ň	47	11	47	ŭ		<u></u>			0.75	
MH1-50263	OUTER	170	Ŭ	340	<u>ii </u>	170	ŭ .	170	<u>. </u>	170	u	170	N.	170	<u>.</u>	347	<u>.</u>	9.36	<u> </u>
MH1-SD264	OUTER	80	Ū	160	Ŭ	80	<u> </u>	80	ă —	80	ŭ	80	<u>0</u>	an.	ŭ –	an	ñ	7.34	ř
MH1-SD285	OUTER	280	lū —	580	ŭ	280	Ŭ	280	ŭ	35000	×	280	lŭ	1200	×	36200	·	7.53	ř
MH1-SD288	OUTER	110	1 <u>0</u>	230	ŭ	110	Ū.	110	Ŭ	110	II	9700		110	Ū ·····	9700		10.2	
MH1-SD267	OUTER	75	Ū	150	Ŭ	75	Ū	75	ð	350	-	75	U	75	Ŭ	350		4.92	
MH1-SD268	OUTER	65	U	130	Ū	65	Ū	65	U	110	1	65	Ū	65	Ů <u> </u>	110		3.24	
MH1-SD269	OUTER	82	<u> </u>	130	Ū	62	0	62	U	78	J	62	U	62	υ	78		2.05	
MH1-SD270	OUTER	52	U	110	U	52	U	52	U	83		52	U	52	U	83		2.36	
MH1-SD273	OUTER	57	υ	120		57	U	57	C	57	U	57	υ	57	2	57	Ų	1.68	J
MH1-SD274	OUTER	56	U	110	0	56	u	56	U	56	<u>0</u>	56	0	56	Û Ö	56	U	3.08	J
MH1-SD275	OUTER	170	U	340	υ	170	U	170	U	170	U	170	U	170	υ	340	U	14.6	
MH1-SD278	OUTER	130	Ų	270	<u>v</u>	130	U	130	U	130	<u>u</u>	130	<u>u</u>	130	U	270	U	8.33	
MH1-SD277	OUTER	77	U	160	U	Π	U	π	U	540	J	Π	U	77	U	540		3.73	
MH1-SD278	OUTER	61	<u> </u>	120	<u>v</u>	<u>61</u>	<u>u</u>	61	<u> </u>	98	Ľ	61	<u>v</u>	61	<u> </u>	96		2.08	
MH1-SU278UP	OUTER	<u>60</u>	<u>v.</u>	130	<u>v</u>	66	0	66	<u>.</u>	130	J		<u>v</u>	86	<u> </u>	130		2.56	
MH1-SU2/V	OUTER	30	<u>00</u>	130	<u>69</u>	B	<u></u>	30	0.0	35	0.	30	0	30	<u>8</u>	35	<u> </u>	2.84	
MITT-SCA200	OUTER D		N	02	<u>6</u>	48	<u>.</u>	40	<u>. </u>	44	J	40	<u></u>	40	<u> </u>	00		0.0	
MH1-SD281	OTTER	42	<u>. </u>	AA	<u> </u>	42	<u>, , , , , , , , , , , , , , , , , , , </u>			42	<u>. </u>	42	<u> </u>	42		84	<u>. </u>	0.19	K
MH1-SD263	OTTER	40	<u>iii</u>	A7	<u>ð</u>	43	iu	43	iu .	43	<u>tu</u>	24	li	43	ŭu	24		0.76	<u> </u>
MH1-SD284	OUTER	120	Ű	240	<u>ū </u>	120	U	120	Ū.	180		120	tù	120	ů –	180		4.65	Ĵ
MH1-SD264DP	OUTER	110	ū	230	Ũ	110	Ū	110	Ū	450		110	lù	110	ù —	450		4.03	J
MH1-SD285	OUTER	57	U	120	U	57	U	57	U	57	U	890	1	150		1040		1,38	
MH1-SD285DP	OUTER	51	U	100	Ū	51	U	51	U	51	U	51	U	51	U	51	U	1.14	
MH1-SD286	OUTER	130	U	260	Q	130	U	130	U	130	U	130	U	130	Ū	260	U	10.5	J
MH1-SD287	OUTER	80	U	160	Ú.	80	U.	60	U	80	0	290		80	Ŭ	290		7.97	
MH1-SD288	OUTER	67	U	140	U	67	U	67	ν	85		67	<u>v</u>	67	U	85		4.19	
MH1-SD289	OUTER	92	<u>u</u>	190	U	92	U	92	υ	420	L	92	U	92	U	420		5.53	
MH1-SD290	OUTER	66	UJ	130	<u>u</u>	86	<u> </u>	68	UJ	66	101	86	101	66	<u>w</u>	86	U	2.77	
MH1-SD291	OUTER	59	<u>w</u>	120	<u>w</u>	59	<u>w</u>	59	<u>w</u>	500	<u> </u>	159	<u></u>	59	0.	500	-	1.34	L
MH1-50292	OUTER	152	<u></u>	110	<u>v</u>	52	<u>v.</u>	52	U	240	<u>K. </u>	52	<u></u>	52	<u>v</u>	240		2.62	
MH1-50283	OUTER	45	<u>₩</u>	92	<u>w</u>	45	<u></u>	45	<u></u>	40	<u>w</u>	45	<u>m</u>	49	<u>u</u>	92	<u>ب</u>	0.45	<u>ہ</u>
MH1-SU200	UNER	2	<u></u>	110	<u>w</u>	5	3	54	<u>u</u>		<u></u>	1240	<u>.</u>	34	<u></u>	240	┢───∽	2.30	+
MP11-SU200		10W	<u>k</u>	180	<u>k</u>	<u></u>	<u> </u>	<u>av</u>	<u>. </u>	40	<u></u>	<u></u>	<u></u>	04	<u>k</u>	W0	<u></u>	3.20	<u></u>
MH1-80207	IOUTER I	40	<u></u>			40	<u>u</u>	40	<u></u>	40	<u>. </u>	140	10	140	<u>K</u>	¥4	<u>.</u>	1.010	<u>ال</u>
	OUTER	1110	<u></u>	110	<u>K</u>	24	<u>.</u>	1110	<u>.</u>	110	₩	110	H	110	<u>K</u>	220	<u>.</u>	1.13	
MU4 60300	100 mm	176	K	1460	H	76	ň———	76	ň	76	<u>₩</u> —	170	lĭ	76	ы — —	70	۳	8 57	+
Min 1-30-300	O THE	12	Hi	150	K	77	ŭ	72	<u></u>	140	lĭ —	77	10	72	<u>6 – – – – – – – – – – – – – – – – – – –</u>	140	<u> </u>	3 77	H
MH1_SD302	OUTER		h	190	ti —	<u></u>	ŭ	94	ŭ	94	h	94	10	194	h	<u></u>	ta	6.81	├ ───
	100.04	144	<u> </u>	1	<u></u>			<u> </u>				1 <u>2.</u>	18		1¥.	<u> </u>	ب	0.01	<u> </u>
															•				

I WORACI23834880TA-4.3LS

ssion of U.S. EPA. red by Roy F. W ton, Inc., expressly for U.S. EPA. It shall not be released or disci seed in whole or in part without the express, written pers and was prop

RFW236-2A-ABOP

DOCUMENT ARCHIVE EPA SN

.

Sedi0	AIO.	Bed1016	Sed10160	Sed1221	Bed1221Q	Bed 1335	Sed 12320	Bed1242	Bed1242Q	Bed1240	Sed12480	Bed 1264	Bed 12840	Sed1260	Sed12860	SedFC8 (un/he)	SedFCBQ	BedTOC (%)	0001000
Mett: 10202	OUTER	79	10	119	N.	71	¥	17	<u>ly</u>	10	¥	1420	2	78	lv	1420		1.49	
		170	H	1112	<u>W</u>	10 14	0	12	<u> </u>	70	<u>ky</u>	1 <u>2</u>	W	₩——	<u> </u>	170	W	19.99	+
Y :: (. 4) : (100160	44	Ŭ.		M.	4	101	14	10		5	44	Ŭ1	14	100	1		871	
		49	W.		W	.	<u> </u>	4	W	H.	<u>w.</u>	4	<u>p</u>	4	¥			0.19	H
	OUTE		1ŭ			<u>M</u>	₩				,	₩ =-	₿	H	₩	4	∳.		¥
	ten i.		I		W		0				I	110	<u>,</u>		Q	W		1	
	CONTEN	All of the second		1100	H	H	₩	147	₩	141 - · ·	Barre	121		∦ ¶	₩		₩ —	19.10	affran
1112 1911	IOUTE.	140			D	110	Ŭ	110	<u>10</u>			100	N		N	A Ref 2 access		12.07	L
	- 9.05	H120		HR	Щ	1170	R	ЩØ.	H	1129	₩	朥	-	₩P	K	- H24	÷	122.9	h
1112	OUTE		ti	15	tă – – – – – – – – – – – – – – – – – – –		10 · · · · ·		₩		10 -	1480		1	IV: THE	146		13.01	
	I-UI-		¥		y	— —	P ,	Ш.	N	1880 · ·	k	10 9	L	12 .	¥	144 ····	Ţ		- ·
11.011	IOUTE	176	10.		1 <u>0</u> ,	₩	₭ —	17	ស្រី · ·	144	K	假	16.	撰	lŭ.	110	t · - ·	16	
2010 0317	ICUT I		10	110	12 ····		¥	M	N .	11760	A	M	V .		10	1700	T	12	1
ANT OCATOR	IOUTE.	128		1140	<u>n</u>		<u>K.</u>	₩	<u>N</u>	1990 ·	₩	<u>.</u>	8	H	ᄨ	19900		HR	·
X 11 - 10910	0.011	140	10)		U .	4	Ŭ.	4	0.		<u>لين</u>	14	Ŵ.		0		lu	82	1 1
	QUIE	H#	- M		<u>p</u>	<u> 44</u>	ų –	14	¥.	H# .	₩.	1##	<u>N</u>	111	K –	11 ·	R	1.	1
1 11 1 10 1 1 k	OUTER	65	10 ····	1116	Ň	13	₩ —	13	· ស ្រ · · · ·	13	to	「「」 「	10		10	13	<u><u>v</u></u>	137	t
	CUTER		<u>ly</u>	1100	₽	H	<u>p</u>		<u>N</u>	H	<u>1</u> 4	<u>141</u>	R .		. <u>Ы</u>		¥	<u>197</u>	
40545	OUTER	85	- 1 4	180	₩	43	법 …	1000 ····	₩	1310	H	43	i i	43	L.	310	μ.	65	1
	IOUTER	17	10.	140	tu .	M.	<u><u><u></u></u></u>	<u>101</u>	<u>tiv</u>	W	<u>hi</u>	W	ប្រឹរ	101 .	<u>i</u> ii	<u>.</u>	μ	4 61	4
	OUTER		쁪	130	10 ·	100	μ. L	出	R.	1210	R	1	U.	1100	Ľ.	1210	ł	11	
MILL DANK	IOUYE	104	10.	120	1.	i i i	10,		<u>tu</u>	1200	<u>p</u>	100	17	94	ไม้ม	400	1	414	1 1
建設業	OUTER	12	U.			19	ĮΥ.	i i i i i i i i i i i i i i i i i i i	U.	0	19	42	lu lu	47		86	lu t	10.22	12 H
T-11 - 11 1	Sufer		10 -	世	lu U	43	10 IV	4	ŭ	143	ť	10	5	45	ŭ		Įų.	0.74	fi j
制 粉粉	NULL		19	1	<u>ģ</u>	40	Į.	45	<u>F</u>	192 192	L.	len .	lu	40	lu L	67	Į.,	0.00	1: I
	XXIII	l be	10 10	110	u u	94	U U	04	10		ŭ	54	ŭ	40	ů.	34	L.	111	ľ l
2011 (D22)	OUTE	Ψ.	10	120	<u>lu</u>	1.	Įū	187	Ω.	10	19	192	Ų.	躯	lu.	Ψ.	ų.	1 99	4
	loute		18 10	120	łiji –	間 ·	10 .		N SI	褶	믭		lu lu		lu U		lõ.	11	
	10010		Įټ .	Ш.	l <u>ü</u> .		10	19	l <u>u</u>	19	1ý	論	k -	<u>i</u>	lý.	100	i .	14.ht	1
	- KOTE	H## ·	HX .	招	R.		R.	鴅	N.	愄	R.	15	K	20	ГУ Ю	橋	lu la	H 1	+ 1
	10001		1 <u>2</u> .	1240.	10	菫	tv.	li i	19.	11000	ti –	18	t <u>ě</u>	1.	Įv.	1000	1	折	1. 1
		H#	Кı	巒	<u>k</u> /	11	ų,	侶	194 194	1200	Ł	12	18 ⁴	H.	Ł	1274	h .	욚쵉	R -
	1000	114	1ŭ	1	1V	14	ťŭ	145	1ŭ	簘	ľ	145	lů	15	10	1	f	10.14	Ŭ 1
	24	1.	<u>R</u> .	R	ĮΫ.	攢	ÿ.	199 1	Q.	1	1V	19	<u>P</u> .		K		Į.	122	₩.
• (1745)	tourn	11章	影	17	K.	祥	55		105	49	1ú,	4	iui	14	ίŭ	1	iu .	63	li i
	0.011		N	110	N.	¥	<u> i</u>	Ĥ	N	₩.	N.	H	N.		1X		<u>V</u>	R.29	K I
	10010	12H	Н	諁	1X	8J	ĸ	H.	N	4400	Ľ.	i ino	U.	8	X	1400	ľ	1111	ł'
	6.612		ΞQ.	IIW	10		Į.	围	N N	1	Γi		<u>N</u>	籣	No.	1	ţu	1.44	1, 1
	-1947		梠	1122	招	操	梠	攒	ł.		ly l	憎	N.	擦	ĸ		P .	<u>84</u>	Y I
	1001	117	tği 🛛	tille –	11 i	饡	Ťů:	量	1ŭi	謆	12	117	ίψι –	嵌	10i	謆	t	博藝	1
			R.	摇		泯	Ŵ	黀	<u>8</u> 7	撒	K	R	₽Y	摺	er Er	1	1		1
1.111	10011	115 ····	٠ť	tist	1.	愣	Ň	(Fi	ĸ		5	閌	Ň	博	К.	₩ -	1	14.64	t _ '
	- KOUTE		N/		W	120		<u>.</u>	<u>N</u>		<u>R</u>	12	. <u></u>	120	- W i		.	4.41	-h]]
	10009		1		<u>M</u> .		<u>W.</u>	198	14	199	<u>IV</u>	19	IV	19	14	<u>10</u> ?	<u>IV</u>	DV. 17	
IWARACWINA	11 76.4 16 1																		PHOTOS IN ADAPT

and a second second

Table A-4 (Continued) Sediment Data (All Losations) Manietique Harber and River Bile Manietique, Michigan

}

I will propared by Hus F. Weldon, Inc.

)

and a subta in a last alleged the plantage and an

DOCUMENT ARCHIVE ЕP SN

	1000	In tinte	10 440400	10.11001	10.440000	0	10-440000	10.449.49	10.440400	10.449.44	10.440400	10-11041	10. 1100.10	10 11000	10	In inco	1		
SediD	RID	Sectore	Sectored	5001227	50012270	5601232	30012322	8001242	30012424	3001246	99012484	3401234	5001234U	Sed1280	Seg1560C	SedPCB	Reducing	Sector (%)	Sectorco
								[L		_	(ug/lug)			
MH1-SD380	OUTER	44	<u>u</u>	89	V	44	μ	44	U	44	10	44	<u>u</u>	44	0	89	U	1.24	
MH1-SD380DP	OUTER	45	U	93	U	46	<u>u</u>	46	<u>U</u>	130		58		46	U	188		3.69	
MH1-S0361	OUTER	43	υ	87	0	43	U	43	N	43	lù	43	U	43	U	87	U	0.12	7,
MH1-50382	OUTER	45	hu .	91	U	45	U	45	U	45	10	45	10	45	0	91	Ú		
MH1.SO366	OLITER	54	NI I	110	10	54	40	54	11	54	11	54	10	54	11	44	li -	1 60	
MILI1 CO367	OT THE	57	10	120	<u>tă —</u>	67	li	87		87	li	67	<u> </u>	167	<u>ti</u> -	87	- <u></u>	19.49	
MIT1-SU307		20	<u>[]</u>	140	<u></u>	100	<u>10</u>	80	<u></u>	50	<u></u>	57	<u>.</u>	12/		37	<u>. </u>	13,465	
MP11-SU306	OUTER	100	<u></u>		<u>18.</u>	00	<u></u>	30	<u>v</u>	30		30	<u>v</u>	30	<u>U</u>	30	U	1,24	
MH1-SU389	OUTEN	47	101	96	<u>w</u>	47	<u>w</u>	47	01	47	07	47	ω	47	0.1	96	<u>lu</u>	0.95	<u> </u>
MH1-SO370	OUTER	49	0	100	10	49	U	49	U	49	<u>u</u>	46	U	49	10	49	U	0.79	J
MH1-\$D371	OUTER	162	U	130	U	162	U	62	U	62	U	1800	J	62	U	1800		3.75	
MH1-S0372	OUTER	160	U	120	0	160	lu U	80	0	780	J _	60	U	60	U	780	-	7.10	
MH1-SD374	OUTER	51	U	100	U	51	U	51	10	1500	1	51	Ū	52	1	1552		3 15	+
AU11_CD375	OUTER	45	iii .	101	10	45	lu -	45	ti	45	11	280		45	10	280		10.26	<u> </u>
AUL	OUTER	A7	ŭ	1140	<u> </u>	67	li -	87	hi	700	<u>1</u> –	87		107	<u>ki</u>	1200		10.00	_ <u>P</u>
BALLA COOTA	100 million	40	H	140	<u>18</u> – –	40	<u>K</u>		#	100	<u>1.</u> –	40	<u></u>		<u>+</u>	700		10.0	
MH1-50377			<u> </u>	101	<u> </u>	19 <u>0</u>	<u><u> </u></u>	170	<u> <u> </u></u>	-121	<u></u>	40	<u> </u>	40	<u>.</u>	131		0.17	_ <u>ų </u>
MH1-SU3/N	OULE	40	<u>lo</u>	194	<u>v</u>	40	0	40	<u>w</u>	170	10	40	<u>U</u>	46	<u>v</u>	94	<u>u</u>	0.00	
MH1-SD300	OUTER	1 50	<u>v</u>	100	<u> </u>	50	0	50	<u>lū </u>	50	<u> </u>	50	<u>u</u>	50	n n	50	<u>u</u>	1.45	
MH1-SD361	OUTER	173	U	150	N - N	73	U	73	<u>U</u>	73	U	420		73	ĮU	420	1	4.21	
MH1-SD382	OUTER	62	W	130	ω	62	LU1	62	UJ	62	μu –	62	UJ .	62	UJ .	62	<u> </u>	2,13	-
MH1-SD383	OUTER	146	U	63	U	146	lu -	46	lu	46	U	46	10	46	10	93	U	1.22	
MH1-SD364	OUTER	56	hi	1110	lū –	56	1ù	58	10	56	lū	56	10		10 -	54	lu	7.05	
AULU COMM	OUTTER	72	103	100	<u>–</u> –––––	170	0	22	- Min	800	1	200	1	172	-	1060		1.00	+-
MIT 1-30383	- COUTES	170	100	1.00		12	103	120	100	260	1 <u>. </u>	240	W	174	10	1000		14.00	
MIT1-30387	- QUIE	1/0	<u>0</u>		<u>.</u>	1/0	<u></u>	100		1/30		240	<u>.</u>	1/0	<u></u>	(000	h	4,00	
MH1-SU388	OUTE	142	<u></u>	80	lu	42	<u>v</u>	42	<u>w</u>	42	<u>v</u>	42	<u>v</u>	42	<u>v</u>		U	0.24	_J
MH1-SD366DP	OUTER	143	<u>u</u>	88	<u>u</u>	43	U	43	<u>w</u>	43	<u>v</u>	1200	μ	43	U	1200	1	1.00	U
MH1-SD389	OUTER	1 43	υ	86	U	43	U.	43	U	43	U	43	υ	43	υ	88	U	0.18	_u
MH1-S0390	OUTER	144	LUI	89	β	44	UJ	44	W	210	L L	44	101	44	3	210			
MH1-SD391	OUTER	2 79	U	160	0	79	E C	79	10	9300	1	3600		350	b	13250		6.65	- <u>1</u>
4441.50302	CUTTER	147	10	laa	la la	47	tă —	47	ta	47	-lū -	47	hi	47	ĥ.	QR.		1 00	
ALLIA COSCI	- OTES	2 167	ti	120	10	67	1ñ	47	- U	1100		157	- Hu	67	-tö	180	<u>۴</u>	1.00	<u> </u>
BANKE (10000)			10	1400	<u> </u>		<u></u>	3/	- <u>-</u>	100		- 100	-18	51		100		1.51	
MH1-SU394	OULE	(152	<u>v</u>	100	<u>v</u>	52	<u>u</u>	52	0	122	<u>v</u>	<u>S</u>	<u> </u>	52	U	02	U	1.13	
MH1-SD395	OULE	2 45	ĮU	92	<u>u</u>	45	<u>U</u>	45	<u>u</u>	45	<u>u</u>	45	<u> </u>	45	μ	92	U	0.71	
MH1-SD396	OUTER	R (60	<u>IU</u>	120	U	60	U	180	U	180	U	60	<u>u</u>	180	U	80	U	1.30	
MH1-SD396DP	OUTER	1 55	U	110	U	55	U	55	U	55	U	55	U	55	U I	55	U	1.45	
MH1-SD397	OUTER	100	ίΩ.	200	iu	100	ιώ.	100	w	100	UJ	100	w	100	LUJ	200	U	7,76	
MH1-SD308	OUTER	130	N)	280	w	1130	10	130	υ	54000	13	130	iu -	130	10	54000		231	
34141.00300	- OUTER	2 48	101	03	lin	40	hi -	44	100	48	411	44	811	44	liu	00	-hu	1 44	
ALLA CD400		2 42	100			13	111	42	100	42	100	42	100	42	- Miles	100	10	10.24	
MITT-SD400	0018	1 42		00	0.0	-	00-	42	<u> 0</u>	12	100		00-		- <u>199</u>	- 100	10	10.20	_ <u>-</u> !
MH1-SO401		(30	<u>v</u>	110	<u>u</u>	100	<u>0</u>	30	<u>v</u>	3	- <u>P</u>		U	30	<u>v</u>	20	<u>v</u> .	0./5	<u>i</u>
MH1-SD402		(41	0	84	<u>u</u>	41	ν.	41	U	15	1	41	<u>N</u>	41	. <u>P</u>	15	<u> </u>	0.17	
MH1-SD403	OULE	<u> 145</u>	U	92	υ	45	U	45	<u>U</u>	45	<u> </u>	45	U	45	U	92	U	0.40	J
MH1-SD404	OUTER	2 44	U	89	U	44	U	44	U	210	L .	130		33	0	340		1.07	
MH1-SD405	OUTER	R 50	Ū.	100	10	50	U	50	U	280	1	50	N N	50	U	260		1.61	-
MH1-SD406	OUTER	R 100	U	120	U	180	10	80	U	60	10	60	NU I	60	U	80	ΙŪ	1.47	
MH1-SD407	OUTER	2 44	11	04	- III	48	lū ·	46	T.	46	hu -	48	10	48	11	94	Ū	0.28	
MH1.SD408	laine	2 44	10	80	lū –	44	lū	44	10	144	lū	44	hi	44	hi	80	tõ	0.63	
Ballio 00400			<u>10</u>	1440	10		<u>.</u>		- <u>6</u>	44	- <u>10</u>	44	<u>.</u>			54	<u>6</u>	0.00	
MITT-SLAVA		1 24	<u>u</u>	110	<u>- M.</u>	104	<u></u>	104	<u> </u>		- <u>.</u>		<u>.</u>		N		<u>v</u>	0.71	
MH1-SD410	OUTE	(30	lui	110	101	30	<u></u>	20		30	<u>u</u>	30	10J	50	- UJ	50	ĮU	1.18	
MH1-S0411	OUTER	< 155	101	110	<u> ul</u>	55	01	56		30	1	55	<u> </u>	56	<u>u</u>	30	1	1.40	
MH1-SD412	OUTE	R 61	UJ	120	ω	61	UJ	61	UU .	76	J	61	0.0	61	UU .	76		1.60	
MH1-SD413	OUTER	₹ 43	ŪĴ	87	B	43	ω	43	UJ	43	μ.	43	UJ	43	w	87	0	0.34	1
MH1-SD415	OUTE	1 42	U	85	U	42	U	42	U	42	U	42	īυ –	42	U	85	- IU	0.11	1
MH1-STM16	OLUE	2 43	101	AA.	10	41	10	49	111	380	1	43	111	13	111	380	1	0.64	- <u>ti</u>
MILLS COULS	I OTTE	142	10 ⁻	105	10	1/2	10.	42	10	42	ti ·····	10	10	42	10	35	41	10.19	
AUL4 CD410			<u> </u>	110	- <u>Hi</u>	62	- <u>ti</u>	100-	- <u>1</u>	182	- Ki	122	-ti	52	- <u>1</u>		- Li	12.02	<u> </u>
MM11-SD419	LOUIE		<u></u>	110	- <u>K</u>	- 102 -	10	12	<u> </u>	124	-8	- 24	<u></u>	-12	- <u>K</u>	- <u>P</u>	- 10	1200	-+
MH1-SD420	OULEI	1 45	<u>IV.</u>	191	U	40	19	15	<u>v</u>	193	10	40	<u>-iu</u>	45	<u>-14</u>		<u>u</u>	0.27	11
MH1-SD421	QUTE	R 42	<u>u</u>	86	U	42	<u>lu</u>	42	U	42	<u>l</u> U	42	<u>ju</u>	42	<u>U</u>	186	U	0.34	i
MH1-SD422	OUTE	3 44	UU	89	w l	44	lui	44	μ U	44	UJ	44	lui	44	IJ	89	U	0.30	1
MH1-SD423	OUTE	R 44	UJ	89	UU	44	UJ	44	lu	3000	1	44	lui –	44	ω	3000	1	0.65	J
MH1-SD424	OUTE	3 53	10	110	NU .	53	Tu l	53	10	53	Tu	53	lu .	53	JU	53	lu .	0.78	1
MH1.SD424DP	OUTE	2 45	1ñ -	102	tū –	44	10	145	The second	45	ti —	145	10	45	10	02	10-	0.87	-11
MUA CDAM	- OUTE	5 40	- Hin-	100	- Lin -	-12	- <u>1</u>	120	100		- 	10 -	- 	40	tin -		-tă	0.00	
pm/11-50425	IONIE	7 198	100	1999		1-46	100		103	W	NO	148	JUJ		100	199	U	10.00	14

1 WORACI23834880TA-4.34.5

This document was prepared by Roy F. Weston, Inc., expressly for U.S. EPA. It shall not be released or clipcineed in whete or in part without the express, written permission of U.S. EPA.

RFW236-2A-ASOP

ť

Table A-4 (Continued) Sediment Data (All Locations) Manistique Harbor and River Site Manistique, Michigan

Table A-4 (Continued) Bedment Date (All Locations) Manietique Harbor and River Bits Manietique, Mishigen

. 1

Ŋ

5

1

1

1

1

adi0	RIO	Bed1018	Bed1016Q	Bed1221	Sed1221Q	Sed1232	Sed12320	Sed1242	Sed1242Q	Bed 1248	Bed1240()	Bed1254	Bed 1284Q	Bed1260	Bed 1200Q	SodPC8	SedPCBQ	SedTOC (%)	BedTOCQ
M 11-12-12-1	(e. 14) (.)	42	W.	47	W.	47	UJ.	4	Ψ.	43	W	44	Ū,	42	V 4	N.	<u> </u>	0.40	
	<u>ON R</u>	R	K	199	<u>k</u>	i g	ų	<u> </u>	Х	8	tr†	g	¥	<u> 19</u> .	£Y	<u> 19</u>	<u>ч</u>	4.24	
	OUTER	7	Ŭ	150	<u>X</u>	.	<u>.</u>	#	¥	G	tat	t			10	E	tu - · · · · ·	2 61	<u>ا</u> م ا
SHIE WHY	0.0013.0	45	Ū	1	Ū	49	ΰ	4	Ū	M	10	45	<u>0</u>	43	10. <u> </u>		10	0.97	1 .
MILL OAM	(•0) .	4		H		1		41	N.	41 .	19.	4	N.			M	lu	0 17	J
	OUTER	X	¥4		₩	A	<u></u>	.	<u>Н</u> т	31	₩ · · · · · · · · · · ·	#	W		₩	179	¥	<u>214</u>	¥
	ATTER	X	8	· · · · ·	8.	#******	¥	.	N	***	₩ <u></u>	#	X · ·	<u>*</u>	H	177	H	10.20	Ħ
111111111	io mat		U		Ū.	4	Ū —		Ŭ	4	0	4	Ū.	4	lu	191	Ŭ	0.22	J.
111 P.11	loint a		W		144	44	¥4	4	W4	4	14	4	<u> </u>	4	Q	191	Ū.	0.64	4
		**************************************	H		₩4 ··	4	HH	<u>₩</u>	₩	<u>₩</u>	HH	옾 -	HH	#	104 ····-	100 ···································	<u>k</u>	0.34	#
	ione:		Ŭ	W	<u>1</u>	2	Ŭ	4		3	Ŭ	H	Ŭ	3	10		lŭ	0 10	1
1.118 9111	le final	4	10		10	41	Ū.	41		41	N.	1	0	4 1	10		ÎV	10.10	D.
	(•) 1	R	R	10 <u>0</u>	H	¥	<u>.</u>	\$	19 _	X	¥	魁.	ų	M	¥	N		[8.47	L
		4	K	<u>H</u>	#	<u> </u>	<u> .</u>		¥	/ 39		22	<u>k</u>		<u>₩</u>	1980	L	10.40	<u> </u>
	OUTER		tū	100	10	4	Ŭ.	4	lū		Ň	4	0	4	10	14	ÍV.	041	D.
	tern a	43	U.	WY.	14	4	v	4	lù .	4		44	Q	4	D	M 2	N.	0 20	4
	CULL.	4	<u> </u>	19	H	#	Ŋ.	#	<u> .</u>	#	H	#	<u>₩.</u>	#	W	盟	<u> </u>	0 43	¥
	180,45	T	01		ᄨ	41		41	194 . 194	5	100	-	101	4	뼚	168 …	<u>H</u>	611	t ·
	(• U)	40	100	141 141	100	40	103	44		40	100 1	40 -	107 · · · · ·	140	107	14	10	014	17
	lein≞a		μ.	110	100		<u>U</u> .		<u>.</u>		רייםן	H	<u>w</u> .		<u>u</u>		<u>u</u>	10.60	p
	ICVITER I	40	¥	199	₩	# ·· ····	<u>tr</u> –	.	H	1930	₩	. .	H -	1# ·	변	1	4	11 <u>24</u> ····	¥
	OUTER	10 .	10	1120	15		<u>к</u>		ť	130	t i		њ -		ť	1120	· · ·	12.66	ť.
A11 80484	OUTUR	41	ີ ມີ	143	101 7	41	โน้ม "	41	10.	141	τώ.	41	ເມື	1	านี้ม "	165	<u>fu</u> ⁻	0 25	1.
	IOUT-R	41	<u>1</u> 44	43	<u>tu</u>	41	<u></u>	41	נַעַ	41 -	<u>.</u>	41	<u>lui</u> .	41	<u>t</u> ų	A	Įū	0 10	ŧ
	IOUTER IOUTER	40	12	100	# ~	<u>e</u> l	병	<u>.</u>	분	1200	4	2	të.		臣	380	4	1202	+ ·
11 40 44	OUTER	165	tõ .	130	ີ ບໍ່	<u>ل</u>	15 -	1	ŭ	147	ίυ (100	f .	颉	15		1	0 44	1.
All State	CUILI	61	1 <u>0</u>	100	Ιŭ	<u>.</u>	1ŭ	1	10	101	lū i	<u>61</u>	lv	ini .	10	191	ប្រ	1.10	Į.
	QUIEN	12	把	¥.	<u>н</u>	12	<u>μ</u>	41 -	Ψ.	40 0 .	¥	200	Į.	122	12	1190	ł.,	693	Ь.
	2.46	1	12 ·		R.	11	R	11	l:	100	E ·	1.	li i	165	E.	141	IN IN		Ł
	CUTE:	憶	tõ,	100	tõ,	5 -	1ŭ	5	ťů,	语	10, 1	42	tō,	tā —	10้า		tõ	10.14	ţ,
	6.414	H	L. ي	III .	Ιv .	lä	<u>1</u> .		19	lê 🗌		.	<u>u</u>	I#	ļγ.	112	I.	1.20	1 .
	19111	12	8	1 8 .	R .	枨	R	#	HX .	K	<u>12</u>	490 61	Į	ĸ	R.	儒	. .	11.13	ŧ.
	100HFA	†	tă-	17492 -	τŭ ·	4	10	4	ť		15		tă	4	lŭ	14	. v	19.47	Ľ.
	To Units	14	10		10	15	fù 🛛	i.	lü	14	lõ	4	10	1	lū	199	lū	10.00	Г,
	SUD	搅	N.	R.	N.	11	M	1	le I	11	12	49	٧.	1	Įv.	12	N.	1.92	
		1100	1K	12	招	127	쁪	12	R.	120	R	12.0	£.	120	12	120	R.	提 22	Ł
112 116	1011	掃	16	12	10 ·	博	Ň	博	ŭ	16	ť		17	14	Ň	110	ť	19.92	17
	IQUIE	19	Ŵ	194 1	10		10		Ŵ	10	Įv.		Įv	9	Įv.	M	Įv.	9.4/	1
	19	櫢	N.	41	<u>y</u>	별.	R.	憎	N.	證	μ.	11.49	£.	憷	R.	11/2	ł	1.99	4.
		ŧ₩	HC .	櫾	К	12	£.	ĮΞ.	£	1411	ti i	lika	P .	13	łŭ.	14Po	ł		ť.
1111111	10.001	播	10 .	鹊	tŏ' `	撮	10	12	10	14	tù -	1番	lü	19	10	1 H	lv	12.54	10
	(e) (i i i	II.	1.	旧會	<u>I</u> <u>U</u>	D i	D.	E	1Q	11:	19	II.	N.	16	<u>ly</u>	111	<u>iv</u>	12 M	P .
BIII 5844			ĸ	127	.格 .	展 ·	К.	僼	K	展	R	匮	-R	邕	招	12	£.	1.97	łi
	10010	17	悦	協	16 -	懾	К -	臣	悦	ta:	ť	THE I	R.	뚭	ť		۴	10.00	ť.
ALL SOLL	ROUTE	The second se	10 ·	TŪv	10	巓	N	揻	10		Ň	擅	反	16	1ŭ	獭	1v	11.12	I.
	IQUIE:		R.	110		頂 ・	N.	le la	N.	1.92	¥		ΩŲ.	lin.	Įv.	1149	1	<u>87</u>	-14
		[2]	K · · · · · · · · · · · · · · · · · · ·	E	倍	1 2	₩	1 2	₩	120	-tu	₩	<u>W</u>	12	- <u>13</u>	120		- Contra	₩
	10,10	1/9	Ň	5	₩	[]	τŭ ·	17	ti i		- <u>P</u> · · · · · ·	170	10	110	πi · ·	15	.†¥	1217	17
THE PARTY OF	18(141)	117	16	116	1ñ	165	ti	141	- 11	1武*	·hr ···-	160°	177	163	16	125	tn · · ·	1139	

The document was prepared by Rup 7. Higher, by: preventy for 9.8. PA. It shall not be related or disclosed in which or in part offlows the supress, and/or particular of 9.8. PFA.

DOCUMENT ARCHIVE EP S D

SediD	RIO	Sed1016	Sed1016Q	Sed1221	Sed1221Q	Sed1232	Sed1232Q	Sed1242	Sed1242Q	Sed1246	Sed1248Q	Sec1254	Sed1254Q	Sed1260	Sed1250Q	SedPCB (ug/kg)	SedPCBQ	SedTOC (%)	SedTOCQ
MH1-SD482	OUTER	59	<u>u</u>	120	<u>u</u>	59	U	59	<u>u</u>	290		290		159	U	580	1	2.99	
MH1-SD483	OUTER	54	U	110	<u> </u>	54	U	54	<u>u</u>	530	1	230		54	<u>v</u>	760		1.94	
MH1-SD485	OUTER	141	0	184	<u>lu</u>	- [4]	U .	41	<u>10</u>	141	<u>lu</u>	41	10	141	<u>U</u>	84	<u>U</u>	0.26	<u> </u>
MH1-S0486	OUTER	102	12	130	<u>lu</u>	- 62	<u>0</u>	62.	0	62	- <u>P</u>	- 62	P	102	<u><u>v</u></u>	1000	_P	2.40	- <u> '</u>
MH1-SU46/	OUTER	170	<u></u>	140	<u>8</u>		<u>v</u>	20		130	- <u>P</u>	100	-l,	3/	<u>10</u>	1710		4.02	-
MI11-SD480	OTER	40	10 ·····	100	<u> </u>	40	6	40	10	40	h	40		40	16	140	- 	1.42	
SULLI-SD400	0.00		<u>.</u>	100	1	41	<u> </u>	10	10	43	- <u>K</u>	43	Hi	43	10		- 10	0.55	+
AUH1-SD491	OUTER		l <u>ŭ</u>	A7	lă —		tů ·	10	ti –	43	HT	43	10	43	10	87	-10	0.25	-1
MH1-SD492	OUTER	1 67	lõ –	140	tů	67	lŭ	67	10	970	<u>ti</u>	670	f	67	lũ —	1640		2.08	
MH1-SD493	OUTER	170	lū —	140	Ŭ	70	lũ	70	lů	70	NU CONTRACTOR	17000		70	10	17000		4.66	
MH1-SD494	OUTER	80	U	120	Ū	80	lū	100	lù	80	lū –	80	U	80	1ū	100	U	1.00	+
MH1-SD495	OUTER	42	U	186	10	42	Ú.	42	Ū	42	Ű	42	U	42	Ũ	86	Ú	0.45	J
MH1-SD496	OUTER	42	U	86	lu -	42	Ū	42	Ū	42	U	42	U	42	lu	86	U	0.44	J
MH1-SD497	OUTER	1 56	U	110	U	58	Ų	56	Ü	220		130	1	56	U	350		2.41	-
MH1-SD498	OUTER	141	U	83	υ	41	U	41	U	41	V	41	ע .	[41	U	83	U	0.19	1
MH1-SD4960P	OUTER	t 41	U	84	U	41	U	41	U	41	U	41	U	41	U	84	U	0.14	ų.
MH1-SD499	OUTER	142	U	85	V.	42	U	42	U	42	U	42	U	42	U	85	U	1.00	U
MH1-SD500	OUTER	145	U	92	<u>u</u>	45	U	45	U	37	1	45	<u>u</u>	45	N.	37		0.79	J
MH1-SD501	OUTER	1 70	<u>U</u>	140	U	70	U	70	U	460	J	190	2	70	U	650	_	3.74	_
MH1-SD502			U	84	<u>v</u> -	41	<u>0</u>	<u> 41</u>	<u>N</u>	41	<u>u</u>	41	<u>u</u>	41	<u>v</u>	184		0.13	1
MH1-SD502DP		L 41	<u>U</u>	84	U	- 141	<u>U</u>	141	U.	141	<u><u>v</u></u>	41	<u>lv</u>	41	<u>u</u>	184	<u> </u>	0.11	1
MH1-SU503	INNER	140	<u>v</u>	82	<u><u><u>u</u></u></u>	40	<u>10</u>	40	<u>lu</u>	140	<u> 10</u>	140	<u>v</u>	40	<u>lu</u>	142	<u>v</u>	10.16	4
MH1-SUSSH	OUTER		<u>U</u>	170	- <u>P</u>	103	<u>lu</u>	83	<u>N</u>	1000		900	<u>.</u>	1400	1.	3010		5.48	
MH1-SUSUS		120	<u>U</u>	240	<u>U</u>	120	<u>N</u>	120	- <u>P</u>	630	- <u> </u>	210	- <u>H</u>	120	<u> .</u>	- 1840	-	11.0	
MINISCO00	- Come	2 42	<u></u>		<u> .</u>		-18	40		42	-18	42	- <u>10</u>			100	-18	10.16	<u>- 12</u>
MIT 1-SD507		2 41	10	100	-16	151	10	141	10	153	P	120	- <u>6</u>	51	<u>12</u>	100	- <u>Ľ</u>	1.03	- *
MH1-SD50ADP	OUTH	2 50	ŭ	100	li -		<u>u</u>	60	- Mir	50	hi	100		50		160		10.80	+
MH1-SD508	QUTER	2 53	10 <u> </u>	110	1ŭ	53	lũ	53	hi	130		63	- <u>b</u>	53	u -	103	-	1.63	-
MH1-SD510	OUTER	1 45	tu –	92	lů –	45	lũ	45	lū	45	10	45	Ũ	45	- U	92	-lu	10.21	
MH1-SD511	OUTER	2 45	Ū	92	Ū	45	Ū	45	Ū	45	lů	45	-lū	45	1ŭ	92	Ū	0.30	- jj
MH1-SD512	OUTER	R 42	Ū.	85	U	42	U	42	U	42	Ū	42	<u>10</u>	42	Ū	85	- Îŭ	0.11	- jj
MH1-SD513	INNER	46	U	93	U	46	U	46	U	46	0	46	U	46	U	93	U	0.35	- U
MH1-SD514	OUTER	2 70	Ų	140	U	70	U	70	U	570	J	560		70	U	1130		5.94	
MH1-SD515	OUTER	1 52	U	110	U	52	U	52	U	93		31		52	U	124		2.16	
MH1-SD516	OUTER	1 42	U	86	U	42	U	42	U	42	U	42	μ	42	U	86	U	0.22	
MH1-SD516DP	OUTE	1 45	Ų	92	U	45	<u>N</u> -	45	U	45	<u> </u>	45	<u>v</u>	45	<u> </u>	92	<u>u</u>	0.14	<u> </u>
MH1-SD517	OUTER	147	<u>lu</u>	96	<u><u>u</u></u>	47	<u><u> </u></u>	47	<u>lu</u>	47	<u> 12</u>	47	- <u>k</u>	47	10	- 98		0.26	
MH1-SL318	- INNER	42	<u> </u>	85	<u> </u>	42	IR	42	<u>IR</u>	142 ·····	K	12	ĸ	42	- <u>IR</u>	- 50		0.19	<u></u>
MISI-SUSIN		100	<u></u>	82	<u><u> </u></u>	40	<u> </u>	40		140	<u> </u>	400	+	4	- <u> .</u>	200		0.00	- !.
MH1-30020	LOUTES		<u></u>	100	<u> </u>	<u>14</u>	Hi	47	Hi	147 -	- Kr	47	- <u>h.</u>	- 1/7	<u>18</u>	- 00	-1	0.77	- <u>Ľ-</u>
MH1-S0521	OUTER	2 43	<u></u>	17	- <u>11</u>	43	<u> </u>	43	- Ki	43	<u> </u>	43	- Hi	43	10	87	-	0.25	- 11
MH1-SD523	OUTER	2 46	- u	193	li –		ŭ	46	- lŭ	46	- <u>ŭ</u>	46	- 1ŭ	46	- Ku	93	- t <u>ů</u>	0.53	1.
MH1-SD524	OUTE	2 43	lū –	87	-lū	43	10	43	lu	143	lu	19	-ti	43	lu	119	-1	0.25	أر ال
MH1-SD525	OUTE	3 51	Ú.	100	Û	51	U	51	U	51	Ū	51	- U	51	lū –	51	- U	0.85	J
MH1-SD526	OUTE	R 48	ju	97	U	48	U	46	υ	48	U	48	U	48	Ú.	97	Ŭ	0.28	J
MH1-SD527	OUTE	R 43_	U	87	U	43	U	43	Ju	43	U	43	U	43	_U	87	Ū	0.31	J.
MH1-SD528	OVTE	R 43	U .	87	U	43	U	43	U.	27	1	43	U.	43	U	27		0.35	1
MH1-SD529	OUTE	R 46	U	94	U .	46	lu .	48	U	46	u	45	NU.	46	<u>lu</u>	94	U	0.42	3
MH1-SD530	OUTE	R 45	U	92	U	45	U	45	U	45	U	45	<u>u</u>	45	U.	92	<u> </u>	0.22	J
MH1-SD531	OUTE	R 42	U	85	U.	42	<u> </u>	42	<u>u</u>	42	U	42	U	42	<u> </u>	85	U	0.12	J
MH1-SD532	OUTE	R 42	U.	85	U	42	<u> </u>	42	<u>u</u>	42	<u></u>	42	-12	42	_ <u>U</u>	- 85	_8	0.26	_ <u>l'</u>
MH1-SU532DP	OUTE	R 41	<u> </u>	83	<u>. U</u>	41	<u> 10</u>	141		41	<u> <u> </u></u>	41			-6	- 183	-12	10.17	<u> </u>
MH1-SDA1		K 44	<u>-10</u>	80	-12	- 12	- <u>12</u>	12	<u> </u>				-12	- 44	-#	- 100		0.53	<u> - K </u>
MH1-SUAZ		- 1 <u>**</u>	10	00	<u></u>	-	- <u>Hi</u>	40	Hi				-6	**	-12	- 100	-	0.10	_!`
MULT COOP	DACE		- <u>11</u>	04	- Hi	4	-Б		- lii	41	- 11	41	-ti	- 137	-15	-104	-6	0.13	
1411.5082.00	- DIVER	41	10	84	- <u>6</u>	41	Hi .	41	- tă	41	- <u>Hi</u>		- ŭ	41	-16	- 144	-10-	0.12	- 1 1
MH1-SDC1	OUTE	R 42	li -	AA .	l ŭ	42	-lŭ	42	-lū	42	- lő	42	-t <u>ů</u>	42	- 1ă -	106	- lŭ -	0.13	-Ľ
MH1-SDC2	INNER	42	10	85	-lŭ	42	1ŭ	42	- tú	142	- <u>tú</u>	42	-1 <u>0</u>	42	-lŭ	85	-1 <u>ō</u> -	0.23	- <u>ti</u>
MH1-SDD1	OUTE	R 42	lŭ –	86	ŭ	42	tů	42	tū	42	lū	42	Ιΰ.	42	Tu	86	tū	0.37	- <u>1</u> j
MH1-SDD2	OUTE	R 41	lū –	84	-lù	41	1Ú	41	Ú.	41	lu	41	U	41	10	84	TŪ	0.19	ŭ
MH1-SDE1	OUTE	R 54	U	110	-lu	54	lu	54	U	54	U	610		54	10	610	-1	3.41	- <u>1</u>)
MH1-SDE2	OUTE	R 42	U	86	10	42	lu lu	42	U	42	U	42	10	42	U	86	-lu	0.34	1

I WORACIZIRIJABBOTA-LILS

This document was propered by Roy F. Weston, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

.

RFW236-2A-ASCIP

Table A-4 (Continued) Sediment Data (All Locations) Manistique Harbor and River Site Manistique, Michigan

Table A-4 (Continued) Sediment Date (All Locations) Maniatique Harber and River Sta Maniatique, Michigan

All Concentrations in ug/kg Bed1018 Arcolor 1016 concentration Bed1018Q Data qualifier for Arcolor 101 Data qualifier for Arootor 1016 Aroolor 1221 concentration Sed1221 Ged1221Q Sed1232 Ged1232Q Data qualifier for Arogion 1221 Arogion 1232 concentration Deta qualifier for Arcolor 1232 Arcolor 1242 concentration Detection limit for Arcolor 1242 Bed1242 Bed1242L Bed1242Q Data qualifier for Arocior 1242 Depth Water depth

1

M

1

· 1

1

Bed1248 Aroclar 1248 concentration Bed 1248L Detection limit for Arocior 1248 Bed 1248CI Data qualifier for Aroclor 1248 Bed 1264 Aroolor 1284 concentration Bed 1264 Deta qualifier for Arodor 1264 Bed 1264D Deta qualifier for Arodor 1264 Bed 1280D Arodor 1260 concentration Bed 1260D Deta qualifier for Arodor 1260 BedPCB Total PCBs

- Area Sample location in the AOI (area of interest) or 82 (beckground zone) RIO Sample location in the AOI (area of interest) or 82 (beckground zone) RIO Sample location in their Anne harbor, or outer harbor TOC: Totel organic outpon TOCQ Data qualifier for TOC

They described up a program by they it they are a segmently for U.S. Stat. It shall not be released to draw or to not attend and an encoded or to and

APPENDIX B ERED Summary

Ì

1

~_!

, i

24

1

Table B-1 Environmental Residue-Effects Database Results for PCBs In Fish Tissue Manistique Harbor and River Site Manistique, Michigan

						· · · · · · · · · · · · · · · · · · ·									
Year	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc_Wet (Conc_Units	Effect Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
											1.2.0.00.000				
						9 . J	25 T \$						Boli coaste of Pacific, Montphy Bay 214		Backedal charlenge. Letting charling in the Dool
11	Posiel DB, RC, Pain J, A Subban, K,					1 - A.I.					- 11 · · ·		China noman Bertha Sti Els, espending a	Frees on variety of forms, e.g., Mirval, Adu	conditions of bot reportion provide potrainers
	La Goglanersen	Environ Jacabi, & Chem	Onodityrichus bhavigischs.	Samon Chinoof	Anickar 1264	<u>}03a()</u>	KGMG	Mortz in	NOED	hoestor.	Whole Body	Alvente	territe christeria da ta Constituita Rover 4	pisocic privat ben, invertebrates.	waterway firducit (Sound
						1 1			1	_					Vaccinated bacterial challenge. NOED growt
	Devel CR PC Date 1 4 Cilling of	1	1		1	1 1	1	1					Both masts of Pacific: Monterey Bay and		(Lengen, weight) i esting concisions mimic next
~	(Power Do, No Parn Jr. & Submen, K	Cardena Taniani I Cham		Colored Chinese	[1							Crema norm to Bering Straits, ascending a	Feeds on vanety of forms, e.g., larvay, acut	concisions of our-migration velocity in Dowaliness
	13 G0001003481	Environ. Toxicol. & Chem	Uncornynchus Ishawytsch:	Samon - Chinool	A/000/1254	016	AG/KG	Growth	NOED	Ingestion	Whole Body	Juventie	targe susams, e.g., Cotumbia River	Insects; sinals tish, invertisorates	Vertine and heriorial destance. NOED condition
					J		1			1			Dark counts of Darafas Managers, Dava and		factor. Testing coordinate minic field conditions of
	Powell DB, BC Palm, Ir, A Skillman, K				ł	1							China ports to Partic, Martiney Bay and	Events on variety of forms, a O Jarval, adul	out-micration through Developith waterway through
20	Gottmedsen	Fedros Tracel & Chem	Occording the state of the	Colored Chinad	Augusture 1754	1 0.74	ICHO 1	Cremen	1050		Uibole Besh	barrania i	inne stranter en Cohembia River	Incode an validity of formal, and, and the	Brow Sand
			Creating increase in the start status	Contract - Cristica	Adda 1254		NORO I				HILE COULY		age seenin, eg, countes rova	aged, and this offeren as	Challenge 87 Aguited disease resistance, NOEL
	1		1										Both coasts of Barific Monterey Rev and		aments (veight, length) Testing conditions minic
	Powell DB, RC Palm Jr, A Skillman, K												China north to Berlino Straits, ascending a	Feeds on variety of forms, e.o., larval, edu	field conditions of out-migration through Duwarnist
200	Godtinedsen	Environ Toxicol, & Chem	Oncortivinctius tehanotechi	Samon - Chingol	Aradiar 1254	1 0.94	IGKG	Growth	NOED	Incention	Whole Both	horenile	lame streams an Columbia River	insects: small 5sb, invertebrates	waterway twouch Pupel Sound
						1				20.000					
						1 1	- 1								Challenge #2: Aquired disease resistance, NOED
			1										Both coasts of Pacific; Monteney Bay and	}	growth condition factor (h.) Testing conditions
	Powell DB, RC Palm Jr. A Skilman, K		1										Chino north to Bering Strats, ascending at	Feeds on variety of forms, e.g., larval, adu	memic field conditions of out-migration through
20	Codtfredsen	Environ Toxicol & Chem	Oncorhynchus Ishawytschu	Salmon - Chinool	Arocker 1254	0.951	MG/KG	Growth	NOED	Ingestion	Whole Body	Javenie	targe streams, e.g., Columbia River	insects; small fish, invertebrates	Duwamish waterway through Puget Sound
															Chatenge #2: Aquired disease resistence. NOEI
			1	1	1	1 1	1					1	Both coasts of Pacific; Monterey Bay and	1	immunocompetence. Testing conditions mimic her
	Powell DB, RC Palm Jr, A Skutman, K					1 1							China north to Berlog Stratts, ascending a	Feeds on variety of forms, e.g., larval, adu	conditions of out-migration through Duwamish
20	Goddredsen	Environ. Toxicol. & Chem	Oncorhynchus Ishawylschi	Salmon Chinool	Aroctor 1254	0.95	IGKG	Physiologica	NOED	Ingestion	Whole Body	Juvenile	targe streams, e.g., Columbia River	insects; small fish, invertebrates	waterway through Puget Sound
						1 7	1							1	
	Um, S., P.L. Anderson, L. Fontin, M. Tysund, L.														PCBs 41, 51, 60, 68, 91, 99, 104, 112, 115, 120,
19		Arch Environ Contam Toxicol 35.53-5	Danio reric	Zebra Daruc	PC8s	0.58	IGKG I	Cellular	NQED	Ingestion	Whole Body	Adust	Not Specifiec	Not Specifiec	143, 153, 169, 184, 193 - Hepine ERUD acuvity
	Con C. AL ANALYSIN COMP. IN THE AVE.		[DOD
10	IVIII, S., F.L. Anderson, L. Forsh, M. Tysterio, L.	Aust Contrast Contast Tendent 25.43 h	Orania anna	Zahan Davis		1			-				and Constitution	1	143 152 159 184 193 Manute EBOD activity
		Arch Ermich Contam Torocol 33 33-9	Danio renc	Zeora Danie	1448	- <u></u>	wuxu	Centre	20181	ngesson	Whole booy	A004	NOL SPECIAL	Not Specified	143, 133, 163, 164, 133-116pate Crtop sectory
	Om S. P.I. Abdemon I. Forte M. Tutkinst I.		1			1 1									PC8+41 51 60 58 91 99 104 112 115 126
19	Se Norronan	Arch Environ Contam Toxicol 35:53-5	Danko racir	Zetva Danie	D'Be	1	ACACO I	Cable	050	-	Manda Book	10.0	Not Specifier	Not Specifier	143 153 169 164 193 Henatic EROD activity
									-010	a page on				not opcome	
	Om, S., P.L. Anderson, L. Forkin, M. Tyskand, L.				1	; 1	J								PCBs 41, 51, 60, 68, 91, 99, 104, 112, 115, 126,
19	SE Norrgren	Arch Environ Contam Toxicol 35:53-5	Danio reric	Zebra Danic	PCBa	1.1	MG/KG	Cellular	ED18	tronution	Whate Both	Adust	Not Specified	Not Specified	143, 153, 169, 164, 193 - Hepatic EROD activity
	OFR S. BL. Anderson, L. Forth, M. Tyskind, L.			B		1. 1.				and the second s				· · · · · · · · · · · · · · · · · · ·	PCBS 41, 51, 60, 68, 91, 99, 104, 117, 116, 125
12	Athannian	Avel Environ Conten Today 35536	Deflorence	Zebrá Debio	PCBS	1	AGRE.	MORE N	NOED	housen .	Which Book	Add	Not Specifier	Not Specified	143, 153, 169, 181, 193
					1										PCBs 41, 51, 60, 68, 91, 99, 104, 112, 115, 126
	Om, S., P.L. Anderson, L. Forlin, M. Tyskind, L.		1		1						1				143, 153, 169, 184, 193 - no significance
19	Se Norrgren	Arch Environ Contam Toxicol 35:53-5	Danio reric	Zebra Danic	PCBs	1.1	MG/KG	Mortality	山07	Ingestion	Whole Body	Adult	Not Specifier	Not Specified	calculated
	JOM, S., P.L. Anderson, L. Forlin, M. Tyskind, L.		L			1 .1									PCBs 41, 51, 60, 68, 91, 99, 104, 112, 115, 126
13	ad Nongreen	Arch Environ Contam Toxicol 35:53-5	Danio reric	Zebra Danic	PCBs	19	MG/KG	Growth	NOED	Ingestion	Whole Body	Aduct	Not Specifiec	Not Speaker	143, 153, 169, 184, 193 - Weight
10	UTI, 3., P.L. ANOBRION, L. HORIN, M. LYSEERO, L.				1	1 .1		_				1			PC85 41, 51, 60, 68, 91, 93, 104, 112, 113, 126
		Arch Erwich Contra Tanco 3553-5	Uanio renc	Zebra Llanic	PLes	2.7	MG/KG	Growth	ED59	Ingestion	Whole Boo,	Adun	Not specified	Not Specinec	1143. 133, 103, 104, 133 Weight
_ ini	A National State and A State of Carl State o	and from a time to want the state	in a second second	Sam Mary	Train 1	1			Lucia .		the state of	in .	nue man	an a	the ist the day of the constant
	Drn. S. P.L. Abderson I. Forlin M. Tycking I	Netre Entration and Long and Contractor Scielo	Land terio. 1 C	CELFIL CARGE C. C	The Carl And Carl	r	MG/NG 1	Reproduction	MUCL.	v000000	Wittigle Booty }	and the second		NOT OPTIMIZE AN ADDRESS OF ADDRES	PCRe 41 51 60 68 91 99 104 112 115 126
19	SS Normen	Arch Emiran Contam Taxicol 35-53-5	Durate rests	Zerbera Danale	oc ne	1			E047	honore and	up at a Bach	ann	New Snamfer	ales Coerifer	143 153 169 184 193 - Ovary weight
	Om, S., P.L. Anderson, L. Forlin, M. Tvukind 1					╅──────╨╫	-unu								PCBs 41, 51, 60, 58, 91, 99, 104, 112, 115, 126
19	SENorgran	Arch Environ Contam Toxicol 35:53-5	Danio reric	Zebra Dank	PCBs	1	MG/KG	Physiologica	NOED	Indextor	Whole Both	Adult	Not Specified	Not Specified	143, 153, 169, 184, 193 · Liver weight
	Om, S., P.L. Anderson, L. Forlin, M. Tysklind, L.				<u> </u>	1						· · · · ·			PCBs 41, 51, 60, 68, 91, 99, 104, 112, 115, 126
19	36 Norrgran	Arch Environ Contam Toxicol 35:53-5	Danio renic	Zebra Danic	PCBs	0.14	MG/KG	Physiologica	ED59	ingestion	Whole Body	Aduli	Not Specifier	Not Specifier	143, 153, 169, 184, 193 - Liver weight
	1			· · · · · · · · · · · · · · · · · · ·	1	1					1				
	Om. S., P.L. Anderson, L. Forlin, M. Tyskind, L.		\	1	1	1 1	1				1	l		L	PCBs 41, 51, 60, 68, 91, 99, 104, 112, 115, 126.
19	S& Norrgren	Arch Environ Contam Toxicol 35:53-5	Danio reric	Zebra Danic	PCBs	19	MG/KG	Celular	LOED	Ingestion	Whole Body	Adult	Not Specifier	Not Specifier	143, 153, 169, 184, 193 - Hepatic EROD activity
	Om, S., P.L. Anderson, L. Forfin, M. Tyskind, L.		1												PCBs 41, 51, 60, 68, 91, 99, 104, 112, 115, 126,
19	Sel Nongran	Arch Environ Contam Toxicol 35:53-5	Danio reric	Zebra Danic	PCBs	0.14	MG/KG	Cellular	ED04	Ingestion	Whole Body	Aduti	Not Specifier	Not Specified	143, 153, 169, 184, 193 - Hepatic EROD activity
					1										
	JUTT, S., P.L. Anderson, L. Forlin, M. Tyskind, L.		L	h		1 1		L				l			PCHS 41, 51, 60, 68, 91, 93, 104, 112, 115, 126,
12	ad wongreen	Arch Environ Contam Toxicol 35.53-5	Danio reric	Zebra Danic	PCBs	2.7	MGKG	Cetula	ED45	Ingestion	Whole Body	Adudi	Not Specifier	Not Specified	143, 153, 109, 104, 193 - Hepatic EROD activity
÷ 1	The pair and and and the second			1 · · · · · · · · · · · · · · · · · · ·		1 1				"		l		1	142 453 460 184 199
, 10	Name as a support of the second secon	and the print of a second and	have a start	had see	R.A.M.	1		inter a	1000				ndramer.	here water	1 (40, 100, 109, 104, 1341+110, 100, (3000)
4. 4.	Survey and the second state of the second second	Waterwan Constitution 2000 35 336 ->	USAD IMAC	COOLS DAVE	1000S	4	ACKC	Moratly	LOED . SA	10965501	MUCHE HOO	IA069+	NOI SPECIFIC	NOR SPECING	COCD+ 41 51 60 64 01 00 104 112 415 175
	Om 6 Bl Anderson 1 Code 41 Torres		1	1	1	1 1		1	1	1	1	1		1	143 151 150 184 193 - no ciprices
19	PRINGER AND AND A PROFESSION, L. HORIN, M. TYSKEND, L.	Auch Fachers Courses Touland 25.52 E	Deale and	7		1			line				alar Pasantan	and Country	140, 120, 100, 104, 193 *110 Mytestates
	Om S PI Anderson I Forten M Turkfind I	initian contant region 3323-5		Levia Lank	Increase	+	MGRG	MOTINEY	LD 10	121965300	11010 000)		THE OPPOSED	nor apconet	PCBs 41 51 60 58 91 99 104 112 115 126
19	Services and the services of the service of the services of th	Arch Environ Contarn Turicol 35-53-6	Danio resir	Zebra Danir	DCB.	1 0.1	NGNG	Growth	1050		Whole Booh	444	Not Spacifier	Not Sancting	143 153 169 184 193 - weight
	Oth S. P.L. Anderson L. Fortin M. Tyskind L.			word Usera	1. var		-uno	(THUR DODY	<u> </u>			PCBs 41 51, 60, 68, 91 99, 104, 112, 115, 126
19	St Normen	Arch Environ Contam Toxicol 35:57-5	Danio retic	Zebra Danir	PCBs	} • • •	нсжо	Bernander	NOFD	Innection	Whele Body	Adult	Not Specifier	Not Specifier	143, 153, 169, 184, 193 - Ovary weight
	On S.R.L. Anderson L. Forth M. Tyskind L		1		+	╡┰╾╍╌╌╵┿╡					1	t		1	PC8s 41. 51, 60 68, 91, 99, 304, 112, 145, 126
. 19	Sel Nongrein	Arth Enterin Contan Toxicol 3553 57	Dan arene	Zebra birne	19084	ા ાં	Marka	Réproduction	LOED .	Indextion	Whole Body	Adut	Not Specified	Nor Spoched	143, 153, 169, 184; 193 - Okary weight

11WORAC12361440018-1.70.5

Π

 $\left[\right]$

]

7

]

· |

]

ר. | |

5

11

This discusses with property by Ray F. Waster, Inc., storessly for U.S. EPA. It shall not be relevant or disclosed in wheth or just without the express, written permission of U.S. EPA.

RFW238-24-ASOP
Table B-1 Environmental Residue-Effects Database Results for PCBs in Fish Tissue Manistique Marbor and River Site Manistique, Michigan

-

Yest	Author	Publication Source	Species Scientific Name	Species Common Name	Analyte Name	Conc We	Conc Units	Effect Class	a Toxicity Measur	Exposure Rout	E Soucies Body Part	Species Start Lifestag	Species Habitat	Species Feedbo Betravior	Comments
							+								
	Palace, V.P., S.M. Alen-Gil, S.B. Brown, R.E.			1			1								
2001	Evans, D.A. Mether, D.H. Landers, L.R. Curts, L.E. Klewertson, C.L. Broon, W.L. Lorthart	Champenhara 45:185-19	Domatus arritou	Arrife Gravine	PCA 77	16	HCKG	Growth	NOED	poestion	Whole Both	kovenia	Not Specifier	Not Specifier	1
2001	J.P. Ravenamp, C.L. Baron, W. L. Locitan	Citeriospinere 43:163-13.				<u> </u>		Giowan							Liver Weight Increase Whole Body Minus Stor
						1								<u>}</u>	and Contents Fed 20 Ug/g dose at 3% body wt
															per day. Day 84, 12 control fish died due to
									1			1			riso pted days 140-196 - all ted control food for
1976	Hansen LG, W8 Wiekhunst, J Simor	J Fish Res Board Can 33:1343-135	ictaturus punctatus	Catish-Channe	Arodor 1242 or PCB 124:	2.17	ZMG/KG	Physiologica	E0120	Ingestion	Whole Body	Angenting	Rapid water stream:	Omnivore	Dis duration.
			T						1	1					Tissue Pathologies Whole Body Minus Stomac
				1	ł	[1	1						and Contants Fed 20 Up/g dose at 3% body wt
		1	1	1		1	1								purportary, cay participation of experimentals
				1					1	1					disrupted days 140-196 - all fed control food for
1976	Hansen LG, WB Wiethurst, J Stmor	J Fish Res Board Can 33:1343-135	Ictaturus punctatur	Cathan-Channe	Aroctor 1242 or PCB 124;	2.17	ZWGKG	Marphalogy	NOED	Ingestion	Whole Body	Fingerling	Rapid water streame	Omnivore	this duration.
- 1		1 .		1	1 .		1	i i	4	4 1	ŧ	1		L ·	I whole begay in this Stornach and Societics pain
E			ł. · .	· · ·		ł.	1.	1	1	1.	4 .	}		1	(conzo'; shot' to guy to premortigin to, see Roza
		to a subme com			1	F .	f		1	1	1	1			prome ar int' 'se supred days 140,188
1976	hulpen LG, WB Wick und J Shite	J Flor Per Board Can 33: 343-135	the puncture	Corst-Obernie	litodor 1242 of PGB 124.	2.17	ZRGAG .	State Ar	NOED	(Wigeston:	Whola Boch	Fingenta	Rand water streams	Omnägre,	control food for this pluration.
L I								1							Kitney Weight Whole Body Minus Samarh and
								1							Contents Fed 20 Ug/g dose at 3% body wt, 1x p
						1		1	1						day. Day 84, 12 control fish died due to pumpid
10.76	Hanson I G ME Winkhum I Simo	1 Ersh Rev Board Can 11:1341-135	Inteland Conclusion	Cattel Channe	Amotor 1742 or PCB 1241	2 17	HONG	Physicanics	NOED	Incention	When Both	Encertion	Panki water sheaver	Omnhame	Lature. Feeding of experimentals disrupted day
					The second second			1.7-2.8-							
				1				1	1			ł			Brain Weight Whole Body Minus Stomach and
		1		1			1	1				1		1	Contents Fed 20 Ug/g date al 3% body wt, 1x p
					1			1				1			folly. Day 64, 12 control tesh died due to pumplo faither. Exercise of experimentating discussed days
1976	Hansen LG, WB Wiekhurst, J Simor	J Fish Res Board Can 33:1343-135	Ictaturus punctatus	Catish-Channe	Aroclor 1242 or PCB 124:	2.17	ZMG/KG	Physiologics	NOED	Ingestion	Whole Body	Fingering	Rapid water streams	Onvevore	140-196 - all fed control food for this duradon,
					T		T								No evidence of histopathologic changes in the
1974	Let, A.J., D.O. Bits, and R.O. Sinnhube	J. Agr Food Chem., 22(4) 538-642	Uncorrigination in myrest	Trout - Handow	Arbbor 1254	•	AMURU	CEURE	NUED	ingesion	Whore Body	JUNERINE		Caminore-juv RSh, siverz	Invit.
1974	Lieb, A.J., D.D. Bills, and R.O. Sinnhuber	J. Agr. Food Chem., 22(4):638-642	Oncortrynchus mykls:	Trout - Rainbox	Arodor 1254	B.	ZMGKG	Growth	NOED	Ingestion	Whole Body	Juvenile	Cool streams	Carnivore-juv fish, inverte	fiverbody weight ratio.
1974	Lieb, A.J., D.D. Bills, and R.O. Sinnhuber	J. Agr. Food Chem., 22(4) 638-642	Oncortrynchus mykisz	Trout - Rainbox	Arockor 1254	B.	2 MG/KG	Montality	NOED	Ingestion	Whole Body	Juvende	Cool streame	Camivore-juv fish, Inverti	No increase in mortality
107	Link & L D D Bills and R O Simpleme	LAR Food Chem 27/41638-642	Occortronctives making	Torred - Rainboa	Arrestor 1254		ZNGKG	Physiologics	NOED	togestion	Whate Both	.borende	Cod straam	Camborn-Jun firth Immeti	No cionifectol d'flerence in Enid conten
1975	Nestel H, Budd	Can J Comp Med 39 208-21!	Oncorthynchus mykisi	Trout - Rainbox	Aractor 1254	1 8	MGKG	Growth	NOED	Ingestion	Whole Body	Juvenile	Cool streamy	Carnevore-juv fish, inverte	
1975	Nestel H, Budd	Can J Comp Med 39:208-21!	Oncorhynchus mykisi	Trout - Rainbow	Aroclor 1254		1 MG/KG	Survival	NOED	Ingestion	Whole Body	Juvenile	Cool streams	Camivore-uv lish, biverts	
197	Nester H, Budd	Can J Comp Med 39-208-21!	Oncorhynchus mykis:	Trout - Rainbox	Arocker 1254	- •	IMG/KG	Survival	INOED	Ingeston	Whole Body	Juvenile	Cool streams	Carnivore-juv fish, inverts	
1977	Addison RF. ME Zinck, DE Wills	Comp Blochem Physiol 51C:323-32	Salvelinus fontinatis	Trout - Brook	Aroclor 1254	35.8	MG/KG	Physiologica	ED170	Ingestion	Fillet	Immeture	Cool streams, gravel bottoms	Camivore-aquatic insects, 8st	O-de-ethylase activity
								1						· · · · · · · · · · · · · · · · · · ·	
1978	Addison RF, ME Zinck, DE Wille	Comp Biochem Physiol 61C:323-32	Salvelinus fontinals	Trout - Brook	Arockor 1254	38.4	AMC/KG	Physiologic	ED170	Ingestion	FCet	Immature	Cool streams, gravel bottome	Carnivore-equatic insects, fisi	O-de-ethylase activity
1976	Addison R.F., M.F. Zinck and D.F. Wills	Comp. Biochem. Physiol. 61c:323-32!	Salvelinus fontinaši	Trout - Brook	Araciar 1254	3	виско	Biochemica	LOED	Incestion	FUel	Immature	Cool streams, gravel bottom:	Camiyore-amatic insects as	Fronting Dose: Hensity Period; Energy At Unity
			Faburday a basis of			1 -	-		10000			l			7 Doses Over 18-day Period; Growth as total bo
19/2	Addison, R.F., M.E. Zinck and D.E. Witz	Comp. Biocham, Physia: 610:323-32:	Savenus ionuriaid	17001 - 19000	Allocor 1254		SMORE	Growth	- NOCD	rigeston	79 4 0	anerizaties e	1000 streams, grave pottome	Camvore-aquatic insects, is/	Install DS0 test at 3 10 7 40 107 400 B BOY
				1						1		1		{	morkg by. No mortativ: LD50 could' be calcuta
		1									1		Both coasts of Pacific, Monteray Bay and	1	Testing conditions mimic field conditions of out-
	Powell DB, RC Palm Jr, A Skillman, K	Environ Texture & Charm	Occurring the second second	Column Chinad	Augusture 1754	1 .	Jucara	Lunes De	HOED	burnet loss	Words Bat	haventhe	China north to Bering Stratts, ascending a	Feeds on variety of forms, e.g., larval, ad	in migration through Duwamish waterway through
200	Googlegan	Emiliar (atica, a Chem	Concernments energysens	amilion - Criticol	NULO 1234	+	MAGNO	Horacy_	1000	1000000	In the body	Junenue	junite se dants, e.g., Columbia Rivér	Increases, smga aso, averieorates	Inger Sound
1		1		1	1		1			1	1		Both coasts of Pacific, Monterey Bay and	1	weight Testing conditions mimic field conditions
1	Poensil DB, RC Patrn Jr. A Skälman, K			L	le come	1	1			1	h		China north to Bering Straits, ascending a	Feeds on variety of forms, e.g., larval, ad	u out-migration through Duwarnish waterway thro
200	Goddredsen	Environ Toxicol. & Chem	Oncorhynchus Ishawylsch	Salmon - Chinool	Arodor 1254	0.1	GMG/KG	Growth	INCED	Ingestion	Whole Body	Juvende	large streams, e.g., Columbia River	(insects; small fish, invertebrates	Puget Sound
1	1						1	1	1	1			Both coasts of Pacific: Montarey Bay and		Invite uncase response. NOED Condition tack (k) Taskog conditions mimic field conditions of c
1	Powell DB, RC Palm Jr. A Skilman, K			1		1		1	\$	1			China north to Bering Straits, ascending a	Feeds on variety of forms e.g., larval, ad	u migration through Duwamish waterway through
200	Godtfredsen	Environ, Taxicol. & Chem.	Oncomynchus ishawytsch	a Salmon - Chinook	Aroctor 1254	0.9	SMCKG	Growth	NOED	Ingestion	Whole Body	Juvanila	large streams, e.g., Columbia River	insects; small fish, invertebrates	Puget Sound

1 WOWAC2383488078-1.4L5

. }

 \Box

]

. .

L,

This document was prepared by Ray 5-Notion, Inc., expressly for U.S. EPA, It shall not be released of disclosed in whole or in part without the express, written permission of U.S. EPA,

RFW736-2A-ASOP

Table B-1 Environmental Residue-Effects Database Results for PCBs in Fish Tissue Manistique Harbor and River Site Manistique, Michigan

Year	Author	Publication Source	Species Scientific Name	Species Common Name	Anatyto Name	Conc_Wet	Conc_Units	Effoct Class	Toxicity Measure	Exposure Route	Species Body Part	Species Start Lifestage	Species Habitat	Species Feeding Behavior	Comments
1998	Om, S., P.L. Anderson, L. Forlin, M. Tyskilind, L. Normen	Arch Environ Contam Toxicol 35:53-5	Danio reric	Zebra Danic	PCBs	2	MG/KG	Reproductor	ED54	Ingestion	Whole Body	And	Not Specifier	Not Specifiec	PC8s 41, 51, 60, 58, 91, 99, 104, 112, 115, 126 143, 153, 169, 184, 193 - Overy weight
1998	Om, S., P.L. Anderson, L. Fortin, M. Tyskind, L. Norrgren	Arch Environ Contam Toxicol 35:53-6	Danio reric	Zebra Danic	PCBs	0.1	MG/KG	Physiologica	LOED	Ingestion	Whole Body	Adult	Not Specifier	Not Specified	PC8s 41, 51, 60, 68, 91, 99, 104, 112, 115, 126 143, 153, 169, 184, 193 - Liver weight
1998	Om, S., P.L. Anderson, L. Forën, M. Tyskind, L Norrgren	Arch Emiron Contam Toxicol 35:53-5	Danio reric	Zebra Danic	PCas	1.1	MG/KG	Physiologica	ED09	Ingestion	Whole Body	Adult	Not Spectfer	Nol Specifier	PCBs 41, 51, 60, 68, 91, 99, 104, 112, 115, 126 143, 153, 169, 164, 193 - Liver woight
19981	Om, S., P.L. Anderson, L. Forlin, M. Tyskind, L Norgren	Arch Environ Contarn Toxicol 35:53-5	Danio renic	Zebra Danic	PCBs	21	MG/KG	Physiologica	ED09	Ingestion	Whole Body	Adul	Not Specifiec	Nol Specifier	PCBs 41, 51, 60, 68, 91, 99, 104, 112, 115, 126 143, 153, 159, 184, 193 - Liver weight
1977	Mayer, FL., P.M. Mehrle, and H.O. Sander:	Arch, Environ, Contam, 5:501-51	Oncontrynchus kisusch	Satmen-cohr.	PCBs	54.5	мажа	Mortafity	ED100	Inceston	Whole Book	imensäittete	NW America and Aslan Coast. Streams in Soring, Ext	Camboon-equatic inserts lish month	Radiotabeled - Contam, Food Fer
19/6	Han web to G. Weld Windows and a S'man		lait and acadam	Ke is a dest	itoe.	141	-	1200123	1050	10.70.	t and d Bark	formal as	Bunific other stre for	Other based	40, Brabby on Body , br instrume
14:01						<u> </u>		<u></u>					Paper of Marine and Configuration of the Configurat		No evidence of histopathology in liver, brain
1976	Hansen, L.G., W.B. Wiekhorst and J. Simo	J. Fish. Res. Bd. Can. 33:1343-1352	Ictaturus punctatus	Catlish-Channe	PC8s		мсжа	Celular	NOED	Ingestion	Whole Body		Rapid water stream	Ometware	System, of muscle.
															No evidence of histopathology in aver, brain hidney, reproductive tract, gills, gastrolntesting
1976	Hansen, L.G., W.B. Wielchorst and J. Simor	J. Fish. Res. Bd. Can. 33:1343-1352	Ictaturus punctatue	Cattish-Channe	PCBs	14.2	MG/KG	Cetter	NOED	Ingestion	Whole Body	immaturi;	Rapid water streams	Omnivore	system, or muscle. Residue in whole body minus offst
1976	Hansen, L.G., W.B. Wiekhorst and J. Simor	J. Fish, Res. Bd. Can. 33:1343-1352	ktaturus punctatus	Catfish-Channe	PCBs	10 5	MG/KG	Mortality	NOED	ingestion	Whole Body	annuature .	Rapid water streams	Omnivare	No Effect On Mortasty
1976	Hansen, L.G., W.B. Wiekhorst and J. Simo	J Fish, Res. Bd. Can. 33:1343-1352	ictations punctation	Catish-Channe	PC8s	14,	MG/KG	Montacity	NOED	Ingestion	Whole Body	immature	Rapid water stream:	Omnivora	No Effect On Mortality
1980	Bengtsson, B.E.	Water Res. 14:581-557	Phoxinus phoxinus	Minnow	PC8s	171	MG/KG	Reproduction	ED83	ingestion	Whole Body	Adudi	Not Specifier	Not Specifiec	83% Reduction in hatchability of eggs. Residue: measured 2 months before spanning
															Non-significant impairment of swimming performancer changes in feeding and social
1980	Bengtsson, B.E.	Water Res. 14:681-687	Phoxinus phoxinus	Minnow	PCBs	1,6	MG/KG	Behavior	LOED	Ingestion	Whole Body	Adul	Not Specified	Not Specifier	behavior.
1980	Bengtuson, B.E.	Water Res. 14:681-687	Phasinus phasinus	Manow	PC84	164	MG/KG	Growth	LOED	Ingestion	Whole Body	Adul	Not Specifiec	Not Specifier	Significantly increased growth at 79 days. Reside measured at 82 days.
1980	Bengtsson, B.E.	Water Res. 14:661-687	Phoxinus phoxinus	Minnow	PCBa	 א	MG/KG	Mortality	LOED	Incestion	Whole Both	Adult	Nol Specifier	Not Specifies	Doubling Of Mortality Rata Compared To Control After 300 Dava
															Reduction in time to hatch. Fry death widtin 1 we of hatching. Southing induced at higher water termonitares. Restrictes means and 2 months
1980	Bengtsson, B.E.	Water Res. 14:681-687	Phosinus phoninus	Mannow	PCBs	1	MG/KG	Reproduction	LOED	Ingestion	Whole Body	Adult	Not Specifiec	Not Specifiec	before spawning
1980	Bengtason, B.E.	Water Res. 14:681-687	Phoxinus phoxinus	Minnow	PCBs	1,0	MG/KG	Reproduction	NOED	Ingestion	Whole Body	Adult	Not Specifier	Not Specifier	measured 2 months before spawning.
195	Westin, D.T., Oney, C.E., Rogens, B.A	Bull. Environm. Contain, Toxicol. 30: 50- 57	Morone saurUs	Strined Batt	PC94		MGKG	Grant	NOFO	Innestion	Whate Both	Leval	Inshore fish in vanous habilats in estuarie:	Voracious, smaller fish, crustaceans,	No significant difference in length and weight gai in larva. Parents exposed to PCBs in field. Resid in oggs of 8.1 mg/kg. PCB diet started after yok.
<u> </u>							1	Gibiler					NV America and Astro Jacid Str. 2001		ana training and the second se
1978	GREAK BEST FUTURE JOHNA ACTED	Enr.a. set loar o w.th. thank	Catomoria and	Ba it go-do.au	POB-	2	MGAQ	Gasa	I OED	ingenet.y	Whole Booh	in the second	Se 39. 6-	Ceneron-squickinscops, tish, must	Shinn mailed at strate as we that n
1976	Gruger, E.H., T. Hurley and N.L. Karrid	Environ. Sci. Technol. 10:1033-1037	Oncortrynctus kisutet	Salmon-colic	PCBs_	0.0	MG/KG	Growth	NOED	Ingestion	Whole Body	Juvenile	NW America and Aslan Cozst. Streams in Spring, Fall	Carnivore-aquatic Insects, fish, invert	No Effect On Growth (weight gain
											· · · ·		Native to West Indies, n. South America.		
1988	Opperhulzen A, SM Schrag	Chemosphere 17:253-26:	Poecilia reduutata	Сирру	PC8 197	20	MG/KG	Mortality	1022	Ingestion	Whole Body	AduA	CA: generally uncommon	Feeds on detritus, small invertebrate	
	Ormertudaen & EM Schow	Chemosohera 17:253-26'	Describe centry field	G	DC0 (11								est, in AB, AZ, ID, NV, TX, WY, possibly		
1900		Chemosphere in 235-26		Сорру	PC8133			Morally		Ingesaon	Windle Body		CA; generally uncommon	Freds on detritus, small invertebrate	
2001	MB Mata, J Linse, C Cemorosa, L Frencendesa, RM Kocen	Environ Tox & Chem 20(2):327-33	Fundulus heterocitus	Manuráchog	Aroclor 1268	14	MG/KG	Reproduction	NOED	Ingestion	Whole Body	Aduli	Sheltered shores, adal creaks, brackish water at mouths of streams and estuaries	Omnivore-clatoms, small crustaceans, motusks, sometimes small fish	Read measurement basis not given, assumed to be wet weight
_ [MB Matta, J Linse, C Calmoross, L					-							Shallanari shores tirisi merka brackish	Omolynos-diatoms, small constaceans,	Bend many very not basis not over, assumed to
2001	Francendese, RM Kocan	Environ Tox & Chem 20(2):327-33;	Funducus heterocêtus	Mummichog	Arodor 1262	15	MG/KG	Survival	NOED	Ingestion	Whole Body	Adult	water at mouths of streams and estuaries	molluska, sometimes small fish	be wet weight,
1	MB Metta, J Linse, C Caimcross, L			· ·					1				Sheltared shores, Edal creeks, brackish	Omnivore-diatoms, small crustaceans.	Rosd mozsurement basis not given, assumed to

.

11WDRAC1238348678-1.31.8

ł

_l

J 1

.

und was proported by Nay F. Wanter, Irc., expression for U.S. CPA. It shall not be released or dischared in whole or in part without the express, written particulation of U.S. CPA. This stars

REW238-2A-ASOP

APPENDIX C

Toxicological Profile for PCBs

.

. .

EPA ARCHIVE DOCUMEN 7 É

.

APPENDIX C

TOXICOLOGICAL PROFILE FOR PCBs

The following toxicological information on PCBs was obtained from Eisler, R. 1986. *Polychlorinated biphenyl hazards to fish, wildlife, and invertebrates: a synoptic review.* U.S. Fish and Wildlife Service Biological Report 85(1.7).

PCBs are organic compounds commercially produced by chlorination of a biphenyl (BP) with anhydrous chlorine in the presence of iron filings or ferric chloride as the catalyst. Because of their wide range of physical properties, their chemical stability, and their miscibility with organic compounds, PCBs have been used extensively as hydraulic fluids, plasticizers, adhesives, heat transfer fluids, wax extenders, dedusting agents, lubricants, flame retardants, and especially as dielectric fluids in capacitors and transformers. The current uses of PCBs in the United States have been severely curtailed and production was stopped during the 1970's, although significant quantities of PCBs are still used as dielectric fluids in older transformers and capacitors.

PCBs are extremely stable compounds, and slow to chemically degrade under environmental conditions. The behavior of PCB mixtures in the environment is directly correlated to the degree of chlorination. PCBs are now distributed worldwide, with measurable concentrations reported in aquatic organisms and wildlife from North America, Europe, the United Kingdom, and the Atlantic and Pacific Ocean. PCBs tend to bond tightly to particulate matter, notably soils and sediments of lakes, estuaries, and rivers, where they may remain available for resuspension for at least 8 to 15 years.

PCBs presence in organisms has been shown to cause reproductive failure, birth defects, skin lesions, tumors, liver disorders, and, among sensitive species, death. Interspecies differences in sensitivity to PCBs are large, even between species that are closely related taxonomically. PCB toxicity is further enhanced by their ability to bioaccumulate and to biomagnify within the food chain due to extremely high liposolubility. The toxicological properties of individual PCBs are influenced primarily by two factors: the partition coefficient based on solubility in N-octanol/water (Kow); and

đ

steric factors, resulting from different patterns of chlorine substitution. In general, PCB isomers with high Kow values, and high numbers of substituted chlorines in adjacent positions, constitute the greatest environmental concern.

For aquatic life, water concentrations of less than 0.014 ug total PCBs/1 (ppb) appear to afford a satisfactory degree of protection, although concentrations as low as 0.006 ug/l resulted in measurable accumulation by various species of filter-feeding shellfish. In aquatic systems, toxicity increased with increasing exposure, crustaceans and younger developmental stages were the most sensitive groups tested, and lower chlorinated biphenyls were more toxic than higher chlorinated biphenyls. Among sensitive species of teleosts, total PCB residues (in ug/kg fresh weight) in excess of 500 in diets, 400 in whole body, and 300 in eggs were demonstrably harmful, and should be considered as presumptive evidence of significant PCB contamination.

Aquatic invertebrates assume an important role in the cycling of PCBs within and between ecosystems. Uptake of PCBs from the sediment by chironomid (*Chironomus plumosus* - type) larvae has been directly related to the concentration of PCBs in the sediment. When larvae metamorphosed to adults, PCB compounds were concentrated and transferred from the aquatic to the terrestrial environment. Terrestrial predators that feed on emerging aquatic insects whose larval stage inhabits PCB-contaminated sediments may be exposed to PCBs.

Among small mammals, the mink (*Mustela vison*) is one of the most susceptible species tested; dietary levels as low as 100 ug PCBs/kg fresh weight caused death and reproductive toxicity. A tolerable daily limit for mink has been estimated at less than 1.5 ug total PCBs/kg body weight. PCBs can be transferred to young mammals either transplacentally or in breast milk. Retention of PCBs is highly species specific: nonhuman primates, for example, retained PCBs more efficiently than rodents Tolerable daily PCB levels for rhesus monkey (*Macaca mulatta*), dog (*Canis* sp.), and rat (*Rattus* spp.) were 1.0, 2., and 5.0 ug/kg body weight, respectively. As a group, birds were more resistant to acutely toxic effects of PCBs than mammals. For birds, total PCB levels (in ug/kg fresh weight) in excess of 3,000 in diet, 16,000 in egg, or 54,000 in brain were frequently associated with PCB poisoning.