March 30, 2011

ORD presentation to Region 5 on Near-Road Research in Detroit

Introduction to EPA ORD Near-Road Research Program
Dan Costa, Sc.D., DABT, National Program Director for Air Research

FHWA/EPA Collaboration Project: National Near-Road MSAT Study
Sue Kimbrough, National Risk Management Research Laboratory (NRMRL)

Mitigation of Near-Road Air Pollution Impacts
Rich Baldauf, Ph.D., ORD/NRMRL and Office of Transportation and Air Quality (OTAQ)
Region 5 Overview of ORD’s Detroit Area Near Road Research - Introduction

Dan Costa, Sc.D., DABT
Office of Research & Development
USEPA
Motor Vehicles are “Life-Blood” in the U.S.

The current U.S. population is 310 million\(^1\) and growing

There are over 250 million registered vehicles\(^2\)
- Passenger vehicles, \(~96\%\)
- Trucks and buses, \(~4\%\)

Over 140 million people commute to work\(^2,3\)
- Work, \(~45\) minutes
- School, \(~35\) minutes

Over 45 million people live within 300 ft of an airport, railroad or major highway\(^4\)

\(^1\)U.S. Census; \(^2\)National Transportation Statistics; \(^3\)American Time Use Survey; \(^4\)American Housing Survey
Policy Considerations

- Mobile Source Regulations
- Transportation Conformity
- National Environmental Policy Act (NEPA)
- State and local planning
 - Transportation systems
 - School site requirements
 - Child/elderly care facilities
 - Urban planning
“Pressing” Uncertainty - Health

Several Health Outcomes Now Associated

• The PM story until recently has largely had focused on biologic plausibility and its attributes (components and size)
• “Source attribution” studies brought insight into the potential links to transportation – mobile sources.
• European science community has been focused on diesel, traffic, and “ultrafine” particles
• Some outcomes associated with “near road” included:
 – Mortality (apparently stemming from myocardial events)
 – Asthma exacerbation and maybe initiation
 – Cancers
 – Lung growth retardation in children
 – Birth defects
• Uncertain role of co-pollutants - MSATs
“Keystone” Uncertainty - Exposure

Lack of Good Metrics to Assess Exposure

• Distance from roadway (residence, school, etc.)
 – Linear distance
 – Effective Radius
 – Angular distance
• Cumulative traffic over some temporal period
• Numbers of vehicles per time (exposure rate)
• Vehicle type, speed, etc.
• Person hours within a varying distances or…
• Person hours (~TWA) at locations: e.g., activity diaries
• Any number of statistical models based on the metrics above or land-use estimations
• Emission data – part of the story but alone is not enough
Near Road Uncertainties

Pressing Program & Regional Needs Seemingly Linked to MSAT and PM Exposures Associated with Mobile Sources

- What do we really know about NR exposures?
 - Is this an issue of exhaust emission MSATs or PM?
 - What about dispersed roadway and mechanical materials?
 - Can we have establish reliable / transferable metrics?
 - What are the relevant temporal / spatial exposure profiles?

- Health Implications?
 - What in fact are the acute / chronic outcomes and risks?
 - Who is susceptible?
 - Is there biologic plausibility?

- Interventions may exist – what is their value?
Many Ties to Asthma

Traffic-related exposures are extensive and associated with adverse health outcomes

30-45% of people living in large North American cities live in traffic exposure areas

Conclusion: Traffic-related pollution may cause a range of health outcomes including cardiovascular and respiratory effects
Implementation of ORD’s Near Road Action Plan

• ORD FY06 Raleigh NR Pilot
 – Project & instrument ‘shakedown’
 – Analysis, Tox samples, various modeling efforts

• IAG w/ Federal Highway Admin. (FHWA)
 – Las Vegas (2009-10)
 • Focus on near road emission profile
 – Detroit (2010-11) – FHWA & NEXUS
 • NEXUS STAR project to assess health (asthma, indicators)
 • Coop allow coordination between ORD and awardee
 • Coordination with OAQPS, negotiations w/ NIEHS & others

• Intensive (targeted) ORD Study – Raleigh (~2013)
Draft Near Roadway Action Plan

- **Source / Emissions** – characterization (combustion and mechanically generated); source apportionment; impact of traffic conditions (e.g., volume, speed, fleet mix)

- **Air Quality** – spatial and temporal variability; atmospheric processes; impact of environmental conditions (e.g., topography, meteorology)

- **Exposure Assessment** – gradients; source apportionment; dispersion / AQ-linked models

- **Health Effects** – source apportionment; tox and epi panel studies

- **Indoor Micro-environments** – source impacts; mitigation
PM Centers – Near-Road Studies

Harvard PM Center

TERESA tunnel study: Harvard's mobile facility transforms primary emissions from a large Boston tunnel to realistic atmospheric mixtures (with primary and secondary particles) for toxicological studies.

University of Rochester PM Center

- Epidemiological studies in Rochester and Germany – urban fine and ultrafine particles, gaseous pollutants, with source apportionment to identify traffic component
- Controlled human exposure studies in Rochester, to be conducted in the early morning to capture rush hour exposures
- Animal studies using on-highway exposures
EPA/FHWA Near Road Collaboration Project:

Region 5 Briefing

National Near Road MSAT Study

Sue Kimbrough¹, Richard Shores¹, Donald Whitaker¹, Bill Mitchell¹, Gayle Hagler¹, Daniel Vallero¹, Alan Vette¹, Carry Croghan¹, Victoria Martinez², Michael Claggett².

¹U.S. Environmental Protection Agency, Office of Research and Development
²Federal Highway Administration

January 10, 2011
Who are the members of the EPA/FHWA Near Road team?

Project Team:

- Strategic Project/Science Management
 - Dan Costa
 - Carlos Nunez
 - Doug Mckinney
 - Richard Baldauf
 - David Kryak
 - Alan Vette

- NRMRL – Project Management
 - Sue Kimbrough
 - Richard Shores

- EPA/FHWA Technical Working Group (including above)
 - Victoria Martinez (FHWA) -- IAG Project Officer
 - Dan Vallero (EPA IAG Project Officer)
 - Bill Mitchell
 - Donald Whitaker
 - Richard Baldauf
 - Gayle Hagler
 - James Hirtz
 - Jason Herrington
 - Paul Solomon
 - Other EPA technical staff as needed……..
Near Road Air Quality Background

- Estimate over 45 million people live within 100 meters of a major transportation system including 4+ lane highways – many more work or attend school near roads
- More than 1,000 compounds have been identified in exhaust and evap emissions from mobile sources
 - Regulated Pollutants
 - Air Toxics
 - Particulate Matter
- Air quality measurements have indicated elevated pollutant concentrations near roads
- Near-road exposures have been associated with numerous adverse health endpoints, including:
 - Respiratory effects (e.g., asthma)
 - Cardiovascular effects
 - Adverse birth outcomes
 - Premature mortality
 - Cancer
Why are we involved in this project?

--- Key Science Questions ---

- What is the spatial and temporal variability of traffic-related pollutants near roadways?
- How do traffic (volumes, speeds, fleet mix, etc.) and environmental (meteorology, topography, etc.) conditions affect vehicle emissions and near road air quality?
- What marker(s)/metric(s) can be used to identify exposures to traffic-related emissions?
- What tools are available, or can be produced, to identify the relationship from traffic emissions to population exposures to adverse health effects for use in regulatory decision making and transportation planning?
- What are the concentration gradients at a fine(er) scale resolutions?
- How does urban topography and barriers impact these gradients?
- Are there mitigation techniques that can reduce exposures to susceptible populations?
Site Selection Methodology

<table>
<thead>
<tr>
<th>Step</th>
<th>Site Selection Steps</th>
<th>Method</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Determine Site Selection Criteria</td>
<td>Monitoring Protocol</td>
<td>Developed by U.S. FHWA</td>
</tr>
<tr>
<td>2</td>
<td>Develop List of Candidate Sites</td>
<td>GIS Data; Site Visit(s)</td>
<td>Additional sites added as information is developed.</td>
</tr>
<tr>
<td>3</td>
<td>Apply Coarse Site Selection Filter</td>
<td>Team Discussions, Management Input</td>
<td>Eliminate sites below acceptable minimums.</td>
</tr>
<tr>
<td>4</td>
<td>Site Visit</td>
<td>Field Trip</td>
<td>Application of Fine Site Selection Filter</td>
</tr>
<tr>
<td>5</td>
<td>Select Candidate Site(s)</td>
<td>Team Discussions, Management Input</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Obtain Site Access Permissions</td>
<td>Contact Property Owners</td>
<td>If property owners do not grant permission, then the site is dropped from further consideration.</td>
</tr>
<tr>
<td>7</td>
<td>Site Logistics (i.e., physical access, utilities – electrical and communications)</td>
<td>Site Visit(s), Contact Utility Companies</td>
<td></td>
</tr>
</tbody>
</table>
What do we hope to get out of this effort?

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide FHWA with data necessary to comply with Settlement Agreement.</td>
<td>FHWA</td>
</tr>
<tr>
<td>Understanding the relationship between traffic, meteorology and near road air quality</td>
<td>FHWA, NRMRL/NERL</td>
</tr>
<tr>
<td>Identify metrics used to relate traffic emission impacts on air quality and adverse health effects for inclusion in risk and health assessments</td>
<td>FHWA, OTAQ, OAQPS, NHEERL, HEI, states</td>
</tr>
<tr>
<td>Provide improved air quality dispersion algorithms for near-road assessments and upgrade EPA’s regulatory dispersion model AERMOD</td>
<td>OTAQ, OAQPS, NOAA, FHWA, DOE, states</td>
</tr>
</tbody>
</table>
Upwind Site (100 Meters)

Roadside Site (10 Meters)

100 Meter Downwind Site

300 Meter Downwind Site

Wind Flow

Concentration Gradient

Distance

Concentration
Site Selection Criteria

<table>
<thead>
<tr>
<th>Selection Considerations</th>
<th>Monitoring Protocol Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT (> 150,000)</td>
<td>Only sites with more than 150,000 annual average daily traffic (AADT) are considered as candidates.</td>
</tr>
<tr>
<td>Geometric Design</td>
<td>The geometric design of the facility, including the layout of ramps, interchanges and similar facilities, will be taken into account. Where geometric design impedes effective data collection on MSATs and PM$_{2.5}$, those sites will be excluded from further consideration.</td>
</tr>
<tr>
<td>Topology (i.e., Sound Barriers, Road Elevation)</td>
<td>Sites located in terrain making measurement of MSAT concentrations difficult or that raise questions of interpretation of any results will not be considered. For example, sharply sloping terrain away from a roadway could result in under representation of pollutants.</td>
</tr>
<tr>
<td>Geographic Location</td>
<td>Criteria applicable to representing geographic diversity within the U.S. as opposed to within any given city.</td>
</tr>
<tr>
<td>Availability of Data (Traffic Volume Data)</td>
<td>Any location where data, including automated traffic monitoring data, meteorological or MSAT concentration data, is not readily available or instrumentation cannot be brought in to collect such data will not be considered for inclusion in the study.</td>
</tr>
<tr>
<td>Meteorology</td>
<td>Sites will be selected based on their local climates to assess the impact of climate on dispersion of emissions and atmospheric processes that affect chemical reactions and phase changes in the ambient air.</td>
</tr>
</tbody>
</table>

While not explicitly included in the Monitoring Protocol, the following selection criteria were deemed important to the selection process and were included.

<table>
<thead>
<tr>
<th>Selection Considerations</th>
<th>Monitoring Protocol Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downwind Sampling</td>
<td>Any location where proper siting of downwind sampling sites is restricted due to topology, existing structures, meteorology, etc., may exclude otherwise suitable sites for consideration and inclusion in this study.</td>
</tr>
<tr>
<td>Potentially confounding air pollutant sources</td>
<td>The presence of confounding emission sources may exclude otherwise suitable sites for consideration and inclusion in this study.</td>
</tr>
<tr>
<td>Site Access (Admin/Physical)</td>
<td>Any location where site access, is restricted or prohibited either due to administrative or physical issues, will not be considered for inclusion in the study.</td>
</tr>
</tbody>
</table>
I-15 Monitoring Site:

Las Vegas Monitoring Sites
Winds generally from the SSW, although diurnal variations exist.
Instrument Deployment - Overview

<table>
<thead>
<tr>
<th>Core Instruments</th>
<th>10 Meters @ I-96 Roadside</th>
<th>100 Meter Downwind</th>
<th>300 Meter Downwind</th>
<th>100 Meter Upwind</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-11A Cartridge sampling</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TO-15 Canister sampling</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Continuous GC</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Continuous gas monitoring (CO, NOx)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Continuous black carbon monitoring (Aethalometer)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Continuous fine particle (TEOM)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Integrated PM2.5 (FRM)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wind speed/wind direction (sonic anemometer)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Meteorological monitoring (temp, RH, solar, etc.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Study Enhancements

Continuous Ultrafines (20nm – 200+ nm)	X		X	
Water-based CPC	X			X
Continuous gas monitoring (CO2)	X	X	X	X

Michigan DOT -- Traffic Data

- Vehicle Count, Vehicle Speed, Vehicle Class
Remote Data Streaming – WinAQMS/WinCollect, RealVNC Software
Average hourly traffic volume by week of year
Average daily traffic volume by weekday and weekend

Average Daily Traffic Volume

- **Weekday**: Average daily traffic volume ranges from 120,000 to 220,000, with a median around 160,000.
- **Weekend**: Average daily traffic volume ranges from 180,000 to 200,000, with a median around 160,000.

Note: The data is presented in a box plot format.
Hourly Average NO$_2$ Concentrations (winds from road)

Mean NO$_2$ Concentrations by Station (all wind directions)
Hourly Average NO Concentrations (all wind directions)

![Graph showing hourly average NO concentrations for different distances from source.](image)

Hourly Average NO Concentrations (winds from road)

![Graph showing hourly average NO concentrations for winds from road.](image)
Hourly Average NOX Concentrations by Station
(all wind directions)

Hourly Average NOX Concentrations
(winds from road)

Concentration (ppb)

- 100 Meters 20 Meters 100 Meters 300 Meters

Concentration (ppb)

- 100 Meters 20 Meters 100 Meters 300 Meters
Hourly Average CO Concentrations by Station
(all wind directions)

Hourly Average CO Concentrations
(winds from road)
Black Carbon
(all wind directions)
Seasonal NO$_2$ Trends -- Station 1
(all wind directions)
Seasonal NO₂ Trends
(all wind directions)
Preliminary Results: Criteria Pollutants

Mean Carbon Monoxide Concentration by Hour

<table>
<thead>
<tr>
<th>Hour</th>
<th>station1</th>
<th>station2</th>
<th>station3</th>
<th>station4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Legend
- station1
- station2
- station3
- station4

NO₂ gradient existed for hourly average concentrations over the entire study

NO/NO₂/NOx Concentrations (ppb)

CO gradients existed, with strong diurnal patterns even without similar traffic signals
NO Concentration Gradient: Feb 3, 2009, Day with Low Wind Speed

Wind Speed vs. NO Concentrations

Approximate Direction of Influence:
Wind Direction From Road

10 Meter Roadside
100 Meter Downwind
300 Meter Downwind
100 Meter Upwind
Wind Direction
Wind Speed

Office of Research and Development
Black Carbon Concentration Gradient: Feb 3, 2009, Day with Low Wind Speed

Approximate Direction of Influence: Wind Direction From Road
SO₂ Concentration Gradient:
Feb 3, 2009, Day with Low Wind Speed

Approximate Direction of Influence:
Wind Direction From Road

Wind Direction

SO₂ Concentrations
Wind Speed

Wind Direction

100 Meter Downwind
100 Meter Upwind
Wind Speed

Office of Research and Development
NO Concentration Gradient: March 3, 2009, Day with High Wind Speed

Approximate Direction of Influence:
- Wind Direction From Road

Wind Speed

NO Concentrations
Wind Direction

10 Meter Roadside
100 Meter Downwind
300 Meter Downwind
100 Meter Upwind
Wind Direction
Wind Speed

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00
Black Carbon Concentration Gradient: March 3, 2009, Day with High Wind Speed

Approximate Direction of Influence:
Wind Direction From Road

Wind Speed

Black Carbon Concentration

Wind Direction

10 Meter Roadside
100 Meter Downwind
300 Meter Downwind
100 Meter Upwind

Wind Speed

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00
SO₂ Concentration Gradient: March 3, 2009, Day with High Wind Speed

Approximate Direction of Influence:
Wind Direction
From Road

SO₂ Concentrations
Wind Speed

Wind Direction
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Wind Speed
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00

Wind Direction
100 Meter Downwind
100 Meter Upwind
Wind Speed

Office of Research and Development
Lessons Learned

• **Site Selection / Access / Infrastructure:** Never too early to start process, no such thing as perfect site (project manager, site operator, modelers, policy makers).
 - Property owners: Environmental Awareness – perhaps?
 - Liability, Insurance, Compensation, Hassle Factor(s), etc.
 - Electrical, Security, Communications…costs can be high.

• **Timeline:** Site Selection, access, infrastructure – always takes more time than originally anticipated.

• **Budget:** Field projects are **usually** more costly than originally anticipated.
 - On-site operator costly (travel, lodging, per diem).
 - Integrated Sampling: Site-operator costs and laboratory analysis costs high (sample prep, shipping, sample analysis).

• **Study Design:** No perfect design.

• **Database Management:** Essential to data flow (from field site to data analysts).
Summary

- Appears to be concentration gradient for gaseous pollutants and black carbon associated with distance from roadway however more analysis is required.

- Appears to be associations with traffic volume (i.e., higher concentrations with higher traffic volumes).

- Effect of wind speed appears to be a factor with regards to concentration gradient (e.g., dilution effect) and needs to be investigated further.

- Train does not appear to be a substantial source.

- Non I-15 sources may be larger contributors than previously expected, for example: parking lot, airport, surrounding streets.

- Next Study City: Detroit – Study In Progress
Overview Map of Detroit

Eliza Howell Park
Detroit Site: Eliza Howell Park
Acknowledgements

We thank Brian Schumacher and Jeffery Lantz of the EPA Las Vegas Facility for their continuing support of this project. We thank American Ecotech for shelter/instrument operation support. We thank David Proffitt, Michal Derlicki, Richard Snow, Nikki Williams of ARCADIS for site-operation and logistical support, Hunter Daughtrey, Dennis Williams, Karen Oliver, Lydia Brouwer, Herb Jacumin, of Alion Science and Technology for preparation and analysis of sampling media and Jeff Baker of TSI for use of Ultrafine Particulate Samplers.
Mitigation of Near-Road Air Pollution Impacts

Rich Baldauf
U.S. Environmental Protection Agency
January 11, 2011
One way to mitigate impacts: Roadway Design and Roadside Features?

- Flat, At-Grade
- Vertical Road Cut
- Sloped Road Cut
- Noise Barriers
- Vegetation (porous) Barrier
One way to mitigate impacts: Roadway Design and Roadside Features?

(Heist et al., 2009; Baldauf et al., 2009)
Field studies showed the influence of noise barriers and vegetation on both pollutant concentrations and gradients.

(Baldauf et al., 2008a; 2008b)
Noise barrier effects most pronounced when winds from the road and higher traffic volumes. Barriers and roadside features may also trap pollutants behind the structure, leading to higher on-road concentrations.
Vegetation Effects

(Ongoing Work - Preliminary Data: do not cite, quote, or reference)
Preliminary data comparing at-grade and cut section NO₂ shows high variability, although highest concentrations occurred at-grade.

(Ongoing Work - do not cite, quote, or reference)
Two primary objectives:

- Quantify vegetation impacts on near-road air quality
- Assess concentration variability for varying neighborhood designs
Site 2: I-275 South

- On-road and near-road mobile monitoring with varying vegetation and neighborhood configurations
- Fixed and backpack monitoring for detailed vegetation assessment
Site 3: I-96 Eliza Howell Park

- On-road and near-road mobile monitoring with varying neighborhood configurations
- Comparison with EPA/FHWA fixed site measurements
Sampling and Schedule

Mobile Electric Vehicle
- ~3 hrs per day (3-4 driving routes)
- Particulate Matter
 - UFP size distributions (EEPS)
 - Coarse and fine size distributions (APS)
 - Black carbon (Micro-aethalometer)
- Gases
 - CO (Single Quantum Cascade Laser)
 - NO2 (tentative)

Stationary and Backpack
- ~22-24 hour stationary sampling
- ~2 hours backpack sampling
- Particulate Matter
 - Particle count in select size bins (HHPC)
 - Black carbon (Micro-aethalometer)

Sampling scheduled to begin late May, 2011
For More Information

• EPA Contacts:
 – Rich Baldauf (baldauf.richard@epa.gov)
 – Gayle Hagler (hagler.gayle@epa.gov)

• Websites:
 – http://www.epa.gov/airscience/quick-finder/near-roadway.htm
 – http://www.epa.gov/nrmrl/appcd/nearroadway/workshop.html

• References