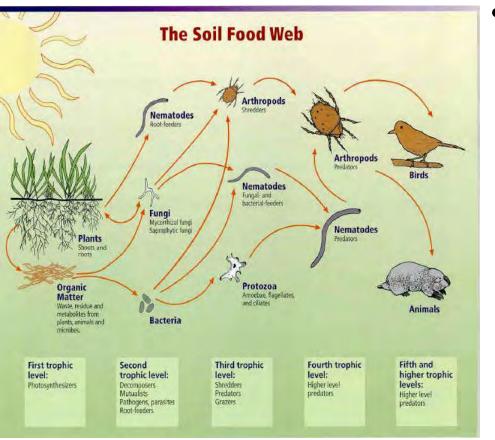
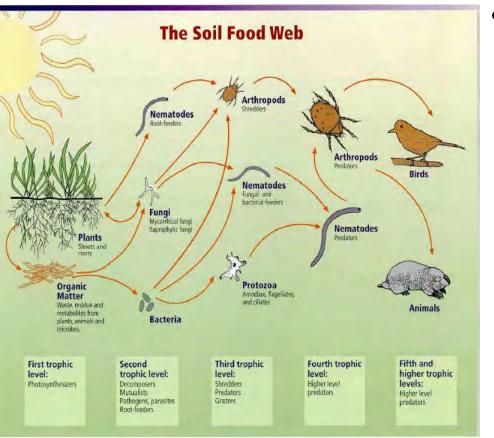


Integrating Livestock into Cropping Systems on Sustainable Farms by Jay Fuhrer


Burleigh County, North Dakota

• Bacteria-

Decomposer of simple carbon chains (low carbon residue). Little bag of fertilizer. One bacterium can produce 5 billion offspring in 12 hours (food available). Feed on root exudates.


• Fungi-

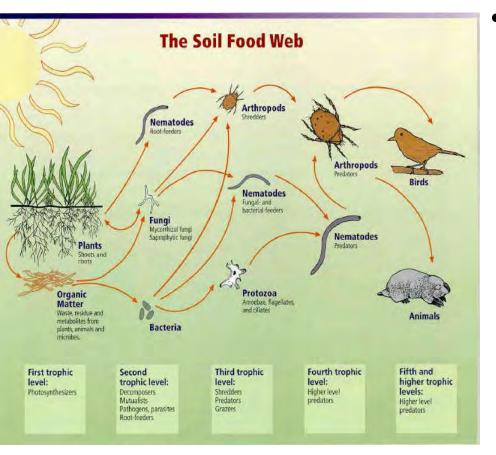
Saprophytic-primary decomposer of complex carbon chains (high carbon chains).

Mycorrhizal-transports nutrients.

Little bag of fertilizer.

Forms the soils glue (glomalin) along with the plant roots exudates.

• Protozoa-


Mineralize nutrients by eating the little guys (fungi and bacteria).

Consumes an average of 10,000 bacteria per day.

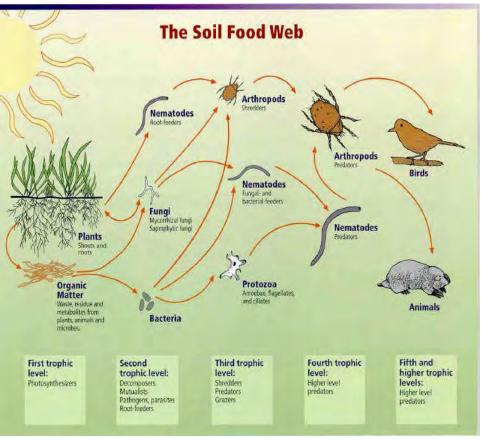
Amoebae – large

Ciliates – medium

Flagellates - small

Nematodes-

Mineralize nutrients by eating the little guys (fungi and bacteria).


Taxi for the bacteria & fungi.

Locate food by temperature.

Types: Herbivore, Bacterivores, Fungivores, and

Predator.

Large in size, compacted soil restricts their travel.

Actinomycetes-

Source of antibiotics: tetracycline, neomycin, streptomycin.

Controls bacteria in the soil and in humans.

Convert dinitrogen gas to ammonia.

Decompose SOM.

Cure compost.

What Do They Weigh?

- Bacteria 2,000 2,500 Lbs/Ac 2,200 2800 Kilograms/Hectare
 Fungi 1,000 15,000 Lbs/Ac 1,200 17,000 Kilograms/Hectare
 Protozoa 20 300 Lbs/Ac
 Nematodes 10 300 Lbs/Ac 13 340 Kilograms/Hectare
- Microbes in Humans 3 lbs/Person

Source:

The Nature and Properties of Soils

 Brady and Weil, Fourteenth Edition.
 Soil Biology Primer.
 National Geographic, Nathan Wolfe, January 2013.

Soil Biology – Plant Interaction The Menoken Farm 10/18/2013

Crop Diversity

Nurture Nature with System Synergies

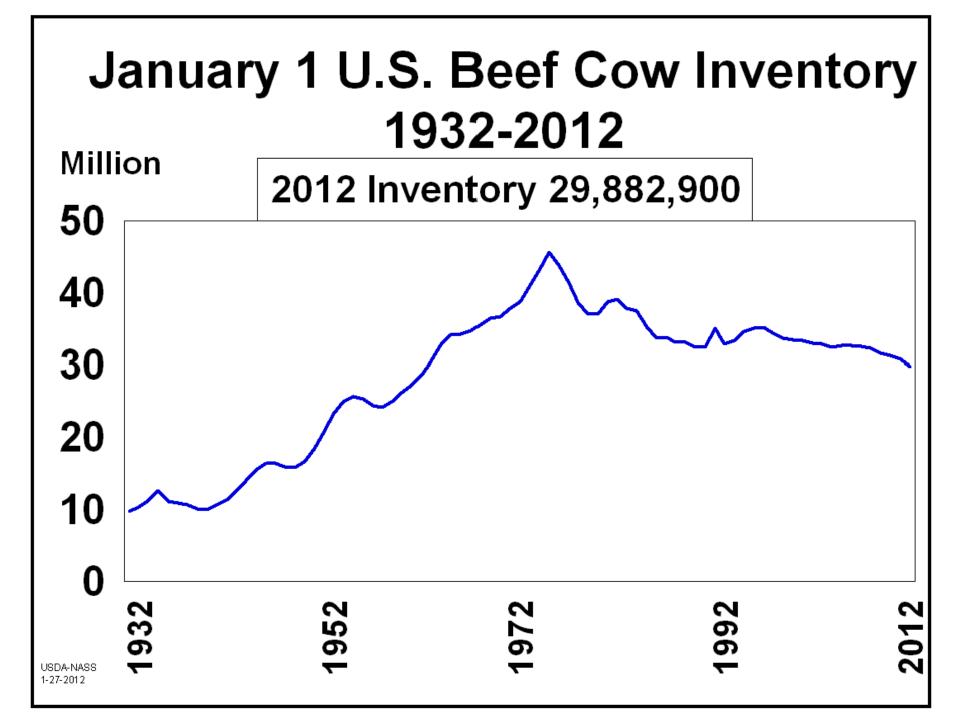
The Carbon Cycle Our Road to Build Soil Organic Matter

No-till High Diversity Cover Crops Livestock No-till Low Diversity No Cover Crops No Livestock

Twice as much C is stored in the soil than in the world's vegetation and atmosphere combined The Menoken Farm

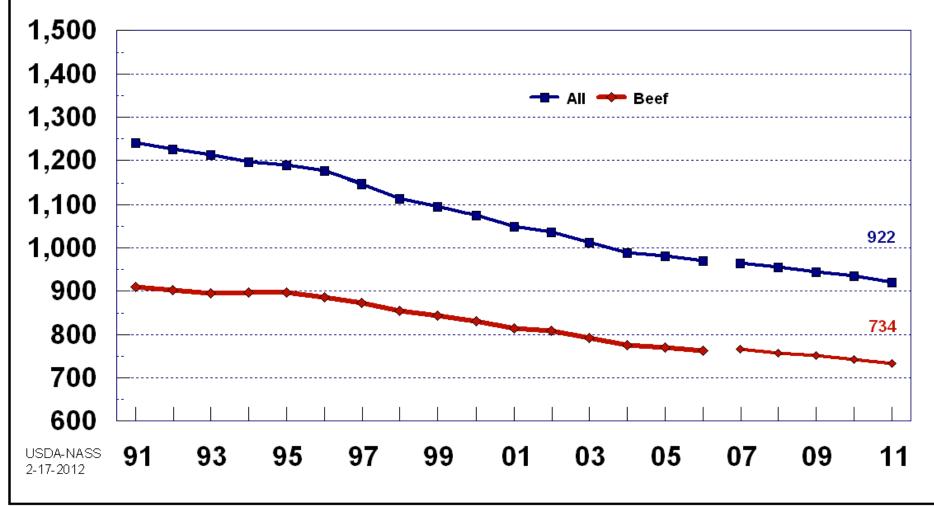
Plants take in CO2 through the stomata: The oxygen portion is returned through the stomata. Part of the carbon portion is used to grow the plant. Part of the carbon is used as root exudates to attract biology. The Menoken Farm

The Carbon Cycle Our Road to Build Soil Organic Matter


The soil releases CO2 back into the atmosphere, primarily from the Soil Food Web respiration. Prior to civilization; the C entering and leaving the soil was in balance. The Menoken Farm

The Carbon Cycle Our Road to Build Soil Organic Matter

CO2 loss from the soil is accelerated by tillage on cropland; and the intake is restricted due to lack of cover crop use.


CO2 intake is restricted on grasslands due to reduced photosynthetic capacity (short leaf length)

Number of All Cattle and Beef Cow Operations, United States, 1991-2011

Thousand Operations

The Carbon Cycle Our Road to Build Soil Organic Matter

Plants transfer carbon into the soil as:

- 1. Exudates from growing roots.
- 2. Roots slough carbon rich materials when plants are grazed, which are approximately 58% Carbon by weight.
- 3. Root regrowth due to adequate plant recovery.

The Menoken Farm

The Carbon Cycle Our Road to Build Soil Organic Matter

Grazing Systems and livestock can be used as a tool to stress the plants during the growing season. Creating root sloughing; and to assure adequate recovery periods for regrowth for the plant/root. Just as this herd creates root sloughing on native rangeland, Ken Miller will show this concept on cropland with cover crops.

Black Leg Ranch

Let's Take a Closer Look at Winter Grazing Cover Crops on Black Leg Ranch

Soil Health Principles

10/18/2013

Minimize Soil Disturbance Armor On The Surface Crop Diversity Continual Live Plant – Covers Livestock Integration

Black Leg Ranch

- Rotates 300 Acres Of Cover Crops Annually
- Nutrient Management (Reduced Fertility)
- **Integrated Pest Management**
- Water Quality (High Leach Sands)
- Wildlife
- **Livestock Integration**
- Livestock Health
- Soil Health

Black Leg Ranch Yearling System One group, 100 Day Season 22 Pastures, Primarily Once Over

Black Leg Ranch Cow/Calf System One Group, 180 Day Season, 14 Pastures, Primarily Once Over

Black Leg Ranch Cover Crop Mixtures 2010-2014

- Pearl Millet
- Proso Millet
- Sudan
- Soybean
- Cowpea
- Sunflower
- Radish
- Turnip
- Sweet Clover
- Corn

- Cowpea
- Soybean
- Forage Pea
- Crimson Clover
- Sorghum
- Brown Top Millet
- Proso Millet
- Corn BMR Grazing
- Collards
- Kale
- Radish
- Sunflower

Black Leg Ranch Diversity

Black Leg Ranch

6 Au

En fact to

Black Leg Ranch Biological Ag Waste System

Black Leg Ranch Winter Grazing 2013-2014

Black Leg Ranch Windbreak Protection

Marina a

NutBal Report Black Leg Ranch

Crude Protein – 7.9%Digestible Organic Matter – 56%

Forage Analysis April 14, 2014 Crude Protein 8.2% TDN 56.1% Nutrient Requirements 11 Months After Calving (University of Florida) Crude Protein 7.78% TDN 52.3%

Turn In Date: April 1, 2014 Hubbard Feeds Inc. Bismarck, ND Forage Analysis Date: April 14, 2014 Black Leg Ranch

2012 Sunflower Yields 2200 lbs/ac Black Leg Ranch SW1/4 Reduced Fertility by 25%

Required (Nutrient Mgt Planner) N = 110 lbs/ac P2O5 = 50 lbs/ac

Haney Soil Test – May 15, 2012
Solvita 46 PPM
Inorganic P 21 lbs
Organic P 16 lbs
Total P 37 lbs

Haney Soil Test – May 15, 2012Inorganic N17 lbsOrganic N57 lbsTotal N74 lbs

Crop History 2009 Sunflower 2010 Full Season CC Combination/W Grazed 2011 Full Season CC Combination/W Grazed Field 1

Corn 2010

Season Long Cover Crop 2011

- Total Biology 1774 ng/g soil
- Bacteria 1473 ng/g soil
- Actinomycetes 123 ng/g soil
- Fungi 147 ng/g soil
- Ratio Bacteria: Fungi 10.0
- Mycorrhiza 37 ng/g soil

Field 2

Season Long Cover Crop 2010 Season Long Cover Crop 2011

- Total Biology 3312 ng/g soil
- Bacteria 2510 ng/g soil
- Actinomycetes 249 ng/g soil
- Fungi 513 ng/g soil
- Ratio Bacteria:Fungi 4.9
- Mycorrhiza 251 ng/g soil

Jerry Doan Biological Soil Tests

2014 Sunflower Fertilization 71 Bushel Yield Goal – 2000 lbs

Standard Production Model

Required: 50 lbs N & 28 lbs P2O5

Available: 26 lbs N & 10 lbs P2O5

Applied: 24 lbs N & 18 lbs P2O5

Haney Data

Required: 50 lbs N & 28 lbs P2O5

Available: 48 lbs N & 18 lbs P2O5

Applied: 2 lbs N & 10 lbs P2O5

Savings: 22 lbs N & 8 lbs P2O5 Black Leg Ranch

Black Leg Ranch

NutriSolutions

Leaf Analysis

No Fertilizer

Report Number: 14055 Sample Date: Aug 26 2014 2:53PM

Result	Comparative
Nitrogen	Normal: 3.0% - 5.0%%
3.70% / N - Adequate	×
Potassium	Normal: 4% - 6%%
4% / K - Adequate	*
Phosphorous	Normal: 0.33% - 0.5%%
0.38% / P - Adequate	X
Magnesium	Normal: 0.33% - 1.0%%
0.71% / Mg - Adequate	×
Sulfur	Normal: 0.45% - 0.55%%
0.42% / S - Responsive	X
Calcium 3.35% / Ca - Excessive	Normal: 2.0% - 3.0%%
Zinc	Normal: 30 - 75 ppmppm
49ppm / Zn - Adequate	×
Boron	Normal: 45 - 60 ppmppm
111ppm / B - Excessive	
Manganese	Normal: 70 - 150 ppmppm
102ppm / Mn - Adequate	X
Iron	Normal: 70 - 150 ppmppm
90ppm / Fe - Adequate	X
Copper	Normal: 9 - 30 ppmppm
26ppm / Cu - Adequate	X

Consult your local agronomist. The recommendations provided above are only recommendations recommendations. Excessive Nutrient Levels - above the level for optimum growth and developme Solutions control, such as weather and applicator factors; Winfield cannot predict or guarantee re

Black Leg Ranch

NutriSolutions

Report Number: 14056 Sample Date: Aug 26 2014 2:53PM

Leaf Analysis Half Rate Fertilizer

Result	Comparative		
Nitrogen 3.70% / N - Adequate	Normal: 3.0% - 5.0%%		
Potassium 4.20% / K - Adequate	Normal: 4% - 6%%		
Phosphorous 0.43% / P - Adequate	Normal: 0.33% - 0.5%%		
Magnesium 0.74% / Mg - Adequate	Normal: 0.33% - 1.0%%		
Sulfur 0.48% / S - Adequate	Normal: 0.45% - 0.55%%		
Calcium 3.28% / Ca - Excessive	Normal: 2.0% - 3.0%%		
Zinc 55ppm / Zn - <mark>Adequa</mark> te	Normal: 30 - 75 ppmppm X		
Boron 119ppm / B - Excessive	Normal: 45 - 60 ppmppm		
Manganese 99ppm / Mn - Adequate	Normal: 70 - 150 ppmppm		
Iron 80ppm / Fe - <mark>Adequa</mark> te	Normal: 70 - 150 ppmppm		
Copper 31ppm / Cu - Excessive	Normal: 9 - 30 ppmppm		

Consult your local agronomist. The recommendations provided above are only recommendations recommendations. Excessive Nutrient Levels - above the level for optimum growth and developme Solutions control, such as weather and applicator factors; Winfield cannot predict or guarantee re

Soil Organic Matter.

- A furrow slice is 6 7/8 inches = 2,000,000 lbs of soil per acre.
- 1.0% SOM X 2,000,000 lbs = 20,000 lbs of SOM per acre.
- 1.0% SOM = approximately 10,000 lbs Carbon, 1,000 lbs Nitrogen, 100 lbs Phosphorous, and 100 lbs of Sulfur.

Soil Organic Matter and Available Water Capacity Inches of Water/One Foot of Soil

Percent SOM	Sand	Silt Loam	Silty Clay Loam
1	1.0	1.9	1.4
2	1.4	2.4	1.8
3	1.7	2.9	2.2
4	2.1	3.5	2.6
5	2.5	4.0	3.0

Berman Hudson Journal Soil and Water Conservation 49(2) 189-194 March – April 1994 Summarized by: Dr. Mark Liebig, ARS, Mandan, ND Hal Weiser, Soil Scientist, NRCS, Bismarck, ND One Acre Foot = Approximately 326,000 Gallons

Native Rangeland - Nitrogen Balance Inorganic and Organic

Location	Inorganic	Organic
Small Angus Ranch	6 lbs	57 lbs
Berg Ranch	21 lbs	67 lbs
Winkler Ranch	5 lbs	80 lbs
Black Leg Ranch (Cropland)	26 lbs	49 lbs

Tying It All Together

Thank You Jay.fuhrer@nd.usda.gov 1-701-250-4518 ext3

Self Education

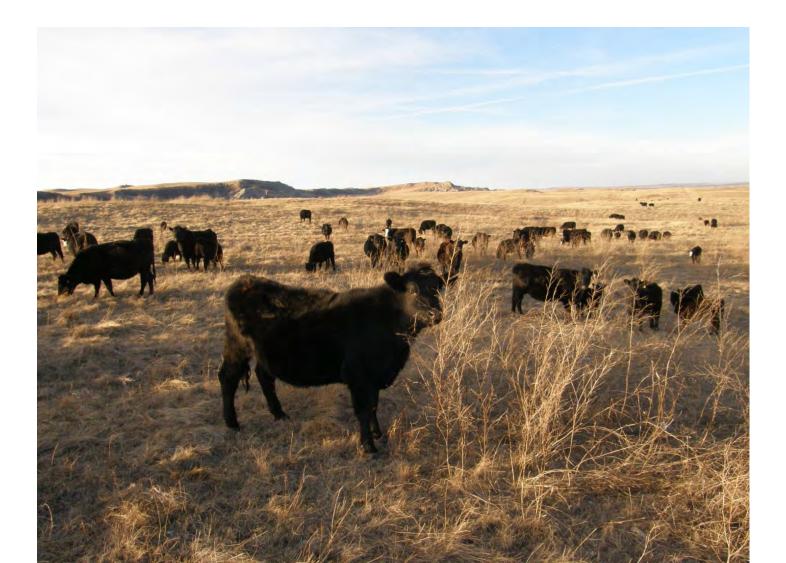
- The Nature and Properties of Soils – 14th Edition : by Brady and Weil
- Buffalo Bird Women's Garden : by Gilbert Wilson
- The One Straw Revolution: by Masanobu Fukuoka
- Managing Cover Crops Profitably 3rd Edition
- Life in the Soil: by James Nardi
- Soil Biology Primer: by Elaine Ingham
- Dirt: by David Montgomery
- Undaunted Courage: by Stephen Ambrose

www.bcscd.com

www.dakotalakes.com

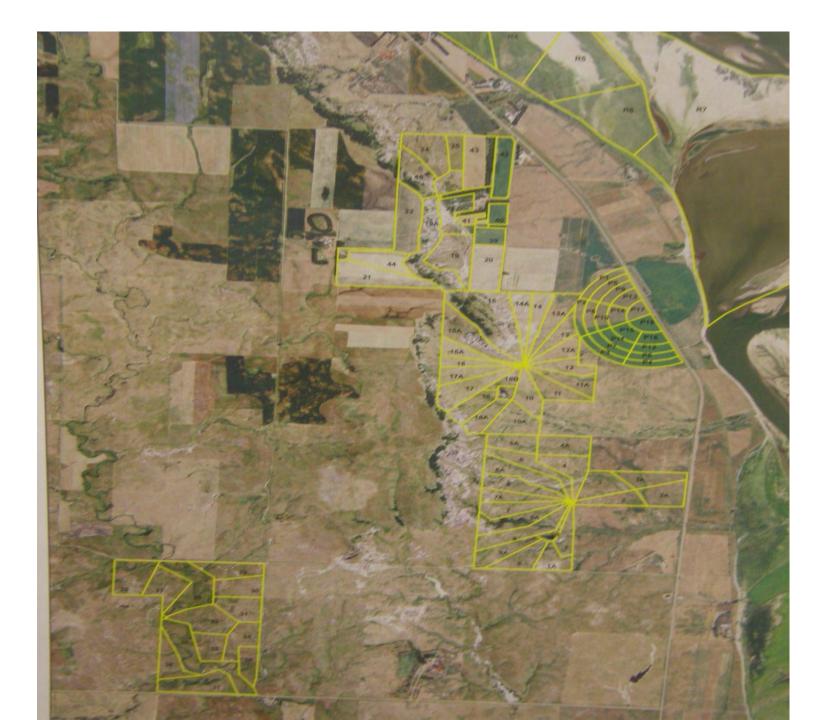
www.sustainableranching.com

www.mandakzerotill.org


Grazing Cover Crops, Winter Grazing, & Bale Grazing

Ken Miller Burleigh County SCD

Grazing Cover Crops



Winter Grazing Native Range



Bale Grazing

May 9, Grazing Winter Triticale

May 11, 60 Head 2 days grazing 4 acres

High Stock Density on Pivot

Abby June 9

COVER CROP COCKTAIL SEEDED AUGUST 2

Late September Grazing Cover Crop Mix

Late November

April 18, 2008

Harvest July 22, 2008

October 4, 2008

Cool Season Mix

- Forage barley 48 lbs
- Field pea 40 lbs
- Hairy vetch 12 lbs
- Pasja turnip 1 lb
- Radish 2 lbs
- Rye grass 2 lbs
- Sunflower 2 lbs
- Sweet clover 1 lb

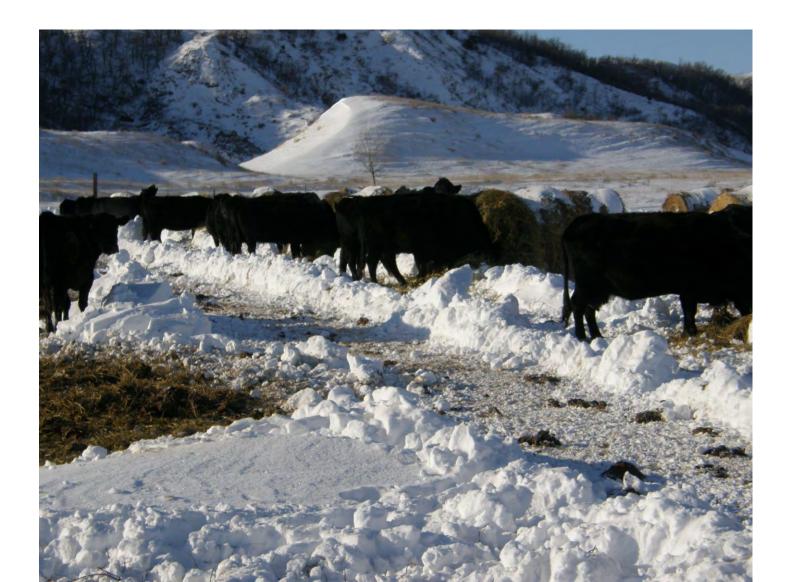
Hayed July7, 2010 Yield 2.25 Ton/acre

Regrowth August 17, 2010

Grazing Cover Crops

Warm Season Cover Crop Mix

Cow Pea	10 #	
Soybean	15 #	
Pearl Millet	6 #	
Sudan Grass	3 #	
Corn	0.5 #	
Sunflower	2 #	
Turnip (Pasja)	1 #	
Radish	2 #	
Sweet Clover	1 #	


Grazed Late in the Season

Bale Grazing Winter of 2009 & 2010

6 Days of Feed

12 Days Grazing

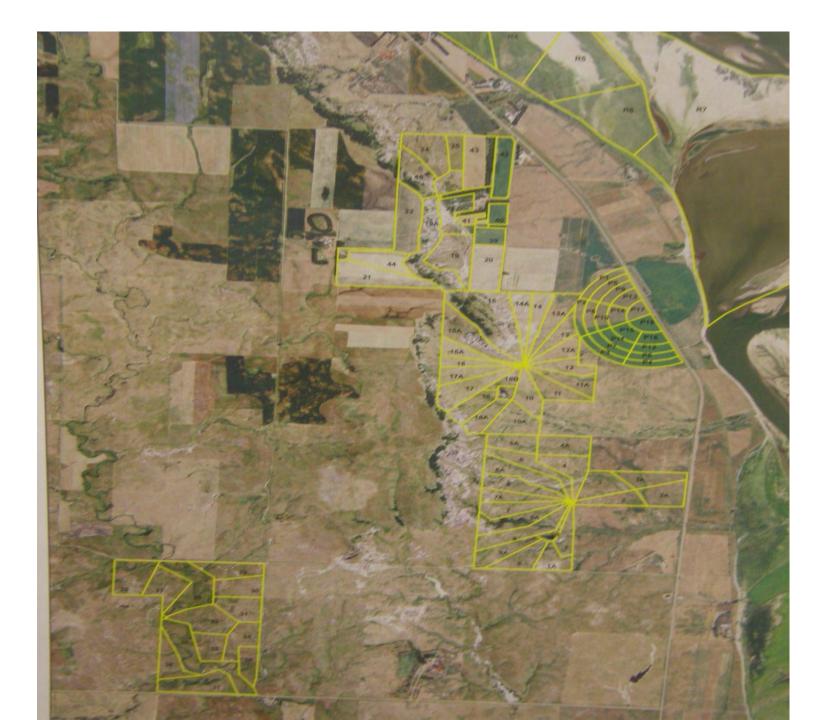
Electric Fence

Have Fun

Bale Grazing January 2011

January, 2011

June 4, 2010



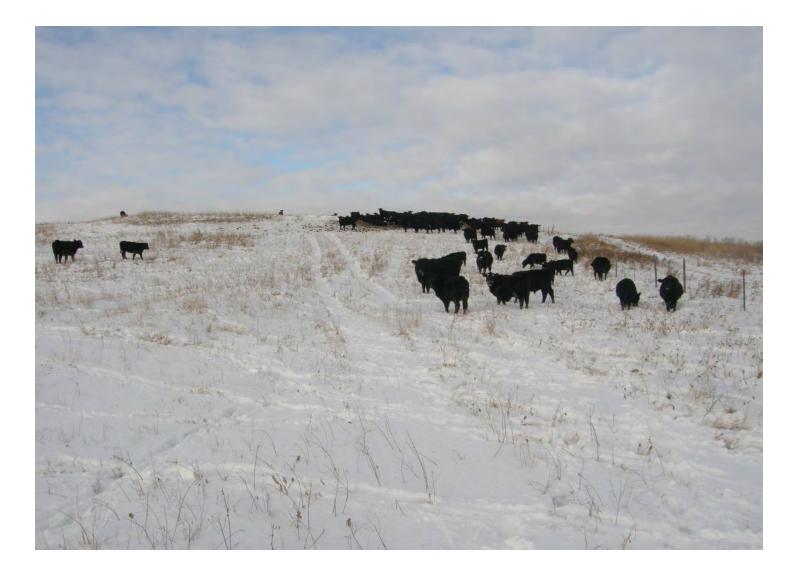
June 4, 2010

June 15, 2014

Portable Shelter With Energy Free Water System

Stockpiled Grass

January 5, 2012


January 15, 2012

January 1,2013

December 21, 2013 Started Bale Grazing

Area Not Bale Grazed

Baled Grazed

Concentrated Area

Non-Bale Grazed

Quality & Quantity Comparison

Bale Grazed

Non-Bale Grazed

- 8573 lbs/ac 2559 lbs/ac
- 11.9% Crude Protein

• 59.4 TDN

- 7.9% Crude Protein
- 60.7 TDN

June 23, 2013

Bale Grazing Results June 2013

Bale Grazing Results June 2013

Carbon Left

Soil Health, Priceless... kenneth.miller@nd.nacdnet.net 1-701-250-4518 ext 3

