

WISCONSIN'S NITRATE DEMONSTRATION PROJECT

Brian Austin & Mary Ellen Vollbrecht Bureau of Drinking Water & Groundwater Department of Natural Resources

WISCONSIN USES GROUNDWATER

 \sum

NITRATE IN WISCONSIN GROUNDWATER

WISCONSIN NITRATE PROJECT

COSTS OF COMPLIANCE

- Municipal System Capital Outlays exceed \$34M

System Name	Population	Type of Treatment	Total	Capital Cost	Cos	st per person
Amherst	958	New well	\$	477,834	\$	499
Arlington, Village of	522	Possible new well	\$	650,000	\$	1,245
Cambria	785	Deepen well (2005)	\$	50,000	\$	64
Chippewa Falls	12925	New well, treatment	\$	2,540,761	\$	197
Clinton, Village of	1876	New Well	\$	575,970	\$	307
Crivitz Utilities	1,039	New Well	\$	377,000	\$	363
Dalton, Village of	300	Well reconstruction	\$	35,000	\$	117
Embarrass	399	None	\$	39,662	\$	99
Fitchburg	20501	Inactive well, will be abandone	\$	1,009,000	\$	49
Fontana	1852	New Well	\$	1,200,000	\$	648
Footville, Village of	788	Well Reconstruction	\$	133,597	\$	170
Friesland, Village of	298	None	\$	-	\$	-
Janesville Water Utility	59,498	Blending	\$	9,000,000	\$	151
Mattoon	387	New Well in 1997	\$	950,000	\$	2,455 <
Morrisonville	400	New Well	\$	279,000	\$	698
Oconomowoc	12382	New well	\$	416,197	\$	34
Orfordville	1272	New Well, New liner	\$	273,561	\$	215
Plover	10786		\$	4,000,000	\$	371
Rome	2656	New Well, Blending	\$	926,700	\$	349
Sauk City	3,109	New Well	\$	304,000	\$	98
Strum Waterworks	1100	Inactive well	\$	-	\$	-
Valders	948	Well Reconstruction	\$	34,000	\$	36
Waunakee	9536	Well Reconstruction	\$	69,694	\$	7
Waupaca	5,676	Blending	\$	-	\$	-
Whiting	1740	Anionic exchange, blending	\$	669,999	\$	385

COSTS OF COMPLIANCE

- Small System Treatment Cost Example:

Bonnet Prairie Lutheran Church - Point of Use Nitrate Treatment

Treatment type: Ion Exchange Unit

```
Installation cost: $400.
Rental of treatment unit: $620/yr
Salt: $300/yr
Sampling: $100/yr
1 year cost approximately: $1,100
5 year cost approximate $5,500
10 year cost approximately $11,000
```

Alternative:

Replacement Well: Startup costs estimated at \$11,000

Data Provided by Sandy Heimke

Sources of Nitrate

 \mathcal{D}

CORRELATION WITH N FERTILIZER USE

USGS Land Use Study (NAWQA)

 \bigcirc

MOST N FERTILIZER GOES TO CORN

- Approximately 66% of fertilizer used in wisconsin

- 50% or more of applied N can be lost to groundwater for sandy soils!

- For the example at the right, this loss rate might result in an average groundwater concentration under the field of 40 mg/L

Finding the Maximum Return To N and Most Profitable N Rate

A Regional (Corn Belt) Approach to Nitrogen Rate Guidelines

State: Wisconsin – Irr. Sands Number of sites: 4 Rotation: Corn Following Corn Non-Responsive Sites Not Included

Nitrogen Price (\$/lb): 0.50 Corn Price (\$/bu): 5.00 Price Ratio: 0.10

MRTN Rate (lb N/acre):	195
Profitable N Rate Range (lb N/acre):	186 - 203
Net Return to N at MRTN Rate (\$/acre):	\$445.10
Percent of Maximum Yield at MRTN Rate:	99%
Anhydrous Ammonia (82% N) at MRTN Rate (lb product/acre):	238
Anhydrous Ammonia (82% N) Cost at MRTN Rate (\$/acre):	\$97.50
Most profitable N rate is at the maximum return	to N (MRTN)

Profitable N rate range provides economic return within \$1/acre of the MRTN.

RELIABILITY OF REDUCTION PRACTICES

 \sum

Table 2. Nitrogen reduction practices – potential impact on nitrate-N reduction and corn yield based on literature review.

	Practice	Comments	% Nitrate-N Reduction ⁺	% Corn Yield Change++	
			Average (SD*)	Average (SD*)	
	Timing	Moving from Fall to Spring Pre-plant Application	6 (25)	4 (16)	
		Spring pre-plant/sidedress 40-60 split Compared to Fall Applied	5(28)		
		Sidedress - Compared to Pre-plant Application	Pre-plant 7 (37)		
ent		Sidedress – Soil Test Based Compared to Pre-plant	4 (20)	13 (22)	
Nitrogen Management	Source	Liquid Swine Manure Compared to Spring Applied Fertilizer	4 (11)	0 (13)	
		Poultry Manure Compared to Spring Applied Fertilizer	-3 (20)	-2 (14)	
	Nitrogen Application Rate	Reduce to Maximum Return to Nitrogen value 149 kg N/ha (133 lb N/ac) for CS and 213 kg N/ha (190 lb N/ac) for CC	10‡	-1‡‡	
	Nitrification Inhibitor	Nitrapyrin – Fall - Compared to Fall- Applied without Nitrapyrin	<mark>9 (</mark> 19)	6 (22)	
	Cover Crops	Rye	31 (29)	-6 (7)	
		Oat	28 (2)**	-5 (1)	

Geographic Areas / Subwatershed Selection Process Part 1 - Preliminary Pilot Study Area Candidate List

2007-2011 Public Water System Nitrate Data Non-Community Wells

Map	Syst > 5 per	Subwatershed Name	County	Acres
1	20/37_54%	Badger Mill Creek	Dane	21,661
2	19/63_30%	Westfield Creek	Adams-Marquette	31,250
3	17/62_27%	Hulburt Creek-Wisconsin River	Jun-Sauk-Adms-Colum	18,485
4	16/32_50%	City of Beloit-Lower Rock River	Rock	30,612
5	15/76_20%	Lake Chetek	Barron	38,607
6	15/89_17%	Headwaters Bark River	Washington_Waukesh	29,718
7	14/100_14	Egg Harbor-Frontal Green Bay	Door	16,929
8	13/21_62%	Token Creek	Dane	16,032
9	13/35_37%	Bass Lake-Willow River	Saint Croix	32,887
10	13/61_21%	Nepco Lake	Wood-Portage	22,946
11	12/18_67%	South Fork of Paint Creek-Paint Cre	Chippewa-Eau Claire	24,829
12	10/17_59%	Lower Duncan Creek	Chippewa	22,417
13	10/23_43%	Town of Newville-Rock River	Rock	8,326
14	10/31_32%	City of Janesville-Rock River	Rock	26,038
15	9/10_90%	Saunders Creek	Dane-Rock	27,321
16	9/11_82%	Buena Vista Creek	Portage	34,423
17	9/17_53%	Spring Brook-Turtle Creek	Rock	18,429
18	9/17_53%	Lake Onalaska-Mississippi River	La Crosse	33,629
19	9/18_50%	Lake Wissota	Chippewa	15,014
20	9/19_47%	Lilly Bay Creek	Door	25,104
21	9/24_38%	Cruson Slough-Wisconsin River	Sauk-Richland-lowa	34,359
22	9/28_32%	Scuppernong Creek	Waukesha	12,938
23	9/63_14%	Plum Creek-Big St. Germain Lake	Vilas	30,944
24	9/134_7%	Lake Delton-Dell Creek	Sauk	21,551
25	8/13_62%	City of Stoughton-Yahara River	Dane	16,037
26	8/15_53%	Bear Creek-Waupaca River	Portage	33,926
27	8/32_25%	Cherokee Lake-Yahara River	Dane	18,244
28	8/36_22%	Puckaway Lake-Fox River	Green Lake-Marquette	36,072
29	8/49_16%	Island Lake-Manitowish River	Vilas	14,820
30	8/52_15%	Crystal River	Waupaca - Portage	21,749
31	7/8_88%	Swan Lake-Fox River	Columbia	20,852
32	7/12_58%	Trout Lake-Turtle Creek	Walworth-Rock	19,444
33	7/13_54%	Elmwood Cemetary-Spring Brook	Langlade-Marathon	18,656
34	7/17_41%	Non-Contributing-Tenmile Creek	Waushara-Portage	54,565
35	7/19_37%	South Branch Pemebonwon River	Marinette	22,484
36	7/20_35%	Trout Brook-Lake Saint Croix	St Croix-Pierce	33,404
37	7/28_25%	Lake Kegonsa-Yahara River	Dane	18,406
38	7/28_25%	Holcolmbe Flowage-Chippewa Rive	Chippewa - Rusk	31,294
39	7/32_22%	Lac La Belle-Oconomowoc River	Waukesha-Jefferson	12,015
40	7/32_22%	Lake Koshkonong-Rock River	Jefferson-Rock-Dane	39,524

Top 40 Subwatersheds As Geographic Areas of Concern Using PWS Nitrate as Ground Water Impact Indication Criteria: 7 or more NN or TN systems per HUC12 With NO₃-N ≥ 5 mg/L "Approaching Unsafe DW Levels"

Subwatershed Pilot Candidates

Groundwater Impacts

Public Water Systems Reporting Nitrate Levels >=5 mg/L

- Non-Community Wells (2007-2011)
- Municipal System Wells (2006-2010)

Surface Water Impacts

Impaired Streams

___303D Listed (for P or TSS)

Point Sources

- WPDES Active Outfall
- Low P Limit System & Adaptive Mgmt Eligible

Potential Sensitive Receptors (partial list)

School or Daycare Location

Among Impacted Areas: Selection Criteria

Project Facilitating Factors - Existing Resources

Knowledge, Infrastructure, Tools, Partners -Examples:

- Previous studies & existing monitoring networks
- Existing GW flow models & well capture delineations
- Existing Non-Point Source BMP implementations
- Project Management capabilities unique to region
- Agricultural interests documenting nutrient efficient practices Costs for treatment / well replacement
- Large proportion of cultivated lands implementing NMPs Hydrogeologic factors that may promote project utility:
- Most representative susceptible settings for State
- Less complexity / Well behaved / Easier to model pathways
- GW Velocity / Shallow Flow / Fewer High Cap Wells

Towards a Solution - Supporting Analysis and Tool Development: Needs and Objectives

Local & Regional Condition Assessment

Goal:Develop metrics for ambient GW NO3 Goal:Robust techniques to guantify GW guality changes Goal:Integrate disparate GW quality indicator data:

- Spatial/ temporally distributed and episodic well data sets
- Municipal wells treating or blending
- Per capita costs
- Populations exposed to elevated levels
- Surface water impacts from baseflow N concentrations

- Well depth progression

Predicting GW Concentrations and Costs

Goal: Create tools to manage and reduce N impacts Goal: Adaptable to changing crop and land use patterns Goal: Develop comprehensive economic decision tools Supporting Data and Analysis:

- Nutrient loading data (Organic / Chemical / Land Spread)
- Spatial and temporal distribution of N loading
- Water inputs (e.g. regional precipitation data, irrigation)
- Percolation and Nitrate Leaching Index tool development
- Quantify influence of soils, surficial deposits and bedrock
- Agronomic productivity, profitability and efficiency index
- Critical GW NO3 factors for wisconsin (regression model)
- Define programmatic efforts required to sustain progress

WISCONSIN NITRATE PROJECT

\bigcirc

Phase 1

Statewide assessment for need and likely success

- Select site with volunteer landowners & wellhead contributing area
- Lay out demonstration and control fields in relation to groundwater flow
- Design & test methods to measure nutrient loading to groundwater
- Estimate & measure nitrate loading from current practices
- Document agricultural input costs and crop yields
- Set efficiency & groundwater quality goals for the demonstration fields
- Design practices to achieve nitrogen efficiency goal

TRENDING MUNICIPAL WELLS

Compliance Sample Data

TRENDING MUNICIPAL WELLS

Compliance Sample Date

NES/10108H

SWS WOLDSNOLE

読みのなま

SN03E

"CARLITO'S" (SHALLOW ********** SAND POINT WELL-ESTIMATED 40-60FT DEEP)

ALE SESECTORING SWSWOSDENDLE SESWOSDENDLE SWSEDSORNOLE

SWINNESCENDIE

E OS GRADUE

MAYNEDEDENOJE

STPRAIRU HOUSE MOTEL 04/22/200

NE SALESSALE

7.46 WINDING RIVER COFFEE CO 02/21/20060 12 ARTHURS 07/02/2007 211 RITE WAY OF SPRING GREEN LLC 04/09/2008

> MUNICIPAL WELL (TD = 125 FT)

ESW 1008NO3E NW SE 120 SNO3E NE SE 120 SNO3E

STRING GREEN WATLE ORK S 03/02/2011

W SW0808N04E YE SW080 SW04E NW SE 080 8 4 04

DRK S 03/02/2011

ENDOLONIA E SESTICIOENDE SUBEDALIANE SA

505 F050 850 4F

NW SE 050 BND 4E

MINESSOSNO4E

ESENEDS

1

NE SEOSOBNO4

SES E0508 NO 45

NENECEOSNO4

CALCULATING THE N LOSS GOALS

First step is to determine areas contributing recharge to wells of concern.

-

CALCULATING THE N LOSS GOALS

- Measure or estimate sources of nitrate, especially "recently recharged water"
- Determine expected water quality at well, accounting for dilution with clean water: Concentration at well = Total Mass of Nitrate / Pumping Rate
- Work out equitable reductions for the distribution of nitrate sources within wellhead protection area

MONITORING CONSIDERATIONS

MONITORING CONSIDERATIONS

- Adapted from remediation industry

- Transect represents a "control plane"

- Mass flux is summed to calculate mass discharge at the control plane (edge-offield)

PILOT PROJECT STEPS

Develop N loss goal to meet SDWA standard at specific public wells
 Design nutrient management system to achieve N loss
 Measure actual groundwater, crop yield, and cost effects
 Adapt as needed to achieve groundwater, crop yield and cost goals
 Make the method practical for use at unmonitored sites

Wells near Rte 60 - Spring Green

Chloride example - serving as a fortuitous groundwater tracer

(Masarik -UW-SP)

Phase 2

- Implement crop and nitrogen management systems designed to meet nitrate goal
- Monitor nitrate in groundwater
- Document agricultural input costs and yield
- Document cost of drinking water supply compliance alternatives
- Make groundwater modeling, practice design & economic analysis tools practical & accessible
- Adapt crop and nitrogen management systems

BARRIERS & BRIGHT SPOTS

 \mathcal{D}

THANKS TO OUR COLLABORATORS

Sauk & Rock Counties

U.S. Environmental Protection Agency Region V

U.S. Geological Survey

Source Water Collaborative

Wisconsin Rural Water Association

Natural Resources Conservation Service

Wisconsin Water Association

Wisconsin Land and Water Conservation Association

Wisconsin Geologic and Natural History Survey

Wisconsin Department of Agriculture, Trade & Consumer Protection

Wisconsin Department of Health Services

University of Wisconsin - Madison and Stevens Point

PLEASE JOIN US.

QUESTIONS?

Brian Austin

Brian.austin@wisconsin.gov Mary Ellen Vollbrecht

Mary.vollbrecht@wisconsin.gov

Bureau of Drinking Water & Groundwater Wisconsin Department of Natural Resources