

Indian Creek Watershed Project

0

Livingston County Soil & Water Conservation District

Topics of Discussion

- Meet the team
- Indian Creek by the numbers
- Building the project
- Initiating farmer involvement
- Engaging farmers in a meaningful way
- Considerations for success

Introductions

Karen Scanlon

Executive Director, Conservation Technology Information Center (CTIC)

Chad Watts

Project Director, Conservation Technology Information Center (CTIC)

Introductions

Marcus Maier

Director, Livingston County Soil and Water Conservation District

Livingston County Soil & Water Conservation District

Introductions

Amy Walkenbach Watershed Management

Section Manager, Illinois Environmental Protection Agency

Trevor Sample

Environmental Protection Specialist, Illinois Environmental Protection Agency

Indian Creek by the numbers...

100% of farmers contacted 55% of producers enrolled in programs 41% of farmland currently enrolled in conservation programs (CSP) 150+ attended 2012 summer field tour 100+ winter meeting attendance 20+ac nutrient-use efficiency plots 14 Active sponsors showcasing products, technologies and equipment

INDIAN CREEK WATERSHED

Livingston County, Illinois

INDIAN CREEK WATERSHED

Vermilion River Watershed Illinois River

INDIAN CREEK WATERSHED

- 51,243 acres (80 sq mi) drainage area
- Primarily cropland
- I04 farms
- Part of Vermilion River Watershed that flows to Illinois River
 - Aquatic life use and public water supply impairments
 - MRBI target watershed

Indian Creek Watershed

Indian Creek Watershed

Indian Creek Project – 319 Grant

CTIC

3 9

Efforts

- Partners:
 - CTIC
 - Illinois EPA
 - Livingston County SWCD
 - Illinois NRCS
 - Industry Partners / Sponsors

Livingston County Soil & Water Conservation District

 Determine water quality impacts that result when 50% of farms and acres in watershed adopt conservation systems

Livingston County Soil & Water Conservation District

Indian Creek Project - MRBI

- Partners:
 - Livingston County SWCD
 - Illinois NRCS
 - CTIC
 - Illinois EPA

SWCD MRBI Efforts

- Goals:
 - Improve water quality throughout watershed
 - Decrease soil erosion and sediment
 - Maintain and enhance wildlife
 - Maintain small- to medium-size farming operations

MRBI Funding

SWCD MRBI Efforts Financial Assistance

Technical <u>Assista</u>nce

- Funding targeted to Indian Creek
 - Environmental Quality Incentives
 Program (EQIP)
 - \$50,000 Annually
 - Conservation Stewardship Program (CSP)
 - \$200,000 Years I and 2
 - \$100,000 Years 3 and 4
 - \$50,000 Year 5

Indian Creek CSP Coverage

Livingston County CSP

Water Quality Monitoring

- USGS stream gage installed July 2011 at watershed outflow to collect
 - Stage levels
 - Discharge
- Continuous nitrate+nitrite sensor installed Sept. 2011

Water Quality Monitoring

- 5 sites sample schedule
- May-June weekly grab samples analyzed for nitrate-nitrite
- Monthly samples for Total P and Total Suspended Solids
- July-Feb monthly grab samples for Total P, Total Suspended Solids, nitrate-nitrite
- Quanta probe measures pH, conductivity, dissolved oxygen and temperature

INDIAN CREEK WATERSHED

Date: 12/1/2009

District: LIVINGSTON COUNTY SOIL & WATER CONSERVATION DISTRICT

Field Office: PONTIAC SERVICE CENTER Agency: USDA/NRCS Assisted By: Gregory S Hinthorn State and County: IL, LIVINGSTON

Steering Committee

- Participants
 Identified
 - Past cooperator
 - Interest in conservation
 - Various walks of life
- Personal Invitations
- Seek and act on their input
- Keep members engaged

Demonstrations and NUEs

- 2011 Demonstrations 3
- 2012 Demonstrations 7
- 2013 Demonstrations 13
 - Nitrogen use
 - Spring vs. fall vs. split applications
 - Use of denitrification inhibitors
 - Instinct and N-serve

- Rate, formulation and placement differences between fertilizer applications
- Cover Crops
- Controlled Drainage

Demonstration Locations

Indian Creek Demonstrations and NUE Plots

Demonstrations

- Most demonstrations consisted of 20 + acre blocks where different trials were compared
 - Different conservation technologies, nutrient application methods, nutrient formulations or application timings evaluated
 - Results were calculated for each trial plot and are annually summarized

Nutrient Use Efficiency (NUE) Plots

- Calculating a "mass balance" for nutrient usage
- Smaller, replicated plots with varying rates of Nitrogen applied
 - N rates between 0 and 240 pounds per acre were evaluated and compared
 - Maximum Economic Rate for Nitrogen (MERN) calculated for each plot.
 - A measure of the maximum return on investment of applied nitrogen

MERN Calculation

IPNI PLANT NUTRITION	Crop Nutri	ent Res	sponse	Tool (CNRT) v4	.1	R ² -weighted Mean	Quadratic (Q)	Quadratic- Plateau (QP)	Mitscherlich (M)	Linear- Plateau (LP)	Spherica (SP)
ep 1: Enter rate and yield o	lata.				A:		153	152	244	153	152
ep 2: Click the Fit button.		Fertilizer	Crop Yield,	Fit	B:	-	0.73	0.77	-93	0.56	81
ep 3: Adjust crop and fertil	zer prices.	rate, Ib/A			C	-	-0.0016	-0.0018	-0.010	232	185
ep 4: Click to append infor		0			R ²		99%	99%	99%	98%	99%
Site Det		80		MERN	I (Ib/A):	176	189	180	203	140	168
	Harms Spring ESN	120		Yield @ MERN		232	233	232	233	232	232
Year	2011	160	231	Partial Factor Productivity		1.24	1.23	1.29	1.15	1.66	1.38
Town	1	200	227	Agronomic Efficience		0.45	0.43	0.44	0.40	0.56	0.47
County		240		Partial N Balance		92%	86%	90%	80%	116%	97%
State or province				Recovery Efficiency	the second se	47%	44%	46%	42%	59%	49%
Latitude			1	Delta Yield		79	80	80	81	79	79
Longitude	1			Relative Yie		66%	66%	65%	65%	66%	66%
Altitude				(
Soil texture class				300							
Preceding crop											
Expected Yield (bu/A)											
Timing and placement	-										
Timing and placement Tillage				250 -							
				250 -			_	_	-		
Tillage				250 -			_	-	11	-	
Tillage Site degree-days						_			1	-	
Tillage Site degree-days Crop species				200 -		_		-11	1	-	
Tillage Site degree-days Crop species Cultivar				200 -					1	-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm)				200 -					1	-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A)				200 -		_			1	-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date	6.00			200 -		_			1	-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date	6.00 0.70			200 -	0	_			1	-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date Crop (\$/bu)				200 - 150 -					1	-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date Crop (\$/bu) Fertillzer (\$/lb) Price ratio (tic) Crop N content (Ib/bu)	0.70 0.117 0.70			200 -					1	-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date Crop (\$/bu) Fertillzer (\$/lb) Price ratio (tic)	0.70			200 - 150 -						-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date Crop (\$/bu) Fertillzer (\$/lb) Price ratio (tic) Crop N content (Ib/bu)	0.70 0.117 0.70			200 - Xield (priva) 150 -						-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date Crop (S/bu) Fertilizer (S/b) Price ratio (t/c) Crop N content (Ib/bu) N harvest index	0.70 0.117 0.70			200 - 150 -						-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date Crop (\$/bu) Fertillzer (\$/lb) Price ratio (tic) Crop N content (Ib/bu) N harvest index	0.70 0.117 0.70			200 - Xield (priva) 150 -						-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date Crop (\$/bu) Fertillzer (\$/lb) Price ratio (tic) Crop N content (Ib/bu) N harvest index	0.70 0.117 0.70			200 - Xield (priva) 150 -						-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date Crop (\$/bu) Fertillzer (\$/lb) Price ratio (tic) Crop N content (Ib/bu) N harvest index	0.70 0.117 0.70			200 - Aleid (bulk) 150 - 50 -						-	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date Crop (S/bu) Fertilizer (S/Ib) Price ratio (tic) Crop N content (Ib/bu) N harvest index Fertilizer source	0.70 0.117 0.70 0.57			200 - (V/nq) 150 100 - 50 - 0						-*	
Tillage Site degree-days Crop species Cultivar PSNT (ppm) Manure N (Ib/A) Planting date Harvest date Crop (S/bu) Fertilizer (S/b) Price ratio (t/c) Crop N content (Ib/bu) N harvest index	0.70 0.117 0.70 0.57			200 - Aleid (bulk) 150 - 50 -	50	1	00	150	200	250	30

4R Principles of Nutrient Management

- Right Fertilizer <u>Source</u> at the
- Right <u>Rate</u>, at the
- Right <u>Time</u>, and in the
- Right <u>Place</u>

Right Source

- Fertilizer source can make a significant difference in yield.
 - 2011 results showed a 7 bushel yield response to MicroEssentials® (MESZ - from the Mosaic Company)as a phosphorous source over DAP (18-46-0) fertilizer applied in the same manner
- Nitrogen technologies and forumulations impact nitrogen breakdown and increase profits due to nutrient use efficiencies

Right Rate

- Technologies that slow the breakdown of N fertilizers to nitrate showed promise for N use efficiency
- Later season application of N increases planning flexibility and maximizes efficiency
- Variable rate technologies (VRT) allow fertilizer savings and greater nutrient use efficiencies
 - Automatically applies higher fertilizer rates to high production areas and decreases rates in areas of lower production

Right Rate

- In a drought year, water is a greater limiting factor than nitrogen rate and availability
- Pre-sidedress Nitrate Testing (PSNT) can guide late season Nitrogen application rates
 - Producer adaptively manage according to available nitrogen in the soil
- The Illinois Soil Nitrogen Test (ISNT) evaluates nitrogen mineralization across a field to guide variable rate application technology (VRT)
 - Soil mineralization is responsible for the majority of N taken up by corn

Nitrogen Rate

NUE Trial B1 Varying Nitrogen Rate from ISNT Based Nitrogen Recomendation

 Illinois Soil Nitrate Testing (ISNT) and variable rate technology (VRT) influence site-specific nutrient applications

Cooperator: Monahan

4R: Soil Testing, ISNT, Placement, Rate

Product: ISNT

Company: Cropsmith

Right Time

- Splitting application between fall and spring showed promise for yield and efficiency gains
- Cover crops can increase soil nitrogen availability at the right time and increase crop yields
 - When properly planned, N credits can reduce inputs

2012 Cover Crop Plot

Corn yield across all N rates (bu/ac)

Right Place

- Satellite guidance systems (RTK) allow precision placement of nutrients for maximum use efficiency
 - Important in strip-till systems to place fertilizer within pre-tilled locations to maximize crop uptake
- Placement of fertilizer (surface banded vs. incorporated) can protect fertilizer loss from surface runoff

Personal Contacts

- One-on-one visits with all 104 producers
 - Discuss conservation systems
 - Offer financial assistance
- Conduct perception survey
 - Water quality, pollutants and attitudes

Winter Meetings

- Promote to watershed and beyond
- Attendance
 - 100+ per meeting
- Timely topics including:
 - Soil health / Cover crops
 - Financial assistance programs
 - Producer panel discussions
- Outcomes
 - Increased awareness

Summer Field Tour

I 50+ attendees
 July 2012

Indian (WATERSHED PI	Creek
Sponso	rs
TIER ONE Agrium Advanced Technologies The Fertilizer Institute GROWMARK Illinois Soybean Association Koch Agronomic Services Monsanto The Mosaic Company New Leader	TIER TWO Agri Drain Case IH Illinois Corn Marketing Board John Deere TIER THREE Cropsmith
Syngenta We also thank Illinois Fertilize Crop Production Services, Thank	Branut and return

Highlight
 Demonstrations
 and conservation
 innovation in the
 watershed

2013 Conservation In Action Tour

- July 9-10, 2013
- 250+ attendees
- Tour stops
 - Soil Health
 - Nutrient
 Management
 - Drainage Water
 Management

Considerations for Success

- Good things don't just happen overnight
 - Must be patient
- Strong local champion
- Give producers a real voice
 - ... and listen to that voice!
- Leveraging partnerships and resources
 - You don't have to bring everything to the table for the project to be successful

More Considerations

- Be inclusive
- Be up-front with your motives
 - No hidden agendas
- Recognize people's desire to protect things in their own back yards
- Respect and engage the community

Community

 The more "community" you create around your watershed effort, the more local buy-in, more impact, more success

Any Questions?