

Involving the Growers

State Level Nutrient Reduction Strategies Workshop Columbus, Ohio June 14, 2011

> Tracy Blackmer Director of Research Iowa Soybean Association

Iowa Soybean Association

Grower commodity organization

21 farmer elected farmer directors

Checkoff funded

Policy organization

What is the Iowa Soybean Association?

The lowa Soybean Association (ISA) develops policies and programs that help farmers expand profit opportunities while promoting environmentally sensitive production using the soybean checkoff and other resources. The Association is governed by an elected board of 21 volunteer farmers and serves about 6,000 members throughout the state.

ISA was organized in 1964 by a group of lowa farmers who came together with a common goal – to increase the profitability of soybean production in the state. At that time, the U.S. grew 701 million bushels of soybeans at a price of \$2.62 per bushel. In 2004, the U.S. grew 3,141 million bushels of soybeans at a price of \$5.65 per bushel. Iowa is always a top soybean-producing state, and in 2004 it grew 497 million bushels of the total U.S. crop.

Who runs ISA?

ISA is governed by a board of volunteer farmer-directors elected by the state membership. Two directors are elected from each crop reporting district, with the exception of District 8, which has one director. Members also vote for four at-large directors. The 21 directors meet throughout the year to develop policies and programs. Click here to see the current lowa Soybean Association Board of Directors.

LEGISLATION

POLICY

PULICI

🖸 SHARE 🛛 🖪 💺 🖂

lowa also has six farmers who serve as national directors on the American Soybean Association's board of directors, four who serve on the United Soybean Board and one farmer representative who serves on the National Biodiesel Board. Click here for a list of the Iowa farmers who serve on the national boards.

www.iasoybeans.com

On-Farm Network

Objective

To organize growers to use precision ag technologies to collect meaningful data to improve grower profitability.

More Information

More information.

www.agtechonfarm.net

On-Farm EDF

Back Home

How can I participate?

Adaptive Management

Management is a process

Determine if plan can be improved

Performance

Did this plan work?

Do you know if you are within 50 lb N/a?

Can you look at a field and know if you are within 5 bu/a of optimal for N?

ISU Nitrogen Recs

Current N Recs

Fertilizer savings is one component
Protecting/increasing yield is another.
Optimizing N usage is generally more profitable

Corn Nitrogen Rate Calculator

Finding the Maximum Return To N and Most Profitable N Rate A Regional (Corn Belt) Approach to Nitrogen Rate Guidelines

State: Iowa Number of sites: 188 Rotation: Corn Following Soybean Non-Responsive Sites Included

Nitrogen Price (\$/lb): 0.40 Corn Price (\$/bu): 5.44 Price Ratio: 0.07

136	MRTN Rate (lb N/acre):				
124 - 149	Profitable N Rate Range (lb N/acre):				
\$232.35	Net Return to N at MRTN Rate (\$/acre):				
99%	Percent of Maximum Yield at MRTN Rate:				
166	Anhydrous Ammonia (82% N) at MRTN Rate (lb product/acre):				
\$54.40	Anhydrous Ammonia (82% N) Cost at MRTN Rate (\$/acre):				
Meet profitable N rate is at the maximum rature to N (MDT)					

Most profitable N rate is at the maximum return to N (MRIN). Profitable N rate range provides economic return within \$1/acre of the MRTN.

Current N Recs

Correct N rate

Right rate between0 and over 200 lbs N.

Improve the oddsNot yield related

Current N Recs Indiana

Correct N rate 202 lbs N/a

Right rate between
100 and over 250 lbs
N/a.

Current N Recs – IL-Central

Correct N rate 168 lbs N/a

•Right rate between 0 and 250 lbs N/a.

Current N Recs - Ohio

Correct N rate 174 lbs N/a

Right rate between0 and over 250 lbs N.

Evaluation

The 4 test strips show a difference.

Yield data confirmed higher rate more profitable.

Impact

The success in changing grower behavior with the ISA On-Farm Network's approach has been quantified by (Padgitt and Lasley, 2004) with an 84% change in Iowa grower behavior with an average rate reduction of 32.2 lbs N/a.

Evaluation

Guided stalk nitrate sampling

Imagery

Soil map units

End of the season stalk nitrate test

Cross Checks

Using multiple tools is important

Credibility is strengthened with more than one evaluation tool

Nitrate Conc		Interpretation		
	(ppm)			
1.	1	Deficient		
2.	587	Marginal		
3.	1255	Optimal		
4.	2629	Excess		

Spatial Variability

Fields are variable

Accounting for this variation is important.

Example

Deficient Field

Stalk test results are low

Variability in image color

Example

Excess Field

Stalk test results are all in "Excess"

Little variability in image color

Can be Targeted

- Data from same local area
- Comparison amongst peers
- Allows contrasts across actual management practices

Pooling the Data

Two-way learning

Developing plans for evaluations

Sharing results and information

Jefferson Group

Trends in Jefferson area

Trends in Stalk Nitrate Concentrations – Fields "Optimal"

Trends in Jefferson area

Trends in Stalk Nitrate Concentrations – Fields "Excess"

Adaptive Management

Management is a process.

Determine if plan can be improved

Other Outcomes

Uneven application

Other Outcomes

Variable rate application

lowa

2006

2007

2008

Network

Quantifying the Differences

www.agtechonfarm.net

Quantifying the Differences

Table 2. Effects of explanatory variables on the cumulative probability of corn stalk samples to test in a higher stalk test nitrate category as observed in the guided corn stalk nitrate survey of 683 fields across Iowa in 2006 and of 824 fields in 2007.

		2006		20	2007	
			95%		95%	
	Management	Confidence			Confidence	
Factor	category [†]	Odds ratio‡	interval	Odds ratio	interval	
N form§	AA Fall	0.84**	0.71-0.99	0.60***	0.50-0.72	
J. J	UAN SD	0.54***	0.42-0.68	0.54***	0.48-0.67	
	UAN Spring	0.53***	0.43-0.65	0.58**	0.48-0.71	
	LSM Fall	0.72***	0.68-0.87	0.28***	0.22-0.35	
	AA Spring					
AA Fall vs LSM Fall		1.17*	1.00-1.38	2.17***	1.72-2.83	
UAN SD vs UAN Spring		1.01	0.78-1.32	0.93	0.74-1.15	
Previous crop	Soybean <u>Corn</u>	1.15	0.96-1.37	0.72***	0.62-0.83	
Soil drainage	Well	1.32**	1.10-1.59	1.62**	1.34-1.45	
Y ork.	Agron. J	. 102:858- isafarmn	867. (201) et.com	0).		

ovbean

Partners

Varies with every group **Environmental Defense Fund** SWCD Ag retailers State Department of Ag Extension NRCS Commodity groups **Foundations** Corporations SWCS

Resources Needed

Financial Technical Political Coordination Integration Educational Patience/endurance

Conflicts

Sales/support Plans vs. outcomes Profit vs. performance Data vs. intuition Participatory vs. authoritative Educational Patience/endurance Structured vs. flexible

Questions?

Contact:

Tracy Blackmer tblackmer@iasoybeans.com

