Use of Surface-Supplied Gas for Scientific Diving

AAUS October 2011 Meetings
Portland, ME
Alan Humphrey, U.S. EPA/ERT
Scott Grossman, Lockheed Martin SERAS
Jon McBurney, Lockheed Martin SERAS
Sean Sheldrake, U.S. EPA Region 10
Environmental Response Team (ERT)
Lockheed Martin SERAS

- ERT Established in 1978
- 41 Experienced Responders
- About 75 Dedicated Lockheed Martin Contractors
- Focus: “Classic Environmental” Emergencies
 - Sampling/monitoring
 - Hazard Evaluation
 - Risk Assessment/Safety
 - Characterization
 - Decon/Disposal

2-chloro-6-fluorophenol
ERT Dive Support

- Contaminated and Clean Water Dive Operations
- ERT’s Divers Support a Variety of Agency Needs
 - Benthic Habitat Assessments/Coral Research
 - Survey of Ocean Dredge Disposal Sites
 - Environmental Criminal Investigations
 - Sunken Drums
 - Multimedia Aquatic Sampling
 - SUPERFUND Assessments
 - Biological Assessments
What is Surface-Supplied Diving?

- Surface-Supplied Air to Diver via Umbilical
 - Virtually Unlimited Air Supply
 - Tanks or Compressors
- Diver Carried Air tanks for Emergency Gas Supply (EGS) Only
- Three Part Umbilical
 - Breathing Gas Hose
 - Pneumofathometer (pneumo) Hose
 - Communication line (comm line)/Strength Member
- Surface Control Box/Station
- Dive Controlled By Surface as Opposed to Diver
Equipment

- **AIR SUPPLY**
 - SCUBA Tanks
 - Air Bank
 - Large Banks – slower air usage
 - Safer and less tank switching
 - Compressor
 - High Volume; Low Pressure
 - Back up with Compressed Air
 - Air Testing/Compressor Maintenance
 - Air or Nitrox* May be Used for a Breathing Gas

*As approved by equipment manufacturer
Equipment

• Dive Umbilicals
 • Sinking or Floating
 • Smooth Polyurethane Spiral-Wound
 • Length Typically Ranges from 150 to 500 feet
 • Three Part Umbilical
 • Air Line (Typically 300 psi and 3/8 inch ID)
 • Pneumofathometer (pneumo) Hose
 • Communication line (comm line)/Strength Member
Equipment

• Emergency Gas Supply (EGS)
 • SCUBA Tank (Bail-Out Bottle) Worn by Diver
 • Size May Range from 6 to 80 Cubic Feet
 • Size Dependant Upon Dive Profile and Dive Environment
 • Attached to Manifold Block
 • Pressure Checked and Open at Start of Dive
 • Visible Tank Pressure Gauge
 • Over Pressure Relief Valve on First-Stage Regulator
 • Prevents hose failure if First Stage Reg. Fails
 • Accumulation Bottle
 • Small Bottle Used with Light Weight (1/4”) Umbilicals
Equipment

- **Manifold Block**
 - Must Always be Accessible to Diver
 - Helmet or Harness Mounted
 - Multiple Ports
 - *Surface-Supplied Air*
 - *Non-return Valve or One-way Valve*
 - Tested Prior to Every Dive
 - **EGS**
 - EGS Valve MUST be Closed Until Needed
 - **Dry Suit Inflator Hose**
 - **Auxiliary Low Pressure Ports**
Equipment

• Harness

 • Must Always Be Worn for Surface-Supplied Dive Operations

 • Attachment Point for:
 • Comm. Line/Strength Member
 • EGS/Bail-out Bottle
 • Possibly Manifold Block

 • Allows Diver Be Safely Pulled
to Point of Entry in an Emergency

 • No Strain on Vital Gas or
 Communication Links
Equipment

• Helmet or Full Face Mask
 • Required for Communications During Surface-Supplied Air Dives
 • Helmet
 • Head Protection
 • Potentially Better Protection from Contaminates when Mated to Dry Suit
 • Potentially Increased Air Consumption Rates
 • Full Face Mask
 • Less Cumbersome
 • Diver Remains more Mobile
Equipment

- **Surface Control Box**
 - Dive is Controlled On Surface
 Not By Diver
 - Box Operator Monitors and Controls:
 - Duration/Timing of Dive
 - Diver Depth
 - Air Supply to Diver
 - Communication with Diver

![Diagram of Surface Control Box with labeled components:](image)
Dive Team

- Minimum 4 Person Dive Team
 - Multiple Dives/Deeper Dives Require Additional Team Members
 - Two Divers in Water = 6 Person Team
 - Each Diver in Water Needs a Dedicated Tender
- Dive Team Roles:
 - Diver
 - Stand-by Diver
 - Tender
 - Control Box Operator
 - Divemaster/Dive Supervisor
 - May also act as Control Box Operator or Tender
 - Must be on Surface – Not in Water While Overseeing Operations
Dive Team Responsibilities

• Diver
 • Diver Must Assure All Gear is Present and in Working Order Prior to the Dive
 • Understanding and Implementing Dive Plan
 • Performing In-Water Work
 • Remain Focused on Completing Tasks is NOT Burdened with Monitoring Depth, Bottom Time and Air Pressures
 • Be in Communication with Box Operator
Dive Team Responsibilities

- **Stand-by Diver**
 - MUST Be Ready to Enter Water PROMPTLY in Case of Emergency
 - Typically the Next Diver in the Rotation
Dive Team Responsibilities

- Tender
 - Assist Diver Continuously (Preparation, During Dive, After Dive)
 - Maintain Control of Dive Umbilical
 - Move Freely, But Not Present Entanglement Hazard
 - Tracking Divers Location in Water at ALL Times
 - Watching For Vessel or Other Hazards Enter Dive Area
 - Must Be Trained to Perform Function
Dive Team Responsibilities

- Control Box Operator
 - Dedicated Person Who is Responsible For:
 - Maintaining Sufficient Breathing Gas Delivery to Diver
 - Track Divers Profile (Depth and Bottom Time)
 - Ensure Diver Does Not Exceed Depth or Time Limits
 - Communications With Diver, Tender and Divemaster/Dive Supervisor
Dive Team Responsibilities

• **Divemaster/Dive Supervisor**
 • Overall Person Responsible For Daily Dive Operations
 • May Also Fill Role of Surface Control Box Operator or Tender
 • If Diving, Must Designate Acting Divemaster/Dive Supervisor While In Water
 • Coordinating Between All Team Members While Implementing Dive Plan
Scientific Diving Operations

- Unit Specific SOPs or Consensus of Standards
 - EPA Diving Safety Manual
 - ERT/EPA Surface-Supplied Air SOPs
- Compliance with OSHA Regulations or Dive Program Requirements
- Dive Plan and Health and Safety Plan
- Check Lists/Pre-Dive Checks
- Suitable Work Area/Work Vessel
- Access To Water – Diver Entry/Egress
- Dive Team Rotation – Efficient and Safe Operations
Training and Experience

• All Team Members Must Be Trained and/or Have Suitable Experience Performing Roles on Dive Teams

• Initial and Annual Training with Equipment and Procedures

• Training Occurs In Controlled and Safe Environment NOT on the Job Site!

• Equipment Specific and Emergency Procedures

• Classroom and Hands On Training
Equipment Maintenance

- Daily, Weekly and Annual Equipment Maintenance
- Control Box Serviced on Annual Basis or as Recommended by Manufacturer
- Dive Umbilical Annual Pull and Pressure Test (1.5 x Working Pressure)
- Helmets and Full Face Masks
Modes of Diving

• SCUBA (Old Reliable)
 • Maximum Diver Mobility
 • Least Equipment and Training Intensive
 • Ideal for Shallow Dives Where Objectives Can Be Completed With Air In SCUBA Tank

• Tethered SCUBA (Some Significant Improvements Over SCUBA)
 • Some Additional Equipment and Training Costs
 • Always a Line From Surface to Diver
 • Improved Communication (Hardwired) – Surface Documentation of Diver Data
 • Direct Divers to Targets Using Umbilical and Communications
 • Hold Diver in Position in Strong Currents (SCUBA typically limited to < 1 knot)
 • Decreasing Diver Mobility (situational)

• Surface Supplied Air – All of Line-Tended and…..
Advantages of Using Surface Supplied Air

DIVER SAFETY - Virtually Unlimited Air to Diver

- Single Greatest Hazard to Diver is Running Out of Air - This Hazard is Greatly Reduced
- Extended Time If Needed for Decontamination

Diver is NOT Limited to Bottom Times Based On Air that can be Carried

- No Need to Interrupt Dive and Return to the Surface Just to Change Tanks
- Minimizes Unnecessary Bounce Dives and Risks Associated With Divers Entering and Exiting the Water
Advantages of Using Surface Supplied Air

• Diver Can Fully Concentrate on Completing Objectives
 • Bottom Time, Depth and Air Pressure Monitored on Surface
 • Can Be Monitored on Surface Even in Zero Visibility

• Some Tasks Can be Completed More Efficiently and Safely Using a Single Diver – Especially in Low/Zero Visibility Environments

• Diver Will Need to Carry Less Weight – No SCUBA Tanks Just Project Appropriately Sized EGS (routinely 13 to 29 Cubic Feet)
Disadvantages of Using Surface Supplied Air

- Additional Equipment
- Additional Training
- Larger Dive Team
 - Typically Four Person Dive Team
- Umbilical Drag or Limited Diver Range
 - Diver Range = Umbilical Length – Depth
 - Diver Range = 40’ = 150’ – 110’
 - With 150’ Umbilical in 110’ feet of water
Resources for Scientific Diving Using Surface Supplied Air

• U.S. EPA Dive Units
 • Environmental Response Team (ERT)
 • Alan Humphrey (Humphrey.Alan@epa.gov)
 • Scott Grossman (Scott.C.Grossman@lmco.com)
 • Region 10
 • Sean Sheldrake (Sheldrake.Sean@epa.gov)
 • www.epa.gov/region10/dive
• EPA Standard Operating Procedures