Use of Surface-Supplied Gas for Scientific Diving

SERAS

AAUS October 2011 Meetings Portland, ME Alan Humphrey, U.S. EPA/ERT Scott Grossman, Lockheed Martin SERAS Jon McBurney, Lockheed Martin SERAS Sean Sheldrake, U.S. EPA Region 10

Environmental Response Team (ERT) Lockheed Martin SERAS

- ERT Established in 1978 \mathbf{O}
- 41 Experienced Responders \bigcirc
- About 75 Dedicated Lockheed Martin Contractors
- Focus: "Classic Environmental" Emergencies Characterization Sampling/monitoring Hazard Evaluation Decon/Disposal

Risk Assessment/Safety

2-chloro-6-fluorophenol

ERT Dive Support

•Contaminated and Clean Water Dive Operations •ERT's Divers Support a Variety of Agency Needs •Benthic Habitat Assessments/Coral Research •Survey of Ocean Dredge Disposal Sites •Environmental Criminal Investigations •Sunken Drums Multimedia Aquatic Sampling •SUPERFUND Assessments Biological Assessments

What is Surface-Supplied Diving?

- Surface-Supplied Air to Diver via Umbilical
 - Virtually Unlimited Air Supply
 - Tanks or Compressors
- Diver Carried Air tanks for Emergency Gas Supply (EGS) Only
- Three Part Umbilical
 - Breathing Gas Hose
 - Pneumofathometer (pneumo) Hose
 - Communication line (comm line)/Strength Member
- Surface Control Box/Station
- Dive Controlled By Surface as Opposed to Diver

• AIR SUPPLY

- SCUBA Tanks
- Air Bank
 - Large Banks slower air usage
 - Safer and less tank switching
- Compressor
 - High Volume; Low Pressure
 - Back up with Compressed Air

*As approved by equipment manufacturer

- Air Testing/Compressor Maintenance
- Air or Nitrox* May be Used for a Breathing Gas

- Dive Umbilicals
 - Sinking or Floating
 - Smooth Polyurethane Spiral-Wound
 - Length Typically Ranges from 150 to 500 feet
 - Three Part Umbilical
 - Air Line (Typically 300 psi and 3/8 inch ID)
 - Pneumofathometer (pneumo) Hose
 - Communication line (comm line)/Strength Member

- Emergency Gas Supply (EGS)
 - SCUBA Tank (Bail-Out Bottle) Worn by Diver
 - Size May Range from 6 to 80 Cubic Feet
 - Size Dependant Upon Dive Profile and Dive Environment
 - Attached to Manifold Block
 - Pressure Checked and Open at Start of Dive
 - Visible Tank Pressure Gauge
 - Over Pressure Relief Valve on First-Stage Regulator
 - Prevents hose failure if First Stage Reg. Fails
 - Accumulation Bottle
 - Small Bottle Used with Light Weight (1/4") Umbilicals

- Manifold Block
 - Must Always be Accessible to Diver
 - Helmet or Harness Mounted
 - Multiple Ports
 - Surface-Supplied Air
 - Non-return Valve or
 - One-way Valve
 - Tested Prior to Every Dive
 - *EGS*
 - EGS Valve MUST be Closed Until Needed
 - Dry Suit Inflator Hose
 - Auxiliary Low Pressure Ports

• Harness

- Must Always Be Worn for Surface-Supplied Dive Operations
- Attachment Point for:
 - Comm. Line/Strength Member
 - EGS/Bail-out Bottle
 - Possibly Manifold Block
- Allows Diver Be Safely Pulled to Point of Entry in an Emergency
- No Strain on Vital Gas or Communication Links

- Helmet or Full Face Mask
 - Required for Communications During Surface-Supplied Air Dives
 - Helmet
 - Head Protection
 - Potentially Better Protection from Contaminates when Mated to Dry Suit
 - Potentially Increased Air Consumption Rates
 - Full Face Mask
 - Less Cumbersome
 - Diver Remains more Mobile

Surface Control Box

- Dive is Controlled On Surface Not By Diver
- Box Operator Monitors and Controls:
 - Duration/Timing of Dive
 - Diver Depth
 - Air Supply to Diver
 - Communication with Diver

Pneumo Gauges Compressor Inlet Umbilical Pressure Control Knob Tank Pressure Gauges

Hoses to Air Tanks

Dive Team

- Minimum 4 Person Dive Team
 - Multiple Dives/Deeper Dives Require Additional Team Members
 - Two Divers in Water = 6 Person Team
 - Each Diver in Water Needs a Dedicated Tender
 - Dive Team Roles:
 - <u>Diver</u>
 - <u>Stand-by Diver</u>
 - <u>Tender</u>
 - Control Box Operator
 - <u>Divemaster/Dive Supervisor</u>
 - May also act as Control Box Operator or Tender

• Must be on Surface – Not in Water While Overseeing Operations

• Diver

- Diver Must Assure All Gear is Present and in Working Order Prior to the Dive
- Understanding and Implementing Dive Plan
- Performing In-Water Work
 - Remain Focused on Completing Tasks is NOT Burdened with Monitoring Depth, Bottom Time and Air Pressures
- Be in Communication with Box Operator

- Stand-by Diver
 - MUST Be Ready to Enter Water PROMPTLY in Case of Emergency
 - Typically the Next Diver in the Rotation

• Tender

- Assist Diver Continuously (Preparation, During Dive, After Dive)
- Maintain Control of Dive Umbilical
 - Move Freely, But Not Present Entanglement Hazard
- Tracking Divers Location in Water at ALL Times
- Watching For Vessel or Other Hazards Enter Dive Area
- Must Be Trained to Perform Function

- Control Box Operator
 - Dedicated Person Who is Responsible For:
 - Maintaining Sufficient Breathing Gas Delivery to Diver
 - Track Divers Profile (Depth and Bottom Time)
 - Ensure Diver Does Not Exceed Depth or Time Limits
 - Communications With Diver, Tender and Divemaster/Dive Supervisor

- Divemaster/Dive Supervisor
 - Overall Person Responsible For Daily Dive Operations
 - May Also Fill Role of Surface Control Box Operator or Tender
 - If Diving, Must Designate Acting Divemaster/Dive Supervisor While In Water
 - Coordinating Between All Team Members While Implementing Dive Plan

Scientific Diving Operations

• Unit Specific SOPs or Consensus of Standards

- EPA Diving Safety Manual
- ERT/EPA Surface-Supplied Air SOPs
- Compliance with OSHA Regulations or Dive Program Requirements
- Dive Plan and Health and Safety Plan
- Check Lists/Pre-Dive Checks
- Suitable Work Area/Work Vessel
- Access To Water Diver Entry/Egress

• Dive Team Rotation – Efficient and Safe Operations

Training and Experience

- All Team Members Must Be Trained and/or Have Suitable Experience Performing Roles on Dive Teams
- Initial and Annual Training with Equipment and Procedures
- Training Occurs In Controlled and Safe Environment NOT on the Job Site!
- Equipment Specific and Emergency Procedures
- Classroom and Hands On Training

Equipment Maintenance

- Daily, Weekly and Annual Equipment Maintenance
- Control Box Serviced on Annual Basis or as Recommended by Manufacturer
- Dive Umbilical Annual Pull and Pressure Test (1.5 x Working Pressure)
- Helmets and Full Face Masks

Modes of Diving

- SCUBA (Old Reliable)
 - Maximum Diver Mobility
 - Least Equipment and Training Intensive

- Ideal for Shallow Dives Where Objectives Can Be Completed With Air In SCUBA Tank
- Tethered SCUBA (Some Significant Improvements Over SCUBA)
 - Some Additional Equipment and Training Costs
 - Always a Line From Surface to Diver
 - Improved Communication (Hardwired) Surface Documentation of Diver Data
 - Direct Divers to Targets Using Umbilical and Communications
 - Hold Diver in Position in Strong Currents (SCUBA typically limited to < 1 knot)
 - Decreasing Diver Mobility (situational)
- Surface Supplied Air All of Line-Tended and.....

Advantages of Using Surface Supplied Air

• DIVER SAFETY - Virtually Unlimited Air to Diver

- Single Greatest Hazard to Diver is Running Out of Air This Hazard is Greatly Reduced
- Extended Time If Needed for Decontamination
- Diver is NOT Limited to Bottom Times Based On Air that can be Carried
 - No Need to Interrupt Dive and Return to the Surface Just to Change Tanks
 - Minimizes Unnecessary Bounce Dives and Risks Associated With Divers Entering and Exiting the Water

Advantages of Using Surface Supplied Air

- Diver Can Fully Concentrate on Completing Objectives
 - Bottom Time, Depth and Air Pressure Monitored on Surface
 - Can Be Monitored on Surface Even in Zero Visibility
- Some Tasks Can be Completed More Efficiently and Safely Using a Single Diver – Especially in Low/Zero Visibility Environments
- Diver Will Need to Carry Less Weight No SCUBA Tanks Just Project Appropriately Sized EGS (routinely 13 to 29 Cubic Feet)

Disadvantages of Using Surface Supplied Air

- Additional Equipment
- Additional Training
- Larger Dive Team
 - Typically Four Person Dive Team
- Umbilical Drag or Limited Diver Range
 - Diver Range = Umbilical Length Depth
 - Diver Range = 40' = 150' 110'
 - With 150' Umbilical in 110' feet of water

Resources for Scientific Diving Using Surface Supplied Air

• U.S. EPA Dive Units

- Environmental Response Team (ERT)
 - Alan Humphrey (<u>Humphrey.Alan@epa.gov</u>)
 - Scott Grossman (Scott.C.Grossman@lmco.com)
- Region 10
 - Sean Sheldrake (Sheldrake.Sean@epa.gov)
 - www.epa.gov/region10/dive
- US EPA Diving Safety Manual
- EPA Standard Operating Procedures