US ERA ARCHIVE DOCUMENT

RSKSOP-175 Revision No.2 May 2004 Page 1 of 14 Felisa Hudson

STANDARD OPERATING PROCEDURE

Sample Preparation and Calculations for Dissolved Gas Analysis in Water Samples Using a GC Headspace Equilibration Technique

1. Disclaimer:

This standard operating procedure has been prepared for the use of the Ground Water and Ecosystems Restoration Division of the U.S. Environmental Protection Agency and may not be specifically applicable to the activities of other organizations. **THIS IS NOT AN OFFICIAL EPA APPROVED METHOD.** This document has not been through the Agency's peer review process or ORD clearance process.

2. <u>Purpose</u> (Scope and Application):

This method is applicable to the preparation of water samples for determination of dissolved gases. After quantitation of gas equilibrated into the prepared headspace, this method permits calculation of the concentration of the dissolved gas in the water before equilibration. Resulting concentrations are expressed as mg/L and μ g/L of dissolved gas in water. This method has been used for determining dissolved hydrogen, methane, ethylene, ethane, propane, butane, acetylene, nitrogen, nitrous oxide and oxygen. The number of analyses that can be performed in an eight hour day depends upon the method used to determine the target analyte, 40-60 samples may be analyzed for methane, ethylene, and ethane in eight hours.

This method is restricted to use by or under the supervision of analysts experienced in sample preparation, the use of gas chromatography and the interpretation of chromatograms. Knowledge of Microsoft Excel spreadsheet data entry and macro programming is also a prerequisite to processing quantitation files.

3. <u>Method Summary:</u>

A water sample is collected in the field or in the laboratory without headspace, in a serum bottle and capped using a Teflon faced septum and a crimp cap of the appropriate size to fit the bottle. A headspace is prepared in the lab by displacing 10% of the water with high purity helium. The bottle is shaken for five minutes and a headspace sample is injected onto a gas chromatographic column where the gaseous components are separated and detected by a thermal conductivity detector, a flame ionization detector or an electron capture detector. The concentration of dissolved gas in the original water sample is determined by using the Henry's law constant, the concentrations of the gas in the headspace, the bottle volume, and temperature of the sample.

Excel macros and Excel worksheets are provided to aid in the calculations.

4. Reagents:

N/A

5. Equipment/Apparatus:

serum bottles
butyl rubber Teflon faced septum
20-gauge needle
10-mL glass syringe
8-cm 20-gauge needle
10-mL ground glass syringe
thermometer
rotary shaker
steel tubing
two-stage regulator

6. Health and Safety Precautions:

There are no additional precautions that need to be taken other than those in keeping with standard laboratory practices.

7. <u>Interferences:</u>

N/A

8. **Procedure:**

Sample analysis is described in RSKSOP-194 for methane, ethane, ethylene, propane, butane, and acetylene, RSKSOP-212 for hydrogen and RSKSOP-231 for nitrous oxide.

Water samples should be collected in the field or prepared in the lab by placing the water in a glass bottle. Typically, a 60-mL serum bottle is used. Add the water down the side of the bottle so as not to agitate the sample. Fill to the top and cap using a butyl rubber Teflon faced septum and the appropriate size aluminum crimp cap. Care should be taken so there are no headspace or bubbles in the bottle. Field samples should be fixed with 1:1 hydrochloric acid to a pH less than 2 or 1% trisodium phosphate before they are capped. The samples should be stored at 4°C and

RSKSOP-175 Revision No.2 May 2004 Page 3 of 14 Felisa Hudson

analyzed within 14 days of collection.

Remove samples from refrigerator and allow them to come to room temperature. To generate headspace in the sample bottle, insert through the septum a 20-gauge needle attached to a 10-mL glass syringe set at zero mL. Then an 8-cm 20-gauge needle attached to a section of stainless steel tubing with a needle valve is inserted through the septum. The stainless steel tubing is attached to a two-stage regulator on a cylinder of high purity helium and the helium flow is adjusted using the needle valve to 5 mL per minute or less.

The helium forces water out of the bottle and into the glass syringe. The amount of water taken out of the bottle should be 10% of the volume of the sample bottle. The bottle volume is usually printed on the bottom of the serum bottle. Another way to determine the bottle volume is to weight the bottle empty, fill it with water, and weigh it again. The difference between the two weights in grams is the bottle volume in milliliters. After the appropriate amount of water has been removed, pull the 8-cm needle out of the septum. Next, pull the syringe from the septum. The sample bottle is then shaken at 1100 rpm on a rotary shaker for five minutes to allow the gases to equilibrate between the headspace and the liquid phase. Measure and record the room temperature. A portion of the headspace is then taken immediately for analysis on the gas chromatograph. Use a 10-mL ground glass syringe with a stopcock to take a 2-mL sample of the headspace. This is done by inserting the syringe needle into the septum so that the side port of the needle is in the headspace. Pull the plunger up to the 2-mL mark a couple of times and then pull it up to the 2-mL mark and close the stopcock and withdraw the needle from the septum. Withdraw the needle from the septum and inject the sample into the GC.

9. **QA/QC**:

Prior to starting analysis, at least one calibration standard for each gas should be analyzed to check calibration. The analyzed values should be within 15% of the expected value. Also, helium should be analyzed to determine if there are any background levels of the analytes. The helium run should contain no analytes of interest at or above the method detection limit. If this condition is met, then analysis may proceed.

The data quality objective for the continuing calibration check standards is 85-115%.

For dissolved gas analysis, a laboratory reagent blank comprised of RO water is prepared in exactly the same way as samples and should be analyzed before starting analysis of any samples containing water. This blank is used to determine if background analyte concentrations or interferences are present in the analytical system.

RSKSOP-175 Revision No.2 May 2004 Page 4 of 14 Felisa Hudson

QC operations, frequency, control limits and description of corrective actions.

Operation Check	Frequency	Control Limits	Corrective Action
Method Blank	Before any series of standards	at or below MDL	Repeat blank analysis until objective met or obtain adequate quality blank water or gas.
Continuing Calibration Check	First, last and every 15 samples	85-115% of true value	Check calibration equipment function. Reanalyze affected samples
Duplicate Sample	after every 10 samples	≤ 20 RPD	Reanalyze samples. Flag data if objective remains unmet.
Second Source QC Standard	At end of sample set	8 5 - 1 1 5 % recovery	Check calibration equipment function. Reanalyze QC standards. If DQO remains unmet, determine cause. Recalibrate, reanalyze affected samples if possible.

Field or trip blanks, when provided, are prepared in exactly the same way as samples. The presence of target analytes in the field or trip blanks should be noted in the analytical report as long as the helium and water blanks met their DQOs, no corrective action for field or trip blanks is required.

Laboratory duplicate injections of the headspace from the same sample should be analyzed every ten samples. The acceptance criteria for lab duplicates is that the two values should be less than 20 relative percent difference (RPD).

RPD = [(Sample Concentration (ppmv) - Duplicate Concentration (ppmv)] * 100 [(Sample Concentration (ppmv) + Duplicate Concentration (ppmv)]/2

RSKSOP-175 Revision No.2 May 2004 Page 5 of 14 Felisa Hudson

Field duplicate samples are collected from the same site at the same time and analyzed under identical conditions. RPDs will be reported for field duplicates, but no corrective actions will result from the RPD values.

Quality control gas standards from sources different from calibration standard suppliers should be analyzed within the sample queue. Alternatively, standards from the same supplier as the calibration standard supplier may be used, but the QC standards must have different lot numbers from the calibration gases. The DQO is that measured concentrations be between 85-115% of the expected value.

10. Calculations:

10a. General Equations:

According to Henry's law, the equilibrium value of the mole fraction of gas dissolved in a liquid is directly proportional to the partial pressure of the gas above the liquid surface. This implies that when a headspace is created above a water sample, gases which are in the water will equilibrate between the headspace and the aqueous phase. In this method the total gas concentration (TC) in the original water sample is calculated by first determining the gas concentration of the headspace, converting this to the partial pressure of the gas and then using this partial pressure to calculate the aqueous gas concentration which partitioned into the gas phase (C_{AH}), and aqueous phase concentration which remained in the aqueous phase (C_{A}). The total concentration (TC) in the aqueous phase is then:

$$TC = C_{AH} + C_{A}$$

where TC = total concentration of gas in the original aqueous sample C_{AH} = aqueous gas concentration in headspace after equilibrium C_{A} = aqueous gas concentration in water after equilibrium

The concentration in the headspace is determined from calibration curves using standard gas samples. The method for calculating the dissolved gas concentration involves several steps. In this section, the general steps and equations will be given; in section 10c, a specific example for nitrous oxide will be shown. Parameters needed are the concentration of the gas component (C_g) , Henry's law constant (H) for the gas, the temperature of the sample $(T, ^{\circ}C)$, the volume of the sample bottle (V_b) , the headspace volume (V_h) , and the molecular weight of the gaseous analyte (MW).

For aqueous gas concentration in water after equilibrium, C_A:

- 1) The concentration of the gas phase component is first determined using a calibration curve which was created by analyzing gas standards. The calibration curve can be constructed using EZChrom software, the Waters Millennium software or from the Hewlett Packard 3396 integrator. The calibration curve provides the concentration of gas expressed in ppm or ppb based on volume of gas in total volume of sample.
- 2) This concentration of gas is converted from ppm to the decimal equivalent of the volumetric concentration, C_g , by multiplying the ppm value by 10^{-6} . (When nitrous oxide is determined, quantitations in the ppb levels are typical. In this case the ppb value is multiplied by 10^{-9} .) A gas concentration of 10 ppm becomes 0.00001 (gas volume/total volume). The partial pressure of the gas at atmospheric pressure, p_g , can be found by multiplying the gas volumetric concentration, C_g , by the atmospheric pressure.

Note: In these calculations, total pressure, p_T is assumed to be equal to 1 atmosphere; therefore, p_g can be expressed with units of atm.

$$p_g = C_g * p_T$$
 Eqn. 1

3) According to Henry's law, at equilibrium the mole fraction of the dissolved gas, x_g , can be determined from the partial pressure of the gas, p_g , and the Henry's law constant, H.

$$x_g = p_g / H$$
 Eqn. 2

For these calculations the Henry's law constant must be expressed in units of atm/mole fraction. Table I provides gas solubility coefficients which can be used to calculate Henry's law constants for the gases addressed in this SOP. The coefficients are applicable for sample temperatures between 14 and $40\,^{\circ}\text{C}$.

4) Let n_g = mole of gas analyte and n_w = mole of water. Then the mole fraction of the dissolved gas can be expressed as

$$x_g = n_g / \left(n_g + n_w \right)$$

Rearranging

$$n_g = x_g (n_g + n_w) = (x_g * n_g) + (x_g * n_w).$$
 Eqn. 3

If
$$n_g \ll n_w$$
,

RSKSOP-175 Revision No.2 May 2004 Page 7 of 14 Felisa Hudson

then
$$n_g = x_g * n_{w.}$$
 Eqn. 4

Combining Eqn. 2 and Eqn. 4

$$n_g = n_w (p_g / H)$$

and dividing each side by volume

$$n_g/V = (n_w/V)(p_g/H)$$

Eqn. 5

Eqn. 6

5) Since the molar concentration of water, n_w/V , is 55.5 mol/L, then

$$n_{\sigma}/V = (55.5 \text{ mol/L}) (p_{\sigma}/H)$$

6) The saturation molar concentration of the gas component, C_A is defined as

$$C_A = (n_g/V) (MW)$$

Eqn. 7

where MW = molecular weight of the analyte, g/mol.

7) Substituting Eqn. 6 into Eqn. 7 and converting to mg/L, the saturation molar concentration becomes gas concentration in the aqueous phase

$$C_A = (55.5 \text{ mol/L}) * p_g/H * MW(g/mol) * 10^3 mg/g$$
 Eqn. 8

where the final concentration is expressed in mg/L. For the aqueous gas concentration in the headspace after equilibrium, $C_{\rm AH}$:

1) For any gas, its density can be calculated at standard temperature by

$$\rho = [MW \ / \ (22.4 \ L/mol)] \ * \ [273 \ K \ / \ (T + 273 \ K)] \quad Eqn. \ 9$$

where ρ = density (g/L) and T = sample temperature in °C

2) For the gas/water sample, the volume of the aqueous phase, V_a is the difference between the bottle volume, V_b and the headspace volume, V_h .

$$V_a = V_b - V_h$$
 Eqn. 10

RSKSOP-175 Revision No.2 May 2004 Page 8 of 14 Felisa Hudson

3) The volume of gas equilibrated into the headspace, A_h , can be determined from the volumetric concentration of the gas, C_g , and the volume of headspace, V_h .

$$A_h = V_h * C_g$$
 Eqn. 11

4) Then the concentration, C_{AH} , of the gas component that was originally in the liquid phase but was then partitioned into the gas phase is

$$C_{AH} = A_b/V_a$$
 Eqn. 12

5) Substituting Eqn. 10 and Eqn. 11 into Eqn. 12

$$C_{AH} = [V_h/(V_b - V_h)] * C_g$$

and multiplying by the gas density expression, Eqn. 9, to convert from concentration units of mL of gas/mL of water to mg of gas/mL of water, the concentration of gas in the water sample partitioned into the headspace, C_{AH}, becomes:

$$C_{AH} = [(V_h/(V_b - V_h)] * C_g * (MW/22.4 L/mol) * [273 K / (T + 273 K)] * 10^3 mg/g$$
 Eqn. 13

Then, combining Eqn. 8 and Eqn. 13

$$TC = C_{AH} + C_A$$

$$TC = (55.5 \text{ mol /L})* p_g/H* MW(g/mol)*10^3 mg/g +$$

$$[(V_{_h}/(V_{_b} - V_{_h})] * C_{_g} * (MW(g/mol)/(22.4 \ L/mol)) * [273 \ K \ / \ (T + 273 \ K)] * 10^3 mg/g$$

The result will be in units of milligrams of gas per liter of water.

10b. Henry's Law Constant:

Temperature corrected values of the Henry's law constant can be calculated using solubility data provided in Table 1 (Ref. 5) and equation 14. The molar solubility, x_2 , of the gas is calculated using the coefficients, sample temperature in Kelvin and gas constant (R = 1.98719 cal K^{-1} mol $^{-1}$). If it is assumed that the partial pressure is low, ~ 1 atm (i.e., $P_2 = 1$ atm), and that the solubility is less than 10^{-3} then Henry's law can be expressed as equation 15. The assumption of 1 atm then allows calculation of the Henry's law constant by equation 16. The units of H are atm/mol fraction.

RSKSOP-175 Revision No.2 May 2004 Page 9 of 14 Felisa Hudson

$$R \ln x_2 = A + B/T + C \ln (T/K) + DT \quad Eqn. 14$$

$$x_2 = \exp\{(A + B/T + C \ln (T/K) + DT)/R\}$$

$$H = P_2/x_2 \qquad Eqn. 15$$

$$H = 1/[\exp\{(A + B/T + C \ln (T/K) + DT)/R\}] \qquad Eqn. 16$$

10c. Example Calculation:

Nitrous oxide will be used as the example in the calculation for dissolved gas concentration in water. From the calibration standards, quantitation of a nitrous oxide sample gives 2130 ppb (v/v).

Parameters for this example are as follows:

1) From Table 1, the Henry's law constant for nitrous oxide at 25.0 °C is

$$H_{N2O} = 1/\exp[\{-180.950 + 13205.8/(25.0 + 273) + 20.0399 * \ln(25.0 + 273) + 0.02385440 * (25.0 + 273)\}/1.98719] = 2,270 atm/mol fraction$$

2) Converting gaseous concentration to partial pressure:

$$C_g = 2130 \text{ ppb * } 10^{-9} = 2.13 \text{ x } 10^{-6} \text{ vol } N_2\text{O/vol sample}$$
 so $p_{g=}C_g * p_T = 2.13 \text{ x } 10^{-6} * 1 \text{ atm } = 2.13 \text{ x } 10^{-6} \text{ atm } N_2\text{O}$

3) Using Eqn. 8,

$$C_A = (55.5 \text{ mol/L})^* [(2.13 \text{ x } 10^{-6} \text{ atm } /2,270 \text{ atm}) * 44 \text{ g/mol}] * 10^3 \text{ mg/g}$$

 $C_A = 2.29 \text{ x } 10^{-3} \text{ mg N}_2\text{O/L H}_2\text{O} = 2.29 \text{ } \mu\text{g N}_2\text{O/L H}_2\text{O}$

4) Using Eqn. 13,

RSKSOP-175 Revision No.2 May 2004 Page 10 of 14 Felisa Hudson

 $C_{AH} = [15 \text{ mL} / (20 \text{ mL} - 15 \text{ mL})] * 2.13 \times 10^{-6} * [(44 \text{ g/mol})/(22.4 \text{ L/mol})] * [273 \text{ K} / (25 ^{\circ}\text{C} + 273 \text{ K})] * 10^{3} \text{ mg/g}$

$$C_{AH} = -1.15 \text{ x } 10^{-2} \text{ mg } N_2 \text{O/L } H_2 \text{O} = 11.5 \text{ } \mu\text{g } N_2 \text{O/L } H_2 \text{O}$$
 then $TC = C_A + C_{AH} = 2.29 \text{ } \mu\text{g/L} + 11.5 \text{ } \mu\text{g/L}$
$$TC = 13.8 \text{ } \mu\text{g } N_2 \text{O/L } H_2 \text{O}.$$

11. <u>Miscellaneous Notes:</u>

N/A

12. References:

- 1. Kampbell, D., Wilson, J. and Vandegrift, S. Dissolved Oxygen and Methane in Water by a GC Headspace Equilibration Technique, International Journal of Environmental Analytical Chemistry, Vol. 36, 1991, pp. 249 257.
- 2. Kampbell, D. and Vandegrift, S. Analysis of Dissolved Methane, Ethane, and Ethylene in Ground Water by a Standard Gas Chromatographic Technique, J. Chromatogr. Sci., Vol. 36, 1998, pp. 253 256.
- 3. Gas Analysis by Micro Gas Chromatographs, RSKSOP-194, Revision Number 2.
- 4. GC/ECD Analysis of Nitrous Oxide in Gaseous Samples, RSKSOP-231, Revision Number 1.
- 5. Wilhelm, E., Battino, R. and Wilcock, R. Low Pressure Solubility of Gases in Liquid Water, Chemical Reviews, Vol. 77, April 1977. pp. 219 261.

Appendix: <u>Dissolved Gas Concentration Calculations and Report Processing</u>

Calculation of the results is done using macros written in Microsoft Excel spreadsheets. An example of a data sheet is provided in Figures 1 and 1A. To start the process, the file which contains the master spreadsheet and macros is opened and saved using a file name describing the technical directive and sample set identification. Sample names, gas concentrations from the quantitation program, sample temperature, sample and headspace volumes and sample or check standard identifiers are entered into the spreadsheet. Before processing the samples, the name of the gas, the molecular weight and solubility coefficients are copied into cells J2:O2 The data in

RSKSOP-175 Revision No.2 May 2004 Page 11 of 14 Felisa Hudson

the top part of the spreadsheet are linked to the lower portion of the sheet where a nested logic statement filters the data to determine whether it is a sample or check standard, evaluates the magnitude of the sample to determine if it is below the lowest calibration standard and finally calls a macro to perform the calculations described in section 10 above. Cell G30 shows an example of this statement. The macro "DISGAS" provided in Figure 2 uses parameters located in cells in the spreadsheet to calculate the concentration of the dissolved gas. Before the macro returns the result to the spreadsheet, the magnitude of the result is evaluated to determine the correct number of significant figures with which the result should be expressed. To test the macros to see if they are working correctly input 25 in the temperature column, 60 in the bottle volume column, 6 in the headspace column and 10.000 in the column under methane. After the calculation is complete the number under the methane in mg/L, in water column should read 0.0010.

Two columns of concentration values are provided. The first column, column F, gives the concentration of the gas in the water in the sample and column G gives the concentration of the gas in the headspace. These concentrations are expressed in mg/L or ug/L and ppm or ppb (vol/vol). The logic statement shown in cell F71 determines if the concentration is for a gas

Table 1.	Gaseous M	lolecular Weigh	nts, Coefficie	nts for gased	ous Solubility Cal	culation in the Equation:
	R 1n x2 = A	x + B/t + C 1n (T/K) + DT * a	nd Examples	of Calculated He	nry's Law Constants.
						Henry's Law Constant
Gas	Mol. Wt.	Α	В	С	D	atm/mol fraction (25°C)
Hydrogen	2	-357.802	13897.5	52.2871	-0.02989360	70,719
Methane	16	-365.183	18106.7	49.7554	-0.00028503	39,769
Acetylene	26	-311.014	16215.8	42.5305		1,333
Nitrogen	28	-327.850	16757.6	42.8000	0.01676450	95,411
Ethylene	28	-303.888	15817.6	40.7591		11,616
Ethane	30	-533.392	26565.0	74.6240	-0.00457313	29,771
Oxygen	32	-286.942	15450.6	36.5593	0.01876620	43,414
Propane	44	-628.866	31638.4	88.0808		36,809
Nitrous Oxide	44	-180.950	13205.8	20.0399	0.02385440	2,272
Butane	58	-639.209	32785.7	89.1483		45,275
	* Wilhelm et	al. (1977), Ch	em. Rev. 77;	219-262 I	R=1.98719 cal K-	1 mol-1; T in Kelvins

standard or dissolved gas sample. If it is a check standard, the macro "SIGFIG" is used to express the calibration result with the correct number of significant figures.

RSKSOP-175 Revision No. 2 April 2004 Page 12 of 14 Felisa Hudson

Figure 1. Microsoft Excel Spreadsheet Used to Input Quantitation and Processing Information and to Calculate Dissolved Gas Concentrations.

	∢	8	٥	ш	4	5	I	_	 -	×	-	2	Z	0
1	Sample		CH4	PPG		10	Bottle vol.ml	Headspace.mt	Gas	mol. w			2 0	
2	EUG 1	S	721.980	0.000721980		82	52	5.7	Methane	£	365 183	ļ.	49 7554	0 00008603
3	EUG 2	ø	1094.815	0.001094815		25	75	7.5				\perp		2000000
4	EUG3		1523.921	0.001523921		82	52	7.5						
5	EUG4	6	853.832	0.000663632		25	52	7.5						
9	EUGS	8	1183.774	0.001183774		15	\$2	7.5						
7	EUG 6	œ	1208.078	0.001208078		35	52	7.5	Gas	Mod Wit	•			
8	EUG 6		8468.144	0.008488144		52	22	7.5	Hydroden	,	-357 802	13907.6	£2 2874	0 00000000
6	EUG 7	on	1791.691	0.001791691		1 %	2 22	2,5	Methane	4 æ	366 183	1	40 75EA	0.0000000
10	EUG B		3030,491	0.003030491		*	2 2	7.6	Acabdana	2 8	311 011	4	10.00	cucosumo.
1	ENG 8	6	3977.294	0.003977294		3 %	2 2	7.5	Nigrocen	8 8	410.1.0	Щ.	42.0000	0.0000000
12	EUG 10	v	1363.885	0.001363885		35	2	7.5	Ethene	8 8	303 888	\perp	40 7504	0.0000000
13	EUG 10		1378.614	0.001378614		92	*	7.5	Fittane	3 5	583 907		74 8040	000000000
4	EUG 12		1410 086	0.001410088		3 8	2 4	9 4		3	780'000-		74.5240	-0.00457313
5				0000		9	E)	P.	Oxygen	35	796.947		36.5593	0.01876620
									Propare	4	-628.866	4	88.0808	0.00000000
_	SHAW ENVIRONMENTAL, Inc.	TAL, Inc.							Nitrous Oxide	4	-180.950	13205.8	20.0398	0.02385440
=	Anaydda berydd Resuns Report	İ							Butane	58	-639.209	32785.7	89.1483	0.00000000
9	Laboratory:	မွ	Report Date:	4-May-2004										
9														
8	Technical Directive:	040	OA-0-438/0				Sample Results (1)							
21														
22	Analyst:	Lisa Hudson	ndson	Analytes	Methane	2	Methane							
23				Codes	74-82-8		74-82-8							
24	Method:	SEA GOOVER & LEA GOOVER	324 GOOD 478	355	mg/L, in water	vater	ppm, w/v in gas							
25		d to Locust	- Pri-Loevey	MD.	0.0001	_	0.42							
26				8	0.0010	0	10							
27	Lab Sample ID	Date Collected	Date Analyzed	Field Sample ID	Data	5	Si d	5						
88	2402-1	25-Feb-2004	20-Apr-2004	EUG 1	0.069	-	722	-						
8	2402-2	25-Feb-2004	20-Apr-2004	EUG 2	0.104	-	1090	-						
8	2402-3	25-Feb-2004	20-Apr-2004	EDG3	0.145	= F(B4="cs",* \$N\$2,\$O\$2)&	",(IF(C4=0,"ND",(I	= F(B+-'ca','-'(F(C+0,'nD')(F(E4(\$H\$221000000)' FQL/T&M&rcd3 xm D SGAS(E4,\$F45,\$F4,\$F4,\$F4,\$F4,\$F4,\$F4,\$F4,\$F4,\$F4,\$F4	00), BOL("&Macro. \$H4,\$I4,\$L\$2,\$M5:	3.34mlDISGAS(E 2,5N\$2,50\$2))))	4,5K\$2,\$G4,\$H	4,514,\$L\$2,\$M	\$ 2	
31	2402-4	25-Feb-2004	20-Apr-2004	EUG4	0.062	-	458	-						
32	2402-5	25-Feb-2004	20-Apr-2004	EUG 6	0.113	-	1180							
33	2402-5 Lab Dup	25-Feb-2004	20-Apr-2004	EUG 6	0.115 (RPD=1.75)	-	1210 (RPD=251)	-						
34	2402-8	25-Feb-2004	20-Apr-2004	EUG 8	0.806	-	8470	-						
Ж	2402-7	25-Feb-2004	20-Apr-2004	EUG 7	0.170	-	1790	-						
æ	2402-8	25-Feb-2004	20-Apr-2004	EUG 8	0.288	-	3030	-						
37	2402-9	25-Feb-2004	20-Apr-2004	6:DN3	0.378	-	3980	-						
8	2402-10	25-Feb-2004	20-Apr-2004	EUG 10	0.130	-	1360	1						
စ္က	2402-10 Lab Dup	25-Feb-2004	20-Apr-2004	01 9N3	0.131 (RPD=0.77)	-	1380 (RPD=1.48)	-						
6	2402-10 Field Dup	25-Feb-2004	20-Apr-2004	EUG 12	0.134	-	1410	1						
<u>4</u>	The dath quality objective (DQO) for the precision of laboratory duplicate semples is a relative percent difference (RPD) in the 80P. The lab duplicates were not ealculated.	QO) for the precision of I s readily met the precisio	laboratory duplicate samp yn DGO. RPDs for field du	iles is a relative percer iplicates were not calc	it difference (RPD) ulated.		<20 for meth	methane as specified						
	Notes:													
	1. If the parameter was delected above the quantitation finit (GL), the numeric result is reported; BQL, devotes that the parameter was not detected at or above the quantitation for the control of the	tected above the quanti motes that the paramete that the parameter was	tration limit (Cit.), the number was detected above to not detected at all the	neric result is reporte the method detection the results are correc	d; BQL denotes the limit (MOL) but be ted with distallen fac	at the paramel low QL and that ors (DF), if an	ter was not detected to estimated numerion	d at or above the ic result is reported ethod detection limit						
	(BMOL.).													
4	C. VOIMBE MISLUM	IOITIBUUI IS INA AVENA	18 Of the Bridging is IIV. a	Miyzeα.		1							-	

RSKSOP-175 Revision No.2 April 2004 Page 13 of 14 Felisa Hudson

Figure 1A. (QC Data Page) Microsoft Excel Spreadsheet Used to Input Quantitation and Processing Information and to Calculate Dissolved Gas Concentrations.

Methans PPG B8 564	Γ	×	٩	((-		-					(Γ
10 part 1	ď	oleven O	,)	1	-	9	-		, ,	4	-	M	2		Τ
1000 1000	1	2	,	100.00	2					>	DOME VOLUIL	Carcebace, IIII				Τ
1000-pmc14 st 1000 pmc14	٦		9	9000												
1000 pan Clit 2	0		99	08 662												1.
	0	1000 ppm CH4	2	1067.952												1
	-	10000 ppm CH4	97	10326.298												Τ
100 pages 1	7		7	101.555												
100 page CMA 1	၉	1000 ppm CH4	91	1072.918												Τ
Colorada 1		100 ppm CH4	蛱	93.612									-			
National Production	2	H20 Blank	-	0000	o	0.000				35	22	7.5				Ī
Station Environment Paper	9															[
Indicators Control Newton Control		SHAW ENVIRONMENTA	AL, Inc.										-			
		Analytical Service Results Repu	¥													
	6	Laboratory:	99	Report Date:	4-May-2004										10.00	
Tearings Drestive: OA-04990 Auto-1690	0															Γ
Analyst: Lias Hidden Analytes Medianre Medianre Methane Machoel: Codes 74-62-8 74-62-8 74-62-8 74-62-8 Machoel: RSISGOP-176 Unit RDC 74-62-8 74-62-8 2D-Apr-2004 CCC 21-May-2002 100 ppm CH4 GB B 100 0.0010 2D-Apr-2004 CCC 21-May-2002 100 ppm CH4 GB B 100 0.0010 2D-Apr-2004 CCC 21-May-2002 100 ppm CH4 Inf GB-10, Inf CH-10, Inf	ΓĘ	Technical Directive:	OA-0-439/0													
Annightet Lias Hiddon Annightes Annightes Antiforme Meditore Antiforme <	2															
Machinocity PelikisOP-156 Unit Ponn viv in gas 74-52-8		Analyst:	H ss H	ndson	Analytes		Methane		Methane							
MDL Driet Analyzed	T#				Codes		74-82-8		74-82-8							
Data Analyzad		Method:	RSKSOP-194 & F	R8K8OP-176	¥5		ppm, v/v in gas		mg/L in water						5	
Date Analyzed	~				MDr		0.42		0.0001							
Data Analyzed					ਰ		2		0.0010							
20 Apr-2004 CCC 21 Abry 2002 100 ppm CH4 BB B 100 BB B 20 Apr-2004 MB 20 Apr-2004 Helkum Blank ND 100 107 20 Apr-2004 CCC 21 Abry-2002 100 ppm CH4 1070 1000 107 20 Apr-2004 CCC 11 Sep-2001 1000 ppm CH4 1030 100 107 20 Apr-2004 CCC 21 Abry-2002 100 ppm CH4 1020 100 107 20 Apr-2004 CCC 21 Abry-2002 100 ppm CH4 1020 107 107 20 Apr-2004 CCC 21 Abry-2002 100 ppm CH4 1070 1000 107 20 Apr-2004 CCC 21 Abry-2002 100 ppm CH4 1070 1000 107 20 Apr-2004 CCC 21 Abry-2002 100 ppm CH4 1070 1000 107 20 Apr-2004 CCC 21 Abry-2002 100 ppm CH4 1070 1000 107 20 Apr-2004 MB 20 Apr-2002 100 ppm CH4	6	Date Analyzed	Additional ID	Date Prepared	GC Sample ID	Date	True Value	% REC	Deta	True Value	% REC					
20-Apr-2004 MB 20-Apr-2004 Helkum Blank ND 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 1000 107 20-Apr-2004 CCC 11-Sep-2001 1000 ppm CH4 1030 1000 103 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1020 100 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1020 100 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 1000 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 1000 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 1000 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 1000 107 Commenta: The Distance CC 21-May-2002 100 ppm CH4 1070 1000 107 Commenta: The Distance CC 21-May-2002 100 ppm CH4 1020 <td< td=""><td>6</td><td>20-Apr-2004</td><td>222</td><td>21-May-2002</td><td>100 ppm CH4</td><td>B.86</td><td>81</td><td>9.96</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	6	20-Apr-2004	222	21-May-2002	100 ppm CH4	B.86	81	9.96	1	1						
20-Apr-2004 CCC 21-May-2002 100 ppm CH4 IEF(\$B4.=***,***(IF(E4.e),**Ind.**Mactord xxm1SIGFIG(E4)))). 20-Apr-2004 CCC 11-Sep-2001 1000 ppm CH4 1070 1000 103 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1020 100 103 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 102 100 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 102 100 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 100 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 100 107 20-Apr-2004 MB 20-Apr-2004 H2O Blank 107 100 107 20-Apr-2004 MB 20-Apr-2004 H2O Blank 107 100 107 20-Apr-2004 MB 20-Apr-2004 H2O Blank 107 100 107 20-Apr-2004 MB 20-Apr-2004 H2O Blank 100 <td>0</td> <td>20-Apr-2004</td> <td>MB</td> <td>20-Apr-2004</td> <td>Helkim Blank</td> <td>QN</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	0	20-Apr-2004	MB	20-Apr-2004	Helkim Blank	QN			-					_		
20-Apr-2004 CCC 11-88p-2001 1000 ppm CH4 1070 100 107 20-Apr-2004 CCC 11-8ap-2001 1000pm CH4 10300 103 103 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 102 100 107 20-Apr-2004 CCC 11-8ap-2001 100 ppm CH4 1070 100 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 100 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 100 107 20-Apr-2004 MB 20-Apr-2004 H2O Blank 107 100 107 20-Apr-2004 MB 20-Apr-2004 H2O Blank 105 100	-	20-Apr-2004	223	21-May-2002	100 ppm CH4	=iF(\$84='8" ~",	'IF(E4=0,*n.d.*,A	Aacro4.ximISIGFI	G(E4))))							
20-Apr-2004 CCC 21-May-2002 100 ppm CH4 10300 1000 103 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 102 100 107 20-Apr-2004 CCC 11-Sep-2001 100 ppm CH4 1070 100 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 107 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 107 107 Comments: The data quality objective (DOD) for the hellum Method Blank (MB) is that there should be no response for methans. The DOD for the water MB is that any stripled pool recoveries. ND ND Neter: Trip ppm CH4 BS-165K recovery. These DOD of the water MB is that any stripled pool recoveries. ND ND Neter: Trip ppm CH4 BS-165K recovery. These DOD for the water MB is that any stripled pool recoveries. ND ND Neter: Trip ppm CH4 NSK-20P (TSKSOP ITS) due to the fact that a spiked gaseous snakle would partition be not striple to the striple betached source of certacked is striple and partition of surface of certacked betached snakles of samples as spiked of white is sample as selected by the sample to the sample of the search of sur	7	20-Apr-2004	222	11-Sep-2001	1000 ppm CH4	1070	1000	107	-	•						
20-Apr-2004 CCC 21-May-2002 100 ppm CH4 102 100 102 20-Apr-2004 CCC 11-Sep-2001 100 ppm CH4 1070 107 107 20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 107 107 Comments: The data quality objective (DOD) for the hellum Method Blank (MB) is that there should be no response for methans. The DOD for the water MB is that any strakpact, and the requirement to analyze matrix spikes at sheling removed from the SOP (RSKSOP I/TS) due to the fact that a spiked gaseous analyse would partition be into kided goal ceoched: Controlling Calibration Check. A calibration strakpact with the batch of samples to 8 samples using the sample and samples as selected by the samples are samples as selected by the samples	3	20-Apr-2004	200	11-Sep-2001	10000 ppm CH4	10300	10000	103								
20-Apr-2004 CCC 21-May-2002 100 ppm CH4 1070 1070 1070 1077 Connent CCC 21-May-2002 100 ppm CH4 1070 1070 1070 1070 1070 1070 1070 107	4	20-Apr-2004	222	21-May-2002	100 ppm CH4	102	100	102			•					
20-Apr-2004 CCC 21-May-2002 100 ppm CH4 63.6 100 63.6 ND 20-Apr-2004 MB 20-Apr-2004 H2O Blank 63.6 100 63.6 ND Comments: The data quality objective (DOD) for the helium Method Blank (MB) is that there should be no response for methane. The DOD for the water MB is that any strakpoot, and the requirement to analyze matrix spikes is being removed from the SOP (RSKSOP-175) due to the fact that a spiked gaseous snaybe would partition be into Area (Bod recovering). Neter: We Method Blank CDC - Continuing Calibration Check. A calibration of analyzed with the batch of samples to Standards oblike. A field sample spiked with known concentrations of analyzed within the batch of samples to Standards oblike. A lead transpile of the spiked with known concentrations of analyzed so analyzed as a remaple to the sample result section. Such characters of the results in the sample result section. Such sharp and the section of standards of the results to the intervalence of the results in the sample result section.	2	20-Apr-2004	202	11-Sep-2001	1000 ppm CH4	1070	1000	107			•					
20-Apr-2004 MB 20-Apr-2004 H2O Blank	9	20-Apr-2004	202	21-May-2002	100 ppm CH4	93.6	100	93.6		•						
Comments: Gomments: The data quality objective (DOO) for the helium Method Blank (MB) is that there should be no response for methans. The DOO for the water MB is that any cart of pormy. The DOO for the water was the sample set of the property of CCCs and second source OC standards is 85-165k recovery. These DOOs were nize for call the OC samples in this sample set standards and the requirement to analyze matrix spikes and second source OC standards is 85-165k recovery. These DOOs were nize for call the OC samples in this sample set standards and the requirement to analyze matrix spikes. The Matrix of the sample spikes with incovary or control spikes. The Matrix of Spikes. A lead sample set spikes of with incovar concentrations of samples in the sample or standards obtained from the second country. DUP falls standards the set in the sample result section. Second source OC Standard or Standard is the sample result section.	7	20-Apr-2004	MB	20-Apr-2004	H20 Blank	•	-		Q	=IF(B4="c8".						
	60	-								*,(IF(C4=0,*ND*,(I \$M\$2,\$N\$2,\$O\$2	F(E4<(\$H\$28/10)&")",Macro3.xkm	100000), BQL("8A 1DISGAS(E4, \$K\$	Visoro3.xdmID. 12,5G4,5H4,\$	48GAS(E4,\$K 814,\$1.52,\$IM\$2	\$2,\$G4,\$H4,\$14, \$N\$2,\$O\$2)]]]]	\$L\$2.
		Comments:														
	_	F	y objective (DQO) for	r the helium Method Bland Record source OC st	nk (MB) is that there at	hould be no response	nse for methans	a. The DOO for the for all the OC same	e water MB is that an	ny detected target ga	uses should be					
		anatyzed, and the requirement not yield good recoveries.	it to analyze matrix sp	oikes is being removed	from the SOP (RSKS)	OP-175) due to #	e fact that a spile	ced gaseous analy	ne would partition be	stween the liquid and	ges phase and					
		Notes:														
Geographic marines. DUF and disastrated outside an amplied as a state of the amerines and outside an amplied result section. W REC Percent Recovery. Geographic marines and an amplication analysis of a state of the amplied and associated in an amplied and associated associated and associated asso		1. MB - Method Blank. CCC - concentrations. MS - Matrix S	Continuing Calibratic pike. A field sample :	on Check. A calibration spiked with known conc	standard analyzed wit entrations of analytes.	hin the batch of a The field sample	ID is provided.	aboratory Control QC standards obti	Spike. A laboratory sined from the secon	blank spiked with an ind sources are iden	alytes at known tified by their					
	6	designated names. DUP-field	sample duplicate ar	nalysis. A sample select	ted by the lab analyst i	to be analyzed as	a duplicate, it is	reported in the sa	imple result section.	% REC-Percent Re	covery.					

RSKSOP-175 Revision No. 2 April 2004 Page 14 of 14 Felisa Hudson

DISGAS	
=ARCLIMENT("PG")	
=ARGUMENT("MW")	
=ARCLINENT("Ve")	
=ARGUMENT("T")	
==ARCUMENT("VH")	
=APGLMENT("AA")	
=AFGLMENT("BB")	
=ARGLMENT(*CC*)	
=Arglment("DD")	
=1/(EXP((AA+BB/(T+273)+CC*LN(T+273)+DD*(T+273))/1.98719))	
=((55.5)*(PG/A11)*(MM*1000))+((M*((VB-VI-1))*PG*MM*(22.4)*(273*(T+273))*1000)	
= F(A12-0.1,FIXED(A12-4), F(A12-1,FIXED(A12-3), F(A12-10,FIXED(A12-2), F(A12-100,FIXED(A12-1), F(A12-1000,FIXED(A12-0), F(A12-1000,FIXED(A12-1),FIXED(A12-1), F(A12-1000,FIXED(A12-1), F(A12-1000,FIXED(A12-1),FIXED(A12-1), F(A12-1000,FIXED(A12-1), F(A12-100,FIXED(A12-1), F(A12-100,FIXED(A12-1), F(A12-100,FIXED(A12-1	
=PETUPN(A13)	
1	
Figure 2. Excel Macro "DISGAS" Used to Calculate Dissolved Gas Concentrations and Datermine Significant Figures of the Result.	
=SIGFIG	
=ARGLMENT(*S)	
-#F(\$<0.01,FXED(\$,4),F(\$<0.1,FXED(\$,3),F(\$<1,FXED(\$,2),F(\$<10,FXED(\$,2),F(\$<100,FXED(\$,1),F(\$<1000,FXED(\$,0),F(\$<1000,FXED(\$,0),F(\$<1000,FXED(\$,2))))))	
-FETURNAS	
Rigure 3. Excel Macro "SIGFIG" Used to Determine Significant Figures of a Result.	