US ERA ARCHIVE DOCUMENT

PIONEER VALLEY ENERGY CENTER 1-HOUR NO2 IMPACTS DURING TURBINE STARTUP EVENTS SUMMARY OF RESULTS

NAAQS 188.7 ug/m3 100 ppb Background 62.3 ug/m3 33 ppb

				MOD	ELING YE	AR	ı	Max 5-year			
FUEL	SOURCES	IMPACT	1991	1992	1993	1994	1995	(NOx)	(NO_2)	Total	Compliance?
ULSD Oil	CT & Aux Boiler	Max H8H	86.6 11.92	75.6 48.05	60.3 28.72	60.2 40.49	93.1 36.98	33.23	24.92	87.19	yes
Natural Gas	CT & Aux Boiler	Max H8H	58.1 6.8	53.3 16.81	70.4 14	62.4 27.79	76.5 33.01	19.68	14.76	77.03	yes

¹⁾ Background, provided by Steve Dennis, MADEP, calculated as the 3-year average of the 98th percentile values, 2007-2009 at Anderson Road, AFB, Chicopee

²⁾ Generator and firepump will not be operated during startup

³⁾ ARM 75% conversion applied for Nox to NO2 conversion

⁴⁾ AERMOD PLOTFILEs used to generate the top 10 values at each receptor. In the event the top eight daily maximum 1-hour values did not occur within the top ten values, the 10th high value was used.

PIONEER VALLEY ENERGY CENTER Description of Modeling to Assess 1-hour NO₂ Impacts During Startup Events

The new 1-hour NO₂ National Ambient Air Quality Standard (NAAQS) is based on the 3-year average of the 98th percentile of daily maximum 1-hour values. To determine a Project's impacts for comparison against the standard, the maximum 1-hour impact at each receptor is first determined for each day of the year, resulting in 365 concentrations (or 366 in a leap year). The 98th percentile value is then the 8th highest of these concentrations.

At the present time, AERMOD output can be used to determine the overall 8th highest modeled concentration at each receptor. However, the reported 8th highest values do not take the time period into account. Standard AERMOD output and post-processors do not directly handle the 8th highest of the daily maximum 1-hour values at this time. AERMOD output options can be used to generate the information needed to properly process the values.

EPA has recently issued guidance regarding AERMOD application for the 1-hour NO₂ standard (EPA, 2010). The guidance indicates that AERMOD should be applied with the POSTFILE option for each individual year of meteorological data, creating a concentration file containing modeled values for each receptor location and modeled hour. This file can then be read to determine the maximum 1-hour value at each receptor location and modeled day. The 8th highest modeled concentration is averaged at each receptor location over the 5-year modeling period. The highest of these 5-year averages should be added to regional background to determine a total concentration for comparison to the 1-hour NAAQS.

AERMOD modeling for the Project was performed for the 5-year modeling period (1991 – 1995) following the above guidance with one exception. The PLOTFILE option was applied to output the ten highest modeled concentrations for each year at each receptor location. For each year, the highest ten values were evaluated to determine the eight highest values occurring on different days during the year. In some instances, the ten highest concentrations at a receptor may have been modeled to occur on less than eight different days. For those cases, the overall 10th highest 1-hour concentration was used.

Previous modeling documented compliance for typical operations of the turbine, auxiliary boiler, fire pump and emergency generator. Adding the maximum 5-year average of the 98^{th} percentile daily maximum NO_2 values to the background results in a total NO_2 concentration of $148.5~\mu g/m^3$; less than 80% of the 1-hour NO_2 NAAQS. The fire pump and emergency generator were the largest contributors to the maximum values.

Neither the fire pump nor the emergency generator will be operating during startup conditions. Turbine startup exhaust parameters are presented in the attached table. As shown in the table, hour 1 of cold and warm starts are identical in emissions, exhaust flow and exhaust temperature. This initial hour represents the worst-case modeling scenario with the highest emissions and lowest exhaust flow rate. This operating scenario was modeled in conjunction with the auxiliary boiler to determine the worst-case 1-hour NO_x concentrations.

IMPACTS DURING STARTUP WHILE FIRING OIL

The maximum 5-year 98^{th} percentile average NO_x concentration from the turbine startup operations and the auxiliary boiler is $33.2~\mu g/m^3$, modeled at UTM coordinate 682679.88, 4672192. To assess NO_2 impacts against the 1-hour NAAQS, these impact levels are properly adjusted using the Ambient Ratio Method (ARM) which specifies that NO_2 impacts are reasonable estimated a 75% of the total NO_x impacts. Thus, the Project's predicted 5-year average 98^{th} percentile NO_2 impact is $24.9.~\mu g/m^3$.

The closest NO_2 monitor to the site is located in Chicopee. With its urban location, Chicopee provides a conservative background estimate compared to the rural locations of the maximum Project impacts. Background values for use in this analysis were provided by MassDEP. Over the 2007-2009 period, the three-year average of the 98th percentile values at Chicopee is 33 ppb (62.3 μ g/m³).

Adding the maximum 5-year average of the 98^{th} percentile daily maximum NO_2 values to the conservative background results in a total NO_2 concentration of $87.2 \mu g/m^3$; about 46% of the 1-hour NO_2 NAAQS.

IMPACTS DURING STARTUP WHILE FIRING NATURAL GAS

The maximum 5-year 98^{th} percentile average NO_x concentration from the turbine startup operations and the auxiliary boiler is $19.7~\mu g/m^3$, modeled at UTM coordinate 682348.4, 4671481. To assess NO_2 impacts against the 1-hour NAAQS, these impact levels are properly adjusted using the Ambient Ratio Method (ARM) which specifies that NO_2 impacts are reasonable estimated a 75% of the total NO_x impacts. Thus, the Project's predicted 5-year average 98^{th} percentile NO_2 impact is $14.8.~\mu g/m^3$.

Adding the maximum 5-year average of the 98^{th} percentile daily maximum NO_2 values to the background level summarized above for Chicopee monitoring station results in a total NO_2 concentration of 77.0 $\mu g/m^3$; about 40% of the 1-hour NO_2 NAAQS.

References

MADEP, 2010. Email from Stephen Dennis, MADEP, to Dammon Frecker, ESS Group. April 2, 2010.

PIONEER VALLEY ENERGY CENTER Assessment of 1-Hour SO₂ Impacts

Modeling performed in support of the original air permit application was sufficient to demonstrate compliance with the 1-hour SO_2 standard. Table 14 contained in the air permit application presents the individual source pollutant impacts. Maximum values from the turbine, auxiliary boiler, emergency generator, fire pump and cooling tower are added together, regardless of modeled location or time period, to provide a conservative estimate of the potential impact from the facility. The table was revised to include a calculation for 1-hour SO_2 . The maximum turbine impact is 3.27 μ g/m³. Maximum values for the auxiliary boiler, emergency generator, and fire pump are 0.13, 0.35 and 0.57 μ g/m³, respectively. The potential total from the Facility is 4.32 μ g/m³.

The closest SO_2 monitor to the Facility is located in Springfield. Monitor values for 2006-2008 were determined from EPA's AIRS website. The website presents only the maximum and 2nd highest 1-hour values for each year. The highest of the second-high values is 0.044 ppm (114.4 μ g/m³). Adding the modeled 4.32 μ g/m³ to this background results in a total concentration of 118.7 μ g/m³, well below the 195 μ g/m³ (75 ppb) NAAQS.

PIONEER VALLEY ENERGY CENTER TURBINE EXHAUST AND EMISSIONS DURING STARTUP PERIODS

	Start		Ts	stk	Mstk Qstk		tk	E _{NOx}	
Fuel	Type	Hour	('C)	('F)	(tons/hr)	(Ft3/hr)	(Ft3/min)	(lbs/hr)	Comments
Gas	Cold	1	100	212	1273.2	36,009,697	600,162	57.0	Worst case hour
		2	101	214	1372.3	38,881,833	648,031	43.0	Higher temp and flow, lower emission rate than hour 1
		3	101	214	1372.3	38,881,833	648,031	43.0	Same as hour 2
		4	99	210	1373.3	38,771,449	646,191	43.0	
		5	79	174	1792.4	48,793,111	813,219	27.0	
	Warm	1	100	212	1273.2	36,009,697	600,162	57.0	Same as hour 1 for cold start
		2	89	192	1602.3	44,427,409	740,457	34.0	Lower emission rate, higher flow, nearly same temp as hour 4 cold start
		3	80	176	2151.8	58,685,455	978,091	20.0	Lower emission rate, higher flow, nearly same temp as hour 5 cold start
	Hot	1	88	190	1404.8	38,880,323	648,005	57.0	Same E rate, 22'F lower Tstk, higher stack flow rate
ULSD	Cold	1	109	228.2	1288.4	37,025,232		100.0	Worst case hour
		2	115	239	1389.9	40,363,258		86.0	Higher temp and flow, lower emission rate than hour 1
		3	115	239	1389.9	40,363,258	672,721	86.0	Same as hour 2
		4	113	235	1391.8	40,277,848		82.0	
		5	95	203	1849.9	51,853,258	864,221	52.0	
	Warm	1	109	228	1288.4	37,025,232	617,087	100.0	Same as hour 1 for cold start
		2	104	219	1641.3	46,752,182	779,203	67.0	Lower emission rate, higher flow, nearly same temp as hour 4 cold start
		3	97	207	2237.4	62,941,000	1,049,017	41.0	Lower emission rate, higher flow, nearly same temp as hour 5 cold start
	Hot	1	99	210	1458.8	41,185,313	686,422	98.0	Slightly E rate as hour 1 cold start, 18'F lower Tstk, higher stack flow rate

Table 14
Pioneer Valley Energy Center
Refined Modeling - Individual Source Contributions and Cumulative Impacts¹

I	I	Turbine	Turbino	Turbine	Turbino	Turbino			ı	Cooling	l	
Source		Gas	Turbine Gas	ULSD	Turbine ULSD	Turbine ULSD	Aux Boiler	Egen	Firepump	Tower		
Load (%)		100	100	100	75	60	100	100	100	TOWEI		
Amb Temp	(F)	100	59	59	59	59	100	100	100			
Allib Tellip	(1)	10	39	39	39	39						
Hours/Day		24	24	24	24	24	24	24	24	24		
Hours/Year	•	8760	8760	1440	1440	1440	1100	300	300	8760		
		l		aximum En				. ==				
NOx		2.5452	2.268	5.3802	3.7548	3.528		4.72	0.40	0.00		
CO		1.5498	1.386	3.9312	2.7468	2.583	0.09828	1.54	0.03	0.00		
SO2		0.5922	0.5292	0.4284	0.3024	0.2898		0.010	0.0009	0.0000		
PM10		1.2348	1.1088	3.1248	2.142	2.016		0.11	0.011	0.00129		
PM2.5		1.2348	1.1088	3.1248	2.142	2.016	0.0126	0.11	0.011	0.00129		
			AFRMO	DD Results	@ 1 a/sec	Fmission	Rate					
1-hr	1991	5.46442	5.77111	4.97565	5.82219		93.69354	34.7684	619.6059	386.503		
	1992	5.52505	6.04423	4.73867	6.28353		84.07355					
	1993	4.41569	4.69391	4.0272	4.77486		88.83788					
	1994	4.82673	5.02413	4.64041	5.28705		78.72094					
	1995	5.29243	5.26879	5.23679	5.49294		78.33467					
ı	Max	5.53	6.04	5.24	6.28	7.22	93.69	35.21	642.68	453.66		
•	•		•		•				•			
3-hr	1991	1.82156	1.92376	1.66015	2.00334	2.43237		25.05188				
	1992	1.84168	2.01474	1.57956	2.09451		63.28343					
	1993	2.05855	2.17	1.82805	2.18918	2.30482	62.56245	22.4845	294.6932	328.6051		
	1994	2.2125	2.38915	1.9231	2.44699		63.65082					
	1995	2.69376	2.92485	2.32404	3.01233	3.35695			318.1642			
ļ	Max	2.69	2.92	2.32	3.01	3.36	66.60	27.23	334.29	372.27		
8-hr	1991	0.92244	0.97355	0.83112	1.02324	1.19176	48.46002	17.1293	277.6808	247.6317		
O 111	1992	0.92101	1.00749	0.83781	1.04732		53.02006					
	1993	1.06	1.11021	0.95024	1.15581	1.35477			234.1963	291.889		
	1994	0.94027	1.00855	0.86737	1.03145		48.79144					
	1995	1.01024	1.09691	0.89489	1.12972		53.04829					
	Max	1.06	1.11	0.95	1.16	1.35	53.05	17.78	277.68	300.61		
0.4.1	4004	0.500	0.5700.4	0.40000	0.05000	0.70774	00.07004	10 50 100	407.4004	474.0500		
24-hr	1991	0.503	0.57234	0.46203	0.65689	0.79771			167.1321			
	1992	0.48324	0.53317	0.45901	0.61012		48.33433		167.0492			
	1993	0.41105	0.49419	0.38449	0.56266		43.60943			183.587		
	1994	0.51462	0.56431	0.47244	0.65298 0.69046	0.77883	36.18283			239.3		
	1995 Max	0.54944 0.55	0.61175 0.61	0.52566 0.53	0.69046	0.81389	48.33	14.13	116.6792 167.13	239.30		
I:	· · · · · ·	0.00	0.0.	0.00	0.00	0.01	10.00			200.00		
Annual	1991	0.03455	0.03957	0.03034	0.04451	0.05614	6.67739	1.77129	23.95573	10.96702	ı	
	1992	0.0437	0.04957	0.03866	0.05568	0.06895	6.85845	2.05151	25.75367	16.11628		
	1993	0.05049	0.05754	0.04498	0.06458	0.08013	6.98917		26.79208			
	1994	0.04903	0.05529	0.04352	0.06207	0.07652			26.30148			
	1995	0.0414	0.04721	0.0373	0.05348	0.06563			25.69106			
ļ	Max	0.05	0.06	0.04	0.06	0.08	7.84	2.12	26.79	28.86		
			AEDMOD	Results @	Mavimum	Emissian	Datas				Total	SIL
NOx /	Annual	T	0.13	0.04	0.04	0.05	0.08	0.34	0.37	0.00	Total 0.97	JIL 1
	1-hr	8.56	8.38	20.59	17.26	18.64	9.21	54.12	20.24	0.00	104.16	2000
	8-hr	1.64	1.54	3.74	3.17	3.50	5.21	27.33	8.75	0.00	18.24	500
	1-hr	3.27	3.20	2.24	1.90	2.09	0.13	0.35	0.73	0.00	4.32	550
	3-hr	1.60	1.55	1.00	0.91	0.97	0.09	0.33	0.37	0.00	1.99	25
	24-hr	0.33	0.32	0.23	0.21	0.24	0.07	0.14	0.15	0.00	0.46	5
	Annual	5.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	1
	1-hr	1	0.00	5.50	0.00	0.00	3.30	4.04	6.88	3.30	0.01	<u> </u>
	24-hr	0.68	0.68	1.64	1.48	1.64	0.61	1.62	1.79	0.31	3.02	5
	Annual		0.06	0.02	0.02	0.03	0.01	0.01	0.01	0.04	0.16	1
	1-hr							4.04	6.88	2.2.		
	24-hr	0.68	0.68	1.64	1.48	1.64	0.61	1.62	1.79	0.31	3.02	2
			0.06	0.02	0.02	0.03						0.3

Concurrent Operations Emergency Generator Firepump