US ERA ARCHIVE DOCUMENT

Section P - Master List									
Area ID	Cert. ID	Figures	Comments						
*Signifies doc	ument has been stampe	d by a Professional Engineer							
Containment	Areas								
	Tankfarm A	Cert. Report*, S1*, C-101*							
Cont. A and B		Cert. Report*, S1*, C-101*							
Cont. C and	Tankfarm C	Cert. Report*, liner installation photos, P103-1*, P103-2*							
D	Tankfarm D	Cert. Report*, liner installation photos, P103-1*, P103-2*							
	Tankfarm E	Cert. Report*							
Cont. E, F,	Tankfarm F	Cert. Report*							
and G	Tankfarm G	Cert. Report*							
	Talikiaiiii G	Cert. Report							
Buildings	<u> </u>	To . D							
.		Cert. Report*, D-2, D-3, Table D-1, DSB-101 (1 of 2)*, and DSB							
Bldg. 1	Drum Storage Building								
Bldg. 2		#Cert. Report*, D-4, D-5, Table D-1, A-2, and A-3							
Process Unit									
	Vacuum Pot	Cert. Report*, E-2, E-4							
	S-1	Cert. Report*, E-2, E-4							
Vaccuum Pot	S-2	Cert. Report*, E-2, E-4							
	Thin Film Evaporator								
	Area	Cert. Report*, E-2, E-5							
	Thin Film Evaporator								
	Flush Tank	Cert. Report*, E-2, E-5							
Thin Film	Thin Film Evaporator								
Evaporator	Receiver	Cert. Report*, E-2, E-5							
∟ναρυιαιυι	Reboiler	Cert. Report*, E-2, E-3							
Column 20									
Column 30	Separator	Cert. Report*, E-2, E-3							
Tanks	1								
		Cert. Report*, Design Load/Seismic & Wind Analysis/ Check							
TK-101	Tank T-101	support column, base plate and anchor bolts*,Fig D-6							
		Cert. Report*, Design Load/Seismic & Wind Analysis/ Check							
TK-102	Tank T-102	support column, base plate and anchor bolts*, Fig D-6							
		Cert. Report*, Design Load/Seismic & Wind Analysis/ Check							
TK-103	Tank T-103	support column, base plate and anchor bolts*, Fig D-6							
110	Tank 1 100	Cert. Report*, Design Load/Seismic & Wind Analysis/ Check							
TK-104	Took T 104	support column, base plate and anchor bolts*, Fig D-6							
TK-104	Tank T-104								
		Cert. Report*, Design Load/Seismic & Wind Analysis/ Check							
TK-105	Tank T-105	support column, base plate and anchor bolts*, Fig D-6							
		Cert. Report*, Design Load/Seismic & Wind Analysis/ Check							
TK-112	Tank T-112	support column, base plate and anchor bolts*, Fig D-6							
		Cert. Report*, Design Load/Seismic & Wind Analysis/ Check							
TK-113	Tank T-113	support column, base plate and anchor bolts*, Fig D-7							
		Cert. Report*, Design Load/Seismic & Wind Analysis/ Check							
TK-121	Tank T-121	support column, base plate and anchor bolts*, Fig D-7							
111 141	TUTIN I IZI	Josephore column, base plate and anonor bolts, rig b-r							
TK 122	Tank T 122	Fig D 7							
TK-122	Tank T-122	Fig D-7							
TI/ 400	T I. T. 400	Cert. Report*, Design Load/Seismic & Wind Analysis/ Check							
TK-123	Tank T-123	support column, base plate and anchor bolts*, Fig D-7							
		Cert. Report*, Design Load/Seismic & Wind Analysis/ Check							
TK-124	Tank T-124	support column, base plate and anchor bolts*, Fig D-7							
		Cert. Report*, Design Load/Seismic & Wind Analysis/ Check	T-132 becomes proposed						
TK-132	Tank T-132	support column, base plate and anchor bolts*, Fig D-9*	T-401 for permit						
		Cert. Report*, Design Load/Seismic & Wind Analysis/ Check	T-136 becomes proposed						
TK-136	Tank T-136	support column, base plate and anchor bolts*, Fig-10*	T-301 for permit						
TK-108 and			PE stamped as 30%						
		Tank 108 and 100 out shoot: Fig.D. 9*	·						
TK-109 TK-137 and	1	Tank 108 and 109 cut sheet; Fig D-8*	design drawing PE stamped as 30%						
		Tank 137 and 139 out shoot: Fix D 9*							
TK-138		Tank 137 and 138 cut sheet; Fig D-8*	design drawing						
TK-401, 402,			PE stamped as 30%						
and 403		Tank 401 to 403 cut sheet; Fig D-9*	design drawing						
TK-411, 412,			PE stamped as 30%						
and 413		Tank 411 to 413 cut sheet; Fig D-9*	design drawing						
TK-301, 302,	 		PE stamped as 30%						
and 303		Tank 301 to 303 cut sheet; Fig D-10*	design drawing						
TK-311, 312,		Tank 301 to 303 out sheet, Fig D-10	<u> </u>						
IIN-311 312	I		PE stamped as 30%						
and 313		Tank 311 to 313 cut sheet; Fig D-10*	design drawing						

TK-321, 322,		PE stamped as 30%
and 323	Tank 321 to 323 cut sheet; Fig D-10*	design drawing
TK-304, 305,		PE stamped as 30%
306, and 307	Tanks 304 to 307 cut sheet; Fig D-11*	design drawing
TK-308 and		PE stamped as 30%
309	Tank 308 and 309 cut sheet; Fig D-11*	design drawing
TK-511 and		PE stamped as 30%
512	Tank 511 and 512 cut sheet; Fig D-11*	design drawing

Container Storage Area Certification Drum Storage Building #1

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Certification Report – Drum Storage Building #1 February 5, 2005

INTRODUCTION

On January 26, 2005, in accordance with 40 CFR Section 264.175, "Containment", Metro Environmental Services, Inc. performed an assessment of Drum Storage Building #1 at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

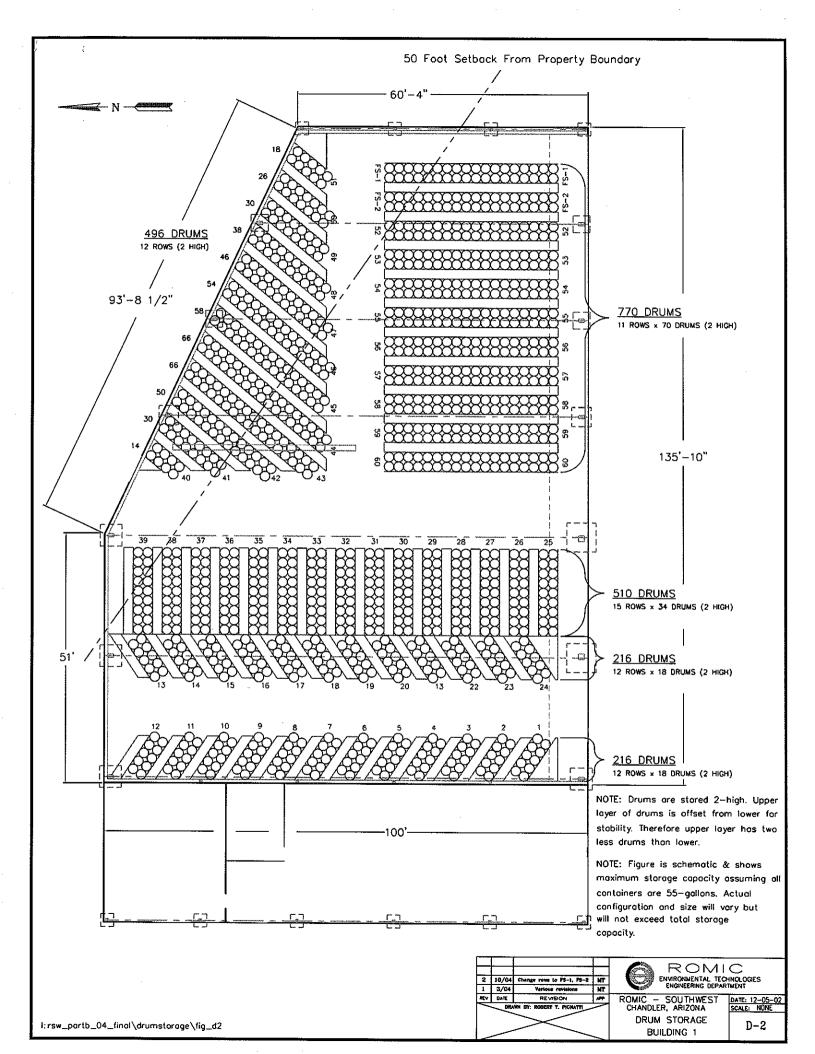
Containment Area Base

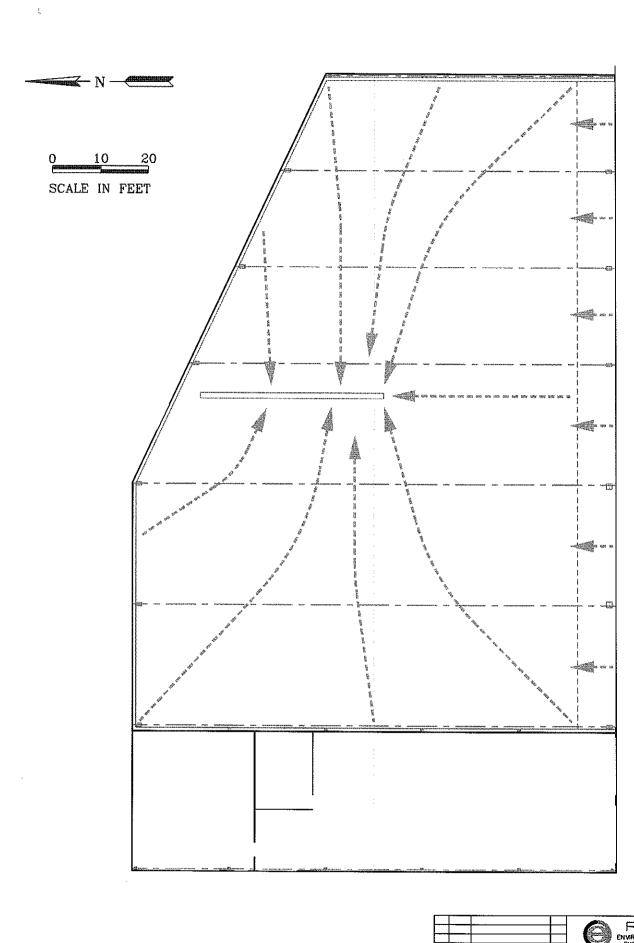
Drum Storage Building #1 is constructed of 6-inch thick, 3,750-psi concrete with one mat of #5 rebar placed at 18" spacing on center in both directions. A polyethylene liner was installed under the entire building during construction. Chemical resistant waterstops were installed at cold joints in the slab.

Containment Volume

The total containment volume available for Drum Storage Building #1 is 41,078 gallons. The required containment volume is 12,144 gallons. See the attached containment volume calculations for details.

CERTIFICATION


I hereby certify that this containment system is suitably designed to achieve the requirements of 40 CFR 264.175.


No. CH00449

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

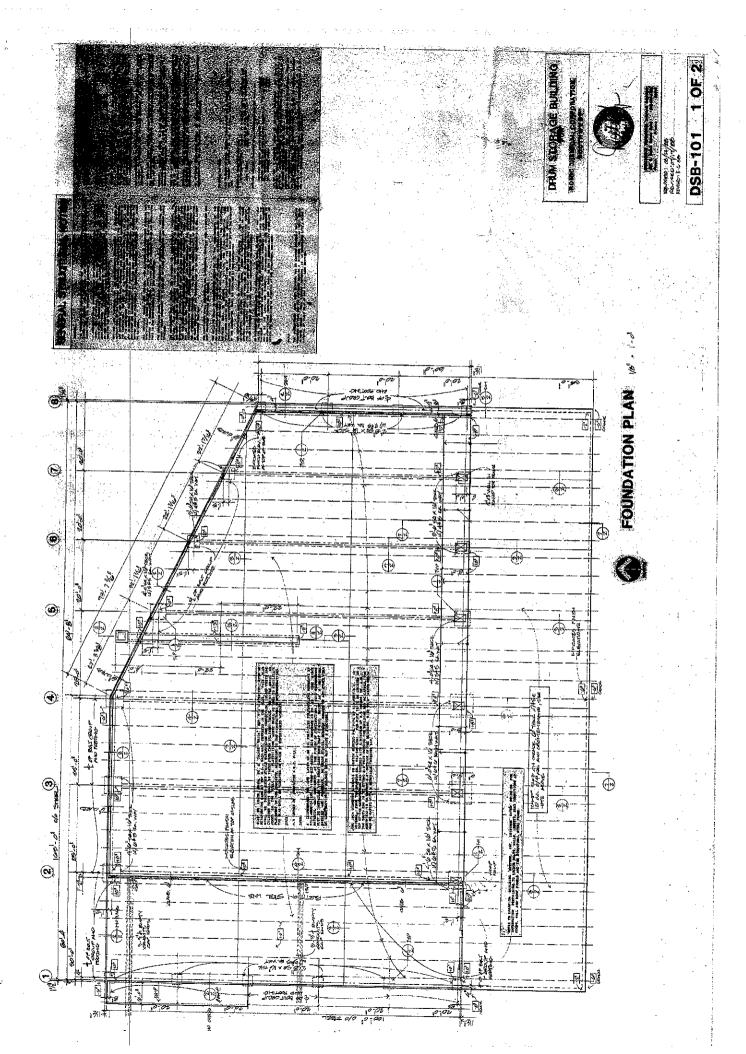
George A. Oney, P.E. Chemical Engineer Registration No. CH004494

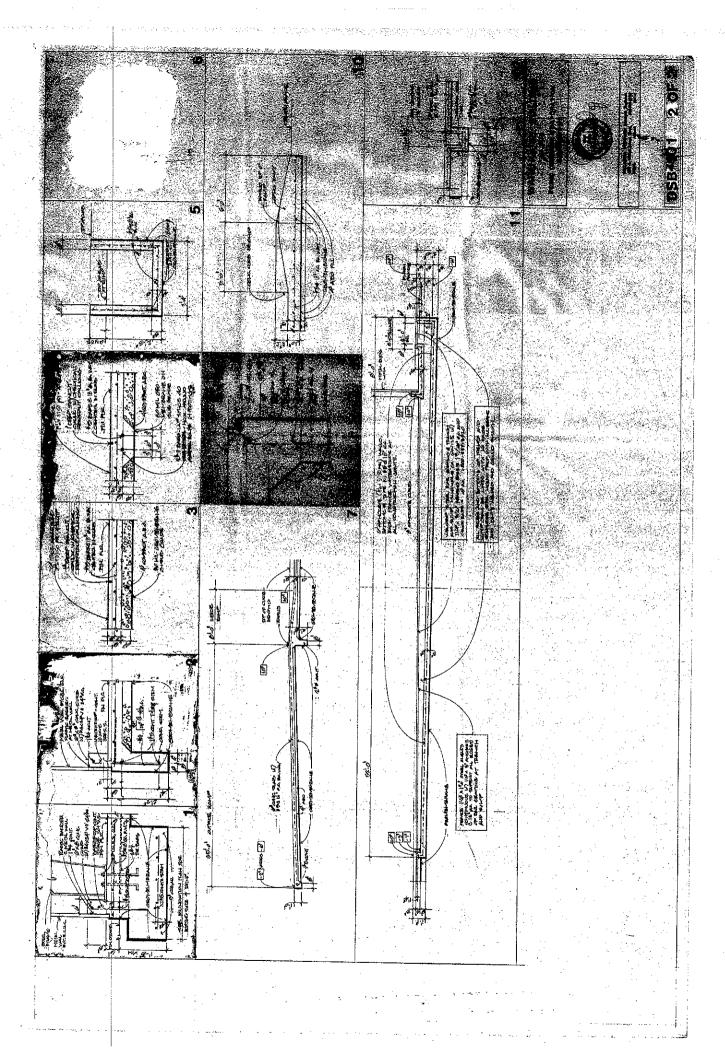
Page 1 of 1

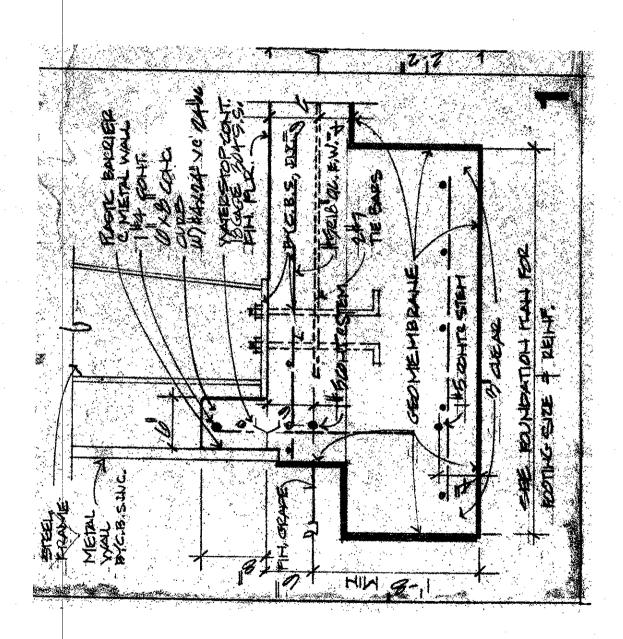
ROMIC - SOUTHWEST CHANDLER, ARIZONA DRAINAGE IN STORAGE BUILDING #1

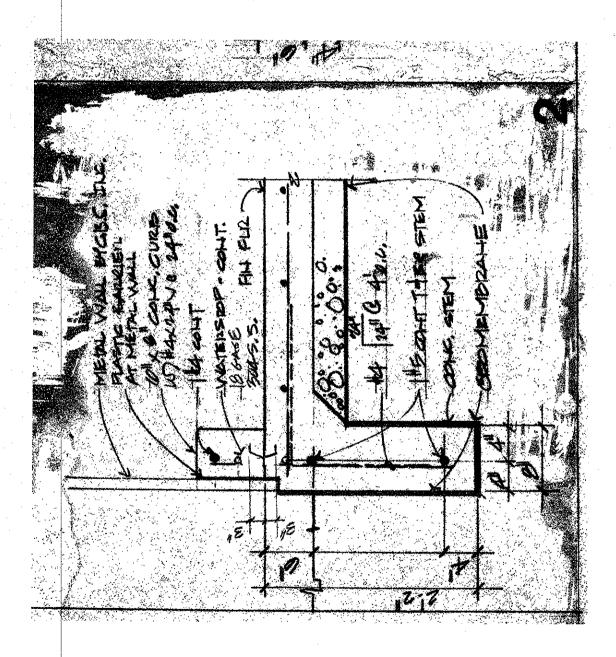
Net Available Containment (f	5491.8		903.2
ग्रि) ernund mon fremeosideid	1068.1 544.5 829.4 2442.1	68.1 68.1 68.1 68.1 68.1 68.1 68.1 68.1	680.7
Gross Containment (الأعُ)	3400.0 1121.7 3412.2 7933.9	158.4 158.4 158.4 158.4 158.4 158.4 158.4 158.4	1583.9
Containment Required (ft³)	1623.5		735.3
Containment Required (gal) (10% of quantity stored)	12144		2500
Gallons Equivalent	51810 27280 42350 121440	5500 5500 5500 5500 5500 5500 5500 550	22000
emunGlistoT	942 496 770 2208	00 00 00 00 00 00 00 00 00 00 00 00 00	1000
# Drums Stacked	432 236 374 1042	4 4 8 8 8 8 8 8 8 4 4 8 4 4 8 8 4 4 8 8 4 4 8 8 4 8 8 4 8 8 4 8	480
# Drums on Floor	510 260 396 1166	25 52 52 52 52 52 52 52 52 52 52 52 52 5	520
Max Depth (in)	ωωω	σ σ σ σ σ σ σ σ σ σ	
(ni) ntgəd niM	∞ ω ω	ппппппппппппппппппппппппппппппппппппппп	
Containment Area (ft²)	5100.0 1682.5 5118.3	380.1 380.1 380.1 380.1 380.1 380.1 380.1 380.1	
Width (ft)	100 39.67 60.33	14.17 14.17 14.17 14.17 14.17 14.17 14.17 14.17 14.17	
CDING (ft)	51 84.83 84.83	26.833 26.833 26.833 26.833 26.833 26.833 26.833 26.833 26.833	
S AREA		GE BUIL	
STORAGE/PROCESS AREA (E) E) CONTAINER STORAGE BUILDING #1	Rows 40-51 Rows 52-62	CONTAINER STORAGE BUILDING #2 Bay 1 - Rows 80-81 Bay 2 - Rows 82-83 Bay 3 - Rows 84-85 Bay 4 - Rows 86-87 Bay 5 - Rows 86-87 Bay 6 - Rows 90-91 Bay 6 - Rows 92-93 Bay 7 - Rows 92-93 Bay 8 - Rows 94-95 Bay 9 - Rows 96-97 Bay 9 - Rows 96-97 Bay 9 - Rows 96-97 Bay 10 - Rows 98-99	
	- <u>14. 14.</u>		

Jotes.


Calculations assume maximum storage capacity assuming all container are 55-gallons drums (see Figure D-2). Various types of containers (e.g., tri-wall boxes, intermediate bulk containers, or "totes," 5-gallon cans) may be stored in these buildings.


Displacement from drums is the secondary containment space taken up by drums sitting in containment. Displacement calculated using formula: pi*r*n, where r is the radius of a drum (one foot), and h is the height of the berm.


Secondary containment capacity is deemed adequate if the Net Available Containment is greater than the Containment Required. Containment capacity for bays in Building 2 calculated by multiplying surface area of bay by average depth (i.e., 5") Revised May 14, 2004


Romic Facility (AZD009015389)

Process Equipment

Container Storage Area Certification Drum Storage Building #2

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Engineering Certification Report – Drum Storage Building #2
February 5, 2005

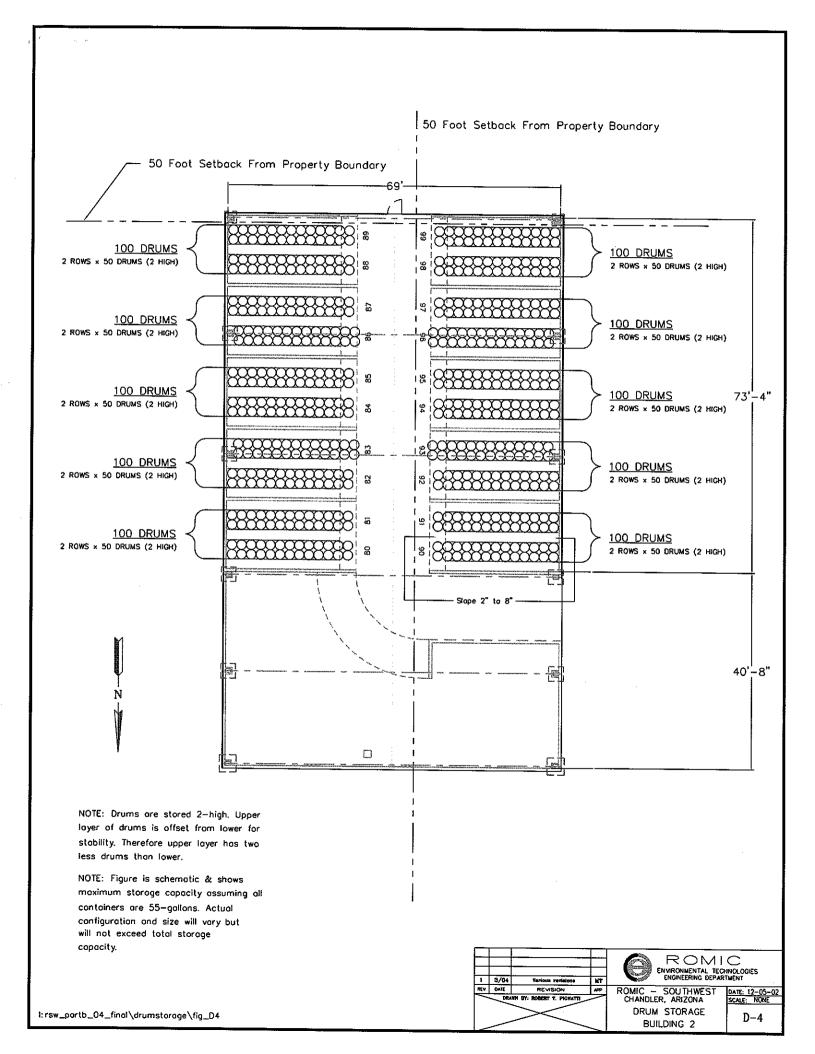
INTRODUCTION

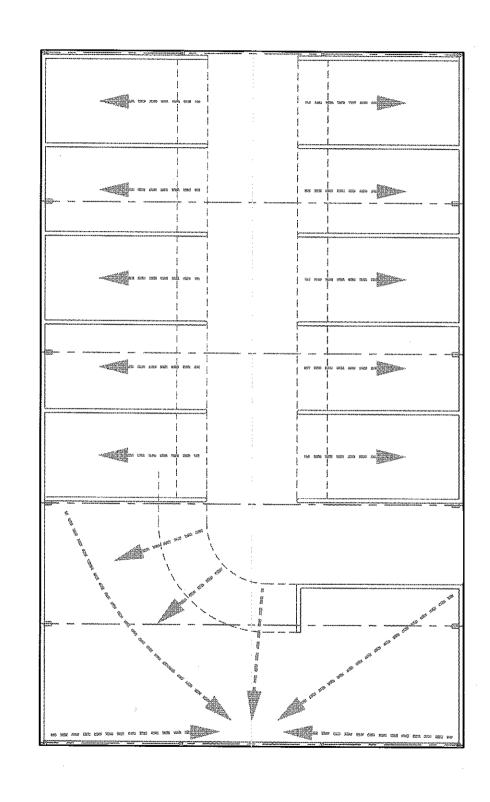
On February 2, 2005, in accordance with 40 CFR Section 264.175, "Containment", Metro Environmental Services, Inc. performed an assessment of Drum Storage Building #2 at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

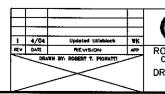
ASSESSMENT ITEMS

Containment Area Base

Drum Storage Building #2 is constructed of 6-inch thick concrete with one mat of #5 rebar placed at 12" spacing on center in both directions. A polyethylene liner was installed under the entire building during construction. Chemical resistant waterstops were installed at cold joints in the slab.


Containment Volume


The total containment volume available for Drum Storage Building #2 is 6,755 gallons. The required containment volume is 5,500 gallons. See the attached containment volume calculations for details.


CERTIFICATION

I hereby certify that this containment system is suitably designed to achieve the requirements of 40 CFR 264.175.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

ROMIC ENVIRONMENTAL TECHNOLOGIES ENGINEERING DEPARTMENT

ROMIC - SOUTHWEST CHANDLER, ARIZONA DRAINAGE IN STORAGE BUILDING #2

DATE: 12-05-02 SCALE: NONE

10

SCALE IN FEET

20

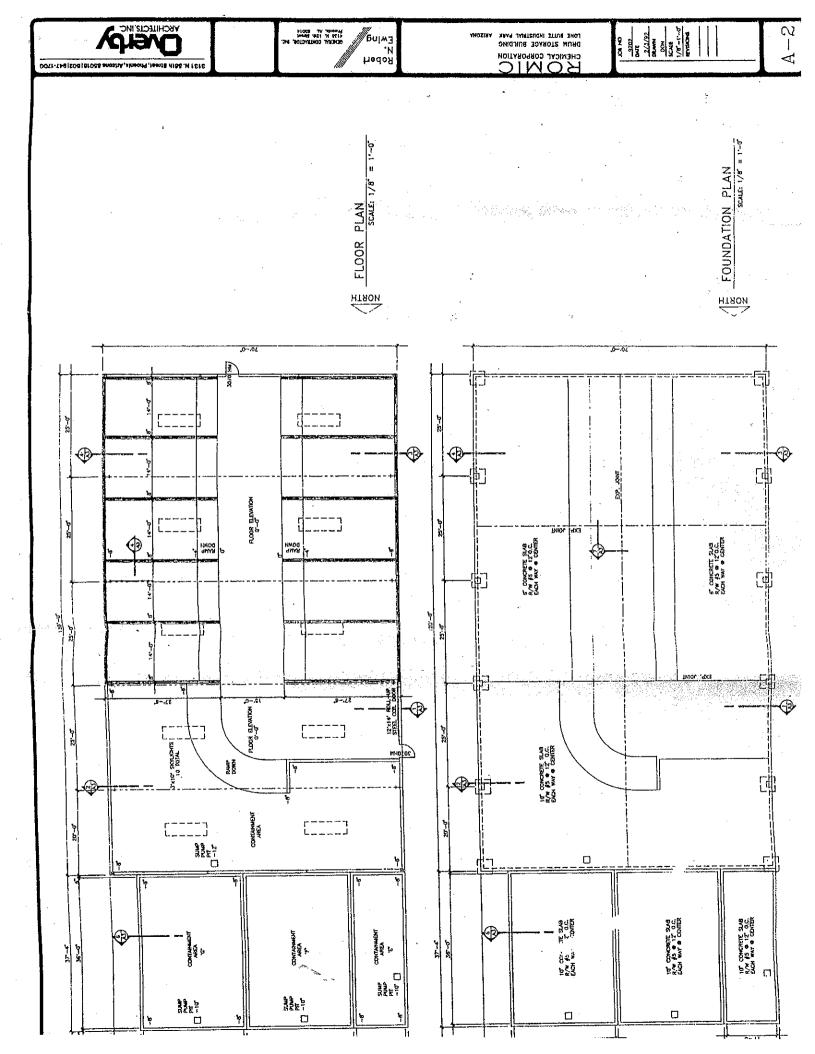
(해) JaemnisłaoO eldsiisvA JeN		5491.8											
Displacement from Drums (t^{i}	1068.1 544.5 829.4	2442.1		68 1	68.1	68.1	68.1	68.1	68.1	68	. 68		68.1
(⁵ ਜੈ) fnemnistnoට seoਾਂਦ	3400.0 1121.7 3412.2	7933.9		158.4	158.4	158.4	158.4	158.4	158.4	158.4	1584	158.4	158.4
(한) bərinpəମ InəmnistnoO (한대s 9aVff)		1623.5											
Containment Required (gal) (10% of quantity stored)		12144											
Gallons Equivalent	51810 27280 42350	121440		5500	2200	2200	5500	9200	5500	5500	5500	5500	5500
emnGlistoT	942 436 770	2.08		00,	100	100	8	100	100	100	100	G)	QG.
# Drums Stacked	432 236 374	1042		48	48	48	48	48	48	48	48	48	48
# Drums on Floor	510 260 396	1166	i Dinke Nas	52	52	52	52	25	25	25	25	52	52
(in) fildəU xsM	ထထထ			ထ	ထ	ထ	ထ	ω,	∞.	ω	∞	Φ	l ∞
Min Depth (in)	ထထထ			2	7	. ~	7	7	7	5	2	7	7
Containment Area (ft ²)	5100.0 1682.5 5118.3			380.1	380.1	380.1	380.1	380.1	380.1	380.1	380.1	380.1	380.1
(#) dibiW	100 39.67 60.33			14.17	14.17	14.17	14.17	14.17	14.17	14.17	14.17	14.17	14.17
(t) (t) (f)	84.83 84.83		DING #2	26.833	26.833	26.833	26.833	26,833	26.833	26.833	26.833	26.833	26.833
STORAGE/PROCESS-AREA CONTAINER STORAGE BLIII	Rows 1-39 Rows 40-51 Rows 52-62		CONTAINER STORAGE BUILDING #2	Bay 1 - Rows 80-81	Bay 2 - Rows 82-83	Day 3 - Kows 84-85	Day 4 - Rows 80-87	Bay 5 - ROWS 88-89	Bay 6 - Kows 90-91	Bay / - Rows 92-93	Bay 8 - Rows 94-95	Bay 9 - Rows 96-97	Bay 10 - Rows 98-99

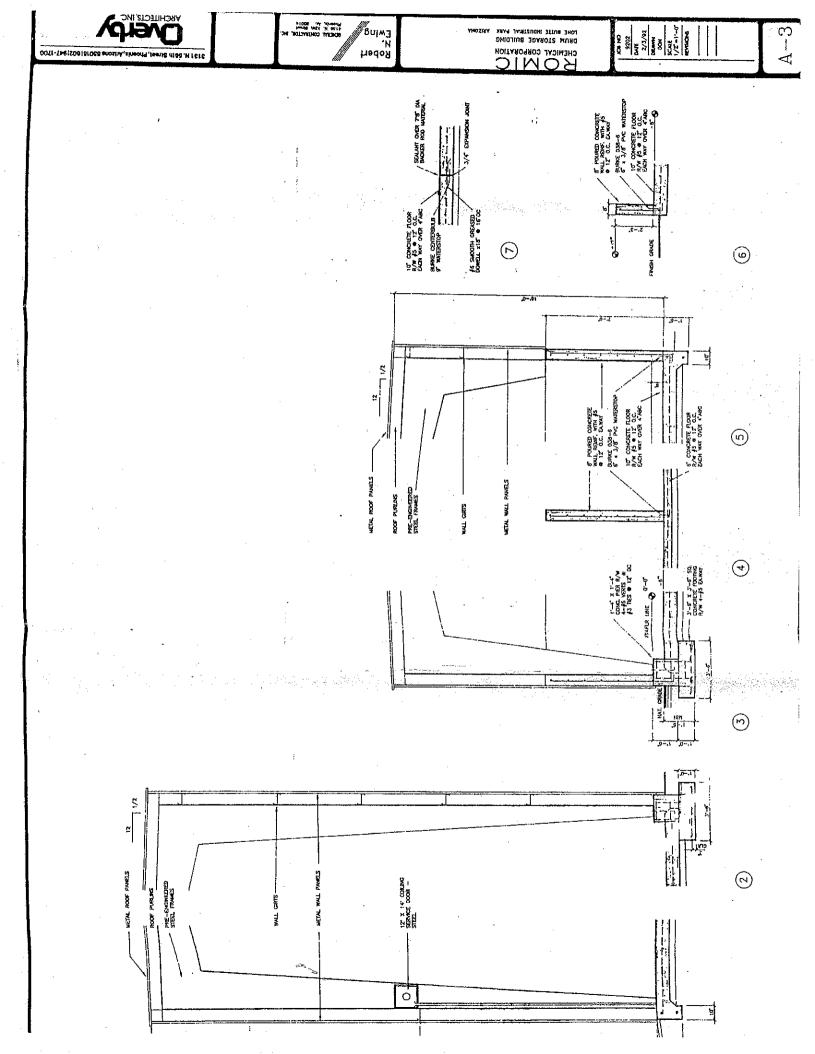
Notes:

Calculations assume maximum storage capacity assuming all container are 55-gallons drums (see Figure D-2). Various types of containers (e.g., tri-wall boxes, intermediate bulk containers, or "totes," 5-gallon cans) may be stored in these buildings.

1583.9

5500


22000


Displacement from drums is the secondary containment space taken up by drums sitting in containment. Displacement calculated using formula: pi*r**n, where r is the radius of a drum (one foot), and h is the height of the berm.

Secondary containment capacity is deemed adequate if the Net Available Containment is greater than the Containment Required Containment capacity for bays in Building 2 calculated by multiplying surface area of bay by average depth (i.e., 5").

Romic Facility (AZD009015389) Process Equipment

Revised May 14, 2004

Process Area Certification Thin Film Evaporator Area

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Certification Report – Thin Film Evaporator Area February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of the Thin Film Evaporator Area at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

The Thin Film Evaporator Area is constructed of 10-inch thick, minimum 3,000-psi concrete with two mats of #5 rebar placed at 12" spacing on center each way. A polyethylene liner was installed under the containment area during construction.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

No. CH004494

Tank Certification Report Thin Film Evaporator Flush Tank

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Flush Tank February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the Thin Film Evaporator Flush Tank, a 225-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 225-gallon tank, (Flush Tank), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

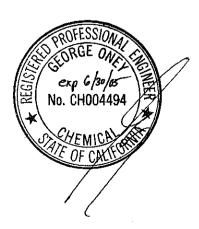
Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Flush Tank February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.


Estimated Remaining Service Life

The tank was installed in 1991. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tank Certification Report Thin Film Evaporator Receiver

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Receiver Tank February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the Thin Film Evaporator Receiver Tank, a 225-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 225-gallon tank, (Receiver Tank), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

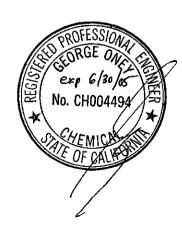
Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Receiver Tank February 5, 2005

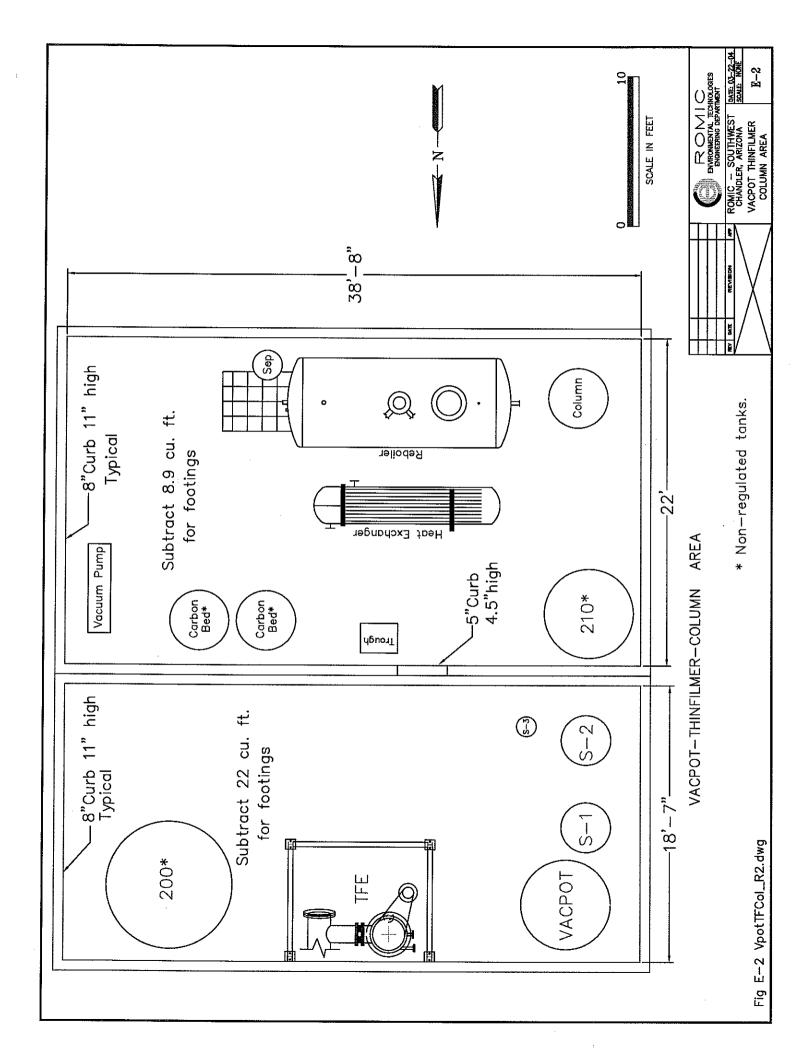
Tank and Piping System Installation Inspection

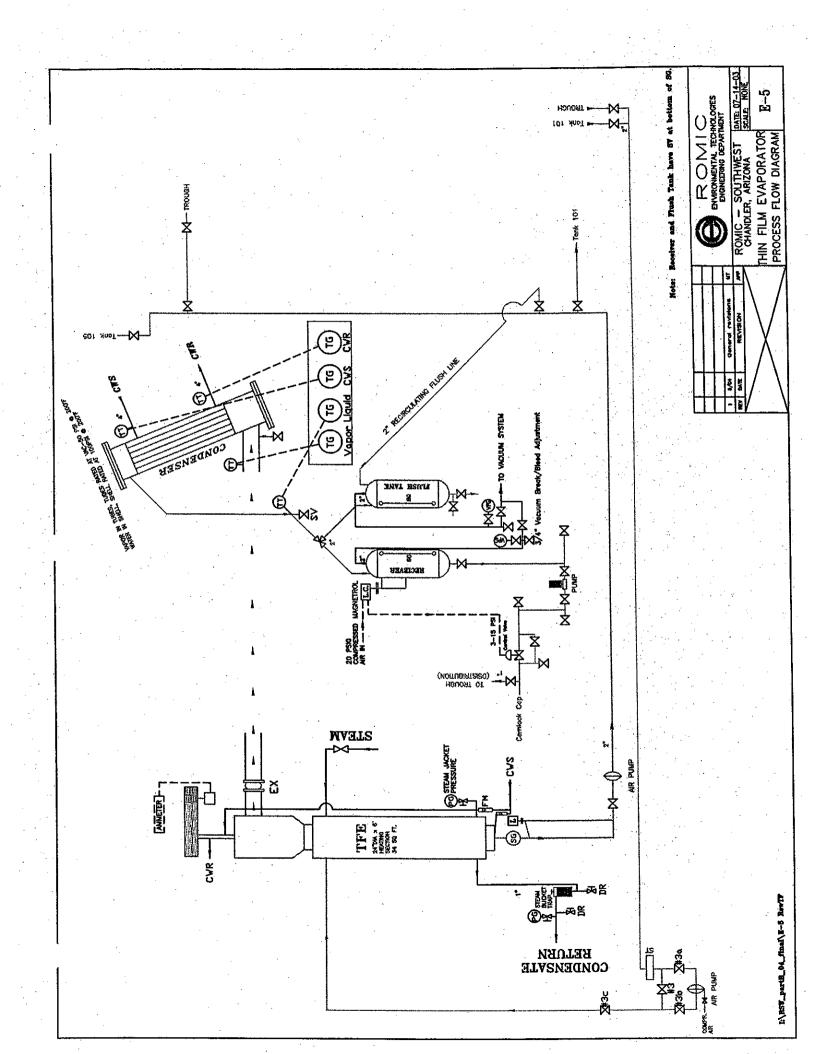
The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.


Estimated Remaining Service Life


The tank was installed in 1991. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.


CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tank Certification Report Vacuum Pot

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Vacuum Pot February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the Vacuum Pot, a 1,700-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 1,700-gallon tank, (Vacuum Pot), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

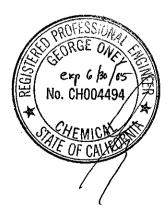
Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Vacuum Pot February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.


Estimated Remaining Service Life

The tank was installed in 1995. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tank Certification Report

S-1

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank S-1 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank S-1, a 600-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 600-gallon tank, (S-1), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank S-1 February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1995. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tank Certification Report

S-2

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank S-2 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank S-2, a 600-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 600-gallon tank, (S-2), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

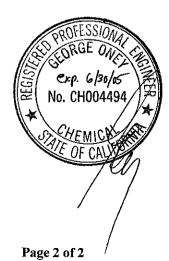
Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank S-2 February 5, 2005

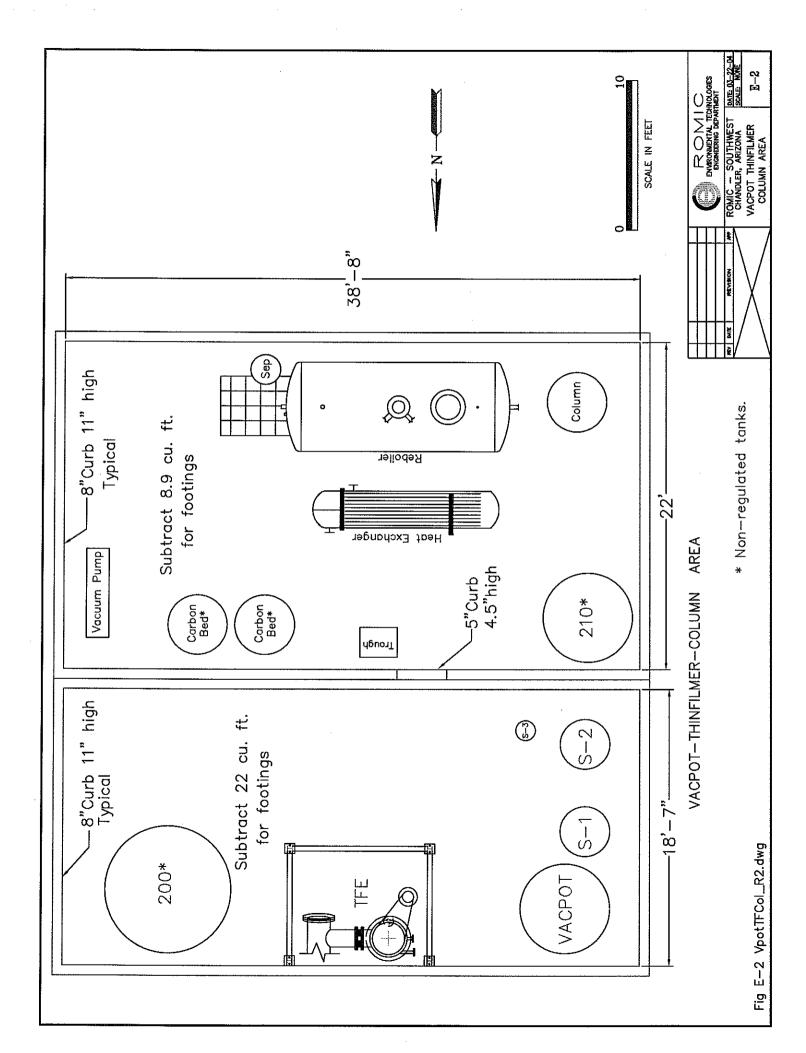
Tank and Piping System Installation Inspection

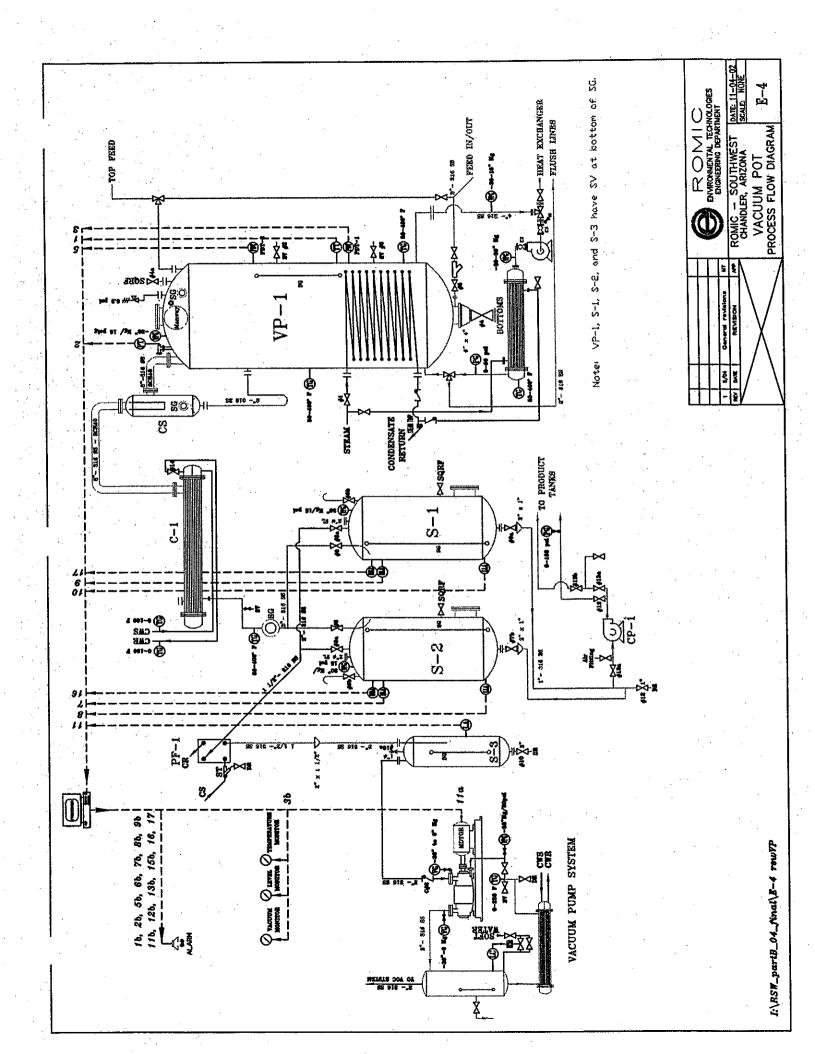
The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

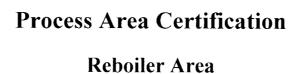
System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.


Estimated Remaining Service Life


The tank was installed in 1995. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.


CERTIFICATION


I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Prepared for: Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by: Metro Environmental Services, Inc.

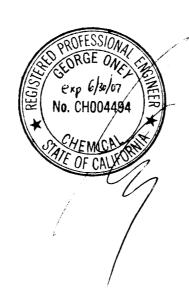
1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Assessment Report – Reboiler Area June 23, 2005

INTRODUCTION

On May 27, 2005, Metro Environmental Services, Inc. performed an assessment of the Reboiler Area at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS


Containment Area Base

The Reboiler Area is constructed of concrete and coated with a chemical resistant coating. The area was visually inspected for cracks or gaps in the containment. No obvious defects were noted during the inspection.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Reboiler February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the Reboiler, a 2,990-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 2,990-gallon tank, (Reboiler), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

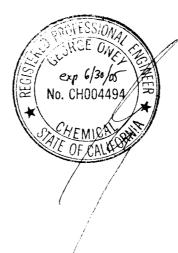
Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Reboiler February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.


Estimated Remaining Service Life

The tank was installed in 2000. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Page 2 of 2

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Separator Tank February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the Separator Tank, an 85-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 85-gallon tank, (Separator Tank), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

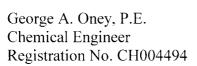
Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Separator Tank February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

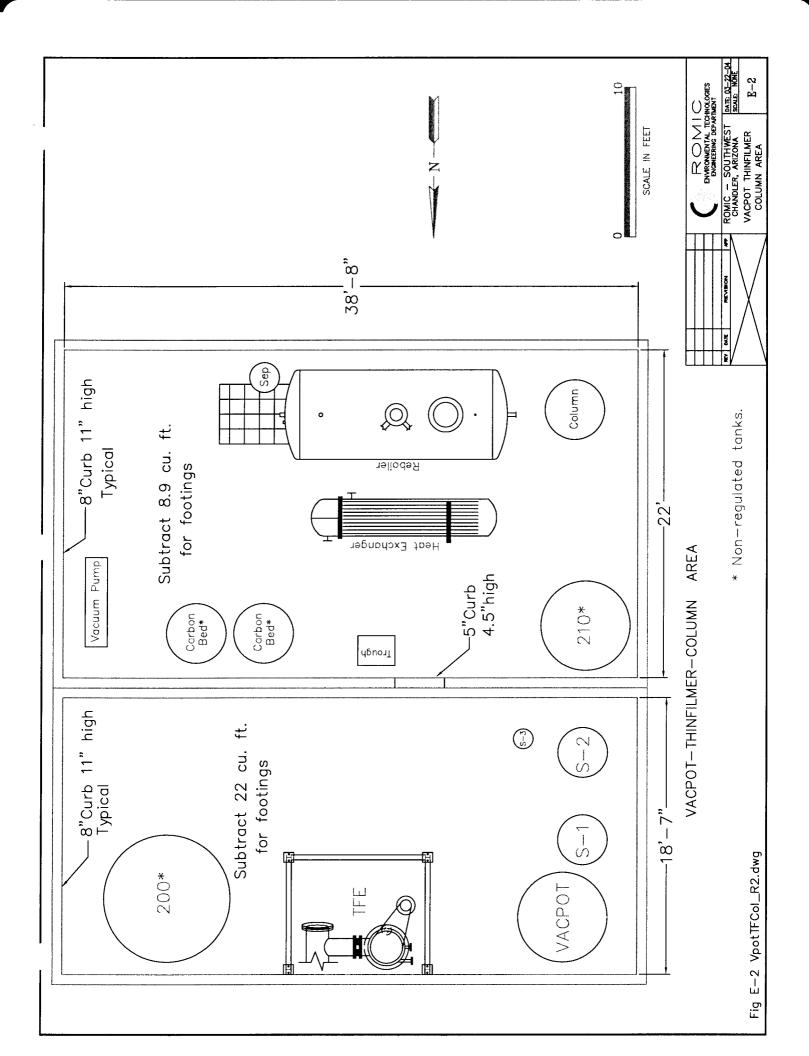
System Tightness Testing

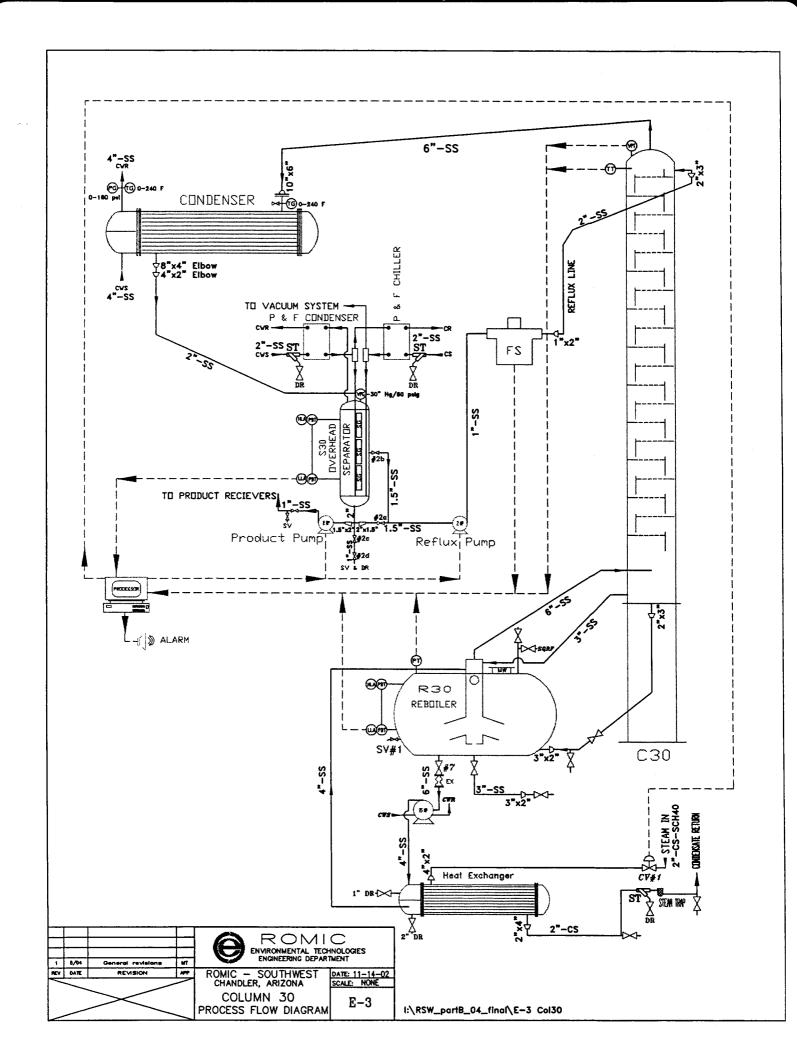
The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.


Estimated Remaining Service Life

The tank was installed in 2000. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION


I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.


I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Page 2 of 2

Tank Farm Certification Tankfarm A

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Certification Report – Tank Farm A February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "A" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Tank Farm "A" is constructed of 10-inch thick, minimum 3,000-psi concrete with two mats of #5 rebar placed at 12" spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer

Registration No. CH004494

Tank Farm Certification Tankfarm B

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Certification Report – Tank Farm B February 5, 2005

INTRODUCTION

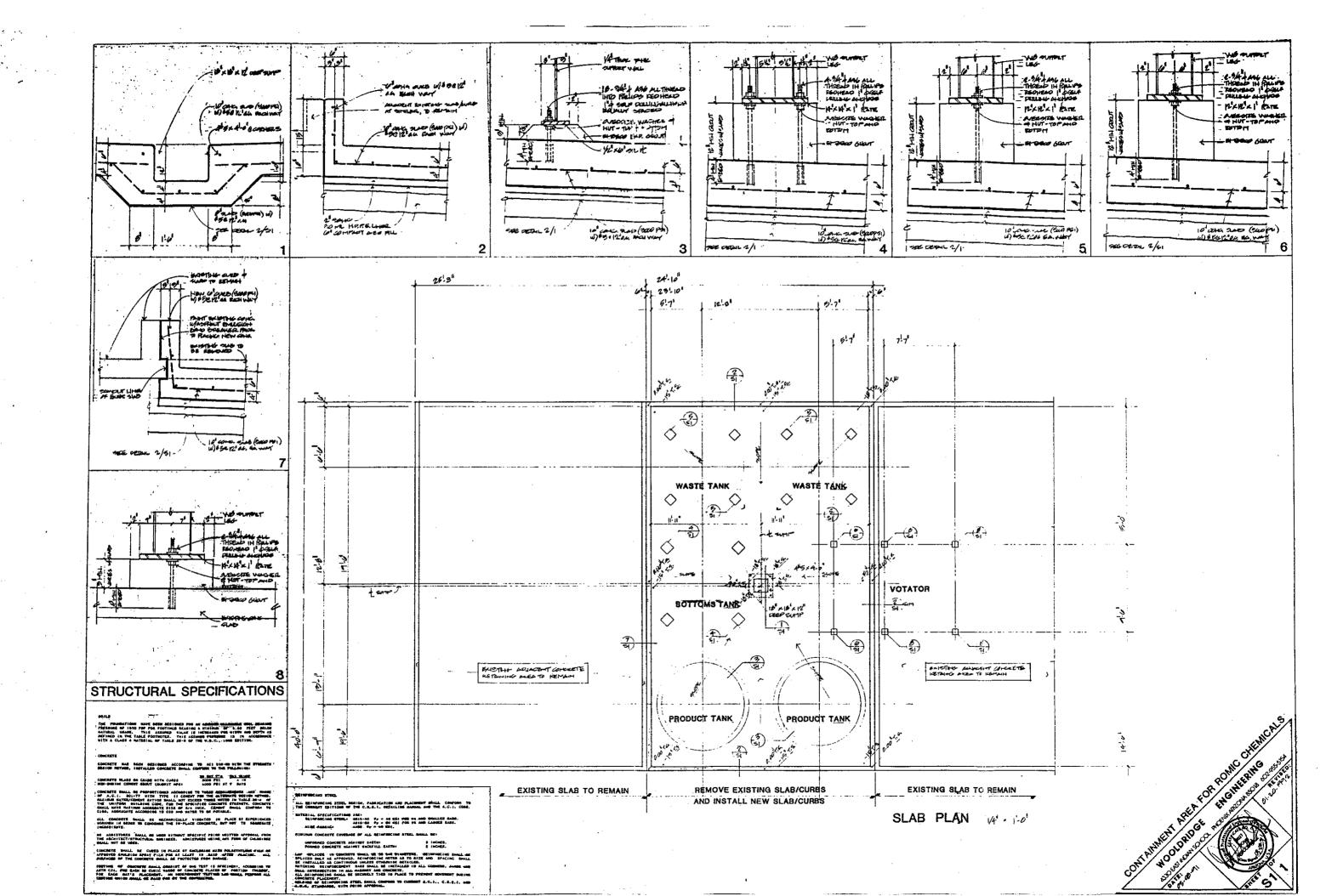
On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "B" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

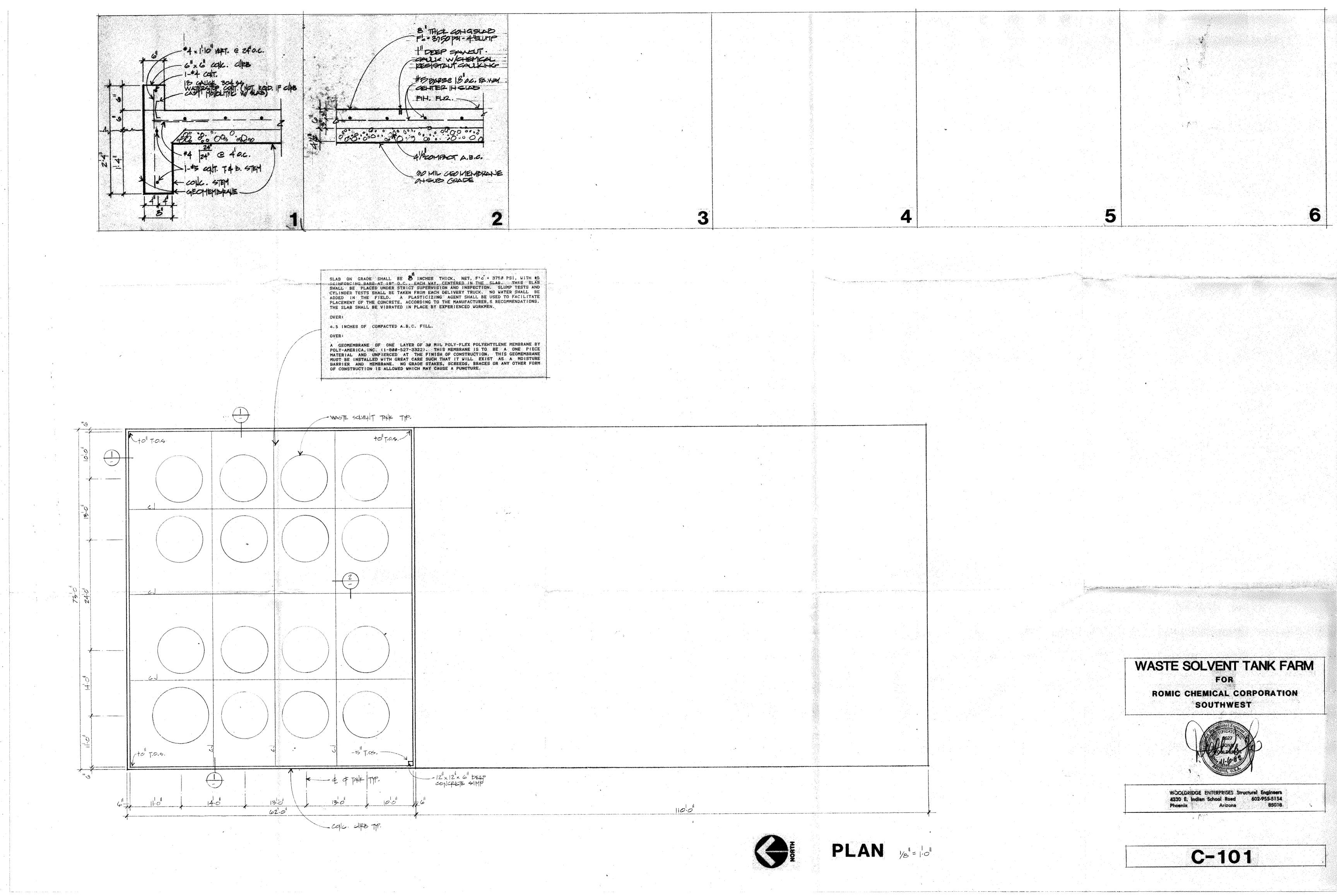
ASSESSMENT ITEMS

Containment Area Base

Tank Farm "B" is constructed of 10-inch thick, minimum 3,000-psi concrete with two mats of #5 rebar placed at 12" spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION


Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.


I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

No. CH00448

George A. Oney, P.E. Chemical Engineer

Registration No. CH004494

Tank Farm Certification Tankfarm C

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

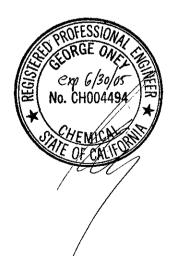
1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Certification Report – Tank Farm C February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "C" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS


Containment Area Base

Tank Farm "C" is constructed of 10-inch thick, minimum 3,000-psi concrete with two mats of #5 rebar placed at 12" spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tank Farm Certification Tankfarm D

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Certification Report – Tank Farm D February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "D" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

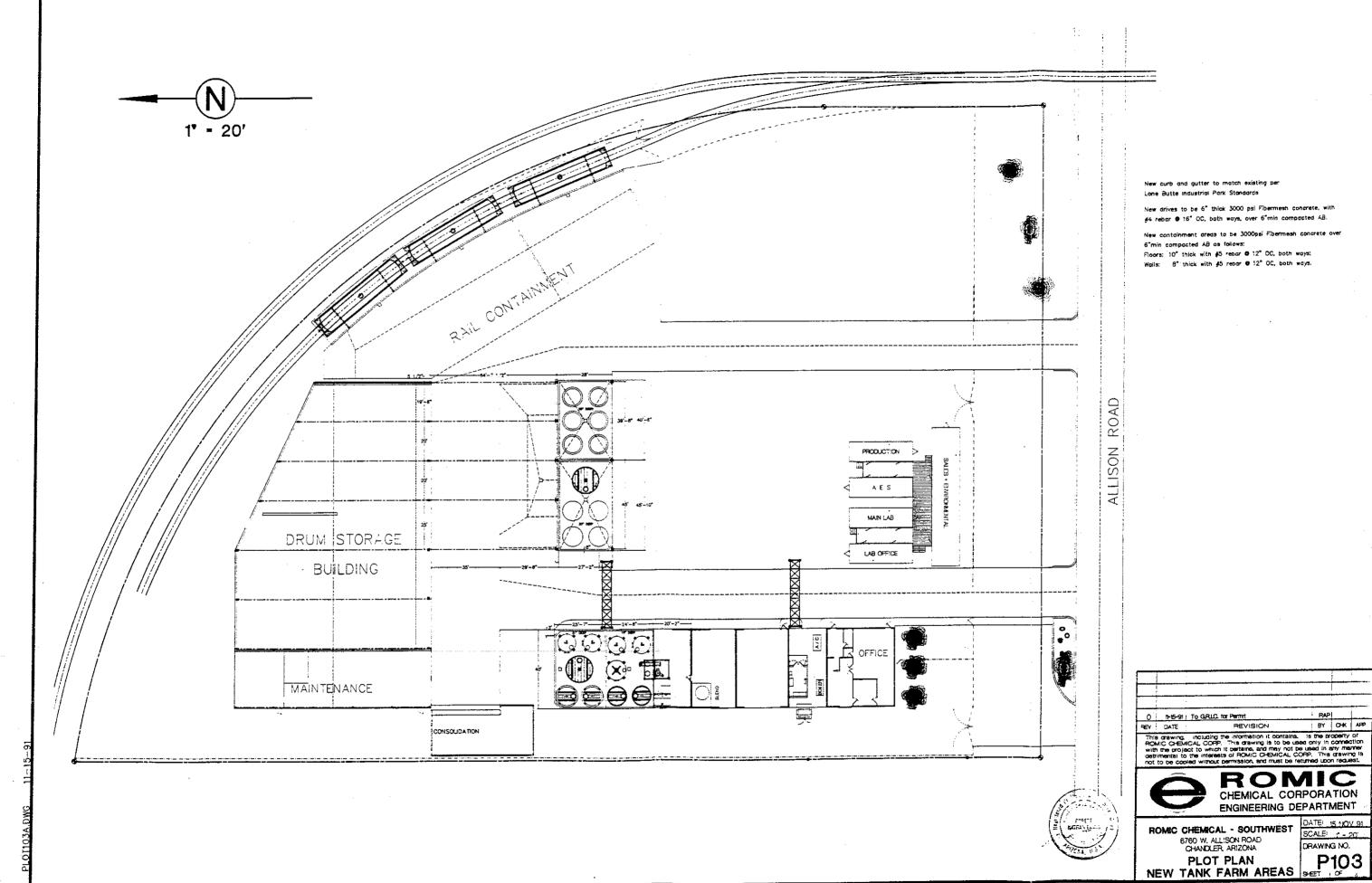
Tank Farm "D" is constructed of 10-inch thick, minimum 3,000-psi concrete with two mats of #5 rebar placed at 12" spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

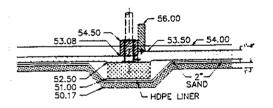
I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Liner being unrolled under tank farm

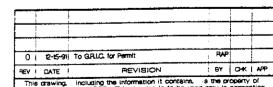

Liner seal being tested for leaks

Sump area for liner being installed

Final preparations on liner prior to covering



B Warehouse Existing


New curb and gutter to match existing per Lone dutte industrial Park Standards

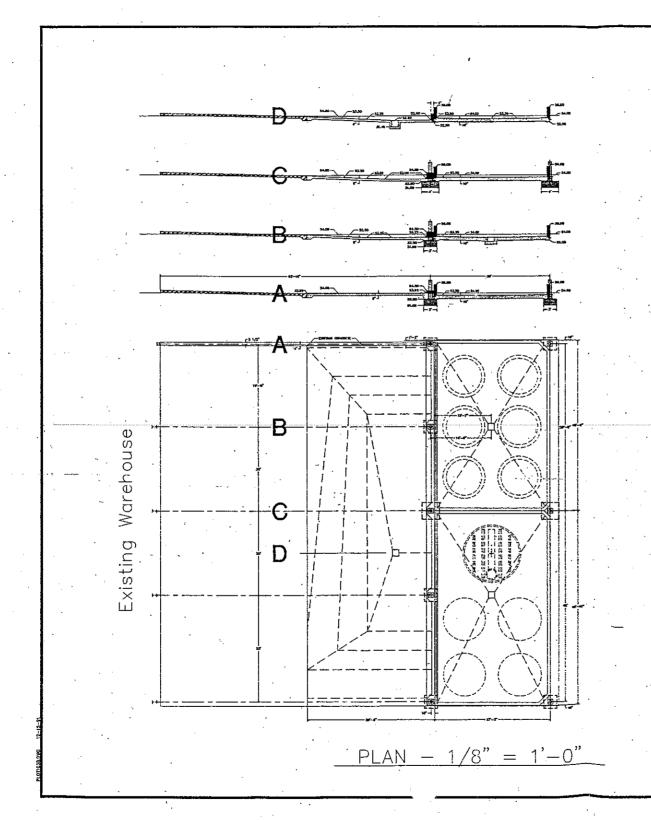
drives to be 6" thick 3000 psi Fibermesh concrete, with

loors: 10" thick with #5 rebor @ 12" OC, both ways; Walls: 8° thick with #5 rebar € 12° OC, both ways.

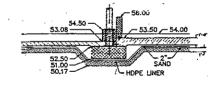
1/4" = 1'-0"

This drawing. Including the information it contains. Is the property of ROMIC CHEMICAL CORP. This drawing is to be used only in connection with the project to which it pertains, and may not be used in any manner detrimental to the interests of ROMIC CHEMICAL CORP. This drawing is not to be copied without permission, and must be returned upon request.

ROMIC
CHEMICAL CORPORATION
ENGINEERING DEPARTMENT DATE: 15 DEC 91


ROMIC CHEMICAL - SOUTHWEST

6760 W. ALLISON ROAD CHANDLER, ARIZONA NEW TANK FARM AREAS CENTER AREA LAYOUT


P103 9+E 2 0° 4

SCALE: As Shown

PLAN - 1/8" = 1'-0"

6"min compacted AB as follows:
Floors: 10" thick with \$5 rebor @ 12" OC. both ways:
Walls: 8" thick with \$5 rebor @ 12" OC. both ways.

	250	To GRUE for Partit	FAP		
₽€V	DATE	REVISION	BΥ	СНК	APP

ROMIC CHEMICAL - SOUTHWEST 55 DEC 91 SCALE AS SOWN. CHANGER ARIZONA
NEW TANK FARM AREAS CENTER AREA LAYOUT

Tank Farm Certification Tankfarm E

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

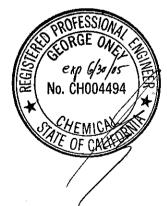
1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Certification Report – Tank Farm E February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "E" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS


Containment Area Base

Tank Farm "E" is constructed of 10-inch thick, minimum 3,000-psi concrete with two mats of #5 rebar placed at 12" spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tank Farm Certification Tankfarm F

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Certification Report – Tank Farm F February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "F" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Tank Farm "F" is constructed of 10-inch thick, minimum 3,000-psi concrete with two mats of #5 rebar placed at 12" spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

No. CH00449

Tank Farm Certification Tankfarm G

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Certification Report – Tank Farm G February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "G" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Tank Farm "G" is constructed of 10-inch thick, minimum 3,000-psi concrete with two mats of #5 rebar placed at 12" spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer

Registration No. CH004494

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #101 February 5, 2005

INTRODUCTION

On February 2, 2005, in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #101, a 5,800-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 5,800-gallon tank, (Tank #101), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank is supported by four steel legs that rest directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #101 February 5, 2005

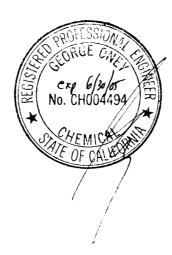
Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life


The tank was installed in 1991. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Certification Report Tank T-102

Prepared for: Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by: Metro Environmental Services, Inc.

1256-B West Brooks Street

Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #102 February 5, 2005

INTRODUCTION

On February 2, 2005, in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #102, a 5,800-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 5,800-gallon tank, (Tank #102), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank is supported by four steel legs that rest directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #102 February 5, 2005

Tank and Piping System Installation Inspection

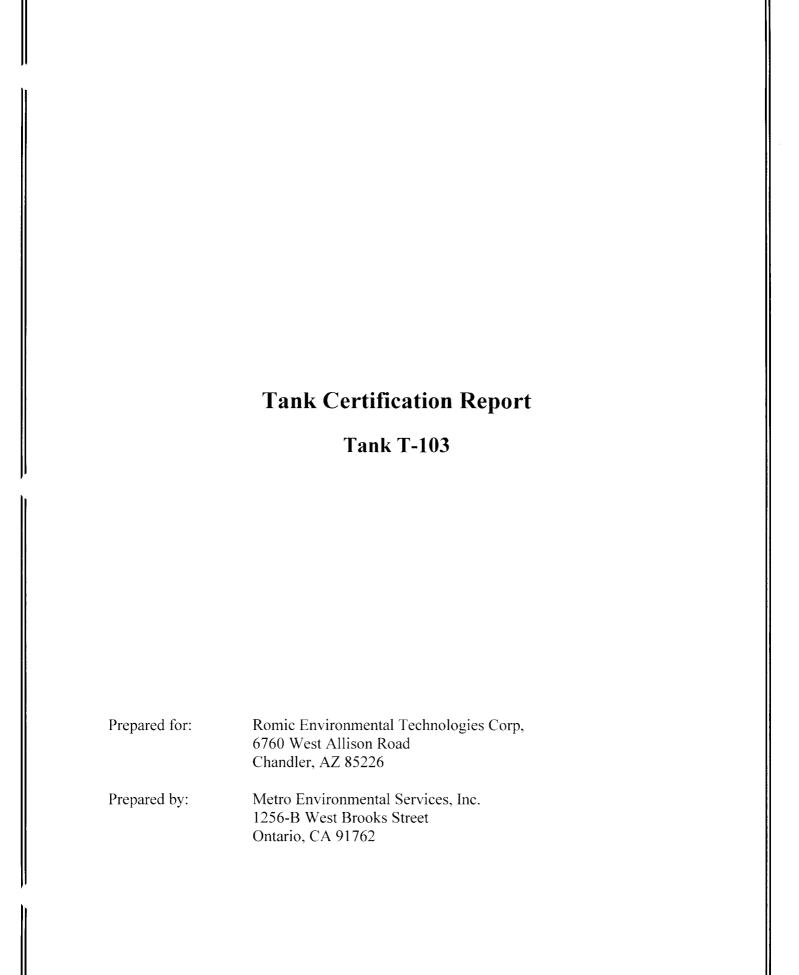
The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1991. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.


CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #103 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #103, a 5,800-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 5,800-gallon tank, (Tank #103), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank is supported by four steel legs that rest directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #103 February 5, 2005

Tank and Piping System Installation Inspection

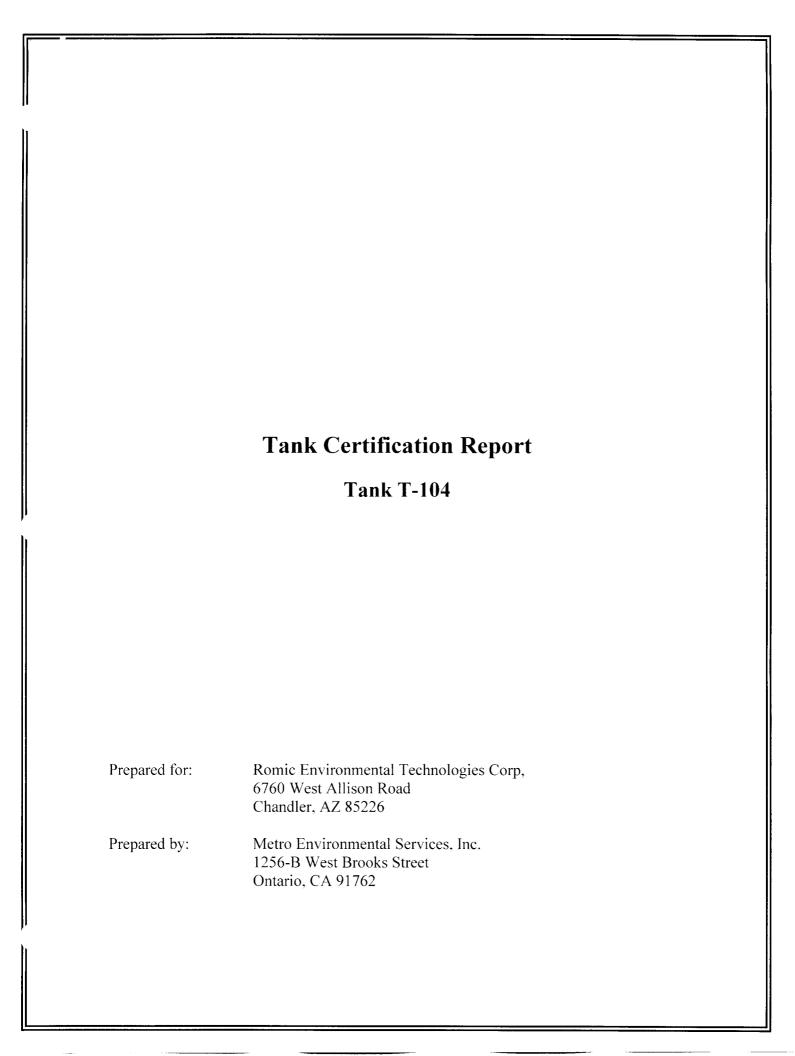
The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.


CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #104 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #104, a 5,800-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 5,800-gallon tank, (Tank #104), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank is supported by four steel legs that rest directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #104 February 5, 2005

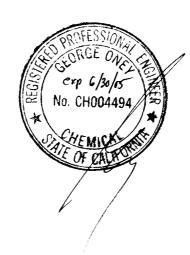
Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life


The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. <u>TK-101 to TK-104</u>

Location: Tank Farm AB

Service: Waste Receiving/Storage

Contents: Organic/aqueous

Size: 5,800 gal. S.G.: 1.0-1.6

Fill GPM: <u>250</u> Empty GPM: <u>250</u>

Support: 4 Legs

Insulation: <u>n/a</u> Agitator: <u>n/a</u>

Weight: $4,000\pm$ lbs. Empty

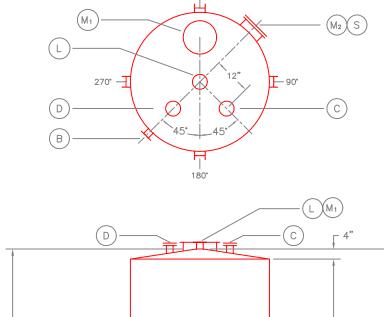
81,400± lbs. Full

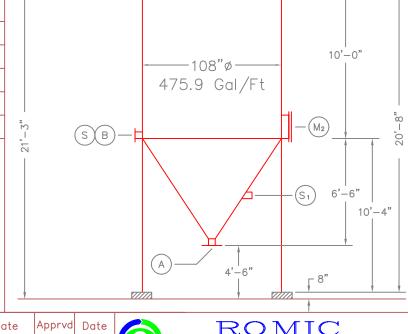
Temp (°F) Ambient

Pressure (Psig): ATM

Seismic Zone: 2

Material: Carbon Steel


Method of Construction: Welded


CONNECTION

No.	Size	Туре	Rating	Function
А	4"	RF	150#	BOTTOM NOZZLE
В	3"	RF	150#	SIDE OUTLET
С	3"	RF	150#	VENT
D	3"	RF	150#	SPARE
L	3"	RF	150#	LEVEL INDICATOR
M ₁	24"	FF	n/a	TOP MANWAY
M_2	24"	FF	n/a	SIDE MANWAY
S	1"	НС	3000#	SAMPLE PORT

REMARKS

- 1. Standard 1:12 sloped top.
- 2. Bottom cone with 70.2° included angle.
- 3. Tank supported on 4 legs.
- 4. See Brown Tank & Steel W/0-3882.

Rev No.	Revision	Ву	Date	Apprvd	Date	
1	ADD TANKS 106 TO 108	MW	11-13-95			
2	Update for 2004 Part B	RP	4-7-04	WK	4-04	
3	Revise Temperature rating	RP	8-22-05	MS	8-05	

ROMIC
ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Drawing Number Tks 101 - Tks 104

METRO ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762 Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K502

Tank 101, 102, 103 & 104

Issued:

01/31/05

Project Name:

ROMIC Environmental Technologies Corporation

Project Location: ROMIC Southwest, Chandler, Arizona.

Table of Contents:Page No.1Scope of work, design loads and tank data12Seismic and wind analysis for overturning moment23Check support column, base plate and anchor bolts3

SCOPE OF WORK:

Tank Designation: 101 to 104

- -- Analyzed existing anchorage for 9'-0" Diameter by 16'-6" high tank with (4) W8x24 legs.
 - Check existing 1"x 12" x 12" base plate w/(2) 7/8" dia. anchor bolts.

DESIGN LOADS:

2000 Inter	national Bເ	uilding Code	e. 80 MPH v	vind, Seismic	Use group II		
		_			H =	21.33 f	t
WIND:	F= Qz * G	* Cf * Af			D =	9 f	t
	Where Qz	= 0.00256 K	z Kzt Kd V^	2 I	Kz =	0.9	Tbl 6-3 Case2
	Qz =	0.00256*0.9	9*1.0*0.95*9	90^2*1.0 =	Kzt =	1	Tbl 6-4 Flat
		17.73	psf		Kd =	0.95	Tbl 6-4
					V =	90	MPH Fig 6-1
F wnd =	2532	lbs.			i =	1	Tbl 6-1
M otm = F	wind * H otr	m =	40508	lbs-ft	For H/D) = 2.37	
					Cf =	1.4	Tbl 6-19
					Gf =	0.85	Sec 6.5.8
					Af =	120 \$	Sq. Ft.
					H otm =	= 16 f	ft
Location:	Chandler		State:	Arizona	Siteclas	ss: D	
					Fa =	1.6	Tbl 1615.1.2(1)
From Fig.	1615(1):	Ss =	0.21	g	R =	3 -	Tbl 1622.2.5(1)
From Fig.	1615(2):	S1 =	0.063	g	Omega	= 2	Tbl 1622.2.5(1)
					le =	1.25	Tbl 1622.2.5(2)
Sds = 0.67	7 Fa Ss =		0.224	W	W =	83000 1	bs
V seismic	= Cs W	Eq. 16-34			Cs = So	ds /R * I =	0.0933
=	0.093	W			Cs min	=0.044Sdsl =	0.0123
					Use Cs	=	0.0933
T = 0.0000	00765*(L / D)^2 *(wD / t) ^ 0.5 =		, ,	00/16.5*9/0.34)^	·.5
			=	0.000842	< 0.06 Rigid S	tructure	

Vsimplified = 1.2 Sds W / R = 0.090 W

Vnonstr = 0.14 Sds le = 0.039 W Cs min nonstr = 0.8S1 I/R =0.021 W

Vs rigid nonstr = 0.3 Sds I W = 0.084 W Use Vs = 0.093 W 0.067 W Vs asd =

Overturning Moment = Vs W * 1.2 sloshing * H otm = 106240 lbs-ft **Seismic Control**

Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks

Given information:

Material: Carbon steel Thickness: 0.34"

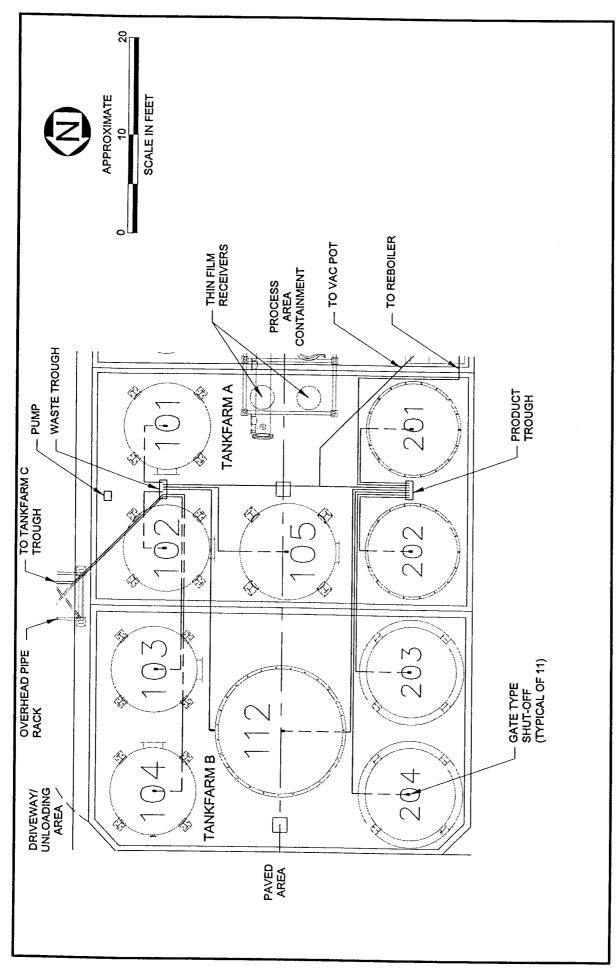
Min 6" Concrete slab thickness:

Full Tank +wt tank: 81400 lbs Agitator: 0 lbs 1600 lbs Misc valves and structures:

Well Livionincial octales 1250-b west brooks of	eet Ofitano, CA 91702	-	2/0/20		
Seismic Analysis per API-650 Appendix E					
Seismic zone, Z = (Zone 4=0.4,zone 3=0.3,zone 2=0.	2,zone 1=0.075)	0.40			
Seismic Importance factor, Is = (Max I = 1.5, normally I = 1.0) 1.25					
Site coefficient from soil type, s = (S4=2, S3=1.5 , S2=1.2,	S1=1.0)	1.50			
Spcific gravity of liquid, G =		1.6			
Tank diameter, D =		9.00	1		
Height of tank, Ht =		21.33	ft		
Fill height from top of floor, H =		21.33			
Weight of content, Wt = $22/7*(D/2)^2*H*62.4$ pcf		77.40			
Weight of shell, uncorroded, Ws = .49*(.34/12*2*22/7*R*1	,				
Weight of roof steel, uncorroded, Wr' = .49*.20/12*2	2*22/7*4.5 =	0.219			
Roof equipment load in seismic, We =		0.10	kips		
Ratio of D / H =		0.42			
Weight or roof & equipment load, Wr = Wr' + We =		0.32	•		
Height of center of gravity of shell, Xs = H / 2 =		10.67			
From Figure E-2 Effective masses, W1 / Wt =	0.934	0.93			
Contents in unison w/ shell, W1 = Wt * (W1 / Wt) =	0.440	72.30			
From Figure E-2 Effective masses, W2 / Wt =	0.113	0.11			
First sloshing mode contents, W2 = Wt * (W2 / Wt) =	0.457	8.78			
From Figure E-3 Centroids of seismic forces, X1 / H =	0.457	0.46			
Height to centroid, X1 = H * (X1 / H) = From Figure E-3 Centroids of seismic forces, X2 / H =	0.855	9.74			
Height to centroid, X2 = H * (X2 / H) =	0.655	0.86			
From Figure E-4 Factor k, k =	0.581	0.58			
Natural period of first mode, T = k * (D)^0.5 =	0.507		seconds		
Lateral force coefficient, C1 = 0.24		0.24			
Lateral force coefficient, C2 = C2 = 0.3S/T =		0.26	l		
			l		
Base shear Vs = Z * I *(C1 * (Ws + Wr + W1) + C2 * W2) =		10.33	Kips		
Overturning, $Mot = Z * I * (C1*Ws*Xs + C1*Wr*Ht + C1*W$		<u>133.60</u>			
Friction resistance from contents, shell, roof steel, Ffric =0.	.4 *(Wt+Ws+Wr') =	32.62	•		
Factor of safety for sliding, FSs = Fric / Vs =		3.16	> 1.5		
Calculate registance load against everturning:					
<u>Calculate resistance load against overturning:</u> Yield strength of tank material, Fy =		36.00	kci		
Thickness of bottom plate, tb = max (tf -co), thickness of f	loor or 0 25 -	1.00			
Wt of contents allow for OT calc. per cicumference, W L=7.		8756.56			
Max allowable for $WL = 1.25 G H D = 383.94$	` , ,	383.94	•		
Resistance to OT by contents, Pr = 22/7 * D * WL =	p.,,	10.86	•		
Resistance to OT by shell and roof, Psr = Ws + Wr =			Kips		
Total resistance to OT moment, Mr = (Pr + Psr) * D / 2 =		67.98	•		
	Mot > Mr, Anchorage				
•					
Wind analysis per API 650 section 3.11 Wind load on 1	·				
Based on 30 psf on vertical plane surface or 22 psf on pro	jected area of cylindri	cal surface			

Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindri	cal surface
Wind pressure, qw =	22.00 psf
Base shear from wind, Vw = qw * Ht * Area =	2.64 Kips
Overturning due to wind, Motmw = Vw * Ht / 2 =	42.24 K-ft

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

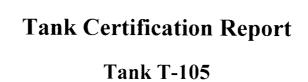

Check existing support column, base plate and anchor bolts.

Overturning, Mot = Z * I *(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2)= Base shear Vs = Z * I *(C1 * (Ws + Wr + W1) + C2 * W2) =	133.60 k-ft 10.33 Kips
Shear along W8x24 column = 133.67 / 9 ft /2 cols = Capacity of existing 1/4 fillet weld at 12" each side = 0.928*4*2*12 =	7.42 Kips 89.09 Kips O.k.
Capacity of W8x24 for 11 ft in axial compression = $(fr AISC 3-31)$) = Shear per each bolt = Vs / 4col / 2 bolts each = Tension load at (2) 7/8" diameter bolts = $7.42 / 2$ bolts = Cap of pullout cone fr each bolt = $.55*.65*(22/7*12^2/4)*(3000)^0.5*4/3*3*1$	107 Kips O.k. 1.29 Kips O.K. 3.71 Kips OK 8.86 Kips O.k.
Combined shear & tension = $(1.29/6)^{(5/3)} + (3.71/11.5)^{(5/3)} =$	0.22891 < 1.33

Check 1" x 12" x 12" base plate:

Fr ASIC 3-106: n =	2 in. m =	2 in.	Fy =.75*36 = 27
fp = 7.42*2.2 / 12/12 =	0.113 ksi		•
$t min = 2m * (fp / Fy)^0.5 =$	0.26 in.		
$t min = 2n * (fp / Fy)^0.5 =$	0.26 in. 13	> 0.26 O.K.	
Shear = 7.42 *2.2 / 8 =	2.04 Kips < Vall =	6.0 * 1.7 =	10.2 Kips

Existing (4) W8x31 columns w/(2) 7/8" dia. Anchors bolts with 1x12x12 base plate is adequate to resist the overturning moment.


REFERENCE: BASEMAP PROVIDED BY:

ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Chandler, Arizona Romic - Southwest Figure D-6

Tankfarm A & B

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #105 February 8, 2005

INTRODUCTION

On February 7, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #105, a 5,900-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 5,900-gallon tank, (Tank #105), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank is supported by four steel legs that rest directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #105 February 8, 2005

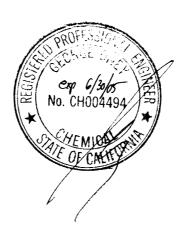
Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life


The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. _____TK-105

Location: Tank Farm AB

Service: Fuels/ Still Bottoms

Contents: Organic/aqueous

Size: 5,900 gal. S.G.: 1.0-1.6

Fill GPM: <u>250</u> Empty GPM: <u>250</u>

Support: 4 Legs

Insulation: n/a Agitator: 7 1/2 HP

Other: Four Baffles 8"w, 1" from wall

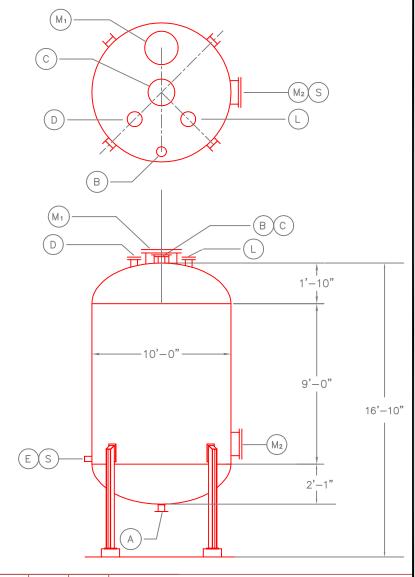
Weight: $5,000\pm$ lbs. Empty $83,700\pm$ lbs. Full

Temp (°F) 300° MAX

Pressure (Psig): ATM

Seismic Zone: 2

Material: Carbon Steel


Method of Construction: Welded

CONNECTION

No.	Size	Туре	Rating	Function
А	4"	RF	150#	BOTTOM NOZZLE
В	3"	RF	150#	SIDE OUTLET
С	16"	RF	150#	AGITATOR
D	3"	RF	150#	SPARE
E	2"	RF	150#	LEVEL INDICATOR
	2"	RF	150#	TOP LEVEL
M ₁	18"	FF	n/a	TOP MANWAY
M ₂	18"	FF	n/a	SIDE MANWAY
S	1"	НС	3000#	SAMPLE PORT

REMARKS

- 1. Elliptical 2:1 Ratio top & bottom heads
- 2. Tank supported on 4 legs.
- 3. Internal baffles (4)-8"x174"L mounted 1" from wall at 90°

Rev No.	Revision	Ву	Date	Apprvd	Date	
1	Update for 2004 Part B	RP	4-7-04	WK	4-04	1
2	Revise Temperature rating	RP	8-22-05	MS	8-05	
	_					

ROMIC
ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Drawing Number Tk 105

METRO ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762 Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K

2K502

Tank 105

Issued:

12/10/02

Project Name:

Romic Environmental Technologies Corporation

Project Location: ROMIC Southwest, Chandler, Arizona.

Table o	Page No.	
1	Scope of work, design loads and tank data	1
2	Seismic and wind analysis for overturning moment	2
3	Check existing support column, base plate and anchor bolts	3

SCOPE OF WORK:

Tank Designation:

105

- Analyzed existing anchorage for 10'-0" Diameter by 13" high tank with (4) 3'-6" W8x31 legs.
- · Overall top of tank elevation is 16'-10" with 10'-4" as center of tank for apply loads
- Check existing anchor bolts, base plate column and column connections.

DESIGN LOADS:

2000 Inte	2000 International Building Code. 80 MPH wind, Seismic Use group II							
					ŀ	 	16.83 ft	
WIND:	F= Qz * G	* Cf * Af			[) =	10 ft	
	Where Qz	= 0.00256 k	Kz Kzt Kd V*	^2 I	ŀ	<z =<="" td=""><td>0.9 Tbl 6-3</td><td>Case2</td></z>	0.9 Tbl 6-3	Case2
	Qz =	0.00256*0.	9*1.0*0.95*9	90^2*1.0 =	ŀ	<zt =<="" td=""><td>1 Tbl 6-4</td><td>Flat</td></zt>	1 Tbl 6-4	Flat
		17.73	psf		ŀ	<d =<="" td=""><td>0.95 Tbl 6-4</td><td></td></d>	0.95 Tbl 6-4	
					\	/ =	90 MPH Fi	g 6-1
F wnd =	2743	lbs.			J	=	1 Tbl 6-1	
M otm = F	wind * H ot	m =	28332	lbs-ft	F	For H/D =	1.683	
					(Cf =	1.4 Tbl 6-19)
					(Gf =	0.85 Sec 6.5	.8
					A	4f =	130 Sq. Ft.	
					ŀ	d otm =	10.33 ft	
Location:	Chandler		State:	Arizona	ç	Siteclass:	D	
						Fa =	1.6 Tbl 161	5.1.2(1)
From Fig.	1615(1):	Ss =	0.21	q	F	₹ =	3 Tbl 162	` '
_	1615(2):		0.063	•	(Omega =		` '
· ·	. ,			· ·		e =	1.25 Tbl 162	` '
Sds = 0.6	7 Fa Ss =		0.224	W	1	N =	86000 lbs	(/
V seismic	= Cs W	Eq. 16-34			(Cs = Sds /I	R * I =	0.0933
=	0.093	W			(Cs min=0.0	044Sdsl =	0.0123
					l	Use Cs =		0.0933
T = 0.000	00765*(L / D))^2 *(wD / t	:) ^ 0.5 =	0.000000765*(13./10)^2	2 *(46000/	13*10/0.34)^.5	
	`	, ,	=	0.000417	< 0.06	`	Rigid Structure	
Vsimnlifie	d = 1.2 Sds \	W/R =	0.090	W				
	0.14 Sds le		0.039					
	o.14 003 10 20.8S1 = 0.8S1		0.033					
00 111111110	0.001	1715	0.021	* *				

Overturning Moment = Vs W * 1.2 sloshing * H otm = 71070.4 lbs-ft Seismic Control

0.084 W

Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks

Use Vs =

Vs asd =

0.093 W

0.067 W

Given information:

Vs rigid nonstr = 0.3 Sds I W =

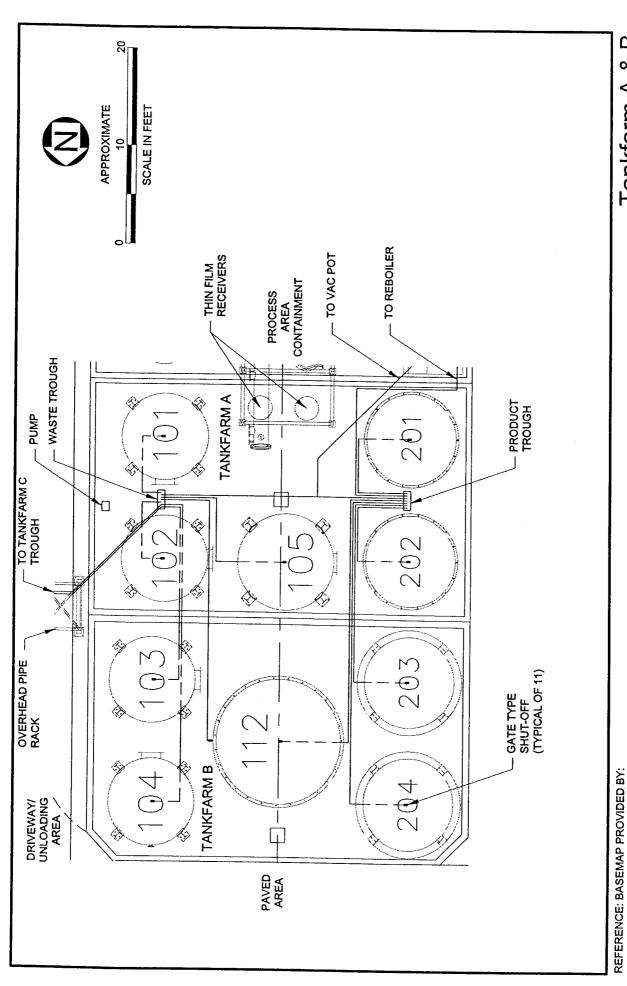
Material: Carbon steel
Thickness: 0.34"
Concrete slab thickness: Min 6"

Full Tank +wt tank: 83700 lbs
Agitator: 500 lbs
Misc valves and structures: 1800 lbs

Metro Environmental Services 1256-B West Brooks Str	eet Ontario, CA 9176	2 2/6/2009
Seismic Analysis per API-650 Appendix E Seismic zone, Z = (Zone 4=0.4,zone 3=0.3,zone 2=0. Seismic Importance factor, Is = (Max I = 1.5, normally Site coefficient from soil type, s = (S4=2, S3=1.5, S2=1.2, Spcific gravity of liquid, G = Tank diameter, D =	l = 1.0)	0.40 1.25 1.50 1.6 10.00 ft
Height of tank, Ht = Fill height from top of floor, H = Weight of content, Wt = Weight of shell, uncorroded, Ws = .49*(.34/12*2*22/7*5*13	•	13.00 ft 16.83 ft 78.70 kips 5.672 kips
Weight of roof steel, uncorroded, Wr' = .49*.20/12*2 Roof equipment load in seismic, We = Ratio of D / H = Weight or roof & equipment load, Wr = Wr' + We = Height of center of gravity of shell, Xs = H / 2 =	2*22/7*5=	0.244 kips 0.50 kips 0.77 0.74 Kips 8.42 ft
From Figure E-2 Effective masses, W1 / Wt = Contents in unison w/ shell, W1 = Wt * (W1 / Wt) =	0.861	0.86 67.76 Kips
From Figure E-2 Effective masses, W2 / Wt = First sloshing mode contents, W2 = Wt * (W2 / Wt) = From Figure E-3 Centroids of seismic forces, X1 / H =	0.195 0.428	0.20 15.38 Kips 0.43
Height to centroid, X1 = H * (X1 / H) = From Figure E-3 Centroids of seismic forces, X2 / H =	0.767	7.20 0.77
Height to centroid, X2 = H * (X2 / H) = From Figure E-4 Factor k, k = Natural period of first mode, T = k * (D)^0.5 = Lateral force coefficient, C1 = 0.24 Lateral force coefficient, C2 = C2 = 0.3S/T =	0.577	12.90 0.58 1.83 seconds 0.24 0.25
Base shear $Vs = Z * I * (C1 * (Ws + Wr + W1) + C2 * W2) :$ Overturning, $Mot = Z * I * (C1*Ws*Xs + C1*Wr*Ht + C1*W$ Friction resistance from contents, shell, roof steel, $Ffric=0$. Factor of safety for sliding, $FSs = Fric / Vs =$	'1*X1 + C2*W2*X2)=	10.80 Kips <u>85.94</u> K-ft 33.85 Kips 3.13 > 1.5 OK
Calculate resistance load against overturning: Yield strength of tank material, Fy = Thickness of bottom plate, tb = max (tf -co), thickness of f Wt of contents allow for OT calc. per cicumference, WL=7. Max allowable for WL = 1.25 G H D = 336.66 g Resistance to OT by contents, Pr = 22/7 * D * WL = Resistance to OT by shell and roof, Psr = Ws + Wr = Total resistance to OT moment, Mr = (Pr + Psr) * D / 2 =	9 tb(Fby G H)^0.5=	36.00 ksi 1.00 7778.92 plf 336.66 plf 10.58 Kips 6.42 Kips 84.98 k-ft

Mot > Mr, Anchorage required

Wind analysis per API 650 section 3.11 Wind load on Tanks


Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindrical surface Wind pressure, **qw** = 22.00 psf Base shear from wind, **Vw** = qw * Ht * D = 2.86 Kips Overturning due to wind, **Motmw** = Vw * 10.33= 29.54 K-ft

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

Check existing support column, base plate and anchor bolts.

Overturning, Mot = Z * I *(C1*Ws* Base shear Vs = Z * I *(C1 * (Ws		,	85.94 k-ft 10.80 Kips
Shear along W8x31 column = Capacity of existing 1/4 fillet weld		0.928*4*2*24 =	4.30 Kips 178.18 Kips O.k.
Capacity of W8x31 for 1.5 ft in axi	ial compression =	(fr AISC 3-31)) =	178 Kips O.k.
Tension load at (4) 1/2" diameter Cap of pullout cone fr 4 bolts =			1.07 Kips 35.45 Kips O.k.
Check 1" x 12 x 12" base plate: Fr ASIC 3-106: n = fp = T*2.2 / 12/12 = t min = 2m *(fp / Fy)^0.5 = t min = 2n *(fp / Fy)^0.5 =	1.5 in. m = 0.066 ksi 0.15 in. 0.15 in.	1.5 in. 1> 0.16 O.K.	Fy =.75*36 = 27
Shear = 10.8 *2.2 / 16 =	1.48 Kips < Val	= 1.96 * 1.7 =	3.332 Kips

Therefore the existing (4) W8x31 support columns with 1"x12"x12" + (4) 1/2" diameter anchor bolts are still adequate to resist the overturning moment.

Tankfarm A & B Romic - Southwest Chandler, Arizona

Figure D-6

P:\ROMIC\CADD\FIGURES PROMIC\CAD

EOMIC SOUTHWEST, CHANDLER, ARIZONA

Tank Certification Report Tank T-112

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #112 February 5, 2005

INTRODUCTION

On February 7, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #112, a 15,000-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 15,000-gallon tank, (Tank #112), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel and stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #112 February 5, 2005

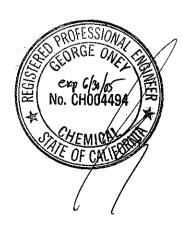
Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life


The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Project Name: ROMIC SOUTHWEST - Chandler, AZ Tank I.D.No. ______ TK-112 _____ Weight: _____ 6,600± lbs. Empty

Location: Tank Farm AB

Service: Fuels / Still Bottoms / Solvents Temp (F) AMB.

Contents: Organic/aqueous

Size: 15,000 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Skirt

Insulation: n/a Agitator: 10 HP

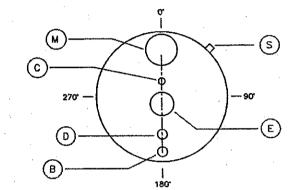
Other: Agitator w/ Baffles Optional

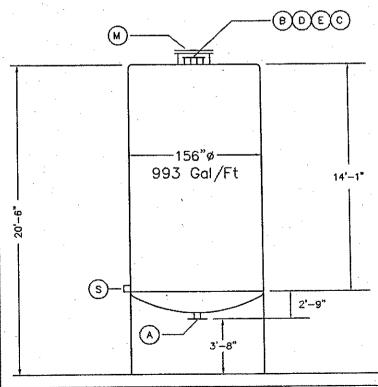
181,700± lbs. Full

Pressure (Psig): ATM.

Seismic Zone: 2

Material: Stainless steel


Method of Construction: Welded


CONNECTION

No.	Size	Туре	Rating	Function
Α	4"	RF	. 150#	BOTTOM NOZZLE
В	4"	RF	150#	SIDE OUTLET
С	2 1/2"	RF	150#	VENT
D	4"	RF	150#	SPARE
E	12"	RF	150#	LEVEL INDICATOR
М	24"	FF	n/a	TOP MANWAY
S	1"	HC	3000#	SAMPLE PORT
		·		
				1 -

REMARKS

- 1. Standard Flat top.
- 2. Flanged and dished bottom
- 3. Tank supported on ring skirt.
- 4. See Brown Tank & Steel W/0-3882.

- 1								
	Rev No.	Revision	Ву	Date	Apprvd	Date	6	\mathbb{R}^{0}
-	1	Update for 2001 Part B	RP	4-7-04	WK	4-04		ENVIRONMEN
								ROMIC SOUTH
ı								Drawing Numbe

 OMIC NTAL TECHNOLOGIES CORP. HWEST, CHANDLER, ARIZONA

Tk 112

METRO ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762 Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN:

2K502

Tank 112 and 113

Issued:

01/31/05

Project Name:

Romic Environmental Technologies Corporation

Project Location: ROMIC Southwest, Chandler, Arizona.

Table	Page No.	
1	Scope of work, design loads and tank data	1
2	Seismic and wind analysis for overturning moment	2
3	Check anchorage	2

SCOPE OF WORK:

Tank Designation: 112 and 113

- Analyzed existing anchorage for 13'-0" Diameter by 14'-1" high tank with 6'-5" skirt
- Existing tank skirt w/1/2" thick 3" width bottom ring and (9) 3/4" diameter anchor bolts evenly spaced.
- Check existing anchorage.

DESIGN LOADS:

2000 International Building Code. 90 MPH wind, Seismic Use group II							
		•		•		H =	20.5 ft
WIND: F	F= Qz * G	* Cf * Af				D =	13 ft
V	Where Qz = 0.00256 Kz Kzt Kd V^2 I			^2 I		Kz =	0.9 Tbl 6-3 Case2
C	Qz =	0.00256*0.9	*1.0*0.95*	90^2*1.0 =		Kzt =	1 Tbl 6-4 Flat
		17.73	psf			Kd =	0.95 Tbl 6-4
						V =	90 MPH Fig 6-1
F wnd =	2658	lbs.				! =	1 Tbl 6-1
M otm = F w	/ind * H otr	m =	35777	lbs-ft		For H/D =	1.576923
						Cf=	1.4 Tbl 6-19
						Gf =	0.85 Sec 6.5.8
					`	Af =	126 Sq. Ft.
						H otm =	13.4583 ft
		,					
Location: C	Chandler	J	State:	Arizona		Siteclass:	D
	-	_				Fa =	1.6 Tbl 1615.1.2(1)
From Fig. 16		Ss =	0.21	•		R =	3 Tbl 1622.2.5(1)
From Fig. 16	515(2):	S1 =	0.063	g		Omega =	• • • • • • • • • • • • • • • • • • • •
0.1.007.5	- ^					le =	1.25 Tbl 1622.2.5(2)
Sds = 0.67 F	-a Ss =		0.224	W		W =	182000 lbs
V paiamia – i	O= 101	E- 40.04					
V seismic =		Eq. 16-34				Cs = Sds /	
=	0.093	VV				Cs min=0.0	
						Use Cs =	0.0933
T = 0.00000	765*/L / D	\^2 *(\d) / + \	\	0.0000070	F*(4.4.(4.0))	10 */ 10000	4.44.070.0.014.5
1 - 0.00000	703 (L7 D) 2 (WD/L)) ^ 0.5 = -	0.00000076		^2 "(46000/	14*13/0.34)^.5
		•	_	0.000314	< 0.06		Rigid Structure
Vsimplified =	= 1 2 Sde \	M/R =	0.090	147			
Vnonstr = 0.			0.039				
Cs min nons			0.033				
Vs rigid nons			0.084			Use Vs =	0.093 W
vo ngia none	0.00	uo . v.	0.004	V V		Vs asd =	0.053 W
						v s asu =	1 0.007
Overturning	Moment =	Vs W * 1.2 s	sloshing * H	d otm =	195952.8	lbs-ft	Seismic Control

Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks

Given information:

Material: Carbon steel Thickness: 0.34" Concrete slab thickness: Min 6" Full Tank +wt tank: 181700 lbs Agitator: 0 lbs

Misc valves and structures: 300 lbs

Wind pressure, qw =

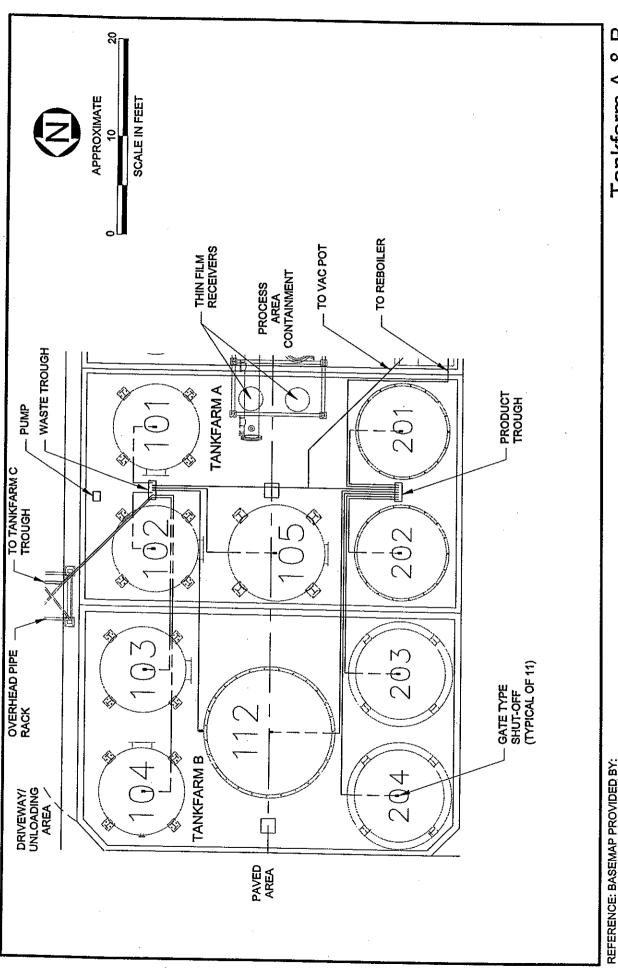
Base shear from wind, **Vw** = qw * Ht * D =

Overturning due to wind, **Motmw** = Vw * 14/2=

Seismic Analysis per API-650 Appendix E					
Seismic zone, Z = (Zone 4=0.4,zone 3=0.3,zone 2=0.2,z	one 1=0.075)	0.40			
Seismic Importance factor, Is = (Max I = 1.5, normally I =		1.25			
Site coefficient from soil type, s = (S4=2, S3=1.5, S2=1.2, S1		1.50			
Spcific gravity of liquid, G =	,	1.4			
Tank diameter, D =		9.00 ft			
Height of tank, Ht =		14.08 ft			
Fill height from top of floor, H =		20.50 ft			
Weight of content, Wt =		175.10 kips			
Weight of shell, uncorroded, Ws = .49*(.34/12*2*22/7*6.5*14))= 7.988347	· · · · · · · · · · · · · · · · · · ·			
Weight of roof steel, uncorroded, Wr' = .49*.20/12*2*2		0.317 kips			
Roof equipment load in seismic, We =	,,•	0.30 kips			
Ratio of D / H =		0.64			
Weight or roof & equipment load, Wr = Wr' + We =		0.62 Kips			
Height of center of gravity of shell, Xs = H / 2 =		10.25 ft			
From Figure E-2 Effective masses, W1 / Wt =	0.890	0.89			
Contents in unison w/ shell, W1 = Wt * (W1 / Wt) =		155.80 Kips			
From Figure E-2 Effective masses, W2 / Wt =	0.166	0.17			
First sloshing mode contents, W2 = Wt * (W2 / Wt) =		29.03 Kips			
From Figure E-3 Centroids of seismic forces, X1 / H =	0.438	0.44			
Height to centroid, X1 = H * (X1 / H) =		8.99			
From Figure E-3 Centroids of seismic forces, X2 / H =	0.797	0.80			
Height to centroid, X2 = H * (X2 / H) =		16.34			
From Figure E-4 Factor k, k =	0.578	0.58			
Natural period of first mode, T = k * (D)^0.5 =		1.73 seconds			
Lateral force coefficient, C1 = 0.24		0.24			
Lateral force coefficient, C2 = C2 = 0.3S/T =		0.26			
Base shear $Vs = Z * I * (C1 * (Ws + Wr + W1) + C2 * W2) =$		23.50 Kips			
Overturning, Mot = Z * I *(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X		<u>213.61</u> K-ft			
Friction resistance from contents, shell, roof steel, Ffric=0.4 *	73.36 Kips				
Factor of safety for sliding, FSs = Fric / Vs =		3.12 > 1.5 OK			
Calculate resistance load against overturning:					
Yield strength of tank material, Fy =		36.00 ksi			
Thickness of bottom plate, tb = max (tf -co), thickness of floo	r or 0.25 =	6.000			
Wt of contents allow for OT calc. per cicumference, WL=7.9 th	, ,	48180.42 plf			
Max allowable for $WL = 1.25 G H D = 322.875 plf$	Use:	322.88 plf			
Resistance to OT by contents, Pr = 22/7 * D * WL =		9.13 Kips			
Resistance to OT by shell and roof, Psr = Ws + Wr = 8.61 Kips					
Total resistance to OT moment, $Mr = (Pr + Psr) * D / 2 =$ 79.82 k-ft					
Mot > Mr, Anchorage required					
Wind analysis per API 650 section 3.11 Wind load on Tar	rke				
Based on 30 psf on vertical plane surface or 22 psf on project		ical curface			
Wind pressure aw =	acu area or cylindr	Ical surface			

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

22.00 psf


4004.00 Kips

53887.03 K-ft

Check existing (9) 3/4" diameter anchor bolts.

Cap of pullout cone fr each bolt = .55*.65*(22/7*10^2/4)*(3000)^0.5*4/	(3*3*1 6.15 Kips O.k.
Combined stress of tension and shear = $(4.11/4.4)^{(5/3)} + (2.61/8)$.4)^(5/3)= 1.03 < 1.33
Shear of one bolt = 23.5 / 9 =	2.61 Kips
Tension of one bolt = 213.61 / 13 ft / 4 bolts =	4.11 Kips
Consider only four bolts are resisting overturning at one time.	
Base shear Vs = Z * I *(C1 * (Ws + Wr + W1) + C2 * W2) =	23.50 Kips
Overturning, Mot = Z * I *(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W	/2*X2)= 213.61 k-ft

Therefore the existing 9' diameter flat bottom tank with (9) 3/4" diameter bolt is still adequate to resist the overturning moment.

Romic - Southwest Chandler, Arizona Tankfarm A & B

Figure D-6

ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Tank Certification Report Tank T-113

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #113 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #113, a 15,000-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 15,000-gallon tank, (Tank #113), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel and stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #113 February 5, 2005

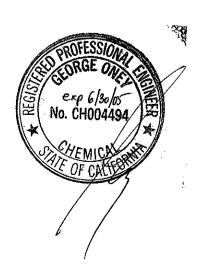
Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life


The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Service: Fuels/ Still Bottoms/ Solvents

Contents: Organic/aqueous

Size: 15,000 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Skirt

Insulation: n/a Agitator: 10 HP

Other: Agitator w/ Baffles Optional

Weight: 6,600± lbs. Empty

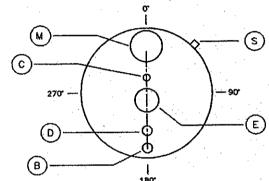
181,700± lbs. Full

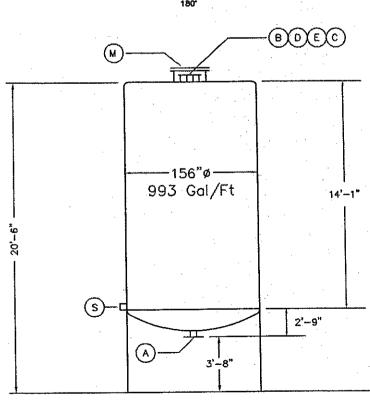
Temp (*F) AMB.

Pressure (Psig): ATM.

Seismic Zone: 2

Material: Stainless steel


Method of Construction: Welded


CONI	ΝE	CT	ION
, .			

3311112311311							
No.	Size	Туре	Rating	Function			
A	4"	RF	150#	BOTTOM NOZZLE			
В	4"	RF	150#	SIDE OUTLET			
. C	2 1/2"	RF	150#	VENT			
D	4"	RF	150#	SPARE			
E	12"	RF	150#	LEVEL INDICATOR			
М	24"	FF	n/a	TOP MANWAY			
S	1"	HC	3000#	SAMPLE PORT			
			-				
				·			
	1		T				

REMARKS

- 1. Standard Flat top head
- 2. Flanged and dished bottom
- 3. Tank supported on ring skirt.
- 4. See Brown Tank & Steel W/0-3882.

Rev No.	Revision	Ву	Date	Apprvd	Date	G
11	Update for 2004 Part B	RP	4-7-04	WK	4-04	6
				-		

FOMIC
ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Drawing Number Tk 113

METRO ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762 Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K502

Tank 112 and 113

Issued:

01/31/05

Project Name:

Romic Environmental Technologies Corporation

Project Location: ROMIC Southwest, Chandler, Arizona.

Table of Contents:Page No.1Scope of work, design loads and tank data12Seismic and wind analysis for overturning moment23Check anchorage.3

SCOPE OF WORK:

Tank Designation: 112 and 113

- Analyzed existing anchorage for 13'-0" Diameter by 14'-1" high tank with 6'-5" skirt
- Existing tank skirt w/1/2" thick 3" width bottom ring and (9) 3/4" diameter anchor bolts evenly spaced.
- Check existing anchorage.

DESIGN LOADS:

2000 Intern	ational Bu	uilding Code	e. 90 MPH	wind, Seism	ic Use ar	oup II	
				•		H =	20.5 ft
WIND:	F= Qz * G	* Cf * Af				D =	13 ft
1	Where Qz	= 0.00256 K	z Kzt Kd V	^2 I		Kz =	0.9 Tbl 6-3 Case2
(Qz =	0.00256*0.9	9*1.0*0.95*	90^2*1.0 =		Kzt =	1 Tbl 6-4 Flat
		17.73	psf			Kd =	0.95 Tbl 6-4
						V =	90 MPH Fig 6-1
F wnd =	2658					l =	1 Tbl 6-1
M otm = F w	vind * H otr	m =	35777	lbs-ft		For H/D ≔	1.576923
						Cf =	1.4 Tbl 6-19
						Gf =	0.85 Sec 6.5.8
					`	Af =	126 Sq. Ft.
•						H otm =	13.4583 ft
Location:	Chandler	1	State:	Arizona		Siteclass:	D
_		•				Fa =	1.6 Tbl 1615.1.2(1)
From Fig. 16	615(1):	Ss =	0.21	a		R=	3 Tbl 1622.2.5(1)
From Fig. 16	615(2):	S1 =	0.063			Omega =	* *
				•		le =	1.25 Tbl 1622.2.5(2)
Sds = 0.67 I	Fa Ss =		0.224	W		W =	182000 lbs
V seismic =	Cs W	Eq. 16-34				Cs = Sds /	/R * I = 0.0933
=	0.093	•				Cs min=0.	
						Use Cs =	0.0933
T = 0.00000)765*/L / D	\^2 */wD /+	\	0.00000076	E*/4.4 (4.0\	^^ * /4€000/	14.4*4.0.10.0.4\A.E
. 0.00000	,,00 (E, D) 2 (WD/t	=	0.000314	3 (14.713) < 0.06	~2 (46000/	/14*13/0.34)^.5 Rigid Structure
							. Ng.a of actaro
Vsimplified :			0.090	W			
Vnonstr = 0.			0.039	W			
Cs min nons			0.021	W		•	
Vs rigid non	str = 0.3 S	ds I W =	0.084	W		Use Vs =	0.093 W
						Vs asd =	0.067 W

Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks

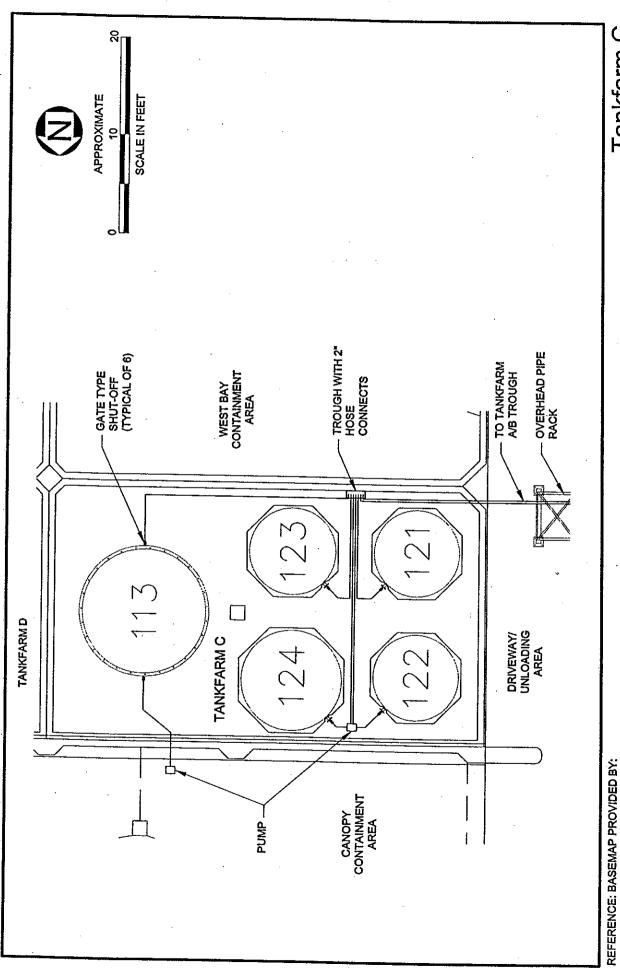
195952.8 lbs-ft

Seismic Control

Given	inforr	nation:

Carbon steel
0.34"
Min 6"
181700 lbs
0 lbs
300 lbs

Overturning Moment = Vs W * 1.2 sloshing * H otm =


Seismic Analysis per API-650 Appendix E		
Seismic zone, Z = (Zone 4=0.4,zone 3=0.3,zone 2=0.2,	0.40	
Seismic Importance factor, Is = (Max I = 1.5, normally I:	1.25	
Site coefficient from soil type, s = (S4=2, S3=1.5, S2=1.2, S	1.50	
Spcific gravity of liquid, G =		1.4
Tank diameter, D =		9.00 ft
Height of tank, Ht =		14.08 ft
Fill height from top of floor, H =		20.50 ft
Weight of content, Wt =		175.10 kips
Weight of shell, uncorroded, Ws= .49*(.34/12*2*22/7*6.5*14	4)= 7.988347	7 7.988 kips
Weight of roof steel, uncorroded, Wr' = .49*.20/12*2*.	22/7*4.5=	0.317 kips
Roof equipment load in seismic, We =		0.30 kips
Ratio of D / H =		0.64
Weight or roof & equipment load, Wr = Wr' + We =		0.62 Kips
Height of center of gravity of shell, Xs = H / 2 =		10.25_ft
From Figure E-2 Effective masses, W1 / Wt =	0.890	0.89
Contents in unison w/ shell, W1 = Wt * (W1 / Wt) =		155.80 Kips
From Figure E-2 Effective masses, W2 / Wt =	0.166	0.17
First sloshing mode contents, W2 = Wt * (W2 / Wt) =		29.03 Kips
From Figure E-3 Centroids of seismic forces, X1 / H =	0.438	0.44
Height to centroid, $X1 = H * (X1 / H) =$		8.99
From Figure E-3 Centroids of seismic forces, X2 / H =	0.797	0.80
Height to centroid, $X2 = H * (X2 / H) =$		16.34
From Figure E-4 Factor k, k =	0.578	0.58
Natural period of first mode, T = k * (D)^0.5 =		1.73 seconds
Lateral force coefficient, C1 = 0.24		0.24
Lateral force coefficient, C2 = C2 = 0.3S/T =		0.26
Base shear Vs = Z * I *(C1 * (Ws + Wr + W1) + C2 * W2) =		23.50 Kips
Overturning, Mot = Z * I *(C1*Ws*Xs + C1*Wr*Ht + C1*W1*	X1 + C2*W2*X2)=	213.61 K-ft
Friction resistance from contents, shell, roof steel, Ffric=0.4		73.36 Kips
Factor of safety for sliding, FSs = Fric / Vs =	,	3.12 > 1.5 OK
Calculate resistance load against overturning:		
Yield strength of tank material, Fy =		36.00 ksi
Thickness of bottom plate, tb = max (tf -co), thickness of flo	or or 0.25 =	6.000
Wt of contents allow for OT calc. per cicumference, WL=7.9		48180.42 plf
Max allowable for $WL = 1.25 G H D = 322.875 pl$	f Use:	322.88 plf
Resistance to OT by contents, Pr = 22/7 * D * WL =	9.13 Kips	
Resistance to OT by shell and roof, Psr = Ws + Wr =		8.61 Kips
Total resistance to OT moment, Mr = (Pr + Psr) * D / 2 =		79.82 k-ft
<u>. </u>	ot > Mr, Anchorag	<u>e required</u>
Wind analysis per API 650 section 3.11 Wind load on Ta	enks	
Based on 30 psf on vertical plane surface or 22 psf on proje	ected area of cylind	rical surface
Wind pressure, qw =		22.00 psf
Base shear from wind, Vw = qw * Ht * D =		4004.00 Kips
Overturning due to wind, Motmw = Vw * 14/2=		53887.03 K-ft
•		

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

Check existing (9) 3/4" diameter anchor bolts.

Overturning, Mot = Z * I *(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2)=	213.61 k-ft
Base shear Vs = Z * I *(C1 * (Ws + Wr + W1) + C2 * W2) =	23.50 Kips
Consider only four bolts are resisting overturning at one time. Tension of one bolt = 213.61 / 13 ft / 4 bolts =	4.11 Kips
Shear of one bolt = 23.5 / 9 =	2.61 Kips
Combined stress of tension and shear = $(4.11/4.4)^{(5/3)} + (2.61/8.4)^{(5/3)} =$	1.03 < 1.33
Cap of pullout cone fr each bolt = .55*.65*(22/7*10^2/4)*(3000)^0 5*4/3*3*1	6 15 Kins O.k.

Therefore the existing 9' diameter flat bottom tank with (9) 3/4" diameter bolt is still adequate to resist the overturning moment.

Tankfarm C Romic - Southwest Chandler, Arizona

Figure D-7

URS

ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARZONA

Tank Certification Report Tank T-121

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #121 February 5, 2005

INTRODUCTION

On February 7, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #121, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 6,500-gallon tank, (Tank #121), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #121 February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

CHEMICA OF CALIFO

George A. Oney, P.E. Chemical Engineer Registration No. CH004494 Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #121 Anchorage System July 14, 2005

INTRODUCTION

On May 27, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the anchorage system for Tank #121, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Tank Anchorage System Installation Inspection

The tank anchorage system was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate installation. No discrepancies were noted.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Certification Report Tank T-122

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #122 June 1, 2005

INTRODUCTION

On May 27, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #122, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 6,500-gallon tank, (Tank #122), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #122 June 1, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer

Registration No. CH004494

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #122 Anchorage System July 14, 2005

INTRODUCTION

On May 27, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the anchorage system for Tank #122, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Tank Anchorage System Installation Inspection

The tank anchorage system was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate installation. No discrepancies were noted.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Page 1 of 1

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #123 February 5, 2005

INTRODUCTION

On February 2, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #123, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 6,500-gallon tank, (Tank #123), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #123 February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494 No. ČH004494

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #123 Anchorage System July 14, 2005

INTRODUCTION

On May 27, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the anchorage system for Tank #123, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Tank Anchorage System Installation Inspection

The tank anchorage system was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate installation. No discrepancies were noted.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer

Registration No. CH004494

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. <u>TK-121 to TK-123</u>

Location: Tank Farm C

Service: Waste Storage

Contents: Organic/aqueous

Size: 6,500 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Flat Bottom

Insulation: $\frac{n/a}{}$ Agitator: $\frac{n/a}{}$

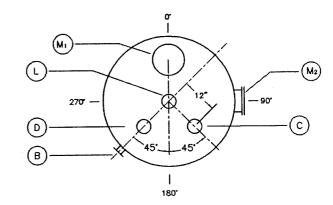
CONNECTION

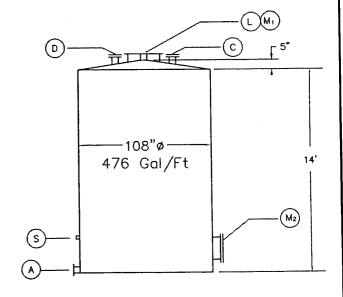
Weight: $4,000\pm$ lbs. Empty $80,000\pm$ lbs. Full

Temp (*F) AMB.

Pressure (Psig): ATM.

Seismic Zone: 2


Material: Carbon Steel


Method of Construction: Welded

No.	Size	Туре	Rating	Function
Α	4"	RF	150#	BOTTOM NOZZLE
В	4"	RF	150#	SIDE OUTLET
С	2 1/2"	RF	150#	VENT
D	4"	RF	150#	SPARE
E	12"	RF	150#	LEVEL INDICATOR
. M	24"	FF	n/a	TOP MANWAY
S	1"	НС	3000#	SAMPLE PORT

REMARKS

- 1. Standard cone top
- 2. Flat bottom

Rev No.	Revision	Ву	Date	Apprvd	Date	4
1	Update for 2004 Part B	RP	4-7-04	WK	4-04	6

ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA Drawing Number TK-121 to TK-123

METRO ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762 Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K502

Tank 121, 122 and 123

Issued:

01/31/05

Project Name:

Romic Environmental Technologies Corporation

Project Location: ROMIC Southwest, Chandler, Arizona.

Table o	Page No.	
1	Scope of work, design loads and tank data	,
2	Seismic and wind analysis for overturning moment	2
3	Check existing anchorage	

SCOPE OF WORK:

Tank Designation:

Tank 121, 122 and 123

- - Analyzed existing anchorage for 9' Diameter by 14" high tank flat bottom tank
 - Existing tank with (4)L4x4x3/8, each with (1) 3/4" diameter anchor bolt
 - Check existing anchorage.

DESIGN LOADS:

WIND: F= Qz * G Where Qz Qz =	* Cf * Af = 0.00256 Kz Kzt Kd V^2 I 0.00256*0.9*1.0*0.95*90^2*1.0 = 17.73 psf	H = D = Kz = Kzt = Kd =	14.5 ft 9 ft 0.9 Tbl 6-3 Case2 1 Tbl 6-4 Flat 0.95 Tbl 6-4
F wnd = 2743 M otm = F wind * H ot		V = I = For H/D = Cf = Gf = Af = H otm =	90 MPH Fig 6-1 Tbl 6-1 1.61 1.4 Tbl 6-19 0.85 Sec 6.5.8 130 Sq. Ft. 7 ft
Location: Chandler	State: Arizona	Siteclass:	D

Location. Changler		State: Arizona	Siteclass: D	
			Fa =	1.6 Tbl 1615.1.2(1)
From Fig. 1615(1):	Ss =	0.21 g	R =	3 Tbl 1622.2.5(1)
From Fig. 1615(2):	S1 =	0.063 g	Omega =	2 Tbl 1622.2.5(1)
			le =	1.25 Tbl 1622.2.5(2)
Sds = 0.67 Fa Ss =		0.224 W	W =	81000 lbs

V seismic = Cs W Eq. 16-34	Cs = Sds /R * I =	0.0933
= 0.093 W	Cs min=0.044Sdsl =	0.0123
	Use Cs =	0.0933

$T = 0.00000765*(L / D)^2 *(wD / t)^0.5 =$	0.000000765	*(14./9)^2 *((46000/14*9/0.34)^.5
=	0.000546	< 0.06	Rigid Structure
M. 10 1 4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Vsimplified = 1.2 Sds W / R =	0.090 W	
Vnonstr = 0.14 Sds Ie =	0.039 W	
Cs min nonstr = 0.8S1 I / R =	0.021 W	
Vs rigid nonstr = 0.3 Sds I W =	0.084 W	Use Vs = 0.093 W
		Vs asd = 0.067 W

Overturning Moment = Vs W * 1.2 sloshing * H otm = 45360 lbs-ft Seismic Control

Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks

Given information:

Material: Carbon steel
Thickness: 0.34"
Concrete slab thickness: Min 6"

Full Tank +wt tank: 80000 lbs
Agitator: 0 lbs
Misc valves and structures: 1000 lbs

Seismic Analysis per API-650 Appendix E		
Seismic zone, Z = (Zone 4=0.4,zone 3=0.3,zone 2=0	.2,zone 1=0.075)	0.40
Seismic Importance factor, Is = (Max I = 1.5, normally		1.25
Site coefficient from soil type, $s = (S4=2, S3=1.5, S2=1.2,$, S1=1.0)	1.50
Spcific gravity of liquid, G =	,	1.4
Tank diameter, D =		9.00 ft
Height of tank, Ht =		14.00 ft
Fill height from top of floor, H =		14.00 ft
Weight of content, Wt =		80.00 kips
Weight of shell, uncorroded, Ws = .49*(.34/12*2*22/7*4.5	*14)= 5.49	
	2*22/7*4.5=	0.256 kips
Roof equipment load in seismic, We =		1.00 kips
Ratio of D / H =		0.64
Weight or roof & equipment load, Wr = Wr' + We =		1.26 Kips
Height of center of gravity of shell, Xs = H / 2 =		7.00 ft
From Figure E-2 Effective masses, W1 / Wt =	0.889	0.89
Contents in unison w/ shell, W1 = Wt * (W1 / Wt) =		71.12 Kips
From Figure E-2 Effective masses, W2 / Wt =	0.167	0.17
First sloshing mode contents, W2 = Wt * (W2 / Wt) =		13.33 Kips
From Figure E-3 Centroids of seismic forces, X1 / H =	0.438	0.44
Height to centroid, X1 = H * (X1 / H) =	21.122	6.13
From Figure E-3 Centroids of seismic forces, X2 / H =	0.796	0.80
Height to centroid, X2 = H * (X2 / H) =		11.14
From Figure E-4 Factor k, k =	0.578	0.58
Natural period of first mode, $T = k * (D)^0.5 =$		1.73 seconds
Lateral force coefficient, C1 = 0.24		0.24
Lateral force coefficient, C2 = C2 = 0.3S/T =		0.26
,		
Base shear Vs = Z * I *(C1 * (Ws + Wr + W1) + C2 * W2)	=	11.08 Kips
Overturning, Mot = Z * I *(C1*Ws*Xs + C1*Wr*Ht + C1*V	V1*X1 + C2*W2*X2))= <u>75.22</u> K-ft
Friction resistance from contents, shell, roof steel, Ffric=0		
Factor of safety for sliding, FSs = Fric / Vs =		3.10 > 1.5 OK
Calculate resistance load against overturning:		
Yield strength of tank material, Fy =		36.00 ksi
Thickness of bottom plate, tb = max (tf -co), thickness of	floor or 0.25 =	6.00
Wt of contents allow for OT calc. per cicumference, WL=7	7.9 tb(Fby G H)^0.5	= 39816.00 plf
Max allowable for WL = 1.25 G H D = 220.5	plf Use:	220.50 plf
Resistance to OT by contents, Pr = 22/7 * D * WL =		6.24 Kips
Resistance to OT by shell and roof, Psr = Ws + Wr =		6.75 Kips
Total resistance to OT moment, Mr = (Pr + Psr) * D / 2 =		58.46 k-ft
	Mot > Mr, Anchor	age required

Wind analysis per API 650 section 3.11 Wind load on Tanks

Based on 30 psf on vertical plane surface or 22 psf on projected area of cylind	Irical surface
Wind pressure, qw =	22.00 psf
Base shear from wind, Vw = qw * Ht * D =	2.77 Kips
Overturning due to wind. Motmw = Vw * 14/2=	19.40 K-ft

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage reg'd.

Check existing anchor bolts.

Use:

Overturning, Mot = Z * I *(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2)= 75.22 k-ft Base shear Vs = Z * I *(C1 * (Ws + Wr + W1) + C2 * W2) = 11.08 Kips

Consider only two bolts are resisting overturning at one time.

Tension of one bolt = 75.22 / 9 ft / 2 bolts = 4.18 Kips Shear of one bolt = 11.08 / 4 = 2.77 Kips Combined stress of tension and shear = $(2.77/4.4)^{(5/3)} + (4.18/8.4)^{(5/3)} =$ 0.77 < 1.33

Cap of pullout cone fr each bolt = $.55*.65*(22/7*10^2/4)*(3000)^0.5*4/3*3*1$ 6.15 Kips O.k.

Check min t clip = $(6*4.18*2*.75/(4*.75*36))^{.5}$ = 0.590 > 3/8"

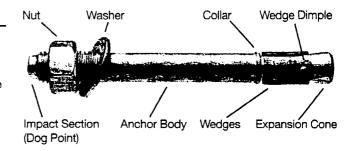
Therefore the existing L4x4x3/8 clip thickness is inadequate.

New (4) L4x4x5/8 w/ 3/4" diameter Kwik Bolt II expansion anchors

Min 4.75" embedment length ICBO ES# 4627

1/4" fillet weld, 3.5" length on both sides of L4x4x5/8 to existing tank.

Cap of weld = .928*4*3.5*2 = 25.984 Kips > 4.15


MECHANICAL PROPERTIES

Kwik Bolt II Expansion Anchor

4.3.3

4.3.3.1 PRODUCT DESCRIPTION

The Kwik Bolt II is a stud type expansion anchor with a single piece wedge that performs as three independent wedges if necessary to provide consistent performance in a wide variety of medium-duty applications. Applicable base materials include concrete, lightweight concrete and grout-filled block.

Product Features

- Impact section (Dog Point) prevents thread damage during installation
- Independent 3-piece wedge with dimples help prevent anchor from spinning during installation
- Length identification code facilitates quality control & inspection after installation
- · Anchor size is same as drill bit size for easy installation
- Comprehensive performance testing to provide high & consistent performance in concrete, light-weight concrete & grout filled block base materials
- · Mechanical expansion allows immediate load application
- Can be installed in bottomless hole, which allows the anchor to be driven flush with the surface after use.
 Eliminates cutting bolt heads.
- Can be installed through the fixture, improving productivity
- Comprehensive product offering includes many head styles, sizes, carbon steel and stainless steel materials for a variety of applications

Guide Specifications

Expansion Anchors Expansion anchors shall be stud type with a single piece three section wedge and zinc plated in accordance with

ASTM B633. The anchors must meet the description in Federal Specification FF-S-325, Group II, Type 4, Class I for concrete expansion anchors. Anchors shall be Hitti Kwik Bolt II as supplied by Hitti, Inc., P.O. Box 21148, Tulsa, OK

74121.

Installation Anchors to be installed in holes drilled with Hilti carbide tipped drill bits or matched tolerance diamond core bits.

Anchors shall be installed per manufacturer's recommendations.

Listings/Approvals

- Underwriters Laboratory No. 203 "Pipe Hangers" (3/8"-3/4" diameters)
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 4627, KB II
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 5224, HCKB
- Southern Building Code Congress (SBCCI): Report No. 9930
- City of Los Angeles (COLA): Research Report No. 24946
- Conforms to the description in Federal Specification FF-S-325, Group II Type 4, Classife

•	 Conforms to the description in Federal Specification FF-5-325, Group II, Type 4, Class 1
•	 Factory Mutual (FM) KB II 3/8" x 2 1/4" w/Rod Coupler
	Metro-Dade County Approval 98-0001 13

wetro-bade County Approval 96-0901.13	FHOR	EULIEO
4.3.3.2 MATERIAL SPECIFICATIONS	f _y ksi (MPa)	min. f _u ksi (MPa)
Carbon Steel KB II studs conform to ASTM A510 with chemical composition of AISI 1038 except countersunk KB II, KB 3/4" x 12", KB II 1" x 6", KB II 1" x 9" and KB II 1" x 12" which conform to ASTM A108 with chemical composition of AISI 11L41	41 (282) 75 (517)	75 (517) 90 (620)
Wedges are manufactured from AISI 1010 carbon steel, except KB II 3/4" x 12", KB II 1" x 6", KB II 1" x 9" and KB II 1" x 12" wedges which conform to chemical composition of AISI 304	N/A	N/A
Nuts are carbon steel conforming to ASTM A563 Grade A and meet dimensional requirements of ANSI B18.2.2	N/A	N/A
Washers are carbon steel conforming to SAE 1005-1033 and meet dimensional requirements of ANSI 18.22.1 Type A Plain	N/A	N/A
All carbon steel parts are zinc plated in accordance with ASTM B633, Type III Fe/Zn 5	N/A	N/A
Stainless Steel KB II studs conform to ASTM A276 or ASTM A493 with chemical composition of either AISI 304 or 316 1/4" thru 9/16" over 9/16"	76 (524) 64 (441)	90 (620) 76 (524)

Stainless steel wedges are of the same material grade as bolts or superior.

Nuts are stainless steel conforming to ASTM F594 with chemical composition of either AISI 304 or 316 and meeting dimensional requirements of ANSI B18.2.2 to conform with stud material

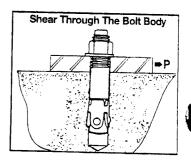
Washers are AISI 304 or 316 stainless steel conforming to ASTM A240 to conform with stud material

Note: Special Order KB II's, nuts and washers may vary from standard materials.

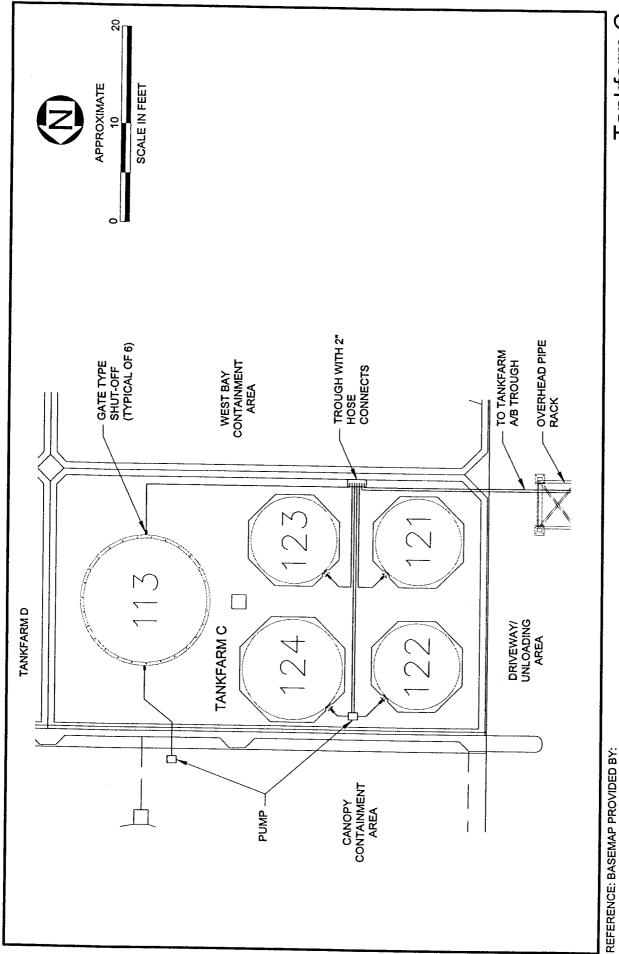
Kwik Bolt II Expansion Anchor

4.3.3

Carbon Steel Kwik Bolt II Allowable Loads in Concrete


Anchor	Embedment	2000 psi (13.8 MPa)		3000 psi (20.7 MPa)		4000 psi (27.6 MPa)		6000 psi (41.4 MPa)	
Diameter in. (mm)	Depth in. (mm)	Tension Ib (kN)	Shear Ib (kN)	Tension lb (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear lb (kN)	Tension Ib (kN)	Shear Ib (kN)
	11/s (29)	270 (1.2)	430 (1.9)	330 (1.5)	430 (1.9)	380 (1.7)	430 (1.9)	470 (2.1)	430 (1.9)
¹ / ₄ (6.4)	2 * (51)	560 (2.5)	530 (2.4)	590 (2.6)	530	630 (2.8)	530	670	530
	3³/₄* (95)	670 (3.0)		670 (3.0)	(2.4)	670 (3.0)	(2.4)	(3.0)	(2.4)
	1 ⁵ /8 (41)	530 (2.4)	990 (4.4)	650 (2.9)	1040 (4.6)	750 (3.3)	1100 (4.9)	850 (3.8)	1100 (4.9)
³ / ₈ (9.5)	2 ¹/₂* (64)	1200 (5.3)	1470	1290 (5.7)	1470	1370 (6.1)	1470	1550	1470
	4'/₄* (108)	1330 (5.9)	(6.5)	1390 (6.2)	(6.5)	1440 (6.4)	(6.5)	(6.9)	(6.5)
	2 1/4 (57)	1170 (5.2)	1940 (8.6)	1310 (5.8)	1970 (8.8)	1450 (6.4)	1970 (8.8)	1730 (7.7)	1970 (8.8)
1 / 2 (12.7)	3¹/₂* (89)	1870 (8.3)	2450 (10.9)	2130 (9.5)	2450	2400 (10.7)	2450	2800 (12.5)	2450 (10.9)
	6* (152)	2080 (9.3)		2310 (10.3)	(10.9)	2530 (11.3)	(10.9)		
	2³/₄ (70)	1600 (7.1)	3070 (13.7)	1870 (8.3)	3070 (13.7)	2130 (9.5)	3070 (13.7)	2670 (11.9)	3070 (13.7)
5 / 8 (15.9)	4** (102)	2400 (10.7)	3840	2850 (12.7)	3840	3290 (14.6)	3840	4190	3840
	7** (178)	3200 (14.2)	(17.1)	3470 (15.4)	(17.1)	3730 (16.6)	(17.1)	(18.6)	(17.1)
	3 ' /4 (83)	1970 (8.8)	4140 (18.4)	2320 (10.3)	4140 (18.4)	2670 (11.9)	4140 (18,4)	3200 (14.2)	4140 (18.4)
3/ ₄ (19.1)	4³/₄** (121)	2930 (13.0)	5120	4130 (18.4)	5120	4800 (21.4)	5120	5870 (26.1)	
	8** (203)	4000 (17.8)	(22.8)	4930 (21.9)	(22.8)	5870 (26.1)	(22.8)	6320 (28.1)	5120 (22.8)
	4¹/₂ (114)	3330 (14.8)	7070 (31.4)	4050 (18.0)	7600 (33.8)	4670 (20.8)	8140 (36.2)	5070 (22.6)	
1 (25.4)	6 (152)	4930 (21.9)	9200	6000 (26.7)	9200	7070 (31.4)	9200	8400 (37.4)	9200 (40.9)
	9 (229)	6670 (29.7)	(40.9)	7670 (34.1)	(40.9)	8670 (38.6)	(40.9)	10670 (47.5)	(40.3)

Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear values by 20%.



1394) Data de la Tanta facilità de 2004 e 1995 (100 et 200 270 2000)

** Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear value by 12%.

All other values shown are for shear plane acting through either body or threads.

Tankfarm C

Romic - Southwest Chandler, Arizona

Figure D-7

ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Prepared for: Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by: Metro Environmental Services, Inc.

1256-B West Brooks Street

Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #124 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #124, a 9,000-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 9,000-gallon tank, (Tank #124), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #124 February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer

Registration No. CH004494

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #124 Anchorage System July 14, 2005

INTRODUCTION

On May 27, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the anchorage system for Tank #124, a 9,000-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Tank Anchorage System Installation Inspection

The tank anchorage system was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate installation. No discrepancies were noted.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer

Registration No. CH004494

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. ______TK-124

Location: Tank Farm C

Service: Waste Storage

Contents: Organic/aqueous

Size: 9,000 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Flat Bottom

Insulation: n/a Agitator: n/a

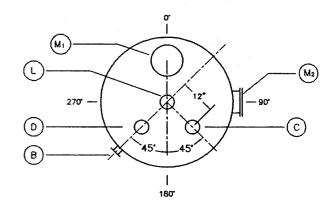
Weight: 4,900± lbs. Empty

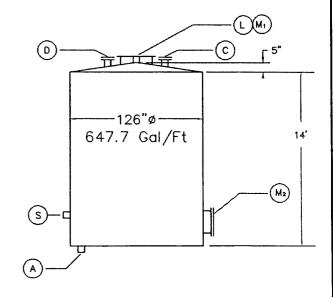
110,000± lbs. Full

Temp (*F) AMB.

Pressure (Psiq): ATM.

Seismic Zone: 2


Material: Carbon Steel


Method of Construction: Welded

CONNECTION					
No.	Size	Туре	Rating	Function	
Α	4"	RF	150#	BOTTOM NOZZLE	
В	4"	RF	150#	SIDE OUTLET	
С	2 1/2"	RF	150#	VENT	
D	4"	RF	150#	SPARE	
E	12"	RF	150#	LEVEL INDICATOR	
ı M	24"	FF	n/a	TOP MANWAY	
S	1"	HC	3000#	SAMPLE PORT	

REMARKS

- 1. Standard cone top
- 2. Flat bottom

Rev No.	Revision	Ву	Date	Apprvd	Date
1	Update for 2004 Part B	RP	4-7-04	WK	4-04

ROMIC ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA

Drawing Number Tk 124

METRO ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762 Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K502

K502

Tank 124

Issued:

01/31/05

Project Name:

Romic Environmental Technologies Corporation

Project Location: ROMIC Southwest, Chandler, Arizona.

Table o	Page No.	
1	Scope of work, design loads and tank data	,
2	Seismic and wind analysis for overturning moment	2
3	Check existing anchorage	3

SCOPE OF WORK:

Tank Designation: Tank 124

- Analyzed existing anchorage for 10'-6" Diameter by 14" high tank flat bottom tank Existing tank with (4)L4x4x3/8, each with (1) 3/4" diameter anchor bolt
- Check existing anchorage.

DESIGN LOADS:

2000 International Building Code. 80 MPH wind, Seismic Use group II									
		-				H=	14.5 ft		
WIND: F= Qz * G * Cf * Af						D = 10.5 ft			
	Where Qz = 0.00256 Kz Kzt Kd V^2 I			^2 I		Kz =	0.9 Tbl 6-3 Case2		
	Qz =	0.00256*0.	9*1.0*0.95*	90^2*1.0 =		Kzt =	1 Tbl 6-4 Flat		
	17.73 psf					Kd =	0.95 Tbl 6-4		
· ·					V =	90 MPH Fig 6-1			
F wnd =	2743	lbs.				! =	1 Tbl 6-1		
M otm = F	wind * H ot	m =	19199	lbs-ft		For H/D =	1.38		
						Cf =	1.4 Tbl 6-19)	
						Gf =	0.85 Sec 6.5.	8	
						Af =	130 Sq. Ft.		
						H otm =	7 ft		
							·		
Location:	Chandler		State:	Arizona		Siteclass:			
						Fa =	1.6 Tbl 1615		
_	1615(1):		0.21	•		R =	3 Tbl 1622	` ,	
From Fig.	1615(2):	S1 =	0.063	g		Omega =			
						le =	1.25 Tbl 1622	2.2.5(2)	
Sds = 0.67	7 Fa Ss =		0.224	W		W =	111000 lbs		
V seismic	= Cs W	Eq. 16-34				Cs = Sds /	D * I =	0.0933	
V seismic = Cs W Eq. 16-34 = 0.093 W							=0.044Sdsl = 0.01		
	0.000					Use Cs =	0440031	0.0123	
						000 00		0.0000	
T = 0.0000	00765*(L / D)^2 *(wD / t) ^ 0.5 =	0.000000765*	(14./10.	5)^2 *(4600	0/14*10.5/0.34)^.5		
	,	, ,	=		< 0.06	, (Rigid Structure		
•	d = 1.2 Sds '		0.090						
Vnonstr = 0.14 Sds le =			0.039 W						
			0.021						
Vs rigid nonstr = 0.3 Sds I W =			0.084	0.084 W		Use Vs =	0.093 W		
						Vs asd =	0.067 W		
Overturning Moment = Vs W * 1.2 sloshing * H otm =					62160	lbs-ft	Seismic Control		
					50				

Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks

Given information:

Material: Carbon steel Thickness: 0.34" Concrete slab thickness: Min 6"

Full Tank +wt tank: 110000 lbs
Agitator: 0 lbs
Misc valves and structures: 1000 lbs

		1,00,0005					
Metro Environmental Services 1256-B West Brooks Street Ontario, CA 91762 1/30/2005							
Seismic Analysis per API-650 Appendix E							
Solemic zone $7 = (7 \text{ one } 4 = 0.4 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone } 3 = 0.3 \text{ zone } 2 = 0.2 \text{ zone }$,zone 1=0.075)	0.40					
Science Importance factor Is = (Max I = 1.5, normally I = 1.0)							
Site coefficient from soil type, s = (S4=2, S3=1.5, S2=1.2, S	31=1.0)	1.50					
Specific gravity of liquid, G =		1.4					
Tank diameter, D =		10.50 ft					
		14.00 ft					
Height of tank, Ht =		14.00 ft					
Fill height from top of floor, H =		105.10 kips					
Weight of content, Wt = Weight of shell, uncorroded, Ws = .49*(.34/12*2*22/7*5.25	6.414 kips						
Weight of roof steel uncorroded, Wr' = .49*.20/12*2	*22/7*4.5=	0.256 kips					
Weight of foot stock, amount and		1.00 kips					
Roof equipment load in seismic, We =		0.75					
Ratio of D / H = $\frac{1}{2}$		1.26 Kips					
Weight or roof & equipment load, Wr = Wr' + We =		7.00 ft					
Height of center of gravity of shell, Xs = H / 2 =	0.865	0.87					
From Figure E-2 Effective masses, W1 / Wt =	0.000	90.95 Kips					
Contents in unison w/ shell, W1 = Wt * (W1 / Wt) =	0.191	0.19					
From Figure E-2 Effective masses, W2 / Wt =	0.131	20.08 Kips					
First sloshing mode contents, W2 = Wt * (W2 / Wt) =	0.429	0.43					
From Figure E-3 Centroids of seismic forces, X1 / H =	0.429	6.01					
Height to centroid, $X1 = H * (X1 / H) =$	0.771	0.77					
From Figure E-3 Centroids of seismic forces, X2 / H =	0.771	10.79					
Height to centroid, X2 = H * (X2 / H) =	٥ 577	0.58					
From Figure E-4 Factor k, k =	0.577	1.87 seconds					
Natural period of first mode, $T = k * (D)^0.5 =$. [0.24					
Lateral force coefficient, C1 = 0.24	-	0.24					
Lateral force coefficient, C2 = C2 = 0.3S/T =	L	0.24					
Base shear Vs = Z * I *(C1 * (Ws + Wr + W1) + C2 * W2)	, =	14.25 Kips					
Overturning, $Mot = Z * I * (C1*Ws*Xs + C1*Wr*Ht + C1*W$	√1*X1 + C2*W2*X2)=	87.08 K-ft					
Friction resistance from contents, shell, roof steel, Ffric =0).4 *(Wt+Ws+Wr') =	44.71 Kips					
Factor of safety for sliding, FSs = Fric / Vs =	•	3.14 > 1.5 OK					
Calculate resistance load against overturning:		36.00 ksi					
Vield strength of tank material, FV =	ra	6.00					
Thickness of bottom plate th = max (tf -co), thickness of	; floor or 0.25 =	39816.00 plf					
Wt of contents allow for OT calc. per cicumference, wL=	7.9 tb(Fby G H)~0.5=						
Max allowable for WL = 1.25 G H D = 257.25	5 plf Use:	257.25 plf					
Resistance to OT by contents, Pr = 22/7 * D * WL =		8.49 Kips					
Resistance to OT by shell and roof, Psr = Ws + Wr =		7.67 Kips					
Total resistance to OT moment, $Mr = (Pr + Psr) * D / 2 =$		84.84 k-ft					
Mot > Mr, Anchorage required							
Wind analysis per API 650 section 3.11 Wind load on Tanks							
	violected area of cylindric	al Subace					

Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindrical surface 22.00 psf Wind pressure, qw = 3.23 Kips Base shear from wind, Vw = qw * Ht * D = 22.64 K-ft Overturning due to wind, **Motmw** = Vw * 14/2=

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

Check existing anchor bolts.

Overturning, Mot = Z * I *(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2)= 87.08 k-ft Base shear Vs = Z * I * (C1 * (Ws + Wr + W1) + C2 * W2) =14.25 Kips

Consider only two bolts are resisting overturning at one time.

Tension of one bolt = 87.08 / 10.5 ft / 2 bolts = 4.15 Kips **Shear** of one bolt = 14.25 / 4 = 3.56 Kips Combined stress of tension and shear = $(4.15/4.4)^{(5/3)} + (4.15/8.4)^{(5/3)} =$ 1.01 < 1.33

Cap of pullout cone fr each bolt = $.55*.65*(22/7*10^2/4)*(3000)^0.5*4/3*3*1$ 6.15 Kips O.k.

Check min t clip = $(6*4.15*2*.75/(4*.75*36))^{.5}$ = 0.588 > 3/8"

Therefore the existing L4x4x3/8 clip thickness is inadequate.

Use: New (4) L4x4x5/8 w/ 3/4" diameter Kwik Bolt II expansion anchors

Min 4.75" embedment length

1/4" fillet weld, 3.5" length on both sides of L4x4x5/8 to existing tank.

Cap of weld = .928*4*3.5*2 = 25.984 Kips > 4.15

Kwik Bolt II Expansion Anchor

4.3.3.1 PRODUCT DESCRIPTION

The Kwik Bolt II is a stud type expansion anchor with a single piece wedge that performs as three independent wedges if necessary to provide consistent performance in a wide variety of medium-duty applications. Applicable base materials include concrete, lightweight concrete and grout-filled block.

Nut Washer Coliar Wedge Dimple Impact Section Anchor Body Wedges Expansión Cone (Dog Point)

Product Features

- Impact section (Dog Point) prevents thread damage during installation
- Independent 3-piece wedge with dimples help prevent anchor from spinning during installation
- Length identification code facilitates quality control & inspection after installation
- Anchor size is same as drill bit size for easy installation
- Comprehensive performance testing to provide high & consistent performance in concrete, light-weight concrete & grout filled block base materials
- Mechanical expansion allows immediate load application
- Can be installed in bottomless hole, which allows the anchor to be driven flush with the surface after use. Eliminates cutting bolt heads.
- Can be installed through the fixture, improving productivity
- Comprehensive product offering includes many head styles, sizes, carbon steel and stainless steel materials for a variety of applications

Guide Specifications

Expansion Anchors Expansion anchors shall be stud type with a single piece three section wedge and zinc plated in accordance with ASTM B633. The anchors must meet the description in Federal Specification FF-S-325, Group II, Type 4, Class I for

concrete expansion anchors. Anchors shall be Hilti Kwik Bolt II as supplied by Hilti, Inc., P.O. Box 21148, Tulsa, OK

Installation Anchors to be installed in holes drilled with Hilti carbide tipped drill bits or matched tolerance diamond core bits. Anchors shall be installed per manufacturer's recommendations.

Listings/Approvals

- Underwriters Laboratory No. 203 "Pipe Hangers" (3/8"-3/4" diameters)
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 4627, KB II
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 5224, HCKB
- Southern Building Code Congress (SBCCI): Report No. 9930
- City of Los Angeles (COLA): Research Report No. 24946
- Conforms to the description in Federal Specific

_	Comornis to the description in Factorial Total	, ·
•	 Factory Mutual (FM) KB II 3/8" x 2 1/4" w/Rod Coupler 	. 1
•	 Factory Mutual (FM) KB II 3/8" x 2 1/4" w/Rod Coupler Metro-Dade County Approved Society 	lass 1
_	Metro-Dade County Approval 98-0901.13	

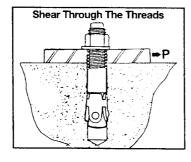
4.3.3.2 MATERIAL SPECIFICATIONS	MECH PROF	HANICAL PERTIES
Carbon Steel KR II stude conform to the second seco	f _y ksi (MPa)	min. f _u ksi (MPa)
A did NB II 1" X 12" Which conform to	41 (282) 75 (517)	75 (517) 90 (620)
Wedges are manufactured from AISI 1010 carbon steel, except KB II 3/4" x 12", KB II 1" x 6", Nuts are carbon steel conforming to ASTM A563 Grade A and the little with the conformation of AISI 304	N/A	N/A
Nuts are carbon steel conforming to ASTM A563 Grade A and meet dimensional requirements Washers are carbon steel conforming to SAE 1005-1033 and meet dimensional requirements of ANSI 18.22.1 Type A Plain	N/A	N/A
All Carbon Steel parts are zinc plated in	N/A	N/A
Stainless Steel KB II studs conform to ASTM A276 or ASTM A493 with chemical composition of either AISI 304 or 316 1/4" thru 9/16"	N/A	N/A
over 9/16" Stainless steel wedges are of the same material grade as bolts or superior.	76 (524)	90 (620)
Nuts are stainless steel conferming and a shorts or superior.	64 (441)	76 (524)

Stainless steel wedges are of the same material grade as bolts or superior.

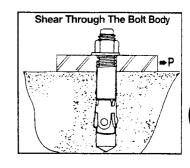
Juts are stainless steel conforming to ASTM F594 with chemical composition of either AISI 304 or 316 and meeting dimensional requirements of ANSI B18.2.2 to conform with stud material

Washers are AISI 304 or 316 stainless steel conforming to ASTM A240 to conform with stud material

Note: Special Order KB II's, nuts and washers may vary from standard materials.

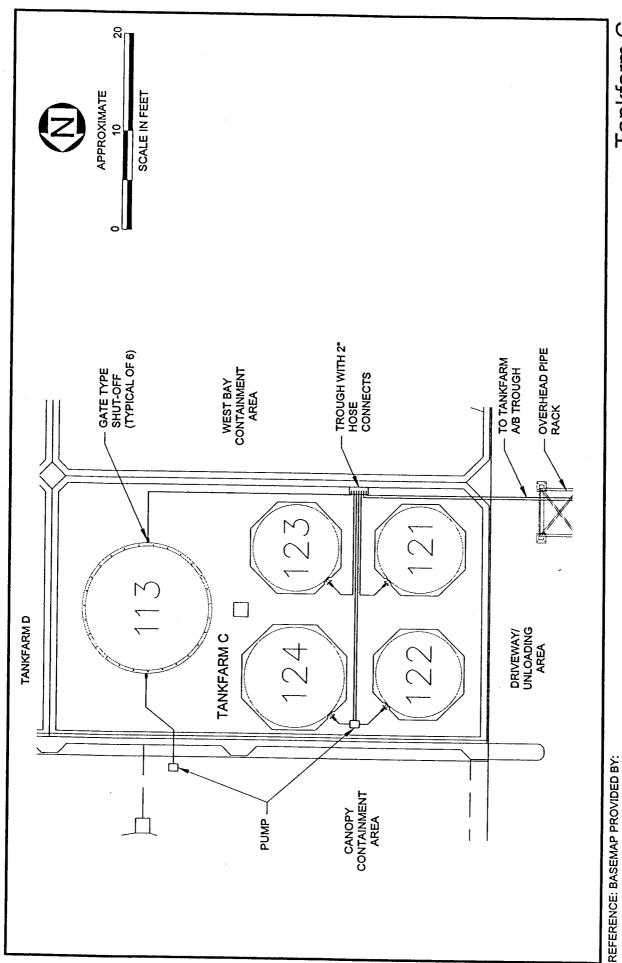

Kwik Bolt II Expansion Anchor

4.3.3


Carbon Steel Kwik Bolt II Allowable Loads in Concrete

Anchor	Embedment	2000 psi (13.8 MPa)	3000 psi	(20.7 MPa)	4000 psi (27.6 MPa)	6000 psi (41.4 MPa)
Diameter in. (mm)	Depth in. (mm)	Tension Ib (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)
	1¹/₀ (29)	270 (1.2)	430 (1.9)	330 (1.5)	430 (1.9)	380 (1.7)	430 (1.9)	470 (2.1)	430 (1.9)
1/4 (6.4)	2* (51)	560 (2.5)	530	590 (2.6)	530	630 (2.8)	530	670	530
	3³/₄* (95)	670 (3.0)	(2.4)	670 (3.0)	(2.4)	670 (3.0)	(2.4)	(3.0)	(2.4)
	1 ⁵ / ₈ (41)	530 (2.4)	990 (4.4)	650 (2.9)	1040 (4.6)	750 (3.3)	1100 (4.9)	850 (3.8)	1100 (4.9)
³ / ₈ (9.5)	2 ¹ / ₂ * (64)	1200 (5.3)	1470	1290 (5.7)	1470	1370 (6.1)	1470	1550	1470
	4 1/ ₄ * (108)	1330 (5.9)	(6.5)	1390 (6.2)	(6.5)	1440 (6.4)	(6.5)	(6.9)	(6.5)
	2'/4 (57)	1170 (5.2)	1940 (8.6)	1310 (5.8)	1970 (8.8)	1450 (6.4)	1970 (8.8)	1730 (7.7)	1970 (8.8)
1 /2 (12.7)	3 ¹ / ₂ * (89)	1870 (8.3)	2450	2130 (9.5)	2450	2400 (10.7)	2450	2800	2450
	6* (152)	2080 (9.3)	(10.9)	2310 (10.3)	(10.9)	2530 (11.3)	(10.9)	(12.5)	(10.9)
⁵ / ₈ (15.9)	2³/4 (70)	1600 (7.1)	3070 (13.7)	1870 (8.3)	3070 (13.7)	2130 (9.5)	3070 (13.7)	2670 (11.9)	3070 (13.7)
	4** (102)		3840 (17.1)	2850 (12.7)	3840	3290 (14.6)	3840	4190	3840
	7** (178)	3200 (14.2)		3470 ′ (15.4)	(17.1)	3730 (16.6)	(17.1)	(18.6)	(17.1)
	3'/4 (83)	1970 (8.8)	4140 (18.4)	2320 (10.3)	4140 (18.4)	2670 (11.9)	4140 (18.4)	3200 (14.2)	4140 (18.4)
³ /₄ (19.1)	4 3/ ₄ ** (121)	2930 (13.0)	5120	4130 (18.4)	5120	4800 (21.4)	5120	5870 (26.1)	5120
	8** (203)	4000 (17.8)	(22.8)	4930 (21.9)	(22.8)	5870 (26.1)	(22.8)	6320 (28.1)	(22.8)
	4¹/ ₂ (114)	3330 (14.8)	7070 (31.4)	4050 (18.0)	7600 (33.8)	4670 (20.8)	8140 (36.2)	5070 (22.6)	,
1 (25.4)	6 (152)	4930 (21.9)	9200	6000 (26.7)	9200	7070 (31.4)	9200	8400 (37.4)	9200 (40.9)
	9 (229)	6670 (29.7)	(40.9)	7670 (34.1)	(40.9)	8670 (38.6)	(40.9)	10670 (47.5)	

Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear values by 20%.


^{**} Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear value by 12%.

Αll

Hilti

All other values shown are for shear plane acting through either body or threads.

Tankfarm C

Romic - Southwest Chandler, Arizona Figure D-7

ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Tank Certification Report

Tank T-132

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #132 February 5, 2005

INTRODUCTION

On February 7, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #132, a 4,100-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is acidic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 4,100-gallon tank, (Tank #132), is constructed of high-density polyethylene. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of polyethylene. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a secondary containment tank. This tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #132 February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer

Registration No. CH004494

Tank I.D.No. __TK-401_to_TK-403

Location: Tank Farm E

Service: Waste Storage

Contents: Alkaline waste

Size: 4,100 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Sloped Bottom

Insulation: n/a Agitator: n/a

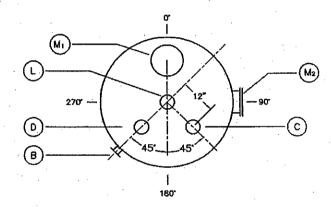
Weight: ______1,000± lbs. Empty 49,000± lbs. Full

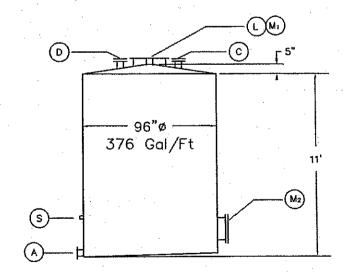
Temp (*F) AMB.

Pressure (Psig): ATM.

Seismic Zone: 2

Material: High density polyethylene


Method of Construction: Molded


CONNECTION

· · · · · · · · · · · · · · · · · · ·		/		
No.	Size	Туре	Rating	Function
Α	4"	RF	150#	BOTTOM NOZZLE
В	4"	RF	150#	SIDE OUTLET
U	2 1/2"	RF	150#	VENT
D	4"	RF	150#	SPARE
E	12"	RF	150#	LEVEL INDICATOR
М	24"	FF	n/a	TOP MANWAY
S	1"	HC	3000#	SAMPLE PORT

REMARKS

- 1. Standard cone top
- 2. Sloped bottom

Drawing Number

	Rev No.	Revision	Ву	Date	Apprvd	Date	
ľ	1 .	Update for 2004 Part B	RP	4-14-04	WK	4-04	1
L							
L							

ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA TK-401 to TK-403

METRO ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762 Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2F

2K502

Tank 132 & tank 136

Issued:

02/12/05

Project Name:

Romic Environmental Technologies Corporation

Project Location: ROMIC Southwest, Chandler, Arizona.

Table (Page No.	
1	Scope of work, design loads and tank data	. 1
2	Seismic and wind analysis for overturning moment	2
3	Design new brace beam, support column, base plate and anchor bolts	3
	Attach two page of Hilti Kwik II bolt technical data	

SCOPE OF WORK:

Tank Designation:

TK 132 and T 136.

- Analyzed existing anchorage for 8'-0" Diameter by 11'-0" highPolyethylene tank setting inside of a 12'-0" diameter 6'-0" high containment tank
- Design brace beam, support column, anchor bolts and base plate.

DESIGN LOADS:

2000 Inter	rnational B	uilding Cod	le. 80 MPH [,]	wind, Seismic U	se group II		
					H =	11 ft	
WIND:	F= Qz * G	* Cf * Af			D =	8 ft	
	Where Qz	= 0.00256 H	Kz Kzt Kd V′	^2 I	Kz =	0.9 Tb	6-3 Case2
	Qz =	0.00256*0.	9*1.0*0.95*	90^2*1.0 =	Kzt =	1 Tb	6-4 Flat
		17.73	psf		Kd =	0.95 Tb	6-4
					V =	90 MF	PH Fig 6-1
F wnd =	2532	2 lbs.			l =	1 Tb	6-1
M otm = F	wind * H ot	:m =	13925	lbs-ft	For H/D =	1.375	
					Cf=	1.4 Tb	6-19
					Gf =	0.85 Se	c 6.5.8
					Af =	120 Sq	. Ft.
					H otm =	5.5 ft	
Location:	Chandler		State:	Arizona	Siteclass:		
		_			Fa =		1615.1.2(1)
_	1615(1):		0.21	•	R =		1622.2.5(1)
From Fig.	1615(2):	S1 =	0.063	g	Omega =		1622.2.5(1)
					le =	1.25 Tb	1622.2.5(2)
Sds = 0.67	7 Fa Ss =		0.224	W	W =	50000 lbs	
V seismic =	= Cs W 0.093	•			Cs = Sds /I Cs min=0.0		0.0933 0.0123
					Use Cs =		0.0933
•	1 = 1.2 Sds		0.090				
	0.14 Sds le		0.039				
	nstr = 0.8S1		0.021				
Vs rigid no	onstr = 0.3 S	ids I W =	0.084	W	Use Vs =	0.093 W	
					Vs asd =	0.067 W	

Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks

22000 lbs-ft

Seismic Control

Given information:

Material:

High Density Polethylene

Thickness:

Agitator:

0.88

Overturning Moment = Vs W * 1.2 sloshing * H otm =

Concrete slab thickness:

Min 6"

Full Tank +wt tank:

49000 lbs

Misc valves and structures:

0 lbs 1000 lbs

Seismic Analysis per API-650 Appendix E		
Seismic zone, Z = (Zone 4=0.4,zone 3=0.3,zone 2=0.3	2,zone 1=0.075)	0.40
Seismic Importance factor, Is = (Max I = 1.5, normally	l = 1.0)	1.25
Site coefficient from soil type, $s = (S4=2, S3=1.5, S2=1.2,$	S1=1.0)	1.50
Spcific gravity of liquid, G =	·	1.4
Tank diameter, D =		8.00 ft
Height of tank, Ht =		11.00 ft
Fill height from top of floor, H =		11.00 ft
Weight of content, Wt = 22/7*(D/2)^2*H*62.4pcf	71000 =	48.32 kips
Weight of shell, uncorroded, Ws=		1.000 kips
Weight of roof, Wr' =		0.500 kips
Roof equipment load in seismic, We =		0.50 kips
Ratio of D / H =		0.73
Weight or roof & equipment load, Wr = Wr' + We =		1.00 Kips
Height of center of gravity of shell, Xs = H / 2 =		5.50 ft
From Figure E-2 Effective masses, W1 / Wt =	0.870	0.87
Contents in unison w/ shell, W1 = Wt * (W1 / Wt) =		42.06 Kips
From Figure E-2 Effective masses, W2 / Wt =	0.186	0.19
First sloshing mode contents, W2 = Wt * (W2 / Wt) =		8.99 Kips
From Figure E-3 Centroids of seismic forces, X1 / H =	0.431	0.43
Height to centroid, X1 = H * (X1 / H) =	0.707	4.74
From Figure E-3 Centroids of seismic forces, X2 / H =	0.776	0.78
Height to centroid, X2 = H * (X2 / H) =	0.770	8.54
From Figure E-4 Factor k, k=	0.577	0.58
Natural period of first mode, $T = k * (D)^0.5 =$	0.017	1.63 seconds
Lateral force coefficient, C1 = 0.6		0.24
Lateral force coefficient, C2 = C2 = 0.3S/T =		
22 - 0.00/1 -		0.28
Base shear Vs = Z * i *(C1 * (Ws + Wr + W1) + C2 * W2) =	•••	6.53 Kips
Overturning, Mot = $Z * I * (C1*Ws*Xs + C1*Wr*Ht + C$		•
Friction resistance from contents, shell, roof steel, Ffric= 0.	1 */\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	35.96 K-ft
Factor of safety for sliding, FSs = Fric / Vs =	4 (((((((((((((((((((19.93 Kips
ractor or safety for sharing, ras - File / Vs -		3.05 > 1.5 O.K.
Calculate resistance load against overturning:		
Yield strength of tank material, Fy =		0.00 1:
Thickness of bottom plate, tb = max (tf -co), thickness of fl	Jan. 22 0 05 -	6.00 ksi
Wt of contents allow for OT calc. per cicumference, W L=7.9	1001 01 0.25 =	0.88
		2101.22 plf
i i i	olf Use:	154.00 plf
Resistance to OT by contents, Pr = 22/7 * D * W _L =		3.87 Kips
Resistance to OT by shell and roof, Psr = Ws + Wr =		2.00 Kips
Total resistance to OT moment, Mr = (Pr + Psr) * D / 2 =		23.49 k-ft
<u>!</u>	Mot > Mr, Anchorag	<u>e required</u>
Wind analysis per API 650 section 3.11 Wind load on T	<u> Fanks</u>	
Based on 30 psf on vertical plane surface or 22 psf on pro	jected area of cylind	rical surface
Wind pressure, qw =		22.00 psf
Base shear from wind, Vw = qw * Ht * D =		1.94 Kips
Overturning due to wind, Motmw = Vw * Ht / 2 =		10.65 K-ft
Wind pressure from 2001CBC, Pw = Ce Cq qs lw =		21.66 psf
For 70 MPH wind, Exp. C Where 22' Ce = \(\Gamma \)		
	1.15 Ca =	I 1.30I
· · · · · · · · · · · · · · · · · · ·	1.15 Cq = 12.6 lw =	1.30
70mph qs=	12.6 lw =	1.15
· · · · · · · · · · · · · · · · · · ·	12.6 lw =	

Design braced beam, support column, base plate and anchor bolts.

Overturning, Mot = Z * I *(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2)= 35.96 k-ft Base shear Vs = Z * I * (C1 * (Ws + Wr + W1) + C2 * W2) =6.53 Kips

Design an anchorage steel frame for overturning:

Sx min = M* 12* .75/ (.6*36) =11.72 in^3

Use W 8 x 18 brace beam w/ W8x18 column. Fy = 36 ksi

Shear weld at 3/4" thick cap plate = 6.53 / (.928*3*4/3) =1.76 in.

1/4" Weld at base = $M/2 * 12 * .75 / (bd + d^2 / 3) = b = 5.25, d = 8.125$ 2.50 kli

Cap of 3/16" fillet weld = .928*4 = 3.712 kli/in

Tension on the base plate = M * 12 / (8.125 + 2 + 2) / 6 bolts =5.93 Kip < 6

Shear on 1" diameter bolts = 6.53 / 12 bolts = 0.54 Kips<9.2

Combine shear and tension = $(.54 / 9.2)^{(5/3)} + (5.93 / 6)^{(5/3)} =$ 0.990 < 1.33

Base plate thk min = $(6*3*5.93*2*.75/(10*.75*36))+D65^{.5} =$ 0.593 in

Cap of pullout cone fr 3 bolts = .55*.65*(22/7*10^2/4)*(3000)^0.5*4/3*3*3 26.59 Kips O.k.

Use: Cap plate 3/4" x 8 x 9 w/ 3/16" fillet weld, weld flange to cap plate.

Use: Base plate 3/4" x 10 x 1'- 4" w/ (6) 1" dia. Hilti Kwik Bolts II, 6" embedment

Anchoring Systems

Kwik Bolt II Expansion Anchor

4.3.3.1 PRODUCT DESCRIPTION

The Kwik Bolt II is a stud type expansion anchor with a single piece wedge that performs as three independent wedges if necessary to provide consistent performance in a wide variety of medium-duty applications. Applicable base materials include concrete, lightweight concrete and grout-filled block.

Nut Washer Collar Wedge Dimple Impact Section Anchor Body Wedges Expansión Cone (Dog Point)

Product Features

- Impact section (Dog Point) prevents thread damage during installation
- Independent 3-piece wedge with dimples help prevent anchor from spinning during installation
- Length identification code facilitates quality control & inspection after installation
- Anchor size is same as drill bit size for easy installation
- Comprehensive performance testing to provide high & consistent performance in concrete, light-weight concrete & grout filled block base materials
- Mechanical expansion allows immediate load application
- Can be installed in bottomiess hole, which allows the anchor to be driven flush with the surface after use. Eliminates cutting bolt heads.
- Can be installed through the fixture, improving productivity
- Comprehensive product offering includes many head styles, sizes, carbon steel and stainless steel materials for a variety of applications

Guide Specifications

Expansion Anchors

Expansion anchors shall be stud type with a single piece three section wedge and zinc plated in accordance with ASTM B633. The anchors must meet the description in Federal Specification FF-S-325, Group II, Type 4, Class I for concrete expansion anchors. Anchors shall be Hilti Kwik Bolt II as supplied by Hilti, Inc., P.O. Box 21148, Tulsa, OK

Installation

Anchors to be installed in holes drilled with Hilti carbide tipped drill bits or matched tolerance diamond core bits. Anchors shall be installed per manufacturer's recommendations.

Listings/Approvals

- Underwriters Laboratory No. 203 "Pipe Hangers" (3/8"-3/4" diameters)
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 4627, KB II
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 5224, HCKB Southern Building Code Congress (SBCCI): Report No. 9930
- City of Los Angeles (COLA): Research Report No. 24946

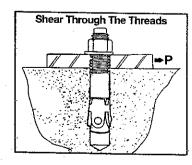
Conforms to the description in Federal Specification FF-S-325, Group II, Type 4, Class 1 Factory Mutual (FM) KB II 3/8" x 2 1/4" w/Rod Coupler

Metro-Dade County Approval 98-0901.13		MECH. PROP	ANICAL ERTIES
4.3.3.2 MATERIAL SPECIFICATIONS		fy Ioni (NAD-)	min. f
Carbon Steel KB II studs conform to ASTM A510 with chemical composition of AISI 1038 except countersunk KB II, KB 3/4" x 12", KB II 1" x 6", KB II 1" x 9" and KB II 1" x 12" which conform to ASTM A108 with chemical composition of AISI 11L41		ksi (MPa) 41 (282) 75 (517)	75 (517) 90 (620)
Wedges are manufactured from AISI 1010 carbon steel, except KB II 3/4" x 12", KB II 1" x 6", KB II 1" x 9" and KB II 1" x 12" wedges which conform to chemical composition of AISI 304 Nuts are carbon steel conforming to ASTM ASSA Control of AISI 304		N/A	N/A
Nuts are carbon steel conforming to ASTM A563 Grade A and meet dimensional requirements Months are carbon steel conforming to ASTM A563 Grade A and meet dimensional requirements		N/A	N/A
Washers are carbon steel conforming to SAE 1005-1033 and meet dimensional requirements of ANSI 18.22.1 Type A Plain		N/A	N/A
All carbon steel parts are zinc plated in accordance with ASTM B633, Type III Fe/Zn 5 Stainless Steel KB II studs conform to ASTM A276 or ASTM A493 with chemical composition of either AISI 304 or 316, 1/4" thrus 9/16"		N/A	N/A
over 9/16"	. [76 (524)	90 (620)
Stainless steel wedges are of the same material grade as bolts or superior.		64 (441)	76 (524)

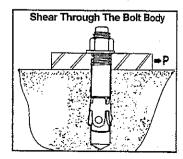
Nuts are stainless steel conforming to ASTM F594 with chemical composition of either AISI 304 or 316 and meeting dimensional requirements of ANSI B18.2.2 to conform with stud material

Washers are AISI 304 or 316 stainless steel conforming to ASTM A240 to conform with stud material

Note: Special Order KB Il's, nuts and washers may

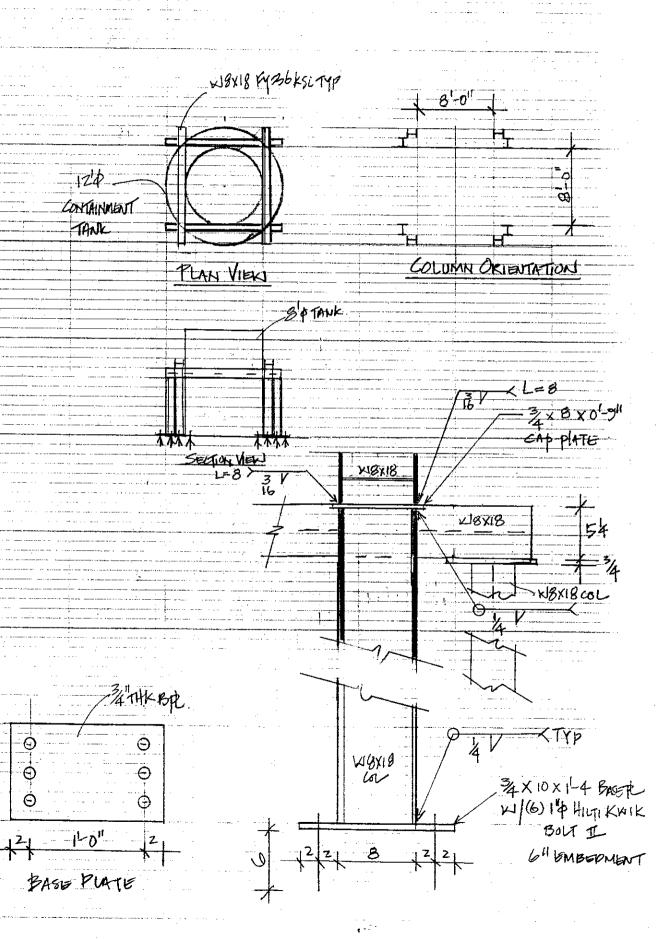

Kwik Bolt II Expansion Anchor

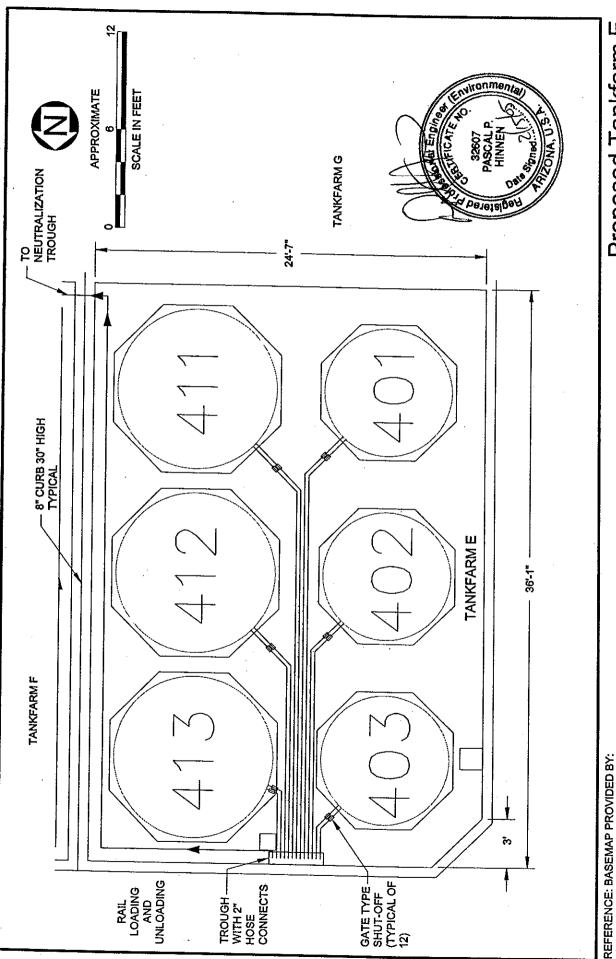
4.3.3


Carbon Steel Kwik Bolt II Allowable Loads in Concrete

Anchor	Embedment	2000 psi (13.8 MPa)	3000 psi	(20.7 MPa)	4000 psi	(27.6 MPa)	6000 psi	(41.4 MPa)
Diameter in. (mm)	Depth in. (mm)	Tension lb (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)	Tension Ib (kN)	Shear Ib (kN)	Tension lb (kN)	Shear lb (kN)
	11/s (29)	270 (1.2)	430 (1.9)	330 (1.5)	430 (1.9)	380 (1.7)	430 (1.9)	470 (2.1)	430 (1.9)
1/ ₄ (6.4)	2 * (51)	560 (2.5)	530	590 (2.6)	530	630 (2.8)	530	670	530
	3 3/4* (95)	670 (3.0)	(2.4)	670 (3.0)	(2.4)	670 (3.0)	(2.4)	(3.0)	(2.4)
,	15/g (41)	530 (2.4)	990 (4.4)	650 (2.9)	1040 (4.6)	750 (3.3)	1100 (4.9)	850 (3.8)	1100 (4.9)
3 / 8 (9.5)	2¹/₂ * (64)	1200 (5.3)	1470	1 290 (5.7)	1470	1370 (6.1)	1470	1550	1470
	4¹/₄* (108)	1330 (5.9)	(6.5)	1 390 (6.2)	(6.5)	1440 (6.4)	(6.5)	(6.9)	(6.5)
	2'/ 4 (57)	1170 (5.2)	1940 (8.6)	1310 (5.8)	1 970 (8.8)	1450 (6.4)	1970 (8.8)	1730 (7.7)	1 970 (8.8)
¹ /₂ (12.7)	3'/ 2* (89)	1870 (8.3)	2450	2130 (9.5)	2450	2400 (10.7)	2450	2800	2450
	6* (152)	2080 (9.3)	(10.9)	2310 (10.3)	(10.9)	2530 (11.3)	(10.9)	(12.5)	(10.9)
	2³/₄ (70)	1600 (7.1)	3070 (13.7)	1870 (8.3)	3070 (13.7)	2130 (9.5)	3070 (13.7)	2670 (11.9)	3070 (13.7)
⁵ / 8 (15.9)	4** (102)	2400 (10.7)	3840	2850 (12.7)	3840	3290 (14.6)	3840	4190	3840
· .	7** (178)	3200 (14.2)	(17.1)	3470 (15.4)	(17.1)	3730 (16.6)	(17.1)	(18.6)	(17.1)
	3 1/4 (83)	1970 (8.8)	4140 (18.4)	2320 (10.3)	4140 (18.4)	2670 (11.9)	4140 (18.4)	3200 (14.2)	4140 (18.4)
3 / 4 (19.1)	4 3 / 4** (121)	2930 (13.0)	5120	4130 (18.4)	5120	4800 (21.4)	5120	5870 (26.1)	5120
	8** (203)	4000 (17.8)	(22.8)	4930 (21.9)	(22.8)	5870 (26.1)	(22.8)	6320 (28.1)	(22.8)
	4 ¹ / ₂ (114)	3330 (14.8)	7070 (31.4)	4050 (18.0)	7600 (33.8)	4670 (20.8)	8140 (36.2)	5070 (22.6)	5.
1 (25.4)	6 (152)	4930 (21.9)	9200	6000 (26.7)	9200	7070 (31.4)	9200	8400 (37.4)	9200 (40.9)
	9 (229)	6670 (29.7)	(40.9)	7670 (34.1)	(40.9)	8670 (38.6)	(40.9)	10670 (47.5)	, ,

Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear values by 20%.


^{**} Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear value by 12%.



All other values shown are for shear plane acting through either body or threads.

Hilti

Proposed Tankfarm E Romic - Southwest Chandler, Arizona

Figure D-9

URS

ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA

P:/ROMICKCADD/FIGURES/A76434.DWG 02-04-05 XREF: P:/ROMICKADD/FIGURES/ROMIC-SITE.DWG

Tank Certification Report Tank T-136

Prepared for:

Romic Environmental Technologies Corp,

6760 West Allison Road Chandler, AZ 85226

Prepared by:

Metro Environmental Services, Inc.

1256-B West Brooks Street

Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #136 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank #136, a 4,100-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is acidic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 4,100-gallon tank, (Tank #136), is constructed of high-density polyethylene. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of polyethylene. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a secondary containment tank. This tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report – Tank #136 February 5, 2005

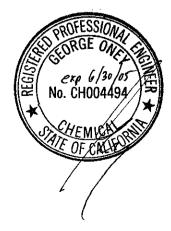
Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life


The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank I.D.No. ___TK-301_to_TK-303

Location: Tank Farm F

Service: Waste Storage

Contents: Acid waste

Size: 4,100 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Sloped Bottom

Insulation: n/a Agitator: n/a

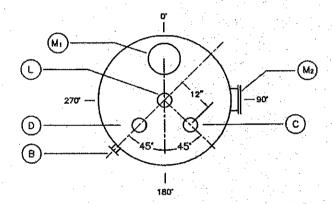
Weight: ______ 1,000± ____ lbs. Empty

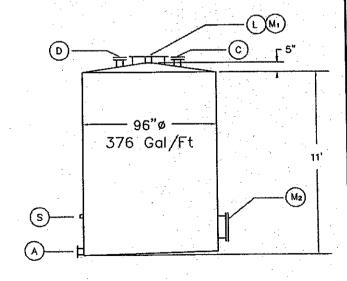
49,000± lbs. Full

Temp (*F) AMB.

Pressure (Psig): ATM.

Seismic Zone: 2

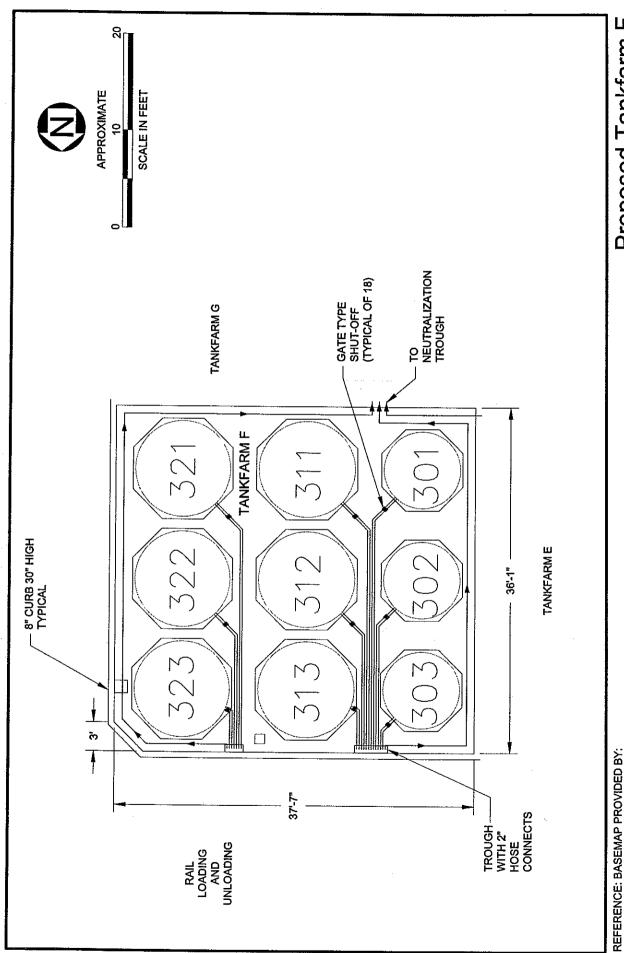

Material: High density polyethylene


Method of Construction: Molded

CONNECTION									
No.	Size	Туре	Rating	Function					
A	4"	RF	150#	BOTTOM NOZZLE					
В	4"	RF	150#	SIDE OUTLET					
С	2 1/2"	RF	150#	VENT					
D	- 4"	RF	150#	SPARE					
E 12"		RF	150#	LEVEL INDICATOR					
M	24"	FF	n/a	TOP MANWAY					
S	S 1" HC		3000#	SAMPLE PORT					
			·						

REMARKS

- 1. Standard cone top
- 2. Sloped bottom



1	Rev No.	Revision	Ву	Date	Apprvd	Date	Car
	1	Update for 2004 Part B	RP	4-14-04	WK	4-04	6
			·				

ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA

TK-301 to TK-303 Drawing Number

Proposed Tankfarm F

Romic - Southwest Chandler, Arizona

Figure D-10

METRO ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762 Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K

2K502

Tank 132 & tank 136

Issued:

02/12/05

Project Name:

Romic Environmental Technologies Corporation

Project Location: ROMIC Southwest, Chandler, Arizona.

Table of Contents:		Page No.
1	Scope of work, design loads and tank data	1
2	Seismic and wind analysis for overturning moment	2
3	Design new brace beam, support column, base plate and anchor bolts	3
	Attach two page of Hilti Kwik II bolt technical data	

SCOPE OF WORK:

Tank Designation:

TK 132 and T 136.

- Analyzed existing anchorage for 8'-0" Diameter by 11'-0" highPolyethylene tank setting inside of a 12'-0" diameter 6'-0" high containment tank
- Design brace beam, support column, anchor bolts and base plate.

DESIGN LOADS:

2000 Inte		wilding Cod	IA SO MPH	wind, Seismi	o Hoo ar	aun II		
	····ationa, b	anaing oot	16. 00 Mil 11	willa, Seisilli	c use gr	oup⊪ H≕	11 ft	
WIND:	F= Qz * G	* Cf * Af				п – D =	8 ft	•
			Kz Kzt Kd V	\2 I		υ – Kz =		22
	Qz =		.9*1.0*0.95*			κz = Kzt =	0.9 Tbl 6-3	
		17.73		90 2 1.0 -		κ <u>zι</u> – Kd =	1 Tbl 6-4 I	-iat
		17.75	psi				0.95 Tbl 6-4	
F wnd =	2533	2 lbs.				V =	90 MPH Fig	J 6-1
	wind * H of		13925	lhe ft		= 	1 Tbl 6-1	
W Out 1	wald 110	u11 –	13920	IDS-II		For H/D =	1.375	
						Cf=	1.4 Tbl 6-19	
						Gf ≃	0.85 Sec 6.5.	8
						Af =	120 Sq. Ft.	
						H otm =	5.5 ft	
Location:	Chandler		State:	Arizona		Siteclass:	D	
						Fa =	1.6 Tbl 161	5.1.2(1)
	1615(1):	Ss =	0.21	g		R =	3 Tb! 1622	
From Fig.	1615(2):	S1 =	0.063	g		Omega =		, ,
						le ≕	1.25 Tbl 1622	2.2.5(2)
Sds = 0.67	7 Fa Ss =		0.224	W		W =	50000 lbs	. ,
V seismic	=Cs W	Eq. 16-34				Cs = Sds /	R*I=	0.0933
=	0.093	3 W				Cs min=0.0	044Sdsl =	0.0123
						Use Cs =		0.0933
	d = 1.2 Sds		0.090	W				
	0.14 Sds le		0.039	W				
	nstr = 0.8\$		0.021	W				
Vs rigid no	onstr = 0.3 \$	Sds I W =	0.084	W		Use Vs =	0.093 W	
						Vs asd =	0.067 W	
Overturnin	ng Moment :	= Vs W * 1.2	sloshing * F	d otm =	22000	lbs-ft	Seismic Control	

Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks

~ .		
(inton	Intor	mation:
	111101	mauvn.

Material:

High Density Polethylene

0 lbs

Thickness:

0.88

Concrete slab thickness:

Min 6"

Full Tank +wt tank: Agitator: 49000 lbs

Misc valves and structures:

1000 lbs

Seismic Analysis per API-650 Appendix	Е		
Seismic zone, Z = (Zone 4=0.4,zone 3=		one 1=0.075)	0.40
Seismic Importance factor, Is = (Max I =	1.5. normally I =	1.0)	1.25
Site coefficient from soil type, s = (S4=2, S;	1.50		
Spcific gravity of liquid, G =	1.4		
Tank diameter, D =			8.00 ft
Height of tank, Ht =			11.00 ft
Fill height from top of floor, H =			11.00 ft
	2)^2*H*62.4pcf/10	nn –	48.32 kips
Weight of shell, uncorroded, Ws=	2) 2 11 02.4pc//10	00 –	
Weight of roof, Wr' =			1.000 kips
Roof equipment load in seismic, We =			0.500 kips
Ratio of D / H =			0.50 kips 0.73
Weight or roof & equipment load, Wr = Wr'	+ \\/e =		1.00 Kips
Height of center of gravity of shell, Xs = H /			•
From Figure E-2 Effective masses, W1 / W		0.070	5.50 ft
Contents in unison w/ shell, W1 = Wt * (W ²		0.870	0.87
From Figure E-2 Effective masses, W2 / W		0.400	42.06 Kips
First sloshing mode contents, W2 = Wt * (W		0.186	0.19
		0.404	8.99 Kips
From Figure E-3 Centroids of seismic force Height to centroid, X1 = H * (X1 / H) =	S, X1/H=	0.431	0.43
	- V0/III	0.770	4.74
From Figure E-3 Centroids of seismic force	s, X2/H =	0.776	0.78
Height to centroid, X2 = H * (X2 / H) =		A	8.54
From Figure E-4 Factor k, k =		0.577	0.58
Natural period of first mode, $T = k * (D)^0.5$	=		1.63 seconds
Lateral force coefficient, C1 = 0.6			0.24
Lateral force coefficient, C2 = C2 = 0.3	S/T =		0.28
Base shear Vs = Z * I *(C1 * (Ws + Wr + W	1) + C2 * \M2) =		6.53 Kips
Overturning, Mot = Z * I *(C1*Ws*Xs + C1*	1) · OZ VV Z) = \Λ/r*Ht +	1 ± C2*\\/2*Y2\-	35.96 K-ft
Friction resistance from contents, shell, roof	steel Efric= 0.4 *	(\N\t+\N\c+\N\c\\)-	19.93 Kips
Factor of safety for sliding, FSs = Fric / Vs	=	(446.442.441)	3.05 > 1.5 O.K.
			5.05 × 1.5 O.R.
Calculate resistance load against overtu	rning:		
Yield strength of tank material, Fy =			6.00 ksi
Thickness of bottom plate, tb = max (tf -co)	, thickness of floo	r or 0.25 =	0.88
Wt of contents allow for OT calc. per cicum	ference, W L=7.9 tb	(Fby G H)^0.5=	2101.22 plf
Max allowable for WL = 1.25 G H D =	154 plf	Use:	154.00 plf
Resistance to OT by contents, $Pr = 22/7$ *	D * WL =		3.87 Kips
Resistance to OT by shell and roof, Psr = V	Vs + Wr =		2.00 Kips
Total resistance to OT moment, Mr = (Pr +	Psr) * D / 2 =		23.49 k-ft
· ·	Mo	t > Mr, Anchorag	
Wind analysis per API 650 section 3.11 V	<u>Vind Ioad on Tan</u>	ks	
Based on 30 psf on vertical plane surface of	r 22 psf on projec	ted area of cylind	rical surface
Wind pressure, qw =			22.00 psf
Base shear from wind, Vw = qw * Ht * D =		•	1.94 Kips
Overturning due to wind, Motmw = Vw * Ht	/ 2 =		10.65 K-ft
Wind pressure from 2004CDC Processor	a an her -		04.00
Wind pressure from 2001CBC, Pw = Ce C		4.45	21.66 psf
For 70 MPH wind, Exp. C Where	22' Ce =	1.15 Cq =	1.30
Overturning due to wind from 0004000	70mph qs=	12.6 lw =	1.15
Overturning due to wind from 2001CBC, Me	ot mw = Pw * Ht *	υ * Ht / 2 =	10.48 k-ft

Design braced beam, support column, base plate and anchor bolts.

Overturning, Mot = Z * I * (C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2) = 35.96 k-ftBase shear Vs = Z * I * (C1 * (Ws + Wr + W1) + C2 * W2) = 6.53 Kips

Design an anchorage steel frame for overturning:

 $Sx min = M^* 12^* .75/ (.6*36) = 11.72 in^3$

Use W 8 x 18 brace beam w/ W8x18 column. Fy = 36 ksi

Shear weld at 3/4" thick cap plate = 6.53 / (.928*3*4/3) = 1.76 in.

1/4" Weld at base = M /2 * 12 * .75 /(bd + d^2 / 3) = b= 5.25, d = 8.125 2.50 kli Cap of 3/16" fillet weld = .928*4 = 3.712 kli/in

Tension on the base plate = M * 12 / (8.125 + 2 + 2) / 6 bolts = 5.93 Kip < 6

Shear on 1" diameter bolts = 6.53 / 12 bolts = 0.54 Kips<9.2

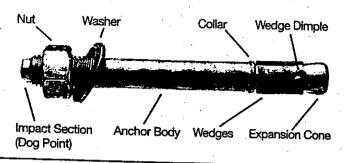
Combine shear and tension = $(.54 / 9.2)^{(5/3)} + (5.93 / 6)^{(5/3)} = 0.990 < 1.33$

Base plate thk min = $(6*3*5.93*2*.75/(10*.75*36))+D65^{5} = 0.593$ in

Cap of pullout cone fr 3 bolts = $.55*.65*(22/7*10^2/4)*(3000)^0.5*4/3*3*3$ 26.59 **Kips O.k.**

Use: Cap plate 3/4" x 8 x 9 w/ 3/16" fillet weld, weld flange to cap plate.

Use: Base plate 3/4" x 10 x 1'- 4" w/ (6) 1" dia. Hilti Kwik Bolts II, 6" embedment


Anchoring Systems

Kwik Bolt II Expansion Anchor

4.3.3.1 PRODUCT DESCRIPTION

The Kwik Bolt II is a stud type expansion anchor with a single piece wedge that performs as three independent wedges if necessary to provide consistent performance in a wide variety of medium-duty applications. Applicable base materials include concrete, lightweight concrete and grout-filled block.

Product Features

- Impact section (Dog Point) prevents thread damage during installation
- Independent 3-piece wedge with dimples help prevent anchor from spinning during installation
- Length identification code facilitates quality control & inspection after installation
- Anchor size is same as drill bit size for easy installation
- Comprehensive performance testing to provide high & consistent performance in concrete, light-weight concrete & grout filled block base materials
- Mechanical expansion allows immediate load application
- Can be installed in bottomless hole, which allows the anchor to be driven flush with the surface after use. Eliminates cutting bolt heads.
- Can be installed through the fixture, improving productivity
- Comprehensive product offering includes many head styles, sizes, carbon steel and stainless steel materials for a variety of applications

Guide Specifications

Expansion Anchors

Expansion anchors shall be stud type with a single piece three section wedge and zinc plated in accordance with ASTM B633. The anchors must meet the description in Federal Specification FF-S-325, Group II, Type 4, Class I for concrete expansion anchors. Anchors shall be Hilti Kwik Bolt II as supplied by Hilti, Inc., P.O. Box 21148, Tulsa, OK

Installation

Anchors to be installed in holes drilled with Hitti carbide tipped drill bits or matched tolerance diamond core bits. Anchors shall be installed per manufacturer's recommendations.

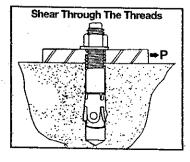
Listings/Approvals

- Underwriters Laboratory No. 203 "Pipe Hangers" (3/8"-3/4" diameters)
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 4627, KB II
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 5224, HCKB Southern Building Code Congress (SBCCI): Report No. 9930
- City of Los Angeles (COLA): Research Report No. 24946
- Conforms to the description in Federal Specification FF-S-325, Group II, Type 4, Class 1

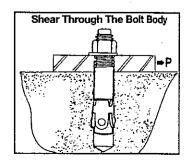
Factory Mutual (FM) KB II 3/8" x 2 1/4" w/Rod Coupler

Metro-Dade County Approval 98-0901.13		MECHANICAL PROPERTIES		
4.3.3.2 MATERIAL SPECIFICATIONS		f, kni (MD=)	min. f	
Carbon Steel KB II studs conform to ASTM A510 with chemical composition of AISI 1038 except countersunk KB II, KB 3/4" x 12", KB II 1" x 6", KB II 1" x 9" and KB II 1" x 12" which conform to ASTM A108 with chemical composition of AISI 11L41		ksi (MPa) 41 (282) 75 (517)	ksi (MPa) 75 (517) 90 (620)	
Wedges are manufactured from AISI 1010 carbon steel, except KB II 3/4" x 12", KB II 1" x 6", KB II 1" x 9" and KB II 1" x 12" wedges which conform to chemical composition of AISI 304 Nuts are carbon steel conforming to ASTM A563 Grade A and meet dimensional requirements		N/A	N/A	
of ANSI B18.2.2 Washers are carbon steel conforming to SAE 1005-1033 and meet dimensional requirements of ANSI 18.22.1 Type A Plain		N/A	N/A	
of ANSI 18.22.1 Type A Plain All carbon steel parts are zinc plated in accordance with ASTM 8633, Type III Fe/Zn 5		N/A	N/A	
Stainless Steel KB II studs conform to ASTM A276 or ASTM A493 with chemical composition of either AISI 304 or 316 1/4" thru 9/16"		N/A	N/A	
either AISI 304 or 316 1/4" thru 9/16"				
over 9/16"		76 (524)	90 (620)	
Stainless steel wedges are of the same material grade as bolts or superior.		64 (441)	76 (524)	
Nuts are stainless steel conforming to ACTA 550				

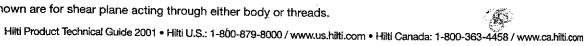
Nuts are stainless steel conforming to ASTM F594 with chemical composition of either AISI 304 or 316 and meeting dimensional requirements of ANSI B18.2.2 to conform with stud material


Washers are AISI 304 or 316 stainless steel conforming to ASTM A240 t

Kwik Bolt II Expansion Anchor


Carbon Steel Kwik Bolt II Allowable Loads in Concrete

Anchor	Embedment	2000 psi	(13.8 MPa)	3000 psi	(20.7 MPa)	4000 psi (27.6 MPa)	6000 psi	41.4 MPa)
Diameter in. (mm)	Depth in. (mm)	Tension lb (kN)	Shear Ib (kN)	Tension Ib (kN)	Shear lb (kN)	Tension Ib (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)
	11/6 (29)	270 (1.2)	430 (1.9)	330 (1.5)	430 (1.9)	380 (1.7)	430 (1.9)	470 (2.1)	430 (1.9)
1/4 (6.4)	2 * (51)	560 (2.5)	530	590 (2.6)	530	630 (2.8)	530	670	530
	3³/₄* (95)	670 (3.0)	(2.4)	670 (3.0)	(2.4)	670 (3.0)	(2.4)	(3.0)	(2.4)
,	15/8 (41)	530 (2.4)	990 (4.4)	650 (2.9)	1040 (4.6)	750 (3.3)	1100 (4.9)	850 (3.8)	1100 (4.9)
³ / ₈ (9.5)	2¹/₂* (64)	1200 (5.3)	1470	1290 (5.7)	1470	1370 (6.1)	1470	1550	1470
	4'/4* (108)	1330 (5.9)	(6.5)	1390 (6.2)	(6.5)	1440 (6.4)	(6.5)	(6.9)	(6.5)
· ·	2 ¹ / ₄ (57)	1170 (5.2)	1940 (8.6)	1310 (5.8)	1970 (8.8)	1450 (6.4)	1970 (8.8)	1730 (7.7)	1970 (8.8)
1/2 (12.7)	3 1/ ₂ * (89)	1870 (8.3)	2450	2130 (9.5)	2450	2400 (10.7)	2450	2800	2450
	6* (152)	2080 (9.3)	(10.9)	2310 (10.3)	(10.9)	2530 (11.3)	(10.9)	(12.5)	(10.9)
	2³/₄ (70)	1600 (7.1)	3070 (13.7)	1 870 (8.3)	3070 (13.7)	2130 (9.5)	3070 (13.7)	2670 (11.9)	3070 (13.7)
⁵ / ₈ (15.9)	4** (102)	2400 (10.7)	3840	2850 (12.7)	3840	3290 (14.6)	3840	4190	3840
	7** (178)	3200 (14.2)	(17.1)	3470 (15.4)	(17.1)	3730 (16.6)	(17.1)	(18.6)	(17.1)
	3 ¹ / ₄ (83)	1970 (8.8)	4140 (18.4)	2320 (10.3)	4140 (18.4)	2670 (11.9)	· 4140 (18.4)	3200 (14.2)	4140 (18.4)
³ /₄ (19.1)	4³/₄** (121)	2930 (13.0)	5120	4130 (18.4)	5120	4800 (21.4)	5120	5870 (26.1)	5120
	8** (203)	4000 (17.8)	(22.8)	4930 (21.9)	(22.8)	5870 (26.1)	(22.8)	6320 (28.1)	(22.8)
	4¹/₂ (114)	3330 (14.8)	7070 (31.4)	4050 (18.0)	7600 (33,8)	4670 (20.8)	8140 (36.2)	5070 (22.6)	v
1 (25.4)	6 (152)	4930 (21.9)	9200	6000 (26.7)	9200	7070 (31.4)	9200	8400 (37.4)	9200 (40.9)
	9 (229)	6670 (29.7)	(40.9)	7670 (34.1)	(40.9)	8670 (38.6)	(40.9)	10670 (47.5)	


Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear values by 20%.

Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear value by 12%.

All other values shown are for shear plane acting through either body or threads.

Proposed Tankfarm F

Romic - Southwest Chandler, Arizona Figure D-10

GRS

ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA

P:\ROMIC\CADD\FIGURES\A16435.DWG\02-04-05 XREF: P:\ROMIC\CADD\FIGURES\ROMIC\S\TEDWG

Location: Tank Farm D

Service: Waste Receiving/Storage

Contents: Organic/aqueous

Size: <u>5,800</u> gal. S.G.: <u>1.0-1.6</u>

Fill GPM: <u>250</u> Empty GPM: <u>250</u>

Support: 4 Legs

Insulation: n/a Agitator: n/a

Auxiliary Equip: Cooling Coils

Tank I.D.No. $\underline{\mathsf{TK}-108}$ and $\underline{\mathsf{TK}-109}$ Weight: $\underline{\mathsf{4,000}\pm}$ Ibs. Empty

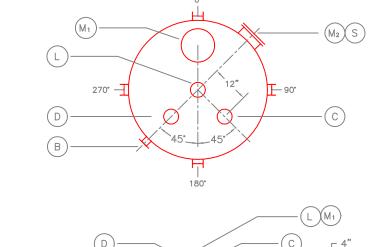
_____81,400 \pm ____ lbs. Full

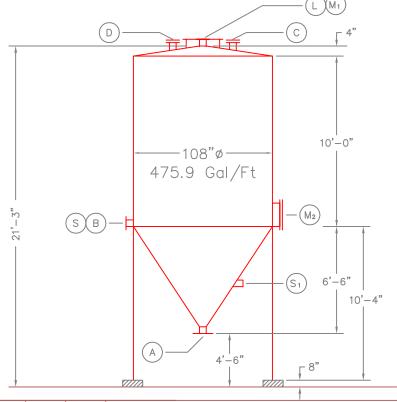
Temp (°F) Ambient

Pressure (Psig): ATM

Seismic Zone: 2

Material: <u>Carb</u>on Steel


Method of Construction: Welded


CONNECTION

No.	Size	Туре	Rating	Function
А	4"	RF	150#	BOTTOM NOZZLE
В	3"	RF	150#	SIDE OUTLET
С	3"	RF	150#	VENT
D	3"	RF	150#	SPARE
L	3"	RF	150#	LEVEL INDICATOR
M ₁	24"	FF	n/a	TOP MANWAY
M ₂	24"	FF	n/a	SIDE MANWAY
S	1"	НС	3000#	SAMPLE PORT

REMARKS

- 1. Standard 1:12 sloped top.
- 2. Bottom cone with 70.2° included angle.
- 3. Tank supported on 4 legs.
- 4. See Brown Tank & Steel W/0-3882.

	Rev No.	Revision	Ву	Date	Apprvd	Date	
ı	1	ADD TANKS 106 TO 108	MW	11-13-95			
	2	Update for 2004 Part B	RP	4-14-04	WK	4-04	
	3	Revise Temperature rating	RP	8-22-05	MS	8-05	

ROMIC ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA

Drawing Number Tk 108 and Tk 109

Location: Tank Farm D

Service: Fuels/Solvents

Contents: Fuels

Size: 19,500 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Skirt

Insulation: n/a Agitator: 10 HP

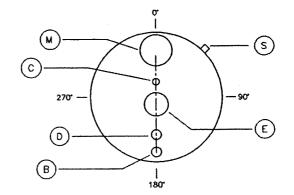
Other: Agitator w/ Baffles Optional

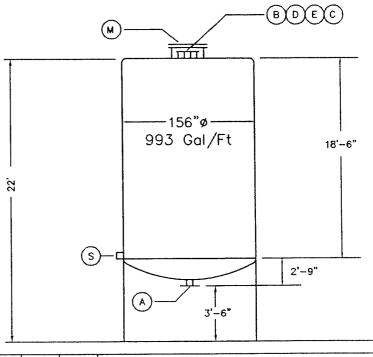
Tank I.D.No. $\underline{\mathsf{TK-137}}$ and $\underline{\mathsf{TK-138}}$ Weight: $\underline{\mathsf{8,000\pm}}$ Ibs. Empty $235,700\pm$ lbs. Full

Temp (*F) AMB.

Pressure (Psig): <u>ATM.</u>

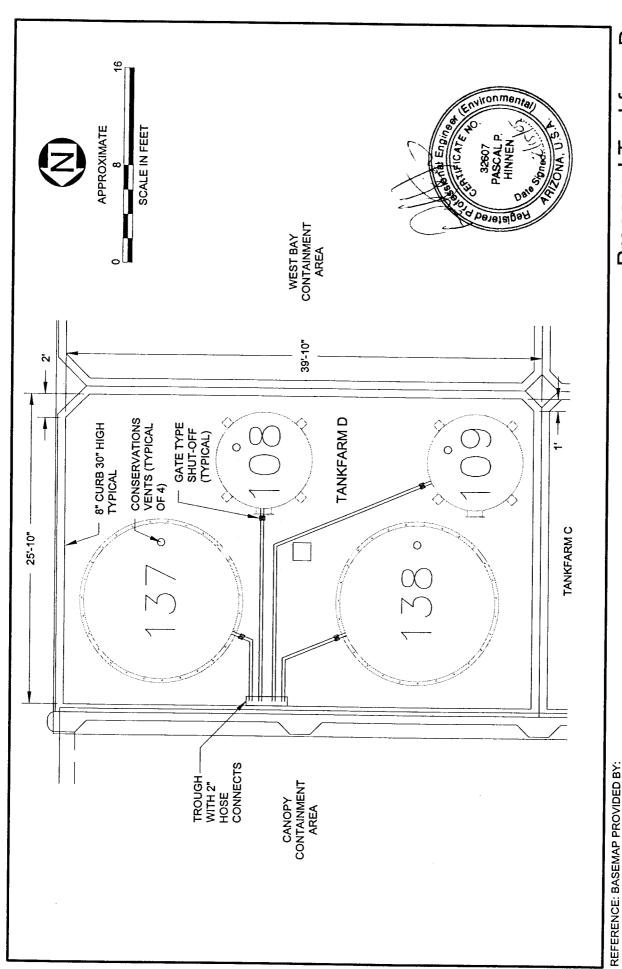
Seismic Zone: 2


Material: Carbon Steel


Method of Construction: Welded

CONNECTION										
No.	Size	Туре	Rating	Function						
Α	. 4"	RF	150#	BOTTOM NOZZLE						
В	4"	RF	150#	SIDE OUTLET						
С	2 1/2"	RF	150#	VENT						
D	4"	RF	150#	SPARE						
E	12"	RF	150#	LEVEL INDICATOR						
M	24"	FF	n/a	TOP MANWAY						
S	1"	НС	3000#	SAMPLE PORT						
	,									

REMARKS


- 1. Standard Flat top.
- 2. Flanged and dished bottom
- 3. Tank supported on ring skirt.
- 4. See Brown Tank & Steel W/0-3882.

Rev No.	Revision	Ву	Date	Apprvd	Date	6	ROM
1	Update for 2001 Part B	RP	4-14-04	WK	4-04	S	ENVIRONMENTAL TE ROMIC SOUTHWEST, CH
							Drawing Number T

IICECHNOLOGIES CORP. HANDLER, ARIZONA TK 137 and TK 138

Proposed Tankfarm D

Romic - Southwest Chandler, Arizona Figure D-8

Tank I.D.No. <u>TK-401 to TK-403</u>

Location: Tank Farm E

Service: Waste Storage

Contents: Alkaline waste

Size: 4,100 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Sloped Bottom

Insulation: n/a Agitator: n/a

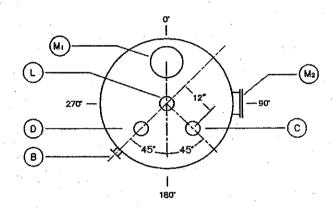
Weight: $1,000\pm$ lbs. Empty $49,000\pm$ lbs. Full

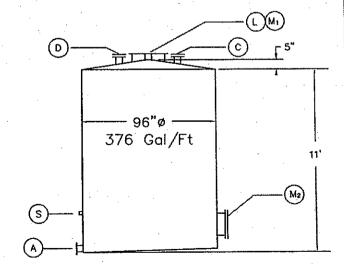
Temp (*F) AMB.

Pressure (Psig): ATM.

Seismic Zone: 2

Material: High density polyethylene


Method of Construction: Molded


CONNECTION

·				-
No.	Size	Туре	Rating	Function
A	4"	RF	150#	BOTTOM NOZZLE
В	4"	RF	150#	SIDE OUTLET
С	2 1/2"	RF	150#	VENT
D	4"	RF	150#	SPARE
E	12"	RF	150#	LEVEL INDICATOR
М	24"	FF	n/a	TOP MANWAY
S	1"	HC	3000#	SAMPLE PORT
	1			

REMARKS

- 1. Standard cone top
- 2. Sloped bottom

Rev	No. Revision	Ву	Date	Apprvd	Date	G
1	Update for 2004 Part B	RP	4-14-04	WK	4-04	6

POMIC
ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Drawing Number TK-401 to TK-403

Tank I.D.No. <u>TK-411</u> to TK-413

Location: Tank Farm E

Service: Waste Storage

Contents: <u>Alkaline waste</u>

Size: 8,500 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Sloped Bottom

Insulation: n/a Agitator: n/a

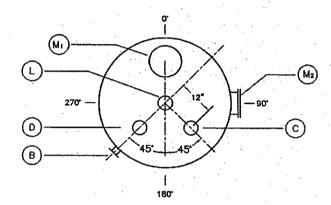
Weight: $2,500\pm$ lbs. Empty $101,700\pm$ lbs. Full

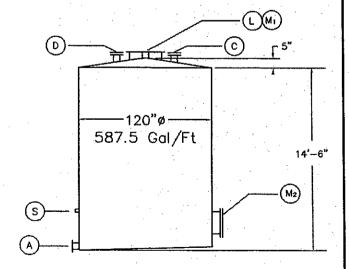
Temp (*F) <u>AMB</u>.

Pressure (Psig): ATM.

Seismic Zone: 2

Material: High density polyethylene


Method of Construction: Molded

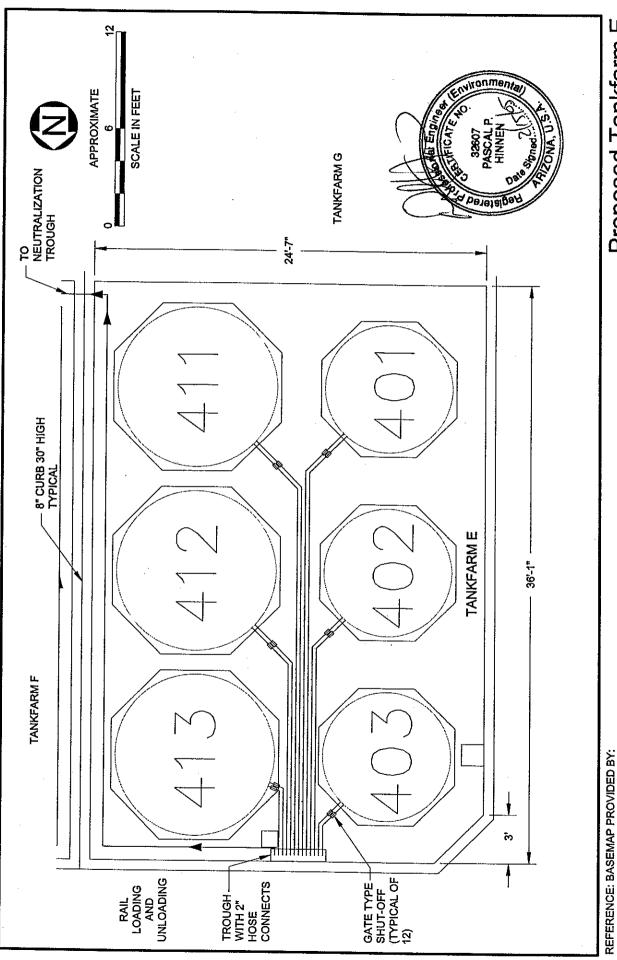

CONNECTION

OOMALOTION					
No.	Size	Туре	Rating	Function	
, A	4"	RF ·	150#	BOTTOM NOZZLE	
В	4"	RF	150#	SIDE OUTLET	
C	2 1/2"	RF	150#	VENT	
D	4"	RF	150#	SPARE	
E	12"	RF	150#	LEVEL INDICATOR	
M	24"	FF	n/a	TOP MANWAY	
S	1"	HC	3000#	SAMPLE PORT	
	-				
			·		
	-				
				·	

REMARKS

- 1. Standard cone top
- 2. Sloped bottom

	Rev No.	Revision	Ву	Date	Apprvd	Date	
L	1	Update for 2004 Part B	RP	4-14-04	WK	4-04	9
		·					
L							



ROMIC

ENVIRONMENTAL TECHNOLOGIES CORP.

ROMIC SOUTHWEST, CHANDLER, ARIZONA

Drawing Number TK-411 to TK-413

Proposed Tankfarm E Romic - Southwest Chandler, Arizona

Figure D-9

P:\ROMIC\CADD\FIGURES\A16434.DWG 02-04-05 XREF: P:\ROMIC\CADD\FIGURES\ROMIC-SITE.DWG

EOMIC SOUTHWEST, CHANDLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARZONA

Tank I.D.No. <u>TK-301 to TK-303</u>

Location: Tank Farm F

Service: Waste Storage

Contents: Acid waste

Size: 4,100 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Sloped Bottom

Insulation: n/a Agitator: n/a

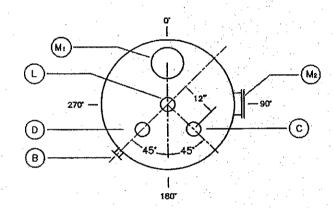
CONNECTION

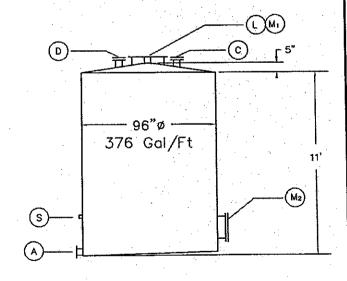
Weight: $1,000\pm$ lbs. Empty $49,000\pm$ lbs. Full

Temp (*F) AMB.

Pressure (Psig): ATM.

Seismic Zone: 2


Material: High density polyethylene


Method of Construction: Molded

No.	Size	Туре	Rating	Function
Α	4"	RF	150#	BOTTOM NOZZLE
В	4"	RF	150#	SIDE OUTLET
C,	2 1/2"	RF	150#	VENT
D	4"	RF	150#	SPARE
E	12"	RF	150#	LEVEL INDICATOR
M	24"	FF	n/a	TOP MANWAY
S	1"	HC	3000#	SAMPLE PORT
	1			

REMARKS

- 1. Standard cone top
- 2. Sloped bottom

1	Rev No.	Revision	Ву	Date	Apprvd	Date	6
Ì	1	Update for 2004 Part B	RP	4-14-04	WK	4-04	7
ı		·					
ľ							1

ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Drawing Number TK-301 to TK-303

Tank I.D.No. <u>TK-311 to TK-313</u>

Location: Tank Farm F

Service: Waste Storage

Contents: Acid waste

Size: 8,500 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Sloped Bottom

Insulation: n/a Agitator: n/a

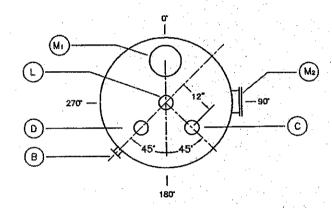
Weight: $2,500\pm$ lbs. Empty $101,700\pm$ lbs. Full

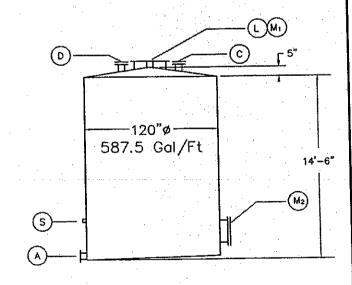
AMO

Temp (*F) AMB.

Pressure (Psig): ATM.

Seismic Zone: 2


Material: High density polyethylene


Method of Construction: Molded

CONNECTION						
No.	Size	Туре	Rating	Function		
Α	4"	RF	150#	BOTTOM NOZZLE		
В	4"	RF	150#	SIDE OUTLET		
C ·	2 1/2"	RF	150#	VENT		
D	4"	RF	150#	SPARE		
E	12"	RF	150#	LEVEL INDICATOR		
M	24"	FF	n/a	TOP MANWAY		
S	1"	- HC	3000#	SAMPLE PORT		
	·					
			-			
-						
				·		

REMARKS

- 1. Standard cone top
- 2. Sloped bottom

Rev No.	Revision	Ву	Date	Apprvd	Date	
1	Update for 2004 Part B	RP	4-14-04	WK	4-04	

ROMIC
ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Drawing Number TK-311 to TK-313

Tank I.D.No. TK-321 to TK-323

Location: Tank Farm F

Service: Waste Storage

Contents: Acid waste

Size: 8,500 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Sloped Bottom

Insulation: n/a Agitator: n/a

Weight: 2,500± lbs. Empty

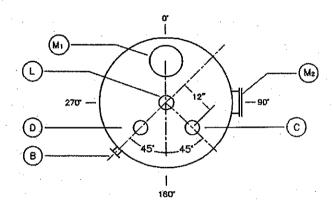
101,700± lbs. Full

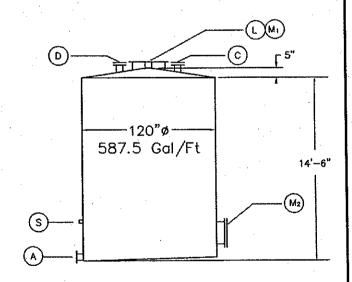
Temp (°F) AMB.

Pressure (Psig): ATM.

Seismic Zone: 2

Material: High density polyethylene

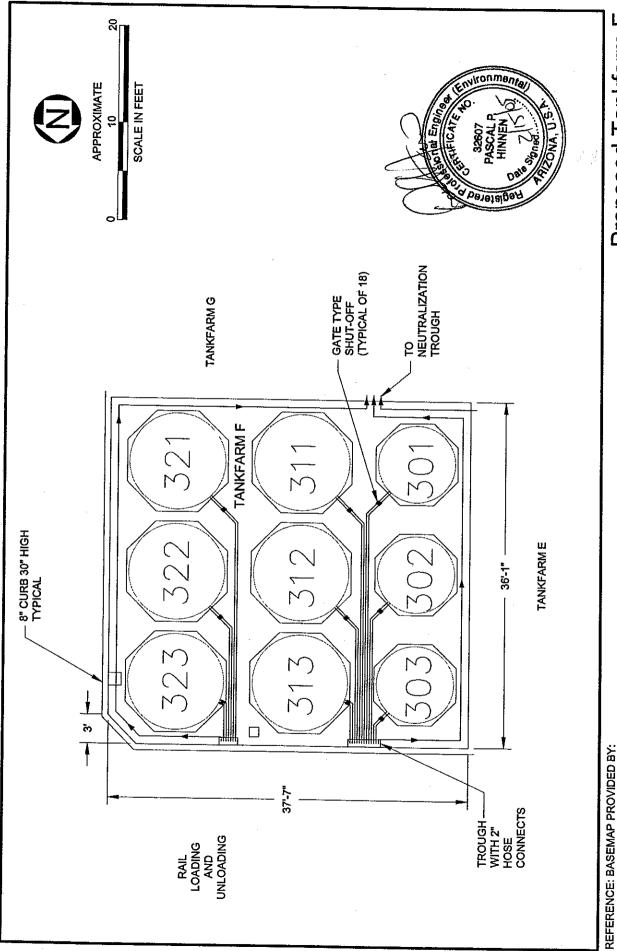

Method of Construction: Molded


CONNECTION

No.	Size	Туре	Rating	Function
Α	4"	RF	150#	BOTTOM NOZZLE
В	4"	RF .	150#	SIDE OUTLET
С	2 1/2"	RF	150#	VENT
D	4"	RF	150#	SPARE
Ε	12"	RF	150#	LEVEL INDICATOR
М	24"	FF	n/a	TOP MANWAY
S	1"	HC	3000#	SAMPLE PORT
:			- ,	
		-		
			1	

REMARKS

- 1. Standard cone top
- 2. Sloped bottom



Rev No.	Revision	Ву	Date	Apprvd	Date	
1	Update for 2004 Part B	RP	4-14-04	WK	4-04	C

ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA Drawing Number TK-321 to TK-323

Proposed Tankfarm F

Romic - Southwest Chandler, Arizona

Figure D-10

EOMIC SOUTHWEST, CHANDLER, ARIZONA

Tank I.D.No. <u>TK-304 to TK-307</u>

Location: Tank Farm G

Service: Waste Storage

Contents: Acid, Base, Aqueous, Oxidizer

Size: 4,100 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Ring Skirt

Insulation: <u>n/a</u> Agitator: <u>Yes</u>

Weight: 1,000± lbs. Empty

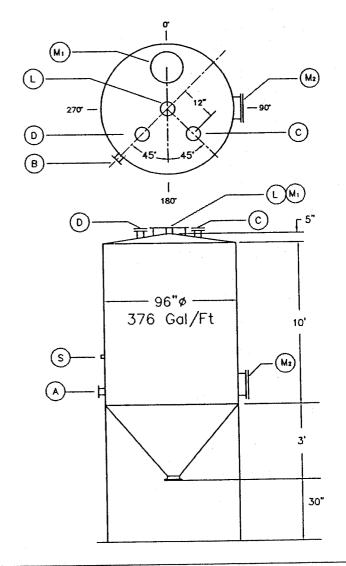
49,000± lbs. Full

Temp (*F) AMB.

Pressure (Psig): ATM.

Seismic Zone: 2

Material: High density polyethylene


Method of Construction: Molded

CONNECTION

No.	Size	Туре	Rating	Function
Α	4"	RF	150#	BOTTOM NOZZLE
В	4"	RF	150#	SIDE OUTLET
С	2 1/2"	RF	150#	VENT
D	4"	RF	150#	SPARE
E	12"	RF	150#	LEVEL INDICATOR
L	4"	RF	150#	MIXER
М	24"	FF	n/a	TOP MANWAY
S	1"	НС	3000#	SAMPLE PORT

REMARKS

- 1. Standard cone top
- 2. Sloped bottom

Rev No.	Revision	Ву	Date	Apprvd	Date	G
1	Update for 2004 Part B	RP	4-14-04	WK	4-04	7
		- 				

ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA

TK-304 to TK-307 Drawing Number

Description	У
Pressure (Psig):	
Size:	
Fill GPM: Empty GPM: Material: Method of Construction:	
Support: Insulation: CONNECTION No. Size Type Rating Function REMARKS	
Insulation: Agitator:	
CONNECTION No. Size Type Rating Function A DESCRIPTION FUNCTION	***************************************
No. Size Type Rating Function Total Control	
REMARKS	
REMARKS	Ú.
REMARKS	
	5.
Rev No. Revision By Date Apprvd Date ROMIC	

Drawing Number

Tk 308 and Tk 309

Tank I.D.No. <u>TK-511 to TK-512</u>

Location: Tank Farm F

Service: Waste Storage

Contents: Wastewater

Size: 8,500 gal. S.G.: 1.0-1.4

Fill GPM: 250 Empty GPM: 250

Support: Sloped Bottom

Insulation: <u>n/a</u> Agitator: <u>n/a</u>

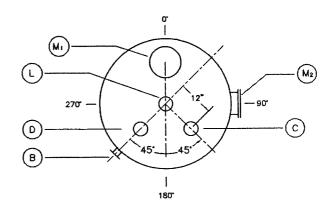
Weight: $2,500\pm$ lbs. Empty $101,700\pm$ lbs. Full

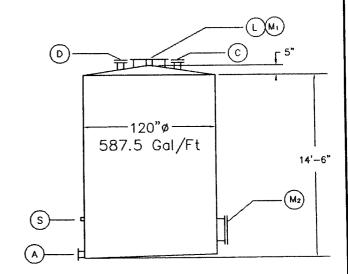
Temp (°F) AMB.

Pressure (Psig): ATM.

Seismic Zone: 2

Material: High density polyethylene

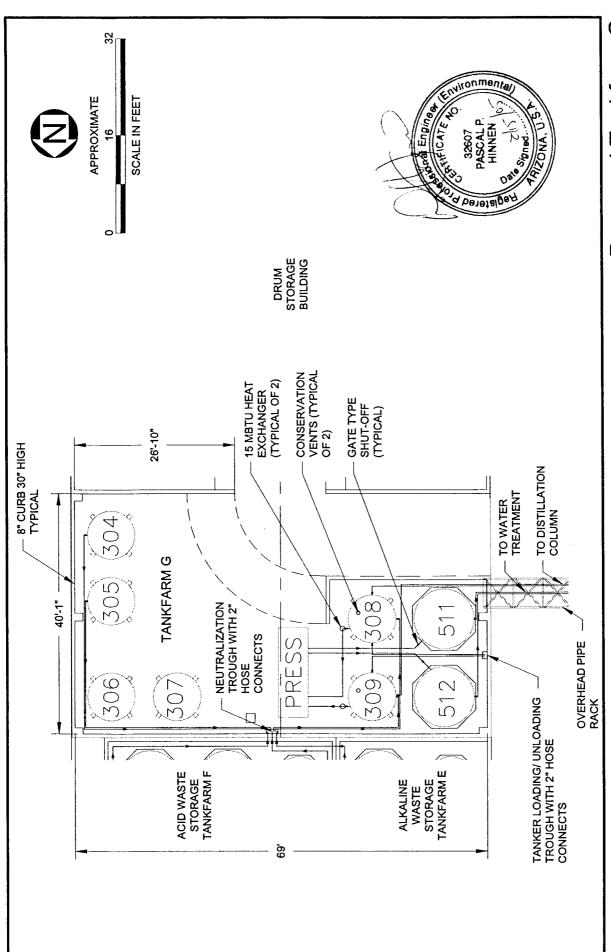

Method of Construction: Molded


CONNECTION

No.	Size	Туре	Rating	Function
Α	4"	RF	150#	BOTTOM NOZZLE
В	4"	RF	150#	SIDE OUTLET
С	2 1/2"	RF	150#	VENT
D	4"	RF	150#	SPARE
E	12"	RF	150#	LEVEL INDICATOR
М	24"	FF	n/a	TOP MANWAY
S	1"	НС	3000#	SAMPLE PORT

REMARKS

- 1. Standard cone top
- 2. Sloped bottom



Rev No.	Revision	Ву	Date	Apprvd	Date	1
1	Update for 2004 Part B	RP	4-14-04	WK	4-04	-
			-			-
						_

ROMIC
ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Drawing Number TK-511 to TK-512

Proposed Tankfarm G

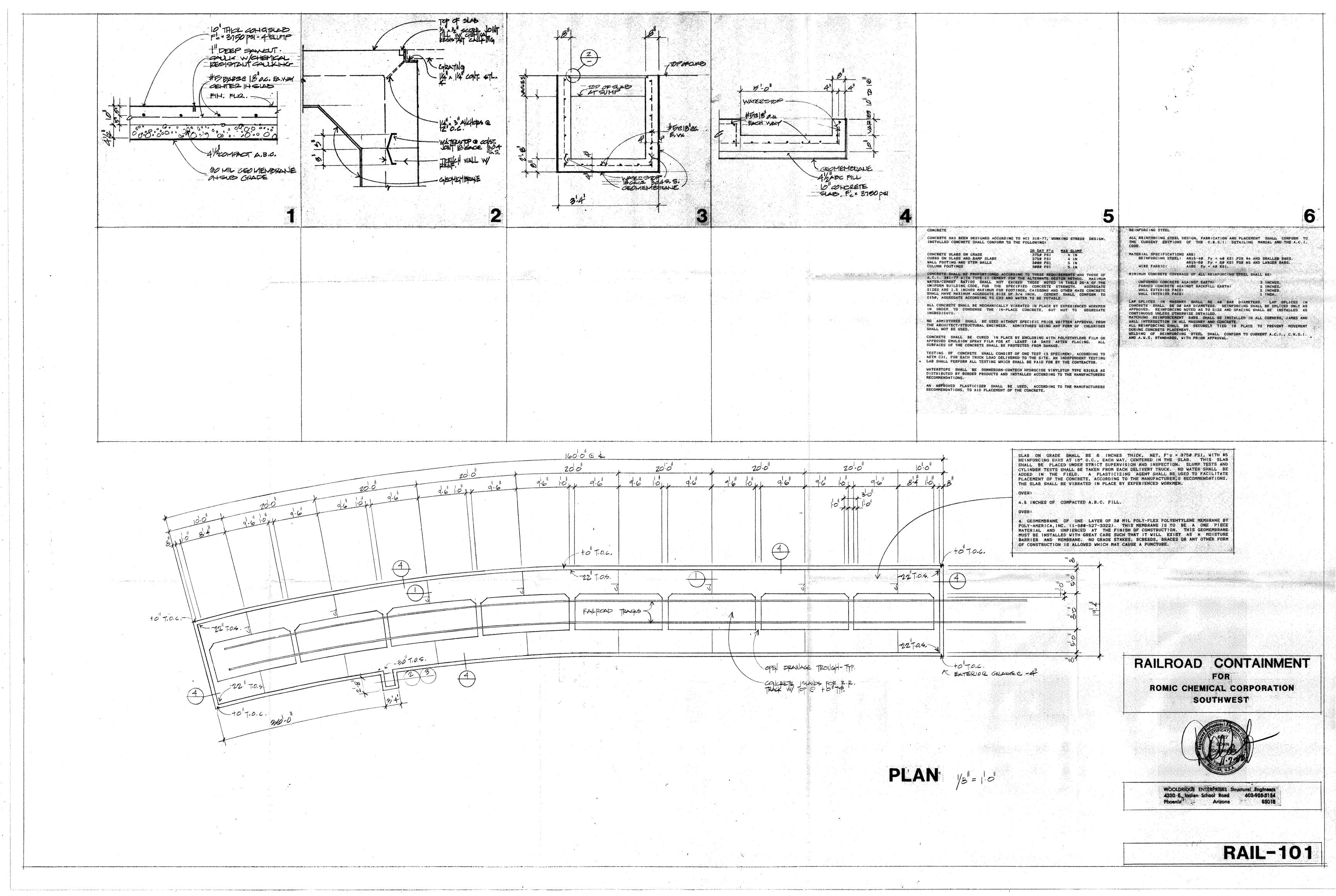

Romic - Southwest Chandler, Arizona

Figure D-11

EOMIC SOUTHWEST CHANGES CORP. REFERENCE: BASEMAP PROVIDED BY:

ROMIC SOUTHWEST, CHANDLER, ARIZONA

