ξ_{s}孚

Section P - Master List			
Area ID	Cert. ID	Figures	Comments
*Signifies document has been stamped by a Professional Engineer			
Containment Areas			
Cont. A and B	Tankfarm A	Cert. Report*, S1*, C-101*	
	Tankfarm B	Cert. Report*, S1*, C-101*	
Cont. C and D	Tankfarm C	Cert. Report*, liner installation photos, P103-1*, P103-2*	
	Tankfarm D	Cert. Report*, liner installation photos, P103-1*, P103-2*	
Cont. E, F, and G	Tankfarm E	Cert. Report*	
	Tankfarm F	Cert. Report*	
	Tankfarm G	Cert. Report*	
Buildings			
Bldg. 1	Drum Storage Building	Cert. Report*, D-2, D-3, Table D-1, DSB-101 (1 of 2)*, and DSB (2 of 2)*	
Bldg. 2	Drum Storage Building	Cert. Report*, D-4, D-5, Table D-1, A-2, and A-3	
Process Units			
Vaccuum Pot	Vacuum Pot	Cert. Report*, E-2, E-4	
	S-1	Cert. Report*, E-2, E-4	
	S-2	Cert. Report*, E-2, E-4	
Thin Film Evaporator	Thin Film Evaporator Area	Cert. Report*, E-2, E-5	
	Thin Film Evaporator Flush Tank	Cert. Report*, E-2, E-5	
	Thin Film Evaporator Receiver	Cert. Report*, E-2, E-5	
Column 30	Reboiler	Cert. Report*, E-2, E-3	
	Separator	Cert. Report*, E-2, E-3	
Tanks			
TK-101	Tank T-101	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-6	
TK-102	Tank T-102	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-6	
TK-103	Tank T-103	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-6	
TK-104	Tank T-104	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-6	
TK-105	Tank T-105	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-6	
TK-112	Tank T-112	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-6	
TK-113	Tank T-113	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-7	
TK-121	Tank T-121	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-7	
TK-122	Tank T-122	Fig D-7	
TK-123	Tank T-123	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-7	
TK-124	Tank T-124	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-7	
TK-132	Tank T-132	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig D-9*	T-132 becomes proposed T-401 for permit
TK-136	Tank T-136	Cert. Report*, Design Load/Seismic \& Wind Analysis/ Check support column, base plate and anchor bolts*, Fig-10*	T-136 becomes proposed T-301 for permit
TK-108 and TK-109 TK-137 and TK-138		Tank 108 and 109 cut sheet; Fig D-8*	PE stamped as 30% design drawing
		Tank 137 and 138 cut sheet; Fig D-8*	PE stamped as 30\% design drawing
TK-401, 402, and 403		Tank 401 to 403 cut sheet; Fig D-9*	PE stamped as 30% design drawing
TK-411, 412, and 413		Tank 411 to 413 cut sheet; Fig D-9*	PE stamped as 30\% design drawing
$\begin{aligned} & \text { TK-301, 302, } \\ & \text { and } 303 \end{aligned}$		Tank 301 to 303 cut sheet; Fig D-10*	PE stamped as 30\% design drawing
$\begin{aligned} & \text { TK-311, 312, } \\ & \text { and 313 } \end{aligned}$		Tank 311 to 313 cut sheet; Fig D-10*	PE stamped as 30\% design drawing

TK-321, 322, and 323		Tank 321 to 323 cut sheet; Fig D-10*	PE stamped as 30% design drawing
TK-304, 305, 306, and 307		Tanks 304 to 307 cut sheet; Fig D-11*	PE stamped as 30% design drawing
TK-308 and 309	Tank 308 and 309 cut sheet; Fig D-11*	PE stamped as 30% design drawing	
TK-511 and 512	Tank 511 and 512 cut sheet; Fig D-11*	PE stamped as 30\% design drawing	

* Signifies document has been stamped by a Professional Engineer

Container Storage Area Certification Drum Storage Building \#1

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Engineering Certification Report - Drum Storage Building \#1 February 5, 2005

INTRODUCTION

On January 26, 2005, in accordance with 40 CFR Section 264.175, "Containment", Metro Environmental Services, Inc. performed an assessment of Drum Storage Building \#1 at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Drum Storage Building \#1 is constructed of 6-inch thick, 3,750-psi concrete with one mat of \#5 rebar placed at 18 " spacing on center in both directions. A polyethylene liner was installed under the entire building during construction. Chemical resistant waterstops were installed at cold joints in the slab.

Containment Volume

The total containment volume available for Drum Storage Building \#1 is 41,078 gallons. The required containment volume is 12,144 gallons. See the attached containment volume calculations for details.

CERTIFICATION

I hereby certify that this containment system is suitably designed to achieve the requirements of 40 CFR 264.175.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

$\infty \quad \infty \quad \infty$
0
8
8
8

(ui) yidea xeN $\quad \infty \infty \infty$
(u!) yłdəa u! W

SECONDARY CONTAINMENT CALCULATIONS FOR O-1 TTAINER STORAGE AREAS

Container Storage Area Certification

Drum Storage Building \#2

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc.

Romic Environmental Technologies Corp.

Engineering Certification Report - Drum Storage Building \#2

February 5, 2005

INTRODUCTION

On February 2, 2005, in accordance with 40 CFR Section 264.175, "Containment", Metro Environmental Services, Inc. performed an assessment of Drum Storage Building \#2 at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Drum Storage Building \#2 is constructed of 6-inch thick concrete with one mat of \#5 rebar placed at 12 " spacing on center in both directions. A polyethylene liner was installed under the entire building during construction. Chemical resistant waterstops were installed at cold joints in the slab.

Containment Volume

The total containment volume available for Drum Storage Building \#2 is 6,755 gallons. The required containment volume is 5,500 gallons. See the attached containment volume calculations for details.

CERTIFICATION

I hereby certify that this containment system is suitably designed to achieve the requirements of 40 CFR 264.175.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

ROMIO

Notes:

[^0]
noozary xuyd malsnan! 3LIna 3 NGT
 NOIIYYOdyOS TYJI世3HJ

(6)

Process Area Certification

Thin Film Evaporator Area

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc.

Romic Environmental Technologies Corp.
Engineering Certification Report - Thin Film Evaporator Area
February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of the Thin Film Evaporator Area at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

The Thin Film Evaporator Area is constructed of 10 -inch thick, minimum 3,000-psi concrete with two mats of \#5 rebar placed at 12 " spacing on center each way. A polyethylene liner was installed under the containment area during construction.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Certification Report

Thin Film Evaporator Flush Tank

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Flush Tank
February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the Thin Film Evaporator Flush Tank, a 225-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 225-gallon tank, (Flush Tank), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Flush Tank
February 5, 2005
Tank and Piping System Installation Inspection
The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1991. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer
Registration No. CH004494

Tank Certification Report

Thin Film Evaporator Receiver

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Receiver Tank February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the Thin Film Evaporator Receiver Tank, a 225 -gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 225-gallon tank, (Receiver Tank), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

```
Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Receiver Tank February 5, 2005
```


Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1991. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Page 2 of 2

Tank Certification Report

Vacuum Pot

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

```
Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Vacuum Pot
February 5, 2005
```


INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the Vacuum Pot, a 1,700-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 1,700-gallon tank, (Vacuum Pot), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1995. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer

Tank Certification Report

S-1

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Tank S-1 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank $\mathrm{S}-1$, a 600 -gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 600-gallon tank, (S-1), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank S-1
February 5, 2005
Tank and Piping System Installation Inspection
The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1995. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

Page 2 of 2

Tank Certification Report

S-2

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Tank S-2 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank S-2, a 600-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 600-gallon tank, (S-2), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank S-2
February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1995. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

[^1]

Process Area Certification

Reboiler Area

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. Ontario, CA 91762 West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp.
Engineering Assessment Report - Reboiler Area
June 23, 2005

INTRODUCTION

On May 27, 2005, Metro Environmental Services. Inc. performed an assessment of the Reboiler Area at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

The Reboiler Area is constructed of concrete and coated with a chemical resistant coating. The area was visually inspected for cracks or gaps in the containment. No obvious defects were noted during the inspection.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

Tank Certification Report

Reboiler

Prepared for: Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226

Prepared by: Metro Environmental Services, Inc.
1256-B West Brooks Street
Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Reboiler February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the Reboiler, a 2,990-gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 2,990-gallon tank, (Reboiler), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Reboiler
February 5, 2005

Tank and Piping System Installation Inspection
The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 2000. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Certification Report

 Separator| Prepared for: | Romic Environmental Technologies Corp,
 6760 West Allison Road
 Chandler, AZ 85226 |
| :--- | :--- |
| Prepared by: | Metro Environmental Services, Inc.
 1256-B West Brooks Street
 Ontario, CA 91762 |

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Separator Tank February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the Separator Tank, an 85 -gallon hazardous waste processing tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to process hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 85 -gallon tank, (Separator Tank), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests upon a support structure that rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Separator Tank
February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 2000. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

Page 2 of 2

Tank Farm Certification

Tankfarm A

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp.
 Engineering Certification Report - Tank Farm A
 February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "A" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Tank Farm "A" is constructed of 10 -inch thick, minimum 3,000-psi concrete with two mats of \#5 rebar placed at 12 " spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Farm Certification

Tankfarm B

Prepared for: Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by: Metro Environmental Services, Inc.
1256-B West Brooks Street
Ontario, CA 91762

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Engineering Certification Report - Tank Farm B
February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "B" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Tank Farm " B " is constructed of 10 -inch thick, minimum 3,000-psi concrete with two mats of \#5 rebar placed at 12 "spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Farm Certification

 Tankfarm CPrepared for: Romic Environmental Technologies Corp, 6760 West Allison Road
Chandler, AZ 85226
Prepared by: Metro Environmental Services, Inc.
1256-B West Brooks Street
Ontario, CA 91762

Metro Environmental Services, Inc.

Romic Environmental Technologies Corp.

Engineering Certification Report - Tank Farm C
February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "C" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Tank Farm "C" is constructed of 10 -inch thick, minimum 3,000-psi concrete with two mats of \#5 rebar placed at 12 " spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Farm Certification
 Tankfarm D

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Engineering Certification Report - Tank Farm D
February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "D" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Tank Farm "D" is constructed of 10 -inch thick, minimum 3,000-psi concrete with two mats of \#5 rebar placed at 12 " spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Liner being unrolled under tank farm

Liner seal being tested for leaks

Sump area for liner being installed

Final preparations on liner prior to covering

Neer curb ond gutitar re motech existing p
居 min comoocted A os tollowe

Tank Farm Certification

 Tankfarm EPrepared for: Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by: Metro Environmental Services, Inc.
1256-B West Brooks Street
Ontario, CA 91762

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Engineering Certification Report - Tank Farm E
February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "E" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Tank Farm "E" is constructed of 10 -inch thick, minimum 3,000-psi concrete with two mats of \#5 rebar placed at 12 " spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

Tank Farm Certification Tankfarm F

Prepared for: Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by: Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp.
Engineering Certification Report - Tank Farm F
February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "F" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Tank Farm " F " is constructed of 10 -inch thick, minimum 3,000-psi concrete with two mats of \#5 rebar placed at 12 " spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Farm Certification Tankfarm G

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc.
 Romic Environmental Technologies Corp.
 Engineering Certification Report - Tank Farm G
 February 5, 2005

INTRODUCTION

On February 2, 2005, Metro Environmental Services, Inc. performed an assessment of Tank Farm "G" at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona.

ASSESSMENT ITEMS

Containment Area Base

Tank Farm "G" is constructed of 10 -inch thick, minimum 3,000-psi concrete with two mats of \#5 rebar placed at 12 " spacing on center each way. A polyethylene liner was installed under the tank farm during construction. The slab is monolithic, thus there are no cold joints in the slab.

CERTIFICATION

Based upon my professional expertise and judgement this containment system has been properly designed and installed to achieve the requirements of 40 CFR 264.193.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Certification Report

Tank T-101

Prepared for: Romic Environmental Technologies Corp,
6760 West Allison Road
Chandler, AZ 85226
Prepared by: Metro Environmental Services, Inc.
1256-B West Brooks Street
Ontario, CA 91762

INTRODUCTION

On February 2, 2005, in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#101, a 5,800-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 5,800-gallon tank, (Tank \#101), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank is supported by four steel legs that rest directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#101
February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1991. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

Page 2 of 2

Tank Certification Report

Tank T-102

Prepared for: Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226

Prepared by: Metro Environmental Services, Inc.
1256-B West Brooks Street
Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#102
February 5, 2005

INTRODUCTION

On February 2, 2005, in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#102, a 5,800-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 5,800-gallon tank, (Tank \#102), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank is supported by four steel legs that rest directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
 Romic Environmental Technologies Corp.
 Tank Certification Report - Tank \#102
 February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1991. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

Tank Certification Report

Tank T-103

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. Ontario, CA 91762 West Brooks Street

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#103, a 5,800-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 5,800-gallon tank, (Tank \#103), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank is supported by four steel legs that rest directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#103
February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

Tank Certification Report

Tank T-104

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#104
February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#104, a 5,800-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 5,800-gallon tank, (Tank \#104), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank is supported by four steel legs that rest directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#104
February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer Registration No. CH004494

Page 2 of 2

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. TK-101 to TK-104 Location: Tank Farm AB

Service: Waste Receiving/Storage
Contents:_Organic/aqueous
Size: \qquad gal.
S.G.: 1.0-1.6

Fill GPM: 250 \qquad Empty GPM: 250

Support: \qquad
Insulation:_n/a \qquad Agitator: n / a

Weight: \qquad $4,000 \pm$ lbs. Empty 81,400土 lbs. Full
Temp (${ }^{\circ}$ F) Ambient
Pressure (Psig): ATM
Seismic Zone: 2
Material:_Carbon Steel
Method of Construction: Welded

CONNECTION

No.	Size	Type	Rating	Function
A	$4^{\prime \prime}$	RF	$150 \#$	BOTTOM NOZZLE
B	$3^{\prime \prime}$	$R F$	$150 \#$	SIDE OUTLET
C	$3^{\prime \prime}$	$R F$	$150 \#$	VENT
D	$3^{\prime \prime}$	$R F$	$150 \#$	SPARE
L	$3^{\prime \prime}$	RF	$150 \#$	LEVEL INDICATOR
M_{1}	$24^{\prime \prime}$	FF	n/a	TOP MANWAY
M_{2}	$24^{\prime \prime}$	FF	n/a	SIDE MANWAY
S	$1^{\prime \prime}$	WC	$3000 \#$	SAMPLE PORT

REMARKS

1. Standard 1:12 sloped top.
2. Bottom cone with 70.2° included angle.
3. Tank supported on 4 legs.
4. See Brown Tank \& Steel W/O-3882.

Rev No.	Revision	By	Date	Apprva	Date
1	ADD TANKS 106 TO 108	MW	$11-13-95$		
2	Update for 2004 Part B	RP	$4-7-04$	WK	$4-04$

ROMIC
ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA

3	Revise Temperature rating	RP	$8-22-05$	MS	$8-05$	Drawing Number	Oks $101-$ Tks 104

METRO

ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762
Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K502	Tank 101, 102, 103 \& 104	Issued:	01/31/05
Project Name:	ROMIC Environmental Technologies Corporation		
Project Location:	ROMIC Southwest, Chandler, Arizona.		

Table of Contents:
Page No.
1

Scope of work, design loads and tank data
1

Seismic and wind analysis for overturning moment2

Check support column, base plate and anchor bolts

- Analyzed existing anchorage for $9^{\prime}-0^{\prime \prime}$ Diameter by $16^{\prime}-6^{\prime \prime}$ high tank with (4) W8x24 legs.
- Check existing $1^{\prime \prime \times} 12^{\prime \prime} \times 12^{\prime \prime}$ base plate $w /(2) 7 / 8^{\prime \prime}$ dia. anchor bolts.

DESIGN LOADS:

2000 International Building Code. 80 MPH wind, Seismic Use group II

WIND:

$\mathrm{F}=\mathrm{Qz}{ }^{*} \mathrm{G}{ }^{*} \mathrm{Cf}{ }^{*} \mathrm{Af}$
Where $\mathrm{Qz}=0.00256 \mathrm{Kz} \mathrm{Kzt} \mathrm{Kd} \mathrm{V} \mathrm{V}^{\wedge} 2 \mathrm{I}$
$\mathrm{Qz}=\quad 0.00256^{*} 0.9^{* 1} 1.0^{*} 0.95^{*} 90^{\wedge} 2^{* 1} .0=$
17.73 psf

F wnd $=\quad 2532 \mathrm{lbs}$.
M otm $=F$ wind * H otm $=\quad 40508 \mathrm{lbs}-\mathrm{ft}$

Location: Chandler
From Fig. 1615(1): $\quad \mathrm{Ss}=$ State: Arizona

$$
0.21 \mathrm{~g}
$$

From Fig. 1615(2): \quad S1 $=$

$$
0.063 \mathrm{~g}
$$

$-\mathrm{Sds}=0.67 \mathrm{FaSs}=$

$$
0.224 \mathrm{~W}
$$

$$
V \text { seismic }=C s W \quad \text { Eq. } 16-34
$$

$H=$	21.33	ft
D =	9	ft
$K z=$	0.9	Tbl 6-3 Case2
Kzt $=$	1	Tbl 6-4 Flat
$\mathrm{Kd}=$	0.95	Tbl 6-4
$V=$	90	MPH Fig 6-1
$1=$	1	Tbl 6-1
For H/D =	2.37	
Cf =	1.4	Tbl 6-19
$\mathrm{Gf}=$	0.85	Sec 6.5.8
Af $=$	120	Sq. Ft.
H otm $=$	16	ft

Siteclass: D

Fa $=$	$1.6 \mathrm{Tbl} 1615.1 .2(1)$
$R=$	$3 \mathrm{Tbl} 1622.2 .5(1)$
Omega $=$	$2 \mathrm{Tbl} 1622.2 .5(1)$
$\mathrm{le}=$	$1.25 \mathrm{Tbl} 1622.2 .5(2)$
$\mathrm{W}=$	83000 lbs

$\mathrm{Cs}=\mathrm{Sds} / \mathrm{R}^{*} \mathrm{I}=\quad 0.0933$
Cs min=0.044Sdsl $=\quad 0.0123$
Use Cs = 0.0933
$T=0.00000765^{*}(L / D)^{\wedge} 2^{*}(w D / t)^{\wedge} 0.5=0.000000765^{*}(16.5 / 9)^{\wedge} 2^{*}\left(46000 / 16.5^{\star} 9 / 0.34\right)^{\wedge} .5$ $=0.000842<0.06$ Rigid Structure

$$
\begin{array}{ll}
\text { Vsimplified }=1.2 \text { Sds } \mathrm{W} / \mathrm{R}= & 0.090 \mathrm{~W} \\
\text { Vnonstr }=0.14 \mathrm{Sds} \mathrm{Ie}= & 0.039 \mathrm{~W} \\
\text { Cs min nonstr }=0.8 \mathrm{~S} 1 \mathrm{I} / \mathrm{R}= & 0.021 \mathrm{~W} \\
\text { Vs rigid nonstr }=0.3 \mathrm{Sds} \mathrm{IW}= & 0.084 \mathrm{~W}
\end{array}
$$

Overturning Moment $=\mathrm{Vs}$ W * 1.2 sloshing * H otm $=$
106240 lbs-ft
Seismic Control
Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks
Given information:

Material:
Thickness:
Concrete slab thickness:
Full Tank +wt tank:
Agitator:
Misc valves and structures:

Carbon steel
0.34"

Min 6"
81400 lbs
0 lbs
1600 lbs

Seismic Analysis per API-650 Appendix E

Seismic zone, $Z=\quad$ (Zone $4=0.4$,zone $3=0.3$,zone $2=0.2$, zone $1=0.075$
Seismic Importance factor, Is $=\quad(\operatorname{Max} \mid=1.5$, normally $\mid=1.0)$
Site coefficient from soil type, $\mathrm{s}=(\mathrm{S} 4=2, \mathrm{~S} 3=1.5, \mathrm{~S} 2=1.2, \mathrm{~S} 1=1.0)$
Spcific gravity of liquid, G =
Tank diameter, D =
Height of tank, $\mathrm{Ht}=$
Fill height from top of floor, $\mathbf{H}=$
Weight of content, Wt $=\quad 22 / 7^{*}(\mathrm{D} / 2)^{\wedge} 2^{*} \mathrm{H}^{*} 62.4 \mathrm{pcf} / 1000=$
Weight of shell, uncorroded,Ws= .49*(.34/12*2*22/7*R*10)=
Weight of roof steel, uncorroded, $\mathbf{W r}=\quad .49^{*} .20 / 12^{*} 2^{*} 22 / 7^{*} 4.5=$
Roof equipment load in seismic, We =
Ratio of D / H =
Weight or roof \& equipment load, $\mathbf{W r}=\mathbf{W r}+\mathrm{We}=$
Height of center of gravity of shell, Xs $=\mathrm{H} / 2=$
From Figure E-2 Effective masses, W1 / Wt =
Contents in unison $\mathrm{W} /$ shell, $\mathbf{W} 1=\mathrm{Wt}$ * $(\mathrm{W} 1 / \mathrm{Wt})=$
From Figure E-2 Effective masses, W2 / Wt =
First sloshing mode contents, $\mathbf{W} 2=\mathbf{W t}$ * $(\mathbf{W} 2 / \mathrm{Wt})=$ From Figure E-3 Centroids of seismic forces, $\mathrm{X} 1 / \mathrm{H}=$
0.457

Height to centroid, $\mathrm{X} 1=H^{*}(\mathrm{X} 1 / \mathrm{H})=$
From Figure E-3 Centroids of seismic forces, $\mathbf{X 2} / \mathbf{H}=$
0.855

Height to centroid, $X 2=H^{*}(X 2 / H)=$
From Figure E-4 Factor k, $k=$
0.581

Natural period of first mode, $T=k^{*}(D)^{\wedge} 0.5=$

1.50
1.6
9.00
21.33

21.33 ft
21.33 ft
77.40 kips
3.927
3.927 kips
0.10 kips
0.42
0.32 Kips
10.67 ft
0.934
0.113

Lateral force coefficient, C1 $=0.24$
Lateral force coefficient, $\mathrm{C} 2=\quad \mathrm{C} 2=0.3 \mathrm{~S} / \mathrm{T}=$

Base shear Vs $=\left.Z^{*}\right|^{*}\left(C 1{ }^{*}(W s+W r+W 1)+C 2 * W 2\right)=$
10.33 Kips

Overturning, Mot $=\left.Z^{*}\right|^{*}\left(C 1^{*} W s^{*} X s+C 1 * W r^{*} H t+C 1 * W 1 * X 1+C 2^{*} W 2^{*} X 2\right)=$
Friction resistance from contents, shell, roof steel, Ffric $=0.4^{*}(\mathrm{Wt}+\mathrm{Ws}+\mathrm{Wr})=$
Factor of safety for sliding, FSs = Fric $/ \mathrm{Vs}=$
133.60 K-ft
32.62 Kips
$3.16>1.5$
0.93
72.30 Kips
0.11
8.78 Kips 0.46 9.74 0.86
18.24
0.58
1.73 seconds
0.24
0.26

Caiculate resistance load against overturning:
Yield strength of tank material, Fy =
Thickness of bottom plate, $\mathbf{t b}=\max (\mathrm{tf}-\mathrm{co}$), thickness of floor or $0.25=$
Wt of contents allow for OT calc. per cicumference, WL=7.9 tb(Fby G H) ${ }^{\wedge} 0.5=$
Max allowable for $W \mathrm{~W}=1.25 \mathrm{GHD}=\quad 383.94$ plf Use:
Resistance to OT by contents, $\mathrm{Pr}=22 / 7^{*} \mathrm{D} * \mathrm{WL}=$
Resistance to OT by shell and roof, $\mathrm{Psr}=\mathrm{Ws}+\mathrm{Wr}=$
36.00 ksi

Total resistance to OT moment, $\mathrm{Mr}=(\mathrm{Pr}+\mathrm{Psr})^{*} \mathrm{D} / 2=$
25 Kips

Mot > Mr, Anchorage required

Wind analysis per API 650 section 3.11 Wind load on Tanks

Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindrical surface Wind pressure, qw =
Base shear from wind, Vw = qw * Ht * Area =
22.00 psf

Overturning due to wind, Motmw $=\mathrm{Vw}$ * $\mathrm{Ht} / 2=$
2.64 Kips
42.24 K-ft

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

Check existing support column, base plate and anchor bolts.

```
Overturning, Mot \(=Z^{*} \mid *\left(C 1^{*} W s^{*} X s+C 1^{*} W r^{*} H t+C 1^{*} W 1^{*} X 1+C 2^{*} W 2^{*} X 2\right)=133.60 \mathrm{k}-\mathrm{ft}\)
Base shear \(\mathrm{Vs}=\mathrm{Z}\) *I*(C1*(Ws + Wr + W1) \(+\mathrm{C} 2 *\) W2 \()=\)
    10.33 Kips
Shear along W8x24 column \(=\quad 133.67 / 9 \mathrm{ft} / 2\) cols \(=\)
    7.42 Kips
Capacity of existing \(1 / 4\) fillet weld at \(12^{\prime \prime}\) each side \(=\quad 0.928^{*} 4^{*} 2^{*} 12=\quad\) 89.09 Kips O.k.
Capacity of W8x24 for 11 ft in axial compression \(=\quad(f r\) AISC 3-31)) \(=\quad 107\) Kips O.k.
Shear per each bolt \(=\mathrm{Vs} / 4 \mathrm{col} / 2\) bolts each \(=\)
Tension load at (2) \(7 / 8^{\prime \prime}\) diameter bolts \(=7.42 / 2\) bolts \(=\)
Cap of pullout cone fr each bolt \(=.55^{\star} .65^{\star}\left(22 / 7^{*} 12^{\wedge} 2 / 4\right)^{\star}(3000)^{\wedge} 0.5^{*} 4 / 3^{*} 3^{\star} 1\)
371 Kips OK
8.86 Kips O.k.
Combined shear \& tension \(=\quad(1.29 / 6)^{\wedge}(5 / 3)+(3.71 / 11.5)^{\wedge}(5 / 3)=\quad 0.22891<1.33\)
```


Check 1" x 12" x 12" base plate:

Existing (4) W8x31 columns w/(2) 7/8" dia. Anchors bolts with $1 \times 12 \times 12$ base plate is adequate to resist the overturning moment.
(20)

Tank Certification Report

Tank T-105

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#105
February 8, 2005

INTRODUCTION

On February 7, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#105, a 5,900-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 5,900-gallon tank, (Tank \#105), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank is supported by four steel legs that rest directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

Project Name: ROMIC SOUTHWEST - Chandler, AZ Tank I.D.No. TK-105
Location: Tank Farm AB
Service: Fuels/ Still Bottoms
Contents: Organic/aqueous
Size: \qquad gal.

SG.: $1.0-1.6$
Fill GPM: 250
Empty GPM: 250
Weight: \qquad 5,000土 lbs. Empty
83,700土 lbs. Full
Temp (${ }^{\circ}$) $300^{\circ} \mathrm{MAX}$
Pressure (Pig): ATM
Seismic Zone: 2
Material:_Carbon Steel
Support: 4 Legs
Insulation: n/a Agitator: 7 1/2 HP
Other: Four Baffles 8"w, 1" from wall

CONNECTION

No.	Size	Type	Rating	Function	
A	$4^{\prime \prime}$	RF	$150 \#$	BOTTOM NOZZLE	
B	$3^{\prime \prime}$	RF	$150 \#$	SIDE OUTLET	
C	$16^{\prime \prime}$	RF	$150 \#$	AGITATOR	
D	$3^{\prime \prime}$	RF	$150 \#$	SPARE	
E	$2^{\prime \prime}$	RF	$150 \#$	LEVEL INDICATOR	
L	$2^{\prime \prime}$	RF	$150 \#$	TOP LEVEL	
M_{1}	$18^{\prime \prime}$	FF	n/a	TOP MANWAY	
M_{2}	$18^{\prime \prime}$	FF	n/a	SIDE MANWAY	
S	$1 "$	WC	$3000 \#$	SAMPLE PORT	

1. Elliptical 2:1 Ratio top \& bottom heads
2. Tank supported on 4 legs.
3. Internal baffles (4) -8 " $\times 174$ " \llcorner mounted 1" from wall at 90°

Rev No.	Revision	By	Date	Apprvd	Date
1	Update for 2004 Part B	RP	$4-7-04$	WK	$4-04$
2	Revise Temperature rating	RP	$8-22-05$	MS	$8-05$

ROMIC
ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA

METRO

ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762
Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K502
 Project Name:
 Project Location: ROMIC Southwest, Chandler, Arizona.

Table of Contents:

Page No.
1 Scope of work, design loads and tank data
2 Seismic and wind analysis for overturning moment

3 Check existing support column, base plate and anchor bolts2

SCOPE OF WORK: Tank Designation: 105

- Analyzed existing anchorage for $10^{\prime}-0^{\prime \prime}$ Diameter by $13^{\prime \prime}$ high tank with (4) $3^{\prime}-66^{\prime \prime}$ W8x31 legs.
- Overall top of tank elevation is $16^{\prime}-10^{\prime \prime}$ with $10^{\prime}-4$ " as center of tank for apply loads
- Check existing anchor bolts, base plate column and column connections.

DESIGN LOADS:

$\mathrm{T}=0.00000765^{*}(\mathrm{~L} / \mathrm{D})^{\wedge} 2^{*}(\mathrm{WD} / \mathrm{t})^{\wedge}$	$0.5=$
$=$	$0.000000765^{*}(13 . / 10)^{\wedge} 2^{*}\left(46000 / 13^{*} 10 / 0.34\right)^{\wedge} .5$
0.000417	<0.06

Vsimplified $=1.2 \mathrm{Sds} \mathrm{W} / \mathrm{R}=$	0.090 W
Vnonstr $=0.14 \mathrm{Sds} \mathrm{le}=$	0.039 W
Cs min nonstr $=0.8 \mathrm{~S} 1 \mathrm{I} / \mathrm{R}=$	0.021 W
Vs rigid nonstr $=0.3 \mathrm{Sds} / \mathrm{W}=$	0.084 W

Overturning Moment $=\mathrm{Vs} \mathrm{W}$ * 1.2 sloshing * H otm $=$

$$
\begin{aligned}
& \text { Use Vs }=\begin{array}{r}
0.093 \\
\text { Vs asd }= \\
\hline 0.067 \\
\mathrm{~W}
\end{array}
\end{aligned}
$$

$71070.4 \mathrm{lbs}-\mathrm{ft}$

Seismic Control

Check existing anchorage according to API 650 Appendix E-Seismic design of Storage Tanks
Given information:

Material:	Carbon steel
Thickness:	$0.34^{\prime \prime}$
Concrete slab thickness:	Min 6"
Full Tank +wt tank:	83700 lbs
Agitator:	500 lbs
Misc valves and structures:	1800 lbs

Seismic Analysis per API-650 Appendix E

Seismic zone, $Z=\quad$ (Zone 4=0.4, zone 3=0.3, zone 2=0.2, zone 1=0.075)
Seismic Importance factor, Is $=\quad(\operatorname{Max} \mid=1.5$, normally $\mathrm{I}=1.0)$
Site coefficient from soil type, $s=(S 4=2, S 3=1.5, S 2=1.2, S 1=1.0)$
Spcific gravity of liquid, G =
Tank diameter, D =
Height of tank, $\mathrm{Ht}=$
Fill height from top of floor, $\mathbf{H}=$
Weight of content, Wt =
Weight of shell, uncorroded,Ws= . $49^{*}\left(.34 / 12^{*} 2^{*} 22 / 7^{*} 5^{*} 13\right)=$
Weight of roof steel, uncorroded, $\mathbf{W r}^{\prime}=\quad .49^{*} .20 / 12^{*} 2^{*} 22 / 7^{*} 5=$
Roof equipment load in seismic, We =
Ratio of $D / H=$
Weight or roof \& equipment load, $\mathbf{W r}=\mathbf{W r '}+\mathrm{We}=\quad 0.74 \mathrm{Kips}$
Height of center of gravity of shell, Xs = H / $2=$
From Figure E-2 Effective masses, $\mathbf{W} 1 / \mathbf{W t}=\quad 0.861$
Contents in unison $\mathbf{w} /$ shell, $\mathbf{W} 1=W t{ }^{*}(W 1 / W t)=$
From Figure E-2 Effective masses, $\mathbf{W} \mathbf{2} / \mathbf{W t}=\quad 0.195$
First sloshing mode contents, $\mathbf{W} 2=\mathbf{W t}{ }^{*}(\mathrm{~W} 2 / \mathrm{Wt})=$
From Figure E-3 Centroids of seismic forces, $\mathrm{X} 1 / \mathrm{H}=0.428$
Height to centroid, $X 1=H^{*}(X 1 / H)=$
From Figure E-3 Centroids of seismic forces, $\mathbf{X} \mathbf{2} / \mathbf{H}=\quad 0.767$
Height to centroid, $X 2=H^{*}(X 2 / H)=$
From Figure E-4 Factor $k, k=$
0.577

Natural period of first mode, $T=k^{*}(D)^{\wedge} 0.5=$
Lateral force coefficient, C1 $=0.24$
Lateral force coefficient, $\mathrm{C} 2=\quad \mathrm{C} 2=0.3 \mathrm{~S} / \mathrm{T}=$
8.42 ft
5.67233

0.40	
1.25	
1.50	
1.6	
10.00	ft
13.00	f
16.83	ft
78.70	kips
5.672	kips
0.244	kips
0.50	kips

0.42 ft
67.76 Kips

10.80 Kips

Base shear Vs $=Z^{*} I^{*}(C 1 *(W s+W r+W 1)+C 2 * W 2)=$
85.94 K-ft

Overturning, Mot $=Z^{*} I^{*}\left(C 1^{*} W s^{*} X s+C 1 * W r^{*} H t+C 1 * W 1 * X 1+C 2 * W 2 * X 2\right)=$
33.85 Kips

Friction resistance from contents, shell, roof steel, Ffric $=0.4{ }^{*}(\mathrm{Wt}+\mathrm{Ws}+\mathrm{Wr})=$
3.13 > 1.5 OK

Factor of safety for sliding, FSs = Fric / Vs =
Calculate resistance load against overturning:
Yield strength of tank material, Fy =
Thickness of bottom plate, $\mathbf{t b}=\max (\mathrm{tf}-\mathrm{co}$), thickness of floor or $0.25=$
Wt of contents allow for OT calc. per cicumference, WL=7.9 tb(Fby G H) ${ }^{\wedge} 0.5=$
Max allowable for $\mathrm{WL}=1.25 \mathrm{GHD}=\quad 336.66$ plf Use: 336.66 plf
Resistance to OT by contents, $\mathrm{Pr}=22 / 7$ * $\mathrm{D} * \mathrm{WL}=$ 10.58 Kips

Resistance to OT by shell and roof, $\mathrm{Psr}=\mathrm{Ws}+\mathrm{Wr}=$
Total resistance to OT moment, $\mathbf{M r}=(\mathrm{Pr}+\mathrm{Psr})^{*} \mathrm{D} / 2=$
6.42 Kips
84.98 k-ft

Mot $>\mathrm{Mr}$, Anchorage required

Wind analysis per API 650 section 3.11 Wind load on Tanks

Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindrical surface Wind pressure, qw =
Base shear from wind, $\mathrm{Vw}=\mathrm{qw}$ * Ht * $\mathrm{D}=$
Overturning due to wind, Motmw $=V w * 10.33=$
22.00 psf
2.86 Kips
29.54 K-ft

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

Check existing support column, base plate and anchor bolts.

Therefore the existing (4) W8x31 support columns with 1 " $\times 12$ " $\times 12^{\prime \prime}+$ (4) $1 / 2^{\prime \prime}$ diameter anchor bolts are still adequate to resist the overturning moment.
(20)

Tank Certification Report

Tank T-112

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

INTRODUCTION

On February 7, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#112, a 15,000-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 15,000 -gallon tank, (Tank \#112), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel and stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

```
Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank #112
February 5, 2005
```


Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

Page 2 of 2

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tonk I.D.No. TK-112

Location: Tank Farm AB
Service: Fuels/Still Bottoms/Solvents
Contents: Organic/aqueous
Size: 15,000 gal. S.G.: $1.0-1.4$
Fill GPM: 250 Empty GPM: 250
Support: Skirt
Insulation: $n / 0 \quad$ Agitator: 10 HP
Other: Agitator $w /$ Baffles Optional

Weight: \qquad 6,600土 $181,700 \pm$ lbs: Empty lbs. Full

Temp (F) AMB.
Pressure (Psig): ATM.
Seismic Zone: 2

Material: Stainless steel
Method of Construction: Welded

METRO

 ENVIRONMENTAL

 ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762

Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K502	Tank 112 and 113	Issued:	01/31/05
Project Name:	Romic Environmental Technologies Corporation		
Project Location:	ROMIC Southwest, Chandler, Arizona.		

Table of Contents:

Page No.
1 Scope of work, design loads and tank data 1
2 Seismic and wind analysis for overturning moment 2
3 Check anchorage.

SCOPE OF WORK: Tank Designation: 112 and 113

- Analyzed existing anchorage for $13^{\prime}-0^{\prime \prime}$ Diameter by $14^{\prime}-1 "$ high tank with $6^{\prime}-5^{\prime \prime}$ skirt
- Existing tank skirt w/1/2" thick $3^{\prime \prime}$ width bottom ring and (9) $3 / 4^{\prime \prime}$ diameter anchor bolts evenly spaced.
- Check existing anchorage.

DESIGN LOADS:

2000 International Building Code. 90 MPH wind, Seismic Use group II

$$
\begin{array}{rcccc}
\mathrm{T}=0.00000765^{*}(\mathrm{~L} / \mathrm{D})^{\wedge} 2^{*}(\mathrm{wD} / \mathrm{t})^{\wedge} 0.5= & 0.000000765^{*}(14 . / 13)^{\wedge} 2 *\left(46000 / 14^{*} 13 / 0.34\right)^{\wedge} .5 \\
= & 0.000314<0.06 & \text { Rigid Structure }
\end{array}
$$

Vsimplified $=1.2 \mathrm{Sds} \mathrm{W} / \mathrm{R}=$	0.090 W
Vnonstr $=0.14 \mathrm{Sds} \mathrm{Ie}=$	0.039 W
Cs min nonstr $=0.8 \mathrm{~S} 1 \mathrm{I} / \mathrm{R}=$	0.021 W
Vs rigid nonstr $=0.3$ Sds I W $=$	0.084 W

Overturning Moment $=\mathrm{Vs}$ W * 1.2 sloshing * H otm $=$
$195952.8 \mathrm{lbs}-\mathrm{ft}$

Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks
Given information:

Material:
Thickness:
Concrete slab thickness:
Full Tank +wt tank:
Agitator:
0 lbs
Misc valves and structures: 300 lbs

Seismic Control

Use Vs =	0.093
Vs asd =	0.067

Seismic Analysis per API-650 Appendix E

Seismic zone, $\mathrm{Z}=\quad$ (Zone 4=0.4,zone 3=0.3,zone 2=0.2,zone 1=0.0		0.40
Seismic Importance factor, Is $=\quad(\mathrm{Max}]=1.5$, norma	1.0)	1.25
Site coefficient from soil type, $s=(S 4=2, S 3=1.5, S 2=1$	1.0)	1.50
Spcific gravity of liquid, G =		1.4
Tank diameter, $\mathbf{D}=$		9.00
Height of tank, $\mathrm{Ht}=$		14.08
Fill height from top of floor, $\mathbf{H}=$		20.50
Weight of content, Wt =		175.10
Weight of shell, uncorroded,Ws= .49* $\left(.34 / 12^{*} 2^{*} 22 / 7^{*} 6\right.$		7.988
Weight of roof steel, uncorroded, Wr' = .49*.20/1	$2 / 7 * 4.5=$	0.317
Roof equipment load in seismic, We $=$		0.30
Ratio of D/H=		0.64
Weight or roof \& equipment load, Wr $=\mathbf{W r} r^{\prime}+\mathrm{We}=$		0.62
Height of center of gravity of shell, Xs = H/2 =		10.25
From Figure E-2 Effective masses, $\mathbf{W} 1 / \mathbf{W t}=$	0.890	0.89
Contents in unison $\mathrm{W} /$ shell, $\mathbf{W} 1=\mathrm{Wt}$ * $(\mathrm{W} 1 / \mathrm{Wt})=$		155.80
From Figure E-2 Effective masses, W2 / Wt =	0.166	0.17
First sloshing mode contents, W2 = Wt * $\mathrm{W} 2 / \mathrm{Wt}$) $=$		29.03
From Figure E-3 Centroids of seismic forces, $\mathrm{X} 1 / \mathrm{H}=$	0.438	0.44
Height to centroid, X1 $=\mathrm{H}^{*}(\mathrm{X} 1 / \mathrm{H})=$		8.99
From Figure E-3 Centroids of seismic forces, $\mathrm{X} 2 / \mathrm{H}=$	0.797	0.80
Height to centroid, $\mathbf{X 2}=H^{*}(\mathrm{X} 2 / \mathrm{H})=$		16.34
From Figure E-4 Factor k, k=	0.578	0.58
Natural period of first mode, $\mathrm{T}=\mathrm{k}^{*}(\mathrm{D})^{\wedge} 0.5=$		1.73
Lateral force coefficient, C1 $=0.24$		0.24
Lateral force coefficient, $\mathbf{C 2}=\quad \mathbf{C 2}=0.3 \mathrm{~S} / \mathrm{T}=$		0.26

Base shear Vs $=Z^{*} l^{*}\left(C 1{ }^{*}(W s+W r+W 1)+C 2 * W 2\right)=\quad$ 23.50 Kips
Overturning, Mot $=\left.\mathrm{Z}^{*}\right|^{*}\left(\mathrm{C} 1 * W s^{*} X \mathrm{~s}+\mathrm{C} 1^{*} \mathrm{Wr}{ }^{*} \mathrm{Ht}+\mathrm{C} 1 * \mathrm{~W} 1 * \times 1+\mathrm{C} 2^{*} \mathrm{~W} 2^{*} \mathrm{X} 2\right)=$ 213.61 $\mathrm{K}-\mathrm{ft}$
Friction resistance from contents, shell, roof steel, Ffric $=0.4^{*}\left(\mathrm{Wt}+\mathrm{Ws}+\mathrm{Wr}^{\prime}\right)=\quad 73.36 \mathrm{Kips}$
Factor of safety for sliding, FSs = Fric $/ \mathrm{Vs}=$
3.12 > 1.5 OK

Calculate resistance load against overturning:
Yield strength of tank material, Fy =
36.00 ksi

Thickness of bottom plate, $\mathbf{t b}=\max (\mathrm{tf}-\mathrm{co}$), thickness of floor or $0.25=$
Wt of contents allow for OT calc. per cicumference, $\mathbf{W}_{\mathrm{L}}=7.9 \mathrm{tb}(\mathrm{Fby} \mathrm{GH})^{\wedge} 0.5=$
6.000

Max allowable for $W \mathrm{WL}=1.25 \mathrm{GHD}=\quad 322.875$ plf Use:
48180.42 plf

Resistance to OT by contents, $\mathrm{Pr}=22 / 7^{*} \mathrm{D}$ * $\mathrm{WL}=$
Resistance to OT by shell and roof, $\mathrm{Psr}=\mathrm{Ws}+\mathrm{Wr}=$
9.13 Kips
8.61 Kips

Total resistance to OT moment, $\mathrm{Mr}=(\mathrm{Pr}+\mathrm{Psr}){ }^{*} \mathrm{D} / 2=$
79.82 k-ft

Mot $>\mathrm{Mr}$, Anchorage required

Wind analysis per API 650 section 3.11 Wind load on Tanks

Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindrical surface
Wind pressure, qw =
Base shear from wind, $\mathrm{Vw}=\mathrm{qw}$ * Ht * $\mathrm{D}=$
Overturning due to wind, Motmw $=\mathrm{Vw}$ * 14/2=
22.00 psf
4004.00 Kips
53887.03 K-ft

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

Check existing (9) 3/4" diameter anchor bolts.

Overturning, Mot $=Z^{*} I^{*}\left(C 1^{*} W s^{*} X s+C 1^{*} W r^{*} H t+C 1^{*} W 1^{*} X 1+C 2^{*} W 2^{*} X 2\right)=$ 213.61 k-ft
Base shear $\mathrm{Vs}=\mathrm{Z} * 1 *(\mathrm{C} 1 *(\mathrm{Ws}+\mathrm{Wr}+\mathrm{W} 1)+\mathrm{C} 2 * W 2)=$ 23.50 Kips
Consider only four bolts are resisting overturning at one time.
4.11 Kips
Shear of one bolt $=23.5 / 9=$ 2.61 Kips
Combined stress of tension and shear = $(4.11 / 4.4)^{\wedge}(5 / 3)+(2.61 / 8.4)^{\wedge}(5 / 3)=$ $1.03<1.33$
Cap of pullout cone fr each bolt $=.55^{*} .65^{*}\left(22 / 7^{\star} 10^{\wedge} 2 / 4\right)^{\star}(3000)^{\wedge} 0.5^{*} 4 / 3^{*} 3^{*} 1$ 6.15 Kips O.k.
Therefore the existing 9 ' diameter flat bottom tank with (9) $3 / 4^{\prime \prime}$ diameter bolt is still adequate to resist the overturning moment.
(ORIVEWAYI

[^2]
SMa'ヨlis-oiwoyisaynolllag oonmoylid : $138 x$

Tank Certification Report

Tank T-113

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc.
 Romic Environmental Technologies Corp.
 Tank Certification Report - Tank \#113
 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#113, a 15,000-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 15,000-gallon tank, (Tank \#113), is constructed of stainless steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel and stainless steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp.
 Tank Certification Report - Tank \#113
 February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Page 2 of 2

Project Name: ROMIC SOUTHWEST - Chandler, AZ
Tank I.D.No.
TK-113
Weight: \qquad lbs. Empty
6,600土

Location: Tank Farm C
Service: Fuels / Still Bottoms/ Solvents
Contents: Organic/aqueous
Size: 15,000 gal. S.G.: $1.0-1.4$
Fill GPM: 250 Empty GPM: 250
Support: Skirt
Insulation: $\mathrm{n} / \mathrm{a} \quad$ Agitator: 10 HP
Other: Agitator w/ Baffles Optional
$181,700 \pm$ lbs. Full
Temp (F) MB.
Pressure (Pig): ATM.
Seismic Zone: 2
Material: Stainless steel
Method of Construction: Welded

1256-B West Brooks Street, Ontario, CA 91762
Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN:	2K502	Tank 112 and 113	Issued:
Project Name:	Romic Environmental Technologies Corporation		
Project Location:	ROMIC Southwest, Chandler, Arizona.		

Table of Contents:
Page No.
1 Scope of work, design loads and tank data 1
2 Seismic and wind analysis for overturning moment 2
3 Check anchorage.

Seismic Analysis per API-650 Appendix E

Base shear Vs $=Z^{*} I^{*}(C 1 *(W s+W r+W 1)+C 2 * W 2)=\quad$ 23.50 Kips

Overturning, Mot $=\left.\mathrm{Z}^{*}\right|^{*}\left(\mathrm{C} 1^{*} \mathrm{Ws}^{*} \mathrm{X} \mathrm{s}+\mathrm{C} 1^{*} \mathrm{~W} \mathrm{r}^{*} \mathrm{Ht}+\mathrm{C} 1^{*} \mathrm{~W} 1^{*} \mathrm{X} 1+\mathrm{C} 2^{*} \mathrm{~W} 2^{*} \mathrm{X} 2\right)=$
Friction resistance from contents,shell, roof steel, Ffric $=0.4{ }^{*}\left(\mathrm{Wt}+\mathrm{Ws}+\mathrm{Wr} \mathrm{r}^{\prime}\right)=$
Factor of safety for sliding, FSs = Fric $/$ Vs $=$
213.61 K-ft
73.36 Kips 3.12 > 1.5 OK

Calculate resistance load against overturning:
Yield strength of tank material, $\mathrm{Fy}=$
Thickness of bottom plate, $\mathbf{t b}=\max (\mathrm{tf}-\mathrm{co}$), thickness of floor or $0.25=$
Wt of contents allow for OT calc. per cicumference, WL=7.9 tb(Fby G H)^0.5=
Max allowable for $\mathrm{WL}=1.25 \mathrm{GHD}=\quad 322.875$ plf Use:
Resistance to OT by contents, $\operatorname{Pr}=22 / 7$ * D *WL =
Resistance to OT by shell and roof, $\mathrm{Psr}=\mathrm{Ws}+\mathrm{Wr}=$
Total resistance to OT moment, $\mathrm{Mr}=(\mathrm{Pr}+\mathrm{Psr})^{*} \mathrm{D} / 2=$
36.00 ksi
6.000
48180.42 plf 322.88 plf
9.13 Kips
8.61 Kips
79.82 k-ft

Mot $>\mathrm{Mr}$, Anchorage required

Wind analysis per API 650 section 3.11 Wind load on Tanks
Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindrical surface
Wind pressure, $\mathbf{q w}=$
22.00 psf

Base shear from wind, $\mathrm{Vw}=\mathrm{qw}$ * Ht * $\mathrm{D}=$
Overturning due to wind, Motmw $=\mathrm{Vw}^{*}$ * 14/2 $=$

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

Overturning, $M o t=Z^{*} 1^{*}\left(C 1^{*} W W^{*} X s+C 1^{*} W \mathrm{Wr}^{*} H t+C 1^{*} W 1^{*} X 1+C 2^{*} W 2^{*} X 2\right)=$	$213.61 \mathrm{k}-\mathrm{ft}$
Base shear $V s=Z^{*} I^{*}\left(C 1^{*}(W s+W r+W 1)+C 2^{*} W 2\right)=$	23.50 Kips

Consider only four bolts are resisting overturning at one time.
Tension of one bolt $=213.61 / 13 \mathrm{ft} / 4$ bolts $=$ 4.11 Kips
Shear of one bolt $=23.5 / 9=$ 2.61 KipsCombined stress of tension and shear $=\quad(4.11 / 4.4)^{\wedge}(5 / 3)+(2.61 / 8.4)^{\wedge}(5 / 3)=\quad 1.03<1.33$Cap of pullout cone fr each bolt $=.55^{*} .65^{*}\left(22 / 7^{*} 10^{\wedge} 2 / 4\right)^{*}(3000)^{\wedge} 0.5^{*} 4 / 3^{*} 3^{\star 1}$6.15 Kips O.k.
Therefore the existing 9^{\prime} diameter flat bottom tank with (9) 3/4" diameter bolt is still adequate to resist the overturning moment.

[^3]$\frac{4}{5}$

Tank Certification Report

Tank T-121

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Tank \#121
February 5, 2005

INTRODUCTION

On February 7, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#121, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 6,500-gallon tank, (Tank \#121), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#121
February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#121 Anchorage System
July 14, 2005

INTRODUCTION

On May 27, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the anchorage system for Tank \#121, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Tank Anchorage System Installation Inspection

The tank anchorage system was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate installation. No discrepancies were noted.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Certification Report

Tank T-122

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. Ontario, CA 91762 S S West Brooks Street

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Tank \#122
 June 1, 2005

INTRODUCTION

On May 27, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#122, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 6,500-gallon tank, (Tank \#122), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#122
June 1, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.

Chemical Engineer
Registration No. CH004494

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#122 Anchorage System
July 14, 2005

INTRODUCTION

On May 27, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the anchorage system for Tank \#122, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Tank Anchorage System Installation Inspection

The tank anchorage system was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate installation. No discrepancies were noted.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Tank Certification Report

Tank T-123

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#123
February 5, 2005

INTRODUCTION

On February 2, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#123, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 6,500-gallon tank, (Tank \#123), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#123
February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#123 Anchorage System
July 14, 2005
INTRODUCTION
On May 27, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the anchorage system for Tank \#123, a 6,500-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Tank Anchorage System Installation Inspection

The tank anchorage system was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate installation. No discrepancies were noted.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. TK-121 to TK-123 Location: Tank Farm C
Service: Waste Storage
Contents: Organic/aqueous
Size: 6,500 gol. S.G.: 1.0-1.4
Fill GPM: 250 Empty GPM: 250
Support: Flat Bottom
Insulation: $n / a \quad$ Agitator: n / a

Weight: \qquad 4,000土 lbs. Empty $80,000 \pm$ lbs. Full
Temp (F) AMB.
Pressure (Psig): ATM.
Seismic Zone: 2
Material: Carbon Steel
Method of Construction: Welded

Rev No.	Revision	By	Date	Apprvo	Dote		ROMIC ENVIRONMENTAL TECHNOLOGIES CORP. ROMIC SOUTHWEST, CHANDLER, ARIZONA		
1	Update for 2004 Part B	RP	4-7-04	Wk	4-04				
							Drawing Number	TK-121 to	to TK-123

METRO
 ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762
Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K502
Project Name:
Project Location:

Tank 121, 122 and 123
Romic Environmental Technologies Corporation ROMIC Southwest, Chandler, Arizona.

Issued: 01/31/05

Table of Contents:

1 Scope of work, design loads and tank data
2 Seismic and wind analysis for overturning moment
3 Check existing anchorage

- Analyzed existing anchorage for 9' Diameter by 14" high tank flat bottom tank
- Existing tank with (4)L4×4×3/8, each with (1) 3/4" diameter anchor bolt
- Check existing anchorage.

DESIGN LOADS:

2000 International Building Code. 80 MPH wind, Seismic Use group II

$$
\begin{array}{ll}
\text { Vsimplified }=1.2 \text { Sds } \mathrm{W} / \mathrm{R}= & 0.090 \mathrm{~W} \\
\text { Vnonstr }=0.14 \text { Sds le }= & 0.039 \mathrm{~W} \\
\text { Cs min nonstr }=0.8 \mathrm{~S} 1 / \mathrm{R}= & 0.021 \mathrm{~W} \\
\text { Vs rigid nonstr }=0.3 \mathrm{Sds} / \mathrm{W}= & 0.084 \mathrm{~W}
\end{array}
$$

Overturning Moment $=\mathrm{Vs} \mathrm{W} * 1.2$ sloshing * H otm $=$
45360 lbs-ft
Use Vs $=0.093 \mathrm{~W}$
Vs asd $=0.067$
Check existing anchorage according to API 650 Appendix E - Seismic design of Storage TanksMaterial:
Carbon steel
Thickness:$0.34 "$
Concrete slab thickness: $\operatorname{Min} 6{ }^{\prime \prime}$
Full Tank +wt tank: 80000 lbs
Agitator:
0 lbs
Misc valves and structures:

Seismic Analysis per API-650 Appendix E

Seismic zone, $Z=\quad$ (Zone $4=0.4$, zone $3=0.3$, zone $2=0.2$, zone $1=0.075$)
Seismic Importance factor, $\mathrm{Is}=(\operatorname{Max} \mathrm{I}=1.5$, normally $\mathrm{I}=1.0)$
Site coefficient from soil type, $s=(S 4=2, S 3=1.5, S 2=1.2, S 1=1.0)$
Spcific gravity of liquid, G =
Tank diameter, $\mathbf{D}=$
Height of tank, $\mathbf{H t}=$
Fill height from top of floor, $\mathbf{H}=$
Weight of content, Wt =
Weight of shell, uncorroded,Ws= . $49^{*}\left(.34 / 12^{*} 2^{*} 22 / 7^{*} 4.5^{*} 14\right)=$
Weight of roof steel, uncorroded, Wr' $=\quad .49^{*} .20 / 12^{*} 2^{*} 22 / 7^{*} 4.5=$
Roof equipment load in seismic, We =
Ratio of $\mathrm{D} / \mathrm{H}=$
Weight or roof \& equipment load, $\mathbf{W r}=\mathbf{W r} r^{\prime}+\mathrm{We}=$
5.4978

0.40	
1.25	
1.50	
1.4	
9.00	f
14.00	f
14.00	ft
80.00	kips
5.498	kips
0.256	kips
1.00	kips
0.64	

Height of center of gravity of shell, Xs $=\mathrm{H} / 2=$
From Figure E-2 Effective masses, $\mathbf{W} \mathbf{1} / \mathbf{W t}=$
Contents in unison $\mathbf{W} /$ shell, $\mathbf{W} 1=\mathbf{W t} *(W 1 / W t)=$
From Figure E-2 Effective masses, $\mathbf{W} \mathbf{2} / \mathbf{W t}=$
0.167

First sloshing mode contents, $\mathbf{W} 2=\mathbf{W t} *(W 2 / W t)=$
From Figure E-3 Centroids of seismic forces, $\mathrm{X} 1 / \mathrm{H}=$
0.438

Height to centroid, $\mathbf{X 1}=H^{*}(X 1 / H)=$
From Figure E-3 Centroids of seismic forces, $\mathrm{X} 2 / \mathrm{H}=$
0.796

Height to centroid, $\mathbf{X 2}=\mathrm{H}^{*}(\mathrm{X} 2 / \mathrm{H})=$
From Figure E-4 Factor $k, k=$
0.578

Natural period of first mode, $T=k *(D)^{\wedge} 0.5=$
Lateral force coefficient, C1 $=0.24$
Lateral force coefficient, $\mathrm{C} 2=\quad \mathrm{C} 2=0.3 \mathrm{~S} / \mathrm{T}=$
1.26 Kips

Lat

	7.00 ft
0.889	0.89
0.167	71.12 Kips
0.438	0.17
	13.33 Kips
0.44	

Base shear Vs $=Z^{*} 1^{*}(C 1 *(W s+W r+W 1)+C 2 * W 2)=$
11.08 Kips

Overturning, Mot $=Z^{*} 1^{*}\left(C 1^{*} W s^{*} X s+C 1^{*} W r^{*} H t+C 1^{*} W 1^{*} X 1+C 2^{* W} 2^{*} X 2\right)=$
75.22 K-ft

Friction resistance from contents, shell, roof steel, Ffric $=0.4^{*}\left(\mathrm{Wt}+\mathrm{Ws}+\mathrm{Wr}^{\prime}\right)=$
34.30 Kips

Factor of safety for sliding, FSs = Fric $/ \mathrm{Vs}=$
$3.10>1.5 \mathrm{OK}$

Calculate resistance load against overturning:

Yield strength of tank material, Fy =
Thickness of bottom plate, $\mathbf{t b}=\max (\mathrm{tf}-\mathrm{co}$), thickness of floor or $0.25=$
Wt of contents allow for OT calc. per cicumference, $\mathbf{W}_{\mathrm{L}}=7.9 \mathrm{tb}(\text { Fby } \mathrm{GH})^{\wedge} 0.5=$
Max allowable for $W_{L}=1.25 \mathrm{GHD}=\quad 220.5 \mathrm{plf} \quad$ Use:
0.44
$\begin{array}{r}6.13 \\ \hline 0.80 \\ \hline\end{array}$
0.80
11.14
1.73 seconds
0.24
0.26
$\begin{array}{lr}\text { Max allowable for } \mathrm{WL}=1.25 \mathrm{GH}= & \text { se: } \\ \text { Resistance to OT by contents, } \mathrm{Pr}=22 / 7 * \mathrm{D} * \mathrm{WL}= & 6.24 \mathrm{Kips} \\ \text { Resistance to OT by shell and roof, } \mathrm{Psr}=\mathrm{Ws}+\mathrm{Wr}= & 6.75 \mathrm{Kips} \\ \text { Total resistance to OT moment, } \mathrm{Mr}=(\mathrm{Pr}+\mathrm{Psr})^{*} \mathrm{D} / 2= & 58.46 \mathrm{k}-\mathrm{ft}\end{array}$
Mot $>\mathrm{Mr}$, Anchorage required

Wind analysis per API 650 section 3.11 Wind load on Tanks

Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindrical surface
Wind pressure, qw =
22.00 psf

Base shear from wind, $\mathrm{Vw}=\mathrm{qw}$ * Ht * $\mathrm{D}=$
2.77 Kips

Overturning due to wind, Motmw $=V w * 14 / 2=$
19.40 K-ft

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

Check existing anchor bolts.

Overturning, Mot $=Z^{*} 1^{*}\left(C 1^{*} W s^{*} X s+C 1^{*} W r^{*} H t+C 1 * W 1^{*} X 1+C 2^{*} W 2^{*} X 2\right)=\quad 75.22 \mathrm{k}$-ft
Base shear $V s=Z^{*} I^{*}(C 1 *(W s+W r+W 1)+C 2 * W 2)=\quad 11.08 \mathrm{Kips}$
Consider only two bolts are resisting overturning at one time.
Tension of one bolt $=75.22 / 9 \mathrm{ft} / 2$ bolts $=\quad 4.18 \mathrm{Kips}$

Shear of one bolt $=11.08 / 4=$
Combined stress of tension and shear $=$
$(2.77 / 4.4)^{\wedge}(5 / 3)+(4.18 / 8.4)^{\wedge}(5 / 3)=$ 2.77 Kips $0.77<1.33$

Cap of pullout cone fr each bolt $=.55^{*} .65^{*}\left(22 / 7^{*} 10^{\wedge} 2 / 4\right)^{*}(3000)^{\wedge} 0.5^{*} 4 / 3^{*} 3^{*} 1$
Check min t clip $=\left(6^{\star} 4.18^{\star} 2^{\star} .75 /\left(4^{\star} .75^{\star} 36\right)\right)^{\wedge} .5=$
6.15 Kips O.k.
0.590 > 3/8"

Therefore the existing $L 4 \times 4 \times 3 / 8$ clip thickness is inadequate.
Use: \quad New (4) L4×4×5/8 w/ 3/4" diameter Kwik Bolt II expansion anchors Min 4.75" embedment length

ICBO ES\# 4627
$1 / 4^{\prime \prime}$ fillet weld, $3.5^{\prime \prime}$ length on both sides of $L 4 \times 4 \times 5 / 8$ to existing tank.

$$
\text { Cap of weld }=\quad .928 * 4^{*} 3.5 * 2=\quad 25.984 \text { Kips }>4.15
$$

4.3.3.1 PRODUCT DESCRIPTION

The Kwik Bolt II is a stud type expansion anchor with a single piece wedge that performs as three independent wedges if necessary to provide consistent performance in a wide variety of medium-duty applications. Applicable base materials include concrete, lightweight concrete and grout-filled block.

Product Features

- Impact section (Dog Point) prevents thread damage during installation
- Independent 3-piece wedge with dimples heip prevent anchor from spinning during installation
- Length identification code facilitates quality control \& inspection after installation
- Anchor size is same as drill bit size for easy installation
- Comprehensive performance testing to provide high \& consistent performance in concrete, light-weight concrete \& grout filled block base materials

- Mechanical expansion allows immediate load application
- Can be installed in bottomless hole, which allows the anchor to be driven flush with the surface after use. Eliminates cutting bolt heads.
- Can be installed through the fixture, improving productivity
- Comprehensive product offering includes many head styles, sizes, carbon steel and stainless steel materials for a variety of applications

Guide Specifications

Expansion Anchors
installation

Expansion anchors shall be stud type with a single piece three section wedge and zinc plated in accordance with ASTM B633. The anchors must meet the description in Federal Specification FF-S-325, Group II, Type 4, Class I for concrete expansion anchors. Anchors shall be Hilti Kwik Bolt II as supplied by Hilti, Inc., P.O. Box 21148, Tulsa, OK 74121.

Anchors to be installed in holes drilled with Hilti carbide tipped drill bits or matched tolerance diamond core bits. Anchors shall be installed per manuriacturer's recommendations.

Listings/Approvals

- Underwriters Laboratory No. 203 "Pipe Hangers" (3/8"-3/4" diameters)
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 4627, KB II
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 5224, HCKB
- Southern Building Code Congress (SBCCI): Report No. 9930
- City of Los Angeles (COLA): Research Report No. 24946
- Conforms to the description in Federal Specification FF-S-325, Group II, Type 4, Class 1
- Factory Mutual (FM) KB II $3 / 8^{\prime \prime} \times 21 / 4^{\prime \prime}$ w/Rod Coupler
- Metro-Dade County Approval 98-0901.13
4.3.3.2 MATERIAL SPECIFICATIONS

Carbon Steel KB II studs conform to ASTM A510 with chemical composition of AISI 1038 except countersunk $K B\left\|, K B 3 / 4^{\prime \prime} \times 12^{\prime \prime}, K B\right\| 1^{\prime \prime} \times 6^{\prime \prime}, K B \| 1^{\prime \prime} \times 9^{\prime \prime}$ and $K B \| 1^{\prime \prime} \times 12^{\prime \prime}$ which conform to ASTM A108 with chemical composition of AISI 11L41
Wedges are manufactured from AISI 1010 carbon steel, except $\mathrm{KB}\left\|3 / 4^{\prime \prime} \times 12^{\prime \prime}, \mathrm{KB}\right\| 1^{\prime \prime} \times 6^{\prime \prime}$, KB \| 1 " $\times 9^{\prime \prime}$ and KB \|1" $\times 12^{\prime \prime}$ wedges which conform to chemical composition of AISI 304
Nuts are carbon steel conforming to ASTM A563 Grade A and meet dimensional requirements of ANSI B18.2.2
Washers are carbon steel conforming to SAE 1005-1033 and meet dimensional requirements of ANSI 18.22.1 Type A Plain
All carbon steel parts are zinc plated in accordance with ASTM B633, Type III Fe/Zn 5
Stainless Steel KB II studs conform to ASTM A276 or ASTM A493 with chemical composition of either AISI 304 or $3161 / 4^{\prime \prime}$ thru $9 / 16^{\prime \prime}$
over $9 / 16^{\prime \prime}$

MECHANICAL PROPERTIES	
f_{y} $\mathrm{ksi}(\mathrm{MPa})$	min. f_{u} $\mathrm{ksi}(\mathrm{MPa})$
$41(282)$	$75(517)$
$75(517)$	$90(620)$
N / A	N / A
N / A	N / A
N / A	N / A
N / A	N / A
$76(524)$	$90(620)$
$64(441)$	$76(524)$

Stainless steel wedges are of the same material grade as bolts or superior.
Nuts are stainless steel conforming to ASTM F594 with chemical composition of either AISI 304 or 316
and meeting dimensional requirements of ANSI B18.2.2 to conform with stud material
Washers are AISI 304 or 316 stainless steel conforming to ASTM A240 to conform with stud material
Note: Special Order KB II's, nuts and washers may vary from standard materials.

Carbon Steel Kwik Bolt II Allowable Loads in Concrete

Anchor Diameter in. (mm)	Embedment Depth in. (mm)	2000 psi (13.8 MPa)		3000 psi (20.7 MPa)		4000 psi (27.6 MPa)		6000 psi (41.4 MPa)	
		Tension lb (kN)	Shear lb (kN)	Tension lb (kN)	$\begin{aligned} & \text { Shear } \\ & \text { ib }(\mathrm{kN}) \end{aligned}$	Tension lb (kN)	Shear lb (kN)	Tension lb (kN)	Shear Ib (kN)
$\begin{aligned} & 1 / 4 \\ & (6.4) \end{aligned}$	1/8 (29)	$\begin{gathered} 270 \\ (1.2) \end{gathered}$	$\begin{aligned} & 430 \\ & \text { (1.9) } \end{aligned}$	$\begin{aligned} & 330 \\ & (1.5) \end{aligned}$	$\begin{array}{r} 430 \\ (1.9) \\ \hline \end{array}$	$\begin{array}{r} 380 \\ (1.7) \\ \hline \end{array}$	$\begin{gathered} 430 \\ (1.9) \end{gathered}$	$\begin{array}{r} 470 \\ \text { (2.1) } \end{array}$	$\begin{gathered} 430 \\ (1.9) \end{gathered}$
	$\begin{gathered} 2^{\star} \\ (51) \end{gathered}$	$\begin{array}{r} 560 \\ (2.5) \end{array}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{array}{r} 590 \\ (2.6) \\ \hline \end{array}$	$\begin{gathered} 530 \\ (2.4) \end{gathered}$	$\begin{array}{r} 630 \\ (2.8) \\ \hline \end{array}$	$\begin{array}{r} 530 \\ \text { (2.4) } \end{array}$	$\begin{aligned} & 670 \\ & (3.0) \end{aligned}$	530 (2.4)
	$\begin{aligned} & 3^{3 / 4} 4^{*} \\ & (95) \end{aligned}$	$\begin{gathered} 670 \\ (3.0) \\ \hline \end{gathered}$		$\begin{aligned} & 670 \\ & (3.0) \end{aligned}$		$\begin{gathered} 670 \\ (3.0) \end{gathered}$			
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	$\begin{aligned} & 13 / 6 \\ & (41) \end{aligned}$	$\begin{array}{r} 530 \\ (2.4) \\ \hline \end{array}$	$\begin{aligned} & 990 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 650 \\ & (2.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 1040 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 750 \\ & (3.3) \end{aligned}$	$\begin{aligned} & 1100 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 850 \\ & (3.8) \end{aligned}$	$\begin{aligned} & 1100 \\ & (4.9) \end{aligned}$
	$\begin{aligned} & 21 / 2^{*} \\ & (64) \\ & \hline \end{aligned}$	$\begin{aligned} & 1200 \\ & (5.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1290 \\ & (5.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1370 \\ & (6.1) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1550 \\ & (6.9) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$
	$\begin{aligned} & \mathbf{4}^{1} / 4^{\star} \\ & (108) \end{aligned}$	$\begin{aligned} & 1330 \\ & (5.9) \\ & \hline \end{aligned}$		$\begin{aligned} & 1390 \\ & (6.2) \\ & \hline \end{aligned}$		$\begin{aligned} & 1440 \\ & (6.4) \end{aligned}$			
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$21 / 4$ (57)	$\begin{aligned} & 1170 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 1940 \\ & (8.6) \end{aligned}$	$\begin{aligned} & 1310 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 1450 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 1730 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$
	$\begin{aligned} & 31 / 2^{\star} \\ & (89) \end{aligned}$	$\begin{aligned} & 1870 \\ & \text { (8.3) } \end{aligned}$	$\begin{aligned} & 2450 \\ & (10.9) \end{aligned}$	$\begin{aligned} & 2130 \\ & (9.5) \end{aligned}$	$\begin{array}{r} 2450 \\ (10.9) \end{array}$	$\begin{array}{r} 2400 \\ (10.7) \end{array}$	$\begin{aligned} & 2450 \\ & (10.9) \end{aligned}$	$\begin{aligned} & 2800 \\ & (12.5) \end{aligned}$	$\begin{gathered} 2450 \\ (10.9) \end{gathered}$
	$\begin{gathered} \mathbf{6}^{\star} \\ (152) \\ \hline \end{gathered}$	$\begin{aligned} & 2080 \\ & (9.3) \end{aligned}$		$\begin{aligned} & 2310 \\ & (10.3) \end{aligned}$		$\begin{array}{r} 2530 \\ (11.3) \end{array}$			
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$\begin{aligned} & 2^{3 / 4} \\ & (70) \end{aligned}$	$\begin{aligned} & 1600 \\ & (7.1) \end{aligned}$	$\begin{aligned} & 3070 \\ & (13.7) \end{aligned}$	$\begin{aligned} & 1870 \\ & (8.3) \end{aligned}$	$\begin{array}{r} 3070 \\ (13.7) \end{array}$	$\begin{aligned} & 2130 \\ & (9.5) \end{aligned}$	$\begin{array}{r} 3070 \\ (13.7) \end{array}$	$\begin{array}{r} 2670 \\ (11.9) \end{array}$	$\begin{array}{r} 3070 \\ (13.7) \end{array}$
	$\begin{gathered} 4^{\star \star} \\ (102) \end{gathered}$	$\begin{aligned} & 2400 \\ & (10.7) \end{aligned}$	$\begin{aligned} & 3840 \\ & (17.1) \end{aligned}$	$\begin{aligned} & 2850 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 3840 \\ & (17.1) \end{aligned}$	$\begin{gathered} 3290 \\ (14.6) \end{gathered}$	$\begin{array}{r} 3840 \\ (17.1) \end{array}$	$\begin{aligned} & 4190 \\ & (18.6) \end{aligned}$	$\begin{array}{r} 3840 \\ (17.1) \end{array}$
	$\begin{gathered} 7^{\star \star} \\ (178) \end{gathered}$	$\begin{gathered} 3200 \\ (14.2) \end{gathered}$		$\begin{gathered} 3470 \\ (15.4) \end{gathered}$		$\begin{array}{r} 3730 \\ (16.6) \end{array}$			
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{gathered} 31 / 4 \\ (83) \end{gathered}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 4140 \\ & (18.4) \end{aligned}$	$\begin{array}{r} 2320 \\ (10.3) \end{array}$	$\begin{aligned} & 4140 \\ & (18.4) \end{aligned}$	$\begin{array}{r} 2670 \\ (11.9) \end{array}$	$\begin{aligned} & 4140 \\ & (18.4) \end{aligned}$	$\begin{aligned} & 3200 \\ & (14.2) \end{aligned}$	$\begin{array}{r} 4140 \\ (18.4) \end{array}$
	$\begin{aligned} & 4^{3} / 4^{4 *} \\ & (121) \end{aligned}$	$\begin{aligned} & 2930 \\ & (13.0) \end{aligned}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{array}{r} 4130 \\ (18.4) \\ \hline \end{array}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{array}{r} 4800 \\ (21.4) \end{array}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{aligned} & 5870 \\ & (26.1) \end{aligned}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$
	$\begin{gathered} 8^{\star \star} \\ (203) \end{gathered}$	$\begin{aligned} & 4000 \\ & (17.8) \end{aligned}$		$\begin{aligned} & 4930 \\ & (21.9) \end{aligned}$		$\begin{aligned} & 5870 \\ & (26.1) \end{aligned}$		$\begin{aligned} & 6320 \\ & (28.1) \end{aligned}$	
$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 41 / 2 \\ (114) \end{gathered}$	$\begin{aligned} & 3330 \\ & (14.8) \end{aligned}$	$\begin{aligned} & 7070 \\ & (31.4) \end{aligned}$	$\begin{aligned} & 4050 \\ & (18.0) \end{aligned}$	$\begin{aligned} & 7600 \\ & (33.8) \end{aligned}$	$\begin{aligned} & 4670 \\ & (20.8) \end{aligned}$	$\begin{aligned} & 8140 \\ & (36.2) \end{aligned}$	$\begin{aligned} & 5070 \\ & (22.6) \end{aligned}$	$\begin{array}{r} 9200 \\ (40.9) \end{array}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 4930 \\ (21.9) \end{gathered}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 6000 \\ & (26.7) \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 7070 \\ & (31.4) \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{array}{r} 8400 \\ (37.4) \end{array}$	
	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{aligned} & 6670 \\ & (29.7) \end{aligned}$		$\begin{array}{r} 7670 \\ (34.1) \\ \hline \end{array}$		$\begin{aligned} & 8670 \\ & (38.6) \end{aligned}$		$\begin{aligned} & 10670 \\ & (47.5) \end{aligned}$	

[^4]
** Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor boit threads, reduce the shear value by 12%.

All other values shown are for shear plane acting through either body or threads.
(TANFARMD

Tank Certification Report

Tank T-124

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Tank \#124 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#124, a 9,000-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is organic and/or aqueous hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 9,000-gallon tank, (Tank \#124), is constructed of carbon steel. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of carbon steel. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located in a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
 Romic Environmental Technologies Corp.
 Tank Certification Report - Tank \#124
 February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer

Registration No. CH004494

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#124 Anchorage System
July 14, 2005

INTRODUCTION

On May 27, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of the anchorage system for Tank \#124, a 9,000-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Tank Anchorage System Installation Inspection

The tank anchorage system was inspected for the following installation defects: weld breaks; punciures; cracks; corrosion; damaged fittings; and other structural damage or inadequate installation. No discrepancies were noted.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No.
TK-124
Location: Tank Farm C
Service: Waste Storage
Contents: Organic/aqueous
Size: 9,000 gal. S.G.: 1.0-1.4
Fill GPM: 250 Empty GPM: 250
Support: Flat Bottom
Insulation: n / a
Agitator: n / a
\qquad -

Weight: \qquad 4,900土 $110,000 \pm$ lbs. Empty lbs. Full
Temp (F) AMB.
Pressure (Pig): ATM.
Seismic Zone: 2
Material: Carbon Steel
Method of Construction:
Welded \qquad \square

METRO
 ENVIRONMENTAL
 SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762
Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: \quad 2K502	Tank 124
Project Name:	Romic Environmental Technologies Corporation
Project Location:	ROMIC Southwest, Chandler, Arizona.

Table of Contents:
Scope of work, design loads and tank data

1

3

2 Seismic and wind analysis for overturning moment 2
Check existing anchorage

Issued: 01/31/05
ROMIC Southwest, Chandler, Arizona.

SCOPE OF WORK: Tank Designation: Tank 124

- Analyzed existing anchorage for $10^{\prime}-6^{\prime \prime}$ Diameter by $14^{\prime \prime}$ high tank flat bottom tank Existing tank with (4) L4×4×3/8, each with (1) $3 / 4$ " diameter anchor bolt
- Check existing anchorage.

DESIGN LOADS:

2000 International Building Code. 80 MPH wind, Seismic Use group II

| $\mathrm{T}=0.00000765^{*}(\mathrm{~L} / \mathrm{D})^{\wedge} 2^{*}(\mathrm{wD} / \mathrm{t})^{\wedge} 0.5=$ | $0.000000765^{*}(14 . / 10.5)^{\wedge} 2^{*}\left(46000 / 14^{\star} 10.5 / 0.34\right)^{\wedge} .5$ | |
| ---: | :--- | :--- | :--- |
| $=$ | $0.000433<0.06$ | Rigid Structure |

$\begin{array}{ll}\text { Vsimplified }=1.2 \mathrm{Sds} \mathrm{W} / \mathrm{R}= & 0.090 \mathrm{~W} \\ \text { Vnonstr }=0.14 \mathrm{Sds} \mathrm{le}= & 0.039 \mathrm{~W} \\ \mathrm{C} \text { min nonstr }=0.8 \mathrm{~S} 1 \mathrm{I} / \mathrm{R}= & 0.021 \mathrm{~W} \\ \text { Vs rigid nonstr }=0.3 \mathrm{Sds} \mathrm{IW}= & 0.084 \mathrm{~W}\end{array}$

Overturning Moment $=\mathrm{Vs} W$ * 1.2 sloshing * H otm $=$

Use Vs $=0.093 \mathrm{~W}$
Vs asd $=$
62160 lbs-ft Seismic Control

Check existing anchorage according to API 650 Appendix E - Seismic design of Storage Tanks
Given information:

Material:
Thickness:
Concrete slab thickness:
Full Tank +wt tank:
Agitator:
Misc valves and structures:

Carbon steel
0.34"

Min 6"
110000 lbs
0 lbs
1000 lbs

Seismic Analysis per API-650 Appendix E

Seismic zone, $Z=\quad$ (Zone $4=0.4$, zone $3=0.3$, zone 2=0.2, zone $1=0.075$)
Seismic Importance factor, $\mid s=(\operatorname{Max} \mid=1.5$, normally $\mathrm{I}=1.0)$
Site coefficient from soil type, $s=(S 4=2, S 3=1.5, S 2=1.2, S 1=1.0)$
Spcific gravity of liquid, $G=$
Tank diameter, $\mathbf{D}=$
Height of tank, $\mathrm{Ht}=$
Fill height from top of floor, $\mathbf{H}=$
Weight of content, Wt =
Weight of shell, uncorroded,Ws $=.49^{*}\left(.34 / 12^{*} 2^{*} 22 / 7^{*} 5.25^{*} 14\right)=$
Weight of roof steel, uncorroded, $\mathbf{W r}^{\prime}=\quad .49^{*} .20 / 12^{*} 2^{*} 22 / 7^{*} 4.5=$
Roof equipment load in seismic, We =
Ratio of $\mathrm{D} / \mathrm{H}=$
Weight or roof \& equipment load, $\mathbf{W r}=\mathrm{Wr}^{\prime}+\mathrm{We}=$
Height of center of gravity of shell, Xs $=\mathrm{H} / 2=$
From Figure E-2 Effective masses, $\mathbf{W 1} / \mathrm{Wt}=$
0.865

Contents in unison $\mathrm{W} /$ shell, $\mathbf{W} 1=\mathrm{Wt} *(\mathrm{~W} 1 / \mathrm{Wt})=$
From Figure E-2 Effective masses, $\mathbf{W} 2 / \mathrm{Wt}=$
0.191

First sloshing mode contents, $\mathbf{W} 2=W t *(W 2 / W t)=$
0.429

Height to centroid, $X 1=H^{*}(X 1 / H)=$
From Figure E-3 Centroids of seismic forces, $X 2 / H=$
0.771

Height to centroid, $\mathrm{X} 2=\mathrm{H}^{*}(\mathrm{X} 2 / \mathrm{H})=$
0.577

Natural period of first mode, $T=k^{*}(D)^{\wedge} 0.5=$
Lateral force coefficient, C1 $=0.24$
Lateral force coefficient, $\mathrm{C} 2=\quad \mathrm{C} 2=0.3 \mathrm{~S} / \mathrm{T}=$

0.40	
1.25	
1.50	
1.4	
10.50	f
14.00	ft
14.00	ft
105.10	kips
6.414	kips
0.256	kips
1.00	kips
0.75	
1.26	Kips
7.00	ft
0.87	
90.95	Kips
0.19	
20.08	Kips
0.43	
6.01	
0.77	
10.79	
0.58	
1.87	seconds
0.24	
0.24	

Base shear $\mathrm{Vs}=\mathrm{Z}^{*} \mathrm{I}^{*}\left(\mathrm{C} 1 *\left(\mathrm{Ws}+\mathrm{Wr}_{\mathrm{r}}+\mathrm{W} 1\right)+\mathrm{C} 2 * \mathrm{~W} 2\right)=$
14.25 Kips

Overturning, Mot $=\mathrm{Z}^{*} 1^{*}\left(\mathrm{C}^{*} \mathrm{~W}^{*} \mathrm{X} \mathrm{S}+\mathrm{C} 1^{*} \mathrm{Wr} r^{*} \mathrm{Ht}+\mathrm{C} 1^{*} \mathrm{~W} 1^{*} X 1+\mathrm{C} 2^{*} \mathrm{~W} 2^{*} X 2\right)=$
Friction resistance from contents, shell, roof steel, Ffric $=0.4 *\left(\mathrm{Wt}+\mathrm{Ws}+\mathrm{Wr}^{\prime}\right)=$
87.08 K-ft
44.71 Kips
3.14 > 1.5 OK

Factor of safety for sliding, FSs = Fric $/ \mathrm{Vs}=$

Mot $>\mathrm{Mr}$, Anchorage required

Wind analysis per API 650 section 3.11 Wind load on Tanks

Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindrical surface Wind pressure, qw =
Base shear from wind, $\mathrm{Vw}=\mathrm{qw}$ * Ht * $\mathrm{D}=$
Overturning due to wind, Motmw $=V w * 14 / 2=$

22.64 K-ft

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

Breck existing anchor bolts.

Overturning, Mot $=\mathrm{Z}^{*} 1^{*}\left(\mathrm{C} 1^{*} \mathrm{~W} s^{*} \mathrm{X} s+\mathrm{C} 1^{*} \mathrm{Wr} \mathrm{*}^{*} \mathrm{Ht}+\mathrm{C} 1^{*} \mathrm{~W} 1 * \times 1+\mathrm{C} 2 * W 2 * X 2\right)=$	87.08 k -ft
Base shear Vs $=Z^{*} 1^{*}(C 1 *(W s+W r+W 1)+C 2 * W 2)=$	14.25 Kips
Consider cnly two bolts are resisting overturning at one time.	
Tension of one bolt $=87.08 / 10.5 \mathrm{ft} / 2$ bolts $=$	4.15 Kips
Shear of one bolt $=14.25 / 4=$	3.56 Kips
Combined stress of tension and shear $=\quad(4.15 / 4.4)^{\wedge}(5 / 3)+(4.15 / 8.4)^{\wedge}(5 / 3)=$	$1.01<1.33$
Cap of pullout cone fr each bolt $=.55^{\star} .65^{\star}\left(22 / 7^{\star} 10^{\wedge} 2 / 4\right)^{\star}(3000)^{\wedge} 0.5^{\star} 4 / 3^{*} 3^{* 1}$	6.15 Kips O.k.
Check min t clip $=\left(6^{*} 4.15^{*} 2^{*} .75 /\left(4^{*} .75^{*} 36\right)\right)^{\wedge} .5=$	$0.588>3 / 8^{\prime \prime}$

Therefore the existing L4×4×3/8 clip thickness is inadequate.

Use: \quad New (4) L $4 \times 4 \times 5 / 8$ w/ $3 / 4$ " diameter Kwik Bolt If expansion anchors
Min 4.75" embedment length
1/4" fillet weld, $3.5^{\prime \prime}$ length on both sides of $L 4 \times 4 \times 5 / 8$ to existing tank.
Cap of weld $=\quad .928^{*} 4 * 3.5^{*} 2=\quad$ 25.984 Kips >4.15

4.3.3.1 PRODUCT DESCRIPTION

The Kwik Bolt II is a stud type expansion anchor with a single piece wedge that performs as three independent wedges if necessary to provide consistent performance in a wide variety of medium-duty applications. Applicable base materials include concrete, lightweight concrete and grout-filled block.

Product Features

- Impact section (Dog Point) prevents thread damage during installation
- Independent 3-piece wedge with dimples help prevent anchor from spinning during installation
- Length identification code facilitates quality control \& inspection after installation
- Anchor size is same as drill bit size for easy installation
- Comprehensive performance testing to provide high \& consistent performance in concrete, light-weight concrete \& grout filled block base materials

- Mechanical expansion allows immediate load application
- Can be installed in bottomless hole, which allows the anchor to be driven flush with the surface after use. Eliminates cutting bolt heads.
- Can be installed through the fixture, improving productivity
- Comprehensive product offering includes many head styles, sizes, carbon steel and stainless steel materials for

Guide Specifications

Expansion anchors shall be stud type with a single piece three section wedge and zinc plated in accordance with ASTM B633. The anchors must meet the description in Federal Specification FF-S-325, Group II, Type 4, Class I for concrete expansion anchors. Anchors shall be Hilti Kwik Bolt Il as supplied by Hitti, Inc., P.O. Box 21148, Tulsa, OK
74121 .

Anchors to be installed in holes drilled with Hilti carbide tipped drill bits or matched tolerance diamond core bits. Anchors shall be installed per manufacturer's recommendations.

Listings/Approvals

- Underwriters Laboratory No. 203 "Pipe Hangers" (3/8"-3/4" diameters)
- International Conference of Building Officials (ICBO ES). Evaluation Rep
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 4627, KB II

- City of Los Angeles (COLA). Research Report No. 24949930
- Conforms to the description in Federal Specification FF-S
- Factory Mutual (FM) KB II $38^{n} \times 21 / 4^{\prime \prime}$ w/Rod Coupler
- Metro-Dade County Approval 98-0901.13

4.3.3.2 MATERIAL SPECIFICATIONS

Carbon Steel KB II studs conform to ASTM A510 with chemical composition of AISI 1038 except countersunk $K B$ II, $K B 3 / 4^{\prime \prime} \times 12^{\prime \prime}, K B\left\|1^{\prime \prime} \times 6^{\prime \prime}, K B\right\| 1^{\prime \prime} \times 9^{\prime \prime}$ and $K B \| 1^{\prime \prime} \times 12^{\prime \prime}$ which conform to ASTM A108 with chemical composition of AISI $11 \mathrm{L41}$
Wedges are manufactured from AISI 1010 carbon steel, except KB\|3/4" $\times 12^{\prime \prime}, K B \| 1^{\prime \prime} \times 6^{\prime \prime}$
KB \|| $1^{\prime \prime} \times 9^{\prime \prime}$ and $K B \| 1^{\prime \prime} \times 12^{\prime \prime}$ wedges which conform to chemical composition of AISI 304 ", Nuts are carbon steel conforming to ASTM A563 Grade A and meet dimensional requirements
of ANSI B18.2.2
Washers are carbon steel conforming to SAE 1005-1033 and meet dimensional requirements of ANSI 18.22.1 Type A Plain
All carbon steel parts are zinc plated in accordance with ASTM B633, Type III Fe/Zn 5
either AISI 304 or $3161 / 4^{\prime \prime}$ thru $9 / 16^{\prime \prime}$ ASTM A276 or ASTM A493 with chemical composition of over 9/16"
Stainless steel wedges are of the same material grade as bolts or superior.
Juts are stainless steel conforming to ASTM F594 with chemical composition of either AISI 304 or 316
and meeting dimensional requirements of ANSI B18.2.2 to conform with stud material
Note: Special Order KB /I's, nuts and washel conforming to ASTM A240 to conform with stud material
Note: Special Order KB I/'s, nuts and washers may vary from standard materials.

Tarbon Steel Kwik Bolt II Allowable Loads in Concrete

Anchor Diameter in. (mm)	Embedment Depth in. (mm)	$2000 \mathrm{psi}(13.8 \mathrm{MPa})$		3000 psi (20.7 MPa)		$4000 \mathrm{psi}(27.6 \mathrm{MPa})$		$6000 \mathrm{psi}(41.4 \mathrm{MPa})$	
		Tension lb (kN)	Shear lb (kN)	Tension Ib (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$\begin{aligned} & 11 / 8 \\ & (29) \end{aligned}$	$\begin{aligned} & 270 \\ & (1.2) \end{aligned}$	$\begin{aligned} & 430 \\ & (1.9) \end{aligned}$	$\begin{gathered} \hline 330 \\ (1.5) \end{gathered}$	$\begin{aligned} & 430 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 380 \\ & (1.7) \end{aligned}$	$\begin{aligned} & \hline 430 \\ & (1.9) \end{aligned}$	$\begin{aligned} & \hline 470 \\ & (2.1) \end{aligned}$	$\begin{aligned} & 430 \\ & (1.9) \end{aligned}$
	$\begin{gathered} 2^{\star} \\ (51) \end{gathered}$	$\begin{aligned} & 560 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{gathered} 590 \\ (2.6) \end{gathered}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 630 \\ & (2.8) \end{aligned}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 670 \\ & \text { (3.0) } \end{aligned}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$
	$\begin{aligned} & 3^{3} / 4^{\star} \\ & (95) \end{aligned}$	$\begin{aligned} & 670 \\ & (3.0) \end{aligned}$		$\begin{gathered} 670 \\ (3.0) \end{gathered}$		$\begin{aligned} & 670 \\ & (3.0) \end{aligned}$			
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	1 /5 (41)	$\begin{array}{r} 530 \\ (2.4) \end{array}$	$\begin{aligned} & 990 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 650 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 1040 \\ & (4.6) \end{aligned}$	$\begin{aligned} & \hline 750 \\ & \text { (3.3) } \end{aligned}$	$\begin{aligned} & 1100 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 850 \\ & (3.8) \end{aligned}$	$\begin{aligned} & 1100 \\ & (4.9) \end{aligned}$
	$\begin{aligned} & 2^{1 / 2^{*}} \\ & (64) \end{aligned}$	$\begin{aligned} & 1200 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1290 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1370 \\ & (6.1) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1550 \\ & (6.9) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$
	$\begin{aligned} & 4^{1} / 4^{*} \\ & (108) \end{aligned}$	$\begin{aligned} & 1330 \\ & (5.9) \end{aligned}$		$\begin{aligned} & 1390 \\ & (6.2) \end{aligned}$		$\begin{aligned} & 1440 \\ & (6.4) \end{aligned}$			
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$\begin{aligned} & 21 / 4 \\ & (57) \end{aligned}$	$\begin{aligned} & 1170 \\ & (5.2) \end{aligned}$	$\begin{aligned} & \hline 1940 \\ & (8.6) \end{aligned}$	$\begin{aligned} & 1310 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 1450 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 1730 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$
	$\begin{aligned} & 3^{1} 12^{*} \\ & (89) \end{aligned}$	$\begin{aligned} & 1870 \\ & (8.3) \end{aligned}$	$\begin{gathered} 2450 \\ (10.9) \end{gathered}$	$\begin{aligned} & 2130 \\ & (9.5) \end{aligned}$	$\begin{aligned} & 2450 \\ & (10.9) \end{aligned}$	$\begin{aligned} & 2400 \\ & (10.7) \end{aligned}$	$\begin{gathered} 2450 \\ (10.9) \end{gathered}$	$\begin{aligned} & 2800 \\ & (12.5) \end{aligned}$	$\begin{gathered} 2450 \\ (10.9) \end{gathered}$
	$\begin{gathered} 6^{*} \\ (152) \end{gathered}$	$\begin{aligned} & 2080 \\ & (9.3) \end{aligned}$		$\begin{aligned} & \hline 2310 \\ & (10.3) \end{aligned}$		$\begin{aligned} & 2530 \\ & (11.3) \end{aligned}$			
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$\begin{aligned} & 2^{3 / 4} \\ & (70) \end{aligned}$	$\begin{aligned} & 1600 \\ & (7.1) \end{aligned}$	$\begin{aligned} & 3070 \\ & (13.7) \end{aligned}$	$\begin{aligned} & 1870 \\ & \text { (8.3) } \end{aligned}$	$\begin{gathered} 3070 \\ (13.7) \end{gathered}$	$\begin{aligned} & 2130 \\ & 9.5) \end{aligned}$	$\begin{array}{r} 3070 \\ (13.7) \end{array}$	$\begin{gathered} 2670 \\ (11.9) \end{gathered}$	$\begin{aligned} & \hline 3070 \\ & (13.7) \end{aligned}$
	$\begin{gathered} \hline 4^{\star *} \\ (102) \end{gathered}$	$\begin{aligned} & 2400 \\ & (10.7) \end{aligned}$	$\begin{gathered} 3840 \\ (17.1) \end{gathered}$	$\begin{aligned} & 2850 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 3840 \\ & (17.1) \end{aligned}$	$\begin{gathered} 3290 \\ (14.6) \end{gathered}$	$\begin{gathered} 3840 \\ (17.1) \end{gathered}$	$\begin{aligned} & 4190 \\ & (18.6) \end{aligned}$	$\begin{array}{r} 3840 \\ (17.1) \end{array}$
	$\begin{gathered} \hline 7^{\star *} \\ (178) \end{gathered}$	$\begin{aligned} & 3200 \\ & (14.2) \end{aligned}$		$\begin{gathered} 3470^{\prime} \\ (15.4) \end{gathered}$		$\begin{aligned} & 3730 \\ & (16.6) \end{aligned}$			
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{aligned} & 31 / 4 \\ & (83) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{gathered} 4140 \\ (18.4) \end{gathered}$	$\begin{aligned} & 2320 \\ & (10.3) \end{aligned}$	$\begin{aligned} & 4140 \\ & (18.4) \end{aligned}$	$\begin{aligned} & \hline 2670 \\ & (11.9) \end{aligned}$	$\begin{array}{r} 4140 \\ (184) \end{array}$	$\begin{gathered} 3200 \\ (14.2) \end{gathered}$	$\begin{aligned} & 4140 \\ & (18.4) \end{aligned}$
	$\begin{aligned} & 4^{3 / 44^{\star \pi}} \\ & (121) \end{aligned}$	$\begin{array}{r} 2930 \\ (13.0) \end{array}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{array}{r} 4130 \\ (18.4) \end{array}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{aligned} & 4800 \\ & (21.4) \end{aligned}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{aligned} & \hline \mathbf{5 8 7 0} \\ & (26.1) \end{aligned}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$
	$\begin{gathered} \mathbf{8}^{\star \star} \\ (203) \end{gathered}$	$\begin{aligned} & 4000 \\ & (17.8) \end{aligned}$		$\begin{aligned} & \mathbf{4 9 3 0} \\ & (21.9) \end{aligned}$		$\begin{aligned} & 5870 \\ & (26.1) \end{aligned}$		$\begin{aligned} & 6320 \\ & (28.1) \end{aligned}$	
$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} \hline 4^{1 / 2} \\ (114) \end{gathered}$	$\begin{gathered} 3330 \\ (14.8) \end{gathered}$	$\begin{aligned} & 7070 \\ & (31.4) \end{aligned}$	$\begin{aligned} & 4050 \\ & (18.0) \end{aligned}$	$\begin{aligned} & 7600 \\ & (33.8) \end{aligned}$	$\begin{aligned} & \hline 4670 \\ & (20.8) \end{aligned}$	$\begin{aligned} & 8140 \\ & (36.2) \end{aligned}$	$\begin{aligned} & 5070 \\ & (22.6) \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$
	$\begin{gathered} \mathbf{6} \\ (152) \end{gathered}$	$\begin{gathered} 4930 \\ (21.9) \end{gathered}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 6000 \\ & (26.7) \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 7070 \\ & (31.4) \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 8400 \\ & (37.4) \end{aligned}$	
	$\begin{gathered} \mathbf{9} \\ (229) \end{gathered}$	$\begin{aligned} & 6670 \\ & (29.7) \end{aligned}$		$\begin{gathered} 7670 \\ (34.1) \end{gathered}$		$\begin{aligned} & 8670 \\ & (38.6) \end{aligned}$		$\begin{aligned} & 10670 \\ & (47.5) \end{aligned}$	

* Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear values by 20%.

** Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear value by 12%.

All other values shown are for shear plane acting through either body or threads.

[^5]URS

Tank Certification Report

Tank T-132

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#132
February 5, 2005

INTRODUCTION

On February 7, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#132, a 4,100-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is acidic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 4,100-gallon tank, (Tank \#132), is constructed of high-density polyethylene. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of polyethylene. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a secondary containment tank. This tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc.
Romic Environmental Technologies Corp.
Tank Certification Report - Tank \#132
February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E.
Chemical Engineer
Registration No. CH004494

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. TK-401 to TK-403
Location: Tank Farm E
Service: Waste Storage
Contents: Alkaline waste
Size: 4,100 gal. S.G.: 1.0-1.4
Fill GPM: 250 Empty GPM: 250
Support: Sloped Bottom
Insulation: $n / a \quad$ Agitator: n / a

Weight: \qquad $1,000 \pm$ lbs. Empty 49,000土 \qquad lbs. Full

Temp (F) MB.
Pressure (Pig): ATM.
Seismic Zone: 2

Material: High density polyethylene
Method of Construction: Molded

METRO
 ENVIRONMENTAL SERVICES, INC.

1256-B West Brooks Street, Ontario, CA 91762

Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN: 2K502 Project Name:
 Project Location:

Tank 132 \& tank 136
Issued:
02/12/05
Romic Environmental Technologies Corporation ROMIC Southwest, Chandler, Arizona.

Table of Contents:

Page No.

1 Scope of work, design loads and tank data 1
2 Seismic and wind analysis for overturning moment 2

3 Design new brace beam, support column, base plate and anchor bolts
Attach two page of Hilti Kwik II bolt technical data

SCOPE OF WORK:

Tank Designation: TK 132 and T 136.

- Analyzed existing anchorage for $8^{\prime}-0$ " Diameter by $11^{\prime}-0^{\prime \prime}$ highPolyethylene tank setting inside of a $12^{\prime}-0^{\prime \prime}$ diameter $6^{\prime}-0^{\prime \prime}$ high containment tank
- Design brace beam, support column, anchor bolts and base plate.

DESIGN LOADS:

2000 International Building Code. 80 MPH wind, Seismic Use group II

		$\mathrm{H}=$		ft
WIND: $\mathrm{F}=\mathrm{Qz}$ * $\mathrm{G}^{*} \mathrm{Cf}$		$\mathrm{D}=$		f
Where Qz $=0.00$	t Kd V^2 I	$\mathrm{Kz}=$	0.	Tbl 6-3 Case2
$\mathrm{Qz}=0.00$	$0^{*} 0.95^{*} 90^{\wedge} 2^{* 1.0}=$	$\mathrm{Kzt}=$		Tbl 6-4 Flat
		$\mathrm{Kd}=$	0.9	Tbl 6-4
		$\mathrm{V}=$		MPH Fig 6-1
F wnd $=\quad 2532 \mathrm{lbs}$.		$\mathrm{I}=$		Tbl 6-1
$\mathrm{Motm}=\mathrm{F}$ wind ${ }^{*} \mathrm{Hotm}=$	13925 lbs-ft	For $\mathrm{H} / \mathrm{D}=$	1.37	
		$\mathrm{Cf}=$		Tbl 6-19
		$\mathrm{Gf}=$	0.8	Sec 6.5.8
		Af $=$	12	Sq. Ft.
		Hotm $=$		

Location: Chandler State: Arizona

From Fig. 1615(1):	$\mathrm{Ss}=$	0.21 g
From Fig. 1615(2):	$\mathrm{S} 1=$	0.063 g
		0.224 W

Fa $=$	1.6 Tbl 1615.1.2(1)
$R=$	3 Tbl 1622.2.5(1)
Omega $=$	2 Tbl 1622.2.5(1)
$\mathrm{le}=$	1.25 Tbl 1622.2.5(2)
$\mathrm{W}=$	50000 lbs

V seismic $=\mathrm{Cs} \mathrm{W} \quad$ Eq. 16-34

$$
=\quad 0.093 \mathrm{~W}
$$

Vsimplified $=1.2$ Sds $W / R=$
0.090 W

Vnonstr $=0.14 \mathrm{Sds}$ le $=$
Cs min nonstr $=0.8 \mathrm{~S} 1 \mathrm{I} / \mathrm{R}=$ 0.039 W

Vs rigid nonstr $=0.3$ Sds $1 \mathrm{~W}=$
0.021 W
0.084 W
$\mathrm{Cs}=\mathrm{Sds} / \mathrm{R} * \mathrm{I}=\quad 0.0933$
Cs min=0.044SdsI $=0.0123$
Use Cs = 0.0933
Use Vs $=0.093$
Vs asd $=0$
$\mathbf{0 . 0 6 7}$
$22000 \mathrm{lbs}-\mathrm{ft}$ Seismic Control

Check existing anchorage according to API 650 Appendix E-Seismic design of Storage Tanks
Given information:

Material:
Thickness:
Concrete slab thickness:
Full Tank +wt tank:
Agitator:
Misc valves and structures:

High Density Polethylene
0.88

Min 6 "
49000 lbs
0 lbs
1000 lbs

Seismic Analysis per API-650 Appendix E

Seismic zone, $Z=\quad$ (Zone $4=0.4$, zone 3=0.3,zone 2=0.2,zone 1=0.075)
Seismic Importance factor, Is $=\quad(\operatorname{Max} I=1.5$, normally $I=1.0)$
Site coefficient from soil type, $s=(S 4=2, S 3=1.5, S 2=1.2, S 1=1.0)$
Spcific gravity of liquid, $\mathbf{G}=$
Tank diameter, D =
Height of tank, $\mathrm{Ht}=$
Fill height from top of floor, $\mathbf{H}=$
Weight of content, $\mathbf{W t}=\quad 22 / 7^{*}(\mathrm{D} / 2)^{\wedge} 2^{*} \mathrm{H}^{*} 62.4 \mathrm{pcf} / 1000=$
Weight of shell, uncorroded,Ws=
Weight of roof, Wr' =
Roof equipment load in seismic, We =

0.40	
1.25	
1.50	
1.4	
8.00	ft
11.00	ft
11.00	ft
48.32	kips
1.000	kips
0.500	kips
0.50	kips
0.73	
1.00	Kips
5.50	
0.87	
42.06	Kips
0.19	
8.99	Kips
0.43	
4.74	
0.78	
8.54	
0.58	
1.63	seconds
0.24	
0.28	

Ratio of D/H=
0.73

Weight or roof \& equipment load, $\mathbf{W r}=\mathrm{Wr}+\mathrm{We}=$
Height of center of gravity of shell, $\mathrm{Xs}=\mathrm{H} / 2=$
From Figure E-2 Effective masses, W1 / Wt = 0.870

Contents in unison $\mathrm{w} /$ shell, $\mathbf{W} 1=\mathrm{Wt}$ * $(\mathrm{W} 1 / \mathrm{Wt})=$
From Figure E-2 Effective masses, W2 / Wt =
0.186

First sloshing mode contents, W2 = Wt * (W2 / Wt) =
From Figure E-3 Centroids of seismic forces, $\mathrm{X} 1 / \mathrm{H}=$
0.431

Height to centroid, X1 $=H^{*}(X 1 / H)=$
From Figure E-3 Centroids of seismic forces, $\mathbf{X 2} / \mathrm{H}=$
0.776

Height to centroid, X2 $=H^{*}(\mathrm{X} 2 / \mathrm{H})=$
0.577

From Figure $\mathrm{E}-4$ Factor $\mathrm{k}, \mathrm{k}=$
Natural period of first mode, $\mathbf{T}=\mathrm{k}^{*}(\mathrm{D})^{\wedge} 0.5=$
Lateral force coefficient, C1 $=\mathbf{0 . 6}$
Lateral force coefficient, $\mathbf{C 2}=\quad \mathbf{C 2}=\mathbf{0 . 3 S} / \mathrm{T}=$
6.53 Kips

Base shear Vs $=\mathrm{Z}^{*} 1^{*}(\mathrm{C} 1$ * $(\mathrm{Ws}+\mathrm{Wr}+\mathrm{W} 1)+\mathrm{C} 2 * W 2)=$
35.96 K-ft
19.93 Kips
3.05 > 1.5 O.K.

Calculate resistance load against overturning:

Yield strength of tank material, $\mathbf{F y}=$
Thickness of bottom plate, $\mathbf{t b}=\max (\mathrm{tf}-\mathrm{co})$, thickness of floor or $0.25=$
Wt of contents allow for OT calc. per cicumference, $\mathrm{WL}=7.9 \mathrm{tb}(\mathrm{Fby} G \mathrm{H})^{\wedge} 0.5=$
Max allowable for $\mathrm{W}_{\mathrm{L}}=1.25 \mathrm{GHD}=\quad 154 \mathrm{plf}$ Use:
Resistance to OT by contents, $\mathrm{Pr}=22 / 7^{*} \mathrm{D} * \mathrm{WL}_{\mathrm{L}}=\quad 3.87 \mathrm{Kips}$
Resistance to OT by shell and roof, $\mathrm{Psr}=\mathrm{Ws}+\mathrm{Wr}=$
2.00 Kips

Total resistance to OT moment, $\mathrm{Mr}=(\mathrm{Pr}+\mathrm{Psr})^{*} \mathrm{D} / 2=$
23.49 k-ft

Mot $>\mathrm{Mr}$, Anchorage required

Wind analysis per API 650 section 3.11 Wind load on Tanks

Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindrical surface
Wind pressure, qw =
22.00 psf

Base shear from wind, $\mathrm{Vw}=\mathrm{qw}$ * Ht * $\mathrm{D}=$
1.94 Kips

Overturning due to wind, $\operatorname{Motmw}=\mathrm{Vw} * \mathrm{Ht} / 2=$
10.65 K-ft

Wind pressure from 2001CBC, Pw $=\mathrm{Ce} \mathrm{Cq} \mathrm{qs} \mathrm{lw}=$

21.66 psf
1.30
10.48
$\mathrm{k}-\mathrm{ft}$

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage reg'd.

Design braced beam, support column, base plate and anchor bolts.

```
Overturning, Mot = Z* | * C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2)=
Base shear Vs = Z*I*(C1 * (Ws + Wr +W1) + C2 *W2) =

Design an anchorage steel frame for overturning:
```

Sx min = M* 12*.75/ (.6*36) =

Use W 8×18 brace beam w/W8x18 column. Fy $=36 \mathrm{ksi}$

Shear weld at $3 / 4$ "thick cap plate	$6.53 /\left(.928^{*} 3^{*} 4 / 3\right)=$	1.76 in.
1/4" Weld at base $=M / 2$ * 12 *	. $75 /\left(\mathrm{bd}+\mathrm{d}^{\wedge} 2 / 3\right)=\mathrm{b}=5.25, d=8.125$	2.50 kli
Cap of $3 / 16^{\prime \prime}$ fillet weld =	. $928 * 4=$	3.712 klizin
Tension on the base plate $=$	M * $12 /(8.125+2+2) / 6$ bolts $=$	5.93 Kip < 6
Shear on 1" diameter bolts =	$6.53 / 12$ bolts $=$	$0.54 \mathrm{Kips}<9.2$
Combine shear and tension $=$	$(.54 / 9.2)^{\wedge}(5 / 3)+(5.93 / 6)^{\wedge}(5 / 3)=$	$0.990<1.33$
Base plate thk $\min =$	$\left(6^{*} 3^{*} 5.93^{*} 2^{\star} .75 /\left(10^{*} .75^{\star} 36\right)\right)+$ D65^. $5=$	0.593 in
Cap of pullout cone fr 3 bolts =	$.55^{*} .65^{*}\left(22 / 7^{*} 10^{\wedge} 2 / 4\right)^{*}(3000)^{\wedge} 0.5^{*} 4 / 3^{*} 3^{*} 3$	26.59 Kips O.k.

Use: Cap plate $3 / 4^{\prime \prime} \times 8 \times 9 \mathrm{w} / 3 / 16^{\prime \prime}$ fillet weld, weld flange to cap plate.

Use: \quad Base plate $3 / 4^{\prime \prime} \times 10 \times 1^{\prime}-4^{\prime \prime}$ w/ (6) 1" dia. Hilti Kwik Bolts II, $6^{\prime \prime}$ embedment

Anchoring Systems

4.3.3.1 PRODUCT DESCRIPTION

The Kwik Bolt II is a stud type expansion anchor with a single piece wedge that performs as three independent wedges if necessary to provide consistent performance in a wide variety of medium-duty applications. Applicable base materials include concrete, lightweight concrete and grout-filled block.

Product Features

- Impact section (Dog Point) prevents thread damage during installation
- Independent 3-piece wedge with dimples help prevent anchor from spinning during installation
- Length identification code facilitates quality control \& inspection after installation
- Anchor size is same as drill bit size for easy installation
- Comprehensive performance testing to provide high \& consistent performance in concrete, light-weight concrete \& grout filled block base materials

- Mechanical expansion allows immediate load application
- Can be installed in bottomless hole; which allows the anchor to be driven flush with the surface after use. Eliminates cutting bolt heads.
- Can be installed through the fixture, improving productivity
- Comprehensive product offering includes many head styles, sizes, carbon steel and stainless steel materials for a variety of applications

Guide Specifications

Expansion Anchors

Installation

Expansion anchors shall be stud type with a single piece three section wedge and zinc plated in accordance with ASTM B633. The anchors must meet the description in Federal Specification FF-S-325, Group II, Type 4, Class I for concrete expansion anchors. Anchors shall be Hiti Kwik Bolt II as supplied by Hilit, Inc., F.O. Box 21148, Tulsa, OK
74121.
Anchors to be installed in holes drilled with Hilti carbide tipped drill bits or matched tolerance diamond core bits.
Anchors shall be installed per manufacturer's recommendations. Anchors shall be installed per manufacturer's recommendations.

Listings/Approvals

- Underwriters Laboratory No. 203 "Pipe Hangers" ($3 / 8^{n}-3 / 4^{\text {n }}$ diameters)
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 4627, KB il
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 5224, HCKB
- Southern Building Code Congress (SBCCI): Report No. 9930
- City of Los Angeles (COLA): Research Report No. 24946
- Conforms to the description in Federal Specification FF-S-325, Group II, Type 4, Class 1
- Factory Mutual (FM) KB II 3/8" $\times 21 / 4^{\text {² }}$ w/Rod Coupier
- Metro-Dade County Approvai 98-0901.13

4.3.3.2 MATERIAL SPECIFICATIONS

Carbon Steel KB $\|$ studs conform to ASTM A510 with chemical composition of AISI 1038 except countersunk KB II, KB 3/4" $\times 12^{\prime \prime}, \mathrm{KB}\left\|1^{\prime \prime} \times 6^{\prime \prime}, \mathrm{KB}\right\|^{\prime \prime} \times 9^{\prime \prime}$ and $\mathrm{KB} \| 1^{\prime \prime} \times 12^{\prime \prime}$ which conform to ASTM A108 with chemical composition of AISI 11 L41
Wedges are manufactured from AISI 1010 carbon steel, except $\mathrm{KB}\left\|3 / 4^{n} \times 12^{n}, \mathrm{~KB}\right\| 1^{n} \times 6^{n}$, $K B \| 1^{\prime \prime} \times 9^{\prime \prime}$ and $\mathrm{KB} \| 1^{\prime \prime} \times 12^{\prime \prime}$ wedges which conform to chemical composition of AlSI 304
Nuts are carbon steel conforming to ASTM A563 Grade A and meet dimensional requirements
of ANSI B18.2.2
Washers are carbon steel conforming to SAE 1005-1033 and meet dimensional requirements
of ANSI 18.22.1 Type A Plain
All carbon steel parts are zinc plated in accordance with ASTM B633, Type lll Fe/Zn 5
Stainless Steel KB II studs conform to ASTM A276 or ASTM A493 with chemical composition of either AISI 304 or 316 1/4" thru $9 / 16^{n}$
over $9 / 16^{\prime \prime}$

Stainless steel wedges are of the same material grade as bolts or superior.
Nuts are stainless steel conforming to ASTM F594 with chemical composition of either AISI 304 or 316
and meeting dimensional requirements of ANSI 818.2 .2 to conform with stud material
Washers are AISI 304 or 316 stainless steel conforming to ASTM A240 to conform with stud material
Note: Special Order KB II's, nuts and washere mav uon

Anchoring Systems
Kwik Bolt II Expansion Anchor
Carbon Steel Kwik Bolt II Allowable Loads in Concrete

Anchor Biameter in. (mm)	Embedment Depth in. (mm)	2000 psi (13.8 MPa)		3000 psi (20.7 MPa)		4000 psi (27.6 MPa)		$6000 \mathrm{psi}(41.4 \mathrm{MPa})$	
		Tension lb (kN)	$\begin{aligned} & \text { Shear } \\ & \text { Ib }(\mathrm{kN}) \end{aligned}$	Tension lb (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$\begin{aligned} & 1 / 1 / \mathrm{s} \\ & (29) \\ & \hline \end{aligned}$	$\begin{gathered} 270 \\ (1.2) \\ \hline \end{gathered}$	$\begin{aligned} & 430 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 330 \\ & (1.5) \end{aligned}$	$\begin{array}{r} 430 \\ (1.9) \\ \hline \end{array}$	$\begin{aligned} & 380 \\ & (1.7) \end{aligned}$	$\begin{aligned} & 430 \\ & (1.9) \end{aligned}$	$\begin{gathered} 470 \\ (2.1) \end{gathered}$	$\begin{gathered} 430 \\ (1.9) \end{gathered}$
	$\begin{gathered} 2^{\star} \\ (51) \end{gathered}$	$\begin{aligned} & 560 \\ & (2.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{array}{r} 590 \\ (2.6) \\ \hline \end{array}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{array}{r} 630 \\ (2.8) \\ \hline \end{array}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{gathered} 670 \\ (3.0) \end{gathered}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$
	$\begin{aligned} & 3^{3} / 4^{*} \\ & (95) \\ & \hline \end{aligned}$	$\begin{aligned} & 670 \\ & (3.0) \end{aligned}$		$\begin{aligned} & 670 \\ & (3.0) \end{aligned}$		$\begin{aligned} & 670 \\ & (3.0) \end{aligned}$			
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	$1^{5 / 6}$ (41)	$\begin{array}{r} 530 \\ (2.4) \\ \hline \end{array}$	$\begin{aligned} & \hline 990 \\ & (4.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 650 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 1040 \\ & (4.6) \\ & \hline \end{aligned}$	$\begin{array}{r} 750 \\ (3.3) \end{array}$	$\begin{aligned} & 1100 \\ & (4.9) \\ & \hline \end{aligned}$	$\begin{array}{r} 850 \\ (3.8) \\ \hline \end{array}$	$\begin{aligned} & 1100 \\ & (4.9) \end{aligned}$
	$\begin{aligned} & 21 / 2^{*} \\ & (64) \\ & \hline \end{aligned}$	$\begin{aligned} & 1200 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1290 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1370 \\ & (6.1) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1550 \\ & (6.9) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$
	$\begin{aligned} & 41 / 4^{\star} \\ & (108) \end{aligned}$	$\begin{aligned} & 1330 \\ & (5.9) \\ & \hline \end{aligned}$		$\begin{aligned} & 1390 \\ & (6.2) \end{aligned}$		$\begin{aligned} & 1440 \\ & (6.4) \end{aligned}$			
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$\begin{aligned} & 21 / 4 \\ & (57) \end{aligned}$	$\begin{aligned} & 1170 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 1940 \\ & (8.6) \end{aligned}$	$\begin{aligned} & 1310 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 1450 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 1730 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$
	$31 / 2^{*}$ (89)	$\begin{aligned} & 1870 \\ & (8.3) \end{aligned}$	$\begin{gathered} 2450 \\ (10.9) \end{gathered}$	$\begin{array}{r} 2130 \\ (9.5) \end{array}$	$\begin{aligned} & 2450 \\ & (10.9) \end{aligned}$	$\begin{aligned} & 2400 \\ & (10.7) \end{aligned}$	$\begin{gathered} \mathbf{2 4 5 0} \\ (10.9) \end{gathered}$	$\begin{aligned} & 2800 \\ & (12.5) \end{aligned}$	$\begin{aligned} & 2450 \\ & (10.9) \end{aligned}$
	$\begin{gathered} \mathbf{6}^{\boldsymbol{*}} \\ (152) \end{gathered}$	$\begin{aligned} & 2080 \\ & (9.3) \end{aligned}$		$\begin{aligned} & 2310 \\ & (10.3) \end{aligned}$		$\begin{gathered} 2530 \\ (11.3) \end{gathered}$			
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$\begin{aligned} & 2^{3 / 4} \\ & (70) \end{aligned}$	$\begin{aligned} & 1600 \\ & (7.1) \\ & \hline \end{aligned}$	$\begin{gathered} 3070 \\ (13.7) \end{gathered}$	$\begin{aligned} & 1870 \\ & (8.3) \end{aligned}$	$\begin{gathered} 3070 \\ (13.7) \end{gathered}$	$\begin{aligned} & 2130 \\ & (9.5) \end{aligned}$	$\begin{array}{r} 3070 \\ (13.7) \end{array}$	$\begin{aligned} & 2670 \\ & (11.9) \end{aligned}$	$\begin{array}{r} 3070 \\ (13.7) \end{array}$
	$\begin{gathered} 4^{* *} \\ (102) \end{gathered}$	$\begin{aligned} & 2400 \\ & (10.7) \end{aligned}$	$\begin{gathered} 3840 \\ (17.1) \end{gathered}$	$\begin{aligned} & 2850 \\ & (12.7) \end{aligned}$	$\begin{gathered} 3840 \\ (17.1) \end{gathered}$	$\begin{aligned} & 3290 \\ & (14.6) \end{aligned}$	$\begin{aligned} & 3840 \\ & (17.1) \end{aligned}$	$\begin{aligned} & 4190 \\ & (18.6) \end{aligned}$	$\begin{aligned} & 3840 \\ & (17.1) \end{aligned}$
	$\begin{gathered} 7^{\star \star} \\ (178) \end{gathered}$	$\begin{array}{r} 3200 \\ (14.2) \\ \hline \end{array}$		$\begin{gathered} 3470 \\ (15.4) \end{gathered}$		$\begin{gathered} 3730 \\ (16.6) \end{gathered}$			
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{aligned} & 3^{1 / 4} \\ & (83) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 4140 \\ & (18.4) \end{aligned}$	$\begin{aligned} & 2320 \\ & (10.3) \end{aligned}$	$\begin{aligned} & 4140 \\ & (18.4) \end{aligned}$	$\begin{gathered} 2670 \\ (11.9) \end{gathered}$	$\begin{gathered} 4140 \\ (18.4) \end{gathered}$	$\begin{aligned} & 3200 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 4140 \\ & (18.4) \end{aligned}$
	$\begin{aligned} & 4^{3 / 4 / 4 *} \\ & (121) \end{aligned}$	$\begin{array}{r} 2930 \\ (13.0) \end{array}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{gathered} 4130 \\ (18.4) \end{gathered}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{aligned} & 4800 \\ & (21.4) \end{aligned}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{gathered} 5870 \\ (26.1) \end{gathered}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$
	$\begin{gathered} \hline 8^{* *} \\ (203) \end{gathered}$	$\begin{array}{r} 4000 \\ (17.8) \\ \hline \end{array}$		$\begin{aligned} & 4930 \\ & (21.9) \end{aligned}$		$\begin{aligned} & 5870 \\ & (26.1) \end{aligned}$		$\begin{gathered} 6320 \\ (28.1) \end{gathered}$	
$\begin{gathered} \mathbf{1} \\ (25.4) \end{gathered}$	$\begin{gathered} 4^{1 / 2} 2 \\ (114) \\ \hline \end{gathered}$	$\begin{aligned} & 3330 \\ & (14.8) \end{aligned}$	$\begin{aligned} & 7070 \\ & (31.4) \end{aligned}$	$\begin{aligned} & 4050 \\ & (18.0) \end{aligned}$	$\begin{array}{r} 7600 \\ (33.8) \end{array}$	$\begin{aligned} & 4670 \\ & (20.8) \end{aligned}$	$\begin{gathered} 8140 \\ (36.2) \end{gathered}$	$\begin{aligned} & 5070 \\ & (22.6) \end{aligned}$	\therefore
	$\begin{gathered} \mathbf{6} \\ (152) \end{gathered}$	$\begin{array}{r} 4930 \\ (21.9) \\ \hline \end{array}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 6000 \\ & (26.7) \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{array}{r} 7070 \\ (31.4) \end{array}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 8400 \\ & (37.4) \end{aligned}$	$\begin{gathered} 9200 \\ (40.9) \end{gathered}$
	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{aligned} & 6670 \\ & (29.7) \end{aligned}$		$\begin{gathered} 7670 \\ (34.1) \end{gathered}$		$\begin{aligned} & 8670 \\ & (38.6) \end{aligned}$		$\begin{aligned} & 10670 \\ & (47.5) \end{aligned}$	

* Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear values by 20%.

** Vaiues shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear value by 12%.

All other values shown are for shear plane acting through either body or threads.

TANK T-132 AND T136

REFERENCE: BASEMAP PROVIDED BY:
\bigcirc ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANOLER, ARIZONA
-
URS P:IROMICICADDIFIGURESUA16434.DWG 02-04-05
XREF: P:IROMICICADDIFIGURESIROMIC-SITE.DWG

Tank Certification Report

Tank T-136

Prepared for:	Romic Environmental Technologies Corp, 6760 West Allison Road Chandler, AZ 85226
Prepared by:	Metro Environmental Services, Inc. 1256-B West Brooks Street Ontario, CA 91762

Metro Environmental Services, Inc. Romic Environmental Technologies Corp. Tank Certification Report - Tank \#136 February 5, 2005

INTRODUCTION

On January 26, 2005 in accordance with Title 22 CCR Section 66264.192, "Design and Installation of New Tank Systems and Components", Metro Environmental Services, Inc. performed an assessment of Tank \#136, a 4,100-gallon hazardous waste storage tank at the Romic Environmental Technologies Corp facility located at 6760 West Allison Road in Chandler, Arizona. The tank and associated piping system serve to store hazardous waste.

ASSESSMENT ITEMS

Compatibility of Waste Material with Tank Materials of Construction

The waste material contained in this tank is acidic hazardous waste. This material is compatible with the materials of construction of the tank and piping.

Tank / Piping System Details

The 4,100-gallon tank, (Tank \#136), is constructed of high-density polyethylene. Please refer to the attached Tank Specification Sheet for tank details.

The piping system for this tank is constructed of polyethylene. All piping appears to have been installed using good engineering and mechanical practices and is supported adequately to prevent against physical damage and excessive stress due to settlement, vibration, expansion, or contraction.

Leak Detection and Spill Prevention Equipment / Instrumentation

The entire tank and piping system is aboveground and is easily accessible. Leak detection will be by visual inspection. Qualified personnel will inspect the entire tank and piping system at least once per day.

Tank Support System

The tank rests directly upon the concrete slab floor. This tank system was installed under the supervision of site personnel.

Tank Secondary Containment System

The tank is located inside of a secondary containment tank. This tank is located inside of a containment area that also contains a number of additional hazardous waste storage and processing tanks. Containment has been certified separately by others.

Metro Environmental Services, Inc. Romic Environmental Technologies Corp.
 Tank Certification Report - Tank \#136
 February 5, 2005

Tank and Piping System Installation Inspection

The tank and piping was inspected for the following installation defects: weld breaks; punctures; cracks; corrosion; damaged fittings; and other structural damage or inadequate construction or installation. No discrepancies were noted.

System Tightness Testing

The system was tested for tightness by filling with product prior to the final inspection. No leakage or signs of previous leakage were evident during the final inspection.

Estimated Remaining Service Life

The tank was installed in 1992. Considering the current age of the system, materials of construction, intended use, and quality of construction, the remaining service life is estimated to be greater than five years. A re-inspection should be performed five years from the date of this inspection.

CERTIFICATION

I hereby certify that the installed tanks and components of the piping system referenced in this report have been properly inspected and are capable of handling the material referenced in this report without the likelihood of release.

I certify under penalty of law that this document was prepared under my direction and supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

George A. Oney, P.E. Chemical Engineer Registration No. CH004494

Project Name: ROMIC SOUTHWEST - Chandler, AZ
Tank I.D.No. TK-301 to TK-303 Weight: Location: Tank Farm F
Service: Waste Storage
Contents: Acid waste
Size: 4,100 gal. S.G.: 1.0-1.4
Fill GPM: 250 Empty GPM: 250
Support: Sloped Bottom
\qquad Agitator: \qquad Insulation: n / a
\qquad lbs. Empty $1,000 \pm$ 49,000土 lbs. Full
Temp (F) MB.
Pressure (Pig): ATM.
Seismic Zone: 2
Material: High density polyethylene
Method of Construction: Molded

	(N) SCALE IN FEET

METRO ENVIRONMENTAL SERVICES, INC

1256-B West Brooks Street, Ontario, CA 91762
 Tel: (909) 983-3848 Fax: (909) 983-3498

LSI PN:	2K502	Tank 132 \& tank 136	Issued:	02/12/05
Project Name:	Romic Environmental Technologies Corporation			
Project Location:	ROMIC Southwest, Chandler, Arizona.			

Table of Contents:
Page No.
1 Scope of work, design loads and tank data 1
2 Seismic and wind analysis for overturning moment 2
3 Design new brace beam, support column, base plate and anchor bolts
Attach two page of Hilti Kwik II bolt technical data

SCOPE OF WORK: Tank Designation: TK 132 and T 136.

- Analyzed existing anchorage for $8^{\prime}-0^{\prime \prime}$ Diameter by $1^{\prime}-0^{\prime \prime}$ highPolyethylene tank setting inside of a 12'-0" diameter 6'-0" high containment tank
- Design brace beam, support column, anchor bolts and base plate.

DESIGN LOADS:

2000 International Building Code. 80 MPH wind, Seismic Use group II

$$
\begin{array}{ll}
\text { WIND: } \quad \mathrm{F}=\mathrm{Qz}^{*} \mathrm{G}^{*} \mathrm{Cf}{ }^{*} \mathrm{Af} \\
\mathrm{Where} \mathrm{Qz}=0.00256 \mathrm{Kz} \mathrm{Kzt} \mathrm{Kd} \mathrm{~V}^{\wedge} 2 \mathrm{I} \\
\mathrm{Qz}=\quad 0.00256^{*} 0.9^{*} 1.0^{*} 0.95^{*} 90^{\wedge} 2^{*} 1.0= \\
& 17.73 \mathrm{psf}
\end{array}
$$

F wnd $=\quad 2532 \mathrm{lbs}$.
$\mathrm{M} \mathrm{otm}=\mathrm{F}$ wind $* \mathrm{H} \mathrm{otm}=\quad 13925 \mathrm{lbs}-\mathrm{ft}$

Location: Chandler		State: Ariz
From Fig. 1615(1):	$\mathrm{Ss}=$	0.21 g
From Fig. 1615(2):	$\mathrm{S} 1=$	0.063 g
$\mathrm{Sds}=0.67 \mathrm{FaSs}=$		0.224 W
$\begin{gathered} \text { V seismic } \end{gathered}=\text { Cs } \mathrm{W} \quad \text { Eq. 16-34 }$		
Vsimplified $=1.2 \mathrm{Sds}$	$W / R=$	0.090 W
Vnonstr $=0.14 \mathrm{Sds} \mathrm{le}$		0.039 W
Cs min nonstr $=0.8 \mathrm{~S} 1$	$1 / \mathrm{R}=$	0.021 W
Vs rigid nonstr $=0.3 \mathrm{~S}$	ds $\mathrm{I} \mathrm{W}=$	0.084 W

Overturning Moment $=\mathrm{Vs} \mathrm{W} * 1.2$ sloshing * H otm $=$
22000 lbs-ft Seismic Control

Check existing anchorage according to API 650 Appendix E-Seismic design of Storage Tanks

Given information:
Material:
Thickness:
High Density Polethylene
Concrete slab thickness:
0.88

Full Tank +wt tank:
$\operatorname{Min} 6^{\prime \prime}$
Agitator:
49000 jbs
Misc valves and structures:
0 lbs
1000 lbs

Mot $>\mathrm{Mr}$, Anchorage required

Wind analysis per API 650 section 3.11 Wind load on Tanks

Based on 30 psf on vertical plane surface or 22 psf on projected area of cylindrical surface

Wind pressure, qw =
Base shear from wind, $\mathrm{Vw}=\mathrm{qw}$ * Ht * $\mathrm{D}=$
Overturning due to wind, Motmw $=\mathrm{Vw}_{w} * \mathrm{Ht} / 2=$
Wind pressure from $2001 \mathrm{CBC}, \mathrm{Pw}=\mathrm{Ce} \mathrm{Cq}$ qs $\mathrm{Iw}=$

For 70 MPH wind, Exp. C Where \quad| $22 \mathrm{Ce}=$ |
| :--- |
| $70 \mathrm{mph} \mathrm{qs}=$ |

Overturning due to wind from $2001 \mathrm{CBC}, \mathrm{Motmw}=\mathrm{Pw} * \mathrm{Ht} * \mathrm{D} * \mathrm{Ht} / 2=$
22.00 psf 1.94 Kips
10.65 K -ft

22.00
1.94 Kips
$10.65 \mathrm{~K}-\mathrm{ft}$

21.66
1.30
1.15
10.48
ksf
ft

Since Resistance to Overturning of tank <seismic or wind overturning, anchorage req'd.

Design braced beam, support column, base plate and anchor bolts.

Use: Cap plate $3 / 4^{\prime \prime} \times 8 \times 9 \mathrm{w} / 3 / 16^{\prime \prime}$ fillet weld, weld flange to cap plate.
Use: \quad Base plate $3 / 4^{\prime \prime} \times 10 \times 1^{\prime}-4^{\prime \prime}$ w/ (6) $1^{\prime \prime}$ dia. Hilti Kwik Bolts II, $6^{\prime \prime}$ embedment

Anchoring Systems

4.3.3.1 PRODUCT DESCRIPTION

The Kwik Bolt II is a stud type expansion anchor with a single piece wedge that performs as three independent wedges if necessary to provide consistent performance in a wide variety of medium-duty applications. Applicable base materials include concrete, lightweight concrete and grout-filled block.

Product Features

- Impact section (Dog Point) prevents thread damage during installation
- Independent 3-piece wedge with dimples help prevent anchor from spinning during installation
- Length identification code facilitates quality control \& inspection after installation
- Anchor size is same as drill bit size for easy installation
- Comprehensive performance testing to provide high \& consistent performance int concrete, light-weight concrete \& grout filled block base materials

- Mechanical expansion allows immediate load application
- Can be installed in bottomless hole, which allows the anchor to be driven flush with the surface after use. Eliminates cutting bolt heads.
- Can be installed through the fixture, improving productivity
- Comprehensive product offering includes many head styles, sizes, carbon steel and stainless steel materials for a variety of applications

Guide Specifications

Expansion anchors shall be stud type with a single piece three section wedge and zinc plated in accordance with ASTM B633. The anchors must meet the description in Federal Specification FF-S-325, Group II, Type 4, Class I for concrete expansion anchors. Anchors shall be Hill Kwik Bolt Il as supplied by Hilti, Inc., P.O. Box 21148, Tulsa, OK 74121.

Installation
Anchors to be installed in holes drilled with Hilt carbide tipped drill bits or matched tolerance diamond core bits. Anchors shall be installed per manufacturer's recommendations.

Listings/Approvals

- Underwriters Laboratory No. 203 "Pipe Hangers" ($3 / 8^{n}-3 / 4^{\text {" }}$ diameters)
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 4627, KB II
- International Conference of Building Officials (ICBO ES): Evaluation Report No. 5224, HCKB
- Southern Building Code Congress (SBCCI): Report No. 9930
- City of Los Angeles (COLA): Research Report No. 24946
- Conforms to the description in Federal Specification FF-S-325, Group II, Type 4, Class 1
- Factory Mutual (FM) KB || $3 / 8^{\prime \prime} \times 21 / 4^{\prime \prime}$ w/Rod Coupler
- Metro-Dade County Approval 98-0901.13

4.3.3.2 MATERIAL SPECIFICATIONS

Carbon Steel KB II studs conform to ASTM A510 with chemical composition of AISI 1038 except countersunk KB II, KB $3 / 4^{n} \times 12^{\prime \prime}, K B\left\|1^{n} \times 6^{n}, K B\right\| 1^{\prime \prime} \times 9^{\prime \prime}$ and $K B \| 1^{\prime \prime} \times 12^{\prime \prime}$ which conform to ASTM A108 with chernical composition of AISI $11 L 41$

Wedges are manufactured from AISI 1010 carbon steel, except $K B\left\|3 / 4^{\prime \prime} \times 12^{n}, K B\right\| 1^{n} \times 6^{n}$,
$K B \| 1^{\prime \prime} \times 9^{\prime \prime}$ and $K B \| 1^{\prime \prime} \times 12^{\prime \prime}$ wedges which conform to chemical composition of AISI 304
Nuts are carbon steel conforming to ASTM A563 Grade A and meet dimensional requirements
of ANSI B18.2.2
Washers are carbon steel conforming to SAE 1005-1033 and meet dimensional requirements
of ANSI 18.22.1 Type A Plain
All carbon steel parts are zinc plated in accordance with ASTM 8633, Type Ill Fe/Zn 5
Stainless Steel KB II studs conform to ASTM A276 or ASTM A493 with chemical comp either AlSI 304 or $316 \quad 1 / 4^{\prime \prime}$ thru $9 / 16^{n}$ over $9 / 16^{\prime \prime}$
Stainless steel wedges are of the same material grade as bolts or superior.
Nuts are stainless steel conforming to ASTM F594 with chemical composition of either AISI 304 or 316

Carbon Steel Kwik Bolt II Allowable Loads in Concrete

Anchor Diameter in. (mm)	Embedment Depth in. (mm)	$2000 \mathrm{psi}(13.8 \mathrm{MPa})$		3000 psi (20.7 MPa)		4000 psi (27.6 MPa)		6000 psi (41.4 MPa)	
		Tension lb (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)	Tension Њ (kN)	Shear lb (kN)	Tension lb (kN)	Shear lb (kN)
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$\begin{aligned} & 1 / 1 / 8 \\ & (29) \end{aligned}$	$\begin{array}{r} 270 \\ (1.2) \\ \hline \end{array}$	$\begin{aligned} & 430 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 330 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 430 \\ & (1.9) \end{aligned}$	$\begin{gathered} 380 \\ (1.7) \end{gathered}$	$\begin{gathered} 430 \\ (1.9) \end{gathered}$	$\begin{gathered} 470 \\ (2.1) \end{gathered}$	$\begin{gathered} 430 \\ (1.9) \end{gathered}$
	$\begin{gathered} 2^{\star} \\ (51) \end{gathered}$	$\begin{array}{r} 560 \\ (2.5) \\ \hline \end{array}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{gathered} 590 \\ (2.6) \end{gathered}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{gathered} 630 \\ (2.8) \end{gathered}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$	$\begin{gathered} 670 \\ (3.0) \end{gathered}$	$\begin{aligned} & 530 \\ & (2.4) \end{aligned}$
	$\begin{aligned} & 3^{3} / 2^{*} \\ & \text { (95) } \end{aligned}$	$\begin{aligned} & 670 \\ & (3.0) \end{aligned}$		$\begin{aligned} & 670 \\ & (3.0) \end{aligned}$		$\begin{aligned} & 670 \\ & (3.0) \end{aligned}$			
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	$\begin{aligned} & 15 / 8 \\ & (41) \end{aligned}$	$\begin{array}{r} 530 \\ (2.4) \\ \hline \end{array}$	$\begin{aligned} & 990 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 650 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 1040 \\ & (4.6) \end{aligned}$	$\begin{array}{r} 750 \\ (3.3) \\ \hline \end{array}$	$\begin{aligned} & 1100 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 850 \\ & (3.8) \end{aligned}$	$\begin{aligned} & 1100 \\ & (4.9) \\ & \hline \end{aligned}$
	$21 / 2^{*}$ (64)	$\begin{aligned} & 1200 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1290 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1370 \\ & (6.1) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 1550 \\ & (6.9) \end{aligned}$	$\begin{aligned} & 1470 \\ & (6.5) \end{aligned}$
	$\begin{aligned} & 4 / /^{\star} \\ & (108) \end{aligned}$	$\begin{aligned} & 1330 \\ & (5.9) \\ & \hline \end{aligned}$		$\begin{aligned} & 1390 \\ & (6.2) \end{aligned}$		$\begin{aligned} & 1440 \\ & (6.4) \end{aligned}$			
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$\begin{aligned} & 21 / 4 \\ & (57) \end{aligned}$	$\begin{aligned} & 1170 \\ & (5.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 1940 \\ & (8.6) \end{aligned}$	$\begin{aligned} & 1310 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 1450 \\ & (6.4) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & 1730 \\ & (7.7) \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$
	$\begin{aligned} & 31 / 2^{*} \\ & (89) \end{aligned}$	$\begin{aligned} & 1870 \\ & (8.3) \end{aligned}$	$\begin{gathered} 2450 \\ (10.9) \end{gathered}$	$\begin{aligned} & 2130 \\ & (9.5) \end{aligned}$	$\begin{gathered} 2450 \\ (10.9) \end{gathered}$	$\begin{aligned} & 2400 \\ & (10.7) \end{aligned}$	$\begin{gathered} 2450 \\ (10.9) \end{gathered}$	$\begin{aligned} & 2800 \\ & (12.5) \end{aligned}$	$\begin{aligned} & 2450 \\ & (10.9) \end{aligned}$
	$\begin{gathered} 6^{6^{\star}} \\ (152) \end{gathered}$	$\begin{aligned} & 2080 \\ & (9.3) \end{aligned}$		$\begin{aligned} & 2310 \\ & (10.3) \end{aligned}$		$\begin{aligned} & 2530 \\ & (11.3) \end{aligned}$			
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$\begin{aligned} & 2^{3 / 4} \\ & (70) \end{aligned}$	$\begin{aligned} & 1600 \\ & (7.1) \end{aligned}$	$\begin{aligned} & 3070 \\ & (13.7) \end{aligned}$	$\begin{aligned} & 1870 \\ & (8.3) \end{aligned}$	$\begin{gathered} 3070 \\ (13.7) \end{gathered}$	$\begin{aligned} & 2130 \\ & (9.5) \end{aligned}$	$\begin{array}{r} 3070 \\ (13.7) \end{array}$	$\begin{gathered} 2670 \\ (11.9) \end{gathered}$	$\begin{array}{r} 3070 \\ (13.7) \end{array}$
	$\begin{gathered} \hline 4^{\star *} \\ (102) \end{gathered}$	$\begin{array}{r} 2400 \\ (10.7) \\ \hline \end{array}$	$\begin{gathered} 3840 \\ (17.1) \end{gathered}$	$\begin{array}{r} 2850 \\ (12.7) \end{array}$	$\begin{gathered} 3840 \\ (17.1) \end{gathered}$	$\begin{aligned} & 3290 \\ & (14.6) \end{aligned}$	$\begin{gathered} 3840 \\ (17.1) \end{gathered}$	$\begin{aligned} & 4190 \\ & (18.6) \end{aligned}$	$\begin{aligned} & 3840 \\ & (17.1) \end{aligned}$
	$\begin{gathered} \hline 7^{\star *} \\ (178) \end{gathered}$	$\begin{aligned} & 3200 \\ & .(14.2) \end{aligned}$		$\begin{aligned} & 3470 \\ & (15.4) \end{aligned}$		$\begin{gathered} 3730 \\ (16.6) \end{gathered}$			
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{aligned} & \begin{array}{l} 31 / 4 \\ (83) \end{array} \end{aligned}$	$\begin{aligned} & 1970 \\ & (8.8) \end{aligned}$	$\begin{aligned} & \hline 4140 \\ & (18.4) \end{aligned}$	$\begin{aligned} & 2320 \\ & (10.3) \end{aligned}$	$\begin{gathered} 4140 \\ (18.4) \end{gathered}$	$\begin{gathered} 2670 \\ (11.9) \end{gathered}$	$\begin{aligned} & 4140 \\ & (18.4) \end{aligned}$	$\begin{gathered} 3200 \\ (14.2) \end{gathered}$	$\begin{aligned} & 4140 \\ & (18.4) \end{aligned}$
	$\begin{aligned} & 4^{3 / 4 *} \\ & (121) \end{aligned}$	$\begin{aligned} & 2930 \\ & (13.0) \end{aligned}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{aligned} & \hline 4130 \\ & (18.4) \end{aligned}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{aligned} & 4800 \\ & (21.4) \end{aligned}$	$\begin{aligned} & 5120 \\ & (22.8) \end{aligned}$	$\begin{aligned} & 5870 \\ & (26.1) \end{aligned}$	$\begin{gathered} 5120 \\ (22.8) \end{gathered}$
	$\begin{gathered} \hline \mathbf{8}^{\star \star} \\ (203) \\ \hline \end{gathered}$	$\begin{aligned} & 4000 \\ & (17.8) \end{aligned}$		$\begin{aligned} & 4930 \\ & (21.9) \end{aligned}$		$\begin{aligned} & 5870 \\ & (26.1) \end{aligned}$		$\begin{aligned} & 6320 \\ & (28.1) \end{aligned}$	
$\begin{gathered} 1 \\ (25.4) \end{gathered}$	$\begin{gathered} 4^{1 / 2} \\ (114) \end{gathered}$	$\begin{aligned} & 3330 \\ & (14.8) \end{aligned}$	$\begin{gathered} 7070 \\ (31.4) \end{gathered}$	$\begin{aligned} & 4050 \\ & (18.0) \end{aligned}$	$\begin{aligned} & 7600 \\ & (33.8) \end{aligned}$	$\begin{aligned} & 4670 \\ & (20.8) \end{aligned}$	$\begin{aligned} & 8140 \\ & (36.2) \end{aligned}$	$\begin{aligned} & 5070 \\ & (22.6) \end{aligned}$	s
	$\begin{gathered} \mathbf{6} \\ (152) \end{gathered}$	$\begin{aligned} & \hline 4930 \\ & (21.9) \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 6000 \\ & (26.7) \end{aligned}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{gathered} 7070 \\ (31.4) \end{gathered}$	$\begin{aligned} & 9200 \\ & (40.9) \end{aligned}$	$\begin{aligned} & 8400 \\ & (37.4) \end{aligned}$	$\begin{gathered} \mathbf{9 2 0 0} \\ (40.9) \end{gathered}$
	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{array}{r} 6670 \\ (29.7) \\ \hline \end{array}$		$\begin{gathered} 7670 \\ (34.1) \end{gathered}$		$\begin{aligned} & 8670 \\ & (38.6) \end{aligned}$		$\begin{aligned} & 10670 \\ & (47.5) \end{aligned}$	

* Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear values by 20\%.

** Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear value by 12%.

All other values shown are for shear plane acting through either body or threads.

1 ANK 132 AND 136

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. TK-108 and TK-109 Location: Tank Farm D
Service: Waste Receiving/Storage Contents:_Organic/aqueous
Size: \qquad gal.

SG.: $1.0-1.6$
Fill GPM: 250 \qquad Empty GPM: 250
Support: 4 Legs Insulation: n / a Agitator: n / a Auxiliary Equip: Cooling Coils

Weight: \qquad 4,000土 \qquad lbs. Empty 81,400土 \qquad lbs. Full
Temp (${ }^{\circ}$ F) Ambient
Pressure (Pig): ATM
Seismic Zone: 2
Material: \qquad Carbon Steel

Method of Construction: \qquad

CONNECTION

REMARKS

1. Standard 1:12 sloped top.
2. Bottom cone with 70.2° included angle.
3. Tank supported on 4 legs.
4. See Brown Tank \& Steel W/O-3882.

| Rev No. | Revision | By | Date | Apprvd | Date |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 1 | ADD TANKS 106 TO 108 | MW | $11-13-95$ | | |
| 2 | Update for 2004 Part B | RP | $4-14-04$ | WK | $4-04$ |
| 3 | Revise Temperature rating | RP | $8-22-05$ | MS | $8-05$ |

ROMIC
ENVIRONMENTAL TECHNOLOGIES CORP.
ROMIC SOUTHWEST, CHANDLER, ARIZONA

Project Name: ROMIC SOUTHWEST - Chandler, AZ
Tank I.D.No. TK-137 and TK-138 Weight: \qquad lbs. Empty
Location: Tank Farm D 235,700土 lbs. Full

Service: Fuels/Solvents
Contents: Fuels
Size: 19,500 gal. S.G.: 1.0-1.4
Fill GPM: 250 Empty GPM: 250
Support: Skirt
Insulation: n / a Agitator: 10 HP
Other: Agitator w/ Baffles Optional

CONNECTION					
No.	Size	Type	Rating	Function	
A	$4^{\prime \prime}$	RF	$150 \#$	BOTTOM NOZZLE	
B	$4^{\prime \prime}$	RF	$150 \#$	SIDE OUTLET	
C	$21 / 2^{\prime \prime}$	RF	$150 \#$	VENT	
D	$4^{\prime \prime}$	RF	$150 \#$	SPARE	
E	$12^{\prime \prime}$	RF	$150 \#$	LEVEL INDICATOR	
M	$24^{\prime \prime}$	FF	n/o	TOP MANWAY	
S	$1 "$	MC	$3000 \#$	SAMPLE PORT	

REMARKS

1. Standard Flat top.
2. Flanged and dished bottom
3. Tank supported on ring skirt.
4. See Brown Tank \& Steel W/O-3882.

Pressure (Pig): ATM.
Seismic Zone: 2
Material: Carbon Steel
Method of Construction: \qquad
Welded
\qquad
Temp (F) AMB.
\qquad

Project Name: ROMIC SOUTHWEST - Chandler, AZ
Tank I.D.No. TK-401 to TK-403 Weight: \qquad lbs. Empty Location: Tank Farm E 49,000士 lbs. Full
Service: Waste Storage
Contents: Alkaline waste
Temp (F) MB.

Size: 4,100 gal. S.G.: $1.0-1.4$
Fill GPM: 250 Empty GPM: 250
Pressure (Pig): ATM.
Seismic Zone: 2 Material: High density polyethylene Support: Sloped Bottom Method of Construction: Molded Insulation: $n / a \quad$ Agitator: n / a

CONNECTION

No.	Size	Type	Rating	Function

A	$4^{\prime \prime}$	RF	$150 \#$	BOTTOM NOZZLE
B	$4^{\prime \prime}$	RF	$150 \#$	SIDE OUTLET
C	$21 / 2^{\prime \prime}$	RF	$150 \#$	VENT
D	$4^{\prime \prime}$	RF	$150 \#$	SPARE
E	$12^{\prime \prime}$	RF	$150 \#$	LEVEL INDICATOR
M	$24^{\prime \prime}$	FF	n / o	TOP MANWAY
S	$1^{\prime \prime}$	MC	$3000 \#$	SAMPLE PORT

REMARKS				

1. Standard cone top
2. Sloped bottom

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. TK-411 to TK-413 Weight: \qquad lbs. Empty $101,700 \pm$ lbs. Full
Location: \qquad Tank Farm E

Service: Waste Storage
Contents: Alkaline waste
Size: 8,500 gal. S.G.: $1.0-1.4$
Fill GPM: 250 Empty GPM: 250
Support: Sloped Bottom
insulation: n / a Agitator: n / o

REFERENCE: BASEMAP PROVIDED BY:
R ENVIRONMENTAL TECHNOLOGIES COR
ROMIC SOUTHWEST, CHANOLER, ARIZONA
URS
XREF: P:IROMICICADDIFIGURESIROMIC-SITE.DWG

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. TK-301 to TK-303
Location: Tank Farm F
Service: Waste Storage
Contents:_Acid waste
Size: 4,100 gol. S.G.: 1.0-1.4
Fill GPM: 250 Empty GPM: 250
Support: Sloped Bottom Insulation: $n / a \quad$ Agitator: n / a

Weight: \qquad lbs. Empty $49,000 \pm$ lbs. Full

Temp (F) AMB.
Pressure (Psig): ATM.
Seismic Zone: 2
Material: High density polyethylene
Method of Construction: Molded

CONNECTION				
No.	Size	Type	Rating	Function
A	$4^{\prime \prime}$	RF	$150 \#$	BOTTOM NOZZLE
B	$4^{\prime \prime}$	RF	$150 \#$	SIDE OUTLET
C	$21 / 2^{\prime \prime}$	RF	$150 \#$	VENT
D	$4^{\prime \prime}$	RF	$150 \#$	SPARE
E	$12^{\prime \prime}$	RF	$150 \#$	LEVEL INDICATOR
M	$24^{\prime \prime}$	FF	n/a	TOP MANWAY
S	$1 "$	HC	$3000 \#$	SAMPLE PORT

REMARKS

1. Standord cone top
2. Sloped bottom

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. TK-311 to TK-313
Location: Tank Form F
Service: Waste Storage
Contents: Acid waste
Size: $\quad 8,500$ gal. S.6.: $1.0-1.4$
Fill GPM: 250 Empty GPM: 250
Support: Sloped Bottom Insulation: n / a Agitator: n / a

Weight: \qquad 2,500土 $101,700 \pm$ \qquad lbs. Full
Temp (F) AMB.
Pressure (Pig): ATM.
Seismic Zone: 2
Material: High density polyethylene Method of Construction: Molded

CONNECTION				
No.	Size	Type	Rating	Function
A	$4^{\prime \prime}$	RF	$150 \#$	BOTTOM NOZZLE
B	$4^{\prime \prime}$	RF	$150 \#$	SIDE OUTLET
C	$21 / 2^{\prime \prime}$	RF	$150 \#$	VENT
D	$4^{\prime \prime}$	RF	$150 \#$	SPARE
E	$12^{\prime \prime}$	RF	$150 \#$	LEVEL INDICATOR
M	$24^{\prime \prime}$	FF	n/o	TOP MANWAY
S	$1^{\prime \prime}$	MC	$3000 \#$	SAMPLE PORT
1. Standard cone top				
2. Sloped bottom				

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D.No. TK-321 to TK-323
Location: Tank Farm F
Service: Waste Storage
Contents: Acid waste
Size: 8,500 gal. S.G.: $1.0-1.4$
Fill GPM: 250 Empty GPM: 250
Support: Sloped Bottom
Insulation: n / a Agitator: n / a
Weight: \qquad Ibs. Empty $101,700 \pm$ lbs. Full

Temp (F) AMB.
Pressure (Psig): ATM.
Seismic Zone: 2

Material: High density polyethylene Method of Construction: Molded

CONNECTION				
No.	Size	Type	Rating	Function
A	$4^{\prime \prime}$	RF	$150 \#$	BOTTOM NOZZLE
B	$4^{\prime \prime}$	RF	$150 \#$	SIDE OUTLET
C	$21 / 2^{\prime \prime}$	RF	$150 \#$	VENT
D	$4^{\prime \prime}$	RF	$150 \#$	SPARE
E	$12^{\prime \prime}$	RF	$150 \#$	LEVEL INDICATOR
M	$24^{\prime \prime}$	FF	n/o	TOP MANWAY
S	$1^{\prime \prime}$	HC	$3000 \#$	SAMPLE PORT

1. Standard cone top
2. Sloped bottom

Proposed Tankfarm F

Project Name: ROMIC SOUTHWEST - Chandler, AZ
Tonk I.D.No. TK-304 to TK-307 Location: Tank Farm G
Service: Waste Storage
Contents: Acid, Base, Aqueous, Oxidizer Size:_4,100 gol. S.G.: $1.0-1.4$
Fill GPM: 250 Empty GPM: 250
Support: Ring Skirt

Weight: $\quad 1,000 \pm$ $49,000 \pm$ lbs. Full
Temp (F) AMB.
Pressure (Psig): ATM.
Seismic Zone: 2
Material: High density polyethylene
Method of Construction: Molded Insulation: $n / a \quad$ Agitator: Yes

CONNECTION

No.	Size	Type	Rating	Function	
A	$4^{\prime \prime}$	RF	$150 \#$	BOTTOM NOZZLE	
B	$4^{\prime \prime}$	RF	$150 \#$	SIDE OUTLET	
C	$21 / 2^{\prime \prime}$	RF	$150 \#$	VENT	
D	$4^{\prime \prime}$	RF	$150 \#$	SPARE	
E	$12^{\prime \prime}$	RF	$150 \#$	LEVEL INDICATOR	
L	$4^{\prime \prime}$	RF	$150 \#$	MIXER	
M	$24^{\prime \prime}$	FF	n/a	TOP MANWAY	
S	$1^{\prime \prime}$	HC	$3000 \#$	SAMPLE PORT	

1. Standard cone top
2. Sloped bottom

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Project Name: ROMIC SOUTHWEST - Chandler, AZ

Tank I.D. No. TK-511 to TK-512
Locati: $:$ Tank Farm F
Weight: \qquad 2,500土 lbs. Empty $101,700 \pm$ lbs. Full
Service: Waste Storage
Contents: Wastewater
Size: 8,500 gal. S.G.: 1.0-1.4
Fill GPM: 250 Empty GPM: 250
Support: Sloped Bottom Insulation: $n / a \quad$ Agitator: n / a

Temp (F) AMB.
Pressure (Pig): ATM.
Seismic Zone: 2
Material: High density polyethylene Method of Construction: Molded

CONNECTION					
No.	Size	Type	Rating	Function	
A	$4^{\prime \prime}$	RF	$150 \#$	BOTTOM NOZZLE	
B	$4^{\prime \prime}$	RF	$150 \#$	SIDE OUTLET	
C	$21 / 2^{\prime \prime}$	RF	$150 \#$	VENT	
D	$4^{\prime \prime}$	RF	$150 \#$	SPARE	
E	$12^{\prime \prime}$	RF	$150 \#$	LEVEL INDICATOR	
M	$24^{\prime \prime}$	FF	n/a	TOP MANWAY	
S	$1^{\prime \prime}$	MC	$3000 \#$	SAMPLE PORT	

1. Standard cone top
2. Sloped bottom

Proposed Tankfarm G Romic - Southwest Chandler, Arizona
Figure D-11
REFERENCE: BASEMAP PROVIDED BY:
\rightarrow R M1 C MOR CORP
ROMIC SOUTHWEST, CHANDLER, ARIZONA
(ㅇ)
$\frac{4}{5}$

[^0]: intermediate bulk containers, or "totes," 5-gallon cans) may be stored in these buildings.
 Calculations assume maximum storage capacity assuming all container are 55-gallons drums (see Figure D-2). Various types of containers (e.g., tri-wall boxes,
 Displacement from drums is the secondary containment space taken up by drums sitting in contanment. Displacement calculated using formula: pi* ${ }^{2}$ *h, where r is the radius of a drum (one foot), and h is the height of the berm.

 Secondary containment capacity is deemed adequate ff the Net Available Containment is greats han the Containment Required. Containment capacity for bays in Building 2 calculated by multiplying surface area of bay by average depth (i.e., $5^{\text {II }}$).

[^1]: George A. Oney, P.E. Chemical Engineer
 Registration No. CH004494

[^2]: REFERENCE: BASEMAP PROVIDED BY:
 (denomic

 * ENVIRONMENTAL TECHNOLOGIES CORP.

 ROMIC SOUTHWEST, CHANDLER, ARIZONA
 URS

[^3]: REFERENCE: BASEMAP PROVIDED BY:
 - ENVIRONMENTAL TECHNOLOGIES CORP.

 ROMIC SOUTHWEST, CHANDLER, ARIZONA

[^4]: Values shown are for a shear plane acting through the anchor bolt body. When the shear plane is acting through the anchor bolt threads, reduce the shear values by 20%.

[^5]: REFERENCE: BASEMAP PROVIDED BY:
 PR ROMIC
 (- ENVIRONMENTAL TECHNOLOGIES CORP.
 ROMIC SOUTHWEST, CHANDLER, ARIZONA

