US ERA ARCHIVE DOCUMENT

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Authorized for release by: 4/30/2013 5:29:46 PM

Rhonda Ridenhower

Rhonda Ridenhower **Customer Service Manager**

rhonda.ridenhower@testamericainc.com

ARCHIVE DOCUMENT

Review your project results through

.... LINKS

Total Access

Have a Question?

Visit us at:

www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Chain of Custody	6
Receipt Checklists	7
Definitions/Glossary	8
Method Summary	9
Sample Summary	10
Detection Summary	11
Client Sample Results	12
QC Sample Results	15
QC Association Summary	23
Surrogate Summary	25

1

5

7

9

10

12

1:

Case Narrative

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

TestAmerica Job ID: 160-2109-2

Job ID: 160-2109-2

Laboratory: TestAmerica St. Louis

Narrative

CASE NARRATIVE

Client: Engineering Management Support, Inc.

Project: West Lake Landfill

Report Number: 160-2109-2

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica St. Louis attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results for Chemistry analyses are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header. All soil/sediment sample results for radiochemistry analyses are based upon sample as dried and disaggregated with the exception of tritium, carbon-14, and iodine-129 by gamma spectroscopy unless requested as wet weight by the client."

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

DOCUMENT

ARCHIVE

The samples were received on 04/16/2013; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.0 C.

VOLATILE ORGANIC COMPOUNDS (GC MS)

Sample PURGE TANK (160-2109-4) was analyzed for volatile organic compounds (GC MS) in accordance with EPA SW-846 Method 8260C. The samples were analyzed on 04/19/2013.

Analytical batch 47062

ICAL-8260C-L5mL-RSD15Low

The ICAL %RSD meet the QC limits of 15%RSD or less for all compounds. The ICV %D meets the QC limits of 20%D or less for all compounds. Isobutanol was from the initial calibration lowest point due to poor response. The surrogate compounds (Dibromofluoromethane, 1,2-Dichloroethane-d4, Toluene-d8 and 4-Bromofluorobenzene) were not spiked at the initial calibration highest point because the recoveries do not warrant the high concentration. The initial calibration still meets the TestAmerica's point selection

2

4

5

0

8

9

4 4

12

1,

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

Job ID: 160-2109-2 (Continued)

Laboratory: TestAmerica St. Louis (Continued)

policy. No further action is required.

No difficulties were encountered during the VOCs analysis.

All quality control parameters were within the acceptance limits.

METALS (ICP)-Dissolved

Sample PURGE TANK (160-2109-4) was analyzed for Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 04/18/2013 and analyzed on 04/24/2013.

The following samples were diluted to bring the concentration of target analytes (calcium, magnesium, and sodium) within the calibration range: (160-2109-3 MS), (160-2109-3 MSD), (160-2109-3 SD), I-65 (160-2109-3), PURGE TANK (160-2109-4). Elevated reporting limits (RLs) are provided.

Due to the high concentration of calcium, the matrix spike / matrix spike duplicate (MS/MSD) for batch 46729 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria..

No other difficulties were encountered during the ICP analysis.

All other quality control parameters were within the acceptance limits.

TOTAL METALS (ICP)

Sample PURGE TANK (160-2109-4) was analyzed for total metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 04/18/2013 and analyzed on 04/23/2013 and 04/24/2013.

The following samples were diluted to bring the concentration of target analytes calcium and sodium within the calibration range: (160-2109-3 MS), (160-2109-3 MSD), (160-2109-3 SD), I-65 (160-2109-3), PURGE TANK (160-2109-4). Elevated reporting limits (RLs) are provided.

Due to the high concentration of calcium, the matrix spike / matrix spike duplicate (MS/MSD) for batch 46730 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

No other difficulties were encountered during the metals analysis.

All other quality control parameters were within the acceptance limits.

DISSOLVED MERCURY (CVAA)

Sample PURGE TANK (160-2109-4) was analyzed for dissolved mercury (CVAA) in accordance with EPA SW-846 Methods 7470A. The samples were prepared on 04/25/2013 and analyzed on 04/26/2013.

No difficulties were encountered during the mercury analysis.

All quality control parameters were within the acceptance limits.

TOTAL MERCURY

Sample PURGE TANK (160-2109-4) was analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared on 04/25/2013 and analyzed on 04/26/2013.

No difficulties were encountered during the mercury analysis.

All quality control parameters were within the acceptance limits.

ANIONS

Sample PURGE TANK (160-2109-4) was analyzed for anions in accordance with EPA Method 300.0. The samples were analyzed on 04/16/2013 and 04/17/2013.

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

TestAmerica Job ID: 160-2109-2

Job ID: 160-2109-2 (Continued)

Laboratory: TestAmerica St. Louis (Continued)

The following samples were diluted to bring the concentrations of Chloride and Sulfate within the calibration range in IC batch 47805: PURGE TANK (160-2109-4), PZ-106-KS (160-2106-1). Elevated reporting limits (RLs) are provided..

No difficulties were encountered during the anions analysis.

All quality control parameters were within the acceptance limits.

ALKALINITY

Sample PURGE TANK (160-2109-4) was analyzed for alkalinity in accordance with EPA Method 310.1. The samples were analyzed on 04/29/2013.

No difficulties were encountered during the alkalinity analysis.

All quality control parameters were within the acceptance limits.

TestAmerica St. Louis 4/30/2013

N - None
O - Asha02
P - Na2O4S
O - Na2SO3
R - Na2SSSO3
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
V - MGAA
W - ph 4-5
Z - other (specify) Harry Separted. Special Instructions/Note: Company 774.572 Company Sample Disposal (A fee may pelassessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Monte
Special Instructions/QC Requirements: ND SMIDE COC No: 160-264-117.5 Page: Page 5 of 8 Job ≇: Total Number of containers Date/Time Method of Shipment Chain of Custody Record (1) 334 Analysis Requested Cooler Temperature(s) °C and Other Remarks: ECIOC, TYTOH Z Z 2 2 99 A0147, 20108 Received by: 100 - Anlons, Ion Chromatography --Mail: Preservation Code: Water Company Radiological Sample Type (C=comp, G=grab) 116-28-236-211 14CD 0840 0880 Sample Time 145 ると Unknown fAT Requested (days): Due Date Requested: Sample Date Project #: Date/Time SSOW# WO# Poison B Skin Imtant Non-Hazard Flammable Skin Imiteliererable Requested: I, III, IV, Other (specify) Custody Seal No.: Phone (314) 298-8566 Fax (314) 298-8757 7-00-12 Possible Hazard Identification 4631 North St. Peters Parkway 700 egan@herstassociates.com Custody Seals Intact: Δ Yes Δ No Client Information ample Identification Herst & Associates Westlake Landfill John Regan oty Kit Reli linquished by State, Zip: MO, 63304 St. Charles

TestAmerica HELLEDS OF IN FRVIR CONSTINUE TESTING

US EPA ARCHIVE DOCUMENT

TestAmerica St. Louis

13715 Rider Trail North Earth City, MO 63045

US EPA ARCHIVE DOCUMENT

Login Sample Receipt Checklist

Client: Engineering Management Support, Inc.

Job Number: 160-2109-2

Login Number: 2109 List Source: TestAmerica St. Louis

List Number: 1 Creator: Clarke, Jill

Creator: Clarke, Jili		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Definitions/Glossary

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

TestAmerica Job ID: 160-2109-2

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
E	Result exceeded calibration range.
В	Compound was found in the blank and sample.

General Chemistry

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

_	Abbreviation	These commonly used abbreviations may or may not be present in this report.
	¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
~	%R	Percent Recovery
-	CNF	Contains no Free Liquid
•	DER	Duplicate error ratio (normalized absolute difference)
1	DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
_	DLC	Decision level concentration
)	MDA	Minimum detectable activity
=4	EDL	Estimated Detection Limit
O)	MDC	Minimum detectable concentration
≺	MDL	Method Detection Limit
	ML	Minimum Level (Dioxin)
\equiv	ND	Not detected at the reporting limit (or MDL or EDL if shown)
	PQL	Practical Quantitation Limit
_	QC	Quality Control
ш	RER	Relative error ratio
$\overline{}$	RL	Reporting Limit or Requested Limit (Radiochemistry)
$\mathbf{-}$	RPD	Relative Percent Difference, a measure of the relative difference between two points
_	TEF	Toxicity Equivalent Factor (Dioxin)
	TEQ	Toxicity Equivalent Quotient (Dioxin)
_		
5		
_		
~		
₹.		
ARCHIV		
4		
₽.		
ш		
•••		
,		
SE		
=		
_		

DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDI	Method Detection Limit

MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Net data at all at the manuation limit (an MDI	

ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

QC	Quality Control
RER	Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry	

RPD	Relative Percent Difference, a measure of the relative difference between two points
-----	--

TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica St. Louis

4/30/2013

Page 8 of 25

US EPA ARCHIVE DOCUMENT

Method Summary

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SL
6010C	Metals (ICP)	SW846	TAL SL
7470A	Mercury (CVAA)	SW846	TAL SL
300.0	Anions, Ion Chromatography	MCAWW	TAL SL
310.1	Alkalinity	MCAWW	TAL SL

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Client: Engineering Management Support, Inc.

TestAmerica Job ID: 160-2109-2

Project/Site: West Lake Landfill

US EPA ARCHIVE DOCUMENT

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-2109-4	PURGE TANK	Water	04/16/13 11:45	04/16/13 14:00

Client: Engineering Management Support, Inc. Project/Site: West Lake Landfill

US EPA ARCHIVE DOCUMENT

Client Sample ID: PURGE TANK

Lab Sample ID: 160-2109-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	O Method	Prep Type
Acetone	7.0	J	20	6.7	ug/L	1	8260C	Total/NA
Benzene	0.68	J	5.0	0.25	ug/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	0.40	J	5.0	0.16	ug/L	1	8260C	Total/NA
Aluminum	170	J	200	80	ug/L	1	6010C	Total/NA
Arsenic	6.9	J	10	2.0	ug/L	1	6010C	Total/NA
Barium	340		50	4.0	ug/L	1	6010C	Total/NA
Calcium	77000	Е	1000	110	ug/L	1	6010C	Total/NA
Calcium	86000		5000	530	ug/L	5	6010C	Total/NA
Iron	1100		100	28	ug/L	1	6010C	Total/NA
Lead	1.6	J	10	1.5	ug/L	1	6010C	Total/NA
Magnesium	49000		1000	130	ug/L	1	6010C	Total/NA
Manganese	81		15	3.3	ug/L	1	6010C	Total/NA
Nickel	15	J	40	13	ug/L	1	6010C	Total/NA
Potassium	12000		5000	1700	ug/L	1	6010C	Total/NA
Sodium	140000	E	1000	320	ug/L	1	6010C	Total/NA
Sodium	140000		5000	1600	ug/L	5	6010C	Total/NA
Zinc	18	J	20	5.2	ug/L	1	6010C	Total/NA
Arsenic	5.9	J	10	2.0	ug/L	1	6010C	Dissolved
Barium	320		50	4.0	ug/L	1	6010C	Dissolved
Calcium	79000	E	1000	110	ug/L	1	6010C	Dissolved
Calcium	87000		5000	530	ug/L	5	6010C	Dissolved
Cobalt	4.1	J	50	4.0	ug/L	1	6010C	Dissolved
Lead	2.4	J	10	1.5	ug/L	1	6010C	Dissolved
Magnesium	52000	E	1000	130	ug/L	1	6010C	Dissolved
Magnesium	52000		5000	660	ug/L	5	6010C	Dissolved
Manganese	6.9	J	15	3.3	ug/L	1	6010C	Dissolved
Potassium	12000		5000	1700	ug/L	1	6010C	Dissolved
Sodium	150000	E	1000	320	ug/L	1	6010C	Dissolved
Sodium	150000		5000	1600	ug/L	5	6010C	Dissolved
Zinc	10	JB	20	5.2	ug/L	1	6010C	Dissolved
Nitrate as N	0.018	J	0.020	0.0040	mg/L	1	300.0	Total/NA
Bromide	1.4		0.25	0.025	mg/L	1	300.0	Total/NA
lodide	0.13	J	1.0	0.10	mg/L	1	300.0	Total/NA
Alkalinity	430		5.0	0.54	mg/L	1	310.1	Total/NA
Sulfate - DL	66		10	1.0	mg/L	20	300.0	Total/NA
Chloride - DL2	150		20	2.0	mg/L	100	300.0	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica St. Louis

4/30/2013

RL

5.0

5.0

MDL Unit

0.43 ug/L

0.29 ug/L D

Prepared

Client: Engineering Management Support, Inc.

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

Client Sample ID: PURGE TANK

Project/Site: West Lake Landfill

Date Collected: 04/16/13 11:45

Date Received: 04/16/13 14:00

Analyte

1,1,1-Trichloroethane

1.1.2.2-Tetrachloroethane

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes, Total

TestAmerica Job ID: 160-2109-2

Lab Sample ID: 160-2109-4

Analyzed

04/19/13 05:04

04/19/13 05:04

Matrix: Water

Dil Fac

1,1,2-Trichloroethane ND 5.0 0.57 ug/L 04/19/13 05:04 ND 1.1-Dichloroethane 5.0 0.39 ug/L 04/19/13 05:04 1,1-Dichloroethene ND 5.0 0.37 ug/L 04/19/13 05:04 5.0 1.2.4-Trichlorobenzene ND 0.55 ug/L 04/19/13 05:04 1,2-Dibromo-3-chloropropane ND 10 04/19/13 05:04 1.2 ug/L ND 5.0 1.2-Dibromoethane 0.44 ug/L 04/19/13 05:04 1,2-Dichlorobenzene ND 5.0 0.28 ug/L 04/19/13 05:04 0.37 ug/L 1.2-Dichloroethane ND 5.0 04/19/13 05:04 1,2-Dichloropropane ND 5.0 0.32 ug/L 04/19/13 05:04 1,3-Dichlorobenzene ND 5.0 0.23 ug/L 04/19/13 05:04 1,4-Dichlorobenzene ND 5.0 0.35 ug/L 04/19/13 05:04 2-Butanone (MEK) ND 20 0.39 04/19/13 05:04 ug/L ND 20 0.59 2-Hexanone ug/L 04/19/13 05:04 20 4-Methyl-2-pentanone (MIBK) ND 0.33 ug/L 04/19/13 05:04 20 04/19/13 05:04 Acetone 7.0 6.7 ug/L 5.0 0.25 04/19/13 05:04 Benzene 0.68 ug/L Bromodichloromethane ND 5.0 0.25 ug/L 04/19/13 05:04 Bromoform ND 5.0 0.37 04/19/13 05:04 ug/L Bromomethane ND 10 0.40 ug/L 04/19/13 05:04 Carbon disulfide ND 5.0 0.37 ug/L 04/19/13 05:04 Carbon tetrachloride ND 5.0 ug/L 0.36 04/19/13 05:04 Chlorobenzene ND 5.0 0.38 ug/L 04/19/13 05:04 Chloroethane ND 10 0.38 ug/L 04/19/13 05:04 Chloroform ND 5.0 0.15 ug/L 04/19/13 05:04 Chloromethane ND 10 0.55 ug/L 04/19/13 05:04 cis-1,2-Dichloroethene 0.40 5.0 0.16 ug/L 04/19/13 05:04 cis-1,3-Dichloropropene ND 5.0 0.34 ug/L 04/19/13 05:04 Cyclohexane ND 0.36 ug/L 10 04/19/13 05:04 Dibromochloromethane ND 5.0 0.33 ug/L 04/19/13 05:04 Dichlorodifluoromethane ND 10 0.45 04/19/13 05:04 ug/L Ethylbenzene ND 5.0 0.30 ug/L 04/19/13 05:04 ND 5.0 0.26 ug/L 04/19/13 05:04 Isopropylbenzene Methyl acetate ND 5.0 2.3 ug/L 04/19/13 05:04 ND 5.0 04/19/13 05:04 Methyl tert-butyl ether 0.40 ug/L Methylcyclohexane ND 10 0.26 ug/L 04/19/13 05:04 Methylene Chloride ND 5.0 ug/L 04/19/13 05:04 1.7 ND m-Xylene & p-Xylene 5.0 0.57 ug/L 04/19/13 05:04 o-Xylene ND 5.0 0.32 ug/L 04/19/13 05:04 Styrene ND 5.0 0.35 ug/L 04/19/13 05:04 Tetrachloroethene 04/19/13 05:04 ND 5.0 0.28 ug/L Toluene ND 5.0 04/19/13 05:04 1.0 ug/L

10

TestAmerica St. Louis

04/19/13 05:04

04/19/13 05:04

04/19/13 05:04

04/19/13 05:04

04/19/13 05:04

04/19/13 05:04

5.0

5.0

5.0

5.0

5.0

10

0.18 ug/L

0.35 ug/L

0.22 ug/L

0.43 ug/L

0.85 ug/L

ug/L

0.29

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

Client Sample ID: PURGE TANK

Date Collected: 04/16/13 11:45 Date Received: 04/16/13 14:00 Lab Sample ID: 160-2109-4

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		82 - 121		04/19/13 05:04	1
Dibromofluoromethane (Surr)	100		85 - 119		04/19/13 05:04	1
1,2-Dichloroethane-d4 (Surr)	98		82 - 132		04/19/13 05:04	1
Toluene-d8 (Surr)	106		85 - 115		04/19/13 05:04	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	170	J	200	80	ug/L		04/18/13 13:32	04/23/13 16:32	1
Antimony	ND		10	4.0	ug/L		04/18/13 13:32	04/23/13 16:32	1
Arsenic	6.9	J	10	2.0	ug/L		04/18/13 13:32	04/23/13 16:32	1
Barium	340		50	4.0	ug/L		04/18/13 13:32	04/23/13 16:32	1
Beryllium	ND		5.0	0.61	ug/L		04/18/13 13:32	04/23/13 16:32	1
Cadmium	ND		5.0	0.91	ug/L		04/18/13 13:32	04/23/13 16:32	1
Calcium	77000	E	1000	110	ug/L		04/18/13 13:32	04/23/13 16:32	1
Calcium	86000		5000	530	ug/L		04/18/13 13:32	04/24/13 16:01	5
Chromium	ND		10	3.1	ug/L		04/18/13 13:32	04/23/13 16:32	1
Cobalt	ND		50	4.0	ug/L		04/18/13 13:32	04/23/13 16:32	1
Copper	ND		25	4.6	ug/L		04/18/13 13:32	04/23/13 16:32	1
Iron	1100		100	28	ug/L		04/18/13 13:32	04/23/13 16:32	1
Lead	1.6	J	10	1.5	ug/L		04/18/13 13:32	04/23/13 16:32	1
Magnesium	49000		1000	130	ug/L		04/18/13 13:32	04/23/13 16:32	1
Manganese	81		15	3.3	ug/L		04/18/13 13:32	04/23/13 16:32	1
Nickel	15	J	40	13	ug/L		04/18/13 13:32	04/23/13 16:32	1
Potassium	12000		5000	1700	ug/L		04/18/13 13:32	04/23/13 16:32	1
Selenium	ND		15	2.7	ug/L		04/18/13 13:32	04/23/13 16:32	1
Silver	ND		10	6.0	ug/L		04/18/13 13:32	04/23/13 16:32	1
Sodium	140000	E	1000	320	ug/L		04/18/13 13:32	04/23/13 16:32	1
Sodium	140000		5000	1600	ug/L		04/18/13 13:32	04/24/13 16:01	5
Thallium	ND		20	4.0	ug/L		04/18/13 13:32	04/23/13 16:32	1
Vanadium	ND		50	4.1	ug/L		04/18/13 13:32	04/23/13 16:32	1
Zinc	18	J	20	5.2	ug/L		04/18/13 13:32	04/23/13 16:32	1

Method	1. 6010C .	. Metals	(ICP)	- Dissolved
MELITOU		· wetais i	IICEI	- DISSUIVEU

EPA ARCHIVE DOCUMENT

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		200	80	ug/L		04/18/13 13:30	04/24/13 16:45	1
Antimony	ND		10	4.0	ug/L		04/18/13 13:30	04/24/13 16:45	1
Arsenic	5.9	J	10	2.0	ug/L		04/18/13 13:30	04/24/13 16:45	1
Barium	320		50	4.0	ug/L		04/18/13 13:30	04/24/13 16:45	1
Beryllium	ND		5.0	0.61	ug/L		04/18/13 13:30	04/24/13 16:45	1
Cadmium	ND		5.0	0.91	ug/L		04/18/13 13:30	04/24/13 16:45	1
Calcium	79000	E	1000	110	ug/L		04/18/13 13:30	04/24/13 16:45	1
Calcium	87000		5000	530	ug/L		04/18/13 13:30	04/24/13 17:21	5
Chromium	ND		10	3.1	ug/L		04/18/13 13:30	04/24/13 16:45	1
Cobalt	4.1	J	50	4.0	ug/L		04/18/13 13:30	04/24/13 16:45	1
Copper	ND		25	4.6	ug/L		04/18/13 13:30	04/24/13 16:45	1
Iron	ND		100	28	ug/L		04/18/13 13:30	04/24/13 16:45	1
Lead	2.4	J	10	1.5	ug/L		04/18/13 13:30	04/24/13 16:45	1
Magnesium	52000	E	1000	130	ug/L		04/18/13 13:30	04/24/13 16:45	1
Magnesium	52000		5000	660	ug/L		04/18/13 13:30	04/24/13 17:21	5
Manganese	6.9	J	15	3.3	ug/L		04/18/13 13:30	04/24/13 16:45	1

TestAmerica St. Louis

Page 13 of 25

6

5

7

ŏ

10

1 1

12

L

Result Qualifier

150

Project/Site: West Lake Landfill

Date Received: 04/16/13 14:00

US EPA ARCHIVE DOCUMENT

Analyte

Chloride

General Chemistry - DL2

Client Sample ID: PURGE TANK Date Collected: 04/16/13 11:45

Lab Sample ID: 160-2109-4

Matrix: Water

٧a	ιeι	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nickel	ND		40	13	ug/L		04/18/13 13:30	04/24/13 16:45	1
Potassium	12000		5000	1700	ug/L		04/18/13 13:30	04/24/13 16:45	1
Selenium	ND		15	2.7	ug/L		04/18/13 13:30	04/24/13 16:45	1
Silver	ND		10	6.0	ug/L		04/18/13 13:30	04/24/13 16:45	1
Sodium	150000	E	1000	320	ug/L		04/18/13 13:30	04/24/13 16:45	1
Sodium	150000		5000	1600	ug/L		04/18/13 13:30	04/24/13 17:21	5
Thallium	ND		20	4.0	ug/L		04/18/13 13:30	04/24/13 16:45	1
Vanadium	ND		50	4.1	ug/L		04/18/13 13:30	04/24/13 16:45	1
Zinc	10	JB	20	5.2	ug/L		04/18/13 13:30	04/24/13 16:45	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.060	ug/L		04/25/13 10:43	04/26/13 16:15	1
Method: 7470A - Mercury (CVAA) - Di	ssolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.060	ug/L		04/25/13 10:44	04/26/13 16:37	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.018	J	0.020	0.0040	mg/L			04/16/13 22:37	1
Bromide	1.4		0.25	0.025	mg/L			04/16/13 22:37	1
lodide	0.13	J	1.0	0.10	mg/L			04/16/13 17:53	1
Alkalinity	430		5.0	0.54	mg/L			04/29/13 10:24	1
General Chemistry - DL									
	Daguile	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	KL	MIDL	Ullit	U	Prepareu	Allalyzeu	Dii Fac

RL

20

MDL Unit

2.0 mg/L

D

Prepared

Dil Fac

100

Analyzed

04/17/13 09:52

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

TestAmerica Job ID: 160-2109-2

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 160-47062/2

Matrix: Water

US EPA ARCHIVE DOCUMENT

Analysis Batch: 47062

Client Sample ID: Method Blank **Prep Type: Total/NA**

Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	ND		5.0	0.29	ug/L	— <u>-</u> -	Troparou	04/18/13 23:48	
,1,2,2-Tetrachloroethane	ND		5.0		ug/L			04/18/13 23:48	
,1,2-Trichloroethane	ND		5.0		ug/L			04/18/13 23:48	
,1-Dichloroethane	ND		5.0		ug/L			04/18/13 23:48	
,1-Dichloroethene	ND		5.0		ug/L			04/18/13 23:48	
,2,4-Trichlorobenzene	ND		5.0		ug/L			04/18/13 23:48	
,2-Dibromo-3-chloropropane	ND		10		ug/L			04/18/13 23:48	
.2-Dibromoethane	ND		5.0		ug/L			04/18/13 23:48	
.2-Dichlorobenzene	ND		5.0		ug/L			04/18/13 23:48	
,2-Dichloroethane	ND		5.0	0.37				04/18/13 23:48	
,2-Dichloropropane	ND		5.0		ug/L			04/18/13 23:48	
,3-Dichlorobenzene	ND		5.0		ug/L			04/18/13 23:48	
,4-Dichlorobenzene	ND		5.0		ug/L			04/18/13 23:48	
P-Butanone (MEK)	ND		20		ug/L			04/18/13 23:48	
?-Hexanone (MER)	ND		20		ug/L			04/18/13 23:48	
-Methyl-2-pentanone (MIBK)	ND		20		ug/L ug/L			04/18/13 23:48	
Acetone	ND		20		ug/L			04/18/13 23:48	
Benzene	ND		5.0		ug/L			04/18/13 23:48	
Bromodichloromethane	ND		5.0		ug/L ug/L			04/18/13 23:48	
Bromoform	ND		5.0		ug/L			04/18/13 23:48	
Bromomethane	ND		10		ug/L			04/18/13 23:48	
Carbon disulfide	ND		5.0		ug/L			04/18/13 23:48	
Carbon tetrachloride	ND		5.0	0.36	-			04/18/13 23:48	
Chlorobenzene	ND		5.0		ug/L			04/18/13 23:48	
Chloroethane	ND		10		ug/L			04/18/13 23:48	
Chloroform	ND		5.0		ug/L			04/18/13 23:48	
Chloromethane	ND		10		ug/L			04/18/13 23:48	
is-1,2-Dichloroethene	ND		5.0		ug/L			04/18/13 23:48	
is-1,3-Dichloropropene	ND		5.0		ug/L			04/18/13 23:48	
Cyclohexane	ND		10		ug/L			04/18/13 23:48	
Dibromochloromethane	ND		5.0		ug/L 			04/18/13 23:48	
Dichlorodifluoromethane	ND		10		ug/L			04/18/13 23:48	
Ethylbenzene	ND		5.0		ug/L			04/18/13 23:48	
sopropylbenzene	ND		5.0		ug/L			04/18/13 23:48	
Methyl acetate	ND		5.0		ug/L			04/18/13 23:48	
Methyl tert-butyl ether	ND		5.0		ug/L			04/18/13 23:48	
Methylcyclohexane	ND		10		ug/L			04/18/13 23:48	
Methylene Chloride	ND		5.0		ug/L			04/18/13 23:48	
n-Xylene & p-Xylene	ND		5.0		ug/L			04/18/13 23:48	
o-Xylene	ND		5.0		ug/L			04/18/13 23:48	
Styrene	ND		5.0		ug/L			04/18/13 23:48	
etrachloroethene	ND		5.0		ug/L			04/18/13 23:48	
oluene	ND		5.0		ug/L			04/18/13 23:48	
rans-1,2-Dichloroethene	ND		5.0	0.18	ug/L			04/18/13 23:48	
rans-1,3-Dichloropropene	ND		5.0		ug/L			04/18/13 23:48	
richloroethene	ND		5.0		ug/L			04/18/13 23:48	
richlorofluoromethane	ND		5.0	0.22	ug/L			04/18/13 23:48	
/inyl chloride	ND		5.0	0.43	ug/L			04/18/13 23:48	

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 160-47062/2

Matrix: Water

Analyte

Xylenes, Total

Analysis Batch: 47062

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit Prepared Dil Fac D Analyzed 10 0.85 ug/L 04/18/13 23:48 ND

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 109 82 - 121 04/18/13 23:48 4-Bromofluorobenzene (Surr) 85 - 119 Dibromofluoromethane (Surr) 101 04/18/13 23:48 1,2-Dichloroethane-d4 (Surr) 99 82 - 132 04/18/13 23:48 Toluene-d8 (Surr) 85 - 115 04/18/13 23:48 106

Lab Sample ID: LCS 160-47062/4 **Matrix: Water**

EPA ARCHIVE DOCUMENT

Analysis Batch: 47062

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batom 47 002	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	49.4	ug/L		85 - 115	
1,1,1-Trichloroethane	50.0	49.5	ug/L	99	85 - 115	
1,1,2,2-Tetrachloroethane	50.0	47.0	ug/L	94	84 - 115	
1,1,2-Trichloroethane	50.0	47.2	ug/L	94	85 _ 115	
1,1-Dichloroethane	50.0	50.2	ug/L	100	85 - 115	
1,1-Dichloroethene	50.0	48.8	ug/L	98	85 - 118	
1,1-Dichloropropene	50.0	50.7	ug/L	101	85 - 115	
1,2,3-Trichlorobenzene	50.0	49.5	ug/L	99	72 _ 120	
1,2,3-Trichloropropane	50.0	48.7	ug/L	97	80 _ 115	
1,2,4-Trichlorobenzene	50.0	49.9	ug/L	100	75 _ 124	
1,2,4-Trimethylbenzene	50.0	52.7	ug/L	105	85 _ 115	
1,2-Dibromo-3-chloropropane	50.0	46.2	ug/L	92	71 - 123	
1,2-Dibromoethane	50.0	48.0	ug/L	96	85 _ 115	
1,2-Dichloro-1,1,2,2-tetrafluoroet	50.0	48.5	ug/L	97	47 - 130	
hane						
1,2-Dichlorobenzene	50.0	49.9	ug/L	100	85 - 115	
1,2-Dichloroethane	50.0	48.3	ug/L	97	79 - 122	
1,2-Dichloropropane	50.0	50.2	ug/L	100	85 _ 115	
1,3,5-Trimethylbenzene	50.0	53.5	ug/L	107	85 _ 117	
1,3-Dichlorobenzene	50.0	50.7	ug/L	101	85 ₋ 115	
1,3-Dichloropropane	50.0	48.5	ug/L	97	84 - 115	
1,4-Dichlorobenzene	50.0	49.6	ug/L	99	85 - 115	
1,4-Dioxane	1000	998	ug/L	100	26 - 141	
1-Butanol	500	484	ug/L	97	49 - 132	
2,2-Dichloropropane	50.0	51.0	ug/L	102	85 _ 127	
2-Butanone (MEK)	50.0	50.7	ug/L	101	71 _ 123	
2-Chloro-1,3-butadiene	50.0	53.4	ug/L	107	70 - 115	
2-Chloroethyl vinyl ether	50.0	37.7	ug/L	75	64 - 125	
2-Chlorotoluene	50.0	52.0	ug/L	104	83 - 119	
2-Hexanone	50.0	45.7	ug/L	91	66 - 121	
2-Nitropropane	100	89.7	ug/L	90	63 _ 115	
4-Chlorotoluene	50.0	52.6	ug/L	105	84 - 118	
4-Isopropyltoluene	50.0	53.6	ug/L	107	85 - 119	
4-Methyl-2-pentanone (MIBK)	50.0	48.1	ug/L	96	74 - 123	
Acetone	50.0	46.5	ug/L	93	51 ₋ 140	

2

TestAmerica Job ID: 160-2109-2

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 160-47062/4

Matrix: Water

Analysis Batch: 47062

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetonitrile	250	234	-	ug/L		93	44 - 140
Acrolein	250	222		ug/L		89	79 ₋ 115
Acrylonitrile	250	244		ug/L		98	78 ₋ 126
Allyl chloride	50.0	50.7		ug/L		101	76 - 119
Benzene	50.0	49.2		ug/L		98	85 ₋ 115
Bromobenzene	50.0	51.8		ug/L		104	85 - 115
Bromochloromethane	50.0	48.7		ug/L		97	84 - 117
Bromodichloromethane	50.0	49.5		ug/L		99	85 _ 117
Bromoform	50.0	48.9		ug/L		98	85 - 115
Bromomethane	50.0	48.0		ug/L		96	70 - 135
Carbon disulfide	50.0	48.7		ug/L		97	85 - 123
Carbon tetrachloride	50.0	49.9		ug/L		100	85 - 118
Chlorobenzene	50.0	49.9		ug/L		100	85 ₋ 115
Chloroethane	50.0	50.3		ug/L		101	75 - 125
Chloroform	50.0	49.0		ug/L		98	85 _ 115
Chloromethane	50.0	46.9		ug/L		94	73 - 132
cis-1,2-Dichloroethene	50.0	49.8		ug/L		100	85 ₋ 115
cis-1,3-Dichloropropene	50.0	50.5		ug/L		101	85 _ 127
Cyclohexane	50.0	51.6		ug/L		103	73 - 115
Cyclohexanone	500	510		ug/L		102	29 _ 122
Dibromochloromethane	50.0	49.0		ug/L		98	85 - 115
Dibromomethane	50.0	47.9		ug/L		96	85 ₋ 115
Dichlorodifluoromethane	50.0	44.9		ug/L		90	62 _ 115
Ethyl acetate	100	92.3		ug/L		92	67 - 119
Ethyl ether	100	96.0		ug/L		96	77 ₋ 115
Ethyl methacrylate	50.0	44.7		ug/L		89	67 - 115
Ethylbenzene	50.0	51.0		ug/L		102	85 ₋ 115
Hexachlorobutadiene	50.0	49.8		ug/L		100	74 ₋ 127
lodomethane	50.0	49.8		ug/L		100	83 - 124
Isobutanol	1000	907		ug/L		91	51 - 136
Isopropylbenzene	50.0	54.3		ug/L		109	85 - 124
Methacrylonitrile	250	246		ug/L		98	70 ₋ 115
Methyl acetate	50.0	45.3		ug/L		91	73 ₋ 135
Methyl methacrylate	50.0	45.9		ug/L		92	61 ₋ 115
Methyl tert-butyl ether	50.0	48.5		ug/L		97	73 ₋ 115
Methylcyclohexane	50.0	51.9		ug/L		104	85 - 134
Methylene Chloride	50.0	49.0		ug/L		98	84 ₋ 115
m-Xylene & p-Xylene	100	104		ug/L		104	85 ₋ 115
Naphthalene	50.0	47.9		ug/L		96	70 _ 123
n-Butylbenzene	50.0	52.1		ug/L		104	85 ₋ 116
n-Hexane	50.0	50.6		ug/L		101	85 - 139
N-Propylbenzene	50.0	54.2		ug/L		108	85 - 117
o-Xylene	50.0	53.9		ug/L		108	85 - 115
Propionitrile	250	236		ug/L		94	66 - 115
sec-Butylbenzene	50.0	53.1		ug/L		106	85 ₋ 118
Styrene	50.0	54.0		ug/L		108	85 ₋ 115
tert-Butylbenzene	50.0	54.2		ug/L		108	85 ₋ 124
Tetrachloroethene	50.0	50.5		ug/L		101	85 ₋ 115

TestAmerica St. Louis

Page 17 of 25

4/30/2013

EPA ARCHIVE DOCUMENT

Project/Site: West Lake Landfill

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 160-47062/4

Matrix: Water

Analysis Batch: 47062

Client Sample ID: Lab Control Sample Prep Type: Total/NA

TestAmerica Job ID: 160-2109-2

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrahydrofuran	250	231		ug/L		93	63 - 117	
Toluene	50.0	51.3		ug/L		103	85 ₋ 115	
trans-1,2-Dichloroethene	50.0	48.6		ug/L		97	85 ₋ 115	
trans-1,3-Dichloropropene	50.0	49.4		ug/L		99	85 - 123	
trans-1,4-Dichloro-2-butene	50.0	43.4		ug/L		87	77 _ 115	
Trichloroethene	50.0	48.4		ug/L		97	85 - 115	
Trichlorofluoromethane	50.0	49.0		ug/L		98	85 _ 116	
Vinyl acetate	50.0	49.3		ug/L		99	39 _ 124	
Vinyl chloride	50.0	47.8		ug/L		96	68 - 133	
1,2-Dichloroethene, Total	100	98.4		ug/L		98	85 _ 115	
Xylenes, Total	150	158		ug/L		105		

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		82 - 121
Dibromofluoromethane (Surr)	102		85 - 119
1,2-Dichloroethane-d4 (Surr)	97		82 - 132
Toluene-d8 (Surr)	103		85 - 115

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 160-46729/1-A

Matrix: Water

Analysis Batch: 47746

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 46729

	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		200	80	ug/L		04/18/13 13:30	04/24/13 16:09	1
Antimony	ND		10	4.0	ug/L		04/18/13 13:30	04/24/13 16:09	1
Arsenic	ND		10	2.0	ug/L		04/18/13 13:30	04/24/13 16:09	1
Barium	ND		50	4.0	ug/L		04/18/13 13:30	04/24/13 16:09	1
Beryllium	ND		5.0	0.61	ug/L		04/18/13 13:30	04/24/13 16:09	1
Cadmium	ND		5.0	0.91	ug/L		04/18/13 13:30	04/24/13 16:09	1
Calcium	ND		1000	110	ug/L		04/18/13 13:30	04/24/13 16:09	1
Chromium	ND		10	3.1	ug/L		04/18/13 13:30	04/24/13 16:09	1
Cobalt	ND		50	4.0	ug/L		04/18/13 13:30	04/24/13 16:09	1
Copper	ND		25	4.6	ug/L		04/18/13 13:30	04/24/13 16:09	1
Iron	ND		100	28	ug/L		04/18/13 13:30	04/24/13 16:09	1
Lead	ND		10	1.5	ug/L		04/18/13 13:30	04/24/13 16:09	1
Magnesium	ND		1000	130	ug/L		04/18/13 13:30	04/24/13 16:09	1
Manganese	ND		15	3.3	ug/L		04/18/13 13:30	04/24/13 16:09	1
Nickel	ND		40	13	ug/L		04/18/13 13:30	04/24/13 16:09	1
Potassium	ND		5000	1700	ug/L		04/18/13 13:30	04/24/13 16:09	1
Selenium	ND		15	2.7	ug/L		04/18/13 13:30	04/24/13 16:09	1
Silver	ND		10	6.0	ug/L		04/18/13 13:30	04/24/13 16:09	1
Sodium	ND		1000	320	ug/L		04/18/13 13:30	04/24/13 16:09	1
Thallium	ND		20	4.0	ug/L		04/18/13 13:30	04/24/13 16:09	1
Vanadium	ND		50	4.1	ug/L		04/18/13 13:30	04/24/13 16:09	1
Zinc	6.60	J	20	5.2	ug/L		04/18/13 13:30	04/24/13 16:09	1

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 160-46729/2-A **Matrix: Water**

Analysis Batch: 47746

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 46729

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	10000	10000		ug/L		100	80 - 120	
Antimony	500	533		ug/L		107	80 - 120	
Arsenic	1000	1030		ug/L		103	80 - 120	
Barium	1000	998		ug/L		100	80 - 120	
Beryllium	1000	999		ug/L		100	80 - 120	
Cadmium	1000	1050		ug/L		105	80 - 120	
Calcium	10000	10600		ug/L		106	80 - 120	
Chromium	1000	1060		ug/L		106	80 - 120	
Cobalt	1000	1080		ug/L		108	80 - 120	
Copper	1000	1070		ug/L		107	80 - 120	
Iron	10000	10100		ug/L		101	80 - 120	
Lead	1000	1080		ug/L		108	80 - 120	
Magnesium	10000	10100		ug/L		101	80 _ 120	
Manganese	1000	1030		ug/L		103	80 - 120	
Nickel	1000	1090		ug/L		109	80 - 120	
Potassium	10000	9700		ug/L		97	80 _ 120	
Selenium	1000	1040		ug/L		104	80 - 120	
Silver	100	97.6		ug/L		98	80 - 120	
Sodium	10000	9750		ug/L		98	80 - 120	
Thallium	200	224		ug/L		112	80 - 120	
Vanadium	1000	1000		ug/L		100	80 - 120	
Zinc	1000	1060		ug/L		106	80 - 120	

Lab Sample ID: MB 160-46730/1-A

Matrix: Water

Analysis Batch: 47506

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 46730

•									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		200	80	ug/L		04/18/13 13:32	04/23/13 16:04	1
Antimony	ND		10	4.0	ug/L		04/18/13 13:32	04/23/13 16:04	1
Arsenic	ND		10	2.0	ug/L		04/18/13 13:32	04/23/13 16:04	1
Barium	ND		50	4.0	ug/L		04/18/13 13:32	04/23/13 16:04	1
Beryllium	ND		5.0	0.61	ug/L		04/18/13 13:32	04/23/13 16:04	1
Cadmium	ND		5.0	0.91	ug/L		04/18/13 13:32	04/23/13 16:04	1
Calcium	ND		1000	110	ug/L		04/18/13 13:32	04/23/13 16:04	1
Chromium	ND		10	3.1	ug/L		04/18/13 13:32	04/23/13 16:04	1
Cobalt	ND		50	4.0	ug/L		04/18/13 13:32	04/23/13 16:04	1
Copper	ND		25	4.6	ug/L		04/18/13 13:32	04/23/13 16:04	1
Iron	ND		100	28	ug/L		04/18/13 13:32	04/23/13 16:04	1
Lead	ND		10	1.5	ug/L		04/18/13 13:32	04/23/13 16:04	1
Magnesium	ND		1000	130	ug/L		04/18/13 13:32	04/23/13 16:04	1
Manganese	ND		15	3.3	ug/L		04/18/13 13:32	04/23/13 16:04	1
Nickel	ND		40	13	ug/L		04/18/13 13:32	04/23/13 16:04	1
Potassium	ND		5000	1700	ug/L		04/18/13 13:32	04/23/13 16:04	1
Selenium	ND		15	2.7	ug/L		04/18/13 13:32	04/23/13 16:04	1
Silver	ND		10	6.0	ug/L		04/18/13 13:32	04/23/13 16:04	1
Sodium	ND		1000	320	ug/L		04/18/13 13:32	04/23/13 16:04	1
Thallium	ND		20	4.0	ug/L		04/18/13 13:32	04/23/13 16:04	1

TestAmerica St. Louis

Page 19 of 25

4/30/2013

US EPA ARCHIVE DOCUMENT

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 46730

Method: 6010C - Metals (ICP) (Continued)

Client: Engineering Management Support, Inc.

Lab Sample ID: MB 160-46730/1-A

Lab Sample ID: LCS 160-46730/2-A

Project/Site: West Lake Landfill

Matrix: Water

Analysis Batch: 47506

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vanadium	ND		50	4.1	ug/L		04/18/13 13:32	04/23/13 16:04	1
Zinc	ND		20	5.2	ug/L		04/18/13 13:32	04/23/13 16:04	1

Matrix: Water Prep Type: Total/NA Analysis Batch: 47506 Prep Batch: 46730 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Aluminum 10000 9750 ug/L 98 80 - 120 Antimony 500 524 ug/L 105 80 - 120 Arsenic 1000 1030 ug/L 103 80 - 120 Barium 1000 1010 ug/L 101 80 - 120 Beryllium 1000 1010 ug/L 101 80 - 120 Cadmium 1000 1010 101 80 - 120 ug/L Calcium 103 80 - 120 10000 10300 ug/L Chromium 1000 1040 104 80 - 120 ug/L 1000 1050 105 80 - 120 ug/L Copper 1000 1040 104 80 - 120 ug/L 10000 10100 ug/L 101 80 - 120 80 - 120 Lead 1000 1060 ug/L 106 Magnesium 10000 9850 ug/L 98 80 - 120 80 - 120 Manganese 1000 1000 ug/L 100 Nickel 1000 1050 ug/L 105 80 - 120 Potassium 10000 9580 ug/L 96 80 - 120 1030 Selenium 1000 ug/L 103 80 - 120 100 94.8 ug/L 95 80 - 120 Sodium 10000 9630 ug/L 96 80 - 120 Thallium 105 200 211 ug/L 80 - 120 Vanadium 1000 973 80 - 120

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 160-47767/1-A

Matrix: Water

EPA ARCHIVE DOCUMEN

Analysis Batch: 48038

MB	MB	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.20	0.060 ug/L		04/25/13 10:43	04/26/13 16:06	1

1030

1000

Lab Sample ID: LCS 160-47767/2-A

Matrix: Water

Analysis Batch: 48038

Chefit Sample ID. Lab Control Sample	
Prep Type: Total/NA	
Prep Batch: 47767	

97

103

80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 47767

ug/L

ug/L

	эріке	LUS	LUS				%Rec.	
Analyte	Added	l Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	1.00	1.01		ug/L	_	101	80 - 120	

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

Method: 7470A - Mercury (CVAA) (Continued)

Sample Sample

мв мв

Lab Sample ID: 160-2109-4 MS **Matrix: Water**

Analysis Batch: 48038

Client Sample ID: PURGE TANK

Prep Type: Total/NA Prep Batch: 47767

Spike MS MS Sample Sample Result Qualifier babbA Result Qualifier %Rec Limits Analyte Unit 80 - 120 Mercury ND 1.00 0.931 ug/L 93

Lab Sample ID: 160-2109-4 MSD

Matrix: Water

Analysis Batch: 48038

Client Sample ID: PURGE TANK

Prep Type: Total/NA

Prep Batch: 47767 **RPD** Limits RPD Limit

Result Qualifier Analyte Added Result Qualifier Unit %Rec Mercury ND 1.00 0.894 ug/L 89 80 - 120

MSD MSD

LCS LCS

MSD MSD

0.819

Result Qualifier

Unit

ug/L

Spike

Lab Sample ID: MB 160-47768/1-A

Matrix: Water

Analysis Batch: 48038

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 47768

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.20 0.060 ug/L 04/25/13 10:44 04/26/13 16:28 Mercury ND

Lab Sample ID: LCS 160-47768/2-A

Matrix: Water

Analysis Batch: 48038

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 47768

%Rec.

Spike Added Result Qualifier Unit %Rec Limits Mercury 1 00 0.975 ug/L 98 80 - 120

Lab Sample ID: 160-2109-4 MS

Matrix: Water

PA ARCHIVE DOCUMEN

Analysis Batch: 48038

Client Sample ID: PURGE TANK

Prep Type: Dissolved

Prep Batch: 47768

Sample Sample Spike MS MS %Rec. Added Result Qualifier Result Qualifier Unit %Rec Limits Analyte ND 80 - 120 Mercury 1.00 0.899 ug/L

Spike

Added

1 00

Lab Sample ID: 160-2109-4 MSD

Matrix: Water

Analyte

Mercury

Analysis Batch: 48038

Client Sample ID: PURGE TANK

%Rec

82

Prep Type: Dissolved

Prep Batch: 47768

Limits Limit 80 - 120 20

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 160-47801/3

Matrix: Water

Analysis Batch: 47801

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Sample Sample

ND

Result Qualifier

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac lodide ND 1.0 0.10 mg/L 04/16/13 16:12

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 160-47801/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 47801

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec 90 - 110 lodide 4.00 3.96 mg/L 99

Lab Sample ID: MB 160-47805/9 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 47805

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Nitrate as N ND 0.020 0.0040 mg/L 04/16/13 19:08 Chloride ND 0.20 04/16/13 19:08 0.020 mg/L Bromide ND 0.25 0.025 mg/L 04/16/13 19:08 Sulfate ND 0.50 0.050 mg/L 04/16/13 19:08

Lab Sample ID: LCS 160-47805/10 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 47805

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec 0.400 90 - 110 Nitrate as N 0.386 mg/L 96 Chloride 2.00 1.94 mg/L 97 90 - 110 Bromide 2.00 1.98 mg/L 99 90 - 110 Sulfate 8.00 7.71 90 - 110 mg/L

Method: 310.1 - Alkalinity

Lab Sample ID: MB 160-48101/1

PA ARCHIVE DOCUMENT

Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 48101**

мв мв

Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed Alkalinity ND 1.3 0.14 mg/L 04/29/13 10:24

Lab Sample ID: LCS 160-48101/3 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 48101

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Alkalinity 400 374 90 - 110 mg/L

Lab Sample ID: LLCS 160-48101/2 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 48101

		Spike	LLCS	LLCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity	 	200	188		mg/L		94	90 - 110	

TestAmerica St. Louis

Page 22 of 25

Prep Type: Total/NA

QC Association Summary

Client: Engineering Management Support, Inc.

TestAmerica Job ID: 160-2109-2

Project/Site: West Lake Landfill

GC/MS VOA

Analy	ysis	Batc	h: 4	7062
-------	------	------	------	------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-2109-4	PURGE TANK	Total/NA	Water	8260C	
LCS 160-47062/4	Lab Control Sample	Total/NA	Water	8260C	
MB 160-47062/2	Method Blank	Total/NA	Water	8260C	

Metals

Prep Batch: 46729

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-2109-4	PURGE TANK	Dissolved	Water	3010A	
LCS 160-46729/2-A	Lab Control Sample	Total/NA	Water	3010A	
MB 160-46729/1-A	Method Blank	Total/NA	Water	3010A	

Prep Batch: 46730

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-2109-4	PURGE TANK	Total/NA	Water	3010A	
LCS 160-46730/2-A	Lab Control Sample	Total/NA	Water	3010A	
MB 160-46730/1-A	Method Blank	Total/NA	Water	3010A	

Analysis Batch: 47506

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	160-2109-4	PURGE TANK	Total/NA	Water	6010C	46730
١	LCS 160-46730/2-A	Lab Control Sample	Total/NA	Water	6010C	46730
	MB 160-46730/1-A	Method Blank	Total/NA	Water	6010C	46730

Analysis Batch: 47746

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-2109-4	PURGE TANK	Total/NA	Water	6010C	46730
160-2109-4	PURGE TANK	Dissolved	Water	6010C	46729
160-2109-4	PURGE TANK	Dissolved	Water	6010C	46729
LCS 160-46729/2-A	Lab Control Sample	Total/NA	Water	6010C	46729
MB 160-46729/1-A	Method Blank	Total/NA	Water	6010C	46729

Prep Batch: 47767

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-2109-4	PURGE TANK	Total/NA	Water	7470A	
160-2109-4 MS	PURGE TANK	Total/NA	Water	7470A	
160-2109-4 MSD	PURGE TANK	Total/NA	Water	7470A	
LCS 160-47767/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 160-47767/1-A	Method Blank	Total/NA	Water	7470A	

Prep Batch: 47768

l	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
ı	160-2109-4	PURGE TANK	Dissolved	Water	7470A
ı	160-2109-4 MS	PURGE TANK	Dissolved	Water	7470A
	160-2109-4 MSD	PURGE TANK	Dissolved	Water	7470A
	LCS 160-47768/2-A	Lab Control Sample	Total/NA	Water	7470A
	MB 160-47768/1-A	Method Blank	Total/NA	Water	7470A

TestAmerica St. Louis

4/30/2013

Page 23 of 25

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

Metals (Continued)

Analysis Batch: 48038

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-2109-4	PURGE TANK	Total/NA	Water	7470A	47767
160-2109-4	PURGE TANK	Dissolved	Water	7470A	47768
160-2109-4 MS	PURGE TANK	Total/NA	Water	7470A	47767
160-2109-4 MS	PURGE TANK	Dissolved	Water	7470A	47768
160-2109-4 MSD	PURGE TANK	Total/NA	Water	7470A	47767
160-2109-4 MSD	PURGE TANK	Dissolved	Water	7470A	47768
LCS 160-47767/2-A	Lab Control Sample	Total/NA	Water	7470A	47767
LCS 160-47768/2-A	Lab Control Sample	Total/NA	Water	7470A	47768
MB 160-47767/1-A	Method Blank	Total/NA	Water	7470A	47767
MB 160-47768/1-A	Method Blank	Total/NA	Water	7470A	47768

General Chemistry

Analysis Batch: 47801

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-2109-4	PURGE TANK	Total/NA	Water	300.0	
LCS 160-47801/4	Lab Control Sample	Total/NA	Water	300.0	
MB 160-47801/3	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 47805

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-2109-4	PURGE TANK	Total/NA	Water	300.0	
160-2109-4 - DL	PURGE TANK	Total/NA	Water	300.0	
160-2109-4 - DL2	PURGE TANK	Total/NA	Water	300.0	
LCS 160-47805/10	Lab Control Sample	Total/NA	Water	300.0	
MB 160-47805/9	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 48101

US EPA ARCHIVE DOCUMENT

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-2109-4	PURGE TANK	Total/NA	Water	310.1	
LCS 160-48101/3	Lab Control Sample	Total/NA	Water	310.1	
LLCS 160-48101/2	Lab Control Sample	Total/NA	Water	310.1	
MB 160-48101/1	Method Blank	Total/NA	Water	310.1	

Surrogate Summary

Client: Engineering Management Support, Inc.

Project/Site: West Lake Landfill

TestAmerica Job ID: 160-2109-2

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Reco			
		BFB	DBFM	12DCE	TOL
Lab Sample ID	Client Sample ID	(82-121)	(85-119)	(82-132)	(85-115)
160-2109-4	PURGE TANK	115	100	98	106
LCS 160-47062/4	Lab Control Sample	107	102	97	103
MB 160-47062/2	Method Blank	109	101	99	106

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)