

HUMAN HEALTH BASELINE RISK ASSESSMENT

PerkinElmer Missouri Metals Site Overland, Missouri

prepared for

PerkinElmer, Inc.

January 2006

Burns & McDonnell Project No. 26682

prepared by

Burns & McDonnell Engineering Company, Inc. St. Louis, Missouri

COPYRIGHT © 2005 BURNS & McDONNELL ENGINEERING COMPANY, INC.

TABLE OF CONTENTS

<u>Page No.</u>

LIST OF ACRONYMS AND ABBREVIATIONS		
1.0	INTRO	DDUCTION 1-1
	1.1	Purpose1-1
	1.2	Organization
2.0	SITE I	SACKGROUND
	2.1	Site Location and Description
	2.2	Site Geology and Hydrogeology
	2.3	Summary of Previous Investigations
	2.4	Summary of Nature and Extent of Contamination
3.0	CHEM	IICALS OF POTENTIAL CONCERN (COPCs)
	3.1	Media of Potential Concern
	3.2	Identification of Chemicals of Potential Concern (COPCs)
4.0	TOXIC	CITY ASSESSMENT4-1
	4.1	Noncancer Toxicity Values4-1
	4.2	Cancer Toxicity Values
5.0	EXPO	SURE ASSESSMENT
	5.1	Characterization of Exposure Setting
		5.1.1 Current and Future Land Use
		5.1.2 Current and Future Water Use
	5.2	Potentially Exposed Populations
		5.2.1 On-Site Populations
		5.2.2 Off-Site Populations
	5.3	Potential Exposure Pathways
		5.3.1 Indoor Commercial/Industrial Workers
		5.3.2 Outdoor Commercial/Industrial Workers
		5.3.3 Construction Workers
		5.3.4 Adult and Child Residents
	5.4	Estimation of Intake
		5.4.1 Exposure Variables
		5.4.2 Chemical Variables
		5.4.2.1 Exposure Concentrations
		5.4.2.1 Chemical Vapor Concentrations
6.0	RISK CHARACTERIZATION6-	
	6.1	General Noncancer Risk Discussion
	6.2	General Cancer Risk Discussion
	6.3	Risk Estimates for On-Site
		6.3.1 Indoor Commercial/Industrial Workers
		6.3.2 Outdoor Commercial/Industrial Workers
		6.3.3 Construction/Utility Workers
	6.4	Uncertainties

TABLE OF CONTENTS (Continued)

Page No.

	6.4.1	Uncertainty Associated with Chemical Identification	5-3
	6.4.2	Uncertainty from Toxicity Assessment	5-4
	6.4.3	Uncertainty from Exposure Assessment	5-5
7.0	CALCULATIO	ON OF PRELIMINARY REMEDIATION GOALS (PRGs)	7-1
8.0	CONCLUSION	NS AND RECOMMENDATIONS	3-1
9.0	REFERENCES	5)-1
APPEN	IDIX A –	USEPA ProUCL Version 3.00.02 Statistical Output Sheets	
APPEN	IDIX B –	USEPA Johnson and Ettinger Model Data Entry and Intermediate Calculations	
		Worksheets for Indoor Air Concentrations	
APPEN	IDIX C –	USEPA Johnson and Ettinger Model Data Entry and Intermediate Calculations Worksheets for PRG Volatilization Factors	

LIST OF TABLES

<u> Table No.</u>	Title
2-1	Water Level Data
2-2	Soil Data Summary Table
2-3	Groundwater Data Summary Table
3-1	Data Summary and Identification of COPCs in Soil
3-2	Data Summary and Identification of COPCs in Groundwater – Monitoring Wells GMW- 3, 7, 8, & 9
3-3	Data Summary and Identification of COPCs in Groundwater – Monitoring Wells GMW- 5 & 6
4-1	Noncancer Toxicity Information for Chemicals of Potential Concern
4-2 4-3	USEPA Carcinogen Classification
4-3	Cancer Toxicity Information for Chemicals of Potential Concern
5-1	Formula for Inhalation of Vapor Phase Chemicals
5-2	Groundwater Data Set for Monitoring Wells GMW-3, 7, 8, & 9
5-3	Groundwater Data Set for Monitoring Wells GMW-5 & 6
5-4	Exposure Concentrations in Groundwater, Monitoring Wells GMW-3, 7, 8, & 9
5-5	Exposure Concentrations in Groundwater, Monitoring Wells GMW-5 & 6
5-6	USEPA Johnson and Ettinger Vapor Modeling Results for Indoor Air from Groundwater, Monitoring Wells GMW-3, 7, 8, & 9
5-7	USEPA Johnson and Ettinger Vapor Modeling Results for Indoor Air from Groundwater, Monitoring Wells GMW-5 & 6
5-8	Volatilization Factor to Outdoor Air from Groundwater
5-9	Effective Diffusion Coefficient Between Groundwater and Soil Surface
5-10	Effective Diffusion Coefficient Through Capillary Fringe
5-11	Effective Diffusion Coefficient Through Soil
5-12	MRBCA Vapor Modeling Results for Outdoor Air from Groundwater, Monitoring Wells GMW-3, 7, 8, & 9
5-13	MRBCA Vapor Modeling Results for Outdoor Air from Groundwater, Monitoring Wells GMW-5 & 6
6-1	Hazard Index Estimates for Indoor Commercial/Industrial Worker Scenario, Monitoring Wells GMW-3, 7, 8, & 9
6-2	Hazard Index Estimates for Indoor Commercial/Industrial Worker Scenario, Monitoring Wells GMW-5 & 6
6-3	Excess Lifetime Cancer Risk Estimates for Indoor Commercial/Industrial Worker Scenario, Monitoring Wells GMW-3, 7, 8, & 9
6-4	Excess Lifetime Cancer Risk Estimates for Indoor Commercial/Industrial Worker Scenario, Monitoring Wells GMW-5 & 6
6-5	Hazard Index Estimates for Outdoor Commercial/Industrial Worker Scenario, Monitoring Wells GMW-3, 7, 8, & 9
6-6	Hazard Index Estimates for Outdoor Commercial/Industrial Worker Scenario, Monitoring Wells GMW-5 & 6

LIST OF TABLES (CONTINUED)

<u>Table No.</u>	Title
6-7	Excess Lifetime Cancer Risk Estimates for Outdoor Commercial/Industrial Worker
	Scenario, Monitoring Wells GMW-3, 7, 8, & 9
6-8	Excess Lifetime Cancer Risk Estimates for Outdoor Commercial/Industrial Worker
	Scenario, Monitoring Wells GMW-5 & 6
6-9	Hazard Index Estimates for Construction Worker Scenario, Monitoring Wells GMW-3, 7,
6.10	
6-10	Hazard Index Estimates for Construction Worker Scenario, Monitoring Wells GMW-5 &
6-11	6 Excess Lifetime Cancer Risk Estimates for Construction Worker Scenario, Monitoring
0-11	Wells GMW-3, 7, 8, & 9
6-12	Excess Lifetime Cancer Risk Estimates for Construction Worker Scenario, Monitoring
0-12	Wells GMW-5 & 6
7-1	Allowable Chemical Concentrations in Groundwater for Noncancer Effects, Indoor
	Commercial/Industrial Worker Scenario
7-2	Allowable Chemical Concentrations in Groundwater for Cancer Effects, Indoor
12	Commercial/Industrial Worker Scenario
7-3	Allowable Chemical Concentrations in Groundwater for Cancer Effects, Outdoor
	Commercial/Industrial Worker Scenario
.	
7-4	Allowable Chemical Concentrations in Groundwater for Noncancer Effects, Construction
	Worker Scenario
7-5	Allowable Chemical Concentrations in Groundwater for Cancer Effects, Construction
	Worker Scenario
7-6	Preliminary Remediation Goals in Groundwater for Commercial/Industrial Land Use
	Based on a Target Cancer Risk Level of 1E-07 and a Target Hazard Index of 0.1

LIST OF FIGURES

<u>Figure No.</u>	Title

- Site Location Map 2-1
- Site Map 2-2
- Piezometric Surface Map, June 2, 2005 Soil Sampling Locations from 1992 RI 2-3
- 2-4

LIST OF ACRONYMS AND ABBREVIATIONS

bgs	Below Ground Surface
COPC	Chemical of Potential Concern
DCE	Dichloroethylene
HEAST	Health Effects Assessment Summary Tables
IRIS	Integrated Risk Information System
LOAELs	Lowest Observed Adverse Effect Levels
MDNR	Missouri Department of Natural Resources
MFs	Modifying Factors
MMSC	Missouri Metals Shaping Company
MDoH	Missouri Department of Health
NCI	National Cancer Institute
NOAELs	No Observed Adverse Effect Levels
OEHHA .	California Office of Environmental Health Hazard Analysis
PCE	Tetrachloroethylene
PRG	Preliminary Remediation Goal
RAE	Remedial Alternatives Evaluation
RAGS	Risk Assessment Guidance for Superfund
RAP	Remedial Action Plan
RASR	Remedial Action Summary Report
RfC	Reference Concentration
RfD	Reference Dose
RI	Remedial Investigation
RME	Reasonable Maximum Exposure
TCE	Trichloroethylene
UCL	Upper Confidence Limit
UFs	Uncertainty Factors
USEPA	United States Environmental Protection Agency
VC	Vinyl Chloride
VOCs	Volatile Organic Compounds

1.0 INTRODUCTION

Burns & McDonnell has prepared this human health baseline risk assessment for PerkinElmer, Inc.'s (PerkinElmer) Missouri Metals Site (Site) located in Overland, Missouri. The scope of the risk assessment was discussed in the Remedial Action Summary Report (RASR) for the Site (Burns & McDonnell, 2005), and in subsequent discussions with Missouri Department of Natural Resources (MDNR) personnel regarding the path forward for the Site.

As required by the Consent Agreement for the Site signed in August 1994, and re-affirmed by MDNR's letter dated June 16, 2005, this risk assessment has been prepared following procedures outlined in the United States Environmental Protection Agency's (USEPA's) *Risk Assessment Guidance for Superfund (RAGS) Volume 1: Human Health Evaluation Manual Part A* (USEPA, 1989) and other USEPA supplemental guidance documents referenced throughout the text.

1.1 PURPOSE

The purpose of the evaluation is twofold: to conduct a baseline evaluation of potential human health risks that might be experienced by human exposures to contaminated media associated with the Site, and to determine clean-up levels for on-Site soil and groundwater. The risk assessment was conducted under the assumption that no further remediation beyond that already conducted will take place at the Site. All available on-Site soil and groundwater data will be evaluated to determine if the existing MDNR-established clean-up levels for soil and groundwater listed in the Consent Agreement will be used or if alternate Site-specific preliminary remediation goals (PRGs) will be proposed based on Site-specific data. The clean-up levels determined by this Risk Evaluation will be used to focus any additional on-Site remedial activities.

1.2 ORGANIZATION

This human health baseline risk assessment is organized into the following sections:

- Introduction (Section 1.0) The first section states the purpose of the risk assessment and explains the report organization.
- Site Background (Section 2.0) This section presents current Site conditions and descriptions, as well as previous investigation results.
- Identification of Chemicals of Potential Concern (COPCs) (Section 3.0) This section reviews analytical data collected at the Site and identifies media of concern and COPCs.

- Toxicity Assessment (Section 4.0) General noncancer and cancer toxicities for COPCs are discussed and toxicity values for quantifying risks are presented in this section.
- Exposure Assessment (Section 5.0) This section considers current and potential future land and water uses to identify possible receptor populations and potentially completed exposure pathways. Exposure point concentrations are estimated from available analytical data and/or the results of contaminant transport modeling. Chemical dose to receptors is then quantified using standard intake calculations.
- Risk Characterization (Section 6.0) The risk characterization section evaluates the possible nature and magnitude of health risks associated with the Site. Theoretical cancer risks and the likelihood of noncancer adverse health effects are quantified by combining calculated chemical dose with chemical toxicity information. The results are then compared to accepted levels of risk. Uncertainties inherent in the process are also described in this section.
- Section 7.0 discusses the calculation of PRGs.
- Section 8.0 presents conclusions and recommendations based on the baseline risk assessment results.

2.0 SITE BACKGROUND

This section describes background information on the Site collected as part of investigation and remediation activities at the Site.

2.1 SITE LOCATION AND DESCRIPTION

The Site is located at 9970 Page Avenue in Overland, Missouri (Figure 2-1), near the center of Section 31, Township 46 North, Range 6 East in St. Louis County, Missouri. The property area is approximately 3.5 acres located in an area that is primarily commercial and/or light industrial. An area of residential development is located southeast of the Site, across Meeks Boulevard. Structures on the property consist of two manufacturing buildings and two metal storage buildings (Figure 2-2).

The Site is located in an area of rolling hills, with the northwest corner of the property approximately 15 feet higher than the southeast corner. The majority of the ground surface, approximately 90 percent, is paved with asphalt or concrete (Figure 2-2) with small areas of grass, gravel and bare soil present in portions of the property.

A public water supply system is available at the Site and the surrounding area. The City of Overland is served by the St. Louis County Water Company which draws water from surface water sources, namely the Meremac and the Missouri Rivers.

Initial industrial activities on the Site began in 1957 and were conducted by Missouri Metals Shaping Company (MMSC). In 1979 the property and business were purchased from MMSC by Alco Standard Corporation – Aerospace Division. In 1988 the property and business were purchased by EG&G KT Aerofab, which was subsequently acquired by PerkinElmer, Inc. In 2001, the business was purchased by Missouri Metals, LLC, with the property retained by PerkinElmer, Inc. and leased to Missouri Metals, LLC. As in the past, the facility currently fabricates aircraft components, with manufacturing activities generally consisting of forming and finishing aircraft components from stock metals.

2.2 SITE GEOLOGY AND HYDROGEOLOGY

The geology underlying the Site consists of unconsolidated overburden above sedimentary bedrock from the Pennsylvanian system. The overburden is composed of fill and windblown glacial clays and silt (loess). The fill ranges from 3 to 5 feet in thickness, but is not continuous beneath the Site (Burns & McDonnell, 1992). The loess unit ranges in thickness from approximately 20 to 25 feet below ground surface (bgs) at the Site. Drilling activities during investigation and remediation activities indicate that

US EPA ARCHIVE DOCUMENT

the loess is dry to approximately 15 feet bgs. Laboratory triaxial permeability tests conducted on representative samples of the loess indicate that the hydraulic conductivity of this native soil is in the range of 1.0×10^{-6} to 3.0×10^{-7} cm/sec (Burns & McDonnell, 1992). The laboratory reports are supported by pump test observations at wells screened in different portions of the loess soil layer (Burns & McDonnell, 1992), as well as injection rates during remediation activities (Burns & McDonnell, 2005). The low permeability of the loess suggests that horizontal groundwater flow is limited, and that vertical flow is the dominant flow path for groundwater within this unit.

The upper bedrock consists of siltstone, with minor shale and sandstone layers, that is approximately 20 feet thick. The upper few feet of this unit, at the interface with the loess, is weathered. Results from pumping tests and field permeability tests on monitoring wells screened in the siltstone bedrock indicate that hydraulic conductivity ranges from approximately 10⁻³ to 10⁻⁴ cm/sec (Burns & McDonnell, 1992), with the highest conductivity at the loess/siltstone interface. This bedrock unit is separated from the shallow aquifer in the area (Upper Mississippian) by approximately 150 feet of Pennsylvanian age shale and limestone that acts as an aquitard preventing further vertical migration. Groundwater within the loess and upper bedrock in the area of the Site is considered to be perched water, and is not connected to the deeper bedrock aquifer below (Burns & McDonnell, 1992).

Depth to water at the Site ranges from approximately 5 to 15 feet bgs (Table 2-1). The loess unit is semiconfined and the siltstone unit is confined. Groundwater flow is generally to the southeast (Figure 2-3), with some local influence by on-Site utilities (sewer near GMW-5 & 17, and utility corridor near GMW-6. Horizontal groundwater flow beneath the Site occurs primarily in the siltstone bedrock and overlying weathered siltstone interface due to the higher permeability of this unit compared to the overlying loess. This is supported by the results of the pump tests conducted at the Site (Burns & McDonnell, 1992), and injection activities as part of remediation (Burns & McDonnell, 2005).

2.3 SUMMARY OF PREVIOUS INVESTIGATIONS

Data obtained from past soil and groundwater investigations suggests that historical releases of solvents, primarily tetrachloroethylene (PCE) and trichloroethylene (TCE), into the soil and groundwater have occurred at the Site. These solvents were previously used at the Site, but are no longer used. Written records on plant chemical usage and waste disposal practices for this facility are limited. No facility spill reports are available concerning historical release information, such as location or date of releases (Burns & McDonnell, 1992).

Based on Site investigations, there are two known source areas of contamination on-Site. These source areas are the former degreasing pit area and the former drum storage area (see Figure 2-2). Elevated levels of PCE, TCE, and their daughter products [dichloroethylene (DCE) and vinyl chloride] have been detected in the soil and groundwater in these areas, and this data was summarized in the Remedial Investigation (RI) report submitted to MDNR in 1992 (Burns & McDonnell, 1992). Soil impacts are limited in extent and difficult to access due to on-going facility operations. However, groundwater impacts are more wide-spread and have resulted in off-Site impacts.

PerkinElmer, Inc. entered into a Consent Agreement with MDNR in 1994 to facilitate the development and implementation of a remedial action plan (RAP) for the Site. As dictated by the Consent Agreement, a five-year groundwater monitoring period of on-Site monitoring wells was conducted from 1994 through 1998. In addition, from 1998 through 2001, various off-Site investigations were conducted by MDNR (MDNR, 2001) and Burns & McDonnell (Burns & McDonnell, 1999, 2000, and 2001b) to determine the off-Site extent (vertical and horizontal) of groundwater contamination from the Site, and any impacts to nearby residents via indoor air or sump water. The off-Site results indicated that significant impacts in the shallow overburden (the unit with potential impact on nearby residents) were limited to areas in close proximity to the Site.

Based on the results of the on-Site monitoring and the off-Site investigations, a revised Remedial Alternatives Evaluation (RAE) was prepared for the Site (Burns & McDonnell, 2001a). The remediation goals were focused on alternatives that were capable of treating the on-Site source areas of groundwater contamination and preventing further off-Site migration of impacted groundwater. Three remedial alternatives for treating on-Site groundwater were evaluated in the RAE, and chemical oxidation was selected as the recommended remedial alternative. Chemical oxidation with permanganate was chosen on the basis of cost, feasibility, and length of time required for remediation (Burns & McDonnell, 2001a).

Burns & McDonnell performed a chemical oxidation treatability study and pilot test at the Site during 2001 to evaluate the effectiveness of the oxidant and delivery methods. The effectiveness of the oxidant was determined by monitoring performance parameters during the pilot test and by comparing pre- and post-pilot test groundwater analytical data. The results of the pilot test indicated that chemical oxidation with permanganate could successfully treat the contaminated groundwater at the Site (Burns & McDonnell, March 2002).

In 2002, a RAP was prepared that included the full-scale design and implementation plan for the Site (Burns & McDonnell, October 2002). The results from the treatability study and pilot test were used to finalize the full-scale design of the chemical oxidation treatment system for the Site.

Burns & McDonnell implemented the RAP during 2003 and 2004. During implementation of the RAP, permanganate was injected via injections wells, fractures, and an injection trench near the former degreasing pit. The results of the RAP implementation were summarized in the Remedial Action Summary Report (RASR) submitted to Missouri Department of Natural Resources (MDNR) in March 2005 (Burns & McDonnell, 2005)

The RASR outlined a series of proposed activities at the Site for 2005. Burns & McDonnell has implemented those proposed activities that have been approved by MDNR. The activities that have been implemented include regenerating the injection trench with additional permanganate, water injection in the former drum storage area to enhance advective movement of permanganate in this area, and preparation of this baseline risk assessment.

2.4 SUMMARY OF NATURE AND EXTENT OF CONTAMINATION

As discussed above in Section 2.3, the COPCs at the Site are PCE, TCE, and their daughter products [DCE (total) and vinyl chloride]. Also, there are two known source areas of contamination on-Site, the former degreasing pit area and the former drum storage area (see Figure 2-2).

Surface and subsurface soil samples were collected during the late 1980's and early 1990's to define the extent of on-Site soil contamination. This data was summarized in the RI report (Burns & McDonnell, 1992). Figure 2-4 shows the soil sampling locations, and Table 2-2 summarizes the soil analytical data. In general, wide-spread soil contamination was not detected and significantly impacted soil areas were limited in extent. Because of this, it is believed that any remaining soil source areas are no longer significantly contributing to the impacted groundwater beneath the Site.

Groundwater samples have been collected from on-Site monitoring wells since the late 1980's. Table 2-3 provides a summary of recent groundwater analytical data from on-Site monitoring wells and two off-Site monitoring wells located directly across the street from the Site (see Figure 2-2). Monitoring wells have been completed within the shallow loess, the siltstone, and the loess/siltstone interface to define the vertical and horizontal extent of impact (see Figure 2-2). The data indicates that the most significant impacts are immediately downgradient of the two source areas, with the highest levels within the interface between the loess and siltstone units (GMW-14 & 15). This interface was targeted during permanganate injection activities; especially in the area of the former drum storage area, because it is the most

significant pathway for off-Site migration of impacted groundwater. Significant rebound is unlikely within this interface based on the length of time of permanganate persistence and significantly lower contaminant levels above and below this interface at the downgradient area of the Site. Further vertical migration within the siltstone unit is not a concern because the deeper monitoring wells indicate a decrease in COPCs levels, and regionally the groundwater within the siltstone is considered to be perched water that is not connected to the regional aquifer (see Section 2.2)

Monitoring wells completed within the shallow loess at the Site include, GMW-3, 5, 6, 7, 8, 9, 10, and 11. Of these shallow wells, GMW-6, 7, 9, 10, and 11 have shown significant decreases in COPCs levels since the late 1990's either due to remediation activities or natural attenuation. Due to the low permeability of the loess, off-Site migration within this unit has been limited. Off-Site investigations conducted by Burns & McDonnell (Burns & McDonnell, 1999) and MDNR (MDNR, 2001) indicate that significant shallow groundwater contamination is limited to the off-Site area immediately adjacent to the Site. Also, in-door air sampling and sump water sampling conducted as part of the off-Site investigations in downgradient residential homes indicated that there is no apparent public health hazard as a result of shallow off-Site contamination [Missouri Department of Health (MDoH), 2001]. Additional indoor air sampling to further evaluate this conclusion is pending MDNR obtaining access to the three homes specified in the MDNR report (MDNR, 2001).

Detections of COPCs in off-Site groundwater within the upper portion of the deeper siltstone unit have varied over time. The detections in the deeper monitoring wells located closest to the Site (GMW-19 and GMW-20) have remained stable since injection activities began, and are expected to decrease over time since the upgradient on-Site source has been treated with permanganate. The deeper monitoring wells located further downgradient from the Site (GMW-21 through 24) have seen more variation in detections and may indicate another source (Burns & McDonnell, 2005).

3.0 CHEMICALS OF POTENTIAL CONCERN (COPCs)

This section presents an overview of the processes used to identify media of potential concern and COPCs for quantitative evaluation in the risk assessment. In Section 3.1, available Site data are used to identify media of potential concern and associated data sets. Section 3.2 provides an overview of the process used to identify the COPCs associated with each medium of concern and data set.

3.1 MEDIA OF POTENTIAL CONCERN

In order to determine COPCs, it is first necessary to establish potential media of concern. Sampling and analysis activities resulted in the detection of Site-related chemicals in soil and groundwater. To evaluate whether a medium should be retained for quantitative evaluation in the risk assessment, both the maximum detected concentration and 95 percent upper confidence limit (UCL) (see Section 5.4.2.2 for further details regarding the calculation of 95 percent UCLs) for each chemical detected in each medium were compared to the clean-up levels established by MDNR in the Consent Agreement for EG&G Missouri Metal Shaping Company, which was signed by both parties in 1994. If a clean-up level for a given compound was not established in the Consent Agreement, the maximum detected concentration and 95 percent UCL values were compared to screening levels for industrial soil obtained from the USEPA Region 9 *PRG* table (USEPA, 2004). If both the maximum concentration and the 95 percent UCL values of any detected constituent in a given medium exceeded the screening level, that medium was considered a medium of potential concern and retained for quantitative evaluation in the risk assessment.

Soil samples were collected from on-Site locations, and the analytical results indicated the presence of Site-related constituents. Chemicals in soil can be directly contacted by workers; therefore, analytical data were further evaluated to determine whether soil should be retained as a medium of concern. As shown on Table 3-1, the maximum detected concentrations of PCE and TCE were above the screening level; however, the 95 percent UCL for each chemical was below the screening level. Based on this comparison, soil was not retained as a medium of potential concern.

Groundwater samples have been collected from both on- and off-Site monitoring wells. As discussed in Section 2.4, the off-Site monitoring wells are screened in the upper portion of the deeper siltstone unit, while the on-Site monitoring wells are screened primarily in the shallow loess or the intermediate loess/siltstone interface. As will be further explained in Section 5.3, there are no completed exposure pathways to intermediate and deep groundwater; therefore, off-Site groundwater was not retained for further quantitative evaluation in this risk assessment. Similarly, data from on-Site monitoring wells that are screened in the intermediate or deep intervals were not considered appropriate for inclusion in this risk

assessment. For these reasons, only data from the following monitoring wells were considered relevant for quantitative risk evaluation: GMW-1, GMW-3, GMW-4, GMW-5, GMW-6, GMW-7, GMW-8, GMW-9, GMW-10, and GMW-11. These represent all of the on-Site monitoring wells that are fully or partially screened in the shallow groundwater interval.

Samples collected from the shallow on-Site monitoring wells showed widely varying chemical concentrations in different areas of the Site. To accommodate the range of observed concentrations, two data sets were identified. These two data sets were selected to represent the areas of historically highest concentrations in shallow groundwater. To avoid creating a low bias in the data sets, data from monitoring wells that have been largely nondetect or show only low levels of contamination were not included. Monitoring Wells GMW-3, -7, -8, and -9 were chosen as one of the representative data sets for groundwater. These four monitoring wells are in close proximity to each other and display similar levels of contamination. Monitoring Wells GMW-5 and GMW-6 were identified as the second groundwater data set. These two wells are in close proximity to each other, with GMW-6 historically showing the highest levels of contamination in the shallow monitoring wells (before treatment with permanganate). GMW-10 and GMW-11 are geographically located between the two data sets; however, samples collected from these two monitoring wells have recently shown consistently very low levels of Site-related constituents relative to other nearby monitoring wells. Based on the dissimilar contaminant levels in GMW-10 and GMW-11, data from these two monitoring wells were not included in the risk assessment.

Since groundwater is a dynamic medium, historical data are not representative of current or future Site conditions. To appropriately reflect current and likely future conditions, only groundwater data collected within the past two years are typically included in risk assessments, and this convention was followed for both data sets. It should be noted that Monitoring Wells GMW-5 and GMW-6 are located in close proximity to the potassium permanganate treatment trench, and thus have had permanganate in the wells at some point during the most recent two years' monitoring. Groundwater samples containing permanganate were not analyzed by the laboratory; therefore, the two-year data set for Monitoring Wells GMW-5 and GMW-6 contains fewer observations per well than the data set for GMW-3, GMW-7, GMW-8, and GMW-9.

As shown on Tables 3-2 and 3-3, the maximum detected concentrations and 95 percent UCLs of the volatile organic compounds (VOCs) detected in groundwater samples from both data sets exceeded the clean-up goals established in the Consent Agreement; therefore, groundwater was considered a medium of potential concern.

Air samples were collected from several residences located adjacent to the Site by MDNR in 2001 as part of their evaluation of off-Site impacts. The analytical results were provided to MDoH for evaluation of potential health risks. MDoH concluded in their evaluation that the chemical concentrations measured in indoor air at that time were unlikely to pose unacceptable risks to human health (MDoH, 2001). Since additional air samples have not been collected since that time, the existing air data will not be reevaluated as part of this risk assessment. However, Burns & McDonnell has proposed to collect additional indoor air samples if access to the residences can be obtained by MDNR. If additional air data are obtained, Burns & McDonnell will evaluate the potential risks associated with exposure to indoor air using the same procedures used by MDoH in the previous evaluation.

3.2 IDENTIFICATION OF CHEMICALS OF POTENTIAL CONCERN (COPCs)

COPCs include those Site-related chemicals that have the potential to impact human health. To select COPCs, the maximum detected concentrations and 95 percent UCL values for each positively detected chemical in each data set were compared to the clean-up goals from the Consent Agreement. Those constituents detected at concentrations exceeding the clean-up goal were retained as COPCs. For this risk assessment, the maximum detected concentrations and 95 percent UCLs for all positively detected chemicals in each groundwater data set exceeded the clean-up goals and were retained as COPCs.

As shown on Table 3-2, the following chemicals were identified as COPCs in groundwater from Monitoring Wells GMW-3, -7, -8, and -9: 1,1-DCE; cis-1,2-DCE; trans-1,2-DCE; PCE; TCE; and vinyl chloride

As shown on Table 3-3, the following chemicals were identified as COPCs in groundwater from Monitoring Wells GMW-5 and -6: cis-1,2-DCE; trans-1,2-DCE; PCE; TCE; and vinyl chloride

4.0 TOXICITY ASSESSMENT

The toxicity of COPCs is evaluated for both carcinogenic potential and noncancer adverse health effects. Data regarding health effects are then used by various agencies to derive numerical toxicity values. The USEPA gathers toxicological information from a variety of sources including experimental animal studies, epidemiological investigations, and clinical human studies. Well-conducted epidemiological studies that show a positive correlation between an agent and a disease represent the most convincing evidence about human risk. At present, human data adequate to serve as the sole basis for the development of toxicity values are available for only a few chemicals. In most cases where there is insufficient direct human data, USEPA uses toxicity information developed from experiments conducted on non-human mammals such as rats, mice, dogs, or rabbits.

The primary source of toxicological information for this report was the USEPA sponsored *Integrated Risk Information System* (IRIS) (USEPA, 2005). If toxicity values were not found in IRIS, values were obtained from USEPA's *Provisional Peer-Reviewed Toxicity Values* documentation or from the USEPA Region 9 *PRG* table (USEPA, 2004). As a final source of information, the California Office of Environmental Health Hazard Analysis (OEHHA) was consulted. The following sections detail information regarding both noncancer and cancer toxicity values.

4.1 NONCANCER TOXICITY VALUES

The Reference Dose (RfD) and Reference Concentration (RfC) are the toxicity values used in assessing noncancer health effects from oral and inhalation exposures, respectively. For noncancer health effects, the level of exposure below which no adverse health effects develop is termed the threshold level or threshold dose. RfDs and RfCs represent exposure levels that are well below the threshold. Each is an estimate of daily exposure to the general human population (including sensitive subpopulations) that is unlikely to pose an appreciable likelihood of adverse effects during a given term of exposure.

RfDs and/or RfCs are derived from experimental no observed adverse effect levels (NOAELs) or lowest observed adverse effect levels (LOAELs) by application of uncertainty factors (UFs) or modifying factors (MFs). UFs of 10 are used to protect sensitive subpopulations, to account for interspecies variability, and to account for data being obtained from subchronic rather than chronic studies. A UF of 10 is also used when the toxicity value is derived from a LOAEL rather than a NOAEL. MFs, usually a value of 10 or less, are applied for uncertainties not addressed by the UFs just listed.

RfD values are expressed as milligrams of chemical per kilogram body weight per day (mg/kg/day), and RfC values are expressed as a chemical concentration in air in milligrams per cubic meter (mg/m³). For consistency with the inhalation intake dose units, RfC values were converted to inhalation RfD values, which are then expressed as mg/kg/day (USEPA, 1997a).

Chronic RfDs and RfCs pertain to lifetime or other long-term exposures and may be overly protective if used to evaluate the potential for adverse health effects resulting from shorter exposures. For such situations, USEPA has developed toxicity values specifically for subchronic exposure durations. The subchronic RfD is developed using subchronic NOAELs from studies of appropriate exposure duration. In the absence of a subchronic RfD, the chronic RfD is adopted as the subchronic RfD. For short-term exposure durations, such as those used for the construction worker scenario, it is appropriate to use subchronic RfDs rather than chronic RfDs. Where available, subchronic RfDs were obtained from USEPA's *Health Effects Assessment Summary Tables* (HEAST).

Table 4-1 summarizes available RfDs and reference sources. By convention, RfD values, as with all toxicity numbers and risk assessment calculations, are expressed in scientific notation. For example, the oral RfD for benzene, 0.004 mg/kg/day, is expressed as $4 \ge 10^{-3}$ mg/kg/day or 4E-03 mg/kg/day, as shown in the table.

4.2 CANCER TOXICITY VALUES

The toxicity values used in assessing cancer risk are slope factors. A slope factor represents the 95 percent UCL on the probability that a carcinogen will cause cancer at a dose of one mg/kg/day over a lifetime. Unlike most noncancer health effects, carcinogenesis is not generally believed to conform to the concept of a threshold dose. Mechanistic data indicate that in some instances even the smallest dose of a carcinogen can lead to a clinical state of disease. For this reason, it is not possible to determine a no-response dose, but rather it is necessary to relate a specific dose to the statistical probability of a carcinogenic response.

For carcinogenic effects, the substance is first assigned a weight-of-evidence classification and then a slope factor is calculated. To determine the weight-of-evidence classification, the available evidence is evaluated to determine the likelihood that the agent is a human carcinogen. Table 4-2 shows the USEPA carcinogen weight-of-evidence classification system. In 1996, USEPA proposed revised guidelines for evaluating research evidence for carcinogens, including a more descriptive classification scheme. The IRIS file for vinyl chloride is among the few that have been updated to include both the revised classification for vinyl

chloride is "a known human carcinogen for all routes of exposure based upon convincing human evidence as well as supporting evidence from animal studies."

The slope factor is developed from data on the potency of the agent as a carcinogen in experimental animals and/or humans. Slope factors are available in IRIS for many substances categorized by USEPA as A, B, or C carcinogens. Table 4-3 summarizes the available slope factors, reference sources, and weight-of-evidence classifications for the carcinogenic COPCs.

5.0 EXPOSURE ASSESSMENT

In the exposure assessment, potentially exposed populations and potential pathways of exposure are identified. The assessment considers physical Site features, land use, and zoning in order to identify pathways and populations for exposure. Only completed exposure pathways (i.e., human receptors in contact with contaminated media) may actually pose a human health risk.

Section 5.1 presents a description of the exposure setting and Section 5.2 discusses the likelihood for a human population to have direct contact with contaminated media. Section 5.3 identifies potentially completed exposure pathways and Section 5.4 presents the equations and variables used to quantify chemical intake.

5.1 CHARACTERIZATION OF EXPOSURE SETTING

The first step in evaluating exposure is to characterize the Site with respect to its physical features, current and future land uses, and observed and predicted human activities so that potentially exposed populations at and near the Site can be identified.

5.1.1 Current and Future Land Use

As discussed in Section 2.1, the Site is located at 9970 Page Avenue in Overland, Missouri, near the center of Section 31, Township 46 North, Range 6 East, in St. Louis County, Missouri. The Site is approximately 3.5 acres located in an area that is primarily commercial and/or light industrial. Structures on the Site consist of two manufacturing buildings and two metal storage buildings (Figure 2-2). An area of residential development is located southeast of the Site, across Meeks Boulevard.

Initial industrial activities on the Site began in 1957 and were conducted by MMSC. Alco Standard Corporation – Aerospace Division purchased the property and business from MMSC in 1979. In 1988 the property and business were purchased by EG&G KT Aerofab, which was subsequently acquired by PerkinElmer. In 2001, the business was purchased by Missouri Metals, LLC, with the property retained by PerkinElmer and leased to Missouri Metals, LLC.

As in the past, the facility currently fabricates aircraft components, with manufacturing activities generally consisting of forming and finishing aircraft components from stock metals. These activities are expected to continue into the foreseeable future. Given the presence of a residential development in the vicinity, it is possible that, in the absence of land use controls, the Site could be developed for residential use in the future. To prevent the possibility of future residential development, PerkinElmer plans to institute appropriate land use controls as needed to maintain commercial/industrial land use of the

5-1

property. With the institution of appropriate land use controls, use of the Site will remain commercial/industrial in the reasonably foreseeable future.

5.1.2 Current and Future Water Use

The Site and surrounding area are currently supplied potable water by a public water supply system. The City of Overland is served by the St. Louis County Water Company, which draws water from surface water sources, namely the Meremac and the Missouri Rivers. Currently shallow groundwater in the vicinity of the Site is not used as a source of potable water, and, with the availability of publicly supplied water, it is not expected to be used as such in the foreseeable future.

As described in Section 2.0 of this report, the monitoring wells installed at the Site have identified the vertical extent of contamination as being in the loess and upper bedrock (siltstone), with the highest levels of contamination occurring in the loess/siltstone interface. Groundwater in these units in the area of the Site is considered to be perched water, and is not hydraulically connected to the deeper bedrock aquifer below (Burns & McDonnell, 1992). The Upper Mississippian aquifer is separated from the shallow water-bearing units at the Site by approximately 150 feet of Pennsylvanian age shale and limestone that acts as an aquitard preventing further vertical migration. Any private potable water wells that may still be in service within four miles of the Site appear to draw water from the Mississippian aquifer (MDNR, 2001); therefore, it is unlikely that groundwater from the Site will impact potable water sources in the future.

5.2 POTENTIALLY EXPOSED POPULATIONS

Potentially exposed populations are those persons whose locations and activities create an opportunity for contact with COPCs. The following sections discuss potentially exposed populations, as they are influenced by the land and water uses just described.

5.2.1 On-Site Populations

The Site is currently an active industrial facility; therefore, the potentially exposed populations expected to be present on the Site consist of workers. Worker populations are likely to include both full-time and part-time workers, as well as indoor and outdoor workers. Since full-time workers experience longer exposure to the Site than part-time workers, the indoor worker population was evaluated as a full-time population. The outdoor worker population was assumed to be engaged in grounds keeping/landscaping activities at the Site full-time only from mid-April through mid-October. The climate and growing season in Overland, Missouri generally limit year-round outdoor work.

Although the Site is currently developed, it is possible for additional improvements to be completed on the property. Additionally, since underground utilities are present on the Site, future maintenance and occasional repair activities are likely to occur. Both construction and utility installation/repair work involve subsurface excavation of soil; however, the duration of activity is likely to be much longer for construction work than for utility installation/repair work. Therefore, a single population of construction workers was evaluated as conservatively representative for both types of subsurface excavation activities.

Since the Site is currently an active industrial facility, and PerkinElmer intends to implement the necessary institutional controls to restrict future land use to commercial/industrial, residents are not considered potentially exposed on-Site populations.

In summary, the potentially exposed on-Site populations included in this evaluation are indoor commercial/industrial workers, outdoor commercial/industrial workers, and construction workers.

5.2.2 Off-Site Populations

An area of residential development is currently located southeast of the Site, across Meeks Boulevard. Investigations at the Site have identified the presence of chlorinated compounds in the shallow groundwater located beneath the residential neighborhood in close proximity to the Site. Given the presence of occupied residential structures, both adult and child residents are considered potentially exposed off-Site populations.

The area surrounding the Site also contains commercial/industrial properties, indicating the worker populations are also likely to be present off-Site. Since the concentrations of Site-related constituents are lower off-Site than they are on-Site, it can reasonably be assumed that off-Site workers would experience a lower level of exposure than on-Site workers. Therefore, off-Site workers will not be evaluated as separate populations in this risk assessment.

In summary, the potentially exposed off-Site populations included in this evaluation are adult and child residents.

5.3 POTENTIAL EXPOSURE PATHWAYS

Health risks may occur when there is contact with a chemical by a receptor population. Exposed populations must then either ingest, inhale, or dermally absorb COPCs to complete an exposure pathway and possibly experience a health risk. The following is a discussion of the likelihood of completed pathways.

5.3.1 Indoor Commercial/Industrial Workers

VOCs were detected in shallow groundwater on the Site; therefore, indoor inhalation of chemical vapors migrating from shallow groundwater through foundation cracks was considered a potentially completed exposure pathway. Potable water at the Site is currently supplied by a municipal water source, and the potentially impacted water-bearing units at the Site are unlikely to be used as a potable water source in the future, so direct contact with contaminated groundwater is unlikely.

In summary, the potentially completed exposure pathway for the indoor commercial/industrial worker is inhalation of chemical vapors migrating from shallow groundwater through foundation cracks into indoor air.

5.3.2 Outdoor Commercial/Industrial Workers

The outdoor commercial/industrial worker population was assumed to consist of groundskeepers engaged in light landscaping and grounds maintenance activities. Chemical vapors could migrate from shallow groundwater and be present in outdoor air. Given the presence of potentially Site-related constituents in outdoor air, inhalation of outdoor air was considered a potentially completed pathway. Potable water at the Site is currently supplied by a municipal water source, and the potentially impacted water-bearing units at the Site are unlikely to be used as a potable water source in the future, so direct contact with contaminated groundwater is unlikely.

In summary, the potentially completed exposure pathway for the outdoor commercial/industrial worker is inhalation of outdoor vapors from shallow groundwater.

5.3.3 Construction Workers

Chemical vapors from shallow groundwater are likely to migrate through soils and be present in the breathing zone of a construction/utility worker. Potable water at the Site is currently supplied by a municipal water source, and the potentially impacted water-bearing units at the Site are unlikely to be used as a potable water source in the future. Additionally, during drilling activities groundwater is encountered approximately 15 feet bgs, and is unlikely to be encountered during construction and/or utility repair activities. Because of this, and the presence of publicly-supplied potable water, direct contact with groundwater by construction workers is unlikely to occur.

In summary, the potentially completed exposure pathway for the construction worker is inhalation of outdoor vapors from shallow groundwater.

5.3.4 Adult and Child Residents

Off-Site contamination in the residential neighborhood located adjacent to the Site has been identified in shallow groundwater in close proximity to the Site, and in the deeper siltstone unit further downgradient from the Site. Since volatilization can only occur from the top of the water table; it is not possible for chemicals to migrate in the vapor phase upward from deeper within the groundwater to the surface of the water table. For this reason, vapor migration is not considered a potentially completed exposure pathway for contaminants that are located in the deeper siltstone unit. For the deeper groundwater, use of groundwater as a potable water source would be the only likely means of exposure. Currently, potable water is publicly supplied to the neighborhood, and the impacted water-bearing units at the Site are unlikely to be used as a potable water source in the future. Therefore, direct contact with the deeper groundwater, and groundwater is not likely to be used as a potable water source in the future, there are no potentially completed exposure pathways to off-Site groundwater within the siltstone unit.

The only potentially completed exposure pathway for adult and child residents is indoor inhalation of chemical vapors migrating from shallow groundwater through foundation cracks into basements. This pathway was evaluated by MDoH using all existing data collected from basements in the neighborhood, and they concluded that the chemical concentrations measured in indoor air at that time were unlikely to pose unacceptable risks to human health (MDoH, 2001). Since new indoor air data are not currently available, adult and child residents will not be evaluated further in this document. If additional indoor air samples are collected from these residences in the future, Burns & McDonnell will evaluate the results using the method employed by MDoH in their 2001 evaluation.

5.4 ESTIMATION OF INTAKE

This section of the risk assessment presents the calculation of chemical intake through the exposure pathways identified in Section 5.3. Chemical intake is expressed in mg/kg/day. Intakes for all COPCs were quantified using a pathway-specific equation taken from USEPA guidance. This equation is presented in Table 5-1. The exposure and chemical variables used in this equation are discussed in the following sections. The calculated chemical intakes are later used in conjunction with toxicity values to characterize risk, as discussed in Section 6.0, Risk Characterization.

5.4.1 Exposure Variables

Recommended exposure variable values from guidance documents were used and referenced, if available. If not, best professional judgment about expected Site conditions was employed to estimate values for the exposure scenarios. The recommended values and estimated values were specifically chosen to result in a reasonable maximum exposure (RME) estimate. An RME represents a high-end exposure situation, but one still within the realm of possible exposures. Values used for all receptors characterized are discussed in the following subsections.

Indoor Commercial/Industrial Worker Exposure Variables

Indoor commercial/industrial workers were assumed to weigh 70 kilograms (kg) (USEPA, 1989). It was assumed that an indoor commercial/industrial worker breathes 0.633 cubic meters of air per hour (m^3/hr) (USEPA, 1997b). This is a mean value based on a long-term average inhalation rate for adults.

The standard 250 workdays per year for 25 years was used for exposure frequency and duration, respectively (USEPA, 1991). Indoor commercial/industrial workers were assumed to spend 100 percent of their work time indoors. The exposure time for inhalation of chemical vapors was set at the standard 8-hour working day value.

Outdoor Commercial/Industrial Worker Exposure Variables

The outdoor commercial/industrial worker was assumed to weigh 70 kg, the recommended default adult body weight (USEPA, 1989). It was assumed that an outdoor commercial/industrial worker breathes 1.3 m^3 /hr (USEPA, 1997b) based on the hourly average inhalation rate for outdoor workers.

The seasonality of the climate in Overland, Missouri tends to preclude year-round outdoor work. The outdoor commercial/industrial worker was assumed to be engaged in seasonal groundskeeping and landscaping activities, which are likely to take place from mid-April through mid-October. Therefore, the exposure frequency was assumed to equal 125 days per year, representing half of a working year. The outdoor commercial/industrial worker was assumed to be employed at the Site for 25 years, the standard worker exposure duration (USEPA, 1991). Outdoor commercial/industrial workers were assumed to spend 100 percent of their time outdoors. The exposure time for inhalation of outdoor air was set at eight hours per day.

Construction Worker Exposure Variables

Construction workers were also assumed to weigh 70 kg, a mean adult weight (USEPA, 1989). Excavation work typically involves some heavy physical labor; therefore, the inhalation rate for the construction worker was assumed to be $2.5 \text{ m}^3/\text{hr}$ (USEPA, 1997b) based on a heavy activity level. To conservatively address the possibility for extensive modification of Site structures, the construction worker was assumed to be exposed for 8 hours per day for 6 months (130 working days).

5.4.2 Chemical Variables

Chemical variables used in the risk assessment calculations are summarized in the following sections.

5.4.2.1 Exposure Concentrations

Current USEPA risk assessment guidance specifies that the RME for a receptor population be calculated using the 95 percent UCL of the arithmetic mean of chemical concentrations. However, there are instances where the 95 percent UCL can be greater than the maximum detected value, such as when there are elevated detection limits or small sample sizes. In these situations, USEPA allows the maximum observed concentration to be used as the exposure point concentration rather than the calculated UCL (USEPA, 1992).

UCLs were calculated using USEPA's ProUCL software Version 3.00.02. The program's statistical output for each compound in each data set is provided in Appendix A. The data sets used to calculate the UCLs are provided on Tables 5-2 and 5-3. Tables 5-4 and 5-5 summarize the two sets of exposure concentrations, maximum detected concentrations and 95 percent UCLs, for groundwater.

5.4.2.2 Chemical Vapor Concentrations

On-Site indoor and outdoor air data are not available; therefore, vapor transport modeling was conducted. Vapor transport modeling from groundwater to indoor air was conducted to estimate the exposure concentrations for the indoor commercial/industrial worker scenario. Vapor transport modeling from groundwater to outdoor air was used to estimate the exposure concentrations for the outdoor commercial/industrial worker and construction worker scenarios.

Vapor Migration to Indoor Air

Vapor migration from groundwater to indoor air was evaluated using Version 3.0 of USEPA's spreadsheets for the Johnson and Ettinger (1991) *Model for Subsurface Vapor Intrusion into Buildings* spreadsheets. These spreadsheets account for contaminant partitioning into three phases: dissolved phase in soil pore water, sorbed to soil organic carbon, and vapor phase within air-filled pores in soil. The model then accounts for diffusion through the capillary zone (groundwater only), diffusion through the vadose zone (soil and groundwater) and infiltration through foundation cracks into a building. Depth to groundwater was assumed to equal 15 feet bgs. Default values for a clay soil type were used for the remaining parameters. The predicted chemical concentrations in indoor air are summarized on Tables 5-6 and 5-7. The data entry and intermediate calculation pages of the Johnson & Ettinger spreadsheets are provided in Appendix B.

Vapor Migration to Outdoor Air

Vapor migration from groundwater to outdoor air was modeled using an equation from *the Standard Guide for Risk-Based Corrective Action at Petroleum Release Sites* (ASTM, 1995). This equation includes a series of effective diffusion coefficient calculations to account for varying subsurface conditions as chemical vapors migrate from groundwater to outdoor air, as well as a traditional box model. The effective diffusion coefficients account for the migration of chemical vapors from groundwater to the soil surface, while the box model estimates chemical dispersion in outdoor air. Chemical partitioning from groundwater to soil gas is accounted for through the application of the Henry's Law constant. Depth to groundwater was assumed to equal 15 feet, and the default values from the Johnson & Ettinger model for a clay soil type were used for the remaining soil properties. Tables 5-8 through 5-11 provide the equations and variables used in modeling vapor migration from groundwater to outdoor air.

The equations used to model vapor migration to outdoor air result in chemical-specific volatilization factors, which were then multiplied by the exposure concentration in groundwater to estimate the chemical concentrations in outdoor air. Tables 5-12 and 5-13 summarize the exposure concentrations in groundwater, the calculated volatilization factors, and the estimated concentration in outdoor air for each data set.

6.0 RISK CHARACTERIZATION

To quantify the potential risk posed by exposure to chemicals through identified pathways, the intake of each chemical is combined mathematically with the appropriate toxicity value to estimate the likelihood of health risks. Sections 6.1 and 6.2 define the general risk characterization process for evaluating noncancer and cancer risks. Section 6.3 summarizes the risk results for each potentially exposed population, and Section 6.4 provides a discussion of uncertainties.

6.1 GENERAL NONCANCER RISK DISCUSSION

To characterize the risk of noncancer effects, toxicity values for COPCs are used in conjunction with dose estimates from each exposure scenario to quantitatively estimate the potential for adverse health effects. Chemical-specific doses calculated for each exposure pathway are compared with the reference value, i.e., RfD, for that chemical. If the estimated dose does not exceed the reference value, then adverse noncancer health effects are not expected. The comparison of dose to reference value is expressed mathematically as a hazard quotient, which is the dose divided by the reference value:

Hazard Quotient = Dose (mg/kg/day) / RfD (mg/kg/day)

Hazard quotients for chemicals within a pathway are summed to give the pathway hazard index. Pathway hazard indices are then summed for a total exposure hazard index. This procedure is followed for each exposure scenario. The summation of chemical and pathway hazard indices is conservative and health-protective as it assumes that the toxic effects of multiple compounds have an additive impact.

6.2 GENERAL CANCER RISK DISCUSSION

Cancer risk is expressed as a probability of developing a carcinogenic response as a result of exposure to a given chemical. The estimated dose for each cancer-causing substance is multiplied by the corresponding slope factor to calculate risk. The expression is as follows:

Risk = Dose (mg/kg/day) x Slope Factor (mg/kg/day)⁻¹

For simultaneous exposure to several carcinogens, the calculated risks are summed within each pathway and then for all pathways to yield total excess cancer risk posed by a site. This procedure is followed for each exposure scenario. This value represents the probability of developing a carcinogenic response that is solely attributable to exposure from the site and is in excess of the general background risk. Based on National Cancer Institute (NCI) statistics (NCI, 1990), background risk may be considered 0.33 (3.3×10^{-1} or 3.3E-01 in scientific notation), since approximately one in three people in the United States will develop some form of cancer during a lifetime.

US EPA ARCHIVE DOCUMENT

Given the current assumption that any exposure to a carcinogen poses some risk, zero risk is not achievable in a practical sense. Therefore, ranges of risk have been developed by USEPA for use as remediation goals. To be protective of human health, USEPA believes that exposure to site-related carcinogens should be limited so as to result in an individual upper bound excess lifetime cancer risk level of one in 10,000 or less (FR, 1990). The risk range of one in 10,000 to one in a million is a commonly accepted remediation goal. In other words, an excess lifetime cancer risk greater than one in 10,000 would generally be considered unacceptably high, while risks within the range would be acceptable depending upon site use. Risks of one in a million or less are generally considered insignificant.

6.3 RISK ESTIMATES FOR ON-SITE

Risk estimates for each potentially exposed population are discussed in the following sections.

6.3.1 Indoor Commercial/Industrial Workers

Noncancer Risk

Tables 6-1 and 6-2 show intake, reference values, and hazard indices for the indoor commercial/industrial worker population. The hazard index for exposure to chemicals through inhalation of indoor air (vapor intrusion) from Monitoring Wells GMW-3, 7, 8, & 9 was 8E-02. This is below the USEPA level of concern for noncancer risk, which is a hazard index greater than one. The hazard index for exposure to chemicals through vapor intrusion from Monitoring Wells GMW-5 & 6 was 4E+00. This is above the USEPA level of concern for noncancer risk, which is a hazard index greater than one.

Cancer Risk

EPA ARCHIVE DOCUMENT

Tables 6-3 and 6-4 present intake, slope factors, and the excess lifetime cancer risk associated with chemical exposure for the indoor commercial/industrial worker population. The pathway cancer risk for exposure to chemicals through inhalation of indoor air (vapor intrusion) from Monitoring Wells GMW-3, 7, 8, & 9 was 8E-06. This is within the USEPA 1E-04 to 1E-06 (one in 10,000 to one in a million) acceptable risk range. The pathway cancer risk for exposure to chemicals through vapor intrusion from Monitoring Wells GMW-5 & 6 was 2E-04. This is above the USEPA acceptable risk range.

6.3.2 Outdoor Commercial/Industrial Workers

Noncancer Risk

Tables 6-5 and 6-6 show intake, reference values, and hazard indices for the outdoor commercial/industrial worker population. Exposure to chemicals through inhalation of outdoor air from Monitoring Wells GMW-3, 7, 8, & 9 resulted in a hazard index of 5E-04. Exposure to chemicals through inhalation of outdoor air from Monitoring Wells GMW-5 & 6 resulted in a hazard index of 3E-01. These are both below the USEPA level of concern for noncancer risk, which is a hazard index greater than one.

Cancer Risk

Tables 6-7 and 6-8 present intake, slope factors, and the excess lifetime cancer risk associated with chemical exposure for the outdoor commercial/industrial worker population. The pathway cancer risk for exposure to chemicals through inhalation of outdoor air from Monitoring Wells GMW-3, 7, 8, & 9 was 5E-08. This is below the USEPA 1E-04 to 1E-06 (one in 10,000 to one in a million) acceptable risk range. The pathway cancer risk for exposure to chemicals through inhalation of outdoor air from Monitoring Wells GMW-5 & 6 was 2E-05. This is within the USEPA 1E-04 to 1E-06 (one in 10,000 to one in a million) acceptable risk one in a million acceptable risk for exposure to chemicals through inhalation of outdoor air from Monitoring Wells GMW-5 & 6 was 2E-05. This is within the USEPA 1E-04 to 1E-06 (one in 10,000 to one in a million) acceptable risk range.

6.3.3 Construction/Utility Workers

Noncancer Risk

Tables 6-9 and 6-10 show intake, reference values, and hazard indices for the construction/utility worker population. The hazard index for exposure to chemicals through inhalation of outdoor air from Monitoring Wells GMW-3, 7, 8, & 9 was 2E-03. This is below the USEPA level of concern for noncancer risk, which is a hazard index greater than one. The hazard index for exposure to chemicals through inhalation of outdoor air from Monitoring Wells GMW-5 & 6 was 1E+00. This is equal to the USEPA level of concern for noncancer risk.

Cancer Risk

Tables 6-11 and 6-12 present intake, slope factors, and the excess lifetime cancer risk associated with chemical exposure for the construction/utility worker population. The pathway cancer risk for exposure to chemicals through inhalation of outdoor air from Monitoring Wells GMW-3, 7, 8, & 9 was 4E-09. This is below the USEPA 1E-04 to 1E-06 (one in 10,000 to one in a million) acceptable risk range. The pathway cancer risk for exposure to chemicals through inhalation of outdoor air from Monitoring Wells GMW-5 & 6 was 1E-06. This is at the lower end of the USEPA acceptable risk range.

6.4 UNCERTAINTIES

Conducting a risk assessment requires making a number of assumptions, which serve to introduce degrees of uncertainty in the final result. The following sections discuss the uncertainties resulting from chemical identification (Section 3.0), toxicity assessment (Section 4.0), and exposure assessment (Section 5.0).

6.4.1 Uncertainty Associated with Chemical Identification

At any Site, it is possible that there are more individual chemical substances present than identified in the sampling and analysis effort. The selection of media to be sampled, number of samples, and analyses requested are determined by a review of the history of the Site, information on current conditions, and an evaluation as to which chemicals could potentially be present. The analyses selected during previous

investigations were identified based on knowledge of historical Site practices. The use of such knowledge provides confidence that the related constituents present at the Site have been identified.

The application of quality control throughout the sampling, analysis, and data validation phases reduced uncertainty in the results. Therefore, the chemical identification phase of the risk assessment does not appear to have introduced significant uncertainty.

6.4.2 Uncertainty from Toxicity Assessment

For some chemical substances there is little or no toxicity information available and for many chemicals, what is available is typically from animal studies. The relative strength of the available toxicological information generates some uncertainty in the evaluation of possible adverse health effects and the exposure level at which they may occur. To provide for a margin of error, USEPA applies conservative adjustments to the toxicity values.

For noncarcinogenic substances, RfD and RfC values are typically established only after uncertainty and/or modifying factors are applied. These factors may result in an RfD/RfC that is as little as a thousandth or less of the "safe" dose level determined through animal studies.

For carcinogens, the slope factor represents the 95 percent UCL of an extrapolated low dose response curve. The actual carcinogenic potency of a substance at low doses is almost certainly less. Additionally, many substances identified as carcinogens in high-dose laboratory testing may not be carcinogenic at low doses and/or may not be carcinogenic to humans.

To quantify risk from chemicals that do not have toxicity numbers posted in IRIS or HEAST, values generated by other states (i.e., California OEHHA) and/or provisional values from Region 9 PRG Table are used when available. Uncertainty is generated by the use of provisional numbers. However, this uncertainty is less than that generated by ignoring or qualitatively assessing risks.

The potential carcinogenicity of TCE is currently under debate within the scientific community. Conflicting evaluations of the potential carcinogenicity of TCE have been presented, resulting from varying interpretations of the toxicological data. The International Agency for Research on Cancer classified TCE as a probable human carcinogen in 1995, based primarily on studies showing carcinogenicity in rodents. Conversely, in 1994 the American Conference of Governmental Industrial Hygienists classified TCE as "not suspected to be a human carcinogen" at accepted occupational levels.

Chronic, high-dose exposure to TCE has been shown to induce pulmonary tumors and hepatocarcinomas in mice and renal tumors in rats. However, epidemiological studies have not demonstrated a causal

US EPA ARCHIVE DOCUMENT

association between occupational TCE exposure and lung, liver, or kidney cancers in humans. Evaluation of the toxicological data indicates that the disparity in effects is likely due to species-specific differences in TCE metabolism, as it is the metabolites that appear to be responsible for the carcinogenic action in rodents. Although humans and rodents metabolize TCE in similar manners, producing the same general metabolites, different species form these metabolites at different rates and ratios. As a result of these species-specific differences, higher concentrations of the active metabolites are produced in rodents than in humans. Although the mechanisms of action by which TCE causes kidney and liver cancer are not yet fully understood, the available epidemiological evidence suggests that humans who are exposed at environmentally-relevant concentrations are not at increased risk of developing cancer.

When taken together, the mechanistic and epidemiological data fail to support the supposition that TCE is a human carcinogen at environmentally-relevant levels. USEPA has established provisional RfDs and slope factors for TCE; however, the bases for these values are currently undergoing considerable debate within the scientific community. Given the on-going debate regarding the appropriateness of USEPA's current provisional toxicity values for TCE, toxicity values established by the State of California have been used in this evaluation. Use of either set of toxicity values likely carries a level of uncertainty, but given the debate surrounding the scientific validity of the new provisional values, use of the California values is considered the more reliable and appropriate option at this time.

6.4.3 Uncertainty from Exposure Assessment

When evaluating exposure, probable scenarios are developed to estimate conditions and duration of human contact with COPCs. Scenarios are based on observations or assumptions about the current or potential activities of human populations that could result in direct exposure. To prevent underestimation of risk, scenarios incorporate exposure levels, frequencies, and durations at or near the top end of the range of probable values. This is sometimes termed a reasonable maximum exposure, one that may be unlikely or at the high end of a range of exposures, but still possible.

Default values, such as respiration rates, are used in the exposure calculations to quantify intakes. Although they are based on USEPA-validated data, there is uncertainty in the applicability of such values to any particular exposed population or individual. To compensate for this uncertainty, the default values are typically set to the upper end (usually the 90th or 95th percentile) of the normal range.

Uncertainty also arises from the treatment of nondetected concentrations in the risk assessment. One-half of the reporting limit was used as a proxy concentration for nondetect samples. The actual concentration of the contaminant could be anywhere between zero and the reporting limit. This may result in either an over- or underestimation of risk.

EPA ARCHIVE DOCUMEN

During the most recent rounds of groundwater sampling, permanganate was present in Monitoring Well GMW-6. Due to the presence of permanganate, samples from this well were not sent to the laboratory for analysis. Since GMW-6 has historically been one of them most impacted monitoring wells, it was not considered appropriate to exclude it from the evaluation. Therefore, exposure concentrations were developed using analytical data from before the permanganate treatment. Current chemical concentrations are likely to be significantly lower; in fact the presence of unoxidized permanganate indicates that chlorinated compounds are not currently present in that monitoring well. Once the remaining permanganate at the Site has been fully oxidized, it is likely that the chemical concentrations in Monitoring Well GMW-6 will be considerably lower than the values used in this risk assessment. Use of analytical data from before permanganate treatment likely results in a significant overestimation of risk.

Models were used for exposure to chemicals through vapor inhalation. Models are simplified representations of reality, which can not effectively account for variations in subsurface conditions or the attenuation processes that will lead to a reduction in source concentrations over time. The use of vapor migration models adds uncertainty to the exposure assessment, and likely results in an overestimation of risk.

The model used to evaluate vapor migration from groundwater to outdoor air does not account for the presence of asphalt or concrete pavement. Pavement generally has a lower permeability than the underlying soil, and this lower permeability layer inhibits the migration of vapors from the subsurface to ambient air. Since the presence of pavement is not addressed in the outdoor vapor model, the use of this model has likely yielded an overestimate of outdoor vapor concentrations for the outdoor commercial/industrial worker population.

All of these factors add uncertainty in the estimates of risk. However, the uncertainty is generally that risk has been overestimated, not underestimated.

7.0 CALCULATION OF PRELIMINARY REMEDIATION GOALS (PRGs)

PRGs are chemical-specific clean-up goals based on specific media and land use exposure scenarios. There are generally two types of PRGs, concentrations based on governing documents and concentrations based on a Site-specific risk assessment. For this Site, the Consent Agreement is the governing document establishing the default clean-up levels. Based on the data evaluation conducted in Section 3.0, the cleanup levels for soil established in the Consent Agreement will be adopted as PRGs for soil. Since the cleanup levels for groundwater in the Consent Agreement are based on use of groundwater as a potable water supply, which has been determined to be inapplicable at this Site, alternate Site-specific PRGs were developed. The remainder of this section addresses the calculation of risk-based PRGs for COPCs in groundwater.

The PRGs were calculated in accordance with the USEPA *RAGS Volume 1: Human Health Evaluation Manual, Part B, Development of Risk-Based Preliminary Remediation Goals* (USEPA, 1991a). The PRGs were developed based upon the exposure scenarios that resulted in a noncancer hazard index greater than or equal to one or an excess cancer risk at or above one in one million (i.e., 1E-06) in this baseline risk assessment. Within each exposure scenario, PRGs were calculated for each chemical having an individual noncancer hazard quotient greater than 0.1 or an individual excess cancer risk greater than 1E-07. A hazard quotient of 0.1 and an individual excess cancer risk of 1E-07 were identified as the decision criteria to allow for the establishment of PRGs for any chemical that could be considered a risk driver at the Site. The risk evaluations for indoor commercial/industrial workers and construction workers resulted in total hazard indices equal to or greater than one; therefore noncancer-based PRGs were calculated for these two populations. The risk evaluations for all three worker scenarios resulted in excess cancer risk levels at or above 1E-06; therefore, cancer-based PRGs were calculated for all three worker populations. Within these exposure scenarios, PRGs were developed for 1,1-DCE, PCE, TCE, and vinyl chloride.

The equations and variables used to calculate the PRGs are provided on Tables 7-1 through 7-5. These equations use previously defined variables, such as body weight, exposure duration, exposure frequency, and others, to calculate an allowable concentration of COPCs in groundwater that would not exceed the target hazard quotient/cancer risk level. To calculate the PRGs for indoor commercial/industrial workers, a volatilization factor to indoor air was calculated using Version 3.0 of USEPA's spreadsheets for the Johnson and Ettinger model. By leaving the initial concentration box blank and selecting to calculate the risk-based groundwater concentration box, a volatilization factor is presented in the intermediate calculations sheet. These spreadsheet inputs and outputs are provided in Appendix C.

The PRGs were calculated using a target hazard quotient of one and a target excess cancer risk level of one in 100,000 (i.e., 1E-05). This target cancer risk level is appropriate given the limited number of chemicals present on the Site. Remediating each individual chemical to a target cancer risk level of 1E-05 will result in a cumulative Site-wide cancer risk level well below the USEPA level of one in 10,000. Additionally, since a target cancer risk of 1E-05 was used by MDNR in the *Missouri Risk-Based Corrective Action Technical Guidance* document (MDNR, 2005), use of this target cancer risk level is consistent with MDNR practices.

Table 7-6 summarizes the calculated PRGs for groundwater for each potentially exposed population. The recommended PRGs are as follows:

- 1,1-DCE = 36.9 mg/L based on the indoor commercial/industrial worker noncancer scenario
- PCE = 1.65 mg/L based on the indoor commercial/industrial worker cancer scenario
- TCE = 7.84 mg/L based on the indoor commercial/industrial worker cancer scenario
- Vinyl Chloride = 0.913 mg/L based on the indoor commercial/industrial worker cancer scenario

The recommended PRG for each chemical represents the most protective concentration of each chemical for the relevant exposure scenarios.

* * * * *

8.0 CONCLUSIONS AND RECOMMENDATIONS

This human health baseline risk assessment evaluated the potential risks that may be associated with exposure to Site-related chemicals. Based on this evaluation, the medium of concern for this Site is groundwater, and the potentially exposed populations consist of on-Site workers. The only potentially completed off-Site exposure pathway is vapor migration from shallow groundwater to indoor air. This potential exposure pathway was not addressed in this evaluation since new indoor air data has not been collected since MDoH performed their risk evaluation in 2001. If new indoor air data are collected from the off-Site residences, the data will be evaluated at that time using the same methodology employed by MDoH.

Information regarding current and potential future land and water use was used to develop the exposure scenarios evaluated. The evaluation was made with the assumption that the Site property will remain commercial/industrial. Indoor commercial/industrial workers were assumed to be potentially exposed to constituents in indoor air from groundwater. Outdoor commercial/industrial workers were assumed to engage in seasonal grounds keeping/landscaping activities that could lead to exposure to constituents in outdoor air through inhalation of vapors from groundwater. Construction workers were assumed to be potentially exposed to constituents in outdoor air through inhalation of vapors from groundwater.

Groundwater analytical data from the last two years were used in this risk assessment; however, nondetects in groundwater due to the presence of permanganate were not used in the evaluation. The risk assessment indicated that the construction worker population had a total hazard index equal to the USEPA level of concern for noncancer risk, and both the outdoor commercial/industrial worker and construction worker populations had excess lifetime cancer risk levels within the USEPA target risk range of one in 10,000 to one in a million (1E-04 to 1E-06). The risk characterization resulted in hazard indices above the USEPA level of concern for noncancer risk for the indoor commercial/industrial worker. The calculated excess lifetime cancer risks were above the USEPA cancer risk threshold of one in 10,000 (1E-04) for the indoor commercial/industrial worker population.

Based on the results of the risk characterization, PRGs were calculated for 1,1-DCE, PCE, TCE, and vinyl chloride. A comparison of the PRGs to analytical data for the Site indicates that current chemical concentrations in all monitoring wells are below the PRGs. Of the shallow Monitoring Wells, GMW-6 currently is non-detect due to the presence of permanganate; however, prior to permanganate treatment levels in GMW-6 were above PRGs. This indicates that the analytical data collected prior to the presence of permanganate are causing the calculated excess risk at the Site.

Based on the results of the baseline risk assessment and comparison to PRGs, further remediation at the Site is not needed at this time to address potential risks. However, the presence of permanganate in GMW-6 will continue to be monitored. Once permanganate is no longer present in GMW-6, groundwater samples will be collected from the well on a semi-annual basis for one year. If the levels rebound above PRGs, PerkinElmer will consider either further additional permanganate treatment in the area of this well or other appropriate mitigation measures (further deed restrictions and/or a venting system for the nearby building) to address the potential vapor intrusion pathway. If the levels remain below PRGs, no further remedial action will be required at the Site.

* * * * *

9.0 **REFERENCES**

- American Society for Testing and Materials (ASTM). (1995). *Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites*. E 1739-95.
- Burns & McDonnell. (1992). Remedial Investigation, EG&G KT Aerofab-Missouri Metals Property-Overland, Missouri. Kansas City, Missouri.
- Burns & McDonnell. (1999). Additional Off-Site Investigation Report: EG&G Missouri Metals. St. Louis, Missouri.

Burns & McDonnell. (2000). Off-Site Bedrock Monitoring Well Installation. St. Louis, Missouri.

Burns & McDonnell. (2001a). Revised Remedial Alternatives Evaluation, PerkinElmer, Missouri Metals Site. St. Louis, Missouri.

Burns & McDonnell. (2001b). Phase II Off-Site Monitoring Well Installation. St. Louis, Missouri.

- Burns & McDonnell. (2002). Remedial Action Plan, PerkinElmer, Missouri Metals Site. St. Louis, Missouri.
- Burns & McDonnell. (2005). Remedial Action Summary Report, PerkinElmer, Missouri Metals Site. St. Louis, Missouri.
- Federal Register (FR). (1990, July 27). Corrective Action for Solid Waste Management Units at Hazardous Waste Management Facilities, Proposed Rule. Vol. 5, No. 145.
- Johnson, Paul C. and R.A. Ettinger. (1991). Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings. *Environmental Science Technology. Vol. 25, No. 8.*
- National Cancer Institute (NCI). (1990). *Cancer Statistics Review 1973-1987*. U.S. Department of Health and Human Services. NIH Publ. No. 90-2789.
- MDoH. (2001). Health Consultation, Review of Basement Sampling Data: Chicago Heights Boulevard VOC Plume Site, Overland, St. Louis County, Missouri. Jefferson City, Missouri.
- MDNR. (2001). Site Re-assessment Report: Chicago Heights Blvd VOC Plume Site, St. Louis County, Missouri, MOSFN0703551. Jefferson City, Missouri.

- MDNR. (2005). Departmental Missouri Risk-Based Corrective Action (MRBCA) Technical Guidance. Jefferson City, Missouri.
- Office of Environmental Health Hazard Analysis (OEHHA), California. (2005). <u>http://www.oehha.ca.gov/</u> risk/ChemicalDB/index.asp.

USEPA. (1989). Risk Assessment Guidance for Superfund Volume I – Human Health Evaluation Manual, Part A (RAGS). EPA/540/1-89/002.

- USEPA. (1991a). Supplemental Guidance, Standard Default Exposure Factors. OSWER Directive 99235.6-303.
- USEPA. (1991b). Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual, Part B, Development of Risk-Based Preliminary Remediation Goals. EPA/540/1-89/002.
- USEPA. (1992, May), Supplemental Guidance to RAGS: Calculating the Concentration Term. OSWER Directive 9285.7-081.
- USEPA. (1997a). Health Effects Assessment Summary Tables (HEAST), Annual FY-1997, Office of Emergency and Remedial Response, OERR 9200.6-303 (91-1).
- USEPA. (1997b, August). *Exposure Factors Handbook*. Office of Research and Development. EPA/600/P-95/002F.

USEPA. (2004, October). Region 9 Preliminary Remediation Goals Table.

USEPA. (2005). Integrated Risk Information System (IRIS).

* * * * *

Table 2-1 Water Level Data PerkinElmer Missouri Metals Site Overland, Missouri

								2-Ju	n-05
Monitoring	Well	TD	Screen	Screen	Screen	GS Elev.	TOC Elev.	DTW	SWL
Well	Diam.	ft, bgs	Length, ft.	Formation	Interval	ft, msl	ft, msi	ft, btoc	ft, msl
GMW-1	2"	16.5	5.0	loess	shallow	650,92	650.92	3.06	647.86
GMW-3	21	16.5	5.0	loess	shallow	635,87	635.83	6.69	629.14
GMW-4	2"	16.5	5.0	loess	shallow	641.60	641.54	6.60	634,94
GMW-5	2"	17.5	15.0	loess	shallow	646.29	646.29	12.86	633.43
¹ GMW-6R	2"	15.0	10.0	loess	shallow	642.61	642.35	2,95	639.40
GMW-7	2"	14.0	10.0	loess	shallow	638.21	638.32	5.52	632.80
GMW-8	2"	14.0	10.0	loess	shallow	636.35	635,91	6.82	629.09
GMW-10	2"	15.0	10.0	loess	shallow	643.06	643.06	8.75	634.31
GMW-11	2"	15.0	10.0	loess	shallow	643.15	643,15	7.55	635.60
GMW-9	2"	20.0	10.0	loess	shallow/inter.	637.57	637,50	7.27	630.23
GMW-15	4"	19.9	4.5	loess	intermediate	642.31	642.31	9.24	633.07
GMW-14	4"	23.0	4.5	loess/siltstone	intermediate	636.41	636.23	7.02	629.21
GMW-16	4"	34.5	5.0	siltstone	deep	636.49	636.00	7.13	628.87
GMW-17	4"	48.8	10.0	siltstone (deep)	deep	646,29	646.29	14.21	632.08
GMW-19	2"	35.7	5.0	siltstone	deep	633.83	633.61	7.72	625.89
GMW-20	2"	33,3	5.0	siltstone	deep	634.29	634,12	7.62	626.50
GMW-21	2"	33,8	5.0	siltstone	deep	627.60	627.29	-	-
GMW-22	2"	38,1	5.0	siltstone	deep	618.03	617,60	-	-
GMW-23	2"	34,7	5.0	siltstone	deep	610.06	609,80	-	-
GMW-24	2"	35,5	5.0	siltstone	deep	618.73	618.37	-	-

Notes:

¹ GMW-6 abandoned and replaced on 3/25/03

	Soil	Sample			Compound Concentrat	tions	
Date	Sample	Depth	TCE	PCE	DCE	Vinyl Chloride	Methylene Chloride
	Location	(feet)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	OB-1	3.5-5.0	<1.2	1.31	<1.0	NA	NA
ť	OB-2	3.5-5.0	12.85	21.30	<1.0	NA	NA NA
ſ	OB-3	2.5-4.0	<1.2	11.03	9.34	NA	NA
	OB-4	3.0-4.5	<1.2	<0.3	<1.0	NA	NA
Γ	OB-6	3.0-4.5	<1.2	<0.3	<1.0	NA	NA
	OB-7	2.5-4.0	<1.2	6.73	<1.0	NA	NA
Ē	OB-9	2.5-4.0	<1.2	<0.3	<1.0	NA	NA
2/1988 ¹	OB-11	2.5-4.0	<1.2	<0.3	<1.0	NA	NA
	OB-13	3.0-4.5	<1.2	1.35	<1.0	NA	NA
l l l l l l l l l l l l l l l l l l l	OB-15	3.5-5.0	<1.2	2.65	<1.0	NA	NA
l l l l l l l l l l l l l l l l l l l	OS-1	surface	<1.2	<0,3	<1.0	NA	NA
	OS-2	surface	<1.2	<0,3	1.57	NA	NA
Γ	OS-3	surface	<1.2	<0.3	<1.0	NA	NA
ſ	OS-4	surface	<1.2	<0.3	<1.0	NA	NA
	OS-5	surface	<1.2	<0.3	<1.0	NA	NA
	SB-1G	6.0-9.0	<0.04	<0.04	<0.04	<0.06	<0.18
ſ	SB-2G	2.0-3.0	0.08	0.13	0.07	<0.06	<0.18
1	SB-3G	1.0-3.0	0.33	290	<0.04	<0.06	<0.18
7/10002	SB-4G	3.0-6.0	<0.04	0.17	<0.04	<0.06	<0.18
7/1990 ²	GMW-5	3.0-6.0	<0.04	<0.04	<0.04	<0.06	<0.18
ľ	GMW-6	6.0-9.0	0.56	7.30	0.23	<0.06	<0.18
ľ	GMW-7	6.0-9.0	<0.04	<0.04	<0.04	<0.06	<0.18
ľ	GMW-8	6.0-9.0	0.10	<0.04	0.27	<0.06	<0.18

K:\PKI\26682\Reports\Risk Assessment\Tables\Table 2-2_soil_data_summary

Page 1 of 2

	Soil	Sample			Compound Concentratio	ns	
Date	Sample	Depth	TCE	PCE	DCE	Vinyl Chloride	Methylene Chloride
	Location	(feet)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	GMW-14	1.0-1.5	215	656	426	<1.000	<0.500
	SB-1	19.0-19.4	<0.005	<0.005	<0.005	<0.010	<0.005
	SB-2	1.4-1.8	<0.005	0.0143	<0.005	<0.010	<0.005
3/1992 ³	56-2	19,0-19,4	<0.005	<0.005	<0.005	<0.010	<0.005
3/1992	SB-3	6.6-7.0	<0.005	<0.005	<0.005	<0.010	<0.005
	SB-6	2.0-2.6	0.157	1.73	0.133	<0.010	<0.005
		7.2-7.8	<0.005	<0.005	<0.005	<0.010	<0.005
		13-14	0.0198	0.126	0.0744	<0.010	<0.005
		1.2-1.5	0.0698	2.30	0.101	<0.010	<0.005
	GMW-15	3.8-4.4	0.025	4.26	0.0072	<0.010	<0.005
		9.0-9,6	0.0763	1.16	0.0822	<0.010	<0.005
4/1992 ³	GMW-16	19.0-19.4	0.0156	<0.005	0.0734	<0.010	<0.005
4/1332	GMW-17	0.8-1.3	304	1900	0.490	<0.500	<0.250
		1.1-1.4	<1.250	684	<1.250	<2.500	<1.250
	SB-4	5.5-5.7	<0.005	<0.005	0.197	<0.010	<0.005
		10.6-11	0.0334	0.137	1.100	0.184	<0.005
	AS-3	4.0-4.4	<0.005	<0.005	0.001 J	<0.010	0.013 B
7/1992 ³	AS-7	1.3-1.8	0.320 J	0.200 J	2.80	0.007 J	0.01 <mark>1 B</mark>
111332	AS-8	3.3-3.9	<0.005	<0.005	0.06	0.004 J	0.016 B
	AS-9	3.0-3.7	0.012	0.019	0.140	0.007 J	0.014 B

Notes:

¹ Burns & McDonnell Engineering Company, Inc., November 1992. *Remedial Investigation EG&G KT Aerofab Missouri Metals Site.* Appendix B and J. Borings completed by O'Brien and Gere.

² Burns & McDonnell Engineering Company, Inc., November 1992. *Remedial Investigation EG&G KT Aerofab Missouri Metals Site*. Appendix B. Borings completed by GTI and Burns & McDonnell.

³ Burns & McDonnell Engineering Company, Inc., November 1992. *Remedial Investigation EG&G KT Aerofab Missouri Metals Site*. Sections 3 and 4. Borings completed by Burns & McDonnell.

NA = not analyzed

= saturated zone

J = estimated value

B = analyte detected in method blank

Monitoring Well	Sample Date	PCE (ug/L) MCL - 5	TCE (ug/L) MCL - 5	DCE (total) (ug/L) MCL - 70	Vinyl Chloride (ug/L) MCL - 2
GMW-1	05/05/97	ND	ND	ND	ND
	11/17/97	ND	ND	ND	ND
	06/03/98	ND	ND	ND	ND
	11/18/98	ND	ND	ND	ND
	05/27/99	ND	ND	ND	ND
	03/27/03	ND	ND	ND	ND
	11/24/03	ND	ND	ND	ND
	03/10/04	ND	ND	ND	ND
	07/21/04	ND	ND	ND	ND
	11/23/04	ND	ND	ND	ND
GMW-3	05/05/97	12.4 J	454.0	407.0	16.4 J
	11/17/97	ND	385.0	369.0	19.7
	06/03/98	ND	370.0	280.0	ND
	11/18/98	ND	880.0	920.0	40 J
	05/27/99	ND	860.0	970.0	34 J
pre-pilot	12/04/01	3.1 J	138.0	312.4	10.5
post-pilot	01/10/02	ND	65.1	478.3	19.2
pre-full scale	03/28/03	17 J	26 J	835.0	22.5
	11/24/03	84 J	984.0	888.0	36 J
	03/11/04	34.9	40.3	95.4	3.3
	07/20/04	2.5 J	351.0	661.3	34.2
	11/23/04	ND	120.0	1,010.0	47.9
GMW-4	12/05/01	ND	ND	ND	ND
pre-full	03/28/03	2.0 U* J	ND	ND	ND
	11/24/03	2.6 U* J	ND	ND	ND
	03/11/04	ND	ND	ND	ND
	07/20/04	ND	ND	ND.	ND
	11/23/04	ND	ND	ND	ND
GMW-5	05/06/97	10,400.0	4,830.0	3,800.0	713.0
	11/17/97	11,000.0	4,630.0	3,360.0	625 J
	06/03/98	7,100.0	5,000.0	4,200.0	740.0
	11/18/98	7,900.0	4,800.0	4,700.0	600.0
	05/27/99	9,100.0	5,900.0	6,500.0	1,100.0
pre-pilot	12/04/01	1,510.0	1,120.0	2,995.0	239.0
post-pilot	01/11/02	ND	ND	ND	ND
pre-full scale	03/27/03	839.0	1,060.0	2,880.0	254.0
	11/24/03	KMnO₄	KMnO₄	KMnO₄	KMnO₄
	03/10/04	706.0	1,170.0	2,900 J	390.0
	07/21/04	1,250.0	1,680.0	4,708.0	702.0
	11/23/04	1,140.0	1,670.0	4,820.0	657.0

Monitoring Well	Sample Date	PCE (ug/L) MCL - 5	TCE (ug/L) MCL - 5	DCE (total) (ug/L) MCL - 70	Vinyl Chloride (ug/L) MCL - 2
GMW-6	05/06/97	47,400.0	25,200.0	25,200.0	ND
	11/17/97	15,800.0	12,400.0	18,600.0	ND
	06/03/98	67,000.0	26,000.0	22,000.0	ND
	11/18/98	53,000.0	21,000.0	21,000.0	ND
	05/27/99	72,000.0	26,000.0	25,000.0	ND
pre-pilot	12/04/01	64,100.0	19,800.0	19,517.0	797.0
post-pilot	01/11/02	57,000.0	17,100.0	16,400.0	ND
GMW-6R pre-full	03/27/03	46,400.0	19,300.0	22,500.0	ND
	11/24/03	36,500.0	13,100.0	10,600.0	ND
	03/10/04	54,400.0	23,100.0	23,300.0	582.0
	07/20/04	KMnO₄	KMnO₄	KMnO₄	KMnO₄
	11/24/04	KMnO₄	KMnO₄	KMnO₄	KMnO₄
GMW-7	05/05/97	ND	2,180.0	401.0	ND
	11/17/97	ND	2,120.0	346.0	ND
	06/03/98	ND	2,300.0	410.0	ND
	11/18/98	ND	3,200.0	460.0	ND
	05/27/99	ND	2,200.0	490.0	ND
pre-full scale	03/28/03	25 J	612.0	347.0	23.2
	11/24/03	52 J	487.0	282.0	ND
	03/10/04	7.6	468.0	305.3 J	14.1
	07/20/04	9.7	534.0	271.8	13.1
	11/23/04	5.7 J	335.0	220.0	8.8 J
GMW-8	05/05/97	ND	8,120.0	24,500.0	2,450.0
	11/17/97	835 J	8,260.0	27,600.0	2,770.0
	06/03/98	ND	7,100.0	26,000.0	1,800.0
	11/18/98	ND	7,900.0	32,000.0	2,700.0
	05/27/99	ND	5,300.0	22,000.0	1,400.0
pre-pilot	12/04/01	1,140.0	7,110.0	25,864.0	2,030.0
post-pilot	01/10/02	ND	6,880.0	22,400.0	1,900.0
pre-full scale	03/28/03	200 J	3,640.0	14,100.0	731.0
	11/25/03	920 J	2,400 J	15,100.0	710 J
	03/11/04	ND	1,310.0	8,380.0	459.0
	07/20/04	ND	2,190.0	12,000.0	380.0
	11/23/04	ND	3,030.0	19,000.0	889.0
GMW-9	05/05/97	ND	8,810.0	571.0	ND
	11/17/97	ND	9,220.0	577.0	ND
	06/03/98	ND	8,300.0	500.0	ND
	11/18/98	ND	8,800.0	650.0	ND
ll l	05/27/99	ND	7,300.0	570.0	ND
post-pilot	01/10/02	ND	ND	ND	ND
pre-full scale	03/28/03	8.0	148.0	97.2	3.2
	11/25/03	83 J	980.0	831.0	ND
	03/11/04	ND	592.0	1,020.0	ND
	07/20/04	ND	591.0	1,150.0	ND
1 I	11/23/04	ND	676.0	655.0	13 J

Monitoring Well	Sample Date	PCE (ug/L) MCL - 5	TCE (ug/L) MCL - 5	DCE (total) (ug/L) MCL - 70	Vinyl Chloride (ug/L) MCL - 2	
GMW-10	05/22/96	187.0	543.0	533.0	30.1	
pre-full scale	03/28/03	66.4	50.3	45.2	ND	
	11/25/03	28.8	20.1	36.1	ND	
	03/11/04	5.5	5.7	39.1 J	4.0	
	07/21/04	5.6	4.9 J	40.6	4.7	
	11/24/04	4.7 J	6.9	38.6	2.6	
GMW-11	05/05/97	ND	258.0	1,290.0	ND	
	11/17/97	ND	257.0	1,780.0	ND	
	06/03/98	ND	150.0	1,200.0	ND	
	11/18/98	ND	460.0	1,600.0	ND	
	05/27/99	ND	540.0	1,800.0	ND	
pre-full scale	03/28/03	4.5 U* J	60.6	176.9 J	3.1	
	11/25/03	4.0 U* J	44.7	198.5 J	4.6	
	03/11/04	2.2 J	49.5	174.3 J	6.4	
	07/21/04	ND	12.2	77.3	11.3	
	11/24/04	ND	8.8	76.0	10.2	
GMW-14	05/05/97	103,000.0	123,000.0	ND	11,700.0	
	11/17/97	ND	43,800.0	72,200.0	7,040.0	
	06/03/98	ND	50,000.0	72,000.0	5,100.0	
	11/18/98	ND	57,000.0	84,000.0	6,900.0	
	05/27/99	2,600 J	58,000.0	85,000.0	7,200.0	
pre-pilot	12/04/01	3,580.0	39,600.0	69,768.4	6,180.0	
post-pilot	01/10/02	ND	ND	ND	ND.	
pre-full scale	03/28/03	4,640.0	50,700.0	64,400.0	2,400.0	
	11/24/03	KMnO₄	KMnO₄	KMnO₄	KMnO₄	
	03/11/04	KMnO₄	KMnO₄	KMnO₄	KMnO₄	
	07/20/04	KMnO₄	KMnO₄	KMnO₄	KMnO₄	
	11/23/04	KMnO₄	KMnO₄	KMnO₄	KMnO₄	

Monitoring Well	Sample Date	PCE (ug/L) MCL - 5	TCE (ug/L) MCL - 5	DCE (total) (ug/L) MCL - 70	Vinyl Chloride (ug/L) MCL - 2
GMW-15	05/06/97	39,200.0	9,030.0	13,500.0	ND
	06/03/98	53,000.0	10,000.0	17,000.0	ND ND
	11/18/98	67,000.0	18,000.0	24,000.0	ND
	05/27/99	74,000.0	23,000.0	22,000.0	ND
pre-pilot	12/04/01	65,200.0	14,500.0	23,834.5	940 J
post-pilot	01/11/02	66,500.0	27,200.0	19,300.0	ND
pre-full scale	03/27/03	68,100.0	17,600.0	21,900.0	ND
	11/24/03	64,300.0	67,900.0	13,700.0	ND
	03/10/04	73,800.0	25,500.0	27,600.0	500 J
	07/20/04	KMnO₄	KMnO₄	KMnO₄	KMnO₄
	11/23/04	KMnO ₄	KMnO₄	KMnO₄	KMnO₄
GMW-16	05/05/97	ND	48.0	32.8	ND
	11/17/97	3.0	56.3	20.5	ND
	06/03/98	ND	150.0	90.0	ND
	11/19/98	3.0	36.0	20.0	ND
	05/27/99	4.0 J	60.0	38.0	ND
pre-pilot	12/04/01	18.0 J	158.0	178.5	ND
post-pilot	01/10/02	1.6 J	89.3	97.2	ND
pre-full scale	03/28/03	390 J	5,390.0	14,100.0	82 J
	04/08/03	360 J	5,750.0	13,000.0	ND
	11/24/03	KMnO₄	KMnO₄	KMnO₄	KMnO₄
t.	03/11/04	KMnO₄	KMnO₄	KMnO₄	KMnO₄
	07/20/04	KMnO₄	KMnO₄	KMnO₄	KMnO₄
	11/23/04	KMnO₄	KMnO₄	KMnO₄	KMnO ₄
GMW-17	05/06/97	ND	386.0	ND	ND
	11/17/97	ND	513.0	ND	ND
	06/03/98		340.0	ND	ND
	11/18/98	ND	560.0	ND	ND
Į	05/27/99	ND	460.0	ND	ND
pre-pilot	12/05/01	50.9	664.0	28.0 J	ND
post-pilot	01/11/02	90.3	673.0	34.0	ND
pre-tuli scale	03/27/03	339.0	772.0	132.0	ND
	11/24/03	1,530.0	2,620.0	450 J	ND
	03/10/04	100 J	2,020.0	64 J	ND
	07/21/04	119.0	1,300.0	67 J	ND
	11/23/04	10 <u>0 J</u>	1,060.0	60 J	ND

Monitoring Well	Sample Date	PCE (ug/L) MCL - 5	TCE (ug/L) MCL - 5	DCE (total) (ug/L) MCL - 70	Vinyi Chloridə (ug/L) MCL - 2
GMW-19	08/18/00	ND	11,000.0	2,900.0	ND
	03/02/01	260 J	4,300.0	1,200.0	ND
pre-pilot	12/05/01	200 B	7,180.0	2,463.1	3.3
post-pilot	01/10/02	ND	622.0	944.0	ND
pre-full scale	03/28/03	362.0	9,060.0	3,100.0	ND
	11/25/03	670 J	11,600.0	4,320.0	ND
	03/11/04	280 J	9,690.0	3,720.0	ND
	07/20/04	200 J	8,070.0	3,030.0	ND
	11/23/04	180 J	7,870.0	3,030.0	ND
GMW-20	08/18/00	ND	2,000.0	ND	ND
	03/02/01	ND	1,700.0	400.0	ND
pre-pilot	12/05/01	44.0	2,260.0	522.3	ND
post-pilot	01/10/02	ND	117.0	176.0	ND
pre-full scale	03/28/03	62 J	1,900.0	524.0	ND
	11/25/03	170 J	1,860.0	591.0	ND
	03/11/04	95 J	2,910.0	663.0	ND
	07/20/04	34 J	2,400.0	622.0	ND
	11/23/04	28 J	2,500.0	656.0	ND

Notes:

PCE - Tetrachloroethylene

TCE - Trichloroethylene

DCE (total) - Dichloroelhylene

ug/L - Micrograms per liter

MCL - Maximum contaminant level for drinking water

ND - Not detected

J - Qualified as estimated

U* - Qualified as undetected

KMnO₄ - Potassium permanganate

Table 3-1 Data Summary and Identification of COPCs in Soil Perkin Elmer Missouri Metals Site Overland, Missouri

	Number of		Percent	Maximum		· · · · · · · · · · · · · · · · · · ·	95 Percent	Screening
	Positive	Number of	Positive	Concentration	Depth		UCL	Level
	Detections	Samples	Detections	(mg/kg)	(feet)	Location	(mg/kg)	(mg/kg)
Volatiles								
Acetone	7	21	33%	4.64E-01	5.5-5.7	SB-4/CME-2	1.46E-01	5.40E+04*
Benzene	1	5.	20%	1.00E-03	5.5-5.7	SB-4/CME-2	3.45E-03	1.70E+02
2-Butanone	3	9	33%	1.20E+00	1.3-1.8	AS-7/S-1	6.51E-01	NA
1,1-Dichloroethene	1	19	5%	1.00E-03	1.3-1.8	AS-7/S-1	1.13E+00	8.30E+00
1,2-Dichloroethene (total)	21	50	42%	4.26E+02	1.0-1.5	GMW-14/CME-1	4.17E+01	5.60E+02 ¹
Ethylbenzene	2	4	50%	1.00E-03	1.0-1.5 & 3.3-3.9	AS-7/S-1 & AS-8/S-2	5.57E-03	4.00E+02*
2-Hexanone	1	5	20%	2.00E-03	5.5-5.7	SB-4/CME-2	6.62E-02	NA
Methylene chloride	5	9	56%	7.50E-02	3.8-4.4	GMW-15/CME-2	3.52E-02	6.70E+02
Tetrachloroethene	25	50	50%	1.90E+03	0.8-1.3	GMW-17/CME-1	2.47E+02	3.80E+02
Toluene	5	9	56%	4.00E-03	3.3-3.9	AS-8/S-2	3.26E-03	1.10E+04
1,1,1-Trichloroethane	3	15	20%	3.89E+00	3.0-4.5	OB-13	3.27E+00	2.00E+03
Trichloroethene	17	50	34%	3.04E+02	0.8-1.3	GMW-17/CME-1	3.92E+01	2.60E+02
1,1,2-Trichloroethene	1	4	25%	5.00E-03	1.3-1.8	AS-7/S-1	4.67E-03	NA
Vinyl chloride	4	9	44%	1.84E-01	10.6-11.0	SB-4/CME-3	2.23E-01	7.50E-01*
Xylenes, total	5	9	56%	6.19E-01	19.6-20.0	SB-4/CME-4	7.52E-01	4.20E+02*

Notes:

DOCUMEN

EPA ARCHIVE

U

¹ - Screening level is for cis-1,2-Dichloroethene.

Screening levels represent the cleanup goals established in the consent order unless otherwise noted.

*Screening level obtained from USEPA Region 9 PRG table (USEPA, 2004).

Shaded values indicate exceedance of screening level.

mg/kg - milligrams per kilogram

Page 1 of 1

Table 3-2 Data Summary and Identification of COPCs in Groundwater Monitoring Wells GMW-3, 7, 8, 9 Perkin Elmer **Missouri Metals Site** Overland, Missouri

	Number of Positive Detections	Number of Samples	Percent Positive Detections	Maximum Concentration (mg/L)	Location	Date	95 Percent UCL (mg/L)	Screening Level (mg/L)
Volatiles								
1,1-Dichloroethene	3	16	19%	1.25E+00	GMW-8	11/24/03	4.55E-01	7.00E-03
cis-1,2-Dichloroethene	16	16	100%	1.90E+01	GMW-8	11/23/04	1.00E+01	7.00E-02
trans-1,2-Dichloroethene	1	16	6%	1.25E+00	GMW-8	11/24/03	4.54E-01	1.00E-01
Tetrachloroethene	9	16	56%	9.20E-01	GMW-8	11/24/03	3.51E-01	5.00E-03
Trichloroethene	16	16	100%	3.03E+00	GMW-8	11/23/04	1.81E+00	5.00E-03
Vinyl chloride	12	16	75%	8.89E-01	GMW-8	11/23/04	4.53E-01	2.00E-03

Notes:

Screening levels represent the cleanup goals established in the consent order. Shaded values indicate exceedance of screening level. mg/L - milligrams per Liter

Table 3-3Data Summary and Identification of COPCs in GroundwaterMonitoring Wells GMW-5 6Perkin ElmerMissouri Metals SiteOverland, Missouri

	Number of Positive Detections	Number of Samples	Percent Positive Detections	Maximum Concentration (mg/L)	Location	Date	95 Percent UCL (mg/L)	Screening Level (mg/L)
Volatiles								
1,1-Dichloroethene	0	5	0%	ND	NA	NA	NA	7.00E-03
cis-1,2-Dichloroethene	5	5	100%	2.33E+01	GMW-6	3/10/04	1.72E+01	7.00E-02
rans-1,2-Dichloroethene	2	5	40%	4.00E-02	GMW-5	3/10/04	4.51E+00	1.00E-01
Tetrachloroethene	5	5	100%	5,44E+01	GMW-6	3/10/04	4.28E+01	5.00E-03
Frichloroethene	5	5	100%	2.31E+01	GMW-6	3/10/04	1.74E+01	5.00E-03
/inyl chloride	4	5	80%	7.02E-01	GMW-5	7/21/04	8.77E-01	2.00E-03

Notes:

П

П

-

-

П

Screening levels represent the cleanup goals established in the consent order.

Shaded values indicate exceedance of screening level.

mg/L - milligrams per Liter

Page 1 of 1

Table 4-1 Noncancer Toxicity Information for Chemicals of Potential Concern Perkin Elmer Missouri Metals Site Overland, Missouri

Parameter	Oral RfD ¹ (mg/kg/day)	Source	Toxic Effect of Concern	Inhalation RfD ² (mg/kg/day)	Source	Toxic Effect of Concern
Volatiles						
1,1-Dichloroethene	5E-02	IRIS	Liver toxicity (fatty change)	6E-02	IRIS	Liver toxicity (fatty change)
cis-1,2-Dichloroethene	1E-02/1E-01	PPRTV				, , , , , , , , , , , , , , , , , , ,
trans-1,2-Dichloroethene	2E-02	IRIS	Increased serum alkaline phosphatase in male mice			•
Tetrachloroethene	1E-02/1E-01	IRIS	Hepatotoxicity in mice, weight gain in rats	1E-02	OEHHA	Kidney; alimentary system (liver)
Trichloroethene	3E-04	Region 9		2E-01	OEHHA	Nervous system, eyes
Vinyl Chloride	3E-03	IRIS	Liver cell polymorphism	3E-02	IRIS	Liver cell polymorphism

Notes:

¹ - Subchronic reference values, if available in HEAST, are listed following the slash mark.

² - RfC (mg/m³) values are converted to RfD (mg/kg/day) values using the equation provided in the preface of HEAST.

IRIS - Integrated Risk Information System (USEPA, 2005)

HEAST - Health Effects Assessment Summary Tables (USEPA, 1997a)

OEHHA - California Office of Environmental Health Hazard Assessment, Toxicity Criteria Database (OEHHA, 2005).

PPRTV - Provisional Peer-Reviewed Toxicity Values

Region 9 - USEPA Region 9 Preliminary Remediation Goals (PRGs) (USEPA, 2004)

Blanks indicate that information is not available.

RfD - Reference Dose

RfC - Reference Concentration

mg/kg/day - milligrams per kilogram per day

Table 4-2 USEPA Carcinogen Classification* Perkin Elmer Missouri Metals Site Overland, Missouri

CARCINOGEN CATEGORIES

- A Human carcinogen
- B Probable human carcinogen
- C Possible human carcinogen
- D Not classifiable
- E Evidence of noncarcinogenicity

	Animal Evidence										
Human Evidence	Sufficient	Limited	Inadequate	No Data	No Evidence						
Sufficient	А	А	А	А	A						
Limited	B1	B1	B1	B1	B1						
Inadequate	B2	С	D	D	D						
No Data	B2	С	D	D	E						
No Evidence	B2	• • • • D • • • •	D	D							

Notes: The B category is subdivided into B1 and B2, with the strength of any available human data being the deciding factor.

USEPA = United States Environmental Protection Agency

* FR, 1986

Table 4-3 Cancer Toxicity Information for Chemicals of Potential Concern Perkin Elmer Missouri Metals Site Overland, Missouri

Parameter	Weight-of- Evidence Classification ¹	Oral Slope Factor 1/(mg/kg/day)	Source	Inhalation Slope Factor ² 1/(mg/kg/day)		Site of Tumor
Volatiles						
1,1-Dichloroethene	C					
cis-1,2-Dichloroethene	D					
trans-1,2-Dichloroethene						
Tetrachloroethene		5E-01	OEHHA	2E-02	OEHHA	Liver
Trichloroethene		1E-02	OEHHA	7E-03	OEHHA	Nervous system, eyes
Vinyl Chloride	A	8E-01	IRIS	2E-02	IRIS	Liver

Notes:

¹ - Weight of evidence classifications obtained from IRIS.

² - Unit risk [1/(mg/m³)] values are converted to slope factors [1/(mg/kg/day)] values using the equation provided in the preface of HEAST.

IRIS - Integrated Risk Information System (USEPA, 2005)

HEAST - Health Effects Assessment Summary Tables (USEPA, 1997a)

OEHHA - California Office of Environmental Health Hazard Assessment, Toxicity Criteria Database (OEHHA, 2005). Blanks indicate that information is not available.

mg/m3 - milligrams per cubic meter

mg/kg/day - milligrams per kilogram per day

Т

Table 5-1 Formula for Inhalation of Vapor Phase Chemicals^{*} Perkin Elmer

Equation:

 $IN = CA \times IR \times ET \times EF \times ED / (BW \times AT)$

<u>Where</u>:

- CA = Chemical concentrations in air (milligram per cubic meter $[mg/m^3]$)
- IR = Inhalation rate (cubic meter per hour [m³/hr])
- ET = Exposure time (hours/day)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kilogram [kg])
- AT = Averaging time (days)

Indoor Worker Variable Values:

- CA = Modeled to indoor air from groundwater data (See Table ?)
- IR = 0.633 m³/hr (mean value for adults) (USEPA, 1997a)
- ET = 8 hours/day (Standard working day)
- EF = 250 days/year (USEPA, 1991)
- ED = 25 years (USEPA, 1991)
- BW = 70 kg (USEPA, 1989)
- AT = 9,125 days for noncancer effects [25 years (ED) x 365 days/year] (USEPA, 1989) 25,550 days for cancer effects [70 years (Lifetime) x 365 days/year] (USEPA, 1989)

Outdoor Worker Variable Values:

- CA = Modeled to outdoor air from groundwater data (See Table ?)
- IR = 1.3 m³/hr (Hourly average for outdoor workers) (USEPA, 1997a)
- ET = 8 hrs/day (Standard working day)
- EF = 125 days/year (See text)
- ED = 25 years (USEPA, 1991)
- BW = 70 kg (USEPA, 1989)
- AT = 9,125 days for noncancer effects [25 years (ED) x 365 days/year] (USEPA, 1989) 25,550 days for cancer effects [70 years (Lifetime) x 365 days/year] (USEPA, 1989)

Construction Worker Variable Values:

- CA = Modeled to outdoor air from groundwater data (See Table ?)
- IR = $2.5 \text{ m}^3/\text{hr}$ (mean value for outdoor worker heavy activity) (USEPA, 1997a)
- ET = 8 hours/day (See text)
- EF = 130 days/year (See text)
- ED = 1 year (See text)
- BW = 70 kg (USEPA, 1989)
- AT = 180 days for noncancer effects
 - 25,550 days for cancer effects [70 years (Lifetime) x 365 days/year] (USEPA, 1989)

* USEPA, 1989

Table 5-2 Groundwater Data Set for Monitoring Wells GMW-3, 7, 8, & 9 Perkin Elmer Missouri Metals,Bold"Bold"Site Overland, Missouri

		DTW		n <mark>lor</mark> a mg/l	oethene _)		o ro ng/	ethene ′L)	•	hloroethene g/L)	•	: <mark>hlor</mark> (mg/	oethene _)
Monitoring Well	Date	(ft)	1		Calc Value			Calc Value		Calc Value			Calc Value
GMW-3	11/24/2003	4.48	0.084	J	0.084	0.984	Γ	0.984	0.888	0.888	0.250	υ	0.125
	3/10/2004		0.035		0.035	0.040		0.040	0.095	0.095	0.005	υ	0.003
	7/21/2004		0.003	JJ	0.003	0.351		0.351	0.652	0.652	0.003	J	0.003
	11/23/2004	5.17	0.025	U	0.013	0.120		0.120	1.010	1.010	0.025	U	0.013
GMW-7	11/24/2003	3.07	0.052	IJ	0.052	0.487	Γ	0.487	0.282	0.282	0.125	U	0.063
	3/10/2004		0.008		0.008	0.468		0.468	0.302	0.302	0.002	J	0.002
	7/21/2004		0.010		0.010	0.534		0.534	0.270	0.270	0.002	J	0.002
	11/23/2004	3.47	0.006	IJ	0.006	0.335		0.335	0.220	0.220	0.025	U	0.025
GMW-8	11/24/2003	3.71	0.920	J	0.920	2.400	J	2.400	15.100	15.100	2.500	υ	1.250
	3/10/2004		0.500	U	0.250	1.310		1.310	8.380	8.380	0.500	υ	0.250
	7/21/2004		0.250	U	0.125	2.190		2.190	12.000	12.000	0.250	U	0.125
	11/23/2004	4.78	0.500	U	0.250	3.030		3.030	19.000	19.000	0.500	U	0.250
GMW-9	11/24/2003	4.03	0.083	J	0.083	0.980	Γ	0.980	0.831	0.831	0.250	Ţυ	0.125
	3/10/2004		0.125]U	0.063	0.592		0.592	1.020	1.020	0.125	U	0.063
	7/21/2004		0.100	U	0.050	0.591		0.591	1.150	1.150	0.100	υ	0.050
	11/23/2004	5.31	0.100	U	0.050	0.676		0.676	0.655	0.655	0.100	U	0.050

Notes:

Column labeled "Calc Value" shows the value used in the upper confidence limit calculations.

J - Qualified as estimated

U - Chemical not detected at identified reporting reporting limit

One-half the reporting limit was used as proxy value for undetected compounds.

Table 5-2 Groundwater Data Set for Monitoring Wells GMW-3, 7, 8, & 9 Perkin Elmer Missouri Metals,Bold"Bold"Site Overland, Missouri

		DTW	trans-1,2-Dichloroethene (mg/L)			-	Ch ng/	loride	
Monitoring Well	Date	(ft)			Calc Value		Caic Value		
GMW-3	11/24/2003	4.48	0.250	U	0.125	0.036	J	0.036	
	3/10/2004		0.005	U	0.003	0.003		0.003	
	7/21/2004		0.005	U	0.003	0.034		0.034	
	11/23/2004	5.17	0.025	υ	0.013	0.048		0,048	
GMW-7	11/24/2003	3.07	0.125	υ	0.063	0.050	υ	0.025	
	3/10/2004		0.002	JJ	0.002	0.014)	0.014	
	7/21/2004		0.005	U	0.003	0.013		0.013	
	11/23/2004	3.47	0.025	U	0.013	0.009	IJ	0.009	
GMW-8	11/24/2003	3.71	2.500	U	1.250	0.710	J	0.710	
	3/10/2004		0.500	ט	0.250	0.459		0.459	
	7/21/2004		0.250	U	0.125	0.380		0.380	
	11/23/2004	4.78	0.500	U	0.250	0.889		0.88 9	
GMW-9	11/24/2003	4.03	0.250	U	0.125	0.100	U	0.050	
	3/10/2004		0.125	lυ	0.063	0.050	U	0.025	
	7/21/2004		0.100	υ	0.050	0.040	U	0.020	
	11/23/2004	5.31	0.100	υ	0.050	0.013	J	0.013	

Notes:

Column labeled "Calc Value" shows the value used in the upper confidence limit calculations.

J - Qualified as estimated

U - Chemical not detected at identified reporting reporting limit

One-half the reporting limit was used as proxy value for undetected compounds.

Table 5-3 Groundwater Data Set for Monitoring Wells GMW-5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Monitoring Well	Date	DTW (ft)		proethene g/L) [.] Caic Value		r oethene g/L) Caic Value		hloroethene g/L) Calc Value	•	mg/l	oethene) Calc Value
GMW-5	11/24/2003	10.87	KMnO₄	KMnO ₄	KMnO₄	KMnO₄	KMnO₄	KMnO ₄	KMnO₄	ТТ	KMnO ₄
0.000	3/10/2004	10.07	0.706	0.706	1.170	1,170	2.860	2,860	0.200	υ	0.100
	7/21/2004		1.250	1.250	1.680	1.680	4.670	4.670	0.125	U	0.063
	11/23/2004	11.78	1.140	1.140	1.670	1.670	4.820	4.820	0.250	υ	0.125
GMW-6	11/24/2003	0.83	36.500	36.500	13.100	13.100	10.600	10.600	5.000	U	2.500
	3/10/2004		54.400	54.400	23.100	23.100	23.300	23.300	1.250	U	0.625
	7/21/2004		KMnO ₄	KMnO₄	KMnO₄	KMnO₄	KMnO₄	KMnO₄	KMnO₄		KMnO₄
	11/23/2004	5.80	KMnO₄	KMnO₄	KMnO₄	KMnO₄	KMnQ∡	KMnO₄	KMnO₄		KMnO₄

Notes:

Column labeled "Calc Value" shows the value used in the upper confidence limit calculations.

J - Qualified as estimated

U - Chemical not detected at identified reporting reporting limit

One-half the reporting limit was used as proxy value for undetected compounds.

K:\ENV\Groundwater Data Summary---Complete.xls

Page 1 of 2

Table 5-3 Groundwater Data Set for Monitoring Wells GMW-5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Monitoring Well	Date	DTW (ft)	· ·	Dich mg/	l ioroethene L) Calc Value	-	I Ci mg	hloride I/L) Calc Value
GMW-5	11/24/2003 3/10/2004	10.87	KMnO₄ 0.040	J	KMnO ₄ 0.040	KMnO₄ 0.390		KMnO₄ 0.390
	7/21/2004	:	0.038	J	0.038	0.702		0.702
	11/23/2004	11.78	0.250	U	0.125	0.657	ŀ	0.657
GMW-6	11/24/2003	0.83	5.000	U	2.500	2.000	U	1.000
	3/10/2004		1.250	U	0.625	0.582		0.582
	7/21/2004		KMnO₄		KMnO₄	KMnO₄		KMnO₄
	11/23/2004	5.80	KMnO₄		KMnO₄	KMnO₄		KMnO₄

Notes:

Column labeled "Calc Value" shows the value used in the upper confidence limit calculations.

J - Qualified as estimated

U - Chemical not detected at identified reporting reporting limit

One-half the reporting limit was used as proxy value for undetected compounds,

Table 5-4 Exposure Concentrations in Groundwater Monitoring Wells GMW- 3, 7, 8, & 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Parameter	Maximum Detected Concentration (mg/L)	95 Percent Upper Confidence Limit (UCL) (mg/L)	Exposure Concentration Used in HHBRA (mg/L)
1,1-Dichloroethene	1.25E+00	4.55E-01	4.55E-01
cis-1,2-Dichloroethene	1,90E+01	1.00E+01	1.00E+01
trans-1,2-Dichloroethene	1.25E+00	4.54E-01	4.54E-01
Tetrachloroethene	9.20E-01	3.51E-01	3.51E-01
Trichloroethene	3.03E+00	1.81E+00	1.81E+00
Vinyl Chloride	8.89E-01	4.53E-01	4.53E-01

Notes:

Concentration used in HHBRA represents the lower of the 95 percent UCL or maximum detected concentration (USEPA, 1992).

95 percent UCL values were calculated using USEPA's ProUCL Software Version 3.00.02.

One-half of the detection limit was used in 95 percent UCL calculations as a proxy

concentration for results that were non-detect.

HHBRA - Human Health Baseline Risk Assessment

mg/L - milligrams per Liter

Table 5-5 Exposure Concentrations in Groundwater Monitoring Wells GMW- 5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Parameter	Maximum Detected Concentration (mg/L)	95 Percent Upper Confidence Limit (UCL) (mg/L)	Exposure Concentration Used in HHBRA (mg/L)
			1
cis-1,2-Dichloroethene	2.33E+01	1.72E+01	1.72E+01
trans-1,2-Dichloroethene*	4.00E-02	4.51E+00	4.00E-02
Tetrachloroethene	5.44E+01	4.28E+01	4.28E+01
Trichloroethene	2.31E+01	1.74E+01	1.74E+01
Vinyl Chloride*	7.02E-01	8.77E-01	7.02E-01

Notes:

Concentration used in HHBRA represents the lower of the 95 percent UCL or maximum detected concentration (USEPA, 1992).

95 percent UCL values were calculated using USEPA's ProUCL Software Version 3.00.02.

One-half of the detection limit was used in 95 percent UCL calculations as a proxy concentration for results that were non-detect.

HHBRA - Human Health Baseline Risk Assessment

mg/L - milligrams per Liter

* UCL Exceeds Max Detection

Table 5-6 USEPA Johnson & Ettinger Vapor Modeling Results for Indoor Air from Groundwater Monitoring Wells GMW-3, 7, 8, & 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Parameter	Chemical Concentration in Groundwater (mg/L)	Modeled Chemical Concentration in Indoor Air from Groundwater (mg/m ³)
1,1-Dichloroethene	4.55E-01	1.49E-02
cis-1,2-Dichloroethene	1.00E+01	4.34E-02
trans-1,2-Dichloroethene	4.54E-01	4.67E-03
Tetrachloroethene	3.51E-01	5.71E-03
Trichloroethene	1.81E+00	1.86E-02
Vinyl Chloride	4.53E-01	1.82E-02

Notes:

Modeled chemical concentrations in air from groundwater taken from Appendix B. mg/m³ - milligrams per cubic meter

mg/L - milligrams per liter

Table 5-7 USEPA Johnson & Ettinger Vapor Modeling Results for Indoor Air from Groundwater Monitoring Wells GMW-5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Parameter	Chemical Concentration in Groundwater (mg/L)	Modeled Chemical Concentration in Indoor Air from Groundwater (mg/m ³)
1 d Dichloroethene	0.005+00	
1,1-Dichloroethene	3.92E+00	1.29E-01
cis-1,2-Dichloroethene	1.72E+01	7.46E-02
trans-1,2-Dichloroethene	4.00E-02	4.11E-04
Tetrachloroethene	4.28E+01	6.97E-01
Trichloroethene	1.74E+01	2.00E-01
Vinyl Chloride	7.02E-01	2.82E-02

Notes:

Modeled chemical concentrations in air from groundwater taken from Appendix B. mg/m³ - milligrams per cubic meter

mg/L - milligrams per liter

Table 5-8 Volatilization Factor to Outdoor Air from Groundwater * **Perkin Elmer Missouri Metals Site Overland**, Missouri

Equation:

$$VF_{wamb} \left[\frac{L}{m^3} \right] = \frac{H}{1 + \left[\frac{U_{air} \times S_{air} \times L_{gw}}{W \times D_{ws}^{eff}} \right]} \times 10^3 \frac{L}{m^3}$$

Where:

VFwamb = Volatilization factor from groundwater to outdoor air (Liters per cubic meter [L/m³])

- H' = Henry's law constant (unitless)
- Uair = Wind speed above ground surface in ambient mixing zone (centimeters per second [cm/s])

cm (default breathing zone height, MDNR, 2005)

Sair = Ambient air mixing zone height (centimeters [cm])

cm (See Text)

- Lgw = Depth to groundwater, which = hcap + hv (cm)
- W = Width of source area parallel to wind, or groundwater flow direction (cm)
- Deffws = Effective diffusion coefficient between groundwater and soil surface (squared centimeters per second [cm²/s])

Variables:

VFwamb = Calculated

200

- H' = Chemical-specific (USEPA, 1996) cm/s (MDNR, 2005) 469
- Uair =
- Sair =
- Lgw = 457
 - W= 4267 cm (Site-specific)

Deffws = Calculated (See Table 5-9)

	H'	Deffws	VFwamb
Chemical	(unitless)	(cm²/s)	(L/m³)
1,1-Dichloroethene	1.07E+00	1.90E-03	2.02E-04
cis-1,2-Dichloroethene	1.67E-01	1.59E-03	2.65E-05
trans-1,2-Dichloroethene	3.85E-01	1.51E-03	5.78E-05
Tetrachloroethene	7.54E-01	1.52E-03	1.14E-04
Trichloroethene	4.22E-01	1.68E-03	7.04E-05
Vinyl chloride	1.11E+00	2.23E-03	2.46E-04

*ASTM, 1995

Table 5-9 Effective Diffusion Coefficient Between Groundwater and Soil Surface* Perkin Elmer Missouri Metals Site Overland, Missouri

Equation:

$$D_{ws}^{eff}\left[\frac{cm^{2}}{s}\right] = \frac{\left(h_{cap} + h_{v}\right)}{\left[\frac{h_{cap}}{D_{cap}^{eff}} + \frac{h_{v}}{D_{cap}^{eff}}\right]}$$

Where:

Deffws = Effective diffusion coefficient between groundwater and soil surface (squared centimeters per second [cm²/s])

hcap = Thickness of capillary fringe (centimeters [cm])

hv = Thickness of vadose zone (cm)

Deffcap = Effective diffusion coefficient through capillary fringe (cm²/s)

Deffs = Effective diffusion coefficient in soil based on vapor-phase concentration (cm²/s)

Variables:

Deffws = Calculated

hcap = 30 cm (See Appendix B)

hv = 427.2 cm

Deffcap = Chemical-specific (See Table 5-10)

Deffs = Chemical-specific (See Table 5-11)

	Deffcap	Deffs	Deffws
Chemical	(cm²/s)	(cm²/s)	(cm²/s)
1,1-Dichloroethene	2.29E-04	3.90E-03	1.90E-03
cis-1,2-Dichloroethene	1.96E-04	3.19E-03	1.59E-03
trans-1.2-Dichloroethene	1.84E-04	3.06E-03	1.51E-03
Tetrachloroethene	1.84E-04	3.12E-03	1.52E-03
Trichloroethene	2.03E-04	3.42E-03	1.68E-03
Vinyl chloride	2.68E-04	4.59E-03	2.23E-03

*ASTM, 1995

Table 5-10 Effective Diffusion Coefficient Through Capillary Fringe* Perkin Elmer Missouri Metals Site Overland, Missouri

Equation:

$$\mathbf{D}_{cap}^{eff}\left[\frac{cm^{2}}{s}\right] = \mathbf{D}^{i} \frac{\Theta_{acap}^{3.33}}{\Theta_{T}^{2}} + \left(\mathbf{D}^{w} \times \frac{1}{H'} \times \frac{\Theta_{wcap}^{3.33}}{\Theta_{T}^{2}}\right)$$

Where:

Deffcap = Effective diffusion coefficient through capillary fringe (squared centimeters per second [cm²/s]) Di = Diffusion coefficient in air (cm²/s)

Dw = Diffusion coefficient in water (cm²/s)

Owcap = Water-filled porosity in capillary fringe soils (L/L)

Ot = Total soil porosity (L/L)

H' = Henry's law constant (unitless)

Variable Values:

Deffcap = Calculated Di = Chemical-specific (USEPA, 1996) Oacap = 0.104 L/L (See Appendix B) Dw = Chemical-specific (USEPA, 1996) Owcap = 0.355 L/L (See Appendix B) Ot = 0.459 L/L (See Appendix B) H' = Chemical-specific (USEPA, 1996)

	Di	Dw	H,	Deffcap
Chemical	(cm²/s)	(cm²/s)	(unitless)	(cm²/s)
1,1-Dichloroethene	9.00E-02	1.04E-05	1.07E+00	2.29E-04
cis-1,2-Dichloroethene	7.36E-02	1.13E-05	1.67E-01	1.96E-04
trans-1,2-Dichloroethene	7.07E-02	1.19E-05	3.85E-01	1.84E-04
Tetrachloroethene	7.20E-02	8.20E-06	7.54E-01	1.84E-04
Trichloroethene	7.90E-02	9.10E-06	4.22E-01	2.03E-04
Vinyl chloride	1.06E-01	1.23E-06	1.11E+00	2.68E-04

* ASTM, 1995

Table 5-11 Effective Diffusion Coefficient Through Soil* Perkin Elmer Missouri Metals Site Overland, Missouri

Equation:

$$\mathbf{D}_{s}^{\text{eff}}\left[\frac{\text{cm}^{2}}{\text{s}}\right] = \mathbf{D}^{i} \frac{\Theta_{as}^{3.33}}{\Theta_{T}^{2}} + \left(\mathbf{D}^{w} \times \frac{1}{\text{H}'} \times \frac{\Theta_{ws}^{3.33}}{\Theta_{T}^{2}}\right)$$

Where:

Deffs = Effective diffusion coefficient in soil (squared centimeters per second [cm²/s])

Di = Diffusion coefficient in air (cm²/s)

Oas = Air-filled porosity in vadose zone soils (liters per liter [L/L])

Dw = Diffusion coefficient in water (cm²/s)

Ows = Water-filled porosity in vadose zone soils (L/L)

Ot = Total soil porosity (L/L)

H' = Henry's law constant (unitless)

Variable Values:

Deffs = Calculated

Di = Chemical-specific (USEPA, 1996)

- Oas = 0.244 L/L (See Appendix B)
- Dw = Chemical-specific (USEPA, 1996)
- Ows = 0.215 L/L (See Appendix B)
 - Ot = 0.459 L/L (See Appendix B)
 - H' = Chemical-specific (USEPA, 1996)

	Di	Dw	H	Deffs
Chemical	(cm²/s)	(cm²/s)	(unitless)	(cm²/s)
1,1-Dichloroethene	9.00E-02	1.04E-05	1.07E+00	3.90E-03
cis-1,2-Dichloroethene	7.36E-02	1.13E-05	1.67E-01	3.19E-03
trans-1,2-Dichloroethene	7.07E-02	1.19E-05	3.85E-01	3.06E-03
Tetrachioroethene	7.20E-02	8.20E-06	7.54E-01	3.12E-03
Trichloroethene	7.90E-02	9.10E-06	4.22E-01	3.42E-03
Vinyl chloride	1.06E-01	1.23E-06	1.11E+00	4.59E-03

*ASTM, 1995

Table 5-12 MRBCA Vapor Modeling Results for Outdoor Air from Groundwater Monitoring Wells GMW-3, 7, 8, & 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Parameter	Chemical Concentration In Groundwater (mg/L)	Volatilization Factor in Groundwater (L/m³)	Modeled Chemical Concentration in Outdoor Air from Groundwater (mg/m ³)
1,1-Dichloroethene	4.55E-01	2.02E-04	9.19E-05
cis-1,2-Dichloroethene	1.00E+01	2.65E-05	2.65E-04
trans-1,2-Dichloroethene	4.54E-01	5.78E-05	2.62E-05
Tetrachloroethene	3.51E-01	1.14E-04	4.00E-05
Trichloroethene	1.81E+00	7.04E-05	1.27E-04
Vinyl Chloride	4.53E-01	2.46E-04	1.11E-04

Notes:

Modeled chemical concentration in outdoor air from groundwater calculated by multiplying the chemical concentration in groundwater by the volatilaization factor in groundwater.

L/m³ - liters per cubic meter

mg/L - milligrams per liter

mg/m³ - milligrams per cubic meter

Table 5-13 MRBCA Vapor Modeling Results for Outdoor Air from Groundwater Monitoring Wells GMW-5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Parameter	Chemical Concentration In Groundwater (mg/L)	Volatilization Factor in Groundwater (⊔/m³)	Modeled Chemical Concentration in Outdoor Air from Groundwater (mg/m ³)
1,1-Dichloroethene	3.92E+00	1.90E-03	7.45E-03
cis-1,2-Dichloroethene	1.72E+01	1.59E-03	2.73E-02
trans-1,2-Dichloroethene	4.00E-02	1.51E-03	6.04E-05
Tetrachloroethene	4.28E+01	1.52E-03	6.51E-02
Trichloroethene	1.74E+01	1.68E-03	2.92E-02
Vinyl Chloride	7.02E-01	2.23E-03	<u>1.57E-03</u>

Notes:

Modeled chemical concentration in outdoor air from groundwater calculated by multiplying the chemical concentration in groundwater by the volatilaization factor in groundwater.

L/m³ - liters per cubic meter

mg/L - milligrams per liter

mg/m3 - milligrams per cubic meter

Table 6-1 Hazard Index Estimates for Indoor Commercial/Industrial Worker Scenario Monitoring Wells GMW-3, 7, 8, & 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical Exposure Pathway: Inhalal	Dally Intake (mg/kg/day) ion of Indoor Al	RfD (mg/kg/day) r (Vapor Intrusio	Hazard Quotient on) (GMW-3, 7, 8	Pathway Hazard Index 3, & 9)	Total Hazard Index
Volatiles					
1,1-Dichloroethene	7.4E-04	6E-02	1E-02		
cis-1,2-Dichloroethene	2.2E-03	NAv	NAp		
trans-1,2-Dichloroethene	2.3E-04	NAv	NAp		-
Tetrachloroethene	2.8E-04	1E-02	3E-02		
Trichloroethene	9.2E-04	2E-01	5E-03		
Vinvi Chloride	9.0E-04	3E-02	3E-02		
				8E-02	
					8E-02

Notes:

NAv - Not available NAp - Not applicable

1

Table 6-2 Hazard Index Estimates for Indoor Commercial/Industrial Worker Scenario Monitoring Wells GMW-5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical Exposure Pathway: Inhalai	Daily Intake (mg/kg/day) ion of Indoor Al	RfD (mg/kg/day) r (Vapor intrusio	Hazard Quotlent on) (GMW-5 & 6)	Pathway Hazard Index	Total Hazard Index
Volatiles					
1,1-Dichloroethene	6.4E-03	6E-02	1E-01		
cis-1,2-Dichloroethene	3.7E-03	NAv	NAp		
trans-1,2-Dichloroethene	2.0E-05	NAv	NAp		
Tetrachloroethene	3.5E-02	1E-02	3E+00		
Trichloroethene	9.9E-03	2E-01	5E-02		
Vinyl Chloride	1.4E-03	3E-02	5E-02		
				4E+00	
					4E+00

Notes:

NAv - Not available NAp - Not applicable

Table 6-3

Excess Lifetime Cancer Risk Estimate for Indoor Commercial/Industrial Worker Scenario Monitoring Wells GMW-3, 7, 8, & 9 Perkin Elmer Missouri Metals Site Overland, Missouri

	Daily Intake	Slope Factor	Excess Cancer	Pathway Cancer	Total Cancer
Chemical	(mg/kg/day)	(mg/kg/day)-1	Risk	Risk	Risk
Exposure Pathway: Inha	alation of Indoor A	ir (Vapor Intrusio	n) (GMW-3, 7,	8, & 9)	
Volatiles					
1,1-Dichloroethene	2.6E-04	NAv	NAp		
Tetrachloroethene	1.0E-04	1E-02	1E-06		
Trichloroethene	3.3E-04	7E-03	2E-06		
Vinyl Chloride	3.2E-04	2E-02	5E-06		
				8E-06	
					8E-06

Notes:

NAv - Not available

Table 6-4

Excess Lifetime Cancer Risk Estimate for Indoor Commercial/Industrial Worker Scenario Monitoring Wells GMW-5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical	Daily Intake (mg/kg/day)	Slope Factor (mg/kg/day)-1	Excess Cancer Risk	Pathway Cancer Risk	Total Cancer Risk
Exposure Pathway: Inha	alation of Indoor A	ir (Vapor Intrusio			Nish
Volatiles					
1,1-Dichloroethene	2.3E-03	NAv	NAp		
Tetrachloroethene	1.2E-02	1E-02	1E-04		
Trichloroethene	3.5E-03	7E-03	2E-05		
Vinyl Chloride	5.0E-04	2E-02	8E-06		
4				2E-04	
					2E-04

Notes:

NAv - Not available

Table 6-5 Hazard Index Estimates for Outdoor Commercial/Industrial Worker Scenario Monitoring Wells GMW-3, 7, 8, & 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical	Daily Intake (mg/kg/day)	RfD .(mg/kg/day)	Hazard Quotient	Pathway Hazard Index	Total Hazard Index
Exposure Pathway: Inhalat	tion of Outdoor	Vapors (GMW-3	, 7, 8, & 9)	-	
Volatiles					
1,1-Dichloroethene	4.7E-06	6E-02	8E-05		
cis-1,2-Dichloroethene	1.3E-05	NAv	NAp		
trans-1,2-Dichloroethene	1.3E-06	NAv	NAp		
Tetrachloroethene	2.0E-06	1E-02	2E-04		
Trichloroethene	6.5E-06	2E-01	3E-05		
Vinyl Chloride	5.7E-06	3E-02	2E-04		
				5E-04	
			•		5E-04

Notes:

NAv - Not available NAp - Not applicable

EPA ARCHIVE DOCUMENT

Table 6-6 Hazard Index Estimates for Outdoor Commercial/Industrial Worker Scenario Monitoring Wells GMW-5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical	Daily Intake (mg/kg/day)	RfD (mg/kg/day)	Hazard Quotient	Pathway Hazard Index	Total Hazard Index
Exposure Pathway: Inhala	tion of Outdoor	Vapors (GMW-5	& 6)		
Volatiles					
1,1-Dichloroethene	3.8E-04	6E-02	6E-03		
cis-1,2-Dichloroethene	1.4E-03	NAv	NAp		
trans-1,2-Dichloroethene	3.1E-06	NAv	NAp		
Tetrachloroethene	3.3E-03	1E-02	3E-01		
Trichloroethene	1.5E-03	2E-01	7E-03		
Vinyl Chloride	8.0E-05	3E-02	3E-03		
		·····		3E-01	
					3E-01

Notes:

NAv - Not available

Table 6-7

Excess Lifetime Cancer Risk Estimate for Outdoor Commercial/Industrial Worker Scenario Monitoring Wells GMW-3, 7, 8, & 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical	Daily Intake (mg/kg/day)	Slope Factor (mg/kg/day)-1	Excess Cancer Risk	Pathway Cancer Risk	Total Cancer Risk
Exposure Pathway: Inha	alation of Outdoor	Vapors (GMW-3,	7, 8, & 9)		
Volatiles					
1,1-Dichloroethene	1.7E-06	NAv	NAp		
Tetrachloroethene	7.3E-07	1E-02	7E-09		
Trichloroethene	2.3E-06	7E-03	2E-08		
Vinyl Chloride	2.0E-06	2E-02	3E-08		
				5E-08	
					5E-08

Notes:

NAv - Not available

Table 6-8 Excess Lifetime Cancer Risk Estimate for Outdoor Commercial/Industrial Worker Scenario Monitoring Wells GMW-5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical	Daliy Intake (mg/kg/day)	Slope Factor (mg/kg/day)-1	Excess Cancer Risk	Pathway Cancer Risk	Total Cancer Risk
Exposure Pathway: Inha	alation of Outdoor	Vapors (GMW-5	& 6)		
Volatiles			-		
1,1-Dichloroethene	1.4E-04	NAv	NAp		
Tetrachloroethene	1.2E-03	1E-02	1E-05		
Trichloroethene	5.3E-04	7E-03	4E-06		
Vinyl Chloride	2.8E-05	2E-02	4E-07		
				2E-05	
		T T		1	2E-05

Notes:

NAv - Not available

Table 6-9 Hazard Index Estimates for Construction Worker Scenario Monitoring Wells GMW-3, 7, 8, & 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical Exposure Pathway: Inhala	Daily Intake (mg/kg/day) lion of Outdoor	RfD (mg/kg/day) Vapors (GMW-3	Hazard Quotlent , 7, 8, & 9)	Pathway Hazard Index	Total Hazard Index
Volatiles					
1,1-Dichloroethene	1.9E-05	6E-02	3E-04		
cis-1,2-Dichloroethene	5.5E-05	NAv	NAp		
trans-1,2-Dichloroethene	5.4E-06	NAv	NAp		
Tetrachloroethene	8.3E-06	1E-02	8E-04		
Trichloroethene	2.6E-05	2E-01	1E-04		
Vinyl chloride	2.3E-05	3E-02	8E-04		
				2E-03	
					2E-03

Notes:

NAv - Not available NAp - Not applicable

Table 6-10 Hazard Index Estimates for Construction Worker Scenario Monitoring Wells GMW-5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical Exposure Pathway: Inhalai	Daily Intake (mg/kg/day) lon of Outdoor	RfD (mg/kg/day) Vapors (GMW-5	Hazard Quotient & 6)	Pathway Hazard Index	Total Hazard Index
Volatiles					
1,1-Dichloroethene	1.5E-03	6E-02	3E-02		
cis-1,2-Dichloroethene	5.6E-03	NAv	NAp		
trans-1,2-Dichloroethene	1.2E-05	NAv	NAp	l í	
Tetrachloroethene	1.3E-02	1E-02	1E+00		
Trichloroethene	6.0E-03	2E-01	3E-02		
Vinyl chloride	3.2E-04	3E-02	1E-02		
				1E+00	
· · · · · · · · · · · · · · · · · · ·					1E+00

Notes:

NAv - Not available NAp - Not applicable

Table 6-11 Excess Lifetime Cancer Risk Estimate for Construction Worker Scenario Monitoring Wells GMW-3, 7, 8, & 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical Exposure Pathway: Inha	Daily Intake (mg/kg/day)	Slope Factor (mg/kg/day)-1	Excess Cancer Risk	Pathway Cancer Risk	Total Cancer Risk
	alation of Outdoor	vapors (Givivv-3,	7, 8, 6, 9]	· · · · · · · · · · · · · · · · · · ·	
Volatiles					
1,1-Dichloroethene	1.3E-07	NAv	NAp		
Tetrachloroethene	5.8E-08	1E-02	6E-10		
Trichloroethene	1.9E-07	7E-03	1E-09]	
Vinyl Chloride	1.6E-07	2E-02	2E-09		
				4E-09	
					4E-09

Notes:

NAv - Not available

Table 6-12 Excess Lifetime Cancer Risk Estimate for Construction Worker Scenario Monitoring Wells GMW-5 & 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Chemical	Daily Intake (mg/kg/day)	Slope Factor (mg/kg/day)-1	Excess Cancer Risk	Pathway Cancer Risk	Total Cancer Risk
Exposure Pathway: Inha	alation of Outdoor	Vapors (GMW-5	& 6)		
Volatiles					
1,1-Dichloroethene	1.1E-05	NAV	NAp		
Tetrachloroethene	9.5E-05	1E-02	9E-07)	
Trichloroethene	4.2E-05	7E-03	3E-07		
Vinyl Chloride	2.3E-06	2E-02	4E-08		
				1E-06	
					1E-06

Notes:

NAv - Not available

Table 7-1 Allowable Chemical Concentrations in Groundwater for Noncancer Effects Indoor Commercial/Industrial Worker Scenario Perkin Elmer Missouri Metals Site Overland, Missouri

Equation:

C =

THI x BW x AT

ED x EF x ET x IRa x VF x (1/RfDi)

		Indoor
Variables:		Worker
C =	Allowable concentration in groundwater (mg/L)	Chemical-specific
THI =	Target hazard index (unitless)	1
BW =	Body weight (kg)	70
AT =	Averaging time (days)	9,125
ED =	Exposure duration (years)	25
EF =	Exposure frequency (days/year)	250
ET =	Exposure time (hours/day)	8
IRa =	Inhalation rate of air (m³/hr)	0.633
VF =	Volatilization factor for indoor air (L/m ³)	Chemical-specific
RfDi =	Inhalation reference dose (mg/kg/day)	Chemical-specific

Chemicals with a Hazard Index Over 0.1	VF (L/m³)	RfDi (mg/kg/day)	Allowable Chemical Concentration in Groundwater (mg/L)
1,1-Dichloroethene	3.28E-02	6E-02	3.69E+01
Tetrachloroethene	1.63E-02	1E-02	1.24E+01

Note:

VF values obtained from USEPA's Johnson & Ettinger Spreadsheets (See Appendix C).

Table 7-2 Allowable Chemical Concentrations in Groundwater for Cancer Effects Indoor Commercial/Industrial Worker Scenario Perkin Elmer Missouri Metals Site Overland, Missouri

Equation:

C =

TR x BW x AT ED x EF x ET x IRa x VF x SFi

Indoor Variables: Worker C = Allowable concentration in groundwater (mg/L) Chemical-specific TR = Target risk level (unitless) 1E-05 BW = Body weight (kg) 70 AT = Averaging time (days) 25,550 ED = Exposure duration (years) 25 EF = Exposure frequency (days/year) 250 ET = Exposure time (hours/day) 8 IRa = Inhalation rate of air (m³/hr) 0.633 VF = Volatilization factor for indoor air (L/m³) Chemical-specific SFi = Inhalation slope factor 1/(mg/kg/day) Chemical-specific

Chemicals with a Cancer Risk of Over 1E-07	VF (Ľ/m³)	SFi 1/(mg/kg/day)	Allowable Chemical Concentration in Groundwater (mg/L)
Tetrachloroethene	1.63E-02	2E-02	1.65E+00
Trichloroethene	1.03E-02	7E-03	7.84E+00
Vinyl Chloride	4.02E-02	2E-02	9.13E-01

Note:

VF values obtained from USEPA's Johnson & Ettinger Spreadsheets (See Appendix C).

Table 7-3 Allowable Chemical Concentration in Groundwater for Cancer Effects Outdoor Commercial/Industrial Worker Scenario Perkin Elmer Missouri Metals Site Overland, Missouri

Equation:

C = TR x BW x AT ED x EF x ET x IRa x VF x SFi

		Outdoor
Variables:		<u>Worker</u>
C =	Allowable concentration in groundwater (mg/L)	Chemical-specific
TR =	Target risk level (unitless)	1E-05
BM =	Body weight (kg)	70
AT =	Averaging time (days)	25,550
ED =	Exposure duration (years)	25
EF =	Exposure frequency (days/year)	125
ET =	Exposure time (hours/day)	8
IRa =	Inhalation rate of air (m3/hr)	1.3
VF =	Volatilization factor for outdoor air (L/m ³)	Chemical-specific
SFi =	Inhalation slope factor 1/(mg/kg/day)	Chemical-specific

Chemicals with a Cancer Risk of Over 1E-07	VF (L/m³)	SFi 1/(mg/kg/day)	Allowable Chemical Concentration in Groundwater (mg/L)
Tetrachloroethene	1.14E-04	2E-02	2.30E+02
Trichloroethene	7.04E-05	7E-03	1.12E+03

Note:

VF values obtained from Table 5-8.

Table 7-4 Allowable Chemical Concentrations in Groundwater for Noncancer Effects Construction Worker Scenario Perkin Elmer Missouri Metals Site Overland, Missouri

Equation:

C =

THI x BW x AT ED x EF x ET x IRa x VF x (1/RfDi)

Variables;		Construction <u>Worker</u>
C =	Allowable concentration in groundwater (mg/L)	Chemical-specific
THI =	Target hazard index (unitless)	1
BM =	Body weight (kg)	70
AT =	Averaging time (days)	180
ED =	Exposure duration (years)	1
EF =	Exposure frequency (days/year)	130
ET =	Exposure time (hours/day)	8
lRa =	Inhalation rate of air (m³/hr)	2.5
VF ≂	Volatilization factor for outdoor air (L/m ³)	Chemical-specific
	Inhalation reference dose (mg/kg/day)	Chemical-specific
		Allowable

Chemicals with a Hazard Index	VF	RfDi	Chemical Concentration in Groundwater
Over 0.1	(L/m³)	(mg/kg/day)	(mg/L)
Tetrachloroethene		6E-02	2.55E+03

Note:

VF value obtained from Table 5-8.

Table 7-5 Allowable Chemical Concentrations in Groundwater for Cancer Effects **Construction Worker Scenario Perkin Elmer Missouri Metals Site Overland**, Missouri

Equation:

C =	TR x BW x AT
	ED x EF x ET x IRa x VF x SFi

Variables:		Construction <u>Worker</u>
C =	Allowable concentration in groundwater (mg/L)	Chemical-specific
TR =	Target risk level (unitless)	1E-05
8W =	Body weight (kg)	70
AT =	Averaging time (days)	25,550
ED =	Exposure duration (years)	1
EF =	Exposure frequency (days/year)	130
ET =	Exposure time (hours/day)	8
IRa =	Inhalation rate of air (m3/hr)	2.5
VF =	Volatilization factor for outdoor air (L/m ³)	Chemical-specific
SFi =	Inhalation slope factor 1/(mg/kg/day)	Chemical-specific
		Allowable

Chemicals with a Cancer Risk of Over 1E-07	VF (L/m³)	SFi 1/(mg/kg/day)	Allowable Chemical Concentration in Groundwater (mg/L)
Tetrachloroethene	1.14E-04	2E-02	2.87E+03
Trichloroethene	7.04E-05	7E-03	1.40E+04

Note: VF values obtained from Table 5-8.

Table 7-6

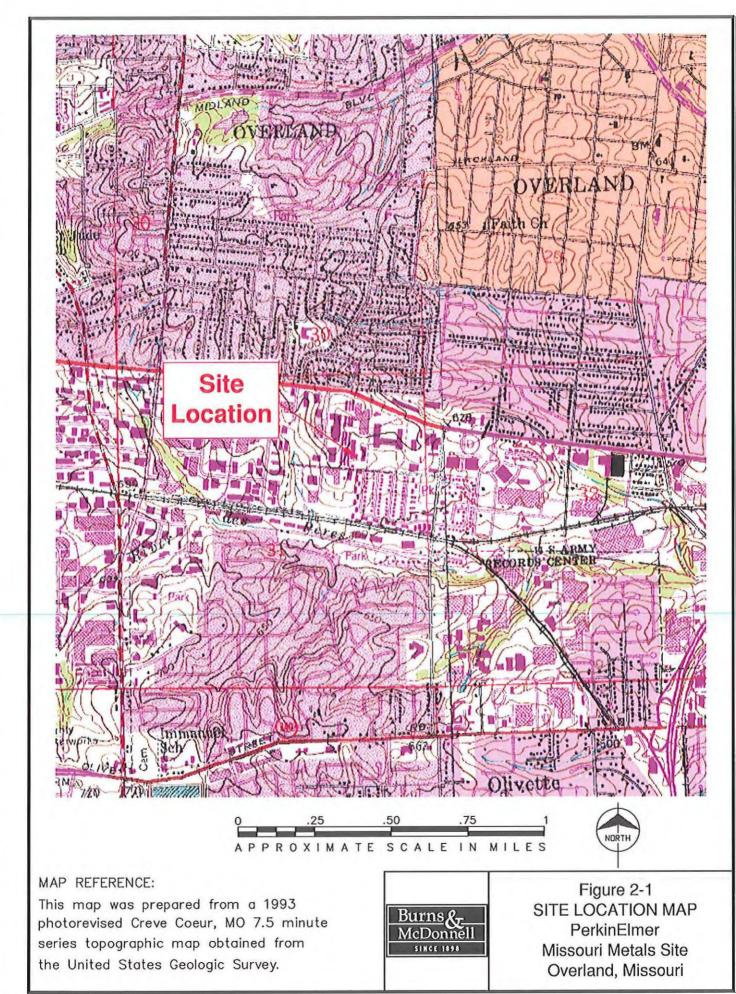
Preliminary Remediation Goals in Groundwater for Commercial/Industrial Land Use Based on Target Cancer Risk Level of 1E-07 and Target Hazard Quotient of 0.1 Perkin Elmer Missouri Metals Site Overland, Missouri

	Indoor (mç	[/L.)	Outdoor Worker (mg/L)	(m)	on Worker	Recommended Preliminary Remediation Goals
Chemical	Noncancer	Cancer	Cancer	Noncancer	Cancer	(mg/L)
Volatile Organic Compour	nds					
1,1-Dichloroethene	3.69E+01	NA	NA	NA	NA	3.69E+01
Tetrachloroethene	1.24E+01	1.65E+00	2.30E+02	2.55E+03	2.87E+03	1.65E+00
Trichloroethene	NA	7.84E+00	1.12E+03	NA	1.40E+04	7.84E+00
Vinyl Chloride	NA	9.13E-01	NA	NA	NA	9.13E-01

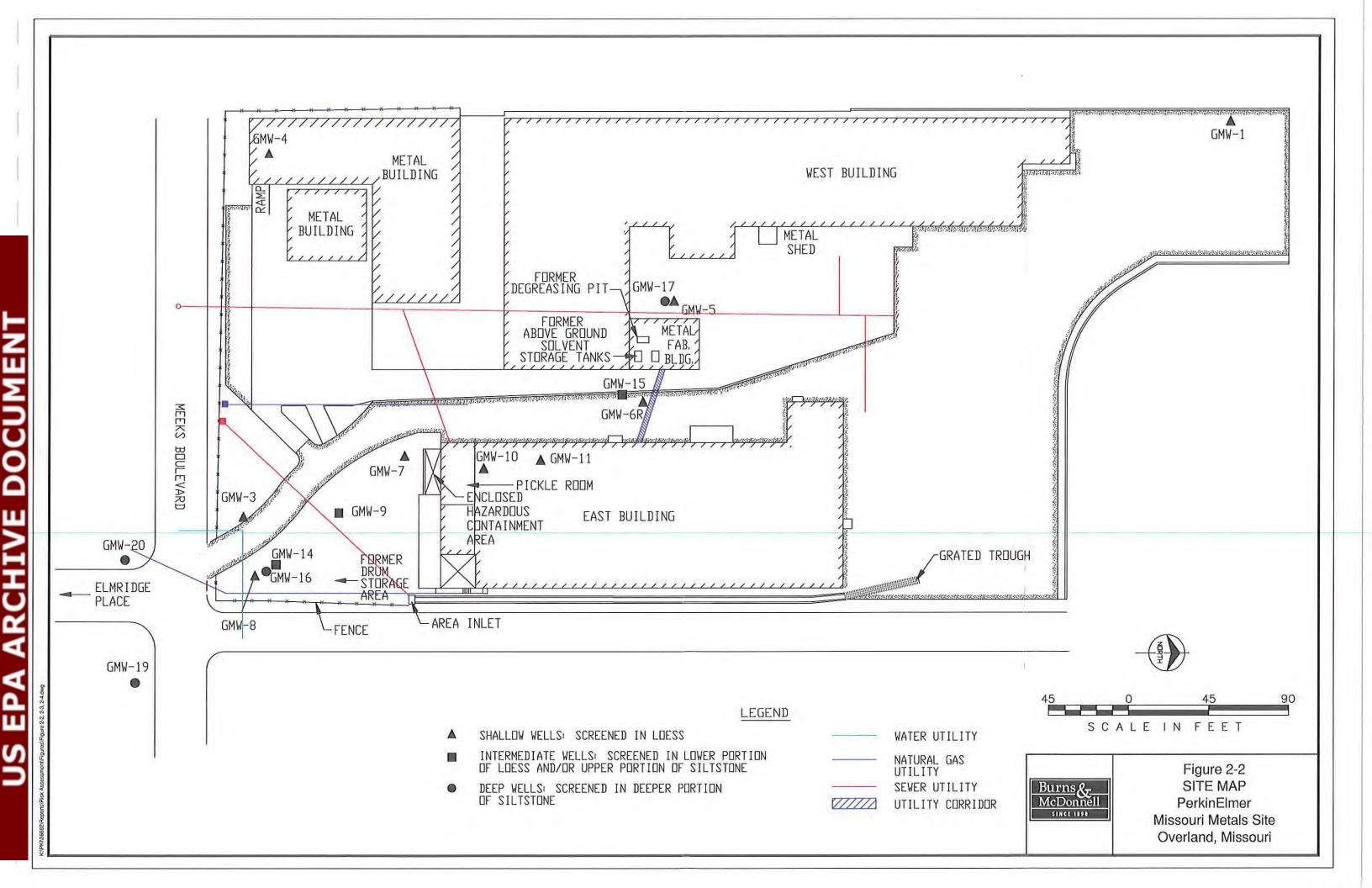
Notes:

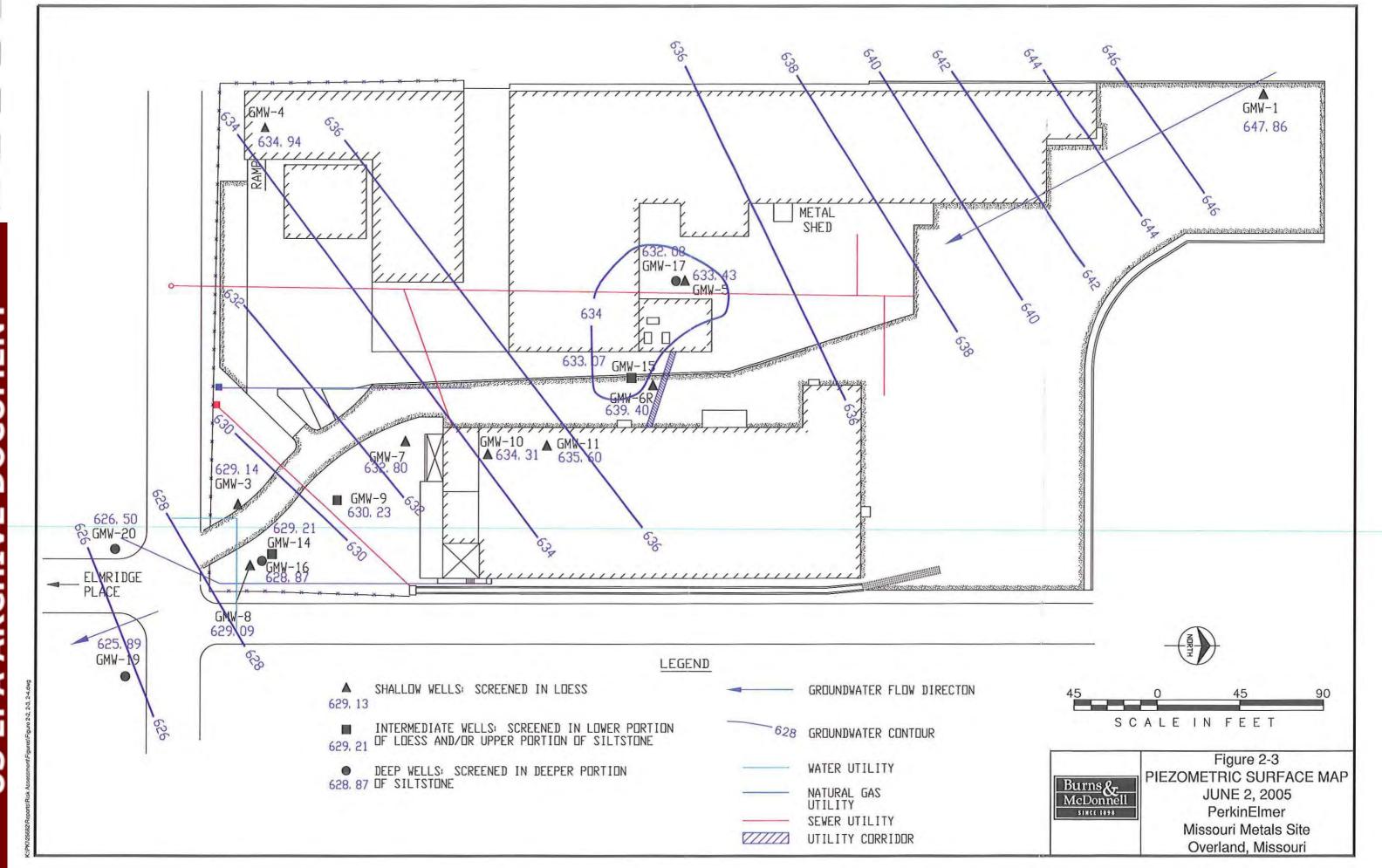
Preliminary Remediation Goals (PRGs) were calculated only for those scenarios resulting in a noncancer hazard quotient greater than or equal to one or a cancer risk greater than or equal to 1E-06. PRGs were not calculated for noncancer effects to outdoor workers because the total hazard index was less than 1.

Recommended PRG represents the most conservative value calculated for a given chemical.

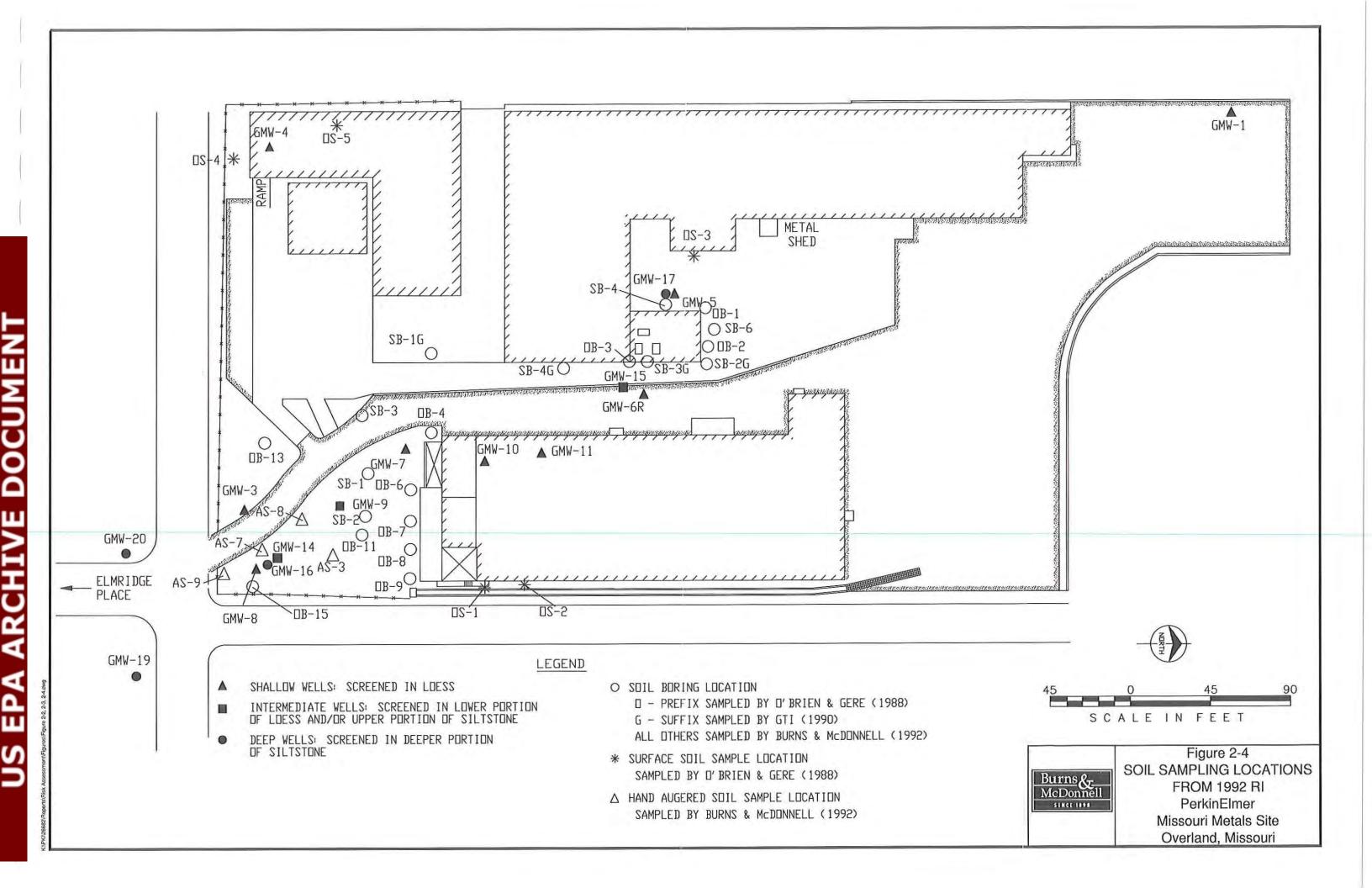

NA - PRG not calculated because the individual chemical hazard quotient or cancer risk value was below 0.1 or 1E-07, respectively.

US EPA ARCHIVE DOCUMEN


. . .


FIGURES

· · · ·



EPA ARCHIVE DOCUMENT Ĕ

S EPA ARCHIVE DOCUMEN

Appendix A USEPA ProUCL Version 3.00.02 Statistical Output Sheets

Monitoring Wells GMW-3, 7, 8, & 9

				–		
Raw Statistics				istribution T	est	
Number of Valid Samples	17		-Wilk Test			0.48139
Number of Unique Samples	12			ritical Value		0.89
Minimum	0	Data no	t normal at	5% signific	ance level	·
Maximum	1.25					
Mean	0.140959		` <u>`</u>	uming Norr	nal Distribu	
Median	0.05	Student	s-t UCL			0.2666
Standard Deviation	0.296881					
Variance	0.088138		·			
Coefficient of Variation	2.106151		-			
Skewness	3.646452					
	<u> </u>					
Lognormal Statistics Not Av	vailable					
Lognormal Statistics Not Av	/ailable			arametric U	CLs	
Lognormal Statistics Not Av	ailable	CLT UC	Ĺ			
Lognormal Statistics Not Av		CLT UC Adj-CLT	L UCL (Adju	isted for ske	ewness)	0.32743
Lognormal Statistics Not Av	vailable	CLT UC Adj-CLT Mod-t U	L UCL (Adju CL (Adjuste		ewness)	0.32743
Lognormal Statistics Not Av		CLT UC Adj-CLT Mod-t U Jackknit	L UCL (Adju CL (Adjuste e UCL	isted for ske ed for skew	ewness)	0.25939 0.32743 0.27728 0.2666
Lognormal Statistics Not Av		CLT UC Adj-CLT Mod-t U Jackknit Standar	L UCL (Adju CL (Adjuste e UCL d Bootstrap	isted for ske ed for skew	ewness)	0.32743 0.27728 0.2666 0.258310
		CLT UC Adj-CLT Mod-t U Jackknit Standar Bootstra	L UCL (Adju CL (Adjuste e UCL d Bootstrap p-t UCL	isted for skew ed for skew 0 UCL	ewness)	0.32743 0.27728 0.2666 0.25831 0.5574
RECOMMENDATION		CLT UC Adj-CLT Mod-t U Jackknit Standar Bootstra Hall's Bo	L UCL (Adju CL (Adjusto e UCL d Bootstrap p-t UCL potstrap UC	isted for skew ed for skew 0 UCL CL	ewness)	0.32743 0.27728 0.2666 0.258310 0.5574 0.671610
		CLT UC Adj-CLT Mod-t U Jackknii Standar Bootstra Hall's Bo Percent	L UCL (Adju CL (Adjusto e UCL d Bootstrap op-t UCL potstrap UC le Bootstra	isted for skew ed for skew 0 UCL 0L p UCL	ewness)	0.32743 0.27728 0.2666 0.258310 0.5574 0.671610 0.27531
RECOMMENDATION Data are Non-parametric	J (0.05)	CLT UC Adj-CLT Mod-t U Jackknit Standar Bootstra Hall's Bo Percent BCA Bo	L UCL (Adju CL (Adjuste e UCL d Bootstrap p-t UCL potstrap UC le Bootstra otstrap UC	isted for skew ed for skew 0 UCL 0 CL p UCL L	ewness) ness)	0.32743 0.27728 0.2666 0.258310 0.5574 0.671610 0.275311 0.3572
RECOMMENDATION	J (0.05)	CLT UC Adj-CLT Mod-t U Jackknit Standar Bootstra Hall's Bo Percent BCA Bo 95% Ch	L UCL (Adju CL (Adjuste e UCL d Bootstrap p-t UCL potstrap UC le Bootstra otstrap UC ebyshev (M	isted for skew o UCL CL p UCL L L lean, Sd) U	ewness) ness) 	0.32743 0.27728 0.2666 0.258310 0.5574 0.671610 0.275311 0.3572 0.454810
RECOMMENDATION Data are Non-parametric	J (0.05)	CLT UC Adj-CLT Mod-t U Jackknit Standar Bootstra Hall's Bo Percent BCA Bo 95% Ch 97.5% C	L UCL (Adju CL (Adjuste e UCL d Bootstrap p-t UCL potstrap UC le Bootstra otstrap UC ebyshev (M Chebyshev	isted for skew ed for skew 0 UCL 0 CL p UCL L	ewness) ness) CL UCL	0.32743 0.27728 0.2666

Raw Statistics			Normal (Distribution	Test	
Number of Valid Samples	17	Shapiro	-Wilk Test			0.63109
Number of Unique Samples	17			Critical Value	e	0.89
Minimum	0			5% signific		
Maximum	19				_	
Mean	3.638529	959	% UCL (As	suming Nor	mal Distribu	tion)
Median	0.831	Student	l's-t UCL			6.19716
Standard Deviation	6.042508					
Variance	36.5119					
Coefficient of Variation	1.660701					
Skewness	1.742804					
Lognormal Statistics Not A	vailable		[L		
Lognormal Statistics Not A	vailable		95% Non r			
Lognormal Statistics Not A	vailable			parametric L	JCLs	6.04910
Lognormal Statistics Not A	vailable	CLT UC)L			
Lognormal Statistics Not A	vailable	CLT UC Adj-CL1	CL FUCL (Adju	isted for ske	ewness)	6.71100
Lognormal Statistics Not A		CLT UC Adj-CL1	CL CUCL (Adju CL (Adjuste		ewness)	6.04910 6.71100 6.30040 6.19716
Lognormal Statistics Not A		CLT UC Adj-CL1 Mod-t U Jackkni	CL CUCL (Adju CL (Adjuste	isted for ske ed for skew	ewness)	6.71100 6.30040 6.19716
Lognormal Statistics Not A		CLT UC Adj-CL1 Mod-t U Jackkni Standar	CL CUCL (Adju ICL (Adjusto fe UCL	isted for ske ed for skew	ewness)	6.71100 6.30040 6.19716 5.98906
Lognormal Statistics Not A		CLT UC Adj-CLT Mod-t U Jackkni Standar Bootstra Hall's B	CL FUCL (Adjust ICL (Adjust fe UCL rd Bootstrap ap-t UCL ootstrap UC	isted for ske ed for skew o UCL CL	ewness)	6.71100 6.30040 6.19716 5.98906 8.33231
	N	CLT UC Adj-CL1 Mod-t U Jackkni Standar Bootstra Hall's B Percent	CL FUCL (Adjust fe UCL rd Bootstrap ap-t UCL ootstrap UC ille Bootstra	usted for ske ed for skew DUCL DL DL UCL_	ewness)	6.71100 6.30040 6.19716 5.98906 8.33231 6.12519 6.01041
RECOMMENDATIO Data are Non-parametric	N (0.05)	CLT UC Adj-CL1 Mod-t U Jackkni Standar Bootstra Hall's B Percent BCA Bo	CL CL (Adjuster CL (Adjuster fe UCL rd Bootstrap ap-t UCL ootstrap UC ille Bootstrap ootstrap UC	usted for skew o UCL CL up UCL L	ewness) ness)	6.71100 6.30040 6.19716 5.98906 8.33231 6.12519 6.01041 6.84688
RECOMMENDATIO	N (0.05)	CLT UC Adj-CL1 Mod-t U Jackkni Standar Bootstra Hall's B Percent BCA Bo 95% Ch	CL CL (Adjuster CL (Adjuster fe UCL rd Bootstrap ap-t UCL ootstrap UC ille Bootstra potstrap UC bebyshev (M	usted for skew o UCL CL up UCL L Mean, Sd) U	ewness) ness) JCL	6.71100 6.30040 6.19716 5.98906 8.33231 6.12519 6.01041 6.84688 10.026
RECOMMENDATIO Data are Non-parametric	N (0.05)	CLT UC Adj-CLT Mod-t U Jackkni Standar Bootstra Hall's B Percent BCA Bo 95% Ch 97.5% (CL CL (Adjuster CL (Adjuster fe UCL rd Bootstrap ap-t UCL ootstrap UC ile Bootstrap ootstrap UC bootstrap UC bootstrap UC bootstrap UC bootstrap UC bootstrap UC	usted for skew o UCL CL up UCL L	ewness) ness) JCL UCL	6.71100 6.30040

Raw Statistics			Normal D	istribution T	est	
Number of Valid Samples 17		Shapiro-Wilk Test Statisitic			0.481324	
Number of Unique Samples 9		Shapiro	-Wilk 5% C	ritical Value)	0.892
Minimum (Data no	t normal at	5% significa	ance level	
Maximum 1.						
Mean	0.140241			suming Norr	nal Distribu	tion)
Median	0.05	Student	's-t UCL			0.26608
Standard Deviation	0.297192		_			
Variance	0.088323					
Coefficient of Variation	2.119152					
Skewness	3.641734			_		
Gamma Statistics Not Avail						<u> </u>
Lognormal Statistics Not Avail			95% Non-n			
			95% Non-p	arametric U	CLs	0.25880
		CLT UC	<u>ل</u>			
		CLT UC Adj-CLT	L UCL (Adju	arametric U usted for ske ed for skew	ewness)	0.25880 0.32682 0.27669
		CLT UC Adj-CLT	L UCL (Adju CL (Adjusto	usted for ske	ewness)	0.32682
		CLT UC Adj-CLT Mod-t U Jackknii Standar	L UCL (Adju CL (Adjust fe UCL d Bootstrap	usted for ske ed for skew	ewness)	0.32682 0.27669 0.26608 0.25576
Lognormal Statistics Not Av	railable	CLT UC Adj-CLT Mod-t U Jackknii Standar Bootstra	L UCL (Adjust CL (Adjust fe UCL d Bootstrap ap-t UCL	usted for skewn ed for skewn o UCL	ewness)	0.32682 0.27669 0.26608 0.25576 0.57385
Lognormal Statistics Not Av		CLT UC Adj-CLT Mod-t U Jackknii Standar Bootstra Hall's B	L UCL (Adjust CL (Adjust fe UCL d Bootstrap ap-t UCL potstrap UC	usted for skewn ed for skewn o UCL	ewness)	0.32682 0.27669 0.26608 0.25576 0.57385 0.67588
Lognormal Statistics Not Av		CLT UC Adj-CLT Mod-t U Jackknii Standar Bootstra Hall's Bo Percent	L UCL (Adjust CL (Adjust fe UCL d Bootstrap ap-t UCL potstrap UC ile Bootstra	usted for skew ed for skew o UCL CL p UCL	ewness)	0.32682 0.27669 0.26608 0.25576 0.57385 0.67588 0.28013
Lognormal Statistics Not Av RECOMMENDATION Data are Non-parametric	vailable	CLT UC Adj-CLT Mod-t U Jackknii Standar Bootstra Hall's Bo Percent BCA Bo	L UCL (Adjust CL (Adjust fe UCL d Bootstrap ap-t UCL ootstrap UC ile Bootstra otstrap UC	usted for skew ed for skew o UCL CL p UCL L	ewness) ness)	0.32682 0.27669 0.26608 0.25576 0.57385 0.67588 0.28013 0.31877
Lognormal Statistics Not Av	vailable	CLT UC Adj-CLT Mod-t U Jackknii Standar Bootstra Hall's Bo Percent BCA Bo 95% Ch	UCL (Adju CL (Adjust fe UCL d Bootstrap ap-t UCL ootstrap UC ile Bootstra otstrap UC ebyshev (M	usted for skew ed for skew o UCL CL p UCL	ewness) ness) CL	0.32682

Data File K:\ENV\PERKINELM	ER INC\site\2	6682\Deliv	Variable:	Tetrachloro	pethene	
Raw Statistics	1. 1		Normal D	istribution T	oct	<u> </u>
Number of Valid Samples 17		Normal Distribution Test Shapiro-Wilk Test Statisitic			63(0.533507
Number of Unique Samples 15				ritical Value		0.892
Minimum 0						0.002
Maximum	0 Data not normal at 5% significance level 0.92		I			
Mean 0.117612		95%	6 UCL (Ass	uming Norn	nal Distribut	ion)
Median	0.05		's-t UCL			0.211044
Standard Deviation	0.220651					
Variance	0.048687					
Coefficient of Variation	1.876099					
Skewness	3.370769					
	•					
Gamma Statistics Not Availab	e					
	•					
Lognormal Statistics Not Avail	able					
	T F	ę	95% Non-p	arametric U	CLs	
		CLT UC				0.205637
		Adj-CLT	[•] UCL (Adju	isted for ske	wness)	0.252386
				ed for skewi	ness)	0.218336
		Jackknif	le UCL			0.211044
		Standar	d Bootstrap	UĈL		0.202457
			ip-t UCL			0.404301
RECOMMENDATION		Hail's Bootstrap UCL			0.494585	
Data are Non-parametric (0	.05)	Percentile Bootstrap UCL		0.214935		
			otstrap UC			0.274382
Use 95% Chebyshev (Mean, S	Sd) UCL	95% Ch	ebyshev (N	lean, Sd) U	CL	0.350882
		97.5% (Chebyshev	(Mean, Sd)	UCL	0.451818
		99% Ch	ebyshev (N	lean, Sd) U	CL	0.650087
· · · · · · · · · · · · · · · · · · ·						

Raw Statistics			Normal	Distribution 7	Test	
Number of Valid Samples		Shapiro-Wilk Test Statisitic			0.825846	
Number of Unique Samples 17				Critical Value	3	0.892
				5% signific		
Maximum	3.03			1		
Mean	0.887529	95%	% UCL (As	suming Nor	mal Distribut	tion)
Median	0.591		t's-t UCL			1.256374
Standard Deviation	0.87107					•
Variance	0.758763		<u> </u>			
Coefficient of Variation	0.981455		<u> </u>			
Skewness	1.420452		 			
Gamma Statistics Not Availa			-			
Lognormal Statistics Not Availa			95% Non-r	Darametric U		
		CLT UC			ICLS	1.2350
		CLT UC Adj-CL1)L F UCL (Adj	usted for sk	ewness)	
		CLT UC Adj-CL1)L F UCL (Adj		ewness)	1.312
		CLT UC Adj-CL1 Mod-t U Jackkni	CL FUCL (Adj ICL (Adjusi fe UCL	usted for skew	ewness)	1.2350 1.312 1.26850 1.256374
		CLT UC Adj-CL1 Mod-t U Jackkni Standar	CL FUCL (Adj ICL (Adjust fe UCL rd Bootstra	usted for skew	ewness)	1.312 1.26850 1.25637 1.22086
Lognormal Statistics Not Av		CLT UC Adj-CL1 Mod-t U Jackkni Standar Bootstra	CL FUCL (Adj ICL (Adjust fe UCL rd Bootstra ap-t UCL	usted for ske ted for skew p UCL	ewness)	1.312 1.26850 1.25637 1.22086 1.42658
Lognormal Statistics Not Av		CLT UC Adj-CLT Mod-t U Jackkni Standar Bootstra Hall's B	CL FUCL (Adj ICL (Adjust fe UCL rd Bootstra ap-t UCL ootstrap U	usted for skew led for skew p UCL CL	ewness)	1.312 1.26850 1.25637 1.22086 1.42658 1.3103
Lognormal Statistics Not Av		CLT UC Adj-CL1 Mod-t U Jackkni Standar Bootstra Hall's B Percent	CL FUCL (Adjust fe UCL rd Bootstra ap-t UCL ootstrap U lile Bootstra	usted for skew led for skew p UCL CL ap UCL	ewness)	1.312 1.26850 1.25637 1.22086 1.42658 1.3103 1.25329
Lognormal Statistics Not Av	ailable	CLT UC Adj-CL1 Mod-t U Jackkni Standar Bootstra Hall's B Percent BCA Bo	CL FUCL (Adjust fe UCL rd Bootstra ap-t UCL ootstrap U tile Bootstrap potstrap UC	usted for skew p UCL CL ap UCL	ewness) ness)	1.312 1.26850 1.25637 1.22086 1.42658 1.3103 1.25329 1.31411
Lognormal Statistics Not Av	ailable	CLT UC Adj-CL1 Mod-t U Jackkni Standar Bootstra Hall's B Percent BCA Bc 95% Ch	CL FUCL (Adjust fe UCL rd Bootstra ap-t UCL ootstrap UC iile Bootstra potstrap UC nebyshev (I	usted for skew led for skew p UCL CL ap UCL	ewness) ness) CL	1.312 1.26850 1.25637 1.22086 1.42658

Data File K:\ENV\PERKINELME	R INC\site\2	26682\DelivVariable: Vinyl Chloride	
Raw Statistics	r -	Normal Distribution Test	
Number of Valid Samples 17		Shapiro-Wilk Test Statisitic	0.621495
Number of Unique Samples 16		Shapiro-Wilk 5% Critical Value	0.892
Minimum 0		Data not normal at 5% significance level	
aximum 0.889		¥	
Mean 0.160465		95% UCL (Assuming Normal Distribut	ion)
Median	0.025	Student's-t UCL	0.277453
Standard Deviation	0.27628		
Variance	0.076331		
Coefficient of Variation	1.721751		
Skewness	1.861751		
Gamma Statistics Not Available	e		
		,	
Lognormal Statistics Not Availa	able		
	, <u> </u>		
		95% Non-parametric UCLs	
·······		CLT UCL	0.270683
	· _	Adj-CLT UCL (Adjusted for skewness)	0.303013
		Mod-t UCL (Adjusted for skewness)	0.282495
	}	Jackknife UCL	0.277453
	[- <u>-</u>	Standard Bootstrap UCL	0.267715
		Bootstrap-t UCL	0.353269
RECOMMENDATION	<u></u>	Hall's Bootstrap UCL	0.289396
Data are Non-parametric (0.		Percentile Bootstrap UCL	0.269529
		BCA Bootstrap UCL	0.314106
Use 95% Chebyshev (Mean, S		95% Chebyshev (Mean, Sd) UCL	0.452545
		97.5% Chebyshev (Mean, Sd) UCL	0.578928
······		99% Chebyshev (Mean, Sd) UCL	0.827184
	=		

Monitoring Wells GMW-5 & 6

Data File K:\ENV\PERKINELM		26682\Del Variable: 1,1-Dichloroethene (GMW-5 & 6)	<u> .</u>
Raw Statistics		Normal Distribution Test	<u> </u>
Number of Valid Samples	5	Shapiro-Wilk Test Statisitic	0.70276
Number of Unique Samples	5	Shapiro-Wilk 5% Critical Value	0.762
Minimum	0.0625	Data not normal at 5% significance leve	I
Maximum	2.5		
Mean	0.6825	95% UCL (Assuming Normal Distri	bution)
Median	0.125	Student's-t UCL	1.675712
Standard Deviation	1.041768		
Variance	1.085281	Gamma Distribution Test	·
Coefficient of Variation	1.5264	A-D Test Statistic	0.504621
Skewness	1.98798	A-D 5% Critical Value	0.70394
		K-S Test Statistic	0.329512
Gamma Statistics	1	K-S 5% Critical Value	0.368886
k hat	0.63808	Data follow gamma distribution	
k star (bias corrected)	0.388565	at 5% significance level	
Theta hat	1.069614		
Theta star	1.756461	95% UCLs (Assuming Gamma Distribu	
nu hat	6.380804	Adjusted Commo LICI	3.91857
nu star Approv Chi Squara Valua (05)	3.885655	Adjusted Gamma UCL	9.652081
Approx.Chi Square Value (.05) Adjusted Level of Significance	0.0086	Lognormal Distribution Test	
Adjusted Chi Square Value	0.274755	Shapiro-Wilk Test Statisitic	0.893408
Adjusted Chi Square Value	0.274755	Shapiro-Wilk 5% Critical Value	0.762
Log-transformed Statistics		Data are lognormal at 5% significance le	
Minimum of log data	-2.77259	Data are lognormal at 370 significance in	
Maximum of log data	0.916291	95% UCLs (Assuming Lognormal Dis	stribution)
Mean of log data	-1.34167	95% H-UCL	218.2735
Standard Deviation of log data	1.530799	95% Chebyshev (MVUE) UCL	2.190395
Variance of log data	2.343345	97.5% Chebyshev (MVUE) UCL	2.880224
		99% Chebyshev (MVUE) UCL	4.235262
		95% Non-parametric UCLs	
		CLT UCL	1.448826
		Adj-CLT UCL (Adjusted for skewness)	1.891408
		Mod-t UCL (Adjusted for skewness)	1.744746
		Jackknife UCL	1.675712
· · · · · · · · · · · · · · · · · · ·		Standard Bootstrap UCL	1.36915
		Bootstrap-t UCL	22.5555
RECOMMENDATION		Hall's Bootstrap UCL	12.58969
Data follow gamma distribut	ion (0.05)	Percentile Bootstrap UCL	1.525
		BCA Bootstrap UCL	1.65
Use Approximate Gamma U		95% Chebyshev (Mean, Sd) UCL	2.71328
	<u> </u>	97.5% Chebyshev (Mean, Sd) UCL	3.592001
	1 1	99% Chebyshev (Mean, Sd) UCL	5.318076

		(GMW-5 & 6)			
Raw Statistics		Normal Distribution Test			
Number of Valid Samples	5	Shapiro-Wilk Test Statisitic 0.803326			
Number of Unique Samples	5	Shapiro-Wilk 5% Critical Value 0.762			
Minimum	2.86	Data are normal at 5% significance level			
Maximum	23.3				
Mean	9.25	95% UCL (Assuming Normal Distri	bution)		
Median	4.82	Studen	17.23601		
Standard Deviation	8.376431				
Variance	70.1646	Gamma Distribution Test			
Coefficient of Variation	0.90556	A-D Test Statistic	0.400599		
Skewness	1.653283	A-D 5% Critical Value	0.684936		
		K-S Test Statistic	0.30848		
Gamma Statistics		K-S 5% Critical Value	0.360771		
k hat	1.874744	Data follow gamma distribution			
k star (bias corrected)	0.883231	at 5% significance level			
Theta hat	4.934007				
Theta star	10.47291	95% UCLs (Assuming Gamma Distrib			
nu hat	18.74744	Approximate Gamma UCL	25.33111		
nu star	8.83231	Adjusted Gamma UCL	42.22946		
Approx.Chi Square Value (.05)	3.225238				
Adjusted Level of Significance	0.0086	Lognormal Distribution Test			
Adjusted Chi Square Value	1.934642	Shapiro-Wilk Test Statisitic	0.930992		
		Shapiro-Wilk 5% Critical Value	0.762		
Log-transformed Statistics		Data are lognormal at 5% significance le	evel		
Minimum of log data	1.050822				
Maximum of log data	3.148453	95% UCLs (Assuming Lognormal Dis	stribution)		
Mean of log data	1.934812	95% H-UCL	54.19396		
Standard Deviation of log data	0.824911	95% Chebyshev (MVUE) UCL	23.04635		
Variance of log data	0.680478	97.5% Chebyshev (MVUE) UCL	29.13028		
		99%-Chebyshev (MVUE)-UCL	41.08098		
		95% Non-parametric UCLs			
		CLT UCL	15.41171		
		Adj-CLT UCL (Adjusted for skewness)	18.3712		
		Mod-t UCL (Adjusted for skewness)	17.69763		
		Jackknife UCL	17.23601		
		Standard Bootstrap UCL	14.76279		
		Bootstrap-t UCL	52.99168		
RECOMMENDATION		Hall's Bootstrap UCL	65.247		
Data are normal (0.05)		Percentile Bootstrap UCL	15.516		
		BCA Bootstrap UCL	13.368		
Use Student's-t UCL		95% Chebyshev (Mean, Sd) UCL	25.57867		
		97.5% Chebyshev (Mean, Sd) UCL	32.6441		
		99% Chebyshev (Mean, Sd) UCL	46.52277		

Data File K:\ENV\PERKINELM			
Raw Statistics	1 1	GMW 5 & 6) Normal Distribution Test	
	5		0.71085
Number of Valid Samples	5	Shapiro-Wilk Test Statisitic	0.71080
Number of Unique Samples Minimum		Shapiro-Wilk 5% Critical Value	0.76
	0.038	Data not normal at 5% significance level	
Maximum	2.5	05% LICL (Assuming Normal Distribu	dian)
Mean Median	0.6656	95% UCL (Assuming Normal Distribu Student's-t UCL	1.67053
Standard Deviation	0.125		
Variance	1.054061	Gamma Distribution Test	
	1.111044		0.43178
Coefficient of Variation	1.583625	A-D Test Statistic	
Skewness	1.964911	A-D 5% Critical Value	0.71000
Commo Statistico		K-S Test Statistic K-S 5% Critical Value	0.27404
Gamma Statistics	0.519709		0.37124
k hat	0.518798	Data follow gamma distribution at 5% significance level	
k star (bias corrected)	0.340853	at 5% significance level	
Theta hat Theta star	1.95275	OF% LICE A Accurring Commo Distribut	(an)
		95% UCLs (Assuming Gamma Distribut	
nu hat	5.187983	Approxi	4.51165
nu star	3.408527	Adjusted Gamma UCL	11.75
Approx.Chi Square Value (.05)	0.502857	Lessee and Distribution Test	
Adjusted Level of Significance	0.0086	Lognormal Distribution Test	0.00004
Adjusted Chi Square Value	0.193	Shapiro-Wilk Test Statisitic	0.89631
		Shapiro-Wilk 5% Critical Value	0.76
Log-transformed Statistics	0.070400	Data are lognormal at 5% significance lev	
Minimum of log data	-3.270169	05% UCL a (Assuming Lagranmal Distr	(hution)
Maximum of log data	0.916291	95% UCLs (Assuming Lognormal Distr 95% H-UCL	
Mean of log data	-1.62444		2503.86
Standard Deviation of log data	1.819733	95% Chebyshev (MVUE) UCL	2.42593
Variance of log data	3.311428	97.5% Chebyshev (MVUE) UCL	3.21500
		99% Chebyshev (MVUE) UCL	4.76497
		95% Non-parametric UCLs	
		CLT UCL	1.44096
		Adj-CLT UCL (Adjusted for skewness)	1.88357
		Mod-t UCL (Adjusted for skewness)	1.73956
		Jackknife UCL	1.67053
		Standard Bootstrap UCL	1.37294
		Bootstrap-t UCL	14.0597
RECOMMENDATION		Hall's Bootstrap UCL	10.4651
Data follow gamma distributio	on (0.05)	Percentile Bootstrap UCL	1.51
		BCA Bootstrap UCL	1.7
Use Approximate Gamma UC	Ľ İ	95% Chebyshev (Mean, Sd) UCL	2.72034
	1 1	97.5% Chebyshev (Mean, Sd) UCL	3.60943
			1 0.00040

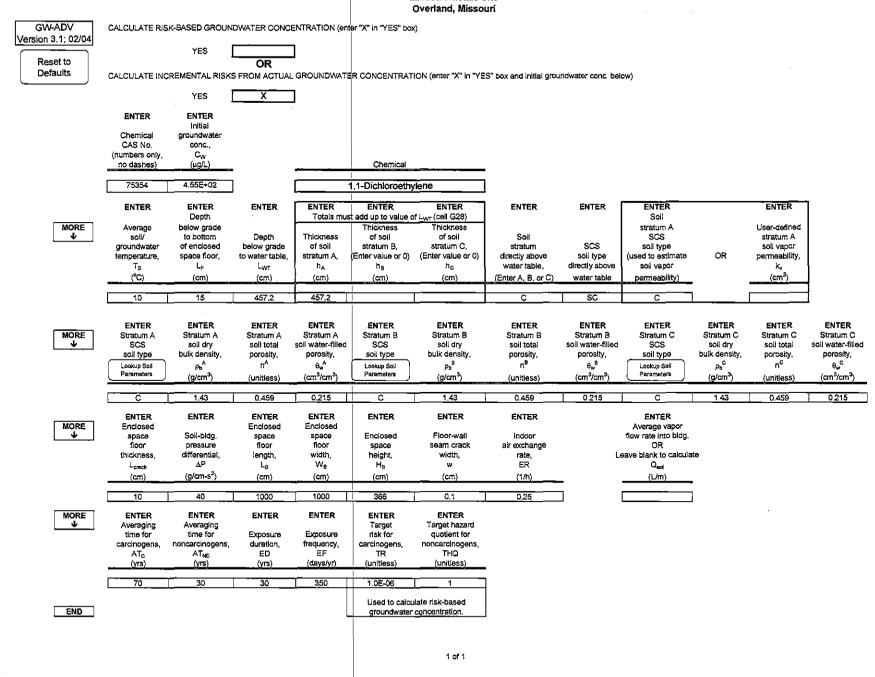
Data File K:\ENV\PERKINELM	ER INC\site\2	6682\DelivVariable: Tetrachloroethene	
		(GMW 5 & 6)	
Raw Statistics		Normal Distribution Test	
Number of Valid Samples	5	Shapiro-Wilk Test Statisitic	0.77343
Number of Unique Samples	5	Shapiro-Wilk 5% Critical Value	0.76
Minimum	0.706	Data are normal at 5% significance level	T
Maximum	54.4		
Mean	18.7992	95% UCL (Assuming Normal Distribu	ution)
Median	1.25	Student	42.7666
Standard Deviation	25.13922		
Variance	631.9802	Gamma Distribution Test	
Coefficient of Variation	1.337249	A-D Test Statistic	0.67944
Skewness	0.887289	A-D 5% Critical Value	0.71719
	-	K-S Test Statistic	0.37273
Gamma Statistics		K-S 5% Critical Value	0.373452
k hat	0.455808	Data follow gamma distribution	
k star (bias corrected)	0.315657	at 5% significance level	
Theta hat	41.24366		
Theta star	59.55585	95% UCLs (Assuming Gamma Distribut	ion)
nu hat	4.558082	Approximate Gamma UCL	141.261
nu star	3.156566	Adjusted Gamma UCL	375.80
Approx.Chi Square Value (.05)	0.42008		
Adjusted Level of Significance	0.0086	Lognormal Distribution Test	
Adjusted Chi Square Value	0.157902	Shapiro-Wilk Test Statisitic	0.790174
	1	Shapiro-Wilk 5% Critical Value	0.762
Log-transformed Statistics	1	Data are lognormal at 5% significance lev	/el
Minimum of log data	-0.34814		
Maximum of log data	3.996364	95% UCLs (Assuming Lognormal Distr	ibution)
Mean of log data	1.519942	95% H-UCL	119719
Standard Deviation of log data	2.094554	95% Chebyshev (MVUE) UCL	81.5503
Variance of log data	4.387158	97.5% Chebyshev (MVUE) UCL	108.645
	1	99% Chebyshev (MVUE) UCL	161.867
		95% Non-parametric UCLs	
			37.29163
		Adj-CLT UCL (Adjusted for skewness)	42.05843
		Mod-t UCL (Adjusted for skewness)	43.51022
		Jackknife UCL	42.7666
		Standard Bootstrap UCL	35.33118
		Bootstrap-t UCL	1729.87
RECOMMENDATION	i	Hall's Bootstrap UCL	1481.35
Data are normal (0.05)		Percentile Bootstrap UCL	36.58
	1	BCA Bootstrap UCL	33.0092
Use Student's-t UCL	·	95% Chebyshev (Mean, Sd) UCL	67.80450
	T	97.5% Chebyshev (Mean, Sd) UCL	89.0092
		99% Chebyshev (Mean, Sd) UCL	130.6617

.

Data File K:\ENV\PERKINELM	ER INC\site\2	6682\DelivVariable: Trichloroethene	
		(GMW-5 & 6)	
Raw Statistics		Normal Distribution Test	
Number of Valid Samples	5	Shapiro-Wilk Test Statisitic	0.789391
Number of Unique Samples	5	Shapiro-Wilk 5% Critical Value	0.762
Minimum	1.17	Data are normal at 5% significance level	
Maximum	23.1		
Mean	8.144	95% UCL (Assuming Normal Distribu	ution)
Median	1.68	Student	17.44355
Standard Deviation	9.754185		
Variance	95.14413	Gamma Distribution Test	
Coefficient of Variation	1.197714	A-D Test Statistic	0.61213
Skewness	1.161254	A-D 5% Critical Value	0.696193
	·	K-S Test Statistic	0.370577
Gamma Statistics		K-S 5% Critical Value	0.365997
k hat	0.824417	Data follow approximate gamma distibuti	on
k star (bias corrected)	0.4631	at 5% significance level	
Theta hat	9.878501	¥	
Theta star	17.58584	95% UCLs (Assuming Gamma Distribut	ion)
nu hat	8.244166	Approximate Gamma UCL	38.27653
nu star	4.631	Adjusted Gamma UCL	85.95812
Approx.Chi Square Value (.05)	0.985326		
Adjusted Level of Significance	0.0086	Lognormal Distribution Test	
Adjusted Chi Square Value	0.438759	Shapiro-Wilk Test Statisitic	0.818714
	1 01100100	Shapiro-Wilk 5% Critical Value	0.762
Log-transformed Statistics		Data are lognormal at 5% significance lev	
Minimum of log data	0.157004		
Maximum of log data	3.139833	95% UCLs (Assuming Lognormal Distr	ibution)
Mean of log data	1.380213	95% H-UCL	894.3526
Standard Deviation of log data	1.370103	95% Chebyshev (MVUE) UCL	26.9493
Variance of log data	1.877181	97.5% Chebyshev (MVUE) UCL	35.23127
		99% Chebyshev (MVUE) UCL	51.4996
		95% Non-parametric UCLs	
	┪───┼	CLT UCL	15.31919
		Adj-CLT UCL (Adjusted for skewness)	17.73982
	<u> </u>	Mod-t UCL (Adjusted for skewness)	17.82112
	┨───┤┉	Jackknife UCL	17.44355
	┼───┼╸	Standard Bootstrap UCL	14.66703
	┼───┽	Bootstrap-t UCL	246.9364
RECOMMENDATION		Hatl's Bootstrap UCL	217.4302
Data are normal (0.05)		Percentile Bootstrap UCL	14.814
	`	BCA Bootstrap UCL	12.714
Use Student's-t UCL		95% Chebyshev (Mean, Sd) UCL	27.15841
	, ↓	97.5% Chebyshev (Mean, Sd) UCL	35.38596
	}	99% Chebyshev (Mean, Sd) UCL	51.54738
			01.04/30

Data File K:\ENV\PERKINELM	ER INC\site\2	26682\Del Variable: Vinyl Chloride	↓
		(GMW-5 & 6)	↓ ↓ ↓ ↓
Raw Statistics	.↓↓	Normal Distribution Test	
Number of Valid Samples	5	Shapiro-Wilk Test Statisitic	0.961795
Number of Unique Samples	5	Shapiro-Wilk 5% Critical Value	0.762
Minimum	0.39	Data are normal at 5% significance leve	
Maximum	1		
Mean	0.6662	95% UCL (Assuming Normal Distri	
Median	0.657	Studen	0.877331
Standard Deviation	0.221452		
Variance	0.049041	Gamma Distribution Test	
Coefficient of Variation	0.332411	A-D Test Statistic	0.233618
Skewness	0.597384	A-D 5% Critical Value	0.678857
		K-S Test Statistic	0.191203
Gamma Statistics	,	K-S 5% Critical Value	0.357537
k hat	11.22802	Data follow gamma distribution	
k star (bias corrected)	4.624541	at 5% significance level	
Theta hat	0.059334		
Theta star	0.144058	95% UCLs (Assuming Gamma Distrib	
nu hat	112.2802	Approximate Gamma UCL	0.973739
nu star	46.24541	Adjusted Gamma UCL	1.163916
Approx.Chi Square Value (.05)	31.63957		
Adjusted Level of Significance	0.0086	Lognormal Distribution Test	
Adjusted Chi Square Value	26.46985	Shapiro-Wilk Test Statisitic	0.973262
		Shapiro-Wilk 5% Critical Value	0.762
Log-transformed Statistics		Data are lognormal at 5% significance le	evel
Minimum of log data	-0.94161		
Maximum of log data	0	95% UCLs (Assuming Lognormal Dis	stribution)
Mean of log data	-0.45136	95% H-UCL	1.031465
Standard Deviation of log data	0.340091	95% Chebyshev (MVUE) UCL	1.106888
Variance of log data	0.115662	97.5% Chebyshev (MVUE) UCL	1.297367
¥	·	99%-Chebyshev-(MVUE)-UCL	-1.671524
		· · · · · ·	·
		95% Non-parametric UCLs	
			0.829101
		Adj-CLT UCL (Adjusted for skewness)	0.857372
		Mod-t UCL (Adjusted for skewness)	0.88174
	<u> </u> −−†−	Jackknife UCL	0.877331
		Standard Bootstrap UCL	0.81048
		Bootstrap-t UCL	0.905227
RECOMMENDATION	• • • •	Hall's Bootstrap UCL	1.011151
Data are normal (0.05)		Percentile Bootstrap UCL	0.8122
		BCA Bootstrap UCL	0.8718
Use Student's-t UCL		95% Chebyshev (Mean, Sd) UCL	1.09789
		97.5% Chebyshev (Mean, Sd) UCL	1.284683
	<u> </u>	99% Chebyshev (Mean, Sd) UCL	1.651601
	l – – – – – – – – – – – – – – – – – – –		+ ······

Appendix B USEPA Johnson and Ettinger Model Data Entry and Intermediate Calculations Worksheets for Indoor Air Concentrations


EPA ARCHIVE DOCUMENT

S

US EPA ARCHIVE DOCUMEN

Monitoring Wells GMW-3, 7, 8, & 9

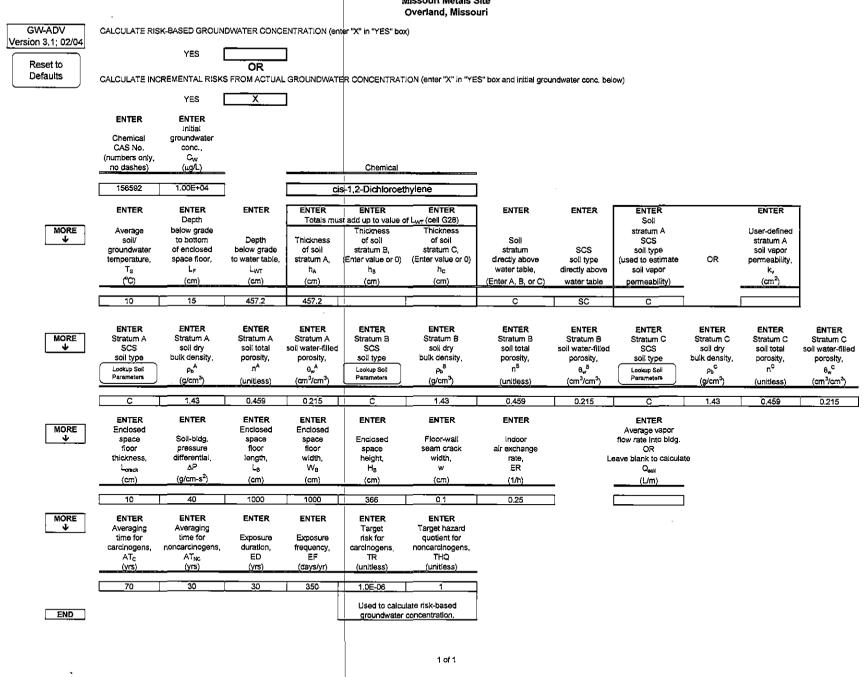
DATA ENTRY SHEET 1,1-Dichloroethene in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland, Missouri

INTERMEDIATE CALCULATIONS SHEET 1,1-Dichloroethene in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ _a ^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ _a ^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, Ste (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k, (cm ²)	Stratum A soil relative air permeability, k _{re} (cm ²)	Stratum A soil effective vapor permeability, k, (cm ²)	Thickness of capillary zone, L _{ez} (cm)	Total porosity in capillary zone, n _{ez} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{erack} (cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0,459	0.104	0.355	4,000
Bidg. ventilation rate, Q _{bullding} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, ग (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave, groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ⊤s (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} s (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} ez (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} r (cm ² /s)	Diffusion path length, L _e (cm)
2.54E+04	1.06E+06	3.77E-04	15	6,392	1.47E-02	6.33E-01	1.75E-04	3.90E-03	0.00E+00	0.00E+00	2.31E-04	1.88E-03	442.2
Convection path iength, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{eneck} (cm)	Average vapor flow rate into bldg., Q _{soll} (cm ³ /s)	Crack effective diffusion coefficient, D ^{ersek} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitiess)	Infinite source bidg. conc., C _{bullding} (µg/m ³)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)		,	<u>, , , , , , , , , , , , , , , , , , , </u>
15	2.88E+05	0.10	1.86E+00	3.90E-03	4.00E+02	1.57E+05	5.19E-05	1.49E+01		2.0E-01	1		

END

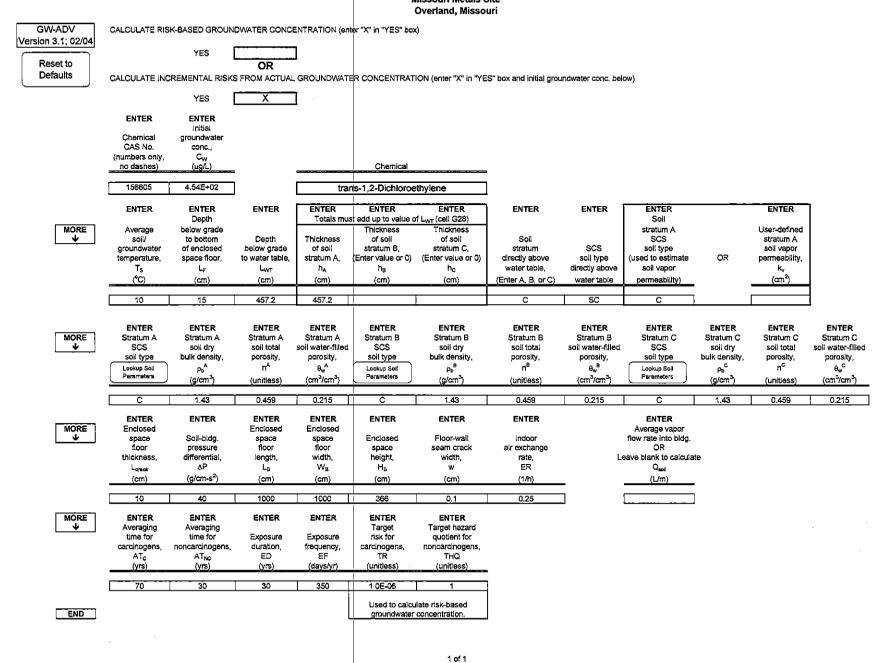
DOCUMENT


ARCHIVE

EPA

U

DATA ENTRY SHEET


cis-1,2-Dichloroethene in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland Missouri

INTERMEDIATE CALCULATIONS SHEET cis-1,2-Dichloroethene in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ _s ^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, 0a ^C (cm ³ /cm ³)	Stratum A offective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{ig} (cm ²)	Stratum A soil effective vapor permeability, k, (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cr} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cc}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{creck} (cm)
9.46E+08	442.2	0.244	0,244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0,104	0,355	4,000
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitiess)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ² /mol)	Henry's law constant at ave, groundwater temperature, H' _{TS} (unitiess)	Vapor viscosity at ave. soil temperature, µ⊤s (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} s (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{off} ec (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
2.54E+04	1.06E+06	3.77E-04	15	7,734	2.04E-03	8.77E-02	1.75E-04	3.19E-03	0.00E+00	0.00E+00	2.07E-04	1.61E-03	442.2
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soli} (cm ³ /s)	Crack effective diffusion coefficient, D ^{oreck} (cm²/s)	Area of crack, A _{grack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	8.77E+05	0.10	1.86E+00	3.19E-03	4.00E+02	2.22E+06	4.95E-05	4.34E+01	NA	3.5E-02]		

DATA ENTRY SHEET trans-1.2-Dichloroethene in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland, Missouri

DCUMENT П ARCHIVI П

INTERMEDIATE CALCULATIONS SHEET trans-1,2-Dichloroethene in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ _a ^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θa ^C (cm³/cm³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, kı (cm ²)	Stratum A soil relative air permeability, k _{tg} (cm ²)	Stratum A soil effective vapor permeability, k, (cm ²)	Thickness of capillary zone, L ₋ (cm)	Total porosity in capillary zone, n _{ez} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,c} (cm ³ /cm ³)	Water-filled porosity in capillary zone, ^{θ_{w,cz} (cm³/cm³)}	Floor- wali seam perimeter, X _{ersek} (cm)
9,46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0,459	0.104	0.355	4,000
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-totai area ratio, ग (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _e (cm)
2,54E+04	1.06E+06	3.77E-04	15	7,136	4.94E-03	2.13E-01	1.75E-04	3.06E-03	0.00E+00	0.00E+00	1.88E-04	1.50E-03	442.2
Convection path length, 	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{orack}	Average vapor flow rate into bldg., Q _{soil} (cm ² /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitiess)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	9.66E+04	0.10	1.86E+00	3.06E-03	4.00E+02	4,08E+06	4.84E-05	4.67E+00	NÄ	7.0E-02]		

END

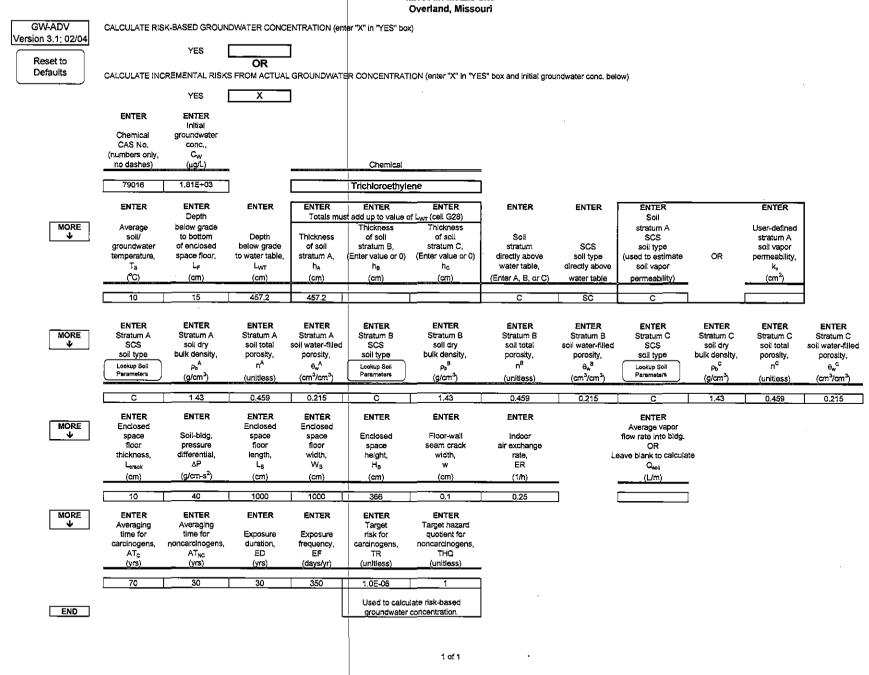
OCUMEN

п

ARCHI

DATA ENTRY SHEET

Tetrachloroethene in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland. Missouri


						/lissouri Metals \$ Overland, Misso						
GW-ADV ersion 3.1; 02/04	CALCULATE RIS	K-BASED GROUN	IDWATER CONCI	ENTRATION (ent	er "X" in "YES" bo:)						
131011 0.1, 0210-		YES	r	1								
Reset to		0	OR	1								
Defaults	CALCULATE INC	REMENTAL RISK		GROUNDWATE	R CONCENTRAT	ION (enter "X" in "YE	S" box and initial grou	ndwater conc. be	elow)			
		YES	X]								
	ENTER	ENTER										
		Initial										
	Chemical CAS No.	groundwater conc.,								-		
	(numbers only,	C _W										
	no dashes)	(µg/L)			Chemical							
	127184	3.51E+02]	r	Tetrachloroethy	lene						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER	1
·		Depth		Totals mus	t add up to value o				Soil			
MORE V	Average soil/	below grade to bottom	Depth	Thickness	Thickness	Thickness of soil	Soli		stratum A SCS		User-defined stratum A	
	sou/ groundwater	of enclosed	 below grade 	of soil	of soil stratum B.	stratum C.	stratum	SCS	soil type		stratum A soll vapor	
	temperature,	space floor,	to water table,	stratum A	(Enter value or 0)	(Enter value or 0)	directly above	soil type	(used to estimate	OR	permeability,	
	Τs	Lp	LwT	h _A	h _B	h _c	water table	directly above	soll vapor		k,	ļ
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(Enter A, B, or C)	water table	permeability		(cm ²)	
				I	<u> </u>							
	10	15	457.2	457.2			<u> </u>	sc	c			J
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTE
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum
	SCS	soil dry	soil total	soil water-filled	SCS	soil dry	soli totai	soil water-filled		soil dry	soil total	soi water-
	soll type	bulk density,	porosity, n ^A	porosity,	soil type	bulk density, P ^B	porosity, n ^e	porosity,	soll type	bulk density,	porosity, n ^c	porosit
	Lookup Soll Parameters	рь ^А (g/cm ³)		θ" ^A (cm³/cm³)	Lookup Soil Parameters	ρ⊧¯ (g/cm³)		θw ^B (cm³/cm³)	Lookup Soll Parameters	_{Pb} c (g/cm³)		θ" ^C (cm ³ /cm
		(gran)	(unitiess)		<u> </u>	(gran)	(unitless)	(an /an)		(g/un)	(unitless)	(ସମ 7ମ
	C	1.43	0.459	0.215	¢	1.43	0.459	0.215	C C	1.43	0.459	0.215
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER			
MORE ↓	space	Soli-bidg.	space	space	Enclosed	Floor-wall	Indoor		Average vapor flow rate into bidg.			
<u> </u>	floor	pressure	floor	floor	space	seam crack	air exchange		OR			
	thickness,	differential,	length,	width,	height,	width,	rate,	I	Leave blank to calcula	te		
	Lorack	ΔP	L _B	Wa	HB	w	ER		Q _{soil}			
	(cm)	(g/cm-s²)	(cm)	<u>(cm)</u>	(cm)	(cm)	(1/h)	-	(L/m)			
	10	40	1000	1000	366	0.1	0.25]				
MORE	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER						
<u>↓</u>	Averaging	Averaging	F	F	Target	Target hazard						
	time for carcinogens,	time for noncarcinogens,	Exposure duration,	Exposure frequency,	risk for carcinogens,	quotient for noncarcinogens,						
	AT _c	AT _{NC}	ED	EF	TR	THQ						
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitiess)	(unitiess)						
	70		30	350	1.0E-06	1]					
END						late risk-based concentration.						
						1 of 1						

INTERMEDIATE CALCULATIONS SHEET Tetrachloroethene in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Misouri Metals Site Overland, Missouri

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ _a ^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, e _a ^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ _e ^C (cm³/cm³)	Stratum A effective total fluid saturation, S _{ie} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{re} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, θ _{w,cz} (cm ³ /cm ³)	Floor- walt seam perimeter, X _{crack} (cm)
9.46E+08	442.2	0.244	0,244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0,104	0.355	4,000
Bidg. ventilation rate, Q _{buliding} (cm ³ /s)	Area of enclosed space below grade, A ₈ (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, △H _{v.TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ² /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave, soil temperature, μ _{Ts} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{off} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} (cm ² /s)	Total overall effective diffusion ccefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
2.54E+04	1.06E+06	3.77E-04	15	9,553	7.81E-03	3.36E-01	1.75E-04	3.12E-03	0.00E+00	0.00E+00	1.87E-04	1.51E-03	442.2
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soli} (cm ³ /s)	Crack effective diffusion coefficient, D ^{orack} (cm ² /s)	Area of crack, A _{d sck} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitiess)	Infinite source indoor attenuation coefficient, a (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	1.18E+05	0.10	1.86E+00	3.12E-03	4.00E+02	3.12E+06	4.84E-05	5.71E+00	5.9E-06	6.0E-01	7		

DATA ENTRY SHEET

Trichloroethene in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland. Missouri

INTERMEDIATE CALCULATIONS SHEET Trichloroethene in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ _a ^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ _s ^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _№ (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k, (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	442.2	0.244	0.244	0,244	0,324	2.26E-09	0.821	1.86E-09	30,00	0.459	0.104	0.355	4,000
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enciosed space below grade, A _β (cm ²)	Crack- to-total area ratio, n (unitiess)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitiess)	Vapor viscosity at ave. soil temperature, µ _{⊺s} (g/crn-s)	Stratum A effective diffusion coefficient, D ^{off} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} 8 (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} ec (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _e (cm)
2.54E+04	1.06E+06	3.77E-04	15	8,557	4.78E-03	2.06E-01	1.75E-04	3.42E-03	0.00E+00	0.00E+00	2.08E-04	1.67E-03	442.2
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{creck} (cm)	Average vapor flow rate into bldg., Q _{soli} (cm ³ /s)	Crack effective diffusion coefficient, D ^{erack} (cm ² /s)	Area of crack, Acreek (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, a (unitless)	Infinite source bldg. conc., C _{bullding} (µg/m ³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m ³)			
15	3.72E+05	0.10	1.86E+00	3.42E-03	4,00E+02	8.27E+05	5.00E-05	1.86E+01	1.1E-04	4.0E-02]		

END

OCUMEN

п

ARCHI

DATA ENTRY SHEET Vinyl Chloride in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland, Missouri

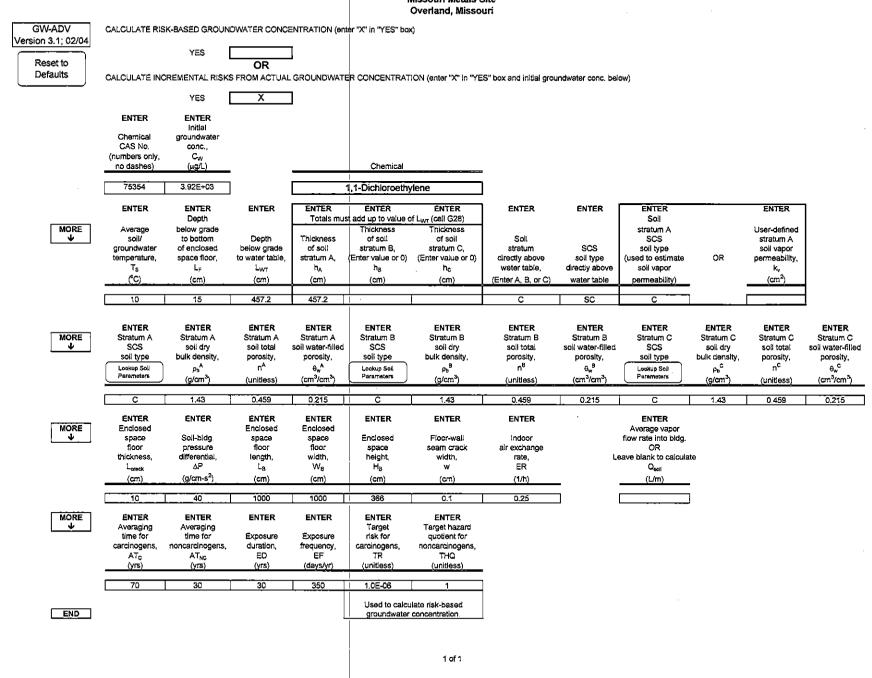
						lissouri Metals ଏ Overland, Misso						
GW-ADV Version 3.1; 02/04	CALCULATE RIS	K-BASED GROUN	IDWATER CONCE	ENTRATION (en	er "X" in "YES" box	>						
Reset to Defaults	CALCULATE INC	YES REMENTAL RISK	OR S FROM ACTUAL	GROUNDWATE		ION (enter "X" in "YE	S" box and initial grou	ndwater conc. bei	low)			
		YES	X]								
	ENTER Chemical CAS No. (numbers only, no dashes)	ENTER Initial groundwater conc., C _w (µg/L)			Chemical							
	75014	4.53E+02]	Viny	I chloride (chloro	ethene)						
	ENTER	ENTER Depth	ENTER	ENTER Totals mus	ENTER add up to value o	ENTER f Lwr (cell G28)	ENTER	ENTER	ENTER Soil		ENTER	1
	Average soli/ groundwater temperature, T _s (^o C)	below grade to bottom of enciosed space floor, L _F (cm)	Depth below grade to water table, L _{WT} (cm)	Thickness of soil stratum A, h _A (cm)	Thickness of soll stratum B, (Enter value or 0) h ₈ (cm)	Thickness of soll stratum C, (Enter value or 0) hc (cm)	Soll stratum directly above water table, (Enter A, B, or C)	SCS soil type directly above water table	stratum A SCS soli type (used to estimate soli vapor permeability)	OR	User-defined stratum A soll vapor permeability, k _v (cm ²)	
	10	15	457 2	457.2	 		c	SC	С			
	ENTER Stratum A SCS soil type Lookup Soil Parameters	ENTER Stratum A soli dry bulk density, Pb ^A	porosity, n ^A	ENTER Stratum A soli water-filled porosity, ew ^A	ENTER Stratum B SCS soli type Lookup Soli Parameters	ENTER Stratum B soli dry bulk density, Pb ⁸	ENTER Stratum B soli total porosity, n ⁸	ENTER Stratum B soil water-filled porosity, e, ^B	ENTER Stratum C SCS soil type Lookup Soil Parameters	ENTER Stratum C soli dry bulk density, ps ^C	ENTER Stratum C soil total porosity, n ^c	ENTER Stratum C soil water-filled porosity, e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		(g/cm ³)	(unitiess)	(cm³/cm³)		(g/cm³)	(unitless)	(cm ³ /cm ³)		(g/cm ³)	(unitless)	(cm ³ /cm ³)
MORÉ ↓	C ENTER Enclosed space floor	1.43 ENTER Soil-bidg. pressure	0.459 ENTER Enclosed space floor	0.215 ENTER Enclosed space floor	C ENTER Enclosed space	1,43 ENTER Floor-wall seam crack	0.459 ENTER Indoor air exchange	0.215	C ENTER Average vapor flow rate into bidg. OR	1.43	0.459	0.215
	thickness, L _{araok}	differential, ΔP	length, L _a	width, W _B	helght, H _B	width, w	rate, ER	L	eave blank to calcula Q _{soli}	te		
	_(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	-	(L/m)			
	10	40	1000	1000	366	0.1	0.25].				
MORE ↓	ENTER Averaging time for carcinogens, AT _c (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)	ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitiess)						
	70	30	30	350	1.0E-06	1						
END						late risk-based concentration.						
						1 of 1						

INTERMEDIATE CALCULATIONS SHEET Vinyl Chloride in Groundwater Wells GMW 3, 7, 8, 9 Perkin Elmer Missouri Metals Site Overland, Missouri

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θa ^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θa ^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θa ^c (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{to} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, ki (cm ²)	Stratum A soil relative air permeability, k _{ra} (cm ²)	Stratum A soil effective vapor permeability, k, (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{s,c2} (cm ^{3/} cm ³)	Water-filled porosity in capillary zone, θ _{w,cz} (cm ³ /cm ³)	Floor- wall seam perimeter, X _{oreck} (cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0.104	0.355	4,000
Bidg. ventilation rate, Q _{bullding} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, ম্ (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔΗ _{ν,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-nt ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, ^{بن} ته (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{off} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} æ (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
2.54E+04	1.06E+06	3.77E-04	15	5,000	1.72E-02	7_41E-01	1.75E-04	4.59E-03	0.00E+00	0.00E+00	2.72E-04	2.21E-03	442.2
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, ^r crack (cm)	Average vapor flow rate into bldg., Q _{eoll} (cm ³ /s)	Crack effective diffusion coefficient, D ^{ereck} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, α (unitiess)	Infinite source bidg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	3.36E+05	0.10	1.86E+00	4.59E-03	4.00E+02	2.58E+04	5.43E-05	1.82E+01	8.8E-06	1.0E-01]		
END]												

DOCUMEN

П


ARCHIV

Ц

6

Monitoring Wells GMW-5 & 6

DATA ENTRY SHEET 1,1-Dichloroethene in Groundwater Wells GMW-5 6 Perkin Elmer Missouri Metals Site Overland, Missouri

INTERMEDIATE CALCULATIONS SHEET 1,1-Dichloroethene in Groundwater Wells GMW-5 6 Perkin Elmer Missouri Metals Site Overland, Missouri

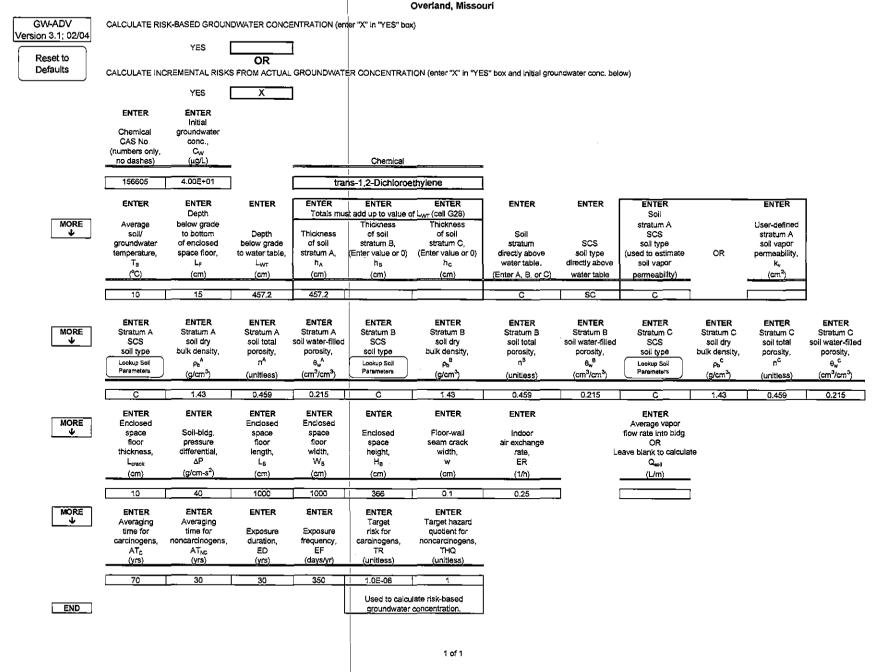
Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θa ⁸ _(cm ³ /cm ³)	Stratum C soil air-filled porosity, θa ^c (cm ³ /cm ³)	Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k, (cm ²)	Thickness of capillary zone, L _ح (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm³/cm³)	Water-filled porosity in capillary zone, θ _{w,cz} (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0.104	0.355	4,000
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, n (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v.TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{rs} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} ez (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path iength, L _d (cm)
2.54E+04	1.06E+06	3.77E-04	15	6,392	1.47E-02	6.33E-01	1.75E-04	3.90E-03	0.00E+00	0.00E+00	2.31E-04	1.88E-03	442.2
Convection path length, L _p (cm)	Source vapor conc., С _{воигов} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soll} (cm ³ /s)	Crack effective diffusion coefficient, D ^{orack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitiess)	Infinite source indoor attenuation coefficient, a (unitless)	Infinite source bldg. conc., C _{bullding} (µg/m ³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m ³)			
15	2.48E+06	0.10	1.86E+00	3.90E-03	4.00E+02	1.57E+05	5.19E-05	1.29E+02	NA	2.0E-01]		
END]												

DATA ENTRY SHEET

cis-1,2-Dichloroethene in Groundwater Wells GMW-56 Perkin Eimer

Perkin Elmer Missouri Metals Site

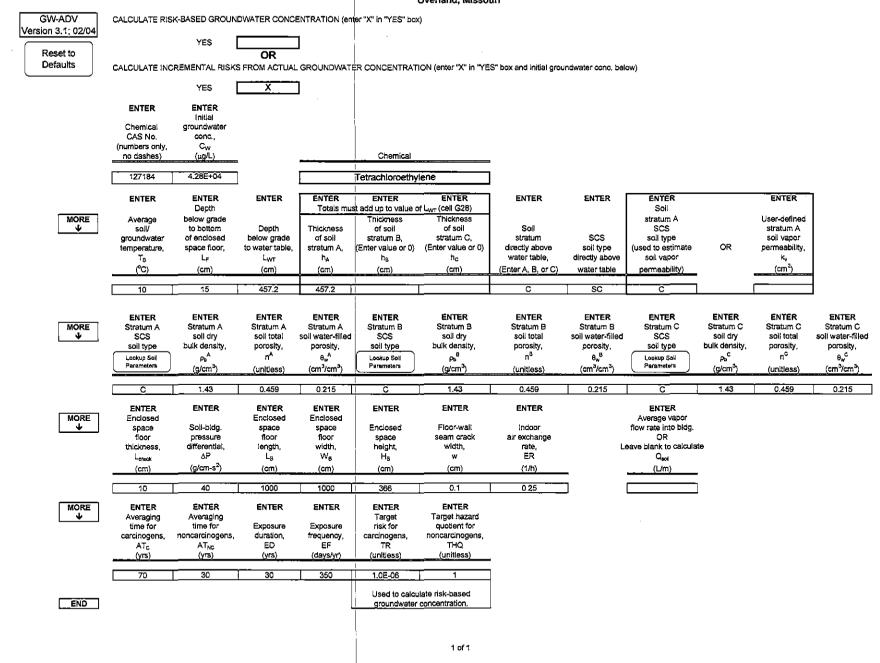
Missouri Metals Site Overland Missouri


						Overland, Misso						
GW-ADV	CALCULATE RIS	K-BASED GROUN		NTRATION (ent	er "X" in "YES" box	4						
Version 3.1; 02/04						·/						
		YES										
Reset to Defaults	CALCULATE INC	REMENTAL RISK	OR S FROM ACTUAL	GROUNDWATE	R CONCENTRAT	ION (enter "X" in "YE	S" box and initial grou	ndwater conc, bel	ow)			
		YES	X									
	ENTER	ENTER										
	Chemical	initiai groundwater										
	CAS No.	conc.,			l							
	(numbers only,	Cw										
	no dashes)	(µg/L) 	-		Chemical							
	156592	1.72E+04	J		1,2-Dichloroet	hylene						
	ENTER	ENTER Depth	ENTER	ENTER Totals mus	ENTER	ENTER f Lwr (cell G28)	ENTER	ENTER	ENTER		ENTER	1
MORE	Average	below grade			Thickness	Thickness			stratum A		User-defined	
<u> </u>	soil/ groundwater	to bottom of enclosed	Depth below grade	Thickness of soil	of soil stratum B,	of soil stratum C,	Soli stratum	SCS	SCS soil type		stratum A soll vapor	
	temperature,	space floor,	to water table,		(Enter value or 0)	(Enter value or 0)	directly above	.soil type	(used to estimate	ÓR	permeability,	
	Ts	LF	Lwr	h₄	he	h _c	water table	directly above	soil vapor		k,	1
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(Enter A, B, or <u>C)</u>	water table	permeability)		(cm²)	-
	10	15	457.2	457.2			č	SC			r	
												-
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A SCS	Stratum A soil dry	Stratum A soll total	Stratum A soil water-filled	Stratum B SCS	Stratum B soil dry	Stratum B soll total	Stratum B soil water-filled	Stratum C SCS	Stratum C soil dry	Stratum C soil total	Stratum C soil water-filled
	soil type	bulk density,	porosity,	porosity,	soil type	bulk density,	porosity,	porosity,	soll type	bulk density,	porosity,	porosity,
	Lookup Soll	ρ _b ^A	n ^A	e, A	Lookup Soil	PpB	n ^B	θ _w ^B	Lookup Soil	Pb	n°	e _w c
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	Perameters	(g/cm³)	(unitless)	(cm³/cm²)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	C	1.43	0.459	0.215	c	1.43	0.459	0.215	C	1.43	0.459	0.215
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER			
MORE	Enclosed		Enclosed	Enclosed					Average vapor			
	space floor	Soll-bidg, pressure	space floor	space floor	Enclosed space	Floor-wall seam crack	Indoor air exchange		flow rate into bidg. OR			
	thickness,	differential,	length,	width,	height,	width,	air exchange rate,	Ŀ	eave blank to calcula	te		
	Lerack	۸P	LB	Ws	HB	w	ER		Q _{aol}			
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	-	(L/m)			
	10	40	1000	1000	366	0.1	0.25]				
MORE	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER						
¥	Averaging	Averaging			Target	Target hazard						
	time for	time for	Exposure	Exposure	risk for	quotient for						
	carcinogens, AT _c	noncarcinogens, AT _{NC}	duration, ED	frequency, EF	carcinogens, TR	noncarcinogens, THQ						
	(yrs)	(yrs)	(yrs)	(days/yr)	(unitless)	(unitless)						
	70	30	30	350	 1.0E-06	1	1					
					Used to calcu	late risk-based						
END				L		concentration.	ļ					
					1 .							
						1 of 1						

INTERMEDIATE CALCULATIONS SHEET cis-1,2-Dichloroethene in Groundwater Wells GMW-5 6 Perkin Elmer Missouri Metals Site Overland, Missouri

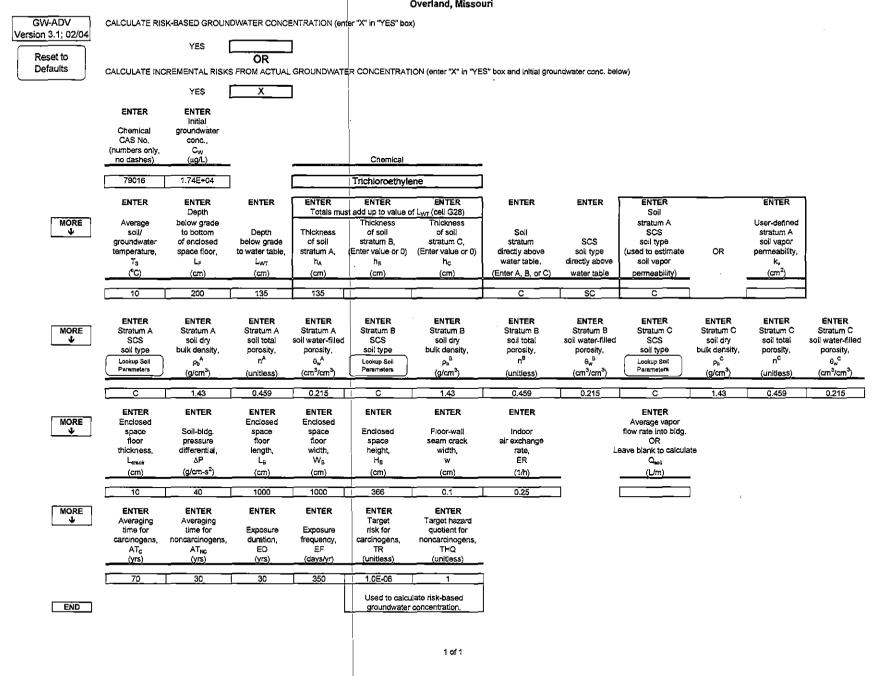
Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ _a ^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _s ^θ (cm ³ /cm ³)	Stratum C soil air-filied porosity, θ _a ^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, Sta (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _n (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1,86E-09	30.00	0.459	0.104	0.355	4,000
Bidg. ventilation rate, Q _{buliding} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave, groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soi! temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} ez (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} r (cm ² /s)	Diffusion path length, L₄ (cm)
2.54E+04	1.06E+06	3.77E-04	15	7,734	2.04E-03	8.77E-02	1.75E-04	3,19E-03	0.00E+00	0.00E+00	2.07E-04	1.61E-03	442.2
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soll} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, a (unitless)	Infinite source bldg. conc., C _{bullding} (µg/m ³)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m ³)			<u> </u>
15	1.51E+06	0.10	1.86E+00	3.19E-03	4.00E+02	2.22E+06	4.95E-05	7.46E+01	NA	3.5E-02]		

DATA ENTRY SHEET


trans-1,2-Dichloroethene in Groundwater Wells GMW-5 6 Perkin Elmer Missouri Metals Site Overland, Missouri

INTERMEDIATE CALCULATIONS SHEET trans-1,2-Dichloroethene in Groundwater Wells GMW-5 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ _a ^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ _a ^c (cm ³ /cm ³)	Stratum A effective total fluid saturation, S ₁₅ (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{ıg} (cm ²)	Stratum A soil effective vapor permeability, k _r (crn ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{ez} (cm ³ /cm ³)_	Air-filled porosity in capillary zone, θ _{a,α} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	442,2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0,104	0.355	4,000
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, ग (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave, groundwater temperature, $\Delta H_{v, TS}$ (cal/mol)	Henry's law constant at ave, groundwater temperature, H _{TS} (atm-m ² /mol)	Henry's law constant at ave. groundwater temperature, H' _{Ts} (unitless)	Vapor viscosity at ave. soil temperature, µ⊤s (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
2.54E+04	1.06E+06	3.77E-04	15	7,136	4.94E-03	2.13E-01	1.75E-04	3.06E-03	0.00E+00	0.00E+00	1.88E-04	1.50E-03	442.2
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soll} (cm ³ /s)	Crack effective diffusion coefficient, D ^{omack} (cm ² /s)	Area of crack, Agack (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe') (unitless)	Infinite source indoor attenuation coefficient, α (unitiess)	Infinite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (дg/m³) ⁻¹	Reference conc., RfC (mg/m ³)	-		
15	8,51E+03	0.10	1.86E+00	3.06E-03	4.00E+02	4.08E+06	4.84E-05	4.11E-01	NA	7.0E-02	1		


DATA ENTRY SHEET Tetrachloroethene in Groundwater Wells GMW-5 6 Perkin Elmer Missouri Metals Site Overland, Missouri

INTERMEDIATE CALCULATIONS SHEET Tetrachloroethene in Groundwater Wells GMW-5 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ _a ^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ_a^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ _s ^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, S ₁₀ (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _l (crn ²)	Stratum A soit relative air permeability, k _{re} (cm ²)	Stratum A soil effective vapor permeability, k, (cm ²)	Thickness of capillary zone, L _{cz} _(cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{ε,α} (cm ³ /cm ³)	Water-filled porosity in capillary zone, θ _{w,cz} (cm ³ /cm ³)	Floor- wall seam perimeter, X _{orack} (cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1,86E-09	30.00	0.459	0.104	0.355	4,000
Bidg. ventilation rate, Q _{bullding} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, ম (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, ⊭rs (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
2.54E+04	1.06E+06	3.77E-04	15	9,553	7.81E-03	3.36E-01	1.75E-04	3.12E-03	0.00E+00	0.00E+00	1.87E-04	1.51E-03	442.2
Convection path Iength, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soli} (cm ³ /s)	Crack effective diffusion coefficient, D ^{erack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitiess)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{bullding} (µg/m ³)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	1.44E+07	0,10	1.86E+00	3.12E-03	4.00E+02	3.12E+06	4.84E-05	6.97E+02	5.9E-06	6.0E-01]		

DATA ENTRY SHEET Trichloroethene in Groundwater Wells GMW-5 6 Perkin Elmer Missouri Metals Site Overland, Missouri

INTERMEDIATE CALCULATIONS SHEET Trichloroethene in Groundwater Wells GMW-5 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Exposure duration, 7 (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-fiiled porosity, θ _a ⁸ (cm ³ /cm ³)	Stratum C soil air-filled porosity, e ^s (cm ³ /cm ³)	Stratum A effective total fluid saturation, ^{Site} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k, (cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k, (cm ²)	Thickness of capillary zone, L ₋₂ (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,c2} (cm ³ /cm ³)	Water-filled porosity in capillary zone, θ _{w,cz} (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	1	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0,104	0.355	4,000
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, Hrs (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} ⊤ (cm ² /s)	Diffusion path length, L _d (cm)
2.54E+04	1.80E+06	2.22E-04	200	8,557	4.78E-03	2.06E-01	1.75E-04	3.42E-03	0.00E+00	0.00E+00	2.08E-04	7.35E-06	1
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soll} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, Aereck (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, a (unitless)	infinite source bldg. conc., C _{bullding} (µg/m ³)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
200 END	3.58E+06	0.10	1.28E+00	3.42E-03	4.00E+02	1.17E+04	4.60E-05	1.65E+02	1.1E-04	4.0E-02]		

1 of 1

DATA ENTRY SHEET Vinyl Chloride in Groundwater Wells GMW-5 6

Perkin Elmer Missouri Metals Site Overland Missouri

						Overland, Misso	uri					
GW-ADV	CALCULATE RIS	SK-BASED GROUN	DWATER CONC	ENTRATION (enti	r "X" in "YES" box)						
Version 3.1; 02/04				-		,						
Reset to		YES										
Defaults	CALCULATE INC	CREMENTAL RISK	OR S FROM ACTUAL	. GROUNDWATE	R CONCENTRAT	ION (enter "X" in "YE	S" box and initial grou	ndwater conc. bei	ow)			
		YES	X]								
	ENTER	ENTER										
	Chemical	Initiai groundwater										
	CAS No.	conc.,										
	(numbers only, no dashes)	Cw (µg/L)		. <u> </u>	Chemical							
	75014	7.02E+02]		chloride (chloro	ethene)						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER	1
MORE	Average	Depth below grade		Totals must	add up to value o Thickness	f L _{wr} (cell G28) Thickness			Soil stratum A		User-defined	
	soll/	to bottom	Depth	Thickness	of soll	of soll	Soll		SCS		stratum A	
	groundwater	of enclosed	below grade	of soil	stratum B,	stratum C,	stratum	SCS	soll type	OR	soil vapor	
	temperature, Ts	space floor, L _F	to water table, Lwr	stratum A, h _A	Enter value or 0) h _e	(Enter value or 0) h _c	directly above water table.	soll type directly above	(used to estimate soil vapor	OR	permeability, k _v	
	(°C)	(cm)	(cm)	(cm)	(cm)_	(cm)	(Enter A, B, or C)	water table	permeability)		(cm²)	
			453.0									
	10	15	457.2	457.2			C	SC	C			1
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C	Stratum C
	SCS	soil dry	soil total	soil water-filled	SCS	soli dry	soli total	soil water-filled	SCS	soll dry	soil total	soil water-filled
	soil type	buik density,	porosity, π^	porosity, θ _w ^A	soll type	bulk density, B	porosity, n ⁸	porosity, e,, ⁸	soil type	bulk density, c	porosity, n ^c	porosity, e _w c
	Lookup Soil Parameters) Pь ^A (g/cm³)	a (unitless)	e _w (cm ³ /cm ³)	Lookup Sell Parametara	Po ⁸ (g/cm³)	(unitiess)	(cm ³ /cm ³)	Lookup Soll Parameters	рь ^С (g/cm³)	(unitiess)	(cm ³ /cm ³)
								• • • • •				
	¢	1.43	0.459	0.215	<u> </u>	1.43	0.459	0.215	C	1.43	0.459	0.215
MORE	ENTER Enclosed	ENTER	ENTER Enclosed	ENTER Enclosed	ENTER	ENTER	ENTER		ENTER Average vapor			
· •	space	Soil-bidg.	space	space	Enclosed	Floor-wall	Indoor		flow rate into bidg.			
	floor	pressure differential,	floor	floor	space	seam crack	air exchange		OR eave blank to calcula			
	thickness, L _{oraok}	مnerenual, کP	length, L _B	width, W _B	height, H _B	width, w	rate, ER	L.	Q _{eol} i	(O		
	(CIII)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)		(L/m)			
	10	40	1000	1000	366	0.1	0.25	•	<u>_</u>	• T		
			· · · · · · · · · · · · · · · · · · ·		_		0.25	1	L			
MORE	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER Target	ENTER Target hazard						
	time for	time for	Exposure	Exposure	risk for	quotient for						
	carcinogens,	noncarcinogens,	duration	frequency.	carcinogens,	noncarcinogens,						
	AT _c (yrs)	AT _{NC} (yrs)	ED _(yrs)	EF (days/yr)	TR (unitless)	THQ (unitless)						
						(d/111033)						
	70	30	30	350	1.0E-06	11						
	·			· · · · · -								
	<u> </u>					late risk-based						
END		<u></u>				late risk-based concentration.						
END												
END			<u> </u>			concentration.						
END												

INTERMEDIATE CALCULATIONS SHEET Vinyl Chloride in Groundwater Wells GMW-5 6 Perkin Elmer Missouri Metals Site Overland, Missouri

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ_a^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _s ^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, θ _a ^C (cm ³ /cm ³)	Stratum A effective total fluid saturation, Š _{te} (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k _i (cm ²)	Stratum A soil relative air permeability, k _{ra} (cm ²)	Stratum A soil effective vapor permeability, k, (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, θ _{a,α} (cm ³ /cm ³)	Water-filled porosity in capillary zone, θ _{w,α} (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0.104	0.355	4,000
Bidg. ventilation rate, Q _{buidng} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, ग (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave, groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave, groundwater temperature, H ₇₅ (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, ^{بن} ته (g/cm-s)	Stratum A effective diffusion coefficient, D ^{off} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} ez (cm ² /s)	Total overali effective diffusion coefficient, D ^{eff} _T (cm ² /s)	Diffusion path length, L⊲ (cm)
2.54E+04	1.06E+06	3.77E-04	15	5,000	1.72E-02	7.41E-01	1.75E-04	4.59E-03	0.00E+00	0.00E+00	2.72E-04	2.21E-03	442.2
Convection path length, (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soll} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, Actack (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, a (unitless)	Infinite source bldg. conc., C _{bulding} (µg/m ³)	Unit risk factor, URF (цg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	-	·	
15	5.20E+05	0.10	1.86E+00	4.59E-03	4.00E+02	2,58E+04	5.43E-05	2.82E+01	8.8E-06	1.0E-01]		

END

DOCUMEN

п

ARCHIV

1

U

Appendix C USEPA Johnson and Ettinger Model Data Entry and Intermediate Calculations Worksheets for PRG Volatilization Factors Monitoring Wells GMW-3, 7, 8, & 9 and 5, 6

CHIVE DOCUMENT

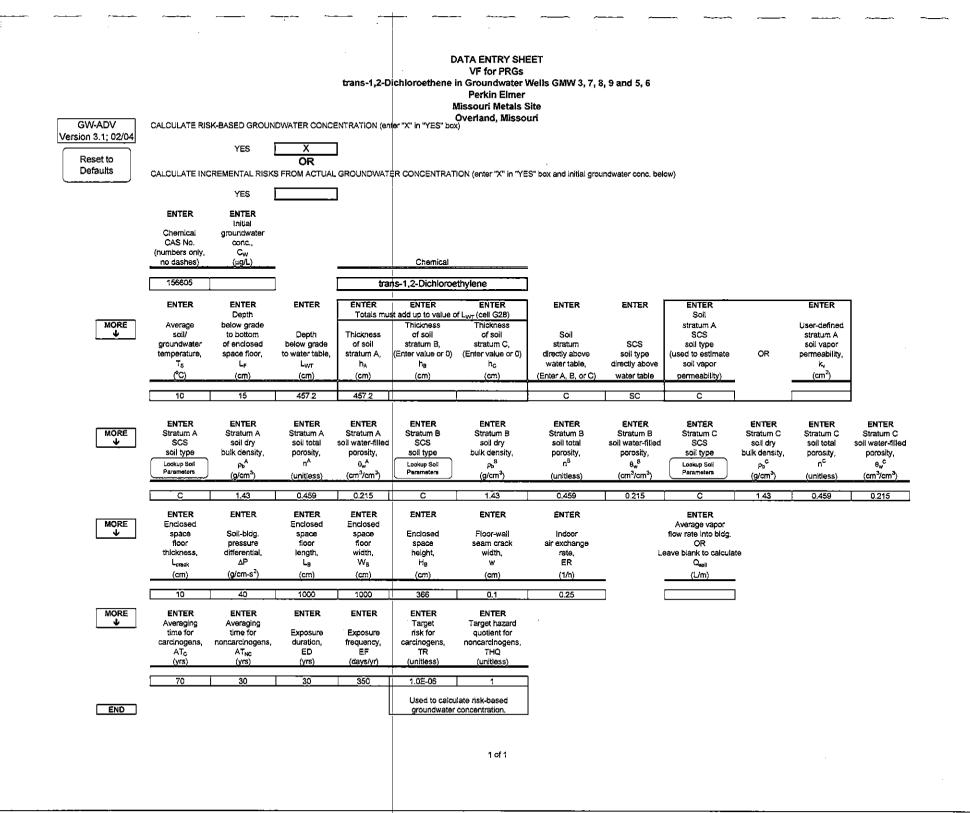
EPA ARG

7

GW-ADV sion 3.1; 02/04	CALCULATE RIS	K-BASED GROUN	NDWATER CONC		loroethene in d	DATA ENTRY SHE VF for PRGs Groundwater Wei Perkin Elmer Missouri Metals S Overland, Missou X)	ls GMW 3, 7, 8, 9 iite	and 5, 6				
Reset to Defaults	CALCULATE INC	YES REMENTAL RISK				IJON (enter "X" In "YE	S" box and initial grou	indwater conc. bei	ow)			
)		YES		כ		-			·			
	ENTER Chemical CAS No. (numbers only, no dashes)	ENTER Initial groundwater conc., C _W (µg/L)	_		Chemical							
	75354]		1,1-Dichloroeth	ylene						
MORE ↓	ENTER Average soil/ groundwater temperature,	ENTER Depth below grade to bottom of enclosed space floor,	ENTER Depth below grade to water table,	Thickness of soil stratum A,	ENTER add up to value Thickness of soil stratum B, (Enter value or 0)	Thickness of soil stratum C, (Enter value or 0)	ENTER Soil stratum directly above	ENTER SCS soll type	ENTER Soil stratum A SCS soil type (used to estimate	OR	ENTER User-defined stratum A soll vapor permeability,	
	т _s (°С)	ե _೯ (cm)	L _{WT} (cm)	հ _A (cm)	ჩ _შ (cm)	h _c (cm)	water table, (Enter A, B, or C)	directly above water table	soil vapor permeability)		κ, (cm²)	
	10	15	457.2	457.2	 		c	SC	C	l		1
MORE ↓	ENTER Stratum A SCS soil type Lookup Soil Parameters	ENTER Stratum A soil dry bulk density, Ps ^A (g/cm ³)	ENTER Stratum A soil total porosity, n ^A (unitless)	ENTER Stratum A soil water-filled porosity, θ_w^A (cm ³ /cm ³)	ENTER Stratum B SCS soll type Lookup Soll Parameters	ENTER Stratum B soli dry bulk density, ps ⁸ (g/cm ³)	ENTER Stratum B soil total porosity, n ⁸ (unitless)	ENTER Stratum B soll water-filled porosity, θ_w^B (cm ³ /cm ³)	ENTER Stratum C SCS soll type Lockup Soll Parameters	ENTER Stratum C soil dry bulk density, p _b ^C (g/cm ³)	ENTER Stratum C soil total porosity, n ^c (unitless)	ENTER Stratum C soil water-fill porosity, ew ^c (cm ³ /cm ³)
	<u>c</u>	1.43	0.459	0.215	c	1.43	0.459	0.215	C	1.43	0.459	0.215
MORE V	ENTER Enclosed space floor thickness, L _{orsak} (cm)	ENTER Soll-bidg. pressure differential, (g/cm-s ²)	ENTER Enclosed space floor length, L _B (cm)	ENTER Enclosed space floor width, W _B (cm)	ENTER Enclosed space height, H _p . (cm)	ENTER Floor-wall seam crack width, w (cm)	ENTER Indoor air exchange rate, ER (1/n)	ب -	ENTER Average vapor flow rate into bidg. OR eave blank to calcula Q _{eol} (Um)	1t0 -		
	10	40	1000	1000	366	0.1	0.25]]		
	ENTER Averaging	ENTER Averaging time for	ENTER Exposure	ENTER Exposure frequency,	ENTER Target risk for carcinogens,	ENTER Target hazard quotient for noncarcinogens,						
MORE ↓	time for carcinogens, AT _c (yrs)	noncarcinogens, AT _{NC} (yrs)	duration, ED (yrs)	EF (days/yr)	TR (unitless)	THQ (unitless)	1					

.

ARCHIVE DOCUMEN US EPA


INTERMEDIATE CALCULATIONS SHEET VF for PRGs 1,1-Dichloroethene in Groundwater Wells GMW 3, 7, 8, 9 and 5, 6 Perkin Elmer Missouri Metals Site

						Overland, Mis	souri						
Exposure duration,	Source- building separation,	Stratum A soil air-filled porosity,	Stratum B soil air-filled porosity,	Stratum C soil air-filled porosity,	Stratum A effective total fluid saturation,	Stratum A soil intrinsic permeability,	Stratum A soil relative air permeability,	Stratum A soil effective vapor permeability,	Thickness of capillary zone,	Total porosity in capillary zone,	Air-filled porosity in capillary zone,	Water-filled porosity in capillary zone,	Floor- wali seam perimeter,
τ	LT	θ _μ Α	⊖a ^B	e₀° a, a,	Ste	K ,	K _{rg}	к. 2	L _{ez}	n _{ez} , 3, 3,	θ _{а, сz}	θ _{w.cz}	Xereck
(sec)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm³/cm³)	(cm ³ /cm ³)	(cm ²)	(cm²)	(cm ²)	<u>(cm)</u>	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0.104	0.355	4,000
Bidg, ventilation rate, Q _{bullding} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave, groundwater temperature, △H _{v,7S} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ² /mol)	Henry's law constant at ave, groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µтs (g/cm-s)	Stratum A effective diffusion coefficient, D ^{off} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{off} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} ₇ (cm ² /s)	Diffusion path length, L _d (cm)
2.54E+04	1.06E+06	3.77E-04	15	6.392	1.47E-02	6.33E-01	1.75E-04	3.90E-03	0.00E+00	0.00E+00	2.31E-04	1.88E-03	442.2
Convection path length, L _P (cm)	Source vapor conc., C _{εουτοs} (μg/m ³)	Crack radius, ^{Forack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{orack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peciet number, exp(Pe ^r) (unitiess)	Infinite source indoor attenuation coefficient, a (unitless)	Infinite source bldg. conc., C _{bulkáng} (µg/m ³)	Unit risk factor, URF (µg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	6.33E+02	0.10	1.86E+00	3.90E-03	4.00E+02	1.57E+05	5.19E-05	3.28E-02	NA	2.0E-01]		
·	7												

				cis-1,2-Dia	chloroethene ir	Perkin Elmer Aissouri Metals S	ells GMW 3, 7, 8, lite	9 and 5, 6				
GW-ADV	CALCULATE RIS	K-BASED GROUN	DWATER CONCI	ENTRATION (en	ter "X" in "YES" box	Overland, Misso	uri					
Version 3.1; 02/04		YES	x	1								
Reset to Defaults	CALCULATE INC		OR	L GROUNDWATI	ER CONCENTRAT	'ION (enter "X" in "YE	S" box and initial grou	indwater conc. bel	ow)			
		YES]								
	ENTER	ENTER Initial										
	Chemical	groundwater										
	CAS No. (numbers only,	conc., C _W										
	no dashes)	(µg/L)	•		Chemical							
	156592]	ci	s-1,2-Dichloroet	hylene						
	ENTER	ENTER Depth	ENTER	ENTER Totals mu	ENTER st add up to value o	ENTER	ENTER	ENTER	ENTER		ENTER	1
MORE	Average	below grade	Denth		Thickness	Thickness	0-11		stratum A		User-defined	
v]	soil/ groundwater	to bottom of enclosed	Depth below grade	Thickness of soil	of soil stratum B,	of soil stratum C,	Soil stratum	SCS	SCS soil type		stratum A soil vapor	
	temperature, Ts	space floor, L _F	to water table, L _{wτ}	stratum A,	(Enter value or 0) h _B	(Enter value or 0) h _c	directly above water table,	soil type directly above	(used to estimate soil vapor	OR	permeability, k,	
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(Enter A, B, or C)	water table	permeability)	,	(cm ²)	-
	10	15	457.2	457.2			C	SC	C			1
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE	Stratum A SCS	Stratum A soli dry	Stratum A soll total	Stratum A soil water-filled	Stratum B	Stratum B soll dry	Stratum B soll total	Stratum B soil water-filled	Stratum C SCS	Stratum C soil dry	Stratum C soil total	Stratum C soil water-filled
	soil type	bulk density,	porosity, n ^A	porosity,	soll type	bulk density	porosity, n ^B	porosity,	soll type	bulk density, Ps ^C	porosity, n ^c	porosity, θ _w c
	Lookup Soli Parametera	рь ^А (g/cm ³)	unitless)	6, ^A (cm ³ /cm ³)	Lookup Sell Parameters	Pь ^B (g/cm³)	ח (unitiess)	θ "^B (cm³/cm³)	Lookup Soll Parameters	рь" (g/cm ³)	unitiess)	ew ⁻ (cm ³ /cm ³)
	С	1.43	0,459	0.215		1.43	0.459	0,215		1.43	0.459	0.215
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER			
	Enclosed space	Soll-bidg.	Enclosed space	Enclosed space	Enclosed	Floor-wall	Indoor		Average vapor flow rate into bldg.			
	floor thickness,	pressure differential,	floor length,	floor width,	space height,	seam crack width,	air exchange rate,	1	OR eave blank to calcula	te		
	Lorack	AP _	L ₈	WB	H _B	w	ER	-	Q _{soli}			
	(cm)	(g/cm-s ²)	(cm)	(cm)	(cm)	(cm)	(1/h)	-	(L/m)			
	10	40	1000	1000	366	0.1	0.25					
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER						
—	Averaging	Averaging			Target	Target hazard						
	Averaging time for carcinogens.	Averaging time for	Exposure duration.	Exposure frequency.	risk for	quotient for						
	time for carcinogens, AT _c	Averaging time for noncarcinogens, AT _{NC}	duration, ED	frequency. EF	risk for carcinogens, TR	quotient for noncarcinogens, THQ						
	time for carcinogens, AT _c (yrs)	Averaging time for noncarcinogens, AT _{NC} (yrs)	duration, ED (yrs)	frequency, EF (days/yr)	risk for carcinogens, TR (unitless)	quotient for noncarcinogens, THQ (unitless)						
	time for carcinogens, AT _c	Averaging time for noncarcinogens, AT _{NC}	duration, ED	frequency. EF	risk for carcinogens, TR (unitless) 1.0E-06 Used to calco	quotient for noncarcinogens, THQ (unitiess) 1 Jate risk-based				·		
END]	time for carcinogens, AT _c (yrs)	Averaging time for noncarcinogens, AT _{NC} (yrs)	duration, ED (yrs)	frequency, EF (days/yr)	risk for carcinogens, TR (unitless) 1.0E-06 Used to calco	quotient for noncarcinogens, THQ (unitless)						
	time for carcinogens, AT _c (yrs)	Averaging time for noncarcinogens, AT _{NC} (yrs)	duration, ED (yrs)	frequency, EF (days/yr)	risk for carcinogens, TR (unitless) 1.0E-06 Used to calco	quotient for noncarcinogens, THQ (unitiess) 1 Jate risk-based						
	time for carcinogens, AT _c (yrs)	Averaging time for noncarcinogens, AT _{NC} (yrs)	duration, ED (yrs)	frequency, EF (days/yr)	risk for carcinogens, TR (unitless) 1.0E-06 Used to calco	quotient for noncarcinogens, THQ (unitiess) 1 Jate risk-based						

INTERMEDIATE CALCULATIONS SHEET VF for PRGs cis-1,2-Dichloroethene in Groundwater Wells GMW 3, 7, 8, 9 and 5, 6 Perkin Elmer Missouri Metals Site

						Overland, Mis	souri						
Exposure duration,	Source- building separation,	Stratum A soil air-filled porosity,	Stratum B soil air-filled porosity,	Stratum C soil air-filled porosity,	Stratum A offective total fluid saturation,	Stratum A soil intrinsic permeability,	Stratum A soil relative air permeability,	Stratum A soil effective vapor permeability,	Thickness of capillary zone,	Total porosity in capillary zone,	Air-filied porosity in capillary zone,	Water-filled porosity in capillary zone,	Floor- wall seam perimeter,
τ	L ₇	θ ₆ Α . 3. 3.	θ _e ^B	θ _a C 3. 3.	Ste 3. 3.	ki , 2	k _{rg}	K,	L _{ez}	n _{cz}	θ _{α, σz}	θ _{w,cz}	X _{creck}
<u>(sec)</u>	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm³/cm³)	(cm³/cm³)	(cm²)	(cm ²)	(cm ²)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0,104	0.355	4,000
Bidg. ventilation rate, Q _{bulldng} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, ग (unitless)	Crack depth below grade, Z _{erack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ∆H _{v,TS} (cal/moi)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H'rs (unitless)	Vapor viscosity at ave, soil temperature, µ _{TS} (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} s (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} c (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _a (cm)
2.54E+04	1.06E+06	3.77E-04	15	7,734	2.04E-03	8.77E-02	1.75E-04	3.19E-03	0.00E+00	0.00E+00	2.07E-04	1.61E-03	442.2
Convection path length, L _p (cm)	Source Vapor conc., С _{воигов} (µg/m ³)	Crack radius, ^r crack . (cm)	Average vapor flow rate into bldg., Q _{soll} (cm ³ /s)	Crack effective diffusion coefficient, D ^{erack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitiess)	lafinite source bidg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	8.77E+01	0.10	1.86E+00	3.19E-03	4.00E+02	2.22E+06	4.95E-05	4.34E-03	NA	3.5E-02]		

INTERMEDIATE CALCULATIONS SHEET VF for PRGs

trans-1,2-Dichloroethene in Groundwater Wells GMW 3, 7, 8, 9 and 5, 6 Perkin Elmer Missouri Metals Site

						Overland, Mis							
Exposure duration,	Source- building separation,	Stratum A soil air-filled porosity,	Stratum B soil air-filled porosity,	Stratum C soil air-filled porosity,	Stratum A effective total fluid saturation,	Stratum A soil intrinsic permeability,	Stratum A soil relative air permeability,	Stratum A soil effective vapor permeability,	Thickness of capillary zone,	Total porosity in capillary zone,	Air-filled porosity in capillary zone,	Water-filled porosity in capillary zone,	Floor- wall seam perimeter,
τ	LT	θa ^A	θ ₈ Β	e,c	S ₁₀	k,	k _{rg}	K. 2.	Læ	n _{ez}	θ_{a_icz}	θ _{w,cz}	Xerack
(sec)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm³/cm³)	(cm³/cm³)	(cm ²)	(cm²)	(cm²)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0,459	0,104	0.355	4,000
Bidg. ventilation rate, Q _{bullding}	Area of enclosed space below grade, A ₆	Crack- to-total area ratio, ग	Crack depth beiow grade, Z _{crack}	Enthalpy of vaporization at ave. groundwater temperature, ΔΗ _{v,TS}	Henry's law constant at ave. groundwater temperature, H _{TS}	Henry's law constant at ave, groundwater temperature, H' _{TS}	Vapor viscosity at ave. soil temperature, ມ _{າງs}	Stratum A effective diffusion coefficient, D ^{eff} A	Stratum B effective diffusion coefficient, D ^{eff} B	Stratum C effective diffusion coefficient, D ^{eff} c	Capillary zone effective diffusion coefficient, D ^{eff} ez	Total overall effective diffusion coefficient, D ^{eff} T	Diffusion path length, La
(cm ³ /s)	(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm²/s)	(cm²/s)	(cm²/s)	(cm²/s)	(cm²/s)	(cm)
2.54E+04	1.06E+06	3.77E-04	15	7,136	4.94E-03	2.13E-01	1.75E-04	3.06E-03	0.00E+00	0.00E+00	1.88E-04	1.50E-03	442.2
Convection path length, L _p (cm)	Source vapor conc., С _{воигсе} (µg/m ³)	Crack radius, r _{orack} (cm)	Average vapor flow rate into bldg., Q _{soll} (cm ³ /s)	Crack effective diffusion coefficient, D ^{arack} (cm ² /s)	Area of crack, A _{erack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, a (unitless)	Infinite source bldg. conc., C _{butding} (µg/m ³)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	2.13E+02	0.10	1.86E+00	3.06E-03	4.00E+02	4.08E+06	4.84E-05	1.03E-02	NA	7.0E-02]		

GW-ADV Version 3.1; 02/04	CALCULATE RIS	K-BASED GROUN	DWATER CONCI		oroethene in (DATA ENTRY SHE VF for PRGs Groundwater Wei Perkin Elmer Missouri Metals S Overland, Missou X)	Is GMW 3, 7, 8, 9 : Site	and 5, 6				
Reset to Defaults	CALCULATE INC	YES REMENTAL RISK	OR S FROM ACTUAL] . GROUNDWATE		10N (enter "X" in "YE	S" box and initial grou	ndwater conc. beid	w)			
	ENTER Chemical CAS No. (numbers only, no dashes)	YES ENTER Initial groundwater conc., Cw (ug/L)]	Chemicai							
	127184	(µg/L)	-		Tetrachloroethy	/lene						
MORE ↓	ENTER Average soil/	ENTER Depth below grade to bottom	ENTER	ENTER Totals mus Thickness	ENTER t add up to value of Thickness of soll	ENTER of L _{wr} (cell G28) Thickness of soll	ENTER Soli	ENTER	ENTER Soll stratum A SCS		ENTER User-defined stratum A	
	groundwater temperature, T _s (°C)	of enclosed space floor, L _F (cm)	below grade to water table, L _{WT} (cm)	h _A (cm)	stratum B, (Enter value or 0) h _B (cm)	stratum C, (Enter value or 0) h _c (cm)	stratum directly above water table, (Enter A, B, or C)	SCS soli type directly above water table	soil type (used to estimate soil vapor permeability)	OR	soil vapor permeability, k, (cm ²)	
	10	15	457,2	457.2	<u> </u>	<u> </u>	C	SC	<u> </u>			ł
MORE ↓	ENTER Stratum A SCS soli type Lookup Soli	ENTER Stratum A soil dry bulk density, pb ^A	ENTER Stratum A soil total porosity, n ^A	ENTER Stratum A soil water-filled porosity, θ_w^A	ENTER Stratum B SCS soil type Lookup Soil	ENTER Stratum B soil dry bulk density, Ps ^B	ENTER Stratum B soil total porosity, n ⁸	ENTER Stratum B soil water-filled porosity, Θ_w^B	ENTER Stratum C SCS soll type Lookup Soll	ENTER Stratum C soli dry bulk density, Ps ^c	ENTER Stratum C soil total porosity, n ^C	ENTER Stratum C soil water-filled porosity, ew ^c
	Parameters	(g/cm³)	(unitless)	(cm ³ /cm ³)	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	Parameters	(g/cm ³)	(unitiess)	(cm ³ /cm ³)
MORE ↓	ENTER Enclosed space floor thickness,	1.43 ENTER Soil-bidg. pressure differential,	0.459 ENTER Enclosed space floor length,	O.215 CONTER	C ENTER Enclosed space height,	1,43 ENTER Floor-waii seam crack width,	0.459 ENTER Indoor air exchange rate,	0.215	ENTER Average vapor flow rate into bidg. OR eave blank to calcula	<u>1.43</u>	0.459	0.215
	L _{ansok}	ΔP (g/cm-s ²)	L _B (cm)	W _B (cm)	H _B (cm)	w (cm)	ER (1/h)	_	Q _{soli} (L/m)			
	10	40	1000	1000	366	0.1	0.25] .				
MORE ↓	ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)	ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)						
END	70	30	30	350		1 ulate risk-based r concentration.						
						1 of 1						

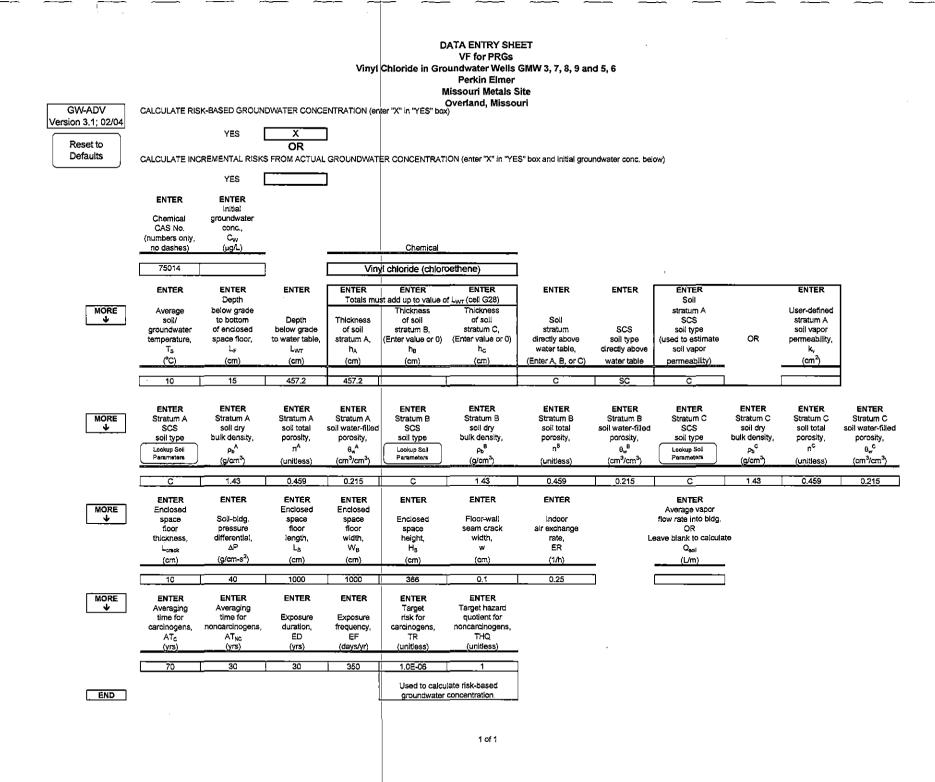
INTERMEDIATE CALCULATIONS SHEET

VF for PRGs Tetrachloroethene in Groundwater Wells GMW 3, 7, 8, 9 and 5, 6

Perkin Elmer

Missouri Metals Site

Overland, Missouri


						Overland, Mis	Soun						
Exposure duration,	Source- building separation,	Stratum A soil air-filled porosity,	Stratum B soil air-filled porosity,	Stratum C soil air-filled porosity,	Stratum A effective total fluid saturation,	Stratum A soil intrinsic permeability,	Stratum A soil relative air permeability,	Stratum A soil effective vapor permeability,	Thickness of capillary zone,	Total porosity in capillary zone,	Air-filled porosity in capillary zone,	Water-filled porosity in capillary zone,	Floor- wall seam perimeter,
τ	LT	0,^	θ, ^Β	θ ^c	Ste	ĸ	ka	k,	Læ	n _{ez}	θa,cz	0 _{w.cz}	Xcrack
(sec)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm)
	,								,				
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0.104	0.355	4,000
Bidg. ventilation rate, Q _{bullding} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, ๆ (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cai/mol)_	Henry's law constant at ave. groundwater temperature, H⊤s (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{Ts} (unitless)	Vapor viscosity at ave. soil temperature, µ⊤s (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ⁹⁷⁷ B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} ez (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L _d (cm)
2.54E+04	1.06E+06	3.77E-04	15	9,553	7.81E-03	3.36E-01	1.75E-04	3.12E-03	0.00E+00	0.00E+00	1.87E-04	1.51E-03	442.2
Convection path length, L _p (cm)_	Source vapor conc., C _{source} (μg/m ³)	Crack radius, ^r owk (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{orack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitiess)	Infinite source indoor attenuation coefficient, a (unitless)	Infinite source bldg. conc., C _{bullding} (µg/m ³)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	3.36E+02	0.10	1.86E+00	3.12E-03	4.00E+02	3.12E+06	4.84E-05	1.63E-02	5.9E-06	6.0E-01	1		
	·	•	•		· · · · · · · · · · · · · · · · · · ·	•				•	•		

				Trichlo	roethene in Gr	Perkin Elmer Iissouri Metals S	GMW 3, 7, 8, 9 ai	nd 5, 6				
GW-ADV	CALCULATE RIS	K-BASED GROUN	DWATER CONCE	ENTRATION (ent	er "X" in "YES" box	Overland, Missou)	ıri					
Reset to Defaults		YES CREMENTAL RISK	OR S FROM ACTUAL	GROUNDWATE	R CONCENTRATI	ON (enter "X" in "YE:	5" box and initial grou	indwater conc. bel	ow)			
		YES]								
	ENTER Chemical CAS No. (numbers only, no dashes)	ENTER Initial groundwater conc., C _w (µg/L)	ĸ		Chemical							
	79016	ĺ]		 Trichloroethyle	ne						
MORE	ENTER Average	ENTER Depth below grade	ENTER		ENTER t add up to value o Thickness	Thickness	ENTER	ENTER	ENTER Soil stratum A		ENTER User-defined]
· ·	soil/ groundwater temperature, T _s (°C).	to bottom of enciosed space floor, L _F (cm)	Depth below grade to water table, L _{wT} (cm)	Thickness of soil stratum A, h _A (cm)	of soil stratum B, (Enter value or 0) h _B (cm)	of soil stratum C, (Enter value or 0) h _e (cm)	Soli stratum directly above water table, (Enter A, B, or C)	SCS soil type directly above water table	SCS soll type (used to estimate soll vapor permeability)	OR	stratum A soll vapor permeability, k, (cm ²)	
	10	15	457.2	457,2			C	SC	С			- -
	ENTER Stratum A SCS soil type Lookup Soil Perameters	ENTER Stratum A soli dry bulk density, p _b ^A (g/cm ³)	ENTER Stratum A soil total porosity, n ^A (unitless)	ENTER Stratum A soli water-filied porosity, θ_w^A (cm ³ /cm ³)	ENTER Stratum B SCS soii type Lookup Soll Parsmeters	ENTER Stratum B soli dry bulk density, pb ⁵ (g/cm ³)	ENTER Stratum B soil total porosity, n ^e (unitless)	ENTER Stratum B soll water-filled porosity, θ_w^B (cm ³ /cm ³)	ENTER Stratum C SCS soil type Lookup Soil Parametars	ENTER Stratum C soli dry bulk density, pb ^C (g/cm ³)	ENTER Stratum C soil total porosity, n ^c (unitless)	ENTER Stratum C soli water-filled porosity, e ^r (cm ³ /cm ³)
	<u> </u>	1.43	0.459	0.215	. c	1.43	0.459	0.215	C	1.43	0.459	0.215
MORE ↓	ENTER Enclosed space floor thickness, ^L ennek (cm)	ENTER Soll-bidg. pressure differential, ΔP (g/cm-s ²)	ENTER Enclosed space floor length, L ₈ (cm)	ENTER Enclosed space floor width, W _B (cm)	ENTER Enclosed space height, H ₈ (cm)	ENTER Floor-wall seam crack width, w (cm)	Indoor air exchange rate, ER (1/h)	_	ENTER Average vapor flow rate into bidg. OR ave blank to caiculat Q _{aol} (L/m)	e		
	10	40	1000	1000	366	0.1	0.25	ב				
	ENTER Averaging time for carcinogens, AT _c (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	ENTER Exposure frequency, EF (days/yr)	ENTER Target risk for carcinogens, TR (unitiess)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)						
	70	30	30	350	1.0E-06	1						
END						late risk-based concentration,						
						1 of 1						

US EPA ARCHIVE DOCUMENT

INTERMEDIATE CALCULATIONS SHEET VF for PRGs Trichloroethene in Groundwater Wells GMW 3, 7, 8, 9 and 5, 6 Perkin Elmer Missouri Metals Site

						Overland, Mis	souri						
Exposure duration,	Source- building separation,	Stratum A soil air-filled porosity,	Stratum B soil air-filled porosity,	Stratum C soil air-füled porosity,	Stratum A effective total fluid saturation,	Stratum A soil intrinsic permeability,	Stratum A soil relative air permeability,	Stratum A soil effective vapor permeability,	Thickness of capillary zone,	Total porosity in capillary zone,	Air-filled porosity in capillary zone,	Water-filled porosity in capillary zone,	Floor- wall seam perimeter,
τ	Lr	θa ^A	θ _a ^B	θac	S _{te}	ĸ	k _{rg}	k,	Lez	n _{cz}	θ _{a,cz}	θ _{w,cz}	Xcrack
(sec)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm³/cm³)	(cm²)	(cm ²)	(cm²)	(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0.459	0.104	0,355	4,000
Bidg. ventilation rate, Q _{bullding} (cm ³ /s)	Area of enclosed space below grade, ^A e (cm ²)	Crack- to-total area ratio, ๆ (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave, soil temperature, µтs (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{eff} B (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c (cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} ez (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L₀ (cm)
2.54E+04	1.06E+06	3.77E-04	15	8,557	4.78E-03	2.06E-01	1.75E-04	3.42E-03	0.00E+00	0.00E+00	2.08E-04	1.67E-03	442.2
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, ^r erack (cm)	Average vapor flow rate into bldg., Q _{soli} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (μg/m³) ⁻¹	Reference conc., RfC (mg/m ³)		<u> </u>	
15	2.06E+02	0.10	1.86E+00	3.42E-03	4.00E+02	8.27E+05	5.00E-05	1.03E-02	1.1E-04	4.0E-02]		

INTERMEDIATE CALCULATIONS SHEET VF for PRGs

Vinyl Chloride in Groundwater Wells GMW 3, 7, 8, 9 and 5, 6

Perkin Elmer

Missouri Metals Site

Overland, Missouri

Exposure duration, τ (sec)	Source- building separation, L _T (cm)	Stratum A soil air-filled porosity, θ _s ^A (cm ³ /cm ³)	Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	Stratum C soil air-filled porosity, e _a c (cm³/cm³)	Stratum A effective total fluid saturation, Ste (cm ³ /cm ³)	Stratum A soil intrinsic permeability, k, _(cm ²)	Stratum A soil relative air permeability, k _{rg} (cm ²)	Stratum A soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{ez} (cm)	Total porosity in capillary zone, n _{cz} (cm ³ /cm ³)	Air-filled porosity in capillary zone, ^{θ_{a,cz} (cm³/cm³)}	Water-filled porosity in capillary zone, θ _{w,cz} (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)
9.46E+08	442.2	0.244	0.244	0.244	0.324	2.26E-09	0.821	1.86E-09	30.00	0,459	0,104	0.355	4,000
Bidg. ventilation rate, Q _{buildng} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-totai area ratio, ग ्(unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H⊤s (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, µтs (g/cm-s)	Stratum A effective diffusion coefficient, D ^{eff} A (cm ² /s)	Stratum B effective diffusion coefficient, D ^{off} 3 (cm ² /s)	Stratum C effective diffusion coefficient, D ^{eff} c _(cm ² /s)	Capillary zone effective diffusion coefficient, D ^{eff} ec (cm ² /s)	Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s)	Diffusion path length, L₄ (cm)
2.54E+04	1.06E+06	3.77E-04	15	5,000	1.72E-02	7.41E-01	1.75E-04	4.59E-03	0.00E+00	0.00E+00	2.72E-04	2.21E-03	442.2
Convection path length, L _p (cm)	Source vapor conc., С _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soll} (cm ³ /s)	Crack effective diffusion coefficient, D ^{orack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^r) (unitless)	Infinite source indoor attenuation coefficient, a (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)	Unit risk factor, URF (цg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)			
15	7.41E+02	0.10	1.86E+00	4.59E-03	4.00E+02	2.58E+04	5.43E-05	4.02E-02	8.8E-06	1.0E-01			