Carbon Capture and Storage An Overview of Options

Klaus S. Lackner Columbia University

June 2010

Plentiful Sustainable Energy

Energy is central to human well-being

World needs affordable, plentiful and clean energy for all

Clean energy can overcome other sustainability limits

Atmospheric CO₂ level must be stabilized

Fossil carbon is not running out

IPCC Model Simulations of CO₂ Emissions

Future Energy Demand

- 15 100 TW
- 15 TW: Current use is a low end prediction
 - Extreme increases in efficiency
 - Move away from production of physical goods
- 50 TW: Business as usual
 - Large drop in energy intensity (efficiency, and change in activity)
 - No new energy drivers
- 100 TW: Past performance

Source: Association for the Study of Peak Oil & Gas Newsletter

Fossil Fuels Are Plentiful

- Coal resources alone could be 3000 to 5000 Gt of carbon
 - 400 Gt consumed since 1800
 - annual production of 8 Gt/yr of fossil carbon
- Beware of "resource" vs. "proven reserve"

Curve fitting of past production does not make the known resources go away

Fossil fuels are fungible ...

... and they are not running out

Environmental Limits – Not Resource Limits

Stabilize CO₂ concentration – not CO₂ emissions

The Big Three Energy Options

Cost effective options, but not at full scale

Without Carbon Capture and Storage fossil fuels will have to be phased out

Dividing The Fossil Carbon Pie

CARBON DIOXIDE CAPTURE AND STORAGE

Summary for Policymakers and Technical Summary

Intergovernmental Panel on Climate Change

 $\begin{array}{r} Mg_{3}Si_{2}O_{5}(OH)_{4} + 3CO_{2}(g) \rightarrow \\ 3MgCO_{3} + 2GO_{2} + 2H \\ + 63kJ/mol CO_{2} \end{array}$

Removing the Carbon Constraint

Many Different Options

- Flue gas scrubbing retrofit
 - MEA, ammonia, chilled ammonia, ...
- Oxyfuel Combustion retrofit and new
 - Naturally zero emission
- Integrated Gasification Combined Cycle new plant
 Difficult as zero emission
- AZEP Cycles innovative design
 - Mixed Oxide Membranes
- Fuel Cell Cycles innovative design
 - Solid Oxide Membranes

Problem needs solutions on many different timescales

Collecting CO₂ at High Efficiency

- Integration rather than flue gas scrubbing
- CO₂ capture enables zero emission
- Fossil fuels are energy ores
- Power plants refine the ore
- Cost of sequestration will drive efficiency

60% to 80% conversion efficiency

Zero Emission Principle ...

... leads to advanced power plant designs

Solid Waste

Carbon makes a better fuel cell

 $C + O_2 \rightarrow CO_2$ no change in mole volume entropy stays constant $\Delta G = \Delta H$

$2H_2 + O_2 \rightarrow 2H_2O$ large reduction in mole volume entropy decreases in reactants made up by heat transfer to surroundings $\Delta G < \Delta H$

A Solid Oxide Fuel Cell

Advanced Zero Emission Power Plants

Jennifer Wade

Limited Options - Large Scale

- Geological Storage
- Mineral Sequestration
- Ocean Disposal
- Bio-Sequestration

Disposal is the most difficult part of CCS

Lake Michigan

21st century carbon dioxide emissions could exceed the mass of water in Lake Michigan

Underground Injection

Standard Technology

- Conventional drilling
- Based on conventional reservoir engineering
- Practical experience in enhanced oil recovery
- Well explored, successful sites:
 - Sleipner, Weyburn, In Salah, West Texas ...

Issues with geological storage

- Loss rate
- Safety and monitoring
- Accounting and monitoring
- Managing huge injection volumes
Energy States of Carbon

Serpentine and Olivine are decomposed by acids

- Carbonic Acid Requires Pretreatment
- Chromic Acid
- Sulfuric Acid, Bisulfates
- Oxalic Acid
- Citric Acid
- ...

Peridotite and Serpentinite Ore Bodies

Magnesium resources that far exceed world fossil fuel supplies

Rockville Quarry

$Mg_{3}Si_{2}O_{5}(OH)_{4} + 3CO_{2}(g) \rightarrow 3MgCO_{3} + 2SiO_{2} + 2H_{2}O(I) + 63kJ/mol CO_{2}$

Safe and permanent storage option
High storage capacity
Permanence on a geological time scale

Closure of the natural carbon cycle

Belvidere Mountain, Vermont Serpentine Tailings

Oman Peridotite

Issues with Mineral Sequestration

- Cost
- Mining Scale
- Mining Impacts and mined materials
 - Trace elements
 - Mined materials can be hazardous
- Complex chemistry

Ocean Disposal

Ocean Floor Engineered Sites

- Clathrates
- Covers, bags etc.
- Trenches
- Inclusion in Ocean Sediments
 - Nuclear waste legacy

In situ Mineral Sequestration

- Changing 30 minutes into 30 years
 - Move from serpentine to basalt
 - Aqueous formations
 - Mineral Trapping

Gravitational Trapping Subocean Floor Disposal

After Initial Work at Los Alamos and Columbia

GRT is to demonstrate air capture in Tucson

Allen Wright Gary Comer

Deliver proof of principle

 Air Extraction can compensate for CO₂ emissions anywhere

Separate Sources from Sinks

Art courtesy Stonehaven CCS, Montreal

Wind energy – Air capture

CO₂ Capture from Air

1 m³of Air

40 moles of gas, 1.16 kg

wind speed 6 m/s

$$\frac{mv^2}{2} = 20 \,\mathrm{J}$$

 $0.015 \text{ moles of } CO_2$

produced by 10,000 J of gasoline

Flue Gas Scrubbing – Air Capture

Sorbent Strength

depends logarithmically on CO_2 concentration at collector exit $\Delta G = RT \log P$

Anionic Exchange Resins

Solid carbonate "solution" Quaternary amines form strong-base resin

- Positive ions fixed to polymer matrix

 Negative ions are free to move
 Negative ions are hydroxides, OH⁻
- Ory resin loads up to bicarbonate ○ $OH^- + CO_2 \rightarrow HCO_3^-$ (hydroxide \rightarrow bicarbonate)
- Wet resin releases CO_2 to carbonate \circ 2HCO₃⁻⁻ \rightarrow CO₃⁻⁻ + CO₂ + H₂O

Moisture driven CO₂ swing

Novel Regenerator Chemistry

Moisture Swing Absorption

- Moisture swing consumes water and electric power
 - 50 kJ/mol of CO₂
 - 10 liter of saline water per kg of CO₂

Air Capture Material and Energy Flow

Collecting CO₂ with Synthetic Trees

Setting the scale for 1 ton/day

- 2 × 30 panels
 2.5m × 1m × 0.3m
- 2 × 2500 kg of resin
 0 10,000m² of surface
- 6 × Chambers
 4m³ each
- One Container
 0 86m³
 - \circ can hold all panels

Assembly line based automation

Air Capture Economics

Move to mass manufacturing Initial cost are high – but less than local market prices

Cost Items	Cost Impacts
Raw materials	Low
Energy	Low
Manufacturing	High
Maintenance	High
CO ₂ Storage	Initially None

* Operating costs include all electrical, water, labor and material inputs

Launch: Single Mobile Units No innovation, catalog prices for parts ~\$200k / unit

- Unit cost:
- Operating Costs*: ~\$125 / ton of CO₂
- CO_2 Delivery Price:~\$250 / ton of CO_2 CO_2 Output:~ 1 ton / day / unit
- Units can be mass-manufactured
- Delivered in standard shipping containers

Maturity: Air Capture Parks Learning and streamlining **Improvements** in resins

- < \$20k / unit • Unit cost:
- Operating Costs*: < \$20 / ton of CO₂

- CO₂ Delivery Price: ~ \$30 / ton of CO₂
 CO₂ Output: ~ 1-3 tons / day / unit
- Range of collector styles, recovery systems

Closing the Cycle - Synthetic Fuels

Going to Scale (Mass Production)

- 10 million units @ 1/tonne per day

 capture 3.6 Gt CO₂ per year (12% of emissions)
 Require annual production of 10 million
 - Assume 10 year life time
 - Compared to 70 million cars and light trucks
- 100 million units would lower CO_2 in the air

Monitoring and Verification

Safety and environmental issues Efficacy and accounting issues

Safety

Good choice of reservoir

 Safe, well understood cap rock sealing the formation

Build in escape valve to relieve pressure

- \circ Most concerns are removed, if CO₂ is released \circ However, resulting emission must be counted
- Air capture can compensate

Hutchinson, Kansas

January 17, 2001

M. Lee Allison, Geotimes, October 2001

Storage involves a public good

- Who owns the pore space?
- Who monitors the pore space?
- How do we know storage is safe?
- How do we know we accomplished anything?

By Contrast:

Capture and transport only require a carbon price or performance standards

Principles of Underground Storage

- Storage must be safe
 - Capability of an emergency release is important
 - Continuous safety monitoring is important
- Storage must be effective

 Even harmless leakage negates CCS
- Storage must be verifiable
 - System must be transparent, not require trust
 - \circ Need technologies for monitoring
 - Positive inventory techniques are necessary
- Storage must last
 - Life time of storage has to be thousands of years

Manage Underground Storage

- CO₂ injection creates three distinct problems
 - Volume addition
 - By far biggest problem
 - Can be solved by removing water (desalination)
 - Buoyancy
 - Can be solved by going very deep
 - Requires careful monitoring
 - Chemical Change
 - Must be managed, anticipated and understood
 - Small problem for most reservoirs
 - Usually irreversible, sometimes severe

Volume Increase

- Pressure management
 - \circ Fluids are nearly incompressible
 - Volume injections are large
 - Pressure field provides tele-connection to distant reservoirs
 - water quality from aquifer intrusions
 - artesian wells
 - seismic stability

Buoyancy of CO₂

- Finding and opening fractures
- Long term return to the atmosphere

Solutions:

Continuous monitoring or sub-ocean floor injection
Irreversible Chemistry

- Minimize negative impacts of unintended reactions
- Rely on chemistry being slow or well planned

Volume increase and buoyancy problems can be fixed simply by removing CO_2 .

However, chemistry changes are irreversible.

- Prior Definition of Off-Ramps
 - Unexpected seismic events
 - Salt water intrusions
 - Artesian Wells
 - \circ CO₂ appears outside the formation

If these events happen, the injection must be reversed

Demand Positive and Quantitative Accounting

- Measure how much CO₂ is injected
- Watch it distribute underground
- Develop generally accepted standards for measuring the amount of carbon stored
- Inventory measurements are critical

Current techniques are all qualitative

Use C-14 for tagging for positive accounting

- Surface carbon is C-14 live
 - 1.3 parts per trillion
- Fossil fuel carbon is C-14 free
 - Add C-14, 1 microgram per ton
 - \circ Air captured CO₂ is naturally tagged
 - C-14 content never exceeds natural levels
- Not suitable for leak detection
 - Inventory tool
 - Resolves disputes
 - Does not fractionate

C-14 Monitoring

- Why C-14
 - \circ It will not fractionate from the carbon
 - \circ It is unique in most underground formations
 - It is harmless (C-14 content is like that on the surface)

What Happens if CO₂ is released?

- Site becomes an emitter
 - \circ Damage equals the price of CO_2
 - \circ Air capture can set the price
- Liability is indefinite
 - Owners of the site are treated as potential emitters
- Buying certificates of sequestration

Price carbon at the well

- Mobilizing and demobilizing carbon

 Trade carbon mobilization against carbon fixation
 Accounting is easiest upstream
- Rational design with minimal exceptions

 Once mobilized carbon need not be tracked
 Create certificates of sequestration
- Carbon leakage becomes emission

 Remobilization is the same as mobilization
 Only one flavor of "certificate of sequestration."

Steps toward a sustainable future

- Public buy-in
- R&D support
- Equitable regulations
 - International fairness
 - Social fairness
 - \circ Intergenerational fairness

Options

- Regulating Sectors

 Performance Standards
 Portfolio requirements
 Technology Choices
 E.g. nuclear or renewable portfolios
- Carbon Price and Carbon Limits
 - \circ Cap and Trade
 - Taxes
 - \circ Pricing at the well

Immediate Options

- Increased Efficiency

 driven by price
- Reduction in Consumption

 driven by price
- Fuel Switching (Coal to methane)
 Sporadically discouraged by price

Best achieved by performance standards

For every ton of carbon extracted from under the ground another ton of carbon must be returned

How to get started?

- Regulatory and institutional frameworks
 - Carbon Price
 - Regulatory oversight
- Public Engagement and Public Trust
 - Transparency
 - Accountability
 - Reversibility
- Emphasis on ready technologies and minimum infrastructure change
 - Geological storage
 - Air Capture
- Research and Development
 - $\circ~$ This is not business as usual

Placing big bets on the big three

- Renewable (particularly solar)
- Nuclear (first fission then fusion)
- Fossil Carbon with CCS

Without CCS, the transition to zero carbon is very difficult

Coming back down

