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1Categories I, II, III were defined for the former MDS.  The Category I definition is used as part of the
definition of Remediation Material at the HARS.  For more information on the Categories, see Appendix C.
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I.  DISCUSSION OF SCIENCE SUPPORTING PROPOSED REVISIONS TO THE EXISTING
BIOACCUMULATION TESTING EVALUATION FRAMEWORK

A.  INTRODUCTION

1. Historic Area Remediation Site

Under the Marine Protection, Research, and Sanctuaries Act, 33 U.S.C. 1401 et seq. (MPRSA)  the 
U. S. Environmental Protection Agency (EPA) and the U.S. Army Corps of Engineers (USACE) share
responsibility for MPRSA permitting and HARS designation and management.  Pursuant to Section 102
of MPRSA, EPA is assigned permitting authority for non-dredged material.   EPA also designates
recommended times and sites for ocean disposal (for both non-dredged and dredged material), and
develops the environmental criteria used in reviewing permit applications.  USACE-NYD determinations
to issue MPRSA permits are subject to EPA review and concurrence.  Under Section 103 of MPRSA,
the USACE is assigned permitting responsibility for dredged material, subject to EPA review and
concurrence that the material meets applicable ocean disposal criteria.  The USACE is required to use
EPA-designated ocean disposal sites to the maximum extent feasible. 

EPA de-designated and terminated use of the New York Bight Dredged Material Disposal Site [also
known as Mud Dump Site (MDS)], and simultaneously designated the Historic Area Remediation Site
(HARS) (see 40 CFR 228.15(a)(d)(6)), in a final rule that became effective on September 29, 1997. 
Pursuant to the rule, the HARS is restricted to receive only dredged material suitable for use as Material
for Remediation (also referred to as Remediation Material).  Material for Remediation is defined in the
HARS final rule preamble as “uncontaminated dredged material (i.e., dredged material that meets current
Category I1 standards and will not cause significant undesirable effects including through
bioaccumulation).”

The need for remediating the HARS is described in detail in the HARS SEIS (EPA, 1997a), associated
proposed (EPA, 1997b) and final (EPA, 1997c) rulemaking, and the Response to Comments on the
proposed rule (EPA, 1997e).  In summary, the proposal to terminate and de-designate the MDS, and
simultaneously redesignate the site and surrounding degraded areas as the HARS, is amply supported by
the presence of toxic effects in the HARS (a Category III1 sediment characteristic), dioxin
bioaccumulation exceeding Category I1 levels in worm tissue collected from the HARS (a Category II1

sediment characteristic), NOAA ER-L/ER-M exceedances in some HARS sediments, and PCB/TCDD
contamination in area lobster stocks.  Individual elements of the aforementioned data do not prove that
sediments within the HARS are imminent hazards to the New York Bight Apex ecosystem, living
resources, or human health.  However, the collective evidence presents cause for concern, and justifies
the finding that a need for remediation exists, that the site is Impact Category I (see, 40 CFR 228.10), and
that the site should be managed to reduce impacts to acceptable levels [see, 40 CFR 228.11(c)]. (For
more information see the HARS SEIS)



2The joint EPA Region 2/USACE-NYD HARS TEM is the document that discusses the HARS Framework
and reviews compliance with EPA’s Ocean Dumping Regulations (40CFR 220-229).  The TEM documents  the
suitability determination of individual dredged material projects proposed for placement as Remediation Material at
the HARS.
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2. Scientific Peer Review of Existing HARS Dredged Material Bioaccumulation Testing
Evaluation Framework

In the March 1996 New York/New Jersey Harbor Estuary Program (HEP) Comprehensive Conservation
and Management Plan (CCMP) (NY/NJ HEP, 1996), EPA Region 2 committed to conduct a public and
scientific peer review process of its dredged material bioaccumulation testing evaluation Framework to
ensure that sound science is applied in its decision-making process.

In fulfillment of the HEP CCMP commitment, EPA Region 2 sent a letter (January 14, 1998) to the New
York/New Jersey Dredged Material Management Forum, inviting interested parties to participate on a
Workgroup to develop of a charge for and to review the recommendations/comments from the scientific
peer review.    

On March 9, 1998, a draft of the charge to the scientific peer reviewers was distributed to all interested
parties that responded to the January 14, 1998, invitation letter.  The first Workgroup meeting was held on
March 27, 1998, and was attended by approximately 50 people, representing broad and diverse interests
(see Appendix A for a list of all workgroup members).  The main objectives of the meeting were to
explain the scientific peer review process, present an overview of the HARS Testing Evaluation
Framework, discuss the charge and identify questions for the scientific peer reviewers.  

Workgroup members submitted written and verbal comments on the scientific peer review charge. 
Comments from the workgroup were used to produce a final charge to the scientific peer reviewers. 
Conflicts among individual comments were discussed in meetings between EPA Region 2 and individual
workgroup members groups, such that workgroup consensus was reached on the final charge.  The final
charge (see Appendix B) was given to the scientific peer reviewers (see Appendix C) on June 23, 1998. 
It is important to note that the charge was limited to the evaluation/interpretation of 28-day
bioaccumulation test results.  The charge did not include review of the toxicity and water column test
evaluations and these evaluations are not proposed for modification. The scientific peer reviewers were
asked to respond within 60 days.   The comment period was scheduled to end on August 24, 1998.  EPA
received review comments from 10 of 12 assigned scientific reviewers by that date.  The last review
package was received on March 15, 1999.  All comments were distributed to Workgroup members.

Based on the review of comments of the peer reviewers, EPA Region 2 is proposing modifications to the
bioaccumulation related aspects of the HARS Testing Evaluation Framework which is used and discussed
in the joint EPA Region 2/USACE-NYD Testing Evaluation Memorandum (TEM)2.  A TEM is prepared
to document the suitability determination for each dredged material project proposed to be placed as
Remediation Material at the HARS.  

The following section of this document (Section I. B) summarizes the revisions to the HARS Framework
that are being proposed by EPA Region 2 as a result of review of the scientific peer review comments. 
Section II presents the comments of the scientific peer reviewers and EPA’s responses to those
comments. 
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B.  INTERIM CHANGE TO THE EXISTING BIOACCUMULATION TESTING
EVALUATION FRAMEWORK (REVISION OF THE WORM PCB MATRIX VALUE) 

On September 27, 2000, a Memorandum of Agreement (MOA) between EPA, the Department of the
Army, and the USACE, was signed.  The MOA specifically identified steps that the Agencies would take
to ensure that the remedial goals of the HARS continue to be met, while allowing time for full public and
peer review of the proposed future changes to the HARS Framework (described in Section C of this
document).  In the MOA, EPA Region 2 and the USACE-NAD agree to revise the Regional Matrix
Value for PCBs in worm from 400 ppb to an interim value of 113 ppb.  The clam PCB Matrix Value will
remain at the 100 ppb level.

This revision to the current HARS Framework will be used until such time as proposed future changes
(described in Section C of this document) have been reviewed by a peer review panel and subjected to
public comment.  This PCB revision: (1) is in response to the high degree of public controversy over the
question of suitability of HARS Remediation Material; (2) reflects EPA Region 2's interpretation and
ongoing review of the science associated with responding to the peer review comments; (3) is an
appropriate interim step in light of the remedial goals of the HARS, in particular the specific mention of
PCBs in the need for remediating the HARS.

As part of the overall effort of reviewing the framework and guidelines, appropriately conservative
HARS-Specific Bioaccumulation Decision Values (HARS-Specific Values) for assessing the potential for
human health and ecological effects have been derived and are proposed for use in evaluating
accumulated concentrations of PCBs.  These HARS-Specific Values were derived using the same
human health and ecological effects-based procedures that would be used for other constituents.  These
proposed HARS-Specific PCB Values are scientifically derived/developed levels below which the test
concentration does not indicate a potential for significant undesirable effects (human and ecological) (See
responses to comments 7 & 8).  As described in the MOA, EPA Region 2 will present the proposed PCB
HARS-Specific Values and other proposed revisions to the Framework to a peer review panel, in
accordance with EPA’s Peer Review Policy (EPA, 1998). 
  
Until the public and scientific peer review of proposed changes to the Framework are completed,
bioaccumulation test results for individual projects will continue to be evaluated using the current HARS
Framework  (with the exception that the worm PCB Regional Matrix Values is revised to the lowest
HARS-Specific PCB Value of 113 ppb).   The current HARS Framework has been modified to reflect
the revision of the Regional Matrix Value for PCBs in the worm (Figure 1b).  EPA Region 2 is not, at this
time, considering any additional changes in the interim, until completion of the peer review panel process
described in the September 27, 2000 Memorandum of Agreement.

C.  SUMMARY OF PROPOSED CHANGES TO THE EXISTING BIOACCUMULATION
TESTING EVALUATION FRAMEWORK

Dredged material proposed for placement at the HARS is rigorously tested for potential water column
impacts, solid phase toxicity, and bioaccumulation potential using procedures in the National Testing
Manual (Green Book).  EPA/USACE are not, at this time, considering any changes to interpretation of
water column or toxicity tests, or changes to biological laboratory (bioassay) testing methods.  Based on a
review of the scientific peer reviewers’ comments, however, changes are being proposed to the existing
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HARS Framework used to evaluate and interpret bioaccumulation test results (including an interim
revision of the Matrix Value for PCBs in worms).  Also as described in the September 27, 2000
Memorandum of Agreement, EPA Region 2 plans to present these proposed changes to a peer review
panel and public comment, in accordance with EPA’s Peer Review Policy (EPA, 1998), prior to their
implementation.  

Currently, in accordance with EPA’s Ocean Dumping Regulation (40CFR 227) bioaccumulation testing
data are evaluated in the HARS Framework using a heirarchy of comparisons to results from tests of
reference sediment, and to FDA Action Levels, Regional Matrix values, Regional Dioxin values, risk-
based guideline values, and are then considered in an integrated effects evaluation using the eight Green
Book factors (see Figure 1).  This evaluation results in one of two determinations regarding the material:
suitable for use as Remediation Material at the HARS; or not suitable for use as Remediation Material.
(Prior to the de-designation of the former Mud Dump Site, an evaluation resulted in one of three
decisions: unsuitable for ocean disposal [Category III]; suitable with capping [Category II]; or suitable for
unrestricted disposal [Category I].  For more information on the MDS Categories, see Appendix C.  Since
designation of the HARS, only Remediation Material defined as uncontaminated dredged material (i.e.,
dredged material that meets current Category I standards and will not cause significant undesirable
effects including through bioaccumulation) can be placed at the HARS.

EPA Region 2 proposes to revise the existing HARS Framework (Figure 1a) for evaluating
bioaccumulation test results of dredged material proposed for use as Remediation Material at the HARS
to address comments of the peer reviewers, particularly those regarding the use of the Matrix values, by
establishing HARS-Specific Values for all contaminants of concern.  These proposed HARS-Specific
Values will be scientifically derived/developed levels below which the test concentration does not indicate
a potential for significant undesirable effects (human and ecological).  Bioaccumulation test results for
individual projects will be compared to these proposed HARS-Specific Values to determine whether the
proposed project is suitable as Remediation Material.  If any chemical in test tissue exceeds any of the
proposed HARS-Specific Values, this could result in the tested dredged material being found unsuitable
for use as Remediation Material at the HARS.  

The revised HARS Framework that is proposed by EPA Region 2 will include four steps for evaluating
bioaccumulation test results: (1) statistical comparison of test tissue concentrations to reference tissue
concentrations; (2) adjusting bioaccumulation test tissue data to estimate steady state residues; (3)
comparing bioaccumulation test tissue results to Regional Dioxin Values and proposed HARS-Specific
Values (chemical-specific, effects-based protective benthic tissue levels); and (4) evaluating the
bioaccumulation test data for the potential for combined effects of multiple contaminants (i.e., total
narcotic potential, total carcinogenicity, and total non-cancer hazards) (see Figure 2).  The following
sections discuss specific revisions to the HARS Evaluation Framework that are being proposed.
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1 Toxicity test results are evaluated prior to the bioaccumulation test results.  If proposed dredged material fails the toxicity tests, it is considered
not suitable for use as Remediation Material and the bioaccumulation tests are not evaluated.
Although not shown, proposed dredged material bioaccumulation test results are adjusted to steady state after comparison with reference.
Note:  If any chemical exceeds an FDA Action level, a Matrix level or Dioxin Category I value, proposed dredged material is not Category I.

2

3

Figure 1a.  Existing EPA Region 2/ USACE-NYD Framework for Evaluating 
Bioaccumulation Test Results 
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Toxicity test results are evaluated prior to the bioaccumulation test results.  If proposed dredged material fails the toxicity tests, 
it is considered not suitable for use as Remediation Material and the bioaccumulation tests are not evaluated.
Although not shown, proposed dredged material bioaccumulation test results are adjusted to steady state after comparison with the reference.
A revised, risk-based Regional Matrix Value of 113 ppb for PCBs in the worm has been adopted.
Note:  If any chemical exceeds an FDA Action level, a Matrix level or Dioxin Category I value, proposed dredged material is not Category  I.
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4

Figure 1b.  Interim EPA Region 2/ USACE-NYD Framework for Evaluating 
Bioaccumulation Test Results 
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Even if not statistically greater than reference, Chemical X is adjusted to steady state and is considered for its 
contribution to combined effects.
Comment: Toxicity test results are evaluated prior to the bioaccumulation test results.  If proposed dredged material 
                  fails the toxicity tests, it is considered not suitable for use as Remediation Material and the bioaccumulation 
                  tests are not evaluated.
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Figure 2.  Proposed EPA Region 2/USACE-NYD Framework for Evaluating 
Bioaccumulation Test Results
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1.  Elimination of Comparison to Regional Matrix values 
EPA proposes to eliminate the comparison of test tissue contaminant concentrations to Regional Matrix
Levels from the HARS Framework. Appropriately conservative   HARS-Specific Values will be
proposed for use in evaluating the potential for human health and ecological effects associated with
accumulated concentrations of all contaminants in dredged material proposed for placement as
Remediation Material at the HARS, including those constituents that are currently evaluated using
Regional Matrix Values (i.e., PCBs, DDT, cadmium, and, mercury).  HARS-Specific Values for these
compounds will be derived by EPA Region 2 using the same human health and ecological effects-based
procedures that would be used for other constituents. (For more information on the proposed elimination
of Regional  Matrix Values from the HARS Framework,  see response to comment 4 in Section II of this
document.)  

Appropriately conservative HARS-Specific Bioaccumulation Decision Values (HARS-Specific Values)
have been derived for assessing the potential for human health and ecological effects of PCBs (i.e., 282
ppb for human health cancer, 113 ppb for human health non-cancer, and 329 ppb for ecological effects). 
The lowest of these HARS-Specific Values (i.e., 113 ppb for human health non-cancer effects) will be
immediately used, however, to revise the Regional Matrix Value for PCBs in worms until completion of
the peer review process as outlined in the September 27, 2000 Memorandum of Agreement.

2.  Addition of contaminants of concern
The following constituents are being proposed for additions to the list of analytes for bioaccumulation
testing, based on recommendations from the scientific peer reviewers and EPA Region 2’s review of
relevant regional environmental data (including HARS monitoring data): 
 

• organotins (TBT);
• alkylated PAHs (Table 1)
• co-planar PCBs (PCB-77, PCB-126, and PCB-169)

For more information on the addition of these compounds to the list of required analytes, see response to
comment 16 in Section II of this document. 

3.  Revised analytical method to determine total PAHs  
Alkylated PAHs are not currently analyzed in most environmental monitoring and assessment programs
and are not currently analyzed in evaluations of dredged materials’ suitability for use as Remediation
Material at the HARS.  This was primarily due to the lack of readily available analytical procedures. 
EPA Region 2 believes that, for most environmental monitoring and assessment applications, the analysis
of the 16 parent PAH compounds is sufficient as it allows relative PAH contamination levels to be
determined and compared between samples.  However, parent compounds do not generally occur as the
sole PAH contaminants in field situations, but rather co-occur with their alkylated homologues.  Analysis
for only the parent 16 PAH compounds, as is currently done, may significantly underestimate total PAHs
and any associated environmental hazard possibly posed.  Therefore, EPA Region 2 believes that
alkylated PAH compounds should be considered in risk evaluations of PAH mixtures, especially given
that a reliable analytical method is available.

EPA Region 2 proposes to require EPA Method 8270 to be performed with specific analytical sample
cleanup procedures and analytical instrument configurations which have been optimized to allow detection
and quantitation of parent PAHs and their alkylated homologues.  These proposed analytical sample
cleanup and instrument configuration requirements will be an adaptation of the method (i.e. EPA Method
8270) that is currently approved for analysis of the parent PAH compounds.   Using the proposed
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analytical sample cleanup procedures and instrument configurations would improve the quantitative
analysis of total PAHs using the current method.  Table 1 presents the complete list of parent and
alkylated PAH compounds that would be analyzed using the proposed procedures.  EPA Region 2
proposes to phase these analytical procedures into routine use for testing future dredged material projects
and to designate the alkylated PAHs as standard analytes (See Section C for implementation information). 
(For more information on the proposed procedures for evaluating parent and alkylated PAH compounds,
see response to comment 12 in Section II of this document.) 

Table 1.  PAH and Alkyl PAH Target Compound List.

Decalin Anthracene
C1-Decalins C1-Phenanthrenes/anthracenes
C2-Decalins 1-Methylphenanthrene 
C3-Decalins C2-Phenanthrenes/anthracenes
C4-Decalins C3-Phenanthrenes/anthracenes
Benzothiophene C4-Phenanthrenes/anthracenes
C1-Benzothiophenes Dibenzothiophene
C2-Benzothiophenes C1-Dibenzothiophenes
C3-Benzothiophenes C2-Dibenzothiophenes
C4-Benzothiophenes C3-Dibenzothiophenes
d8-Naphthalenea Fluoranthene 

Naphthalene Pyrene
C1-Naphthalenes C1-Fluoranthene/pyrenes
2-Methylnaphthalene C2-Fluoranthene/pyrenes
1-Methylnaphthalene C3-Fluoranthene/pyrenes
C2-Naphthalenes d12-Chrysenea

2,6-Dimethylnaphthalene Benz[a]anthracene
C3-Naphthalenes Chrysene 
2,3,5-Trimethylnaphthalene C1-benz[a]anthracenes/chrysenes
C4-Naphthalenes C2-benz[a]anthracenes/chrysenes

d10-Acenaphtheneb C3-benz[a]anthracenes/chrysenes
Acenaphthylene C4-benz[a]anthracenes/chrysenes 
Acenaphthene d12-benzo[a]pyreneb

Biphenyl Benzo[b]fluoranthene
d10-Fluoreneb Benzo[k]fluoranthene
Dibenzofuran Benzo[e]pyrene
Fluorene Benzo[a]pyrene
C1-fluorenes Perylene
C2-fluorenes Indeno[1,2,3-c,d]pyrene
C3-fluorenes Dibenz[a,h]anthracene
d10-Phenanthrenea Benzo[g,h,i]perylene
Phenanthrene 

aSurrogate Internal Standard.
bRecovery Internal Standard. 
cCompounds in bold are EPA Priority Pollutant PAHs

4.  Revised evaluation method for treatment of speciated forms of mercury, chromium, and
arsenic.
HARS-Specific Values for metals would be developed using toxicity reference values (e.g., RfDs and
Cancer Slope Factors) associated with the most toxic form of the metal (e.g., toxicity reference values
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associated with hexavalent chromium and inorganic arsenic) and/or trophic transfer rates associated with
the most efficiently transferred form (e.g., methylmercury).  Metals residues in test organism tissue,
however, are measured as total metal.  As such, comparison of total mercury and chromium residues to
the proposed HARS-Specific Values would assume that all metals present in test organism tissue is in its
most toxic or most efficiently transferred form.  This direct comparison of project tissue data for the total
metal does not consider the specific valence species or organocomplex state of that metal in the tissue. 

To address this potential for overestimating risk, in cases where a project tissue data for total mercury and
chromium exceeds the HARS-Specific Value, EPA Region 2 proposes to give the applicant the
opportunity to re-analyze the tissues and submit data on the specific valence species or organocomplex
state of the metals residues to allow for a more relevant comparison to the Value.  This data on the forms
of mercury and chromium present will allow for a more relevant comparison to the proposed HARS-
Specific Value and minimize the potential for overestimating risk of these metals.  If the applicant declines
to provide this data, the total metal concentration would be used by EPA Region 2 to assess risk.

Organic forms of arsenic are much less toxic than inorganic arsenic.  Nearly all of the arsenic in seafood
has been shown to be present in organic forms (primarily arsenobetaine) (Abel and Axiac, 1991; FDA
1993).  In light of this fact, FDA (1993) recommends that inorganic arsenic residues in seafood be
estimated from total arsenic measurements by applying a 0.1 multiplier to the reported total arsenic
concentration.  Like all other metals, arsenic residues in bioaccumulation test organism tissue are
currently measured and reported as total arsenic. EPA Region 2 proposes to apply the  0.1 multiplier
recommended by FDA to total arsenic residue concentrations reported in bioaccumulation test organism
tissue to estimate inorganic arsenic residue before comparing to the HARS-Specific Value that was based
on the toxicity of inorganic arsenic.

5.  Development of Proposed HARS-Specific Bioaccumulation Decision Values
Table 2 shows the HARS-Specific PCB Values that are proposed for use in evaluating the potential for
human health and ecological effects in the HARS Framework.  EPA will be developing HAR-Specific
Values for other compounds which will then be included on Table 2.  As shown in Figure 2, HARS-
Specific Values are considered in the step called “Comparison of All Non-Dioxin Chemicals to HARS-
Specific Values.”

Table 2.   HARS-Specific PCB Values for Protection of Human Health and Ecological Effects.

Human Health (Cancer) Human Health (Non-Cancer) Ecological

282 ppb 113 ppb 329 ppb

The following sections discuss the methods and assumptions EPA used to develop the HARS-Specific
Values for PCBs and is proposing to use in the development of HARS-Specific Values for the other
contaminants:

A. Consideration of Dioxins:
Regional Dioxin Values were developed and detailed in a policy memorandum dated March 15, 1997
(EPA, 1997a).  That memorandum defined the current process for Category I as dredged material in
which wet weight test tissue concentrations of 2,3,7,8-TCDD do not exceed 1 part per trillion (pptr), and
in which the total toxicity equivalence of all non-2,3,7,8-TCDD dioxin and furan congeners in test tissue
do not exceed 4.5 pptr.  

In recognition of revisions to the Toxic Equivalency Factors (TEFs) recently published by the World
Health Organization (WHO, 1998), (and in response to a peer review comment to consider the
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contribution of co-planar PCBs to dioxin-like toxicity; see response to comment 5-5 in Section II of this
document), EPA Region 2 proposes to consider the contribution of three co-planar PCB congeners (i.e.,
PCB congeners 77, 126, and 169) that show dioxin-like toxicological activity.  EPA Region 2 proposes to
recalculate the Regional Dioxin Value for evaluation of total toxicity equivalence of all non-2,3,7,8-TCDD
dioxin and furan congeners to include the three coplanar compounds identified by the WHO (1998), using
the same half detection limit procedure used in the current and interim Framework and the TEFs listed by
WHO (1998). 

EPA is progressing toward completion of its dioxin reassessment report (Exposure and Human Health
Reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD] and Related Compounds), which
evaluates dioxin across all programs and media.  The “Integrated Summary and Risk Characterization”
document, which includes a new draft chapter that addresses TEFs for dioxin-like compounds, is currently
the subject of an external peer review.  A revised draft of the two documents and the revised Dose-
Response Modeling chapter are then scheduled to be sent to the Science Advisory Board (SAB) for peer
review.  The SAB is expected to meet in Fall 2000 with the expectation that the report will be completed
by the end of 2000.  Upon completion of the EPA reassessment,  EPA Region 2 will decide what, if any,
changes are necessary to the Regional Dioxin Values.

While the science of the dioxin reassessment is undergoing peer review, and until the evaluation is
complete, EPA Region 2 will continue to use the existing Regional Dioxin Values to determine the
suitability of dredged material proposed for use at the HARS as Remediation Material.  As noted above,
EPA Region 2 proposes to consider the contribution of three co-planar PCB congeners (i.e., PCB
congeners 77, 126, and 169) that show dioxin-like toxicological activity.  EPA Region 2 proposes to
recalculate the existing Regional Dioxin Value for evaluation of total toxicity equivalence of all non-
2,3,7,8-TCDD dioxin and furan congeners to include the three coplanar compounds identified by the
WHO (1998), using the half detection limit procedure and the TEFs listed by WHO (1998). (see response
to comment 5 in Section II of this document).

B. Human Health:
For human health, all proposed HARS-Specific Values, for the remaining non-PCB compounds, would be
back-calculated using standard risk equations to identify benthic tissue concentrations associated with an
acceptable human health cancer risk level of 10-4 or a hazard quotient of one (for non-cancer effects). 
For the purpose of this evaluation, it is assumed that fish consumption is the pathway of concern for
humans, and that the fish consumed would be exposed to contaminants in dredged material through
trophic transfer of contaminants from benthic invertebrate prey.  Table 3 presents a summary of the
assumptions that were used in deriving the revised Regional Matrix Value for PCBs and are proposed for
use in developing HARS-Specific Values for protection of human health.

With regard to the human health values, the following applies: 

• Cancer risk level - An acceptable cancer risk level of 10-4 was used to derive the risk-based
benthic tissue PCB values for human health cancer effects and would be used  to derive the risk-
based benthic tissue values for human health cancer effects for the remaining compounds (see
response to comment 7-5 in Section II of this document). 

• Cancer potency factor - All cancer potency factors used for PCBs and proposed to be used for
the remaining compounds were reviewed and revised to reflect the most recent research
information.  The cancer potency factor for oral exposure  was obtained from the EPA
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Integrated Risk Information System (IRIS) database (see response to comment 7-5 in Section II
of this document). 

• Reference dose - All reference dose (RfD) citations used for PCBs and proposed to be used for
the remaining compounds were reviewed and revised to reflect the most recent research
information.  The chronic RfD for oral exposure was obtained from the EPA IRIS database for
all contaminants except lead (see response to comment 7-7 in Section II of this document). The
RfD for lead was withdrawn from IRIS due to the lack of an established toxicity threshold for
neurological effects in children.  In the current and proposed evaluation processes, the toxicity
assessment for lead has been refined through use of a biomarker (i.e., blood lead concentration)
that serves as both a marker of lead exposure and effect.

• Seafood consumption - A seafood consumption rate of 7.2  grams per day (g/day) was used  as a
site-specific estimate of daily fish consumption by high consumers (i.e., New Jersey recreational
anglers) in the vicinity of the HARS (see response to comment 14-1 in Section II of this
document).

• Site Use Factor - A factor to conservatively estimate the amount of actual time that food fish
forage at the HARS was developed to be used in the calculation of the Values.  A factor of 0.777
(i.e., 77.7 percent HARS-area foraging), was developed using data on seasonal occurrence of
these species in the target area (see response to comment 15-1 in Section II of this document).

• Trophic transfer factor - Trophic transfer factors were updated to include more recent literature
research (see responses to comment 13 in Section II of this document).

• Whole-body to fillet factor - The whole-body to fillet factors were updated for all constituents
based on more recent literature (see response to comment 7-8 in Section II of this document).

i. Consideration of Potential Carcinogenic Effects on Human Health: 
Chemical-specific tissue values for PCBS were back-calculated using a standard risk algorithm that
combines each individual cancer potency factor (CPF) with the risk assessment assumptions (see
Figure 3).   The same methodology is proposed to be applied to the remaining carcinogenic
compounds.  The calculations yield concentrations representing levels below which the residues do
not indicate a potential for cancer risk at the defined acceptable cancer risk level (i.e., 10-4) (see
response to comment 7-5 in Section II of this document). 

ii. Consideration of Potential Non-carcinogenic Effects on Human Health:
Chemical-specific tissue values estimating the potential for non-carcinogenic effects for PCBs were
back-calculated using a standard risk assessment algorithm that combines each individual Reference
dose (RfD) with the risk assessment assumptions (see Figure 4).  The same methodology is proposed
to be applied to the remaining non-carcinogenic compounds, except for lead. For lead, the potential for
non-carcinogenic effects associated with the test tissue was estimated using a “disaggregate”
modeling approach, (which relates multi-media lead exposure to blood lead concentration) employed
in the 1986 USEPA Air Quality Document (see Figure 5).  The calculations yield lead concentrations
representing levels below which the concentrations do not indicate a potential for significant
undesirable effects (i.e.,  95% of the blood lead  probability distribution below 10 ug/dl). The
“disaggregate” model is conceptually similar to EPA’s Integrated Exposure Uptake-Biokinetic Model
for Lead (IEUBK Pb Model) in that it estimates the impact of multi-media lead exposure on blood
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lead concentration, and employs the same benchmark of protectiveness (i.e., 95% of blood lead in
children below 10 ug/dl). Limiting lead exposure to meet the goal of 95% of the childhood population
distribution below 10 ug/dl is consistent with both current CDC’s recommendations for pediatric lead
exposure and EPA’s Children’s Health Initiative - which directs the Agency evaluate children as a
potential sensitive subpopulation due to either increased exposure and/or toxic effect.

C. Consideration of Potential Ecological Effects:
Contaminants may exert their toxic effects on marine organisms through mechanisms that are unique to
individual contaminants (termed specific modes of action) or by mechanisms which are shared between
compounds (termed common modes of action).  Appropriate tissue concentrations of specific chemicals,
or of chemicals that share common modes of action, for use in evaluating the potential for ecological
effects due to bioaccumulation from proposed Remediation Material for PCBS were derived through a
comprehensive assessment and review of published scientific literature linking tissue residues and effects
observations.  The same methodology is proposed to be applied to the remaining compounds of concern.

The following two databases of environmental effects research were the primary tools used in this effort:
the EPA’s database entitled “Linkage of Effects to Tissue Residues: Development of a
Comprehensive Database for Aquatic Organisms Exposed to Inorganic and Organic Chemicals”;
and the USACE’s “Environmental Residues Effects Database” (ERED) (see response to comment 8-1
in Section II of this document and Appendix D).  Information from these databases and other studies was
screened to identify appropriate observed effect levels in order to derive protective benthic tissue
concentrations.  Specific criteria were used to screen the data, such that:

• Only the most robust/relevant of the data were selected;

• Data were selected that identified the effective (or non-effective) concentration resulting from
exposure conditions that most closely resembled conditions at the HARS;

• Only whole-body data were used;

• ER50 data (tissue residues resulting in a 50 percent effect in an individual or causing an effect in
50 percent of exposed organisms) were given preference;

• Only endpoints of maximum ecological relevance (i.e. reduced survival, growth, or reproduction)
were considered.

Because non-polar organic contaminants (including PAHs, chlorinated pesticides, and PCBs) share a
common mode of action (i.e. narcosis),  EPA proposes to consider the total molar concentration of all of
these contaminants to calculate the total narcotic residue accumulated by test organisms following
exposure to dredged material proposed for use as Remediation Material.  The HARS-Specific Value for
narcosis would be developed to protect for sublethal and chronic narcotic effects and is further discussed
below.  It is important to emphasize that the specific mechanisms of toxic action of individual organic
contaminants would also continue to be considered, in addition to narcosis, in the evaluation of dredged
material proposed for use as Remediation Material by comparison with the HARS-Specific Values.  (For
more information, see response to comment 8 in Section II of this document.)

7. Combined Effects Evaluations: Narcotic CBR, Total Carcinogenicity, and Non-Cancer
Hazard Index



14

Under the proposed HARS Framework (as discussed above), bioaccumulation test results for individual
constituents would be compared to proposed HARS-Specific Values to determine whether the tested
material is suitable for use as Remediation Material. If dioxin/furan compounds in the tested dredged
material are below the Regional Dioxin Values, an evaluation of the potential for combined effects of
multiple constituents (Combined Effects Evaluation) in test organism tissues would be conducted in
addition to comparing all non-dioxin chemicals to their respective HARS-Specific Values.  Three methods
that have been developed (identified below) to assess the potential for combined effects of multiple
constituents are proposed for use in evaluating dredged material proposed for use as Remediation
Material: a revised application of the narcotic critical body residue (CBR) approach, a total
carcinogenicity assessment, and a total noncancer effects hazard assessment.  
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Table 3.  Assumptions Used to Develop Human Health HARS-Specific Values
Compound Cancer

Potency
Factor

Reference
Dose

Trophic
Transfer

Whole body:
Filet

Seafood
Consumption

(g/day)

Fish
Foraging

Factor

PAHS

Acenaphthene 0 60 0.1 1.35 7.2 77.7%

Anthracene 300 0.1 1.35 7.2 77.7%

Fluorene 40 0.1 1.35 7.2 77.7%

Naphthalene 20 0.1 1.35 7.2 77.7%

Phenanthrene 300 0.1 1.35 7.2 77.7%

Benzo(a)pyrene 7 0.1 1.35 7.2 77.7%

Fluoranthene 40 0.1 1.35 7.2 77.7%

Pyrene 30 0.1 1.35 7.2 77.7%

TOTAL PAHS

PESTICIDES

Aldrin 17 0.03 3 1.35 7.2 77.7%

Dieldrin 16 0.05 1.6 1.35 7.2 77.7%

"Chlordane 0.35 0.05 2.9 1.35 7.2 77.7%

Heptachlor 4.5 0.5 2.9 1.35 7.2 77.7%

Heptachlor epoxide 9.1 0.013 1.4 1.35 7.2 77.7%

Total Residual
Chlordane/Heptachlor

1.35 7.2 77.7%

Total Endosulfans 6 1.1 1.35 7.2 77.7%

Total DDT 0.34 0.5 3 1.35 7.2 77.7%

TOTAL PCBs 2 0.02 3 1.35 7.2 77.7%

1,4-Dichlorobenzene 0.02 30 1 1.35 7.2 77.7%

METALS

Arsenic 1.5 0.3 0.25 1.4 7.2 77.7%

Cadmium 1 0.25 5.9 7.2 77.7%

Chromium (total) 3 1 1.2 7.2 77.7%

Copper 37.1 0.21 2.9 7.2 77.7%

Lead 1 0.23 3.9 7.2 77.7%

Mercury 0.1 1.95 0.7 7.2 77.7%

Nickel 20 1 8.3 7.2 77.7%

Silver 5 1 1 7.2 77.7%

Zinc 300 0.24 2 7.2 77.7%

Tributyltin NA 0.3 1.02 1.35 7.2 77.7%
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Figure 3. HARS-Specific Value Calculations for Protection of Human Health from Cancer Risk

Calculation of HARS-Specific Value  

Equation 1
Toxicological Dose (µg/day)  =       [Risk Level (10-4)] x [Body Weight (70 kg)] x [103 µg/mg]

                                        [Cancer Potency Factor (kg-day/mg)]

Equation 2
10-4 Conc. in Fish (µg/kg)   =                                    [Toxicological Dose (µg/day)]                                

                         [Seafood Cons. (7.2 g/day)] x [10-3kg/g] x [Site Use Factor (0.777)]

Equation 3
HARS-Specific Value  (µg/kg)  =  [10-4 Conc. in Fish] x [Whole Body/Fillet Factor] 

                                               [Trophic Transfer Factor]

Calculation of Constituent-specific Risk for Total Carcinogenicity

Equation 1
Estimated Conc. in Fish (µg/kg)   =             [Measured Tissue Level (µg/kg)] x [Trophic Transfer Factor]
                                                                                     [Whole Body/Fillet Factor]

Equation 2
Toxicological Dose (µg/day)   =      [Estimated Conc. in Fish (µg/kg)] x [Seafood Cons.(7.2 g/day)] 
                                                                                    [103 g/kg] x [Site Use Factor (0.777)]
                                                 
Equation 3
Estimated Cancer Risk (unitless)  =     [Toxicological Dose (µg/day)] x [Cancer Potency Factor (kg-

day/mg)]
                                                                    [Body Weight (70 kg)fn3] x [103 µg/mg]

Figure 4. HARS-Specific Value Calculations for Protection of Human Health from Non-Cancer
Effects
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Calculation of HARS-Specific Value

Equation 1
Toxicological Dose (µg/day) =       [Reference dose (mg/kg-day)] x [Body Weight (70 kg)] x [103

µg/mg]

Equation 2
Conc. in Fish (µg/kg) =                                  [Toxicological Dose (µg/day)]                                    

                    [Seafood Cons. (7.2 g/day)] x [10-3kg/g] x [Site Use Factor (0.777)]

Equation 3
HARS-Specific Value (µg/kg) =   [Conc. in Fish (µg/kg)] x [Whole Body/fillet Factor]

                                                       [Trophic Transfer Factor]

Calculation of Constituent-specific Risk for Non-cancer Effects

Equation 1
Conc. in Fish (µg/kg)    =   [Measured Tissue Level (µg/kg)] x [Trophic Transfer Factor] x [Forage Factor (0.777)]
                                                                           [Whole Body/Fillet Factor]

Equation 2
Toxicological Dose (µg/day)   = [Conc. in Fish (µg/kg)] x [Seafood Cons. (7.2 g/day)] x  [10-3kg/g]

Equation 3
Hazard Quotient (unitless) =   [Toxicological Dose (µg/day)] / [Body Weight (70 kg)]
                                                                    [Reference Dose (mg/kg-day)] x [103 µg/mg]
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Figure  5.HARS-Specific Value Calculations for Non-Cancer Effects from Lead

1 - Calculate current human exposure from all routes

     A - Average current exposures

Drinking water 4  ppb

Soil/dust/paint 800  ppm

Air 0.1  ug/cuM

Dietary 5.5  ug/da

     B - Media-specific blood lead coefficients

Drinking water 0.16  ug/dl per ppb

Soil/dust/paint 0.002  ug/dl per ppm

Air 2  ug/dl per ug/cuM

Dietary 0.16  ug/dl per ug/da

           Calculate Blood lead contributions [A x B]

Drinking water 0.64  ug/dl

Soil/dust/paint 1.6  ug/dl

Air 0.2  ug/dl

Dietary 0.9  ug/dl

     C - Sum of blood lead contributions to determine all-route current exposure [Sum(A x B)]

Current exposure 3.3  ug/dl

2 - Calculate acceptable lead contribution from fish spending time at MDS [Level of concern - current exposure]

Level of concern 4.6  ug/dl

Current exposure 3.3  ug/dl

Acceptable HARS fish contribution 1.3 ug/dl

3 - Convert acceptable fish contribution to lead fish tissue concentration

     A - Calculate acceptable daily intake [Acceptable fish contribution / food lead coefficient]

Acceptable fish contribution 1.3  ug/dl

Food lead coefficient 0.16  ug/dl per da

Acceptable daily intake 8.125  ug/da

     B -  Calculate acceptable tissue concentration in fish [Acceptable intake/Average fish consumption]

Average fish consumption 7.2  g/da

Acceptable tissue conc 1.1285   ug/g

     C -  Calculate acceptable benthic tissue concentration from acceptable concentration in fish

Whole-body : fillet 3.9

After adjustment for fillet 4.401  ug/g

Site use percent 77.7 percent

After adjustment for site use 5.6641  ug/g

Trophic transfer factor 0.23
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After adjustment for trophic
transfer

24.627  ug/g

or  

HARS-SPECIFIC VALUE 24.6   ppm
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A. Narcotic CBR:
EPA Region 2 proposes to extend application of the narcotic CBR approach to consider the contributions
of all organic constituents, including alkylated (and parent) PAHs, PCBs, and pesticides.  If the total molar
concentration of these compounds is below the narcotic CBR threshold, they do not indicate a potential
for narcotic effects and, therefore, the material would be suitable for use as Remediation Material.  If the
total molar concentration of these compounds is above the narcotic CBR threshold, this indicates that
there is a potential for narcotic effects and, therefore, the material may not be suitable for use as
Remediation Material. (For more information, see response to comment 8 in Section II of this document).  

B. Total Carcinogenicity:
EPA Region 2 proposes to assess the total carcinogenicity of the mixture of carcinogenic compounds that
are accumulated by test organisms by summing the individual cancer risks associated with accumulated
concentrations of each carcinogenic constituent and comparing that sum to the target risk level of 10-4. 
Individual cancer risks are derived using standard risk assessment equations as described in Figure 3.  If
the total cancer risk of the accumulated mixture of carcinogenic compounds is below the acceptable
cancer risk level (i.e., 10-4), the material would be suitable for use as Remediation Material.  If the total
summed cancer risk is greater than the acceptable cancer risk level, the material may not be suitable for
use as Remediation Material.  (For additional information, see response to comment 17-3 in Section II of
this document.)

C. Non-Cancer Hazard Index:
EPA Region proposes to assess the potential for non-carcinogenic effects associated with the mixtures of
contaminants accumulated by test organisms by using a combined hazard index approach.  In the
combined approach, individual hazard quotients would be derived for each chemical detected in the test
tissue using standard risk equations as described in Figure 4. Hazard quotients for chemicals that share a
similar  mode of action or target organ  will be summed to derive a total hazard index for toxicologic
mechanism or impact to specific organ systems (i.e., circulatory system, liver, central nervous system, and
kidney).  If the sums of the hazard indices associated with specific organ systems are below 1, they do
not indicate a potential for significant undesirable effects and, therefore, the material would be suitable for
use as Remediation Material.  If any of the total hazard indices associated with specific organ systems
are greater than 1, the material may not be suitable for use as Remediation Material.  (For additional
information see response to comment 17-3 in Section II of this document.)
 
 8.  Incorporation of Eight Green Book Factors in the Development of the HARS-Specific
Values
As discussed above, EPA proposes to develop HARS-Specific Values and a “Consideration of Combined
Effects Evaluation: CBR, Total Carcinogenicity, and Non-Cancer Hazard Index” to determine the
suitability of dredged material to be used as Remediation Material at the HARS.  These proposed HARS-
Specific Values would be derived to be protective and appropriately conservative to achieve remediation
of the HARS.  The proposed HARS-Specific Values and the overall Framework incorporate the eight
factors recommended in the Green Book for consideration in determining compliance with the solid phase
Limiting Permissible Concentration (LPC).  The holistic evaluation of the test tissue concentrations, as
described in response to comment 17, will add to the protective design of the proposed HARS-Specific
Values and the remedial basis of the HARS designation by evaluating for combined  effects of
contaminants.  The evaluation of combined effects of contaminants in dredged material is proposed to be
accomplished by more completely and rigorously assessing those contaminants that act similarly through
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application of the proposed narcotic CBR, total carcinogenicity, and total non-cancer Hazard Index
approaches (see responses to comments 7, 8 and 11 in Section II of this document).  

As such, it is proposed that the step entitled “Evaluation of Solid Phase Bioaccumulation Results for
Dredged Material as a Whole” in the existing Framework be revised to reflect the new proposed
evaluation process by eliminating the specific evaluation of the eight factors for LPC compliance listed in
the Green Book from the Framework as a separate evaluation step.  EPA Region 2 believes the eight
factors have been incorporated to the maximum extent practicable, and as appropriate, into the
development of the proposed HARS-Specific Values. Therefore, the consideration of contaminants in
dredged material as a whole can best be accomplished through use of the revised evaluations described
above.
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II.  RESPONSE TO SCIENTIFIC PEER REVIEW COMMENTS

Charge Group: Framework

Charge No. 1. Is the EPA Region2/CENAN Framework for evaluating bioaccumulation
results scientifically appropriate for determining the suitability of dredged
material as Remediation Material?  If not, describe deficiencies.  (Please see
Region2/CENAN joint evaluation memorandum, Figure 1)

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 1 Comment (5 para):
The basic design of the Framework is scientifically appropriate.  The list of chemicals addressed in
Table 1 includes the important chemicals of concern for NY/NJ Harbor Projects.  Arguably, one or two
chemicals might be added or deleted from the list, but the list is comprehensive in its inclusion of
chemicals from a variety of classes that are locally relevant.  The use of the 28-d bioaccumulation test is
an appropriate methodological foundation for the Framework.  This test is widely used in sediment risk
assessments.  It has been thoroughly peer-reviewed and established as a standard method.  The required
testing of two species, the clam Macoma nasuta and the polychaete Nereis virens, allows assessment of
interspecific differences in bioaccumulation to be assessed.  The basic comparative strategy in which the
tissue concentrations observed during the 28-d test on project material are compared against established
benchmarks to determine if the project material is acceptable as Remediation Material is fundamentally
sound.  However, the scientific defensibility and efficacy of some of the comparative benchmarks are
uncertain, as explained below.

The first comparative benchmark in the Framework is tissue concentration observed during 28-d tests
with material collected from an established reference site.  If the tissue concentration observed in the
28-d test with the project material is less than the reference, the material is deemed acceptable for
remediation with respect to a particular chemical.  If it is greater than the reference, further evaluation is
required.  This is an appropriate first level determination.

The second level of comparison involves FDA Action Levels and Regional Matrix/Dioxin values.  There
are several problems with each of these benchmark comparisons.  First, FDA or Matrix or Dioxin values
do not exist for 53 of the 65 chemical parameters of concern listed in Table 1.  Second, the seven FDA
Action Levels seem extraordinarily high relative to other benchmarks (see answers to questions 6A and
6B below).  Third, the four Regional Matrix values are based on an eighteen-year-old technical derivation
which is of questionable validity.   For example, the Hg Matrix value of 0.2 mg/kg is simply the mean of
16 tissue concentrations in specimens collected somewhere in the New York Bight (including “in and
around the dump site”) represented in 4 species reported in 6 papers published between 1972 and 1980. 
There was no standardization of survey or analytical methods among these six investigations.  Only two of
the six papers were peer-reviewed journal articles.  Neither of the two standard 28-d bioaccumulation test
species is included among the four species on which the Hg Matrix Value is based.  The Hg Matrix value
of 0.2 mg/kg is clearly not an effects based benchmark.  It is 5x to 6x greater than the background
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concentration of Hg in clams and polychaetes near the dump site (Table 1, Column 16-17).  In my
judgment, there is no scientific validity to the use of this Matrix Value for comparison with the results of
28-d tests with Macoma and Nereis.  Similar criticisms could be made of the other Matrix Values.  The
final problem with the Matrix Values is the decision logic evident in Figure 1 of the Framework.  If the
tissue concentration observed in 28-d tests with project material is less than the Matrix Value, Figure 1
indicates that no further risk evaluation is needed for that chemical.  Given the scientific uncertainty about
the validity of the Matrix Values, they should not preclude further risk evaluation using other benchmarks.

The third level of comparison is the “Risk Evaluation” as identified in Fig. 1.  The Risk Evaluation includes
a number of comparative benchmarks.  The benchmark that is consistently and substantially lower than
other Risk Evaluation benchmarks is the background tissue concentration for both the clam and worm
(Table 1, columns 16-17).  I describe below in my answer to Question 19 why the background values
should not be compared with 28-d test tissue concentrations.  Briefly, they are based on resident species
that show order of magnitude interspecific variation in tissue concentrations at the same site.  Further, the
resident species on which the background values are based do not include the standard 28-d test species,
so the uncertainty of interspecific extrapolation precludes valid comparison.  Fortunately, there is a
relatively inexpensive, and scientifically defensible way to establish appropriate background values.  The
28-d test with both species should simply be applied to ~ 10 representative sediment samples collected in
the background of the dump site (i.e. near but not immediately adjacent to the dump site boundary).  This
will establish relevant background tissue concentrations that can be unambiguously compared with results
of tests with project material.  No interspecific comparisons would be required.  No laboratory test vs
field collection comparisons would be required.  No steady state adjustments would be necessary.

How would the results of comparison to 28-d test background levels be used?  First, it is important to
realize that it is not possible on the basis of existing knowledge to draw “bright lines” that discriminate
levels of adverse ecological effects on the basis of bioaccumulation data for most, if not all, of the 65
chemical parameters of Table 1.  Arguably, critical body residues can be estimated for a few chemicals,
but there is great uncertainty about these estimates.  Effects assessments can be based on toxicity and
faunal surveys.  Bioaccumulation data can be used to ensure that the HARS remediation actually reduces
the bioaccumulation of toxic materials from contaminated sediments.  Three benchmarks are needed, all
based on 28-d tests with both species: (1) the reference benchmark, as currently incorporated into the
Framework, (2) the background benchmark, as described above, and (3) the HARS benchmark,
established on the basis of 28-d tests with ~ 10 representative sediment samples collected within the dump
site itself.  The intention of the remediation will be achieved with respect to bioaccumulation if EPA/COE
establish, as a matter of policy, that a project material can be designated as Remediation Material only if
the tissue concentration of every chemical listed in Table 1 as determined in 28-d tests with two species is
less than a concentration equal to background plus 25% of the difference between the background and
HARS benchmarks.  Thus, if the background value for chemical x is 8 mg/kg and the HARS value is 48
mg/kg, the critical value is 8 + 0.25(48-8) = 18 mg/kg.  This rationale is subject to the criticism that it is not
effects-based, but I submit that an effects-based benchmark for all 65 chemical parameters of Table 1 is
impossible.  The advantage of this method is that it is understandable and technically defensible from the
perspective that it will unequivocally reduce bioaccumulation of toxic materials.  The strategy can be
coupled with annual monitoring of effects parameters at the reference, background, and HARS sites.  If
bioaccumulation, toxicity, and biological community effects do not decline over time, the EPA/COE can
reduce the critical value to the actual background value or even the reference value. 
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Clifford Charge No. 1 Comment (4 para):
This framework is one of the more thorough attempts to directly evaluate body burden analytical data that
I have seen.  As such, I believe that, if direct interpretation of such data is the assessment method of
choice, it can be accepted with few reservations.  Scrutiny of the data set used suggests to me that the
hypothetical sediment presented would indeed be appropriately identified as category I and, as such, the
screening methodology seems to have worked.  However, I have some discomfort regarding the
inherently large uncertainties surrounding direct toxicological interpretation of body burden data (discussed
in more detail in specific responses below).  As there are several ways in which body burden data can be
used in ecological risk assessment I recommend consideration of some of the alternatives.

One of the principal alternatives is to use the data as input to a dose-based food-web model rather than
attempting to toxicologically evaluate the data themselves.  Given that concentrations of contaminants in
sediment, water, and lower trophic level organism tissues are either known or can be easily predicted
using conventional partitioning methodologies, it is a relatively straight forward task to estimate the doses
of contaminants that receptors virtually anywhere in the food-web are exposed to.  For example, using
widely accepted models like those of Gobas, Thomann, Connelly, Parkerton, et al., the existing data are
sufficient to predict concentrations of contaminants in fish and risk to piscivorous birds (e.g., pelican)
could be estimated by comparing calculated dietary intake to good benchmark studies.  Risks at other
trophic levels can be evaluated in a similar manner.  I also believe that evaluation of such upper trophic-
level receptors would be more appropriate than using humans as terminal receptors for ecological
assessment.  Methods and modeling parameters for estimating dietary intake to ecological receptors are
presented in USEPA (1993) and elsewhere and there are numerous peer-reviewed articles that present
good dose-based toxicological benchmark data for comparison.  I believe that conduct of such an analysis
could be either a very robust compliment to the existing framework or could be used to replace portions of
it.

Whether dose-based evaluations are considered or not, one of the principal things I recommend adding to
the framework and draft memorandum for the record is a specific section presenting a thorough treatment
of uncertainties.  While it is clearly not possible to quantitatively address all of the uncertainties associated
with the comparisons presented, some qualitative treatment should be incorporated in the document for
the information of the decision makers.  For example, regional matrix values were derived by calculating
tissue concentrations from grand means of concentration data and a conservative (lowest) BCF.  While I
do not argue here with the validity of that approach, uncertainties associated with the derivation method
are critical to understanding the meaning of exceeding such a value.  In this case, treatment of
concentration data is non-conservative because a mean has been used but the overall calculation is
conservative because of the BCF selected.  The point in this particular case is that populations of
organisms should be protected (use of the grand mean) but not all individuals of those populations will
necessarily be protected.  It is very important to understand these kinds of issues when interpreting the
meaning of the comparisons presented.

Brief discussions of the uncertainties (and degrees of conservatism) associated with the various
comparison criteria could be presented prior to section VI and used as an integral part of drawing the
overall conclusions.  This would be more in keeping with the "weight of evidence" (or lines of evidence)
approach generally preferred for ecological risk assessment.  I do not believe that there is any need to
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waste time trying to educate readers of the document regarding the inherent uncertainties associated with
things like selection of "=0.05 for statistical testing as that sort of information is widely available in the
general literature, but a more thorough qualitative treatment of other uncertainties could improve overall
confidence in the conclusions reached.

Gentile Charge No. 1 Comment (1 para):
Fundamentally the framework outline in the CENAN joint evaluation memo and illustrated in Figure 1
contains the necessary elements to make an evaluation of the potential health and ecological effects of
contaminant bioaccumulation.  The only apparent deficiency is not with the framework per se but with the
lack of estimates of variability that support the statistical analysis for determining when there is
significance exceedence of a reference value or the various benchmarks that are used.  I am not familiar
with how the many assumptions that are implicit in the Framework were arrived at but I will assume that
they all have been peer-review for their statistical soundness.  I do like the additional 8-Factors but would
have to see a case where they played a dominant role before I would comment on the limits of their
applicability.

Berry/Lake/Pruell Charge No. 1 Comment (1 para):
The framework does seem to be scientifically appropriate.  For the most part it does seems to represent
the “state of the art.”  Comments on some of the individual components of the framework may be found
below.

Wentsel Charge 1 Comment (1 para, 6 bullets):
The Framework appears appropriate for screening dredged material to identify Category 1 sediments. 
However, more information is required to determine if the method is appropriate to identify Remediation
Material.  

• Information on the experimental design for tests, number of replicates, statistical tests, and QC, are
needed.

• Are detection limits low enough to detect ecologically significant levels.
• Reference sediment is described as clean sandy sediment. “Background” sediment was collected

near the HARS and tested.  The characteristics of the reference sediment should be similar to the
sediment being tested.  Data on organic carbon, particle size, etc. should be collected and
compared for the sediments.  It seemed in the report that “background” sediment was being used
as the reference site, if that’s the case then it should be stated.

• Up front data should be used to further screen the sediments.  Risk assessments for each chemical
could identify concentration above which would be ecologically harmful, a concentration where no
ecological harm is likely, and a range in between where further testing (i.e. bioaccumulation) is
required.  

• Metals (other than MeHg) should not be treated the same as the organic compounds with Kow
values > 3.5.  Some of the metals are micronutrients and they do not biomagnify in the food chain
like the high Kow compounds.  Assessments could be done to determine if direct toxicity values
for metals would be protective of aquatic life, then the 28 day tests would not be needed.  

• The use of bioaccumulation tests may be too variable.  Use of a negative or positive control may
be necessary.  
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Solomon/Sibley Charge No. 1 Comment (1 para):
The framework for evaluating the results of the bioaccumulation results (as described on pages 6-8 in the
memorandum) is a reasonable approach to hazard assessment and is valid.  The only potential problem
that could result from the decision tree approach is when the concentrations in the reference sediment are
high enough that criteria, such as the FDA levels, were exceeded.  This would be the case if an
inappropriate reference sediment were used.  Inspection of the data in Table 1 revealed that this was not
the case.  In addition, the reference sediment was collected from an appropriate location.

Newman Charge No. 1 Comment (14 para):
General Answer
The framework (Figure 1 and associated text) seems generally acceptable and thoughtful. It is surprising
to not see at the top of the flow diagram a statistical comparison of bioaccumulation in key endemic
species inhabiting sediments of the dredge material source site versus reference sites.  This seems so
much more straightforward than using the 28 day bioaccumulation test and associated gross adjustments
to estimate "steady state" concentrations.  It also is more straightforward than comparison of the
bioaccumulation test results to bioaccumulation of biota from sites near the HARS (step c, see page 14,
section (ii)).  

Several resolvable points limit the utility of the present framework.  These points will be discussed later in
this review. They include the following:
 
5. Step a (Chemical "X" Greater than Reference?): There are unanswered questions regarding sampling

techniques (gut clearance, size/age normalization or control), specific hypothesis tests applied (page 8,
paragraph 1), and ambiguity regarding test design and power estimation.  These crucial aspects are
generally discussed and highlighted in the Guidance Manual (Ref. 32) but specific and important
details are not mentioned in the Memo of Record (Peer Review Version).  Without specific details, it
would be impossible to assess the true value of the information in the Memo of Record.

Also methods associated with determining average concentration if the data set contains below
detection limit observations are not specified but can greatly influence the validity of  hypothesis tests. 
 I assume that the methods described in reference 13 were used.  The methods described in
reference 13, "New Approach to Handling "non-detects" in Elutriate and Tissue Data" are invalid. A
general statement is made that the approach was "conservative" without further explanation.  The
tabulated results and footnotes seem to imply that sites with all "<DL" observations or some "<DL"
observations were treated differently.  How were they treated?  Were they treated as suggested in
Ref. 13?  

Those with all "<DL" observations for the reference site and detectable amounts for the sample of
interest could be analyzed by testing whether the mean for the site of interest was significantly
different from the detection limit, e.g., a simple z statistic would do this (below) or simple resampling
methods.
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If some, but not all, observations were "<DL" then other tests are appropriate.  Gilbert (1993, 1995)
provides details on hypothesis tests for data sets with"<DL" observations including slippage, quantile,
Wilcoxon rank sum, and Gehan tests.  Regardless, it is important to understand that performing
hypothesis tests after substituting 0, ½ DL or the DL for the "<DL" observations produces invalid
results that are not necessarily "conservative." (Reference 13 states that ½ DL or 0 should be used
depending on the situation.  This will produce statistically misleading results.  See Newman (1995) or
references therein for correct methods.)

Would a high concentration (e.g., 5 times higher) be ignored if the results of the hypothesis testing for
difference in sediment means had a p of 0.06 instead of 0.05 or less?  

Hypothesis tests as described attempt to minimize type I error (e.g., falsely concluding that
bioaccumulation was different when it was not).  Hypothesis tests are commonly applied as described
here but such application is inconsistent with what you are really trying to accomplish in a risk
assessment.  The focus should be on controlling Type II error rate and conducting tests with high
power.  The type II error (e.g., minimizing the probability that you will accept the hypothesis of no
difference in bioaccumulation when there is a difference) and power (e.g., the ability to note a
difference in bioaccumulation when there is one) would seem a more appropriate focus.  For this
reason, much more detail is needed regarding Type II error and power.   Did you consider
bioequivalence testing (see Dixon and Garrett 1993, McDonald and Erickson 1994, Dixon 1998)
which handles Type II errors more appropriately? 

6. The means for extrapolation from 28 day bioaccumulation concentrations to [practical] steady state
concentrations are compromised.  There are too many assumptions and gross approximations forced
on the user. 

I assume that the 28 day bioaccumulation test is required and answers in this review should focus
beyond the shortcomings of the test.  However, I believe that any test which looks at a suite of
contaminants simultaneously for a predetermined time will never be fully satisfactory for all
contaminants.  Large groups of toxicants will have inferior data as a consequence of not coming close
to steady state, insufficient sample numbers, and problems of incomplete gut clearance or significant
elimination during the time allowed for gut clearance.  The gross manipulations to the resulting data as
described here will not provide accurate information regardless of the existence of a standard test
method and a history of regulatory application.

 
7. Means of estimating final bioaccumulation for Cd and Hg which are assumed to "violate" steady state

kinetics.  Inaccurate statements such as "Cadmium and mercury are not regulated in marine
organisms as are essential metals, and, thus no adjustment for steady state is applicable" limit the
validity of the conclusions.  Regulation has little to do with coming to a steady state condition within 28
days.  The final conclusion to use 28 day data for Cd and Hg  as a consequence of their "non-steady
state" behavior is not logical.  The concentrations increase through time with no apparent leveling off
at a "steady state" concentration.  They do not stay at the 28 day concentrations as a consequence of
their "non-steady state" behavior.

8. No analysis of in situ bioaccumulation data from the proposed dredged sediment sources and
reference sediment sites. 
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9. Use of "log KOW  of approximately 4 or greater" as the only cut-off for bioaccumulation
[biomagnification?] (page 6, last paragraph).  It isn't clear when you are discussing bioaccumulation
or biomagnification.  If you are discussing bioaccumulation, the cut-off point is not appropriate.  If you
are discussing potential for biomagnification, the cut-off is reasonable.  It is consistent with Connolly
and Pederson (1988) and Thomann (1989). However there can be an upper limit too as molecular size
begins to influence diffusion rates.  Please see Gobas et al. (1986) for more detail.

Lee Charge No. 1 Comment (2 para):
I believe the approach in the "Memo for the Record" lays out a logical approach to a difficult problem.  I
have not reviewed the Regional Matrix Levels, and so can not comment on them directly, though they are
obviously a key component for the 4 compounds and dioxins.  One limitation is the lack of more specific
guidance for evaluating the dredge material as a "whole".  I recognize this is very difficult, but you might
try formalizing various approaches and see if they come up with reasonable conclusions.  For example,
you might use an approach similar to a toxic unit approach but using CBRs, WQCTLs values, or other
residue effects levels.  Each compound would be normalized to the fraction of the effects residue
concentration (e.g., 0.2 of a CBR or WQCTL residue) for each compound.  Then these fractions could
be summed in these various ways: 1) compounds with broadly similar modes of action (e.g., metals
vs. organics; all neutral narcotics) or 2) all compounds.  Such an approach makes the assumption of
simple additivity, which is open to criticism both for not accounting for synergistic interactions and for
adding dissimilar toxicants and thereby overestimating actual toxicity.  Nonetheless, this approach
incorporates the full range of contaminants, their toxicity, how close they are to some estimate of an
effects level, and makes a crude attempt at combined effects.  Using trophic transport factors, the same
approach could be applied to higher trophic levels.  The total "bioaccumulative units" (or whatever) are
probably better used in a comparative than absolute sense, so the test sediment would be compared to the
reference and background.  

There is more detail embedded in the text that is not captured in Figure 1.  For example, the use of
adjustment factors for some organics but not metals or comparison to background residues.  I suggest that
additional figures be drawn that give kinds details.

Dillon Charge No. 1 Comment (3 para):
Many scientifically appropriate approaches designed to evaluate potential effects of environmental
contaminants are tiered.  Early tiers are usually simple and environmentally conservative.  They promote
environmentally protective decisions (i.e., avoiding Type II errors) while minimizing cost and effort.  
Later tiers are more complex and site-specific.  They provide greater clarity and certainty for decision-
makers.  

It is not clear if the subject Framework is tiered.  Bioaccumulation bioassay results are compared (more
or less  sequentially) to: (1) results with reference material, (2) FDA levels, (3) matrix or Regional Dioxin
Values, (4) a "risk evaluation" and 5) the eight Green Book factors.  It is not clear if  these evaluations are
tiered.  For example, is the initial comparison to reference the most environmentally conservative?   If the
Framework is not tiered, analytes of concern could be removed from consideration prematurely.

I recognize the larger dredged material evaluation as described in the Green Book is tiered.  This concept
should be extended to the subject Framework.  
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Cook Charge No. 1 Comment (1 para):
Figure 1 in the peer review hypothetical memo diagrams the framework for evaluating bioaccumulation
test results.  I am particularly concerned about the process (a) if chemical “X” is bioaccumulated less
from the test sediment than from the reference sediment.  I recognize that it is likely that reference
sediments will be cleaner than test sediments for dioxins, but what if they aren’t?  One would like to see a
clear and comprehensive definition of the approach used here.  If the same principle was applied to Lake
Ontario, would it make sense?  That is, if the reference area is highly contaminated, is it ok to dispose of
dredge spoils as long as they have a lower concentration of dioxin-like chemicals?  I think the answer is
no because the disposal increases the chemical mass in a system in which it already exceeds safe levels. 
Figure 1 seems to indicate that if chemical “X” is greater from the reference sediments, no risk evaluation
is needed and one goes on to (d) the integrated effects evaluation.  It is unclear from the framework
whether the a value greater than the regional dioxin values (1 ppt for TCDD and 4.5 ppt for TEQ) would
result in a decision that the material is not Category 1.  According to figure 1 this could only happen in
step “d” but the description of step “d” is ambiguous on this point.

Agency Response to Reviewers’ Comments:

COMMENT 1-1: Peer reviewers generally indicated that many of the individual elements of the
framework used by EPA Region 2/USACE-NYD are “scientifically appropriate”, technically sound, and
“state of the art”.  The peer reviewers also made several comments/suggestions and in some cases
recommended specific adjustments/changes to the HARS Framework and the joint EPA Region
2/USACE-NYD Testing Evaluation Memo (TEM).  Another general theme throughout the peer
reviewers’ responses was their concern over the use of  point estimates or specific numbers to determine
“risk” or significant undesirable effects associated with the 28-day bioaccumulation test results, mainly
due to variability and uncertainty.   

RESPONSE 1-1:  EPA Region 2 acknowledges the peer reviewer’s general support for the HARS
Framework and its technical soundness.  The scientific peer reviewers offered several different
bioaccumulation evaluation methodologies to determine the suitability of dredged material to be used as
Remediation Material at the HARS.  EPA Region 2 has evaluated all the proposed methodologies (see
responses to comments 1-2 through 1-14).  

EPA Region 2 believes that use of specific numbers to determine “risk” or potentially significant
undesirable effects associated with the 28-day bioaccumulation test results is appropriate in the case of
the HARS.  In the interest of protecting human health and the environment, EPA has in many cases
developed and promulgated specific numbers for water, air, pesticides, etc. that are used to distinguish
between acceptable/unacceptable impacts or as pass/fail values.  

The peer-review panel raised concerns about the use of “point estimates” or “specific numbers” to
estimate risk. An alternative approach would have been to employ a probabilistic approach (e.g., Monte
Carlo analysis) to develop a range of possible risk values. However, the use of a probabilistic tool such as
Monte Carlo analysis requires “data rich” input parameters with  reasonably well-characterized
probability distribution functions. In evaluating the appropriateness of a probabilistic analysis, EPA’s
Guiding Principals for Monte Carlo Analysis (EPA, 1997g) states that as part of the conditions for
accepting a probabilistic analysis, “information for each input and output distribution is to be provided in
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the report.” Additionally, “The selection of distributions is to be explained and justified.”  Many of the
exposure parameters proposed for the development of HARS-Specific Values are based on available
empirical data.  In some cases data was limited, making it difficult to support development of probability
distribution functions. Consequently, and consistent with EPA’s  policy on probabilistic analysis, the risk
assessment would be performed in a deterministic manner.

Given the need to remediate the HARS, EPA Region 2 proposes to develop HARS-Specific Values as
guidelines.  The proposed HARS-Specific Values would be scientifically derived/developed levels below
which there is no potential for significant undesirable effects (human and ecological).  They would be
designed to be protective and appropriately conservative concentrations that reflect the remedial purpose
of the HARS to improve conditions over those currently at the site, where sediments and body burden
levels of ambient/resident fauna inside the Primary Remediation Area exhibit Category II (tissue dioxin
levels) and III (unacceptable amphipod toxicity) characteristics (EPA, 1997b, 1997c).  The proposed
HARS-Specific Values would be human and ecological effects-based values to be derived from the best
available literature and using standard human health EPA risk evaluation methodology (see responses to
comments 4 through 14 for specific details on the derivation of the individual HARS-Specific Values and
associated environmental factors).  Additionally these proposed HARS-Specific Values would be
designed to incorporate the eight factors for LPC compliance listed in the Green Book as appropriate. 
The HARS-Specific Values may be based upon human and ecological effects/endpoints, not simply set to
be below background, baseline, and/or ambient site concentrations.  In some circumstances, the HARS-
Specific Values would be above background, baseline, and/or ambient concentrations (thereby increasing
those concentrations) and other times they will be below.  However, in any case, being below these
proposed HARS-Specific Values indicates that the dredged material does not have the potential to cause
significant undesirable effects (human and ecological).  Developing and using the HARS-Specific Values
will:  ensure that placement of dredged material at the HARS for remediation purposes continues to meet
the remedial intent of the HARS designation (for individual chemicals and additive/combined effects),
demonstrably contributes to the improvement of conditions within a specific area of the HARS so as to
enable re-colonization of sustainable and diverse communities of healthy benthic marine life, and comply
with the Ocean Dumping Regulations so as not to cause significant undesirable effects (human and
ecological).   

These proposed HARS-Specific Values would be scientifically derived/developed using assumptions (i.e.,
levels of risk, target populations, consumption rates, etc.) intended to be appropriately conservative and
protective for human and ecological health for the media for which they were derived.  EPA Region 2
has considered and documented areas of uncertainty associated with development of HARS-Specific
Values (see Appendix F of this document)..

COMMENT 1-2: One peer reviewer suggested that data from 28-day bioaccumulation tests be used as
inputs to a dose-based, food-web model rather than evaluated as toxicological endpoints.  The peer
reviewer specifically mentioned models developed by Gobas, Thomann, Connelly, and Parkerton as
examples.

RESPONSE 1-2: Since the revised Framework is developed in a proposed manner that is sufficiently
protective of all trophic level ecological receptors, EPA Region 2 does not believe that the use of a dose-
based food-web model (like those of Gobas, Thomann, Connelly, and Parkerton), is necessary.  The risk
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to fish and other benthic organisms is evaluated using the 28-day worm and clam bioaccumulation test
tissue results.  EPA Region 2 has examined the experimental designs and non-effective concentrations
reported in the studies contained in the USACE “Environmental Residue Effects Database
(ERED)”(USACE,1998), and EPA-ORD’s (Duluth, MN) “Linkage of Effects to Tissue Residues:
Development of a Comprehensive Database for Aquatic Organisms Exposed to Inorganic and
Organic Chemicals” (Jarvinen and Ankley 1999) databases and screened the data for different trophic
levels (worms, clams, fish, etc.) to allow for identification of appropriate lowest observed effect levels
(LOELs) for use in setting benthic tissue HARS remediation values using only the most robust of the
data.  Proposed HARS-Specific Values will be chosen by compiling effects information from the best
available literature in the databases. 

In addition to the individual effects based benthic tissue levels, it is proposed that a summation of all PAHs
and pesticides will be compared to a threshold value for total narcotic organic contaminant load to ensure
that the HARS-Specific Values are sufficiently protective of various benthic trophic levels (see response
to comment 8).  EPA and USACE are progressing in the development of techniques that will be useful to
conduct a site-specific risk assessment, however there is no agreed upon national approach, as of yet. 
Therefore, EPA Region 2 does not believe that a final risk assessment for placement of Remediation
Material at the HARS is appropriate at this time.    

COMMENT 1-3:  Two peer reviewers suggested adding a section to the TEM that provides a thorough
treatment of uncertainties, degrees of conservatism, and weight of evidence.

RESPONSE 1-3: EPA Region 2 agrees that uncertainty, weight of evidence, conservatism, and
variability are important issues to be considered in the evaluative process being used to identify suitable
Remediation Material.  Appendix F discusses areas of uncertainty associated with development of
HARS-Specific Values.

COMMENT 1-4: One peer reviewer commented that background values should not be compared with
28-day test tissue concentrations for the purpose of determining suitability of dredged material for use as
Remediation Material at the HARS.  He commented that background values are based on resident
species that show order of magnitude interspecific variation in tissue concentrations at the same site. 
Further, the resident species on which the background values are based do not include the standard 28-
day bioaccumulation test species, so the uncertainty of interspecific extrapolation precludes valid
comparison.  The peer reviewer also proposed an alternative approach to evaluating dredging projects,
suggesting that 28-day bioaccumulation tests be performed on multiple background and baseline sediment
samples and that the bioaccumulation thresholds be based on the results of these analyses.

RESPONSE 1-4: EPA Region 2 agrees that background values should not be compared with the 28-day
test tissue concentrations.  However, we have different reasons for not comparing to background values. 
As discussed in responses to comments 3-1, 3-2, and 19-4, EPA Region 2 proposes to eliminate the
comparison to background values from the HARS bioaccumulation evaluation process. 

EPA Region 2 does not believe that it is appropriate to base bioaccumulation thresholds on the results of
background and HARS baseline bioaccumulation test results.   Bioaccumulation is a phenomenon and can
not necessarily be associated with adverse toxicological effects in the exposed organisms.  A statistically
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significant difference between bioaccumulation observed in organisms following exposures to test and
reference sediment or in field-collected organisms exposed to ambient sediment is not itself a quantitative
prediction that an adverse toxicological impact would occur in the field, nor is it related to any cause and
effect.  In addition, as discussed in the response to comment 1-1, adjustment to the current HARS
Framework should be based upon human and ecological effects/endpoints, not simply set to be below
background, baseline, and/or ambient site concentrations.  This approach will ensure that placement of
dredged material meets the remedial intent of the HARS designation.  That not withstanding, ambient
background tissue concentrations would be duly considered in the derivation of the HARS-Specific
Values.

40 CFR §228.15(d)(6)(v)(A) sets forth the management goal for the HARS as being the reduction of
impacts within the Primary Remediation Area (defined at 40 CFR §228.15(d)(6)(ii) as one of three
constituent parts of the HARS, the other two being a Buffer Zone and a No Discharge Zone) to
acceptable levels as required by 40 CFR§228.11(c).  Use of the site is restricted to dredged material
suitable for use as Material for Remediation.  This material shall be selected so as to ensure it will not
cause significant undesirable effects including through bioaccumulation or unacceptable toxicity, in
accordance with 40 CFR§227.6.  The preamble to the proposed rule (62 FR 26267, May 13, 1997) and
the supplementary information section of the final rule (62 FR 46147, Aug. 29, 1997) designating the
HARS defined Remediation Material or Material for Remediation as “uncontaminated dredged material
(i.e., dredged material that meets current Category I standards and will not cause significant undesirable
effects including through bioaccumulation.”  It is EPA’s stated intent, as set forth in the supplementary
information section of the final rule (62 FR 46147, Aug. 29, 1997) designating the HARS, that the current
dredged material evaluation process for identifying Category I dredged material be used in determining
the suitability of dredged material to be used as Remediation Material at the HARS.

Material for Remediation must therefore demonstrate Category I characteristics as established by Region
2, and must also comply with the requirements set forth at 40 CFR 227.6 regarding constituents prohibited
as other than trace contaminants.  In both cases, compliance is determined by effect-based bioassay
testing and subsequent evaluation using the HARS Testing Evaluation Framework (which includes the
HARS-Specific Values).  Both Material for Remediation and Category I material are, by definition,
material that will not cause significant undesirable effects through remediation. Further, in stating exactly
what constituents are present only as trace contaminants, the test set forth at 40 CFR 227.6(b) is that the
materials will not cause significant undesirable effects, including the possibility of danger associated with
their bioaccumulation in marine organisms.  It is therefore clear that both of these standards to be applied
to HARS placement clearly intend an effect-based analysis of the material be used.  The peer reviewer’s
alternative does not incorporate such an analysis, and therefore does not provide a scientific or legal basis
for a determination of compliance with EPA’s ocean dumping regulations at 40 CFR 227.6 and the
definition of Remediation Material.

As in all other ports across the country using ocean disposal, and as part of the USACE-NYD permitting
process, NY/NJ Harbor applicants are required to test/characterize the material to be dredged in order to
determine if it meets the ocean disposal criteria and EPA’s Ocean Dumping Regulations, 40 CFR Part
227, “Criteria for the Evaluation of Permit Applications for Ocean Dumping of Materials.”  EPA’s Ocean
Dumping Regulations require the use of bioassay tests (toxicity and bioaccumulation) to determine if the
dredged material meets the ocean disposal criteria. 
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COMMENT 1-5: Several reviewers suggested that risk assessment methods or concepts should be
incorporated into the Framework approach. One reviewer suggested that the Risk Assessment Guidelines
for Superfund (RAGS) be used as the Framework for conducting human health risk assessment.  

RESPONSE 1-5: EPA Region 2 notes that the current and proposed, revised Framework incorporates
standard risk equations (see Figures 3 and 4) that are consistent with RAGS.  See response to comment
1-2 for discussion on risk assessment. 

COMMENT 1-6:   Two reviewers proposed including in the HARS Framework an evaluation of
chemical body burdens and ecological analyses of organisms residing at the proposed dredging and
reference sediment sites.  A statistical comparison of bioaccumulation at the proposed dredging site
versus the reference site was suggested by one reviewer.

RESPONSE 1-6: EPA Region 2 disagrees.  It is impossible to ensure that there would be sufficient
organisms (i.e., type and quantity) present at each dredging site for performing the required analyses.  In
addition, communities at the dredging site are continually and/or periodically disturbed.  As a result, the
organisms present are likely to be stressed and, therefore, would not be expected to be suitable for use as
bioaccumulation test organisms.  In addition, for the purpose of determining whether a material is suitable
for use as Remediation Material at the HARS, it is important to determine its potential bioaccumulation
under site-specific conditions.  The chemical and physical conditions (e.g., salinity, water quality, etc.) at
the dredging site may be very different from those at the HARS or the reference site.  Such differences
could have a significant impact on the uptake of chemicals, resulting in potential over- or underestimations
of bioaccumulation following disposal at the HARS (see also response 1-4).

COMMENT 1-7: One reviewer suggested that chronic toxicity bioassays should be incorporated into
the approach to assist in the use and interpretation of the bioaccumulation results. 

RESPONSE 1-7: Chronic toxicity tests are still in development by EPA and USACE and currently are
not available for implementation.  Once approved protocols, guidance, and implementation information are
available, EPA Region 2 will evaluate and consider using/implementing chronic toxicity bioassays into
HARS suitability decision making.  See response to comment 1-2 for discussion of risk assessment.

COMMENT 1-8:  Several reviewers requested that additional information be provided as part of the
HARS Framework to include: 1) the experimental design of proposed tests (i.e., techniques, number of
replicates, statistical tests, quality control, detection limits); 2) physical and chemical data for the
reference site; 3) information on steady state and bioaccumulation versus biomagnification.

RESPONSE 1-8: EPA Region 2 agrees and is proposing to modify the TEM to include the following
language:

“Information on experimental design of the toxicity and bioaccumulation bioassay tests (i.e.,
techniques, number of replicates, statistical tests, quality assurance/quality control requirements,
detection limits, etc.) is provided in the Green Book and Regional Testing Manual.” 



35

Information is currently provided in the TEM concerning steady state and bioaccumulation versus
biomagnification where applicable.   

COMMENT 1-9: One reviewer suggested adding information on the use of adjustment factors (steady
state) and the comparison to background to Figure 1 to better reflect the discussion presented in the TEM.

RESPONSE 1-9: EPA Region 2 agrees that information on the use of adjustment factors (steady state)
should be added to Figure 1 in the TEM.  Also, the proposed HARS Framework (Figure 2) has been
revised/modified from the current Framework by removing  step, “Regional Matrix Levels and Dioxin
Values”, and step, “Risk-based evaluations”.  In place of these steps, the proposed Framework would use
the HARS-Specific Values.  Further, under the proposed Framework, step “Integrated Effects Evaluation
of Bioaccumulation Results Using 8 Green Book Factors” would be replaced with “Consideration of 
Combined Effects Evaluation:  CBR, Total Carcinogenicity, and Non-Cancer Hazard Index”.

COMMENT 1-10:  One reviewer commented that the proposed approach did not evaluate the sediment
as a whole, but only as based on individual chemicals.  An alternative approach, based on the concept of
toxic units, was suggested. One reviewer acknowledged the lack of specific guidance for evaluating the
dredged material as a whole.

RESPONSE 1-10: EPA Region 2 believes that the Framework distributed for peer review did evaluate
the sediment as a whole.   The Framework distributed for peer review included Step “Evaluation of Solid
Phase Bioaccumulation Results for Dredged Material as a Whole”.  EPA Region 2 recognizes that the
toxic units approach is one of many methods that can be used in comparing project bioaccumulation levels
to background levels (one of the eight Green Book Factors).  In addition to the proposed HARS-Specific
Values, EPA Region 2 is proposing to add the evaluation of additive/combined effects (chemicals that act
similarly) on the dredged material by applying a more complete and rigorous application of the CBR (see
response to comment 8), by evaluating Total Carcinogenicity (see responses to comments 7 and 11), and
the non-cancer Hazard Index which uses the concept of toxic units.  It is proposed that the Framework be
revised to remove Step, “Integrated Effects Evaluation of Bioaccumulation Results Using 8 Green Book
Factors” and to be replaced with “Consideration of Combined Effects:  CBR, Total Carcinogenicity, and
Non-Cancer Hazard Index” approach (see response to comment 3).

COMMENT 1-11:  One reviewer raised concerns about the use of benchmark values such as the FDA
(too high), Matrix (too old), and dioxin values, noting that these values do not exist for 53 of the 65
chemicals of concern.  One reviewer indicated that FDA and matrix values are problematic.

RESPONSE 1-11: Because contamination of seafood in excess of FDA levels is considered a threat to
human health, the Green Book (EPA/USACE, 1991), RTM (EPA/CENAN, 1992), and the current
HARS Framework consider bioaccumulation test result concentrations in excess of FDA levels, in any
test species, unacceptable.  The FDA Action Levels are screening values, providing an upper limit, above
which tissue concentrations would result in the conclusion that use of such dredged material as
Remediation Material at the HARS could result in significant adverse effects at the HARS (see response
to comment 6) regarding use of FDA levels in the proposed revised Framework.
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Matrix values are currently available for PCBs, DDT, cadmium and mercury.  EPA Region 2 agrees that
if the matrix value approach (see USACE 1981) is to be used, it should be based on current data. 
However, EPA Region 2 also agrees that to the extent possible, a consistent methodology should be used
to develop all HARS-Specific Values.  As such, EPA Region 2 proposes to replace the matrix values with
HARS-Specific Values derived with a risk-based evaluation approach.  EPA Region 2 also proposes that
the comparison to Regional Matrix values no longer be part of the HARS Framework (see Figures 1 and
2 and response to comment 4).

EPA Region 2 recognizes the concern and controversy over the regulation of dioxin.  EPA Region 2 is
proposing to retain the dioxin value of 1 pptr (2,3,7,8-TCDD).  As discussed in response to comment 5-1,
in recognition of revisions to the TEFs recently published by the World Health Organization in 1998, and in
response to a peer review comment to include the contribution of co-planar PCBs to dioxin toxicity (see
response to comment 5-5), EPA Region 2 believes that there is a need to recalculate the Regional Dioxin
Value for the sum of the other substituted dioxin/furan/PCB compounds.  EPA Region 2 proposes to
recalculate the Regional Dioxin Value for evaluation of total toxicity equivalence of all non-2,3,7,8-TCDD
dioxin and furan congeners to include the three coplanar compounds identified by the WHO (1998), using
the half detection limit procedure and the TEFs listed by WHO (1998). EPA Region 2 believes that this
provides adequate protection such that the potential for exposure to dioxin at the HARS will be reduced to
acceptable impact levels (see response to comment 5).  As discussed in the response to comment 5-1,
EPA is currently in the process of evaluating dioxin across all programs and media.  While the science of
the reassessment is undergoing peer review, and until the evaluation is complete, EPA Region 2 is
proposing to continue to use the current regional dioxin values.  Upon completion of the EPA
reassessment,  EPA Region 2 will decide what, if any, changes are necessary to the Regional Dioxin
Values.

COMMENT 1-12:  One reviewer suggested that the EPA Region 2 Framework for evaluating
bioaccumulation should be tiered and follow the tiers identified in the Green Book (EPA/USACE, 1991). 

RESPONSE 1-12: As discussed/described in the current and proposed Framework, dredged material
proposed for placement at the HARS as Remediation Material is evaluated for compliance with the
requirements of 40 CFR 227.6, 227.27, and 228.15(d)(6).  Testing of the material is conducted following
procedures approved by EPA and USACE, and contained in the joint EPA/USACE national guidance
“Evaluation of Dredged Material Proposed for Ocean Dumping - Testing Manual” (February, 1991) (the
“Green Book”) (EPA/USACE, 1991), and the RTM developed by the EPA Region 2 and USACE-NYD
(EPA/CENAN, 1992).

The Green Book (EPA/USACE, 1991) recommends a specific four-tiered approach for evaluating
dredged material proposed for ocean disposal: Tier I involves evaluating existing information; Tier II
consists of using conservative screening tools on sediment chemistry data (while these conservative
screening tools are recommended, the Green Book specifies that Tier II cannot be used to fully determine
LPC compliance with regard to bioaccumulation); Tier III consists of laboratory bioassay testing (toxicity
and/or bioaccumulation), and Tier IV involves advanced biological evaluations.  The Green Book provides
guidance on what to test for and how to evaluate the test results.  Evaluation of dredged material from
New York/New Jersey Harbor includes Tier I through Tier III evaluations as specified in the Green Book
in order to make determinations regarding the suitability of dredged material for ocean disposal.  The



37

current HARS Framework and the proposed HARS Framework (Figures 1 and 2) describe an approach
to evaluating the 28-day bioaccumulation test results (which are part of Green Book Tier III) for dredged
material proposed to be used as Remediation Material at the HARS.  In all cases of evaluation for the
HARS, determination of LPC can be made at Tier III.  The Tier III testing and evaluation procedures
used by EPA Region 2 and USACE-NYD satisfy case-specific data needs and incorporate steady state
estimation and comparison to body burdens of the benthic areas surrounding the HARS.  

COMMENT 1-13: There were also comments on specific elements of the Framework:

COMMENT 1-13A: One reviewer cautioned that metals, other than MeHg, should not be treated the
same as the organic compounds with Kow values > 3.5.

RESPONSE 1-13A: (see response to comment 13) 

COMMENT 1-13B: One reviewer suggested that additional language be added to the document to
better inform the reader about sampling, statistics, steady state, and biomagnification. 

RESPONSE 1-13B: (see responses to comments 1-8, 10, and 13)

COMMENT 1-13C: One reviewer noted that he felt the first level screen using reference was
appropriate.

RESPONSE 1-13C: See responses to comments 1-1, 1-6, and 18).

COMMENT 1-14: Reviewers also touched on issues that pertain more directly to methodology in the
national guidance (i.e. the Green Book) or in the regional implementation of the national guidance.  The
issues are as follows:

COMMENT 1-14A: Are detection limits low enough to detect ecologically significant levels?  How
should non-detects be treated.

RESPONSE 1-14A: The method detection limits specified in the RTM (EPA/CENAN, 1992) were
established sufficiently low to detect current guideline values which were based on human health and
ecological effects levels.  Test results for which the sample detection limits are above these method
detection limits are addressed in a manner consistent with the policy for statistically evaluating/quantifying
non-detects established by EPA Region 2 and the USACE-NYD (CENAN, 1997).

COMMENT 1-14B: The characteristics of the reference sediment should be similar to the sediment
being tested.

RESPONSE 1-14B: The Green Book (EPA/CENAN, 1991) defines reference sediment as a sediment,
substantially free of contaminants, that is as similar as practical to the grain size of the dredged material
and the sediment at the disposal site, and reflects conditions that would exist in the vicinity of the disposal
site had no dredged material disposal ever occurred, but had all other influences on sediment condition. 
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The current HARS reference site is located approximately 1 nautical mile south of the HARS and is
representative of typical New York Bight Apex sediments (i.e., typically coarse grained/sandy material). 
In contrast, sediments at the HARS are not typical of New York Bight Apex sediments, however, had no
disposal ever occurred in the HARS area, those sediments would also be coarse-grained/sandy material.  

COMMENT 1-14C:  The use of bioaccumulation tests may be too variable.  Use of a negative or
positive control may be necessary. 

RESPONSE 1-14C:  The prescribed bioaccumulation test procedures in the Green Book (EPA/USACE,
1991) and Regional Testing Manual (RTM) (EPA/USACE-NYD, 1992) provide sufficient quality
assurance guidance to provide for statistically valid replication and use of experimental laboratory controls
and to quantify the variability inherent in laboratory biological tests using field collected organisms.  For
these reasons, EPA Region 2 does not feel that additional quality assurance controls (i.e., negative or
positive controls) are necessary.

COMMENT 1-15: One reviewer commented that the use of a Kow of 4 to identify chemicals with the
potential to bioaccumulate should be clarified.

RESPONSE 1-15: EPA Region 2 acknowledges the comment, and is proposing that the TEM be
modified to include the following language:   

“Those bioaccumulative compounds with the potential to biomagnify (i.e., Kow of approximately 4 or
greater) are included on the testing list.....”

COMMENT 1-16: One reviewer commented that the statistical methods used to determine average
concentrations for data sets containing observations below the analytical detection limits should be re-
evaluated.  The reviewer expressed confusion regarding the methods used and further states that the
methods for addressing observations below the detection limit as described in reference 13 (i.e., "New
Approach to Handling "non-detects" in Elutriate and Tissue Data") are invalid.  The reviewer further
recommends hypothesis testing using either a simple z statistic or bioequivalence testing which handles
Type II errors more appropriately. 

RESPONSE 1-16: EPA Region 2 disagrees that the approach used to address observations below the
detection limit is invalid or not appropriately conservative.  To briefly summarize the methods used, for
those instances where the reported detection limits (DL) met previously established data quality objectives
(DQO), one-half the DL was used to represent values below the DL.  When the DQOs were not met,
values equivalent to the DL were assigned to site-specific observations reported as below the DL, thus
representing the most conservative, worst-case scenario.  However, for observations below the DL from
the reference areas, a value of zero was assigned, representing the most conservative scenario for
comparison to the reference.  Although the reviewer is correct in stating that substituting a constant (e.g.,
zero, the DL or one-half the DL) for observations below the DL does introduce bias in the estimation of a
mean or standard deviation, the goals of estimation differ from those of hypothesis testing, where bias is
of less importance than producing a "true" outcome.  Furthermore, the alternative methods promoted in
the literature, such as maximum likelihood estimation, are based on large sample sizes and are may not be
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appropriate for use with the small sample sizes typical of dredged sediment contaminant bioaccumulation
evaluations.  The simple substitution techniques EPA Region 2 proposes have been demonstrated in a
large scale simulation study to work better than other methods such as maximum likelihood in minimizing
Type I and Type II errors for small sample comparisons (Clarke 1998).  Additional guidance for applying
methods for handling non-detects in small-sample bioaccumulation comparisons is provided in Clarke
(1995).
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Charge Group: Framework

Charge No. 2. Which of the risk-based values derived constitute “true” conservative estimates
of risk levels (i.e., exceeding the value should be interpreted as sufficient cause
to conclude that significant undesirable effects may result through
bioaccumulation)?  Which of the risk-based values derived constitute
conservative screening values (i.e., test tissue concentrations below the value
can confidently be interpreted to pose no risk of significant undesirable effects
and exceeding should be further evaluated before the probability of significant
undesirable effects can be assessed)?  How can the “true” risk levels be
calculated for those compounds which you believe only to have screening values? 
How should test concentrations be compared to risk-based levels to determine
whether they are exceeded.

Summary of Peer Review Comments

Individual Comments

Bartell Charge No. 2 Comment (3 para):
Risk, by definition, is the conditional probability of some undesired event occurring, along with some
statement of its consequences (i.e., human health, ecological). In the absence of perfect information, our 
data and understanding are conditioned on all the sources of bias and imprecision inherent to the scientific
enterprise.  Thus, there are no “true”values among the risk-based criteria described in the report. 
Nevertheless, we might begin to approximate some of these kinds of values with sufficient accuracy and
reliability that they can be justifiably used in a decision-making framework (e.g., Figure 1 of the report). 
For example, the sediment concentrations back-calculated using the WQCTL and the BCF method might
provide initial estimates of exposure potentials that would lead to unacceptable risk. This approach might
be made more conservative (i.e., pessimistic) by using the lowest observed effects level (LOEL), or no
observed effects level (NOEL) to replace the chronic value in the calculation. It is recognized that
estimating the NOEL/LOEL is an inherently uncertain process, however.

Sediment criteria derived from the background or reference area benthic tissue concentrations might serve
as useful screening values in the context of the overall assessment.  This is based on the presumption that
the populations in the reference area are not declining as a function of their exposure to “background”
concentrations of contaminants. This also assumes that the reference concentrations are less than the
values back-calculated from the chronic toxicity data, the LOEL, or the NOEL.

Risk, as defined above, is fundamentally probabilistic.  Therefore, every attempt possible should be made to
develop the sediment risk assessment in a probabilistic framework.  As the result of such a probabilistic
framework, distributions of exposure would be compared statistically with distributions of toxic benchmarks
for each species-contaminant comparison.  Statistical testing of differences between mean values is an
appropriate component of risk characterization.   However, statistical measures of overlap of distributions,
or estimates of the probabilities of exposure being less than screening values or greater than values
associated with unacceptable risk should become standard components of the proposed risk assessment
framework.
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Clifford Charge No. 2 Comment (14 para, 1 table):
Because I believe that all of the comparison criteria (a1, b1, b2, b3, c) have "risk-based" components, I will
not restrict my comments to those values presented as "risk-based" in section V.C.2.c.  Also, note that by
definition, a conservative estimate of risk is not a "true" level of risk, but one that is biased toward
conservatism.

As I'm not entirely comfortable that any body burden evaluations really constitute true estimates of risk
(significant undesirable effects may not result through bioaccumulation), it may be appropriate to designate
exceedance of the screening values presented as "constituting sufficient cause for further evaluation",
rather than as "constituting actual risk of significant undesirable effects".

As to methods of comparison of test concentrations to risk-based levels, I have no difficulty with the
statistical methods used, although non-parametric methods might be preferable to parametric ones given
the likely large departure of environmental conditions from those required for parametric hypothesis
testing.

(a) Comparison of bioaccumulation test results to reference sediment test results 

Comparison of site results to reference area results is probably the least biased of the screening values
(closest to a "true" estimate), although sample size could be an issue under some circumstances.  As noted
in the text, exceedance of reference values is common when those reference values contain a lot of non-
detects.  This difficulty might be reduced to some degree by replacing the "half-detection limit" method
employed with a technique like maximum likelihood estimation to deal more effectively with the censored
(below detection limit) tails of the distributions (e.g., Lindgren 1976; Sielken et al. 1993; Clifford et al.
1995; Banton et al. 1996).  Also, as I discuss in more detail in other responses herein, I am not entirely
convinced that a body burden of a contaminant can necessarily always be related to a toxicological effect. 
As such, while the comparisons are good for identifying circumstances where site sediments have greater
chemical activity than reference sediments, caution must be exercised when interpreting the meaning of
the results.

There is also the issue of contaminants potentially present but not analyzed for.  This is a vexing problem in
most risk assessments and not one we are likely to solve here but, I suggest some qualitative language in
an uncertainty section and perhaps a discussion early in the document regarding how the analyte list was
generated. 

(b1) Comparison to FDA Action levels  

FDA Action levels are not generally derived for protection of the environment as human health and
economic concerns are paramount therein.  As such, I do not believe that they are really appropriate for
the purposes of this sort of an evaluation (regardless of the applicable regulations), although their inclusion
does not in any way compromise the process as they constitute a reason to reject a sediment rather than a
reason to accept one.  I believe that these levels are probably, in general, the least representative of "true"
ecological risk estimates of those presented.
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(b2) Comparison to Regional Matrix levels

The regional matrix values were derived by very conservative methods (e.g., selection of the lowest
available BCF).  As such, they do not represent "true" risk levels, but conservative ones.  In addition,
because they are calculated values, not empirically measured ones, the associated uncertainty cannot really
be evaluated.  These values, if we accept the notion that body burdens can be directly related to effects,
are probably the most useful as screening values and would be the closest of the values presented to ones
that when not exceeded confidently represent category I sediments.

(b3) Comparison to Regional Dioxin Values

I'm uncertain regarding the degree of conservatism (or accuracy) in the Regional Dioxin Values for
ecological concerns.  This is principally because the values are derived for protection of human health and
humans may not be an appropriate end receptor for evaluation of ecological risk.  The solitary study
compared to for actual ecological concerns is that of Cook et al. (1993) which presents a value of 50 pptr
as a "low risk" concentration for adverse effects on fish while the relationships used to derive the criterion
predict a value of 20 pptr in fish tissue at the criterion.  This margin of safety (factor of 2.5) may actually
represent a value within the range of chronic toxicity, but this is unknown.  I would have to see much more
environmental data here and consideration of or more applicable ecological receptors to be comfortable
with the uncertainty in the associated values.  I believe that it would be appropriate to select an upper
trophic level receptor that is more relevant to the site than humans like a large carnivorous fish or a
piscivorous bird.

(c1) Risk-based consideration of bioaccumulation and food-chain transfer potential

Although both high bioaccumulation and high food-web transfer potentials can generally be considered to
be undesirable, they are not, in a strict sense, a measure of the environmental risk posed by a compound. 
According to the studies of many researchers, the rate at which an organism receives it's exposure (it's
dose rate) may be of greater importance than the ultimate body burden.  PAHs are a good example here
as the rate of uptake (dose rate or exposure rate) may be a good predictor of effects while body burdens
may remain fairly constant at low values due to metabolism.  The notion of "steady state" with such easily
metabolized compounds may be illusory at best and misleading at worst.

There are certainly researchers who maintain that body burdens for many contaminants can be confidently
related to adverse effects and, although I do not propose to present a data-laden debate on that subject
herein, I have much greater confidence in dose estimates than body burden estimates based on the data I
have encountered.  Also, for many high Kow compounds (e.g., DDTs and dioxins), "steady state" may
never actually be achieved by any exposed organism (Pruell et al. 1990 notwithstanding) because the
depuration (including transformation, metabolism, and elimination) rate is essentially zero and tissue
concentrations never actually reach a maximum (although there may be a functional upper boundary
where lethality always occurs).  For other compounds like PAHs, bioaccumulation and body burden may
be very difficult to interpret due to metabolism.  As such, while it is certainly possible to predict
bioaccumulation for some compounds, and this can be useful for modeling contaminant movement in a
food-web, I am not entirely comfortable that risk should be solely evaluated on this basis.

(c2) Risk-based comparison to background concentrations
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Although simple comparison of concentrations to background is not terribly robust, it is probably one of the
more accurate in terms of identifying potential for risk.  This statement must, of course, be taken with the
cautions presented above regarding bioaccumulation.  The greatest difficulty here will be identification of a
true "background" location.  Note also that for a very clean background sediment, the propensity of non-
detects will drive numerous spurious exceedances by project sediments where risks do not actually exist. 
Nonetheless, I believe that considered comparison of actual data with actual data are the most accurate of
the screening techniques presented herein.

(c3) Risk-based potential for ecological effects

Body burdens are again employed herein and the same reservations I have expressed above are applicable
here.  My concerns regarding toxicological interpretation of body burdens aside though, the statement that
"CBRs are represented as the ratio of the mass of the toxicant per kilogram (mmole or ug/kg) of
organism." for PAHs is not entirely consistent.  If we accept the notion that one molecule of a PAH is
toxicologically equivalent to any other molecule of a PAH, (which is not without merit and supporting data)
then the measurements must be made on a mmole basis, not on a mass basis.  The following conversions
(using BaP as a standard since the most toxicological information is available for that compound) would be
required:

PAH
Molecular

Weight
Conversion

Factor

Naphthalene 128.16 1.97

Acenaphthylene 152.21 1.66

Acenaphthene 154.21 1.64

Fluorene 166.21 1.52

Phenanthrene 178.22 1.42

Anthracene 178.22 1.42

Fluoranthene 202.26 1.25

Pyrene 202.24 1.25

Benz[a]anthracene 228.28 1.11

Chrysene 228.28 1.11

Benzo[b]fluoranthene 252.32 1.00

Benzo[k]fluoranthene 252.32 1.00

Benzo[a]pyrene 252.32 1.00

Dibenz[a,h]anthracene 228.28 1.11

Indeno[1,2,3-cd]pyrene 276.00 0.91

Benzo[g,h,i]perylene 276.00 0.91

Therefore, the statement that a 400 ppb dose of naphthalene is equivalent to a 400 ppb dose of fluorene is
incorrect as the equivalent mass of fluorene would be 519 ppb to achieve the same number of molecules. 
On that basis, the total dose would be 919 ppb naphthalene toxicological equivalents, not 800 total PAH
equivalents.
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(c4) Risk-based consideration of potential effects on human health

As I've indicated above, I have reservations that humans are the most exposed or most at-risk upper level
consumers at this site and recommend consideration of a possibly more ecologically relevant receptor such
as a piscivorous bird or fish.

Gentile Charge No. 2 Comment (3para):
Currently, you’ve identified the ‘true’ conservative estimates of risk to be: FDA Action Levels; Matrix
level; or Dioxin Category 1 value from the perspective that exceeding these values classifies the dredged
material as not being Category 1.   

A conservative screening value could be set at no significant difference from reference as long it satisfies
several assumptions:1) the reference values are representative of uncontaminated sites throughout the
country and not just locally; 2) that the reference values have been shown to be associated with healthy
benthic community structure and function or from laboratory studies shown to have no associated
biological effects; and 3)  that the statistical design for determining significant differences satisfies
assumptions of random sampling, proper selection of replicates and avoids the issue of pseudo-replication.  
The comparison of risk-based level to test concentrations gets at the heart of my concerns with the
application of this framework.  That is, is there sufficient replication  in the determination of test values,
reference values, WQCTLs, FDA and Matrix benchmarks to determine statistical differences with
prescribed levels of confidence?   If not then this framework is not risk-based and should not be purported
to be.

Wentsel Charge No. 2 Comment (1 para):
I not sure there are “true conservative estimates of risk”.  The risk based discussions starting on page 11
do not present enough information to answer the questions for No. 2.  For example, on page 15 the
Lee et al., 1989 method is presented; has it been peer reviewed, is it protective of assessment endpoints,
and it treats metals and hydrophobic compounds the same.  It seems that this method is designed as if
protection of the clam and worm are the endpoints.  The endpoints are probably higher in the food web.  A
more thorough discussion of what is being protected would be beneficial.  To address the questions in No.
2 the information in pages 11-15 and appendix A would need to be rewritten to clearly pose those questions
and recommend answers.  The text of the example testing memo gets in the way of the technical
discussion of these issues.

Other comments:
p.12 2nd metals para. 

The second sentence is misleading.  Cu, Ni, and Zn are micronutrients and the organism can, within a
given concentration, regulate the amounts of these compounds.  These metals don’t have the
physical/chemical parameters to biomagnify.  

P.8 1st para.
Change true to significant; Discuss method for below detection limit values.

P.14 3rd para.
Most recent BG data? Wouldn’t mean and std.dev. provide more information?

Table 1 should be divided into four parts (split human health and eco; chemicals into two groups), it’s too
much diverse information and the table doesn’t stand alone.
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Solomon/Sibley Charge No. 2 Comment (3 para):
The term risk is often used in the incorrect context.  Use of the term “risk” implies that the likelihood of
something happening is known or has been estimated.  Properly, risk should always be expressed as a
probability.  Comparison of a concentration (in biota, or in a matrix) to a reference concentration or a
criterion concentrations is an assessment of hazard.  Hazards can either be present or not be present, as
the one concentration is either greater than or less than the other.  Traditionally, hazard quotients (one
concentration divided by another) have been used in the early tiers of risk assessment to determine
whether further and more detailed risk assessment is needed.  The criteria or standards used to calculate
reference values for hazard quotients are usually based on relatively conservative numbers.  For example,
the procedures to calculate water quality criteria use a number of conservative assumptions (Stephan et al.
1985).  The Final Acute Value criterion is based on the more sensitive organisms (5th centile of the genus
mean acute values) and additional conservatism is added in the calculation of the Final Chronic Value. 
The reason for these conservative approaches is that the criteria are designed to be protective of almost all
organisms, most of the time.  The criteria are designed to apply in a variety of situations, some where for
physical or biological reasons, more sensitive organisms may be present, while for other they may not.  The
criteria are thus protective, not predictive.  The use of these hazard quotients to assess “risk” is therefore
conservative.

Used in the proper way, the hazard quotient can be used to decide whether a hazard exists or not.  If it
does not exist, the situation is unlikely to present a significant hazard and no further risk assessment is
needed.  However, the obverse, that is, the exceedence of the criteria, does not mean that a significant risk
exists, it merely means that further work is necessary to better quantify the risks.  Given that none of the
criteria were exceeded in this particular risk assessment suggests that further detailed risk assessments are
not necessary as the criteria on which the hazard quotient was based are conservative.  Had some of these
values exceeded the established criteria, other approaches to risk assessment such as those using
probabilistic techniques (Klaine et al. 1996; Parkhurst et al. 1995; Solomon et al. 1996) could have been
used, provided that sufficient data were available to adequately describe the range of susceptibility of
organisms and the spatial and temporal variation of the exposure or body concentrations.

This reviewer is not suggesting that a probabilistic risk assessment be carried out in this particular case but
rather that this may be another way of conducting these assessments once the probabilistic techniques
have been refined and the appropriate data collected.

Newman Charge No. 2 Comment (13 para):
Answer (General answers will be given to the subquestions within this question and then specific points
provided relative to each option.) Specifically, "The toxicological significance of this bioaccumulation was
evaluated by: i) consideration of steady-state bioaccumulation and food-chain transfer; ii) comparison to
background tissue concentrations; iii) consideration of potential ecological effects; and iv) consideration of
potential carcinogenic and non-carcinogenic effects to human health" (page 12).

General Answer
First Subquestion: Which of the risk-based values derived constitute "true" conservative estimates of risk
levels (i.e., exceeding the value should be interpreted as sufficient cause to conclude that significant
undesirable effects may result through bioaccumulation)?  In my opinion none of these methods produces a
conservative estimate of risk levels that is consistent with either of the qualifiers, true or sufficient. Using
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the 28 day bioaccumulation test  as the foundation to derive these values is problematic.  If you insist on
the assumption that this test is valid, I would suggest that  iii and iv are conservative estimates of the true
risk levels. 

Second Subquestion: Which of the risk-based values derived constitute conservative screening values (i.e.,
test tissue concentrations below the value can confidently be interpreted to pose no risk of significant
undesirable effects and exceeding should be further evaluated before the probability of significant
undesirable effects can be assessed)?   In my opinion none of these methods produces a "true"
conservative screening value. Using the 28 day bioaccumulation test as the foundation to derive these
values is problematic.   If you assume that this test is valid, I would suggest that i to iv combined provide a
conservative estimate of the true risk levels.

Third Subquestion: How can the "true" risk levels be calculated for those compounds which you believe
only to have screening values? In my opinion, I would use the concentrations in representative species
living at the site from which the dredged materials are to be taken and use them in the comparisons
described, i.e., use them in approaches (i) to (iv).  If there were relevant commercial/sports species or
major forage species for commercial/sports species relevant to the source and HARS sites, I would
consider  them. I would consider biomagnification when reasonable.  For example, lobster stocks at the
HARS are noted as having high TCDD/PCB levels.  Lobsters are long lived and could easily biomagnify
contaminants such mercury from benthic forage species and act as a vector to human exposure.  After
such consideration, I would then apply (ii) to (iv) with possible modifications as described below.

Fourth Subquestion: How should test concentrations be compared to risk-based levels to determine
whether they are exceeded? Under the assumption that the 28 day bioaccumulation test is valid, use the
method described in the answer to "Third Subquestion" including the modifications described below, e.g.,
additional consideration of a hazard index.

Specific Points
(i) Consideration of Steady-state Bioaccumulation and Food-Chain Transfer

The definition of steady-state as "the lack of significant difference (ANOVA, alpha=0.05) among
tissue residues taken at three consecutive sampling intervals" is not ideal.  It is particularly problematic
if not linked to a required type II error rate, level of power or minimum significant difference. 
Statistical power must be considered in order to get a meaningful decision from an ANOVA.  For
example, wide variability within times could result in the acceptance of the null hypothesis of no
difference in means when there was a difference.  Sampling three very close time intervals could also
result in an acceptance when there was a difference.

Metals: The statement that metals bioaccumulate faster than organic compounds is not valid.  For
example, cadmium will slowly bioaccumulate during the life of an organism, and some organic
compounds can be taken up very rapidly. 

The assumption that metals do not biomagnify is reasonable with the major exception of mercury
which is a classic example of a toxicant that does biomagnify. The use of a trophic transfer
coefficient of one is not appropriate for mercury. See Cabana and coworkers (Cabana and
Rasmussen 1994, Cabana et al. 1994) as an example. See also third paragraph on page 11 of
reference 57.
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Pesticides and Industrial Chemicals and PAHs: General extrapolations from 28 day bioaccumulation
levels to steady state does not seem appropriate.

(ii) Comparison of test results to background tissue concentrations
Here concentrations in organisms taken from near (but not in) the HARS are compared to those from
the bioaccumulation tests. The comparison of these organisms to those from a 28 day test that may
not be at steady state seems dubious.  Why not compare animals from near the HARS to those
endemic to the site from which the dredged materials are to be taken?

(iii) Consideration of potential ecological effects
A literature review was done to evaluate the bioaccumulation test results relative to ecological
effects.  The CV is multiplied by an estimated BCF and compared to that concentration "protecting"
95% of tested species in the database.  Except for the paucity of data from which to draw
conclusions and the dubious extrapolation from the bioaccumulation test, this is a reasonable indicator.
Critical body residues were used for PAHS which also seems plausible.

(iv) Consideration of Potential Carcinogenic and Non-Carcinogenic Effects on Human Health
The focus here is risk to humans by ingestion.  As discussed above, the extrapolated "steady state"
concentrations are suspect and, therefore, the "human cancer protection levels" derived from them
are also suspect. 

 
The hazard quotient was used for non-carcinogenic effects. Would it be reasonable and informative to
also extend this approach to the calculation of a hazard index (sum the hazard quotients) under the
assumption of additivity?  Biomagnification to a commercial species foraging on these representative
benthic species is inappropriately ignored in the analysis, e.g., mercury biomagnification.

Dillon Charge No. 2 Comment (2 para):
Risk is the probability or likelihood of adverse effects.  Chemical risk is assessed by determining the
probability of exposure (exposure assessment) and the consequences of that exposure (toxicity or effects
assessment).  Because risk assessment it is a probability-based process, "true" risk as it used in the above
question, does not exist.  Rather, risk is a gradation of potential outcomes ranging from low to high hazard.  
I assume the "risk-based values" in the question refer to the four elements in Framework's Block c labeled
"Risk Evaluation for Chemical "X".  These four elements are: 1) estimates of steady-state bioaccumulation
and food-chain transfer, 2) background comparisons, 3) ecological effects assessment, 4) carcinogenic and
non-carcinogenic effects on human health.  None of these four considerations can be classified as more or
less "conservative".   Nor are they "risk-based values" per se.  That is, they don't systematically assess
exposure and toxicity vis a vis specific receptors.  The first two are exposure estimates.  The last two
describe methods for evaluating effects to ecological and human receptors, respectively.  

Agency Response to Reviewers’ Comments:

COMMENT 2-1:  Several reviewers noted that the risk-based values are not actually ‘true’ estimates of
risk levels (i.e., the probability or likelihood of an undesired effect or event occurring), but conservative
values for assessing hazard (i.e., whether the hazard is present or not present).  It was noted by the peer
reviewers that hazard assessments like these are traditionally set to be conservative and used as screening
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values. In other words, concentrations lower than the values can be interpreted as being safe, or
representing no potential hazard, while concentrations above the value indicate only that the potential for
risk exists.  The peer reviewers suggested a dose-based risk assessment should be used to quantify the
actual risk.

RESPONSE 2-1:  EPA Region 2 believes that the risk-based values developed in the existing framework
and those that will be used in the proposed HARS Framework represent levels below which there is no
potential for significant undesirable effects rather than “true” estimates of risk.  While it is true that a dose-
based evaluation might provide a more realistic, quantitative estimate of risk than the risk-based values,
application of risk-based values would ensure that placement of dredged material at the HARS for
remediation purposes meets the remedial intent of the HARS designation, will demonstrably contribute to
the improvement of conditions within a specific area of the HARS, and will comply with the Ocean
Dumping Regulations so as not to cause significant undesirable effects (see response to comment 1-1). 
This approach is consistent with other EPA programs in which specific numbers have been developed for
the purpose of evaluating and screening media (water, air) to distinguish between acceptable or
unacceptable concentrations.  Also see response to comment 1-2 regarding use of risk assessment. 

COMMENT 2-2: One reviewer suggested that sediment quality criteria derived from the background or
reference area benthic tissue concentrations might serve as useful screening values.

RESPONSE 2-2: EPA disagrees with the derivation and application of sediment quality criteria using
background or reference area benthic tissue concentrations for the purpose of evaluating the suitability of
dredged material at the HARS.  Sediment concentration alone is not be a good indicator of the potential for
environmental effects because site-specific chemical and physical conditions greatly influence the
bioavailabilty (and therefore, the toxicity) of sediment-associated chemicals (BJC, 1998; McCloskey et al.,
1998).  By focusing on chemical concentrations taken up into the tissues of organisms exposed to the
dredged material in the 28-day bioaccumulation test, EPA ensures that only the bioavailable fraction is
considered when making decisions regarding appropriateness of dredged material as Remediation Material. 

In addition to the scientific concerns set forth above, EPA Region 2 is unable to endorse this suggested
alternative approach to evaluating the suitability of dredge material for placement at the HARS, since the
proposal is inconsistent with the ocean dumping regulations (40 CFR 220-229) which define the regulatory
framework of the HARS.  Both Material for Remediation and Category I material are, by definition,
material that will not cause significant undesirable effects through remediation. Further, in stating exactly
what constituents are present only as trace contaminants, the test set forth at 40 CFR 227.6(b) is that the
materials will not cause significant undesirable effects, including the possibility of danger associated with
their bioaccumulation in marine organisms. Both of these standards, as applied to HARS placement, clearly
intend an effect-based analysis of the material be used.  The proposed alternative does not incorporate
such an analysis, and therefore does not provide a scientific or legal basis for a determination of
compliance with EPA’s ocean dumping regulations at 40 CFR 227.6 and the definition of Remediation
Material (see response to comments 1-4, 3-1, and 3-2).

COMMENT 2-3: Several reviewers suggested that potential risks to site specific, sensitive, higher
trophic level species (e.g., carnivorous fish, piscivorous birds or lobsters) should be evaluated instead of
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humans. One reviewer suggested that the language be reworded to more clearly define the purpose of the
evaluation (i.e., what organisms is the approach designed to protect).
 
RESPONSE 2-3: Predatory (carnivorous) fish and benthic invertebrates and shellfish would be identified
as the species most likely to be impacted by the disposal of dredged material (EPA, 1997a) and would be
used as target receptors for assessing potential risk. 

The New York Bight food web used in the Framework for assessing risks of contaminants in dredged
material proposed for placement as Remediation Material was described by a simplified food chain
consisting of three representative trophic levels.  The three trophic levels (benthic organisms, benthic
predators, and upper level predators) were selected by consensus through numerous discussions/meetings
(1994 to 1996) with a Mud Dump Site Criteria Workgroup (comprised of scientific representatives of the
environmental and regulated communities, NY and NJ resource agencies, USEPA, USACE, and NOAA-
NMFS with knowledge of the NY Bight ecosystem) which was established and convened under the
NY/NJ HEP Dredged Material Management Forum to develop bioaccumulation Criteria for disposal at the
former Mud Dump Site (for additional information on the trophic levels see EPA (1995a)).  

Although known to occasionally occur at the HARS, higher level ecological receptors (e.g., piscivorous
birds and mammals) were not identified as appropriate terminal ecological receptors in the 1995 food chain
characterization. In addition, no higher level ecological receptors (beyond predatory fish) were identified by
U.S. Fish and Wildlife Service, NOAA-NMFS, state resource agencies, or the public in comments
received during the HARS site designation process.  Therefore, predatory fish are proposed for use as
terminal ecological receptors in the assessment of ecological risks at the HARS.

The current approach used to derive protective tissue levels for ecological receptors (Appendix D) is
based on an extensive evaluation of linked residue-effect data for a variety of aquatic species including
both invertebrates (e.g., shellfish and infaunal worms) and fish.  The final benthic tissue values for
evaluation of potential ecological effects in dredged material proposed for use as Remediation Material at
the HARS would be based on the lowest median effects residue (ER50) for any species reported in the
literature for each of the chemicals evaluated.  EPA Region 2 believes that values derived using this
approach would be appropriately conservative to be protective of all benthic invertebrate and fish species
that might be present at the HARS, including lobster and carnivorous fish and, therefore, protective of the
primary ecological communities at that site. Due to the presence of recreational fisheries in the vicinity of
the HARS, consumption of fish represents a potentially important exposure pathway for human health,
therefore, EPA Region 2 would also evaluate that potential exposure route.

COMMENT 2-4:  Several reviewers raised questions regarding the statistical robustness of the values
used and the methodologies employed. 

RESPONSE 2-4: EPA Region 2 acknowledges the concern regarding the statistical methods employed. 
Standard, scientifically acceptable statistical methods were used for the purpose of deriving the values
previously used and would be used in development of HARS-Specific Values.  Appendix F discusses areas
of uncertainty associated with development of HARS-Specific Values.
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COMMENT 2-5: Many of the reviewers suggested that the incorporation of probabilistic techniques
would be very beneficial for the process and provide a more accurate estimate of risk.
  
RESPONSE 2-5: See response to comment 1-2 regarding use of risk assessment. 

COMMENT 2-6: Questions were raised regarding the appropriateness of the use of a 28-day
bioaccumulation test, given that many chemicals may never reach steady-state during that time period.  In
addition, the definition of steady-state was questioned, as well as the validity of the multipliers used to
estimate steady-state conditions.

RESPONSE 2-6: EPA Region 2 acknowledges the limitations associated with estimating tissue
concentrations associated with steady-state conditions based on the results of laboratory 28-day
bioaccumulation tests, but believes the approach to be sound and scientifically appropriate.  EPA Region 2
would continue to address steady-state concerns in its proposed Framework through the use of improved
multipliers applied to the results of the 28-day test, as described in the response to comment 10. 

COMMENT 2-7: One reviewer expressed concern regarding the use of body burden data to evaluate
potential hazards, commenting that bioaccumulation and food web transfer cannot necessarily be
associated with a toxicological effect and that the rate at which an organism receives its exposure may be
more important than the ultimate body burden.  The reviewer suggested that dose estimates would be more
appropriate than body burden estimates, particularly for PAHs, which are readily metabolized.

RESPONSE 2-7: EPA Region 2 acknowledges that there are uncertainties associated with using results
of 28-day bioaccumulation tests.  However, currently, scientifically defensible, and practicable alternatives
(dose estimates) do not exist.  As discussed in the response to comment 1-2, EPA Region 2 and believes
the current approach is the best available, sound, environmentally appropriate, and protective of human and
ecological receptors. As discussed in response to comment 1-2, EPA and USACE are progressing in the
development of techniques that will be useful to conduct a site-specific risk assessment but there is no
agreed upon national approach as of yet.  When an approach is developed, EPA Region 2 and USACE-
NYD will consider it for application at the HARS.   

COMMENT 2-8: One reviewer suggested that it would be better to use field-collected organisms from
areas near the HARS and compare measured tissue concentrations to field-collected organisms from the
area proposed for dredging. 

RESPONSE 2-8: See response to comment 1-6.  

COMMENT 2-9: The reviewers agreed with the assumption that metals do not biomagnify with the
exception of mercury.  It was noted that it was inappropriate to assume that mercury does not biomagnify.

RESPONSE 2-9: See EPA’s response to comment 13-2.  EPA agrees that a trophic transfer factor of 1
(i.e., implying no potential for biomagnification) is inappropriate and would suggest derivation of a value of
1.95 based on data presented by Cabana et al. (1994).   
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COMMENT 2-10: One reviewer noted that the PAH evaluation should be done on a molar basis rather
than on a mass basis.

RESPONSE 2-10: See EPA’s responses to comments 1-1 and 8-4.  EPA will express the narcotic dose
of PAHs and other organic contaminants as molar concentrations for use in the CBR model under the
proposed revised Framework.

COMMENT 2-11: One reviewer commented on the need for qualitative language in an uncertainty
section regarding the issue of contaminants that are not currently quantified that may potentially be present. 

RESPONSE 2-11: EPA Region 2 has considered the need to include additional constituents
recommended by the reviewers as described in the response to comment 16-1 and believes this list of
compounds of concern is appropriate for NY/NJ Harbor sediments.  The whole sediment toxicity tests
conducted as part of the overall Framework takes all contaminants present in sediment into consideration. 
EPA Region 2 agrees with the suggestion to describe, qualitatively, uncertainties pertaining to contaminants
evaluated in the Framework.  Appendix F discusses areas of uncertainty associated with development of
HARS-Specific Values.

COMMENT 2-12: One reviewer suggested that a hazard index (i.e., sum of calculated hazard quotients)
be included under the assumption of additivity. 

RESPONSE 2-12: EPA agrees that the additive effects of the chemicals should be evaluated.  As
discussed in response to comment 3-1, revisions to the Framework would consider the evaluation of
additive effects on the dredged material as a whole would be addressed through a more complete and
rigorous application of the CBR (see response to comment 8), total carcinogenicity (see responses to
comments 7 and 11) and Non-Cancer Hazard Index (see response to comment 7).

COMMENT 2-13: One of the reviewers commented that the FDA Action Levels are not generally
derived for the protection of the environment and, as such, are not appropriate for this evaluation.

RESPONSE 2-13:  As discussed in the response to comment 6-2, the FDA levels would still be part of a
revised Framework; however, Values would also be derived that would be HARS-specific to be used in
determining the suitability of dredged material for use as HARS Remediation Material and the lower value
would be governing. 

COMMENT 2-14: One reviewer noted that the Matrix values were developed using very conservative
methods and, therefore, represent screening values rather than “true” risk levels.

RESPONSE 2-14:   EPA Region 2 agrees with the concerns regarding the methods used to derive the
Matrix values.  However, as discussed in the response to comment 4-1, instead of updating the Matrix
values using the previous approach (see USACE 1981) and more current data, EPA Region 2 is proposing
to adopt an evaluation approach that is more consistent with the risk-based process for the Matrix
constituents.
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COMMENT 2-15: One reviewer noted that the Regional Dioxin Values are derived for protection of
human health.  The reviewer suggested that a value based on upper trophic level ecological receptors (e.g.,
carnivorous fish or piscivorous birds) would be more appropriate. 

RESPONSE 2-15: (see response to comment 5-1). 

COMMENT 2-16: One reviewer questioned the validity of the Lee et al. (1989) method for determining
Water Quality Criterion Tissue Levels (WQCTL).

RESPONSE 2-16: As discussed in the response to comment 8-1, EPA Region 2 proposes to amend the
current Framework which uses identified effects-based concentrations for protection of ecological
receptors using specific, experimental residue-effects data in place of the WQCTL.

COMMENT 2-17: One reviewer offered specific, editorial suggestions regarding modifications to the
TEM (e.g., revisions to Table 1, discussing methods for values below detection limits, etc.).

RESPONSE 2-17: EPA Region 2 will incorporate these suggestions, as appropriate, into the revised
Framework.
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Charge Group: Framework

Charge No. 3. In conducting the integrated effects evaluation using the types of data provided
by the applicant, which of the eight factors for LPC compliance listed in the Green
Book are appropriate and relevant?  How can a quantitative/strategic framework
be established to evaluate tissue data for those factors?  Considering that
comparison to regional Matrix values and site-specific risk values represent
case-specific evaluations, is it necessary to conduct the integrated effects
evaluation of 
the bioaccumulation results?  (Please see Reference No. 61, page 6-6).

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 3 Comment (3 para):
Factors 1 and 5 are of little use since only two species are considered in the 28-d tests.  Certainly,
exceedence of a standard by two rather than one species is of greater concern, but that quantification is
not an appropriate evaluation of “phylogenetic diversity.” Factor 2 is of limited utility because the reference
comparison is meant to provide a quick evaluation of very clean material.  Many chemicals could exceed
the reference, but not be a problem if their concentrations are all less than other benchmarks.  Factor 3 is
difficult to assess because the reference concentrations may be extremely low and the magnitude of
exceedence becomes a function of the precision of analytical chemistry.  Factor 4 is difficult to assess
because all of the chemicals of Table 1 are toxicologically important if their concentration is high enough. 
Factor 6 (biomagnification) is an important consideration, especially in comparison to a reference or other
standard that is not effects-based.  Factor 7 is a separate evaluation from the bioaccumulation analysis.    

Factor 8 is most relevant to the assessment of LPC compliance.  However, as discussed in the answer to
questions 1 and 19, the comparison should be to a background based on tissue concentrations observed in
28-d bioaccumulation tests of sediments, rather than tissue concentrations in species living in the vicinity of
the disposal site.

I think the integrated assessment boils down to a consideration of the number of chemicals whose
concentrations are close to a critical benchmark.  If just one of the Table 1 chemicals exceeds a critical
benchmark, the project material is not acceptable for disposal, especially as Remediation Material.  The
project material should also be rejected if the concentrations of several (e.g. 5) chemicals are close (e.g.
within 10%) of their critical benchmark.  The “integration” in such an evaluation is based on the known
cumulative effects of mixtures of sediment contaminants.  Ideally, it would be desirable to quantify that
cumulative effect.  Unfortunately, there is no known way to predict cumulative effects of diverse
chemicals, e.g. Cd + PCB + dieldrin.  The EPA/COE cannot ignore cumulative effects because of the lack
of a quantitative model.  Hence, a rule such as proposed above (5 or more chemicals within 10% of their
critical benchmark) is an appropriate basis for finding that a project material is not acceptable for disposal
at the HARS.
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Gentile Charge No. 3 Comment (4 para):
It is interesting that you are asking the peer-reviewers this question when that was exactly what I referred
to in my comment on the suitability of the Framework.  I was anticipating that you would provide an
example of the application and then ask our evaluation rather than the other way around.  Nevertheless,
there are several ways to stratify the 8-Factors into a decision framework based on some set of criteria as
long as it is recognized that these are inter-related to varying degrees.  One approach is to separate the
eight into 1st and 2nd order factors. Personally if I were a manager,  I’d like the 1st-order factors to  tell me
if I have a potential problem. These could include: the toxicological importance of the contaminants; the
magnitude of the bioaccumulation in any one or more species; and the propensity to biomagnify in food
webs.  The latter is particularly important since most of the effects we see are detected in top predators be
they mammals, birds, or reptiles.  

Given I have a potential problem I’d want to know how serious it was.  The 2nd-order factors provide
supporting evidence to reduce potential uncertainty and further define the magnitude and extent of the
problem.  They could include the number of species; number of contaminants; phylogenetic diversity; the
magnitude to values for species in the disposal site. 
  
Personally, I do not think the second question is an appropriate one for a peer-review, that is develop a
quantitative strategic framework using these eight factors.  That was and should be the responsibility of
EPA/COE and its contractors.  Having said that my colleagues and I have developed an ecological
significance decision framework using several factors that might be relative though we did not attempt to
quantify it that is due to be published in the August issue of Human and Ecological Risk Assessment
(HERA).  I’d be happy to provide a reprint when available.
  
I do think there are situations where there is a need to conduct the Integrated Effects Evaluation (IEE). 
For example, the Regional Matrix only accounts for two metals and two organics - what about the other
contaminants.  Second while the Risk Evaluation using WQCTLs expands the contaminants it really is
based on national and not site-specific conditions.  Personally, I like the IEE because it would provide
considerably more information than the “point estimates” that would reduce the uncertainty associated with
decisions.  I’d suggest the next step is to develop a strategic plan for  constructing a quantitative decision-
analysis framework for using the 8-factors or more or less as need be.

Berry/Lake/Pruell Charge No. 3 Comment (2 para):
All eight factors appear relevant to a degree.  The application of the seventh factor (the extent of toxicity”
seems a bit problematical, because if the sediments are acutely toxic there may be no need to do
bioaccumulation testing (because the sediment will fail based on toxicity alone).  At the same time, I
imagine most resource managers would be more comfortable with allowing a sediment causing a small
amount of bioaccumulation to pass, if the sediment was not toxic.  Similarly, most managers would
probably be more comfortable failing a sediment, based on bioaccumulation, if there was also some toxicity
associated with the sediment.

It is not clear how these factors could be put into a quantitative system. Ostensibly such a system, which
might involve scoring and weighting of the individual factors, would be less arbitrary.  However it would
probably serve only to put the arbitrariness up front, instead of when the assessment is made.
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It seems important to do an integrated effects evaluation of the bioaccumulation result because most of the
other evaluations relate to single compounds or single classes of compounds, and do not relate results with
those in the toxicity tests.

Solomon/Sibley Charge No. 3 Comment (2 para, 1 table):
The eight compliance factors in the “Green Book” (USEPA 1991) are all reasonable but some are more
biologically relevant than others.  A discussion of this is summarized in the table below:

Green Book Criterion Biological relevance Use-
fulness*

Number of species from dredged
material in which bioaccumulation
exceeds reference (statistical test).

Based on difference from a reference material.  No
toxicological relevance assessed.  Incorrect choice of
reference material could confound the results. 

T

Number of bioaccumulated
contaminants from dredged site in
which exceed reference site values
(statistical test).

As above, based on difference from a reference material. 
No toxicological relevance assessed.  Incorrect choice of
reference material could confound the results.

T

Magnitude by which bioaccumulation
from dredged material exceeds that
from reference.

More useful as it is a continuous variable, however, the
response of organisms to increasing concentration
(concentration response) would need to be factored in as
well.

TT

Toxicological importance of
contaminants from dredged site
exceeding those from reference site.

Again, this is based on difference from a reference
material.  No toxicological relevance assessed and the
importance of these contaminants is judgemental. 
Incorrect choice of reference material could confound the
results.

T

Phylogenetic diversity of
contaminated species exceeds that
from reference site.

Phylogenetic diversity may not be relevant to ecological
importance or function in the ecosystem, however, this
may be an indicator of greater potential for entry to food
chain.  Diversity may be affected by physical factors
such as particle size.

TT

Propensity for contaminants with
statistically significant
bioaccumulation to biomagnify in
aquatic food chain.

Biomagnification usually only occurs with persistent and
lipid soluble substances.  These may have a greater
impact in organisms higher on the food chain (as has
been demonstrated historically) and this is judged to
more useful.

TT

Magnitude of toxicity and
phylogenetic diversity of organisms
showing greater mortality in dredged
material.

A good effect-based criterion that is related to response
of organisms.  It may, however, be confounded if
incorrect matching of test and reference sediment is used. 
Some organisms will not thrive and “die” if sediment
physical characteristics are not appropriate.

TTTT
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Magnitude by which contaminants
whose bioaccumulation from dredged
site exceeds that in organisms near the
proposed site.

Some usefulness but subject to confounding from poor
choice of nearby sites.  A good margin of safety may
exist at both sites despite the differences.

T

* the more useful, the more  Ts

The response of the organisms at the site will, to a degree, integrate the effects evaluation.  Other types of
toxicological integrators (TEFs and TEQs) are less well developed.  If site-specific values are used, an
attempt to should be made to integrate the effects evaluation of the bioaccumulation results, however, the
biological responses highlighted above should be given higher credence in the assessment.  In this regard,
physical properties of sediments may be more important than chemical properties.  Some sediments are
unsuitable substrates for colonization by some organisms and, absence of these organisms does not mean
an adverse toxic effect.  Choice of the wrong sediment as a reference could result in false positives (for
toxicity).  In the assessment being reviewed here, this was not the situation.

Newman Charge No. 3 Comment (para):
Subanswer One: In conducting the integrated effects evaluation using the types of data provided by the
applicant, which of the eight factors for LPC compliance listed in the Green Book are appropriate and
relevant?  These eight factors being: 

(i) Number of species in which bioaccumulation from the dredged material is statistically greater
than bioaccumulation from the reference material, 

(ii) Number of contaminants for which bioaccumulation from the dredged material is statistically
greater than bioaccumulation from the reference material, 

(iii) Magnitude by which bioaccumulation from the dredged material exceeds bioaccumulation from
the reference material,

(iv) Toxicological importance of the contaminants whose bioaccumulation from the dredged material
statistically exceeds that from the reference material,

(v) Phylogenetic diversity of the species in which bioaccumulation from the dredged material
statistically exceeds bioaccumulation from the reference material,

(vi) Propensity for the contaminants with statistically significant bioaccumulation to biomagnify within
aquatic food chains,

(vii) Magnitude of toxicity and number and phylogenetic diversity of species exhibiting greater
mortality in the dredged material than in the reference material,

(viii) Magnitude  by which contaminants whose bioaccumulation from the dredged material exceeds
that from the reference material also exceed the concentrations found in comparable species
living in the vicinity of the proposed disposal site.

It is my opinion that they are all relevant in the context they are presented.  Their relative importance
can be crudely ranked: 1=2=3=4=6>8>7>5.

Subanswer Two:  How can a quantitative/strategic framework be established to evaluate tissue data
for those factors?  The impression given in the Green Book is that these items are to be used in the
context of expert opinion, not a structured decision flow chart.  I would use review by experts, perhaps
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based on the crude rankings of priority provided above, as a means of incorporating these aspects of
the assessment.

Subanswer Three: Considering that comparison to regional Matrix values and site-specific risk values
represent case-specific evaluations, is it necessary to conduct the integrated effects evaluation of the
bioaccumulation results?  Yes.  I believe that the integrated effects evaluation provides  applicable
information, although it would be much more useful if it did not rely so heavily on the 28 day
bioaccumulation test and associated extrapolations.  According to the information provided (e.g., ref.
57), regional matrix values exist for only a subset of contaminants.  (Please note that I did not find ref.
61 in my review package so I could not respond specifically using information from page 6.6 as
suggested.)

Lee Charge No. 3 Comment (2 para):
All eight factors are of some importance.  The "phylogenetic diversity of the species" is the least important,
as with the current procedure of using two species it is really a restatement of "the number
of species".  

See Question 1 for a possible approach for a framework to integrate various compounds.  It is still
important to have an integrated assessment because: 1) Matrix values exist for so few compounds, 2)
the effects of at least some suites of contaminants are based on the summation of their residues (e.g.,
PAHs), and 3) the acceptability of a dredge material is based on different types of risks (e.g., direct
impacts on benthos, biomagnification to human consumers) which requires some type of overall
assessment.

Dillon Charge No. 3 Comment (1 para):
All eight factors appear very appropriate and relevant.  One may wish to keep consideration of the factors
qualitative.  A simple visual tool such as a matrix with pluses and minuses may be all that is necessary. 
This visual level of analysis (with accompanying uncertainty analysis) may even be most appropriate given
the uncertainties associated with the multiple lines of evidence.  Yes, the integrated effects evaluation is
very necessary.  For example, it is the only time: 1) the potential effects of multiple contaminants are
evaluated and 2) results of the sediment toxicity bioassay are considered in conjunction with the
bioaccumulation data.

Agency Response to Reviewers’ Comments:

COMMENT 3-1:  There was general agreement among the reviewers that the integrated effects
evaluation is a necessary component of the analysis, although opinions differed regarding the most
appropriate method for incorporating it.  The majority of the reviewers suggested that a quantitative
approach based on a relative ranking or weighting scheme (e.g., a toxic units approach) should be
developed.  This approach provides a way to evaluate the dredged material as a whole by normalizing each
compound to the fraction of the effects residue concentration (0.X of a CBR or WQCTL residue).  The
fraction could then be summed based upon mode of action or total for all compounds.  Two reviewers,
however, felt that the evaluation should be a qualitative review based on expert opinion, not a structured
decision flow chart.  The majority of the reviewers felt that all eight of the factors described were, to some
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degree, applicable to the integrated effects assessment.  Several reviewers felt the factors should be
prioritized and weighted accordingly; however, they disagreed on the relative importance of each individual
factor.

RESPONSE 3-1:  EPA Region 2 recognizes and acknowledges that the eight factors for LPC
compliance listed in the Green Book (EPA/USACE, 1991) vary in their significance and importance for
different individual compounds.  EPA Region 2 also recognizes that there are numerous methods for
evaluating the eight factors for LPC compliance, and numerous methods for evaluating the integrated
effects.  The eight factors listed in the Green Book  (EPA/USACE, 1991) are interrelated in a complex
manner, which is one reason why no one particular evaluation method was identified.  Depending on the
project, there may also be additional factors that should be considered. 

As discussed in response to comment 1-1, EPA Region 2 will propose HARS-Specific Values that are
human and ecological effects-based values from the best available literature and using standard EPA
human health risk evaluation methodology (see responses to comments 4 through 14.  The evaluation of
additive effects (chemicals that act similarly) on the dredged material as a whole would be addressed
through a more complete and rigorous application of the CBR (see response to comment 8), total
carcinogenicity (see responses to comments 7 and 11), and Non-Cancer Hazard Index (see response to
comment 7) in the section entitled “Combined Effects Evaluation: CBR, Total Carcinogenicity, and Non-
Cancer Hazard Index (See Figure 2).  EPA Region 2 believes that the proposed HARS Framework in its
entirety (i.e., water column evaluation, toxicity tests, and bioaccumulation tests) incorporates the eight
factors for LPC compliance listed in the Green Book (EPA/USACE, 1991).  However, in place of direct
application of the eight Green Book Factors, an integrated assessment of combined additive/synergistic
effects has been proposed to evaluate bioaccumulation test results.    

COMMENT 3-2: One reviewer commented that EPA Region 2 cannot ignore cumulative effects
because of the lack of a quantitative model and suggested an additional process be used to determine
whether material is unacceptable for the ocean, besides exceeding one of the critical benchmarks.  This
involves rejecting project material if the concentrations of several (e.g. 5) chemicals are close (e.g. within
10%) to their critical benchmark. This would also help to address cumulative effects, given that there are
no known quantitative models to predict cumulative/synergistic effects of chemical mixtures. 
 
RESPONSE 3-2:  EPA Region 2 acknowledges the reviewers suggestion.  However, as discussed in
responses to comments 3-1 and 1-1, EPA Region 2 will propose chemical-specific, HARS-Specific Values
to be used in determining the suitability of dredged material for use at the HARS as Remediation Material.
These proposed HARS-Specific Values will be protective and appropriately conservative for remediation
purposes at the HARS and will, to the maximum extent practicable and appropriate, factor in the eight
factors for LPC compliance listed in the Green Book.    The evaluation of additive effects (chemicals that
act similarly) on the dredged material as a whole would be addressed through a more complete and
rigorous application of the narcotic critical body residue (CBR) approach (see response to comment 8),
total carcinogenicity (see responses to comments 7 and 11), and Non-Cancer Hazard Index (see response
to comment 7).  As such, step “d” in the Framework, “Evaluation of Solid Phase Bioaccumulation Results
for Dredged Material as a Whole”, has been revised in the proposed Framework to reflect the new
evaluation process by removing the specific evaluation of the eight factors for LPC compliance listed in the
Green Book.
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COMMENT 3-3: One reviewer commented that the development of a quantitative/strategic framework
to evaluate tissue data for the eight factors for LPC compliance listed in the Green Book is the
responsibility of EPA.  This reviewer also suggested using the ecological significance framework published
in August 1998 for Human and Ecological Risk Assessments (Gentile, 1998; Gentile and Harrwell, 1998a).

RESPONSE 3-3: EPA Region 2 acknowledges the reviewers suggestion regarding development of
ecological endpoints and ecological significance in risk assessments and environmental policy.  See
response to comment 1-2 regarding the use of risk assessment.

COMMENT 3-4:  One reviewer commented that the integrated effects evaluation should evaluate the
cumulative effect of the chemical mixtures present in the dredged material rather than the possible impacts
from individual chemicals. Another reviewer supported the integrated effects evaluation because it would
provide considerably more information than the “point estimates” and would reduce the uncertainty
associated with decisions. 

RESPONSE 3-4: EPA Region 2 agrees with the reviewers suggestion.  As discussed in response to
comment 3-1, the evaluation of additive effects (chemicals that act similarly) on the dredged material as a
whole would be addressed through a more complete and rigorous application of the narcotic CBR
approach (see response to comment 8), total carcinogenicity (see responses to comments 7 and 11), and
Non-Cancer Hazard Index (see response to comment 7).

COMMENT 3-5:  One reviewer noted that the interpretation of some of the factors could be
significantly affected by confounding factors associated with physical parameters of the sediment (grain
size, sediment type, choice of wrong sediment as reference site)  rather than chemical constituents, leading
to potentially erroneous conclusions regarding the potential toxicity of the dredged material.

RESPONSE 3-5: EPA Region 2 agrees with the reviewer that confounding factors need to be considered
in the application of test results, where applicable.  Towards that end, EPA Region 2 has rigorous toxicity
testing quality assurance requirements.  The RTM has specific requirements for QA/QC procedures for
sediment sampling and toxicity/bioaccumulation testing.  Also, as discussed in response to comment 3-1,
the proposed HARS Framework, in its entirety, incorporates the 8 factors listed in the Green Book.

COMMENT 3-6: One reviewer suggest an approach to separate the eight Green Book factors into 1st

and 2nd order factors and that the next step is to develop a strategic plan for constructing a quantitative
decision-analysis framework for using the 8-factors.  

RESPONSE 3-6: (see response to comment 3-1)



60

Charge Group: Benchmark and Risk Evaluation Values

Charge No. 4A. Regional Matrix Values
Are the Matrix values suitable for determining the suitability for placement at
the HARS as Remediation Material? 

Charge No. 4B. Regional Matrix Values
Regional Matrix values were developed in 1981 by compiling available field
data for mercury, cadmium, PCBs, and total DDTs.  Were these values derived
appropriately for their intended use?  Based on current data sets and scientific
literature, are these 1981 values suitable for predicting the significant
undesirable effect due to bioaccumulation?  (Please see Reference No. 57)  If
not, identify more current references, data sets, and/or actual chemical specific
values that would be more appropriate. 

Summary of Peer Review Comments

Individual Comments

Gentile Charge No. 4A Comment (1 para):
The fundamental problem with all point estimates or benchmarks is that they have no estimates of
variability around them so there is no measure of uncertainty related to a decision derived from their
application. Since a fundamental element of risk-based analysis and risk-management is decision-making in
the face of uncertainty, then measuring probabilities and uncertainties would seem not only logical but also
necessary.  From a managers perspective I=d want to know whether the 2x, 3x or 10x exceedence was
real or within the both the biological and analytical variability.  I=d certainly only use it as a screening tool
and not a decision tool.  However, if the policy has and continues to be based  on point estimates (e.g.,
criteria,  benchmarks, etc.) then the Matrix values are sufficient.

Berry/Lake/Pruell Charge No. 4A Comment (1 para):
The matrix values seem to be a suitable tool for use as a part of an evaluation, although they would
probably not be suitable if other methods were not employed (But see 4B).  Exceedances of these values
may serve as an appropriate screen, but obviously they can not be used to calculate risk.  If the matrix
values are used, It might be argued that a grand mean is too low.  However, this must be balanced by the
fact that the exposure in the test is only 28 days, and that an arithmetic mean might be particularly
susceptible to being skewed by “hot spot” values.  Depending on the statistical distribution of the data, a
geometric mean, or the median, might be more appropriate.

Solomon/Sibley Charge No. 4A Comment (1 para):
The matrix values are generally judged suitable for determining the suitability for placement as
Remediation Material.  Values for dioxin TEFs (FDA and USEPA) are based on mammalian studies. 
They are thus most suitable for assessing risk to humans (and other mammals).  For assessing risks to fish,
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TEFs based on data from fish may be more useful (Parrott et al. 1995).  However, given the observed
concentrations, this difference was not judged to be significant.

Newman Charge No. 4A Comment (1 para):
Answer based on Ref. 57 and the Peer Review Version. Review of Compliance with the Testing
Requirements of ...:  Yes.  The values seem appropriate as gross estimates if used as originally planned.
"This guidance is considered by the Corps to be dynamic.  It is not established as fixed and final numerical
criteria but rather as an aid to interpreting test results.  As such, it is open to review and updating as
additional pertinent data become available" (Ref. 57, 1981).

Dillon Charge No. 4A Comment (1 para):
Matrix values represent 1981 conditions.  If the goal of the EPA/CENAN dredging program is to manage 
towards that level of ambient contamination, then the values appear appropriate.  

Gentile Charge No. 4B Comment (1 para):
I was peripherally involved with this process in the 1980's while with EPA and directing a Field
Verification Program with COE.  At that time the derivation the concept and its limitations were debated
and the consensus was that given the state of the science this would be a useful tool for screening the
potential ecological effects of contaminant tissue residues in biota.  I don’t think at that time, we considered
this a predictive tool nor do I now for that matter.  The idea was that if you exceed this value then it would
trigger the need for further investigation.  Among the issues were whether one should  DDT and PCBs in
toto or look at their individual congeners.  The latter was not deemed possible at that time for a several
reasons; lack of data on specific congeners, reliability of analytical methods for congeners, and a  lack of
congener specific effects data or even potency data at that time.  

I would assume that in the intervening time (1981-1998) that three things would have happened: 1) the
original data base has been expanded  as new data became available thus providing a much sounder
scientific basis for decisions including data on PCB congeners; 2) the concept would have been expanded
to include additional contaminants, particularly the PAHs; and, 3) the efficacy of the original Matrix would
have been evaluated as a management tool.  Not having been involved with this area of research since the
mid-eighties it is difficult for me to judge but that is certainly at the heart of your last questions.  That you
are suggesting Reference No. 57 as supporting information suggests that little further research has gone
into refining and re-defining the Regional Matrix.   If the plan is to continue using this approach, I  would
encourage the Matrix concept be more risk-based, that is, use distributions, probabilities, and  uncertainties
in the decision-making framework.  Further, Reference No. 57 highlights the problem of using a “dated”
strategy when it concludes that there is no evidence that methylmercury is not a threat to bioaccumulate
and biomagnify.

Berry/Lake/Pruell Charge No. 4B Comment (1 para):
It is not clear to me why the matrix values would continue to be used, now that the background tissue
values are available.  The background  values use newer analytical techniques and come from a more
defined database.
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Solomon/Sibley Charge No. 4B Comment (1 para):
The relevant decision guideline limits for mercury, cadmium, PCBs and total DDT were reviewed and
were, in all cases, judged to be appropriate.  For cadmium, total PCBs, and mercury, these decision
guidelines were all below guideline levels developed in other jurisdictions and which incorporated
appropriate safety factors.  Based on the arguments presented for the decision guideline value for DDT,
this value is also judged appropriate.  Although this reviewer is aware of some more modern studies on
DDT (such as enhances breakdown in marine sediments), the results of these would not justify more
conservative decision criteria values.

Newman Charge No. 4B Comment (1 para):
The information gives general estimates as intended.  As noted above, extensive review and augmentation
of this information should be done.  Since the evaluation was last conducted in 1981, a new review is due.

Dillon Charge No. 4B Comment (1 para):
The 1981 matrix values were derived appropriately for their intended use at the time.  Whether the 1981
matrix values are appropriate today depends on regional management goals (See peer reviewer's response
to 4.A.).   If the goal of the EPA/CENAN dredging program is to manage towards present day levels, then
the more recent background concentrations contained in reference 98 may be more appropriate.   

Agency Response to Reviewers’ Comments:

COMMENT 4-1: There was a consensus among several of the reviewers that the Matrix values were
appropriate for the intended use when they were developed but should be updated to reflect current
scientific knowledge.  Several reviewers suggested different methods for deriving them including a
probabilistic approach to reflect the range and distribution of the data used to derive the values and the use
of other measures of central tendency (e.g., geometric mean or median).  One reviewer in particular felt
that the Matrix values as derived were inappropriate, noting that they were calculated from surveys that:
(a) did not have standardized methods, (b) were not peer-reviewed, and (c) did not include the organisms
used in the 28-day tests, and (d) presented no measure of uncertainty.

RESPONSE 4-1: EPA Region 2 agrees with concerns expressed by the reviewers that the Matrix values
are based on dated information and should be updated with values more pertinent to the HARS.  However
instead of updating the Matrix values using the original approach (see USACE, 1981), EPA Region 2
proposes to replace the Regional Matrix Values with HARS-Specific Values that are derived using a risk-
based approach.  EPA Region 2 proposes to use this strategy because it is more applicable for determining
the potential to cause significant undesirable effects. 

Matrix values were originally developed to prevent “...unreasonable degradation by preventing increased
environmental stress in the Bight from dredged material.” and is a “...decision guideline which specifies a
maximum value...which, if met, should prevent significant undesirable effects from occurring...” and were
not intended as “fixed and final numerical criteria” but rather were proposed to be “open to review and
updating as additional pertinent data become available.” (USACE, 1981).
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New risk-based HARS-Specific Values will be proposed that are based on human health carcinogenic and
non-carcinogenic effects, and ecological effects.  Cancer effects values will be based on 10-4 cancer risk
level and non-cancer effects values will be based on reference dose.  Ecological effects values will be
based on tissue contaminant levels that have been demonstrated to be associated with adverse ecological
effects. 

COMMENT 4-2: Two reviewers indicated that the Matrix values should be applied only as a
conservative benchmark screen.  These reviewers suggested that sediments exceeding the Matrix values
should be further evaluated through a risk-based framework.

RESPONSE 4-2: As presented in response 4-1, EPA Region 2 proposes to replace the current Regional
Matrix values for PCBs, DDT, cadmium, and mercury with revised, risk-based HARS-Specific Values. 
Please note that while the reviewers discuss comparing the current Matrix value against sediment
chemistry values, Matrix values are actually compared against concentrations in bioaccumulation test
organism tissue consistent with current regulations. 

COMMENT 4-3: Two reviewers suggested that the Matrix value approach be replaced with the use of
background tissue values which are based on newer analytical techniques and a more defined database.

RESPONSE 4-3: See Introduction and responses to comments 4-1 and 1-4.  EPA Region 2 proposes to
replace the Regional Matrix values with risk-based, HARS-Specific Values.
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Charge Group: Benchmark and Risk Evaluation Values

Charge No. 5A. Regional Dioxin Values
Currently, the presence of 2,3,7,8-TCDD at a detectable concentration (i.e.,
greater than or equal to one part per trillion (pptr)) in tissues of organisms
exposed to dredged material precludes its classification as Category I (hence
Remediation Material); presence of the remaining dioxin/furan congeners, at
concentrations of TEQs equal to or greater than 4.5 pptr, results in a similar
conclusion.  When 28-day tissue concentrations exceed these values, is there
sufficient cause to conclude that placement of the material is not suitable as
HARS Remediation Material?  If not, what levels indicate sufficient cause for
this conclusion?  (Please see Reference No. 89)

Charge No. 5B. Regional Dioxin Values
Are dioxin values suitable for predicting the significant undesirable effects due
to bioaccumulation?  If not, should these values be based on a risk analysis
paradigm in which the size of the human population subgroup potentially exposed
through intentional behavior is compared to the size of the general population in
the region?  Since the primary route of exposure is through consumption of fish
and shellfish, should the variability in potential exposure due to differences in
fishing behavior (e.g., target species, seasonal preferences) be incorporated in
the risk paradigm?  How would a benchmark protective of human health
compare to benchmarks determined using an ecological risk analysis paradigm
for resident fish and piscivorus wildlife?

 

Summary of Peer Review Comments

Individual Comments

Bartell Charge No. 5A  Comment (1 para):
The dioxin/furan criteria for sediment classification as Category I are based on detection levels, as
discussed in Reference 89.  The comparative paucity of dioxin and furan toxicity data for species
representative of the marine benthos make it difficult to evaluate the efficacy of the 1 and 4.5 ppt criteria. 
For example, the assumption of using ½ of the detection limits to compute the sum of the non 2,3,7,8,-
substituted compounds leads to the 4.5 ppt criterion; clearly, increasing or decreasing this apparently
arbitrary value (i.e., ½) would correspondingly increase or decrease the permissible concentration for
Category I classification.  A dioxin value of 10 ppt (i.e., Category 3 in Reference 89) might prove
sufficiently protective, although the necessary supporting toxicity studies should be performed with at least
the species of Nereis and Macoma.  Additional studies appear warranted given that the decision criteria
were evidently developed on the basis of tissue levels for fish and animals, not including these
representatives of the benthos.  It is further pointed out (Reference 89) that the many of the pathway
coefficients, for example, the trophic level transfer coefficient,  were conservatively (i.e., pessimistically)
defined in the assessments used to derive the protective criteria for these compounds.  More realistic
values would, of course, lead to higher permissible concentrations.  Cook et al. (1993), cited in Reference
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89, suggest a value of 50 ppt as a “low risk” concentration for adverse effects on fish.  While additional
studies appear needed to justify the classification criteria for dioxins and furans, the information
summarized in Reference 89 suggests that a value in the range of 10-50 ppt might be just as logically
selected as the current criteria based on detection levels or fractions of detection levels.

Gentile Charge No. 5A  Comment (1 para):
Reference No. 89 provides a good summary of the policy and approach for evaluating dioxin risks Ð
though it is not a risk assessment per se for all the reasons I’ve discussed above.  Using point estimate
benchmarks or criteria results in a hazard index type of framework and not a probabilistic-based risk
framework.  Nevertheless the review was informative and basically sets up an hazard index with three
benchmarks; ²1, 1-10, and >10pptr.  Two concerns with this approach one is with the philosophy
supporting the policy and the second with implementation. First, is that TEQ value of 4.51 is based on the
sum of ½ the detection limits for the non-2,3,7,8 Ð substituted dioxin/furans times the individual TEQs. 
Making policy decisions at the detection limits is problematic at best.  Second, how does one decide if
exceeding the 1 pptr in a  28-day test is cause for concern given that your decision framework has no
way to treat variability and uncertainty.  What if the a single 28-day test results in a value of 1.5 or 1.9  or 
even 2.6 how does one decide if this is really a problem or it is within the variability of the
bioaccumulation testing and analysis methods itself particularly when as stated the values are at the
detection levels. What needs to be determined is the amount of variability around the benchmark that is
acceptable based upon the consequences to human health.  To answer that question I’d determine how
much exceedence is statistically significant and what are the consequences of that magnitude of
exceedence, that is, what is the incremental health and environmental risk.   If the exceedence is
statistically significant and above, 3.6 for example, then the health consequences will equal or exceed
accepted risk criteria deeming the material unacceptable.  Some analyses like this would appear to be
necessary to answer the suitability question. 

Berry/Lake/Pruell Charge No. 5A  Comment (1 para):
Dr. Pruell felt that there are not enough data to support or refute any of the values proposed for dioxin at
this time.

Solomon/Sibley Charge No. 5A  Comment (1 para):
The 1 ppt criterion for TCDD and the 4.5 ppt criterion value for TEQ of the dioxins and furans other than
TCDD is based on the use of a number of safety factors and conservative assumptions.  It is well known
that criteria for dioxin vary widely from one jurisdiction to another and even between agencies in the
same country.  The EPA criterion is one of the most conservative while that of the FDA (20 and 50 ppt)
is in the middle of the range.  Given that trophic transfers are not unity, values similar to those suggested
by the FDA would be more appropriate.

Newman Charge No. 5A Comment (1 para):
I would tend to agree with the present decision process. 

Cook Charge No. 5A Comment (3 para):



66

EMFCss ' j
n

i ' 1

(Csoc)i (BSAF )i ( fR) (TEF )i

In candor, I must state my reservations for the perpetuation of an unnecessary and potentially inaccurate
basis for bioaccumulation assessment of dredge spoils.  A basic scientific problem often occurs when
methods evolve over many years without a fresh look, in the context of the present state of science, at the
fundamental models, data, and assumptions that were incorporated into them in the beginning.  Perhaps
this is happening in this case with a method predicated on the need to test each sediment for
bioaccumulation.  The use of a 28 day benthic invertebrate test of bioaccumulation, especially for
assessing human health risks, seems to me to be a clumsy and scientifically indefensible approach.  The
result of the test is a concentration in the organism that may be influenced by test conditions and has little
relevance to human or wildlife dietary exposures.  More importantly, what factors other than sediment
organic carbon content are likely to cause a significant difference in TCDD bioavailability from different
sediments to the test organisms?  Most food chain models are successful with an assumption of
equilibrium partitioning to a benthic invertebrate species.  Bioaccumulation potential can be better
determined on the basis of the sediment organic carbon normalized concentration of the chemical and
some standard condition assumptions for the magnitude of food chain transfer from the sediments to the
fish or other organism that is either the subject of the risk assessment or the diet of the subject.

Another complication is that TCDD and the other congeners included in the TEQ analysis all have
different bioaccumulation potentials in food chains.  Bioavailabilities differ in proportion to hydrophobicities
(Kow) and once accumulated by fish, they are subject to varying degrees of metabolism.  The framework
uses reference 89 to document the calculations used to arrive at categories 1, 2, and 3 for dioxin risks.  A
trophic transfer factor of 1.0 is used for TCDD and, presumably, for all other congeners.  The Great
Lakes Water Quality Initiative/Guidance Technical Support Document for the Procedure to Determine
Bioaccumulation Factors contains bioaccumulation equivalency factors (BSAF ratios) that reveal lower
bioaccumulation potential in comparison to TCDD for all PCDDs and PCDFs except 1,2,3,7,8-PeCDD
and 2,3,4,7,8-PeCDF.  Perhaps more importantly, this EPA dioxin criterion document provides BSAFs for
fish that would be far better estimates of the EMFCss used in the Region 2 dioxin risk evaluation than
the benthic invertebrate test values.  The equation for calculating the EMFCss on a TEQ basis is:

where:
 (Csoc)i  is the concentration of congener i in sediment normalized to organic carbon
(BSAF)i  is the fish biota sediment accumulation factor for congener i 
 fR is the fraction lipid in the fish
(TEF)i is the toxicity equivalence factor for congener i (WHO human health/mammal, fish, or bird

TEF depending on species at risk) for TCDD alone: n = 1, TEF = 1, BSAF = 0.06

The use of BSAFs from the Great Lakes may seem ridiculous, but they are probably no more than slightly
conservative (slightly over-predictive of bioaccumulation) for fish living on a disposal site and may actually
predict lower dioxin risk than the present procedure while allowing for a more accurate and
straightforward TEQ analysis.  The Great Lakes BSAFs are typical for sediment/benthic food chain-
driven bioaccumulation with small contribution from chemicals in the overlying water, as one would
expect to be the case for dredge spoil disposal area conditions.  One additional complication is that a TEQ
analysis that ignores the contributions of PCBs assumes that a significant underestimation of risk is
acceptable.
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Bartell Charge No. 5B Comment (1 para):
Ideally, predictions of significant undesirable effects from dioxins and furans would derive from
comprehensive, quantitative environmental transport, bioaccumulation, and toxicity assay data.  In the
absence of these necessary studies, dioxin criteria for sediment classification should at least be developed
using quantitative risk assessment methods that emphasize variability and uncertainty in all components of
the analyses.  Potential differences in exposure among human population subgroups, as well as variability
in routes of exposure would logically be addressed in such analyses.  The implications of these sources of
uncertainty and variability could be effectively explored using Monte Carlo methods, interval analysis,
fuzzy arithmetic, or other analytical tools that characterize uncertainty and propagate them through the
computations.

Gentile Charge No. 5B  Comment (1 para):
Reference 89 addresses the first question in some detail, however, I am not convinced that the current
method has real power for predicting undesirable effects but rather provides useful tool for establishing
policy boundaries.   A risk-based approach would be much more realistic particularly if based upon site-
specific information such as at risk human sub-populations, different dietary intakes, fishing behavior, etc. 
Comparison of health and wildlife benchmarks would have to wait until the specific analyses were done. 
However, my suspicion is that the use of the risk paradigm and site-specific wildlife information would
produce a more defensible and robust risk assessment that would have less uncertainty than the health
assessment.
 

Berry/Lake/Pruell Charge No. 5B  Comment (1 para):
Dr. Pruell also felt there was a need to use a risk approach to the assessment of dioxin in tissues, and that
considerations as to the amount of material to be dumped, and the characteristics of the dump site may be
more important in this case than the tissue value chosen for dioxin.

Solomon/Sibley Charge No. 5B  Comment (1 para):
Dioxin values are suitable for assessing the hazards resulting from bioaccumulation (with the above
qualifiers taken into consideration).  However, for risk assessment purposes, the likelihood of exposure in
the potentially exposed population should be considered.  The likelihood of consumption of contaminated
seafood should incorporate seasonal and target species variability as well as the likelihood that fish will be
obtained from other regions that may be less contaminated (if this is the case).  If these factors are
considered, exposures will normally be reduced, thus further adding conservatism to the risk assessment. 
Human health risk assessment is normally aimed at protection of the individual, and, because of this,
usually incorporates many conservatisms.  Ecological risk assessment is focused on endpoints at the
population level rather than the individual.  Thus, risks to fish and piscivorous wildlife would be assessed
differently from those to humans.  Criteria based on human consumption would be expected to be
protective of wildlife.

Newman Charge No. 5B Comment (3 para):
Subanswer One: Are dioxin values suitable for predicting the significant undesirable effects due to
bioaccumulation? Yes.  They seem suitable.
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Subanswer Two:  Since the primary route of exposure is through consumption of fish and shellfish, should
the variability in potential exposure due to differences in fishing behavior (e.g., target species, seasonal
preferences) be incorporated in the risk paradigm?  Yes.  I think that at a certain tier in the risk
assessment, more detailed information would be useful.  The present analysis seems to focus on the
general population but, perhaps, should also consider subpopulations of humans with higher consumption
rates of fish and shellfish.  Inclusion of fishing behavior as mentioned above could then be added to the
analysis.

Subanswer Three: How would a benchmark protective of human health compare to benchmarks
determined using an ecological risk analysis paradigm for resident fish and piscivorous wildlife?  The
benchmarks for humans should be focused on protecting individuals but those for fish and wildlife should
be based on maintaining viable populations.  Therefore, the general response would be that the
benchmarks for humans should be lower than those for fish and wildlife assuming that one adjusts for
differences in exposure characteristics.

Cook Charge No. 5B Comment (4 para):
The Region 2 memo to file by Alex Lechich on 3/15/97 summarizes the dioxin risk evaluation approach. 
The use of a different toxicity equivalence concentration (TEqC) of 4.5 ppt than the 1 ppt TCDD
concentration limit for category 1 seems inconsistent but may be the result of congener detection limits - is
4.5 ppt the theoretical detection limit for TEqC?

The human health criterion used by Region 2 for TCDD is 10 ppt in fish tissue.  The TEqC is not defined
so one assumes it is also 10 ppt.  At a consumption rate of 6.5 g fish for 70 years the cancer risk is about
10-4, a not very conservative risk factor.  I believe the World Health organization recently established a
daily human dose limit of 1-4 pg TEQ/Kg/day.  For a 70 Kg person consuming 6.5 g fish/day, this would
amount to TEqC = 10 - 40 ppt in fish.  The questions asked of the peer reviewer under 5B are primarily
risk management issues (population subgroups; target species differences; definition of significant
undesirable effects) and thus are not within the expertise of this reviewer.

The comparison of human health risks and ecological risks is complicated by differences in definitions of
risks (individual versus population) and differences in end points (cancer versus early life stage survival). 
Both the human and ecological risk criteria in this case involve exposure concentrations which are not
intended to be exceeded.  Implicitly, if one is exceeded and the other is not, the exceeded criterion should
determine the classification.  If not, there is no need for the ecological risk criterion.      

The only definition of an ecological risk criterion is reference to Cook et al. 1993 for low risk to fish at 50
ppt.  Based on data reported since 1993, early life stage survival of the most sensitive species would
require TEqC in eggs/embryos to be less than 10 ppt.  This is based on finding a more sensitive species
than lake trout and recognition that developmental effects and growth reduction at sub-lethal exposure
concentrations likely compromise survival in the environment.  On the other hand, it is unlikely that fish
species inhabiting disposal sites are the most sensitive species.  The potentially greater sensitivity of some
birds and mammals to TCDD does not infer greater risks due to the decreased potential for site-specific
exposures of free ranging species.

Agency Response to Reviewers’ Comments:
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COMMENT 5-1: The majority of the reviewers felt that the Regional Dioxin Values are not appropriate
for determining suitability for use of dredged material as Remediation Material.  In general, the reviewers
felt that the values were based on limited data and were likely to be overly conservative.  One reviewer
also noted that policy decisions should not be based on analytical detection limits.  One reviewer had
reservations for the perpetuation of an unnecessary and potentially inaccurate basis for bioaccumulation
assessment of dredge “spoils.” This same reviewer also commented that the use of the 28-day benthic
invertebrate bioaccumulation test, especially for assessing human health risks, seems to be “a clumsy and
scientifically indefensible approach” and a risk assessment should be used.

RESPONSE 5-1: EPA Region 2 acknowledges that the Regional Dioxin Values are conservative, but
disagrees that they are not appropriate for determining suitability for use of dredged material as
Remediation Material at the HARS. The Regional Dioxin Values are appropriately conservative to be
protective of human health and the environment and to meet the remedial goals of the HARS.  Further,
the detection-limit strategy employed to derive Regional Dioxin Values for 2,3,7,8-TCDD and total
equivalent dioxin toxicity using toxic equivalency actors (TEF’s) for the 16 other 2,3,7,8-substituted
dioxin/furan compounds will ensure that their use will serve to improve conditions at the HARS.  

In recognition of revisions to the Toxic Equivalency Factors (TEFs) recently published by the World
Health Organization (WHO, 1998), and in response to a peer review comment to consider the contribution
of co-planar PCBs to dioxin-like toxicity; (see response to comment 5-5), EPA Region 2 proposes to
consider the contribution of three co-planar PCB congeners (i.e., PCB congeners 77, 126, and 169) that
show dioxin-like toxicological activity.  EPA Region 2 proposes to recalculate the Regional Dioxin Value
for evaluation of total toxicity equivalence of all non-2,3,7,8-TCDD dioxin and furan congeners to include
the three coplanar compounds identified by the WHO (1998), using the half detection limit procedure and
the TEFs listed by WHO (1998).

The need to remediate the HARS is amply supported by the presence of toxic effects (a Category III
sediment characteristic), dioxin bioaccumulation exceeding Category I levels in worm tissue (a Category
II sediment characteristic), ER-L/ER-M exceedances in some Study Area sediments, and PCB/TCDD
contamination in area lobster stocks.  A value greater than 1 pptr of 2,3,7,8-TCDD, used to classify
dredged material as Category II on the basis of dioxin contamination, does reflect the best available
detection limit achievable at the time that criterion was developed (EPA, 1997).  However, the potency of
dioxin and the remedial goals of the HARS warrant use of the 1 pptr detection limit (or the TEQ approach 
for the non 2,3,7,8-TCDD congeners) as the Regional Dioxin Values.  Twenty-eight day bioaccumulation
test results that equal or exceed the Regional Dioxin Values (worm and/or clam) indicate that the dredged
material is not suitable as Remediation Material. 

EPA is progressing toward completion of its dioxin reassessment report (Exposure and Human Health
Reassessment of 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD] and Related Compounds), which
evaluates dioxin across all programs and media.  The “Integrated Summary and Risk Characterization”
document, which includes a new draft chapter that addresses toxicity equivalent factors (TEFs) for
dioxin-like compounds, will be the subject of an external peer review.  A revised draft of the two
documents and the revised Dose-Response Modeling chapter are then scheduled to be sent to the Science
Advisory Board (SAB) for peer review.  The SAB is expected to meet in Fall 2000 with the expectation
that the report will be completed by the end of 2000. While the science of the reassessment is undergoing
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peer review, and until the evaluation is complete, EPA Region 2 is proposing to continue to use the 1 pptr
value for 2,3,7,8-TCDD and  the revised total equivalent toxicity as the Category I Regional Dioxin
Values.  Total toxicity equivalence will be calculated using total equivalent factors (TEFs) for the 16 other
2,3,7,8-substituted dioxin/furan compounds (congeners) and three dioxin-like co-planar PCB congeners. 
Upon completion of the EPA reassessment,  EPA Region 2 will decide what, if any, changes are
necessary to the Regional Dioxin Values.

Responses to the recommendation to use risk assessment, particularly with regard to human health are
found in the responses to comments 1-2 and 15.

COMMENT 5-2:  One reviewer commented on the need to statistically determine the uncertainty and
variability associated with the point estimate benchmarks in order to evaluate whether exceedance
indicate the potential for significant effects.  One reviewer suggested that methods characterizing
uncertainty (e.g., Monte Carlo, interval analysis, fuzzy arithmetic, etc.) should be considered.  
 
RESPONSE 5-2: EPA Region 2 agrees with the need to quantify and account for uncertainty in the
proposed revisions to the Framework (see response to comment 1-3).

COMMENT 5-3: There was a general consensus among the reviewers that although the dioxin values
may be appropriate for evaluating bioaccumulation, risk-based methods are necessary to appropriately
address actual human or ecological health effects.  The reviewers felt that the approach should consider
site-specific aspects of the HARS and should account for potential differences in human subpopulations,
such as variability in routes of exposure, dietary intakes, and fishing behavior.

RESPONSE 5-3: EPA Region 2's response to this comment are contained in the responses to comments
1-2 and 15-1. 

COMMENT 5-4: One reviewer felt that bioaccumulation tests should not be used at all for dioxins,
stating that bioaccumulation potential would be better determined based on organic carbon normalized
concentrations in sediment and standard condition assumptions for the magnitude of food chain transfer.

RESPONSE 5-4: EPA Region 2 disagrees as discussed in response to comment 1-4, such an approach
would not be consistent with EPA’s Ocean Dumping Regulations (40 CFR Part 227) (see response to
comment 1-4). 

COMMENT 5-5:  One reviewer questioned the approach used for the Toxicity Equivalence Quotient
(TEQ) analysis, suggesting that the approach used by the Great Lakes Water Quality Initiative/Guidance
Technical Support Document for the Procedure to Determine Bioaccumulation Factors would be more
appropriate.  The rationale for using a different toxicity equivalence concentration (TEqC of 4.5 pptr),
rather than the value of 1 pptr derived for TCDD, was also questioned, as was the lack of a TEqC for
fish tissue.  One peer reviewer indicated a concern for the contribution of co-planar PCB congeners to
dioxin toxicity.  This same reviewer also indicated that an additional complication is that a TEQ analysis
that ignores the contributions of PCBs assumes that a significant underestimation of risk is acceptable. 
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RESPONSE 5-5: EPA Region 2 acknowledges the suggested alternate approach.  However, as
discussed in the Introduction and response to comment 5-1, the potency of dioxin and the remedial goals
of the HARS warrant use of the 1 pptr detection limit (or  the TEQ approach described in EPA (1997) for
the non 2,3,7,8-TCDD congeners) as the Regional Dioxin Values.  Twenty-eight day bioaccumulation test
results that equal or exceed the Regional Dioxin Values (worm and/or clam) would indicate that dredged
material could not be used as Remediation Material.    Furthermore, in response to the peer reviewers’
recommendation to consider the contribution of co-planar PCBs to dioxin toxicity, EPA Region 2 proposes
to add three co-planar PCBs to the list of analytes specified for bioaccumulation testing analysis: PCB
Congeners 77, 126, and 169.  As noted above (see response to comment 5-1), EPA Region 2 proposes to
recalculate the Regional Dioxin Value for evaluation of total toxicity equivalence of all non-2,3,7,8-TCDD
dioxin and furan congeners to include the three coplanar compounds identified by the WHO (1998), using
the half detection limit procedure and the TEFs listed by WHO (1998).

COMMENT 5-6:  Regarding the comparison of human health and ecological criteria, one reviewer
commented that there should be no need to compare the two because comparison to the more
conservative value should determine the classification of the sediment.  Otherwise, the assessment should
be driven by human health concerns.  The reviewer commented that ecological risk criteria for TCDD
could range from 10 to 50 pptr based on the available data.

RESPONSE 5-6:  EPA Region 2 recognizes that the more conservative (lower) of the human health and
ecological values for any given contaminant could be used to determine the suitability of the dredged
material for use as Remediation Material.  However, EPA disagrees with the assertion that there is no
need to compare dredged material test results to both proposed human health and ecological HARS-
Specific Values. HARS-Specific Values to be proposed for evaluating the potential for human health and
ecological effects differ for individual contaminants and one may not be consistently higher or lower than
the other.  As such, it is important to calculate and consider both human health and ecological risk in the
proposed HARS Framework.  

EPA Region 2 disagrees that the ecological risk criterion for TCDD could range from 10 to 50 pptr based
upon available data.  As stated in EPA (1997): 

“The US Food and Drug Administration (FDA) levels of 25 and 50 pptr for fish consumption, which
were recommended in an FDA regional office letter to a state program (FDA, 1981), are not
recognized by the FDA as “action levels.”  They do not have the regulatory standing of the FDA
action levels.  Although EPA, FDA and US Centers for Disease Control (CDC) use the same
mathematical cancer risk model and response data for female rats as reported in a 1978 study by
Kociba, et al., EPA (1987) considered 2,3,7,8-TCDD as being 4 times more potent than did the CDC
and 9 times more potent than did the FDA (EPA, 1987).  The reason for this difference is that EPA
(1987) used several more conservative assumptions than FDA in their risk assessment.  These
include the use of body surface area (as opposed to body weight) in extrapolating the animal dose to
humans, and a correction for high early mortality in the animal data, which was not used by FDA. 
Therefore, EPA does not consider the FDA numbers appropriate for use in these assessments.”

EPA Region 2 believes that based on this assessment, the current Regional Dioxin Values are
appropriate. 
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COMMENT 5-7: One reviewer noted that the dioxin toxicity equivalency factors (TEF) currently are
based on mammalian studies and suggested that fish data would be more appropriate.

RESPONSE 5-7:  EPA Region 2 acknowledges the recommendation of the reviewer.  However, the
dioxin TEFs referred to are used to assess potential cancer risks to humans.  Therefore, a mammalian
model is appropriate. 

COMMENT 5-8:  In their response to charge 10, several peer reviewers indicated that the worm does
not attain steady-state tissue dioxin concentrations after 28 days of exposure.

RESPONSE 5-8:  EPA acknowledges that the results of long term exposures reported by Pruell et al.
(1993) suggests that Nereis virens does not accumulate dioxins/furans to steady state in 28 days.  As
described in the response to comment 5-1, EPA Region 2 considers the Regional Dioxin Value of 1 pptr
(2,3,7,8-TCDD) to represent a conservative benchmark value for determining the potential for toxic
effects, reflecting the best available detection limit at the time the process was developed.  The Regional
Dioxin Value for the total toxicity equivalence (TEQ) of non-2,3,7,8-TCDD dioxins/furans is similarly
based on detection limits, rather than risk.  The EPA policy memorandum “Summary of Dioxin Risk
Evaluation Approach” (EPA, 1997a) describes the basis for establishing the Regional Dioxin Value.  EPA
Region 2 used a steady state factor of 4 to derive the dioxin value of 10 pptr in N. virens for suitability for
ocean disposal.  The memo subsequently established, as a matter of policy, that 1 pptr would be used as a
threshold for identifying Category I dredged material.  Since the decision values have been conservatively
developed assuming the time needed to attain steady state, 28-day test concentrations may be compared
without adjustment.  Therefore, EPA Region 2 does not propose to apply a steady-state correction factor
to 28 day-dioxin/furan bioaccumulation results in Nereis virens when evaluating the suitability of dredged
materials proposed for use at the HARS as Remediation Material.
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Charge Group: FDA Action Levels

Charge No. 6A: Are FDA Action Levels useful as upper limit human health benchmarks?

Charge No. 6B: Would the evaluation be improved by omitting comparison of tissue results to
FDA Action Levels?

 

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 6A Comment (1 para):
The FDA Action Levels are much greater than all other comparison data in Table 1, columns 14-20 of the
Framework.  As a practical matter, they would be likely to have little or no impact on the decision process
and are therefore of little use as an upper benchmark.

Gentile Charge No. 6A Comment (1 para):
The FDA Action Levels are of limited value since there derivation is complicated by the addition of
factors such as economics and thus are not directly related to a health effect endpoint.  That is, they are
not effects specific, that is, coupled to teratogenic effects, mutagenic effects, reproductive effects, etc. 
Thus these values are not a one-to-one equivalent of effects and as such are at best a poor upper bound
estimate with not estimate of uncertainty.   I recall calculating the incremental risk for PCBs, and Dioxins
at the FDA levels and if my memory serves me they were in the 10-2 to 100 range which is well above the
10-4 benchmark. Thus you could be in compliance with the FDA Action Level and still result in an
unacceptable incremental risk for cancer or some other endpoint. To me they give a false sense of
security There are other benchmarks out there for evaluating the human health effects of contaminant
residues that have been developed by WHO and other countries that might be more useful.  Another final
reason for not including them is that they are often misinterpreted as being protective of the environment.

Berry/Lake/Pruell Charge No. 6A Comment (1 para):
To the extent that FDA action levels are derived based on human health considerations they would seem
to be useful.  To the extent that they were driven by considerations of analytical capability and
background concentration, or economic considerations, they probably are not useful because analytical
techniques have improved, and background concentrations have decreased on at least some of these
compounds.

Solomon/Sibley Charge No. 6A Comment (1 para):
As discussed above, FDA action levels for the protection of human health are based on protection of the
individual and embody a number of conservative assumptions.  They are judged entirely appropriate for
the protection of human health.  Although the FDA does not consider environmental effects (and some
substances may be more toxic to invertebrates and fish than to mammals) the conservative assumptions
used in the setting of FDA action levels will likely be protective of fish and shellfish and the function of
their populations in the environment.
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Newman Charge No. 6A Comment (1 para):
Yes.  The FDA Action Levels are useful.

Lee Charge No. 6A Comment (1 para):
The FDA action limits are useful as UPPER limits.  They have some regulatory authority and so can be
defended as a reason to deny (not pass) a dredge material.  The only reason to omit them is if their
inclusion causes confusion with applicants or the public that levels below the FDA limits are considered
"safe". 

Dillon Charge No. 6A Comment (1 para):
See peer reviewer's comment at end of questions regarding human health evaluations.

Swartz Charge No. 6B Comment (1 para):
Comparison to the FDA Action Levels is included as part of  the Green Book evaluation process and
appears to be required by the Dredged Material regulations.  Thus, the comparison may be needed as a
matter of policy.  Although, the FDA Action Levels seem irrelevant to bioaccumulation assessment, they
might be used inappropriately to claim that a proposed dredge material is acceptable from a
bioaccumulation perspective because it results in tissue concentrations that are only a tiny fraction of the
FDA Action Level.  Omission of the FDA Action Levels would prevent their misuse in this context.

Gentile Charge No. 6B Comment (1 para):
[refer to Gentile Charge No. 6A Comment.]

Berry/Lake/Pruell Charge No. 6B Comment (1 para):
We do not think that FDA limits are so low that they might cause a sediment which probably poses no risk
to fail, so if used in a screening mode, we do not see why omitting them would improve the assessment. 
It might be argued that they give a false sense of security because they are too high.  On the other hand,
some might be concerned if the “FDA” limits are no longer used, because they are associated with food. 
This is probably more a political issue than a scientific one.  If there are more recent values in use or
being considered by EPA for some of these compounds, the FDA values should not be used to exclude
these values.

Solomon/Sibley Charge No. 6B Comment (1 para):
In the opinion of this reviewer, the assessment would not be improved by omission of the tissue
concentrations to FDA action levels.

Newman Charge No. 6B Comment (1 para):
No.
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Dillon Charge No. 6B Comment (1 para):
See peer reviewer's comment at end of questions regarding human health evaluations.

Agency Response to Reviewers’ Comments:

COMMENT 6-1: Three of the reviewers believed that the FDA Action Levels are useful as an upper
level of acceptability for tissue concentrations because they are conservative and have a regulatory basis. 
In addition, the inclusion of these values as part of the Green Book evaluation process was noted by one
reviewer.

RESPONSE 6-1: EPA Region 2 acknowledges the reviewers support for continued use of FDA Action
Levels as described in the Green Book.  EPA Region 2 also, however, notes that the FDA Action Levels
are suggested for use in the Green Book but are not required by the ocean dumping regulations.  FDA
Action Levels and FDA tolerance levels exist for seven of the analytes designated for routine HARS
testing evaluations.  Action and tolerance levels represent limits at or above which FDA will take legal
action to remove products from the market.  The action levels are established and revised according to
criteria specified in Title 21, Code of Federal Regulations, Parts 109 and 509 and are revoked when a
regulation establishing a tolerance for the same substance and use becomes effective.  Tolerance levels
are regulatory standards that are specifically promulgated in Federal Regulations.  A tolerance level has
been established only for PCBs by regulation specified in 21 CFR 109.30.  The FDA levels are established
based on protection of the general public where an individual will consume fish purchased from a local
market whose stock may include fish from around the world.  The levels are based upon national average
fish consumption rates.  FDA levels would serve as appropriate upper limits of acceptability.

In contrast, HARS-Specific Values will be derived using appropriate site-specific subpopulations
considerations and exposure assumptions specifically related to local conditions and are based on the
protection of recreational anglers who fish at the HARS.  As such, HARS-Specific Values would be more
pertinent for evaluating risk at the HARS and would be derived specifically to be protective of recreational
anglers who fish the HARS.  However, comparison to FDA levels will remain in the evaluative
Framework.

COMMENT 6-2:  Two of the reviewers felt that the FDA Action Levels were of limited value because
they are typically not effects-based and are frequently misinterpreted as being protective of the
environment.  In addition, one reviewer noted that the values are very high, sometimes above levels
associated with potential risks and, therefore, could lead to a “false sense of security”.
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RESPONSE 6-2:  As discussed and recommended in the Green Book, FDA Action Levels for Poisonous
or Deleterious Substances in Fish and Shellfish for Human Food are the limits above which the FDA can
take legal action to remove products from the market.  These levels do not include the potential for
environmental impact on contaminated organisms or on their nonhuman predators.  Because contamination
of seafood in excess of FDA Action Levels is considered a threat to human health, contaminants that
bioaccumulate in worms and clams to levels exceeding FDA Action Levels are considered to exceed the
Limiting Permissible Concentration (LPC) and therefore unacceptable for placement in the ocean.  While
FDA Action Levels do not consider ecological impact, they serve as an upper limit for acceptability.  EPA
Region 2 will propose HARS-Specific Values to be used in determining  the suitability of dredged material
for use as HARS Remediation Material.  Although the HARS-Specific Values are projected to be below
FDA Action Levels, EPA Region 2 is proposing to retain the comparison to FDA Action Levels in the
HARS Framework.   

COMMENT 6-3:  One reviewer suggested that an alternative, risk-based approach be developed,
evaluating both ecological and human health risks independently.

RESPONSE 6-3: EPA agrees and is proposing to revise the Framework to utilize chemical-specific
HARS-Specific Values which are risk-based for both ecological and human health effects (see response to
comments 1 and 15). 
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Charge Group: Human Health Risk, Cancer and Noncancer

Charge No. 7A: Are the risk values suitable for determining the suitability for placement at the
HARS as Remediation Material?  If there are better alternatives for human
risk, specifically what are they?

Charge No. 7B: Benthic tissue levels for cancer protection were derived using assumptions 
focused on attaining a cancer protection at the 10-4 risk level.  Is this risk
appropriate for a determination of ocean placement of Remediation Material? 
(Please see Region2/CENAN joint evaluation memorandum, Appendix for Table 1,
Page A-4, A-5)

 Charge No. 7C:Benthic tissue levels for noncancer protection were derived using Reference
Dose (RfD) of several organic and inorganic contaminants for the protection of
human health.  Are these values appropriately and consistently derived?  Is the
whole body/fillet conversion factor of 1.35 an appropriate factor for all of the
contaminants considered if human exposure is assumed to be primarily via
consumption of the fillet portion of the fish?  (Please see Region2/CENAN joint
evaluation memorandum, Appendix for Table 1, Attachments B and C)  If not,
what factors would be appropriate?  For the lead noncancer value, since there is
no RFD for lead the value was derived differently than the other metals.  Was
the value derived appropriately? (Please see Reference No. 88)

Charge No. 7D: Are the risk values suitable for predicting the significant undesirable effects
due to bioaccumulation?  Since the primary route of exposure is through
consumption of fish and shellfish, should the variability in potential exposure
due to differences in fishing behavior (e.g., target species, seasonal
preferences) be incorporated in the risk paradigm?

Summary of Peer Review Comments

Individual Comments

Clifford Charge No. 7A Comment (1  para):
As stated above, I believe that there may be other receptors that are more ecologically relevant like upper
trophic-level fish (e.g., tuna, jack, etc.) or piscivorous birds (e.g., pelican, osprey, gull, etc.) that would be
far more exposed than humans, perhaps far more susceptible to impacts (e.g., pelican egg shell thinning
with exposure to DDT), and potentially more relevant.  I say this, however, not knowing the area well
enough to know which of these receptors might be present, if any.

Gentile Charge No. 7A Comment (1 para):
Human health risks are not my area of expertise so I can only offer general suggestions to this question. 
The approach and methods employed are those that are currently accepted by the regulatory and scientific
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communities with the exception that there are advocates for using distributions rather than point estimates
and conducting Monte Carlo Simulations resulting in a distribution of risk probabilities.  The controversy
with this approach centers on being able to define the appropriate distribution parameters, nevertheless it is
something that you need to consider as part of this analysis.  As the CENAN joint evaluation memo (pages
A-4 and A-5) states, this approach must be considered a conservative upper bound estimate.  What
bothers me about this approach from a risk perspective is that it is has little or no basis in reality for a host
of reasons.  For example, how does one address the issue of calculating the proportion of contaminant
coming from fisheries in the HARS vs. the total catch into which the HARS sub-population will be diluted
and the subsequent probability of any person in the NY/NJ region of consuming enough fish to even
remotely approach the upper bound.  One could make those types of estimates and create a response
surface that might be very informative.

Solomon/Sibley Charge No. 7A Comment (1 para):
As discussed above, the FDA human food consumption guideline values are conservative assumptions
used for the protection of individual humans.  They do not consider the likelihood of consumption of
contaminated seafood and do not usually incorporate seasonal, catch site, and target species variability.  If
these factors are considered, exposures would normally be reduced, thus further adding conservatism to
the risk assessment.  Probabilistic approaches to assess the likelihood of consumption would be more
appropriate.

Newman Charge No. 7A Comment (1 para):
The process seems reasonable.

Dillon Charge No. 7A Comment (1 para):
For possible alternatives, see peer reviewer's comment at end of questions regarding human health
evaluations.

Clifford Charge No. 7B Comment (1  para):
Assuming acceptance of humans as a terminal receptor, yes.

Gentile Charge No. 7B Comment (1 para):
Based upon the rationale presented in the Appendix for Table 1, Pages A-4, A-5, I would agree that if one
accepts all the assumptions and wishes to take a very conservative approach to avoid dealing with
uncertainties then this is appropriate.  It might be useful to provide a estimate of the probability of
exceeding the cancer protection benchmark by preparing a  matrix of tissue concentrations and daily
intakes and their incremental risks.  Then compare those values to the range of tissue concentrations from
contaminated sites just to see if it plausible to experience a set of conditions that would lead to exceeding
the upper bound.

Solomon/Sibley Charge No. 7B Comment (1 para):
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The use of the multistage linear model for extrapolation of risks from laboratory animal studies to humans
is very conservative.  For one, it does not consider the presence of threshold of toxicity (carcinogenicity). 
Biologically, all effects likely have thresholds, it is just that these thresholds cannot easily be demonstrated
experimentally.  Repair mechanisms for many of the cancer-causing mutational events exist and function
to repair damage from natural mutational events.  These natural mutational events are usually far more
numerous than those caused by low exposures to synthetic chemicals.  Not all species of fish or shellfish
would necessarily be consumed by humans, thus adding further conservatism to the assessment.  The use
of a 10-4 cancer risk estimate is therefore judged to be appropriately conservative for the purposes of
ocean placement.

Newman Charge No. 7B Comment (1 para):
The obvious range of candidate risk levels is 10-4 to 10-6.  I would tend to agree with the 10-4 used here. 
However, I am biased towards doing these calculations for subpopulations (e.g., groups prone to consume
more fish/shellfish from the area), not the general population.

Dillon Charge No. 7B Comment (1 para):
Setting levels of protection for cancer risk is a matter of policy.  For example, EPA's policy in the
Superfund program is to use the risk range of 10-4 to 10-6 as a "point of departure".  Generally speaking,
risks within the range require a site-specific baseline risk assessment, risks less than the range require little
to no further evaluation while risks above the range require immediate attention (i.e., removal/remediation). 
On the other hand, the State of Florida has promulgated its risk policy as a single deterministic point of
compliance; 10-6.

Bartell Charge No. 7C Comment (4 para)
The determination of the Rfd’s for noncancer health effects was described briefly in the Appendix for
Table 1and summarized in Attachment C.  The Rfd values appear to have been consistently derived; the
appropriateness of these values is contingent on the usual set of pessimistic assumptions attendant to the
standard USEPA human health risk assessment process.  More appropriate (i.e., realistic) values might
derive from a probabilistic estimation of these Rfd’s, wherein distributions or at least ranges of parameter
values were included.  The Rfd could then be selected, for example, as the 95th percentile of an estimated
distribution (e.g., Monte Carlo methods) or an upper bound (e.g., interval analysis).

The whole body/fillet conversion factor of 1.35 appears to have been selected as a mid-point value of the
range of 1.2 - 1.5 reported for lipophilic substances in other New York-related studies.  To the extent that
this value was used for non-lipophilic compounds, bias may have been introduced to estimates of those
Rfd’s.  

An benthic tissue Rfd has been derived for lead as 1.25 ppm (rounded to 1.3) in relation to the East River
Project (Reference 88).  It was assumed that this approach was applicable for the HARS assessment and
the value of 1.3 is listed for lead in Table 1.  The Rfd appears conservatively estimated given assumptions
(outlined specifically in Reference 89) concerning patterns of consumption, fish behavior, and trophic
transfer efficiency.  This analysis also included an additional  dietary component of lead; in a sense, the
fish consumption pathway was double-counted.
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The derivation of the lead Rfd might have proceeded more realistically by defining the parameters as
distributions (or at least ranges) and incorporating these uncertainties into the calculations. This refers to
not only the fish consumption calculation, but also to the estimates of lead exposure from drinking, water,
air, dust, soils, paint, and diet.

Clifford Charge No. 7C Comment (3  para):
(7C-1) Response: Assuming acceptance of humans as a terminal receptor, they appear to be.

(7C-2) Response: Within the limits of my expertise in human health risk assessment, yes.

(7C-3) Response: Within the limits of my expertise in human health risk assessment, yes, albeit very
conservative.

Gentile Charge No. 7C Comment (1 para):
This is not my area of expertise.

Wentsel Charge No. 7C Comment (1 para):
Are not my area of expertise.

Solomon/Sibley Charge No. 7C Comment (2 para):
The methods used to determine benthic tissue levels for the protection of human health were judged to be
appropriate and consistently derived.  The whole-body fillet conversion factor of 1.35 is judged to be
slightly conservative (based on this reviewers experience with organochlorine concentrations in fish
tissues).  Fat is consumed to produce energy in fish muscle (fillet) and lipid concentrations (and associated
lipid-soluble materials) are usually significantly lower than in other tissues (in our studies muscle had less
than 1% fat while the carcase had between 3.7 and 5.6% fat).  These conversion factors and the Gobas
trophic transfer model are judged appropriate for determining possible fish exposure concentrations.

The RFD for lead was derived from exposure concentrations appropriate for the protection of children, the
most sensitive human life stage for this element.  The RFD considered exposure via other routes and is
judged to be appropriate.

Newman Charge No. 7C Comment (1 para):
Subanswer One: Are these values appropriately and consistently derived?  I see no general problem.

Subanswer Two:  Is the whole body/fillet conversion factor of 1.35 an appropriate factor for all of the
contaminants considered if human exposure is assumed to be primarily via consumption of the fillet portion
of the fish?  (Please see Region2/CENAN joint evaluation memorandum, Appendix for Table 1,
Attachments B and C)  If not, what factors would be appropriate? This seems appropriate.

Subanswer Three: For the lead noncancer value, since there is no RFD for lead the value was derived
differently than the other metals.  Was the value derived appropriately? (Please see Reference No. 88).
The use of data for blood lead levels in urban children seems conservative (and therefore appropriate). 



81

They often tend to be very close to background levels. The calculations used high drinking water (4 ppb)
and dust/soil/paint (800 ppm) lead levels, giving the entire process a conservative bias.  It is unlikely that
fish will be consumed by a child as specified in ref. 88.  Again this results have an appropriately
conservative bias.  The final calculated limit of 1.3 ppm in fish tissue sounds reasonable.

Dillon Charge No. 7C Comment (1 para):
Not peer reviewer's area of expertise.

Bartell Charge No. 7D Comment (1 para):
The hazard quotients for noncancer health impacts might be useful for screening-level calculations in
relation to the HARS study.  However, these measures are extremely limited in their ability to “predict
significant undesirable effects”.  While quotients less than 1 might suggest some minimal likelihood of
health impacts, values greater than 1 provide little information concerning the possible magnitude of impact
in the context of exposure(dose)-response relationships.  Is a quotient of 2 twice as significant as a quotient
of 1? Not necessarily. It depends on the underlying (and usually unknown) dose-response function.  The
quotient also carries little or no information concerning health impacts that were not specific endpoints
(e.g., mortality) in the limited number of toxicity assays that are routinely performed with a small number
of species.

Clifford Charge No. 7D Comment (1  para):
As stated above, I believe that there may be receptors other than humans that are far more ecologically
relevant.  As such, I cannot answer the question as such and recommend consideration of a different
receptor with due concern given to it's seasonal variability.

Gentile Charge No. 7D Comment (1 para):
The answer to this question is ‘yes’ if a conservative upper bound is the management goal and comfort
level and ‘no’ if one wishes to insert a truly risk-based sense of reality to the problem.  I  touched on this in
my comments above under 7A.    If the goal is to develop a truly risk-based estimate of human risk the
crucial information is that relative to exposure that is, what is the probability and proportion of
contaminated fish or shellfish  coming from the HARS site that ends up in the diet of one or more sub-
populations with a range of dietary intakes.  Target species and seasonal preferences are but some of the
variables that need to be included.

Wentsel Charge No. 7D Comment (1 para):
Are not my area of expertise.

Solomon/Sibley Charge No. 7D Comment (1 para):
As discussed above, human food consumption guideline values are conservative assumptions used for the
protection of individual humans.  They do not consider the likelihood of consumption of contaminated
seafood and do not usually incorporate seasonal, catch site, and target species variability.  If these factors
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are considered, exposures would normally be reduced, thus further adding conservatism to the risk
assessment.  Probabilistic approaches to assess the likelihood of consumption would be more appropriate.

Newman Charge No. 7D Comment (1 para):
This is a good point.  As suggested elsewhere (Answers to Questions 7, 11 and 26), it would be helpful to
examine  subpopulations at higher tiers of the assessment process.  Are there appropriate data available
from surveys of fishing and fish consumption practices for the area?

Dillon Charge No. 7D Comment (1 para):
Suggestions in peer reviewer's comment at end of questions would provide for a way to account for
variability in site-specific differences in fishing behavior, ingestion rates, ingested seafood items, target
human populations, etc.

Agency Response to Reviewers’ Comments:

COMMENT 7-1:  It was the opinion of one reviewer that upper trophic level organisms (e.g., pelican,
osprey, gull, etc.) may be more ecologically-relevant receptors for assessing risk than humans.  The
reviewer suggested that these species may actually have higher exposures to the contaminants evaluated
than humans.  This reviewer recommends including such receptors in the TEM analysis.

RESPONSE 7-1:  EPA Region 2 recognizes the importance of evaluating potential risks to sensitive, site-
specific ecological receptors. Upper trophic level wildlife are the target receptors for the ecological
HARS-Specific values proposed in response to comment 8.  However, it is required by the ocean dumping
regulations that bioaccumulation be evaluated for human health as well as ecological effects.  Therefore, in
addition to upper trophic level ecological receptors, EPA Region 2 proposes to developed HARS-Specific-
Values for protecting against cancer and non-cancer effects in a highly-exposed human subpopulation (i.e.
recreational fishermen).  

EPA Region 2 will propose ecological and human health-based HARS-specific values that are
appropriately conservative to ensure that releases to the environment do not cause or contribute to
significant undesirable effects (see response to comment 2-3).  See response to comment 1-2 regarding
use of risk assessment.

COMMENT 7-2:  Two reviewers suggested that probabilistic techniques should be incorporated to
assess exposures to human health. One reviewer commented that the current approach is conservative and
does not take into account the associated uncertainties.  This reviewer suggested that it would be useful to
evaluate the probability of exceeding the cancer protection benchmark based on the range of tissue
concentrations at contaminated sites.

RESPONSE 7-2:  EPA Region 2 agrees that incorporating probabilistic methods into development of  the
HARS-Specific Values would help to address some of the areas of uncertainty and variability associated
with the current evaluation. However, probabilistic risk analysis is very data intensive and its quality is a
function of how well the probability distribution function(s) used to describe key exposure parameters
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reflect the true underlying probability distributions for those parameters.  The shapes of these distributions
are unknown for most parameters, and therefore EPA Region 2 elected to generate and propose
appropriately conservative point estimates for key parameters.  See response to comment 1-2 regarding
use of probabilistic risk assessment. 

In addition, EPA Region 2 will carefully consider and document uncertainties associated with development
of the HARS-Specific Values and the proposed revisions to the HARS Framework.  Appendix F discusses
areas of uncertainty associated with development of HARS-Specific Values.

COMMENT 7-3:  Two of the reviewers suggested that site-specific information be incorporated to
account for uncertainties in exposure associated with issues such as: (1) the likelihood of consumption of
contaminated seafood; (2) seasonal, catch site, and target species variability; and (3) the percentage of
total fish consumed by sensitive populations in the New York region that are actually contaminated through
exposure to the HARS.  

RESPONSE 7-3:  EPA Region 2 agrees that available regional information regarding fish consumption
behavior, sensitive subpopulation, and fisheries variability needs to be used in the quantitative analysis of
risk.  EPA Region 2 reviewed available information on fish consumption in New Jersey and seasonal
landings of finfish in the New York Bight to better reflect site-specific conditions in assessing risk.  Based
on this review, EPA Region 2 proposes to revise the seafood consumption rate to reflect consumption by a
maximally-exposed subpopulation and to incorporate a revised estimate of the time that finfish may be in
the vicinity of the HARS.  Details regarding derivation of the revised fish consumption rate and site use
factor are provided in the responses to comments 14-1 and 15-1, respectively.

COMMENT 7-4:  One reviewer commented that the human health evaluation and ecological risk
evaluation should be clearly segregated.  To evaluate risk to human health, this reviewer recommended a
‘regionalized’ modification of EPA’s Risk Assessment Guidance for Superfund (RAGS; EPA, 1989) using
region/site-specific data. 

RESPONSE 7-4: As noted above (see response to comment 7-1 and 7-3), EPA Region 2 agrees that the
potential risks to ecological and human receptors should be evaluated separately and are best assessed
using site-specific information. The current and proposed evaluation processes for evaluating the suitability
of material for use as Remediation Material at the HARS consider risks to ecological and human health
receptors separately.  The current and proposed processes for evaluating human health risk in the HARS
Framework adhere to the basic four step  methodology (Hazard Identification, Exposure Assessment,
Toxicity Assessment and Risk Characterization) detailed in EPA’s Risk Assessment Guidance for
Superfund (RAGS).  Consistent with RAGS, site-specific exposure parameters are used where available,
and uses information from EPA’s Exposure Factors Handbook (EPA, 1997) to assign values to human
exposure parameters for which site-specific data is unavailable.  

COMMENT 7-5: One reviewer noted that the State of Florida has promulgated a single deterministic
point of compliance at 10-6 , but noted that EPA’s policy in the Superfund program is to use a range from
10-4 to 10-6.  In general, however, the reviewers felt that applying a 10-4 acceptable cancer risk level was
appropriate given the level of conservatism inherent in the HARS risk evaluation process.
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RESPONSE 7-5:  EPA Region 2 agrees that use of 10-4  is appropriately conservative for assessing
cancer risk associated with bioaccumulated contaminants at the HARS.  While a standard acceptable risk
level has not been established by EPA , the National Oil and Hazardous Substances Pollution Contingency
Plan, used to guide implementation for Superfund remediation, designates an acceptable risk range of 10-4

to 10-6.  In establishing this risk range, EPA rejected the argument that a risk range, rather than a single
risk criterion, does not adequately protect health and the environment (55 CFR 8716-17, March 8, 1990). 
EPA noted that ACERCLA does not require the complete elimination of risk,@ rather, remedies comply with
CERCLA Awhen the amount of exposure is reduced so that the risk posed by contaminants is very small,
i.e. at an acceptable level. EPA=s risk range of 10-4 - 10-6 represents EPA=s opinion on what are generally
acceptable levels@. 

Furthermore, as noted by several reviewers, the conservative assumptions assigned to the various exposure
parameters in the current and proposed HARS risk assessment processes result in conservative estimates
of potential exposure (and therefore, risk).  As such, the 10-4 risk level is regarded as an appropriate and
conservative level for protecting human health.  Therefore, EPA Region 2 proposes to continue using 10-4

as the endpoint for acceptable cancer risk in the proposed HARS Framework.

COMMENT 7-6:  One reviewer suggested that, due to the standard uncertainties associated with the
derivation of the RfD values, more appropriate estimates might be derived from a probabilistic estimation
of these data.  In addition, the reviewer noted that probabilistic methods might have been useful for the
derivation of the lead RfD.  Another reviewer noted that the HARS-specific value of 1.3 for lead appears
conservative, and may reflect a double-counting of dietary intake of lead from fish consumption.

RESPONSE 7-6: Reference dose (RfD) and cancer potency factors values used in the current and
proposed evaluation frameworks were obtained from EPA’s Integrated Risk Information System (IRIS)
database with the exception of lead.  Toxicity criteria (i.e. RfDs and Cancer Slope Factors) listed in the
IRIS database reflects the most recent research information and Agency consensus on the appropriate
values for these criteria.  The RfD is intended to represent an exposure level, with an adequate margin of
safety, that is without appreciable risk of deleterious effects over a lifetime.  EPA Region 2 acknowledges
that there are inherent uncertainties associated with the derivation of the RfD values. EPA Region 2 also
acknowledges the ability of probabilistic techniques to address such uncertainties.  However, EPA
guidance on probabilistic risk assessment methods generally recommends developing probability distribution
functions for exposure parameters, rather than for toxicity criteria (i.e., Reference Doses, Slope Factors). 
Specifically, the policy statement in the Guiding Principals for Monte Carlo Analysis (EPA, 1997g) states:
“For human health risk assessments, the application of Monte Carlo and other probabilistic techniques has
been limited to exposure assessments in the majority of cases.”
   
Regarding the toxicity assessment for lead, it is acknowledged that there is a nominal “double counting” of
dietary lead from fish ingestion.  Specifically, the default daily lead intake from diet (5.5 ug/day) includes a
small contribution of lead from consumed fish. This small contribution of dietary lead is difficult to quantify
because fish consumption by the target population (i.e. New Jersey recreational fishers, see Response to
Comment 14-1) exceeds that of the general population.  Consumption of other meats (and therefore dietary
lead) by this higher (seafood) consuming group may be expected to be correspondingly lower.  Adjusting
the dietary lead intake of this group to account for potential differences in dietary lead would therefore
need to reflect this complexity.  EPA Region 2 judged the potential double-counting of dietary lead to not
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be of sufficient magnitude as to substantively alter the overall assessment of risks due to lead. Therefore,
EPA Region 2 does not propose any such correction. 

The RfD for lead was withdrawn from IRIS due to the lack of an established toxicity threshold for
neurological effects in children.  In the current and proposed evaluation processes, the toxicity assessment
for lead has been refined through use of a biomarker (i.e., blood lead concentration) that serves as both a
marker of lead exposure and effect. This biomarker modeling approach replaces the RfD for lead.  The
lead risk assessment incorporates the tenets of probabilistic methods in that the blood lead level of concern
(4.6 ug/dl) represents the geometric mean of the probability distribution of blood lead in children in which
95% of the distribution falls below 10 ug/dl,  the EPA Level of Concern for lead in blood (USEPA
1991a,b).  

COMMENT 7-7:  Two reviewers commented that the use of the whole body-fillet ratio of 1.35 may not
be appropriate for all the chemicals evaluated, particularly the non-lipophilic chemicals.  Another reviewer
felt that this value was slightly conservative for use with lipophilic compounds. 

RESPONSE 7-7:  EPA Region 2 believes that the value of 1.35 is an appropriate estimate of the whole-
body to fillet ratio for organic, lipophilic compounds.  This whole-body to fillet value is based on fish tissue
data collected from New York State and the Great Lakes for lipophilic chlorinated organic substances,
such as PCBs and DDT. 

Based on available information indicating that distributions of tributyltin (TBT) within various organs of
marine species also tend to be correlated with lipid content (Laughlin et al., 1986), EPA Region 2 proposes
to use the 1.35 whole body:fillet conversion factor in the risk evaluation of organotins.  

EPA Region 2 agrees with the reviewers’ caution that although the 1.35 whole-body to fillet value is
appropriate for lipophilic organic compounds,  it may not be appropriate for predicting fillet concentrations
of metals.  The metabolism and resultant distribution of individual metals in tissues of fish is metal-specific. 
Some metals preferentially accumulate in internal organs (e.g., liver, kidney) while others tend to partition
to the muscle or bones (Neff, 1997; Bevelhimer et al., 1997).  For those chemicals that bind preferentially
to bone (e.g., lead), the difference between the whole body concentration and the fillet concentration is
expected to be large because only a small portion of the total metal found in the body is present in the
muscle tissue of the fillet (Bevelhimer et al., 1997).  In contrast, for metals that bind to proteins (e.g.,
mercury), differences are likely to be smaller because the chemical binds in varying degrees to proteins
found in the fillet as well as in other soft tissues (e.g., internal organs) throughout the body (Bevelhimer et
al., 1997).  Therefore, it is not possible to use a single whole-body to fillet ratio to express the whole body
to fillet differences for all inorganic chemicals (Heit, 1979; Ray et al., 1984; Goldstein et al., 1996). 

Only limited information was identified in the literature regarding the whole-body to fillet ratios for
inorganic compounds. Bevelhimer et al. (1997) investigated the relationship between fillet and whole-body
contaminant concentrations in several finfish species and developed ratios for specific inorganic chemicals
(Table 7-1).  The uncertainty associated with these ratios varies according to the chemical evaluated. 
Clearly defined, statistically significant relationships between fillet and whole-body concentrations were
observed for arsenic, chromium, and mercury.  For other inorganic contaminants (i.e., Cd, Cu, Pb, Ni, and
Zn) the available data suggested that whole-body and fillet concentrations differed significantly, however
the ability to predict whole body concentrations from concentrations in the fillet was limited (Bevelhimer et
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al., 1997).  The lack of consistent relationships for these contaminants may be due to the sample size and
the species evaluated, or to the relatively limited range of chemical concentrations evaluated.  

Despite the limited predictive power for certain contaminants, the slopes of the lines relating the whole
body and fillet residues reported by Bevelhimer et al. (1997) were considered to represent the best
available estimates of the whole body to fillet ratio for these contaminants.   As such, they have been
added to the proposed HARS Framework for determining the suitability of dredged material proposed for
use at the HARS as Remediation Material.  

Table 7-1.  Whole-Body to Fillet Ratios

Chemical Ratio

Arsenic 1.4

Cadmium 5.9

Chromium 1.2

Copper 2.9

Lead 3.9

Mercury 0.7

Nickel 8.3

Silver 1a

Zinc 2.4
a In the absence of data for silver, the whole body concentration was 
assumed to be equivalent to the fillet concentration.

COMMENT 7-8:  The reviewers strongly emphasized the conservative nature of these assessments.
The reviewers noted that when values calculated from dredged material data exceed the risk-based
thresholds for cancer and non-cancer effects, one cannot definitively conclude that the material poses a
risk to human health because hazard quotients greater than one provide little information concerning the
possible magnitude of impact in the context of dose-response relationships. In response to the limitations
inherent to the use of screening-level methods, the reviewers recommended using the results of the
screening-level analysis as the basis for a decision to proceed to a more definitive analysis of risk. 

RESPONSE 7-8:  EPA Region 2 agrees that the current approach conservatively assesses risk to human
health.  However, EPA Region 2 also believes that conservatism is warranted to be protective of human
health and the environment given the various areas of uncertainty inherent in the assessment and given the
remedial intent of the HARS.  As discussed in the response to comment 1-1, EPA Region 2 acknowledges
the peer reviewers’ concerns regarding the application of these screening levels in the place of actual risk
levels. In the case of the HARS, however, EPA Region 2 believes that while a dose-based evaluation may
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provide a more realistic, quantitative estimate of risk than these decision values, application of HARS-
specific values is proposed to ensure that placement of dredged material at the HARS meets the remedial
intent of the HARS designation, demonstrably contributes to the improvement of conditions within the
HARS, and complies with the Ocean Dumping Regulations so as not to cause significant undesirable
effects.  See response to comment 1-2 regarding use of risk assessment.

EPA Region 2 recognizes that comparing total concentrations of metals reported in test organism tissue to
proposed HARS-Specific Values could lead to an overestimate of risk for certain metals.  HARS-Specific
Values for metals would be developed using toxicity reference values (e.g. RfDs and Cancer Slope
Factors) associated with the most toxic form of the metal (e.g., toxicity reference values associated with
hexavalent chromium and inorganic arsenic) and/or trophic transfer rates associated with the most
efficiently transferred form (e.g., methylmercury).  As such, comparison of total metals residues to the
proposed HARS-Specific Values would assume that all metals present in test organism tissue is in its most
toxic or most efficiently transferred form.

To address this potential for overestimating risk, in cases where a project tissue data for a total metal (for
example, chromium) exceeds the HARS-Specific Value, EPA Region 2 proposes to offer the applicant an
opportunity to re-analyze the tissues and submit data on the specific valence species or organocomplex
state of the metals residues to allow for a more relevant comparison to the Value.   This data on the forms
of metals present would allow for a more relevant comparison to the proposed HARS-Specific Value and
minimize the potential for overestimating risk of these metals.  If the applicant declines to provide this data
the total metal concentration would be used by EPA Region 2 to assess risk.

Organic forms of arsenic are much less toxic than inorganic arsenic.  Nearly all of the arsenic in seafood
has been shown to be present in organic forms (primarily arsenobetaine) (Abel and Axiac, 1991; FDA
1993).  In light of this fact, FDA (1993) recommends that inorganic arsenic residues in seafood be
estimated from total arsenic measurements by applying a 0.1 multiplier to the reported total arsenic
concentration.  Like all other metals, arsenic residues in bioaccumulation test organism tissue are currently
measured and reported as total arsenic. EPA Region 2 proposes to apply the  0.1 multiplier recommended
by FDA to total arsenic residue concentrations reported in bioaccumulation test organism tissue to estimate
inorganic arsenic residue before comparing to a HARS-Specific Value based on inorganic arsenic.
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Charge Group: Ecological Risk

Charge No. 8A: Ecological effects benchmarks include the Water Quality Criteria Tissue Level
(WQCTL), Critical Body Residue (CBR) associated with narcotic responses,
and certain mutagenic/teratogenic effects.  Is it valid to use the CBR effect end
point for evaluating significant undesirable effect?  Are there other ecological
end points that should be used to measure ecological risk that are protective of
marine benthic and fish life via trophic transfer, particularly for PAHs?  If so,
identify.  With regard to a narcotic effect for chlorinated organic compounds,
should an additive approach be considered to include the contribution of
chlorinated hydrocarbons against this narcotic (CBR) endpoint.

Charge No. 8B: Is the Region 2 WQCTL approach (i.e., multiplying the Water Quality Criterial
Chronic Value by the Bioconcentration factor) appropriate for determining
ecological effects levels of the contaminants for which they were developed? 
Specifically, are the appropriate BCFs used (for fish, bivalves, etc)?  (Please see
Region2/CENAN joint evaluation memorandum, Appendix for Table 1, Page A-1)

Charge No. 8C: BCFs reported for fish were used in the calculations of WQCTLs for organics;
is this derived level appropriate for setting benthic tissue ecological effects
levels?  If the fish tissue levels are used, should adjustments be made to the
derived levels to reflect the higher lipid contents of the benthic organisms used
in the testing program?

Charge No. 8D: Are the WQCTLs calculated for metals using bivalve BCFs appropriate for
setting levels for polychaetes or vice versa?

Charge No. 8E: Are the uncertainty factors applied while deriving ecological effects levels for
PAH contaminants appropriate?  Does this adequately address the uncertainty
around the derived values?  Can uncertainty be accounted for using these order
of magnitude adjustments?  Should they be applied elsewhere to the other risk-
based values?

Charge No. 8F: Are the risk values suitable for predicting the significant undesirable effects
due to bioaccumulation; are there better alternatives for ecological nonspecific
risk?

Charge No. 8G: If you believe that these values are over- or under- conservative, what do you
believe to be an appropriate way to improve them.) 
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Summary of Peer Review Comments

Individual Comments

Clifford Charge No. 8A Comment (2  para):
As discussed above (question 2 and elsewhere) I'd really like to see a complete food-web risk analysis
performed which evaluates risks to pertinent trophic levels on an exposure, rather than body burden,
basis.  This would involve a site-specific food web including molluscs, annelids, arthropods, fish of several
trophic levels, and possibly piscivorous birds (depending on site conditions that I am not familiar with). 
Much of the ground work for such an analysis has already been done here (tabulation of toxicological
endpoints like water quality criteria, compilation of bioaccumulation factors, etc.) and should not require
that much more effort.  The tissue burden approach inherent in the CBR approach is not without merit
but, I believe that a more thorough evaluation of the food-web as a whole on an exposure basis may be
worth considering.

As to other chlorinated organic compounds, if the principal toxicological effect on target species is known
to be narcotic, additivity can certainly be considered, noting my comments on moles vs. milligrams above.

Gentile Charge No. 8A Comment (1 para):
My familiarity with the CBR literature is limited to what I have read in the supporting materials so my
comments to these questions may have limited value.  Nevertheless, after reading McCarty’s  1992 paper
in Environmental. Toxicology and Chemistry, a few thoughts are worth noting.  First the data base used to
develop the CBR is derived solely from freshwater for chemicals, primarily the fathead minnow, and  with
chemical with log Kow > 1.5.  For this data base and a very limited number of endpoints the relationship
between CBR and lethality relationship for narcotics can be approximated by the QSAR derived equation
CBR(mM) = 2.4 mM +50/Kow.  The fathead minnow specific CBR is 4.4 (mM) with a range of 2.2-2.8
mM.  Multiplying by a factor of 0.25-0.1 can approximate conversion to chronic toxicity.  There are
several relevant questions that need to be addressed before one can confidently apply this approach to the
marine fish and invertebrates: 1) has this relationship been corroborated for marine fish and invertebrates;
2)  has the CBR approach been widely applied after the original work of McCarty; 3) have alternative
hypotheses for the PAHs been proposed (e.g., Swartz et al. 1996); and 4) has any confirmatory studies
been done to further develop the chronic relationship?  What I noted in the CENAN memo was that there
were no alternatives presented to the CBR and no literature cited beyond McCarty’s original work. This
tells me that either there is ‘ no better show in town’ or no one has looked at the recent literature.  I am
not familiar enough with this area but I’m sure other peer reviews will provide useful information.  My
final comment is that if a sound argument can be made for transference of this approach to marine
species based upon first principles and mechanisms then one could use it as an index much like the other
benchmarks that you’ve chosen. However, until all the assumptions have been tested then I’d certainly be
very cautious - if you don’t need it then don’t include it.

Berry/Lake/Pruell Charge No. 8A Comment (1 para):
The CBR-type approach seems to be the most reasonable one to use with narcotic chemicals.  Even
though the WQCTL approach seems valid, it was not the approach chosen by the Office of Water (OW)
for development of its Equilibrium-Partitioning Derived Sediment Guideline (ESG) for PAHs.  The
approach OW chose is summarized in a briefing document for a presentation  to the EPA Science
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Advisory Board entitled, “Assessing the Toxicity and Bioavailability of PAH Mixtures in Sediments”. 
May 13, 1997.  I would encourage you to examine this approach, which explicitly looks at all of the PAHs
together, using an additivity model.  I will not comment on the WQCTL approach except to say that the
CBR model uses molar units of PAH because those are the appropriate units for comparison.  Although it
may be appropriate at some point in the analysis to convert to weight units for PAH, it is not appropriate
to say that a 400 ppb dose of napthalene would elicit the same effect as a 400 ppb dose of fluorene (as
stated in the MOR), nor is it strictly appropriate to add the wet or dry weight concentrations together (as
stated in the MOR).

Solomon/Sibley Charge No. 8A Comment (1 para):
CBR measurements are a useful method for assessing narcosis as a toxicity endpoint.  They are,
however, unsuitable for use when the substance has a specific receptor mechanism of action such as for
pesticides in target organisms.  Narcosis is normally observed at much higher concentrations than
receptor-mediated responses and is often observed in non-target toxicity.  Many of the PAHs act as
narcotic agents and it is recognized that additivity of CBRs is an appropriate method for assessing the
likely acute effects of PAHs in aquatic organisms.  PAHs have been shown in recent unpublished work
to cause increases in oxidative stress in fish (Hodson 1998).   This stress leads to a number of responses
that are similar to those mediated by the AhR.  Once these processes are better understood, this may be
another useful way to assess toxic potential of PAHs.  However, carcinogenic potential is not well
assessed using CBR.  Many of the chlorinated pesticides (including some found at the site) are known to
be toxic to arthropods and fish through receptor-mediated processes.  Thus, these may have effects on
arthropods and fish at body concentrations well below their CBR.  An additive approach using narcosis to
assess the chlorinated pesticides may not be appropriate, however, it should be applicable to the PCBs
and similar substances.

Newman Charge No. 8A Comment (1 para):
Subanswer One: Is it valid to use the CBR effect end point for evaluating significant undesirable effect? 
Are there other ecological end points that should be used to measure ecological risk that are protective of
marine benthic and fish life via trophic transfer, particularly for PAHs?  If so, identify

If one assumes that the 28 day bioaccumulation test results are valid, then the use of CBR is valid.  There
are some toxic effects that will not conform to the CBR concept, e.g., cumulative liver damage by
cyanide. However, the application of the CBR here seems the best way to estimate the potential for
effect.  Relative to ecological risk, there are many other end points that could be used.  One could survey
the site from which the dredge material will come and measure many things.  One could measure
community indices,  lesion incidence,  demographic qualities of key species,  biochemical qualities of
individuals, or a variety of other conventional metrics.   

Subanswer Two: With regard to a narcotic effect for chlorinated organic compounds, should an additive
approach be considered to include the contribution of chlorinated hydrocarbons against this narcotic
(CBR) endpoint.  Yes.  An additive effect seems logical and consistent with this mode of action.

Dillon Charge No. 8A Comment (2 para):
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Critical body residues, when expressed on a molar basis, is an appropriate endpoint for chemicals where
the mode of toxicity is narcosis.  CBR is not appropriate for chemicals with other modes of action (e.g.,
receptor-mediated, neural disruption).  Additivity of effects is an appropriate assumption for narcotic
chemicals if expressed on a molar basis.  However, almost all our knowledge of narcotic chemicals is
based on acute exposures and lethality endpoints.  Environmental exposures rarely approach acutely lethal
levels.  On the other hand, chronic narcosis (especially effects on behavior) may be more insidious and
environmentally relevant.  This effect has received scant attention.  

PAHs are generally thought to be directly toxic to benthos.  Risk Swartz's sigma PAH model is a good
evaluative tool for direct toxicity.  The risks associated with PAHs entering the food web is less certain. 
Most uncertainties are associated with PAH metabolites.  Analysis of metabolites tends to be difficult and
expensive, they are ephemeral and organisms' ability to metabolize PAHs range widely both quantitatively
and qualitatively.  Many consider PAHs in the food web a low risk scenario because they are rarely
detected at noticeably levels (except sediments and mollusks).  However, this belief is based on parent
PAH compounds, not their metabolites.  We know relatively little of PAH metabolites' environmental fate
and effects on survival, growth and reproduction.  

Clifford Charge No. 8B Comment (2  para):
I have no real problem with the concept that exposure at the CWA CV represents an appropriate
toxicological threshold.  I do, however, as noted elsewhere herein, have reservations regarding the
meaning of body burdens as surrogates for exposures.

While I would like to see BCFs specific to the organisms and contaminants in question used in all cases,
this is clearly not possible as the data simply do not exist in all cases.  I believe that the values used
represent a scientifically defensible attempt to arrive at the most applicable values available.

Gentile Charge No. 8B Comment (1 para):
Yes, given there are no studies that explicitly describe the residue-effects relationship.  This approach
relies on the accuracy of the contaminant-specific BCFs which based on the material submitted for
review is fine.

Berry/Lake/Pruell Charge No. 8B Comment (1 para):
[Refer to Berry/Lake/Pruell Charge No. 8A Comment]

Solomon/Sibley Charge No. 8B Comment (1 para):
The EPA WQCTL approach for determining ecological effects levels was judged to be appropriate as
were the BCFs used in these calculations.

Newman Charge No. 8B Comment (1 para):
The application of a single BCF from a representative organism is an appropriate gross metric.  But there
is no single BCF for a species or a single representative species.  Likely what was used was the closest
species for which there was a published BCF.  Consequently, I would apply an uncertainty factor
(UF=10?) in this calculation.



92

Dillon Charge No. 8B Comment (1 para):
The WQCTL approach is one tool for evaluating the toxicological significance of bioaccumulation results. 
It is probably appropriate if one accepts certain assumptions: 1) chemicals of concern are not metabolized
, 2) internal sequestering mechanisms are of minor importance, 3) benthic organisms' sensitivity is similar
to nektonic forms upon which CVs were based, 4) benthic exposure approximates that for nektonic forms,
5) there is a mechanistic explanation linking residue and effect, 6) the CV is based on effects, not
bioaccumulation, 7) there are few toxicity drivers in the sediment.  The WQCTL is not appropriate (i.e., is
under protective) when direct exposure to sensitive life stages (e.g., early life stages of fish) is
anticipated.  A more direct assessment of chronic toxicity via sediment bioassays may be less
problematic.  See peer reviewer's comment at end of questions regarding ecological receptors.

Clifford Charge No. 8C Comment (1  para):
Notwithstanding my comments on the utility of body burdens, the BCFs used are probably the best
available as such values may not be available at all for benthos.  As such, I think some discussion of the
uncertainties is appropriate but, you cannot replace the values used with better values when none exist. 
Addressing the uncertainties should be sufficient.  Adjustment of the values for lipid content is appropriate
for the more hydrophobic compounds.

Gentile Charge No. 8C Comment (1 para):
As stated in the Appendix for Table 1, Section A this approach is accepted to be conservative and
therefore should be protective of 95% of all tested organisms which do include not only fish but
representatives from several phyla including benthic species.  This approach is generic and can be made
site specific by modifying specific factors if it is deemed appropriate.  The calculation can be done with 
and without the site-specific data to determine if the difference results in a significant change in
interpretation.

Berry/Lake/Pruell Charge No. 8C Comment (1 para):
[Refer to Berry/Lake/Pruell Charge No. 8A Comment]

Solomon/Sibley Charge No. 8C Comment (1 para):
If WQCTLs based on BCF values measured in one organism with a very different lipid content than
another, this may lead to incorrect estimation of tissue concentrations.  Lipid normalization has been
recommended (Connell 1990; Hebert and A 1995) in a number of situations and, in the experience of this
reviewer, can significantly change interpretations.  Lipid normalization should be used.

Newman Charge No. 8C Comment (1 para):
No.  A BCF for fish is not appropriate to use for an invertebrate.  Further the BCF for one group of
invertebrates may not be appropriate for another invertebrate group.  Too many factors have large
effects on BCF to make such a general use of a single BCF.  This seems to be a situation in which an
uncertainty factor is appropriate.
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Dillon Charge No. 8C Comment (1 para):
See peer reviewer's response to 8.B.

Clifford Charge No. 8D Comment (1  para):
Again, you are constrained to using the available information.  While I would prefer to see values for
polychaetes used for polychaetes, rather than bivalve values, if no such values are available, this is a fairly
reasonable approximation.  Again, however, I urge addition of an uncertainty section to the report which
discusses the limitations of such approaches as regards decision making.

Gentile Charge No. 8D Comment (1 para):
The BCFs  would have to be compared for a representative set of organic and inorganic compounds to
make a judgement.  There is considerably more data on metals uptake with bivalves than polychaetes so
I’d use the bivalves.  However, I’d try to determine if the bivalves were consistently protective of
polychaetes and when there exceptions.

Berry/Lake/Pruell Charge No. 8D Comment (1 para):
[Refer to Berry/Lake/Pruell Charge No. 8A Comment]

Solomon/Sibley Charge No. 8D Comment (1 para):
Although this reviewer is not very familiar with metal toxicology, it is known that efficiency of metal
uptake in molluscs can vary with food availability and is different from that in many other organisms
(because of the intracellular digestive process in the hepatopancreas).  Thus molluscs would be more
efficient at taking up particulate metals (as particles or attached to particles) from the water-column.  The
application of BCFs for metals from bivalves to polychaetes is judged to be inappropriately conservative
while the reverse is judged to underestimate potential for exposure potential in clams.

Newman Charge No. 8D Comment (1 para):
No.  Please see the answer [Newman Charge No. 8C Comment] above.

Dillon Charge No. 8D Comment (1 para):
See peer reviewer's response to 8.B.

Clifford Charge No. 8E Comment (2  para):
Numerous attempts are currently on-going (some by myself) to derive uncertainty factors more
appropriate than those presented.  None currently exist.  I believe that the approach used is conservative
and cannot at this time offer defensible alternatives.  I've commented on the overall uncertainties in the
approach repeatedly through this document and, while I believe that the uncertainties are "adequately
addressed" by these uncertainty factors, I still think that the document would benefit from some qualitative
treatment of the overall uncertainties.
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I do not believe that such factors should be applied elsewhere.  Qualitative discussion of uncertainties
prior to drawing conclusions would be appropriate, however.

Gentile Charge No. 8E Comment (1 para):
The discussion of potential ecological impacts for PAHs  and their uncertainties are discussed in
Appendix to Table 1 (A-2 and A-3).  The explanation of the derivation and variability is sufficient though
a more complete discussion is in McCarty 1991 and McCarty et al. 1992.   However, the choice of 40
ppm (40,000 ppb) as the value in Table 1 is based on fish and is being compared to invertebrates
(polychaete and bivalve)  which have much higher effect thresholds.  I assume this is in keeping with a
conservative approach.  Regarding the uncertainty around the derived values, McCarty et al. 1992 reports
that the range of concentrations causing narcotic effects on aquatic organisms is from 1.4 to 21umoles/g
wet weight which is a factor of 15.  Thus an appropriate ‘safety’ factor to account for differences in
species-species sensitivity and to protect for untested species could be set at 10-20 for freshwater
organisms since McCarty’s data base was primarily freshwater.  I would probably expand the safety
range for untested species-species in marine waters  to 10-100 solely due to the lack of data, unless of
course there is recent work that could be used to compute a more accurate range of variability.

Berry/Lake/Pruell Charge No. 8E Comment (1 para):
[Refer to Berry/Lake/Pruell Charge No. 8A Comment]

Solomon/Sibley Charge No. 8E Comment (1 para):
Uncertainty factors are used to account for unquantified uncertainty and, as such cannot be judged
against the true uncertainty (until this is known).  Order of magnitude factors are frequently used for
animal-animal extrapolation and to account for unknown variability in population responses.  They are no
substitutes for a knowledge of variability and uncertainty, however,  “arbitrary” uncertainty factors of this
magnitude have been successfully used in the past and their continued use in the face of insufficient
knowledge is judged appropriate.

Newman Charge No. 8E Comment (1 para):
Relative to converting effect to no effect, the associated calculations contain considerable error.  I would
suggest an uncertainty factor of 10.  The means of dealing with narcotic effects seems adequate.  An
interspecies uncertainty factor of 10 seems adequate.

Dillon Charge No. 8E Comment (2 para):
Uncertainty factors are a legitimate method for quantifying uncertainty.  The problem comes when
multiple UF are used.  Then, quantitative risk estimates are driven absurdly low and the value to decision-
making falls precipitously.  My preference is to limit UF to extrapolations which have a quantitative basis
(e.g., acute to chronic ratio) and provide a narrative description for other uncertainties, especially those
with a mechanistic basis.   See peer reviewer's response to 8.A for PAH portion of question.

A distinguishing characteristic of environmental risk assessment is its explicit (not implicit) treatment of
uncertainty.  If EPA/CENAN intends for the Framework to emulate a risk-based approach, it must have
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specific sections devoted exclusively to uncertainty analysis.  An explicit recognition of uncertainty
promotes, not hinders, environmental decision-making.  

Clifford Charge No. 8F Comment (1  para):
Please see responses to 8A and 8B (and others throughout).

Gentile Charge No. 8F Comment (1 para):
If the question refers to WQCTLs then the answer is yes if your referring to PAHs then the answer is for
freshwater fishes but not for marine fishes or invertebrates until a comparable data base is developed.

Berry/Lake/Pruell Charge No. 8F Comment (1 para):
[Refer to Berry/Lake/Pruell Charge No. 8A Comment]

Solomon/Sibley Charge No. 8F Comment (1 para):
The hazard quotients used in this assessment are judged appropriate.  See the discussion of risk and
hazard above.

Newman Charge No. 8F Comment (1 para):
There are additional and more direct means of assessing ecological risk.  Conventional metrics of effects
to individuals (e.g., lesions), populations (e.g., demographic assessment or abundance estimation) and
communities (e.g., species richness, IBI, and others) could be done at the site from which the material is
to be taken.

Dillon Charge No. 8F Comment (1 para):
See peer reviewer's response to 2. and comment at end of questions regarding ecological receptors.

Clifford Charge No. 8G Comment (1  para):
Please see responses to 8A and 8B (and others throughout).

Gentile Charge No. 8G Comment (1 para):
Regarding the WQCTLs  they are probably somewhat over conservative but not too much.  Regarding
the PAHs the CBR is very over protective of invertebrates and questionable for freshwater fishes since
most of the data is for fathead minnows.  Nothing in there for trout nor for marine fishes.  The solution for
PAHs is to develop a larger data base.

Berry/Lake/Pruell Charge No. 8G Comment (1 para):
[Refer to Berry/Lake/Pruell Charge No. 8A Comment]
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Solomon/Sibley Charge No. 8G Comment (1 para):
NA

Newman Charge No. 8G Comment (1 para):
I would guess that they are overly conservative.  However, there is so much uncertainty in several steps
that it is difficult to be more definitive.  Please see the above comments for possible improvements.  It is
unfortunate that the approaches described do not provide any direct information on population viability or
benthic community effects.

Dillon Charge No. 8G Comment (1 para):
See peer reviewer's response to 2. and comment at end of questions regarding ecological receptors.

Agency Response to Reviewers’ Comments:

COMMENT 8-1:  In general, reviewers questioned the uncertainty associated with estimating an
effects threshold using the WQCTL approach.  Much of this uncertainty is associated with the use of a
bioconcentration factor (BCF) that may or may not be specific to the organism of concern. Reviewers
suggested that approaches that rely on specific, experimental residue-effects data or direct measurement
of chronic toxicity (i.e., application of chronic sediment toxicity tests) would be superior to the current
approach, with its numerous sources of uncertainty. 

RESPONSE 8-1: EPA Region 2 is proposing to replace HARS-Specific ecological protection values
based on WQCTLs (tissue guidance levels estimated from EPA chronic marine water quality criteria
using bioconcentration factors) with effects-based residue levels protective of effects to ecological
receptors based on specific, experimental residue-effects data reported in the scientific literature.  These
residue levels would be developed for use in conjunction with those based on human carcinogenic and
non-carcinogenic effects (see Response to Comment 7) for evaluating the results of bioaccumulation tests
performed on dredged material and determining its suitability for use as Remediation Material at the
HARS.  

Available datasets relating tissue residues and incidence of effects were identified through an exhaustive
review of peer-reviewed scientific studies. Only those studies that related residues and incidence of
effects of single contaminants were considered relevant for the development of guidelines.  The primary
tools used in identifying relevant peer-reviewed studies were the databases compiled by the U.S.
Environmental Protection Agency Office of Research and Development’s Mid-Continent Ecology
Division in Duluth, MN (Jarvinen and Ankley 1998) and the U.S. Army Corps of Engineers’ Waterways
Experiment Station in Vicksburg, MS (USACE 1998).  Additional relevant studies that were published
since release of these databases were identified through literature searches with the assistance of staff
from the EPA-Office of Research and Development (Duluth, MN).  

The primary criterion for a study to be considered in deriving ecological HARS-Specific Values is a study
design that ensures that organisms are only exposed to a single contaminant.  This study design maximizes
our ability to assign causality of any observed effects to the body burden of the specific contaminant. 



97

While EPA Region 2 recognizes that organisms that are exposed to dredged materials are generally
simultaneously exposed to more than one contaminant, the potential for significant synergism and
antagonism of contaminants is judged to be low (see response to comment 17-1). 

Guidelines developed using these empirical studies would not establish a probability for adverse effects
but would rather estimate a tissue concentration below which there is no potential for significant
undesirable effects.  EPA Region 2 believes that this threshold (avoidance of the potential for significant
undesirable effects) is an appropriate goal for the assessment of bioaccumulation test results, given the
remedial intent of the HARS.  

EPA Region 2 proposes to develop benthic invertebrate tissue concentrations for each contaminant (or
class) using limited residue-effect data.  The data and method that will be used to derive these
concentrations are documented in Appendix D of this document.  

COMMENT 8-2: Additional uncertainty is associated with extrapolating from: (1) freshwater to marine
species, (2) species for which toxicity data have been collected to receptors of concern, (3) acute to
chronic effects, (4) effect to no-effect levels, and (5) individual measures of toxicity to potential for
effects on populations. The judicious application of uncertainty factors can help to control some of the
uncertainty associated with the application of WQCTLs and CBR, but such factors can also make the
estimates overly conservative. Reviewers differed on the magnitude of the uncertainty factors that could
be applied to the parameters of concern (e.g., BCFs and toxicity extrapolation factors), but in general,
support was offered for the approach taken.  Peer reviewers recommended that a section of the
document be dedicated to uncertainty and its effect on the conclusions of the analysis.

RESPONSE 8-2: EPA Region 2 recognizes the need to acknowledge the areas of uncertainty in the
evaluative process being used to identify suitable Remediation Material. Appendix F discusses areas of
uncertainty associated with development of HARS-Specific Values. 

COMMENT 8-3: Most reviewers considered the CBR approach to be valid for assessing the potential
for non-specific narcotic effects of contaminants in dredged material proposed for use as Remediation
Material at the HARS.  Similarly, reviewers stated that the CBR approach (narcosis) is inappropriate to
address compounds where more specific modes of action are expected, e.g., chlorinated pesticides.  The
list of excepted compounds would also include the metabolites of neutral organic chemicals, e.g., PAHS.

RESPONSE 8-3: EPA Region 2 concurs with the reviewers’ caution not to employ the narcotic CBR
approach to address compounds that are expected to cause effects through a specific mode of toxic
action.  EPA Region 2 emphasizes that the specific mechanisms of toxic action of individual contaminants
would continue to be considered (in addition to narcosis) under the proposed Framework to evaluate the
suitability of dredged material for use as Remediation Material at the HARS.

Narcosis has been described as “the base toxicity of a chemical that is not caused by any specific mode
of toxic action” (Chaisuksant et al. 1999).  Chaisuksant et al. (1999) also state “Other modes of toxic
action increase the toxicity of the chemical from this base toxicity. ...if a specific mode of toxic action is
present, nonspecific toxicity, although always present, is not important...the toxic effect of the chemical is
mainly a result of the specific mode of toxic action...a reactive chemical could have both specific and
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nonspecific toxicity to an organism, but the specific mode of toxic action will be dominant”.  Therefore,
concentrations of those non-polar chemicals that exert their effect through a specific mode of action
(such as chlorinated pesticides and PCBs) also contribute to the total narcotic dose of the mixture present
in tissues exposed to sediments (McCarty 1991).  This remains true when the contaminant occurs at
concentrations that are insufficient to elicit the specific toxic effect (McCarty and MacKay, 1993).  For
example, PCBs and DDE have been specifically identified as compounds that contribute to the narcotic
dose (McCarty 1991, Fisher et al. 1999).  

Based on these considerations, the total narcotic dose associated with the bioaccumulation test organisms
would be calculated under the proposed Framework using the molar concentrations of all PAHs, PCBs,
pesticides, dioxins/furans and 1,4-dichlorobenzene, combined.  Also under the proposed Framework,
additivity would continue to be assumed for the purposes of this calculation (see response to comment
17). 

COMMENT 8-4: Two reviewers recommended using a dose rather than a body burden-based model to
estimate the potential for effects on organisms within the food web.  Peer reviewers agreed that molar
concentrations must be used to express the narcotic dose of contaminants and that equipotency of the
PAHs is an appropriate assumption when expressed on a molar basis.   

RESPONSE 8-4: See response to comment 1-2.  The proposed Framework would express the narcotic
dose of PAHs and other organic contaminants as molar concentrations for use in the narcotic CBR
model.

COMMENT 8-5: Several reviewers suggested that other approaches to evaluate PAHs be considered. 
One reviewer suggested that other approaches (besides the CBR approach) to evaluating the potential for
ecological risks of PAHs may have become available since McCarty (1992) and recommended that EPA
Region 2 review the method of Swartz et al. (1996) to determine whether their model is more appropriate
for assessing PAHs as a class.   

RESPONSE 8-5: EPA Region 2 notes that the Swartz et al. model referred to by the reviewers was
actually published in 1995.  The Swartz et al. (1995) model considers the sediment concentrations of 13
PAHs to calculate the probability of acute toxicity to be caused by exposure to the sediment and does not
address bioaccumulation.  The model considers the toxicity of the PAH mixture by expressing the
contribution of each PAH as additive toxic units. The toxic unit of each PAH was calculated by using the
predicted interstitial water concentration and the concentration at which 50 percent of tested organisms
die during a 10 day exposure (i.e., 10 day LC50).  Since this model considers acute toxicity due to
external exposure concentrations and does not consider PAH contributions from ingestion pathways, it is
of limited utility for interpreting the potential for risks associated with bioaccumulation and trophic transfer
of contaminants.  Therefore, EPA Region 2 is not proposing to use the Swartz et al. (1995) model in the
revised HARS Framework to evaluate risks associated with PAHs.

COMMENT 8-6: One reviewer questioned whether the CBR approach was applicable to marine
species.
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RESPONSE 8-6: Although the CBR approach to assess the potential for narcotic effects of contaminant
mixtures in environmental matrices was originally developed using freshwater organisms, the approach
has also been corroborated by various researchers using marine species, including amphipods (Boese et
al., 1999), copepods (Lotufo, 1998), mussels (Donkin et al., 1989), and crabs (Mortimer and Connell,
1994).  In addition, van Wezel and Jonker (1998) experimentally determined that differences in salinity did
not significantly affect the critical body residue for toxicity in a species of fish. The CBR approach relies
on measured whole body burdens of contaminants as an estimate of the contaminant concentration at the
site of toxic action within the organism.  McCarty and MacKay (1993) examined the apparent narrow
range of residue levels that produce narcotic effects in various organisms and concluded that this is not
unexpected based on the supporting evidence of reliable QSARs (quantitative structure-activity
relationships) in the scientific literature. QSAR theory is based on the premise that the toxic activity and
mode of action of a given contaminant is closely related to its chemical structure.  Therefore, the
mechanisms by which toxicants exert their toxic effect on the cellular level should be independent of the
external environment of the exposed organism.  EPA Region 2 believes that the narcotic CBR approach
can be applied in evaluating risk to the (marine) organisms of the HARS.

COMMENT 8-7: Several reviewers indicated that the CBR may not be adequate to protect for
sublethal effects.  This concern was voiced based on the observation that the narcotic CBR level used by
EPA Region 2 was set with datasets having acute lethality as the primary endpoint. 

RESPONSE 8-7: EPA Region 2 conducted a thorough literature search to identify studies in which
observed sublethal effects could be correlated with simultaneously measured PAH body burdens in the
affected organisms.  

Hall and Oris (1991), the results of which were used in the development of the existing value for
anthracene, reported sublethal effects (i.e.,  reduced reproductive output, reduced hatching success
and/or increased incidence of developmental deformities) to be associated with accumulated anthracene. 
Based on our literature search, it appears appropriate to consider anthracene as a non-polar narcotic
chemical (DiToro et al. 2000).  Anthracene residues were reported in eggs, ovaries, and the remainder of
the fish carcass for two of the exposure treatments.  The consistency of the relative concentrations of
accumulated anthracene in these three reservoirs (egg:ovary:carcass anthracene concentration ratio is
1:2:5) allowed an estimate of the total body burden to be generated from reported concentrations in eggs
(3.75 ug/g) at the lowest effective treatment.  The ovary was reported to constitute 13.4% of the total
body weight of the fish in this study (i.e. the gonadosomatic index, or GSI).  Using these relationships, the
total body burden of anthracene associated with reduced reproductive output would equate to
approximately 17.24 ug/g.  This is equivalent to a molar concentration of 0.1 µmol/g.  These values were
based on long exposures (6-9 weeks) of adult fathead minnows.

Additional references were located that examined sublethal effects and narcotic body burdens
simultaneously.  Lotufo (1998) reported the critical body residues of fluoranthene in two marine
crustaceans that were found to be associated with sublethal effects (i.e. reduced survival of offspring
and/or reduced feeding activity).  A molar concentration of 0.2 µmol/g was the lower of the body residues
associated with sublethal effects in this study.  Sublethal effects of PCBs, DDE and other narcotics in a
freshwater worm were associated with body burdens between 0.34 - 0.56 µmol/g.  Chronic toxicity (35-
day exposure) was associated with body burdens between 0.9 - 1.35 µmol/g.  Wang et al. (1998) found
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significant reduction in growth of brine shrimp to be associated with body burdens of 0.08-0.9 µmol/g. 
Van Hoogen and Opperhuizen (1988), McCarty and MacKay (1993), and Sijm et al. (1993) estimate
chronic mortality of fishes due to narcosis to occur at body burdens of 0.2 to 0.8 µmol/g.  Finger et al.
(1985) reported reduced growth to be associated with a 0.05 - 0.14 umol/g in bluegills that were
chronically exposed to a narcotic contaminant (i.e. fluorene). In addition, decreased feeding activity of
mussels was reported to be associated with narcotic body burdens of 0.05 µmol/g (Eertman et al. 1995)
and 0.08 - 0.24 µmol/g (Donkin et al. 1993).   

Emery and Dillon (1996) reported a very low body burden (i.e. 0.0044 µmol/g) associated with decreased
reproduction of the marine worm, Neanthes arenaceodentata, after chronic exposure to a neutral
narcotic organic contaminant (i.e. the PAH, phenanthrene).  In that study, the authors speculated that
other modes of action may have been contributors to the observed effect.  Although evidence to support
this conclusion was not provided by the authors, it is clear from review of the scientific literature
regarding narcosis that the reported residue could not have been associated with a narcotic response. In
addition, this study included only a single treatment.  Therefore, dose-dependency of the response could
not be confirmed (nor rejected).

In summary, the CBR method has been used in the last several years to assess sublethal effects of
narcotic compounds.  EPA Region 2 is proposing to adopt 0.05 µmol/g as a conservative endpoint for
screening for sublethal narcotic effects associated with neutral nonpolar organic contaminants (PAHs,
PCBs, chlorinated pesticides, dioxins/furans, and 1,4-dichlorobenzene).
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Charge Group: Calculations

Charge No. 9: Should total PCBs continue to be estimated by doubling the total of 22 congeners
or should it be quantified directly using another measure of quantification?  What
method is most appropriate for sediments in the NY/NJ Harbor area?  (Please see
Reference No. 60, Table 4-4B)

 

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 9 Comment (1 para):
I am not an analytical chemist and cannot recommend specific methods for PCB congener analysis.  PCB
congeners tend to covary in their distribution even though their relative concentrations may change
according to source.  The 22 PCB congener analytes required in the total PCB quantification include 19
of the 21 congeners recommended in the Green Book for the summation of total PCBs.  The list therefore
should provide an adequate total PCB quantification that would reflect the distribution of other,
unmeasured congeners.  In marginal cases, additional analyses should be conducted.  The formula for the
extrapolation of the sum of the 22 congeners to all congeners (i.e., total PCB = 2.19 x (sum of the 22
congeners) + 2.19) is attributed in Table 4-4B of reference 60 to a 1992 personal communication from T.
Wade.  That is a very weak source for such an important equation.  T. Wade (or someone else) should
document the derivation of this equation for the record.

Gentile Charge No. 9 Comment (1 para):
The approach recommended in the Green Book (p 9-8 and 9-9) for estimating total PCBs by summing the
individual 22 congeners of concern should be continued as it more accurately represents the PCB
concentrations in the samples than by measuring total arochlors.  Further, this is the approach used by
NOAA and reflects the congeners relevant to environmental abundance, persistence, and most
importantly biological importance

Berry/Lake/Pruell Charge No. 9 Comment (1 para):
Dr. Lake did not think that total PCBs should be based upon a limited subset of congeners. Organisms
can substantially alter PCB distributions relative to those present in Aroclors or in sediments, and by
measuring only a limited subset substantial errors can be introduced.  He thought that the methods for
quantitation of all, or almost all, congeners exist, and these procedures are not much more difficult than
those already in use for determining the 22 congeners currently measured.  Dr. Pruell felt that, although
some information might be lost by looking at only a subset of the PCBs, the error would be less than a
factor of 2-3, an error that seems easily within the level of variability in many of the other assumptions
required to assess the risk of PCBs.  He felt that the small gain from doing all of the congeners was
probably not worth the added expense.
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Solomon/Sibley Charge No. 9 Comment (1 para):
This reviewer is not familiar with recent advances in the analysis of PCBs, however, the doubling to
account for unquantified congeners seems a reasonable approach as it is based on historical experience.

Newman Charge No. 9 Comment (1 para):
I am not qualified to answer this question.

Lee Charge No. 9 Comment (1 para):
A congener approach is much preferred to Aroclors though it is not practical to quantify all 209 congeners
on a regular basis.  Therefore, the best strategy is to derive ratios of total to a measured suite of
congeners based on empirical studies and/or what is known about the original composition of the PCB mix
and how the various congeners breakdown.  I am not an analytical chemist, so can not comment directly
on whether the doubling is the correct ratio.  It is important, however, that the measured suite of PCB
congeners include both the environmentally common ones (e.g., 154) and the less abundant but
toxicologically important ones (e.g., co-planars).

Dillon Charge No. 9 Comment (1 para):
Could not evaluate the PCB doubling method with materials provided.  Reference 60, Table 4-4B did not
describe the method in sufficient detail.  The original reference cited in the table (NYSDEC, 1991) was
not provided.

Agency Response to Reviewers’ Comments:

COMMENT 9-1: There was a general consensus among the peer reviewers that quantification of
PCBs using a congener approach is more appropriate than estimating total PCB concentrations based on
Aroclor analyses. 

RESPONSE 9-1:  EPA Region 2 agrees with the peer reviewers and proposes to continue to require
PCB concentrations to be analyzed and reported using congener-specific quantification methods in the
proposed HARS Framework.

COMMENT 9-2:  One reviewer suggested that it would be more accurate if all 209 PCB congeners
were quantified.  Most reviewers, however, suggested that because PCB congeners covary in their
distributions, measurement of a subset of congeners and application of a correction factor to account for
unmeasured congeners is appropriate.  One reviewer commented that the formula for the extrapolation of
the sum of the 22 congeners to all congeners needs to be better documented.  Several reviewers also
indicated that the ‘correct’ factor to apply to the selected congener subtotal must be robust and
empirically supported. 

RESPONSE 9-2: Ecological and human health risk of bioaccumulation of PCBs in dredged sediments is
currently considered and managed as a function of the total concentration of PCBs present in the sample. 
It is therefore of paramount importance that whatever analytical method is used to quantify PCBs, it
allows a relatively accurate estimate of the total PCB concentration to be generated. 
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Four data sets that measured PCB concentrations in environmental media in the New York Harbor area
analyzing for an extensive list of PCB congeners (i.e., 79 or more congeners) were reviewed by EPA
Region 2 to determine whether total PCB concentrations could be reliably estimated from the 22
congeners that are routinely quantified in the dredging program.  These studies (Durell and Lizotte 1998;
Battelle 1998; EPA 1992; and NOAA 1987) were conducted on sewage influents/effluents, dredged
material, bottom sediments, and mussel tissues respectively.  In all cases, the subset of 22 congeners that
is routinely quantified in the dredging program was highly correlated with, and predictive of (R2 > 0.97),
the total PCB concentrations actually measured in those studies.  Therefore, quantification of an extended
list of congeners appears unnecessary to provide a reasonable estimate of total PCBs. 

The ratio of the subtotal of the 22 congeners to the total PCB concentration reported for mussel tissues by
NOAA (1987) was 2.0 (n = 21).  While mussel PCB residues may not be directly comparable to other
benthic species, there is data which suggests that some degree of comparability can be expected. 
Specifically, Connolly (1991) compared the relative contributions of different PCB homologues to total
PCB concentrations measured in tissues of mussels, clams and polychaetes of New Bedford Harbor. 
This study revealed that the distribution and contribution of PCB homologues to total PCB residues were
similar between the three species. This similarity in PCB uptake and disposition across benthic organisms
suggests that the 22 congener subset : total PCB ratio reported for mussels (NOAA, 1987) may be
appropriately extrapolated to other benthic organisms.  Therefore, EPA Region 2 proposes to continue to
estimate total PCB residues in test organism tissues by the existing method (i.e., doubling the sum of the
measured residues of the 22 PCB congeners specified in the Regional Testing Manual). 

EPA Region 2 is proposing to require quantitation and reporting of coplanar PCB residues for
consideration in the assessment of ecological and human health risks associated with dredged sediments
proposed for use as Remediation Material at the HARS (see Response to Comment 9-3, below).  
Because the method for determining total PCBs from the 22 measured congeners (i.e., doubling measured
residues of the congeners listed in the RTM) is only an estimate of actual PCB mass in the sample and
because the coplanar PCB congeners generally occur at much lower levels than other congeners (i.e., at
pptr levels); EPA Region 2 believes that adding the residues of the three coplanar PCBs to the residue of
the 22 current PCBs before applying the multiplier of 2 would not significantly improve the estimate of
total PCB mass.  Therefore, Region 2 is proposing to continue to estimate total PCBs using the current
procedure of doubling the summed residue of the 22 PCB congeners currently considered.

COMMENT 9-3: Questions were raised regarding the specific congeners that are included on the list
for direct measurement and reporting.  One reviewer indicated that the subset of congeners evaluated
should include the environmentally common congeners as well as toxicologically important ones (e.g., co-
planar PCBs). Two reviewers indicated that the 22 congeners recommended in the Green Book and
quantified in our process reflected the environmentally common and toxicologically important congeners
and therefore appeared to be appropriate.

RESPONSE 9-3:  The list of 22 congeners currently quantified in assessing suitability of dredged
material for use as Remediation Material at the HARS includes the 18 congeners that are used to quantify
and estimate total PCBs in other environmental monitoring programs, such as EPA’s Environmental
Monitoring and Assessment Program (EMAP) and NOAA’s Status and Trends.  As indicated in
Response 9-2, total concentrations are used to assess suitability and can be reliably predicted from this
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subset.  In the interest of preserving the compatibility and comparability of data across these programs,
EPA Region 2 is proposing to continue to include these relevant congeners on their list of required
congeners for quantification of PCBs in dredged material proposed as Remediation Material at the HARS
under the proposed Framework.  As the total PCB concentration can be reliably estimated from the
subtotal of these 22 congeners, EPA Region 2 does not feel that the additional expense of adding
congeners for the purpose of estimating total PCB concentrations is warranted.  

While extension of the PCB congener analytes for estimating total PCBs is not warranted for estimation
of total PCBs, Region 2 is proposing to require analysis of three coplanar PCBs which have dioxin-like
toxicological properties.  The Regional Testing Manual (EPA/CENAN, 1992) lists the four coplanar PCB
congeners (i.e. PCB congeners 77, 126, 156, and 169) as optional analytes.  EPA Region 2 proposes to
require analysis of the three PCB coplanar congeners that are listed by the World Health Organization
(WHO 1999) as having associated 2,3,7,8-TCDD toxic equivalencies (i.e. PCB congeners 77, 126, and
169).  As stated above (see Response to Comment 9-2), EPA Region 2 is proposing that the mass of
these PCB congeners would not be used to estimate total PCB mass, their presence (and associated risk)
would be assessed in the consideration of total 2,3,7,8 - TCDD toxic equivalency using the toxic
equivalency factors recommended by the World Health Organization (see Response to Comment 5).
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Charge Group: Calculations

Charge No. 10: Currently, 28-day tissue concentrations of certain organic contaminants are
adjusted by some multiplier to estimate the concentrations of those compounds
had the exposure been of sufficient duration to allow attainment of steady state
levels.  (Please see Reference Nos.5 and 46) Are these adjustments
appropriate?  Should steady state corrections be applied to any other of the
listed contaminants?  Are there other compounds for which we test that are not
expected to approach steady state within the 28-day period?

 

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 10 Comment (3 para):
It is appropriate to adjust 28-d tissue levels to steady state tissue levels before comparison to tissue
standards based on chronic exposures.  The literature clearly shows that some compounds achieve only a
fraction of their steady state concentration during 28-d exposure (Pruell et al. 1993, Lee et al. 1994).  
Since benthic tissues in the field will achieve steady state contaminant concentrations, correction of the
28-d data is essential.

The correction factors should be derived from 28-d and much longer experiments with the test species
used in the standard 28-d test.  Thus, the factors for PAHs (McFarland 1995), pesticides (Lee et al.
1994), and PCBs (Pruell et al. 1993) are based on appropriate methods.  Boese et al. (1997; ET&C
16:1545-1563  ) reported additional data on PCBs that confirm an average correction factor of about 1 for
13 PCB congeners accumulated by Macoma.  I am uncertain about the accuracy of the factor for
heptachlor epoxide derived from 32-d tests with fish (Veith et al. 1979), or the factor for 1,4-
dichlorobenzene, derived from  the de Bruijn et al. (1989) Kow experiments.

The tissue concentrations of dioxins are not corrected for steady state in Table 1 of the Framework. 
Pruell et al. (1993) demonstrated that Nereis tissue concentrations of 2,3,7,8-TCDD and 2,3,7,8-TCDF
were significantly and substantially higher after 120 days than at 28 days of exposure.  Steady state
correction factors should be derived for those two compounds from the Pruell et al (1993) data.  In the
absence of better data, the mean correction factor for those two compounds could be applied to other
dioxin congeners.  Pruell et al (1993) showed that there was no significant difference in Macoma tissue
concentrations of dioxins between 28 and 128 days, so no steady state correction is necessary for that
species.

Gentile Charge No. 10 Comment (2 para):
Yes the adjustments are appropriate given they provide value added to the decision-making.   For
example, with dioxins, the residues in Nereis at 28-days were only ~25% of the steady state value
achieved after 180 days.  If the differences between polychaetes and bivalves occur across a wide range
of chemicals within certain log Kow ranges then adjustments could be predicted.  Another way to look at
the question is to determine the maximum difference between the 28-day tissue concentration and the
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steady-state value and compare that difference to the variability in replicate bioaccumulation tests.  If the
difference is less than the variability then one could argue that the additional effort to obtain steady-state
values would be lost in the noise.  If the difference is about 50% as it appears to be in the bivalves then I
wouldn’t be too concerned but if it was about 50% as it appears to be in the polychaetes I’d conduct a
more extensive examination.

The application of a ‘multiplier’ to other listed contaminants should only be considered if there is data to
support it.

Berry/Lake/Pruell Charge No. 10 Comment (1 para):
Dr. Pruell felt that the multipliers were probably the best available, and knew of no others.

Solomon/Sibley Charge No. 10 Comment (1 para):
The use of a multiplier to estimate the equilibrium concentrations of those compounds that have not
reached steady state levels in 28-d exposures is judged to be reasonable, based on observations and
experiences with experimental studies where long-term body-burdens have been measured (Lee et al.
1994; Pruell et al. 1993).  As a general rule of thumb, correction factors should be applied where log KOW

is greater than 4 and half-life for depuration from the tissue is more than 9 days.

Newman Charge No. 10 Comment (2 para):
This is my major concern with the process.  I believe that such use of multipliers will not provide an
accurate measure of steady state concentrations for many of the toxicants of concern.  Therefore all
decisions based on these numbers are compromised.  By using one test, one will not be able to fit simple
models for accumulation through time and use the model parameters to estimate practical steady state
concentrations of all toxicants of concern.   Optimal design for some contaminants relative to the spacing
of sampling through time and number of individuals required at each sampling would render such a test
compromised or inadequate for other contaminants.  This is probably the reason for defaulting to
multiplying the 28 day bioaccumulation test concentration by some factor.  Regardless, I believe that the
multipliers are not the solution to getting steady state concentrations.  The cited references provide
conditional information that may not hold in other situations (e.g., sediments with very different organic
carbon or AVS content, species with different lipid contents, species with different
detoxification/sequestration mechanisms, or different temperatures or feeding rates).   The cited
references deal with organic compounds only.  Is there sound evidence to support the universal utility of
these multipliers?  Is there evidence that they are grossly universal in their utility? Were these values to be
checked against the realized concentrations in benthic species at the site from which the dredge material
will be taken (as suggested in ref. 5)? 

Some results from various publications are applied incorrectly, i.e., using 28 day bioaccumulation for Hg
and Cd because they do not conform to the steady state context.  Wouldn't it be more accurate to
estimate the concentration that would be reached during the average life span of the organism since the
Cd or Hg concentrations continue to rise with time and do not appear to come to a steady state
concentration?
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Lee Charge No. 10 Comment (3 para):
The 28 day duration of the bioaccumulation test was a compromise between practicality and a duration
that approached steady-state.  Since establishing the 28-day test, new evidence indicates that a number of
compounds, at least under some circumstances, do not approach within 80% of steady-state in 28 day.
Since the purpose of the bioaccumulation tests is to estimate human and ecological risk, it is critical to
have reasonable estimates of tissue residues in the field.  Therefore, adjustments should be made on a
compound-by-compound basis.  Note that using an adjustment is not a "conservative" assumption (like use
of a UF) but a method to correct for a lab artifact (duration).  As the data become available, the need for
an adjustment factor for all the organics should be evaluated.  In particular, the use of an adjustment
factor for the dioxins/furans needs to be considered.  Rubinstein did some uptake work on 2,3,7,8-TCDD
that could be used and there is probably more recent work. 

Adjustment factors for metals are problematical.  We did not see simple patterns when we reviewed
metal BAFs (Boese and Lee, 1992), but there are cases when 28 days is insufficient to approach 80% of
steady-state.  I have not reviewed metal data since then, but at that time it was my belief that we did not
have sufficient understand of matrix effects and/or physiological effects (e.g., incorporating metals into
jaws) to derive precise adjustment factors.  If a particular metal is of high concern, you should consider
conducting longer term tests.  As a general comment, the use of 10-day bioaccumulation test for metals is
simply not scientifically defensible.  We may not totally understand metal kinetics but there are abundant
data (much of which was available when the Green Book was written) to show that 10 days often
(usually?) does not approach steady-state and can even result in false negatives about
identifying which metals are bioavailable. Question 11.

Because of their short life span of benthic species, B(a)P and other PAHs probably act as neutral
narcotics rather than carcinogens, so the CBR approach is a more appropriate for ecological risk.  (Note:
Calculation of CBR really needs to be done on a molar basis rather than a concentration basis, as done on
page 15.  Fluorene and naphthlene can be added on a ppt basis only if they have same molecular weight.). 
Assessing human health risk is not my area of expertise.  Based on what I know about toxic equivalents
with dioxins, I suspect that the individual potency factors are not well known.  Nonetheless, as with the
dioxins, the sum is probably a better estimate of cancer risk than just evaluating the PAHs individually.

Agency Response to Reviewers’ Comments:

COMMENT 10-1: One reviewer suggested that the use of multipliers to adjust for steady state was
inappropriate.  This reviewer felt that the data used to derive the multipliers was not adequate and that
decisions based on these values would be compromised.  One peer reviewer indicated that the
development of adjustment factors for metals is problematic and suggested that EPA consider using
longer duration tests (>28 days) when there is high concern regarding a particular metal.

RESPONSE 10-1: The opinion expressed by this reviewer supports the recommendation that 28-day
bioaccumulation tests be abandoned in favor of collection and analysis of organisms that reside in
sediments at the dredging site.  The utility, practicability, and appropriateness of that recommendation is
discussed in response to comment 1-7.  

EPA Region 2 acknowledges that there are uncertainties associated with the use of multipliers to estimate
steady state.  However, EPA Region 2 believes that scientifically defensible and practicable alternatives
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to the use of multipliers do not exist.  EPA Region 2 also believes that use of 28-day bioaccumulation tests
and application of multipliers, where necessary, is the most appropriate means of assessing potential for
long term bioaccumulation of organic contaminants in dredged material.  The majority of peer reviewers
concurred with this assessment of the state of the science.  Therefore, EPA Region 2 is proposing to
continue to use 28-day bioaccumulation tests in the proposed Framework, adjusting the results
appropriately to reflect steady state.

Depending on the specific organic contaminant, an appropriate multiplier may be calculated from the
results of empirical (long-term) studies or derived theoretically based on the chemical and physical
properties (e.g., octanol/water partition coefficients) of the contaminant (Lee et al., 1994; McFarland,
1995).  Where valid empirical data are available, EPA Region 2 proposes to use them preferentially over
theoretical methods to derive the specific multiplier for organic contaminants.  Where empirical data are
unavailable, EPA Region 2 proposes to use the theoretical methods to assign the specific multiplier.  EPA
Region 2 proposes to continue using 28-day tests with application of the best available multiplier to assess
the potential bioaccumulation of organic contaminants from dredged material that is proposed for
placement at the HARS.

With regard to uptake of metals and the use of longer term exposure testing, EPA acknowledges the
inherent difficulties associated with estimating steady state based on the results of 28-day bioaccumulation
tests, but believes the 28-day bioassay approach to be sound and scientifically appropriate (see Response
to Comment 10-3).  Also, there are no alternative bioaccumulation test methods currently approved for
incorporation into the regulatory process, as outlined in the Green Book (EPA/USACE, 1991).  Therefore,
EPA Region 2 proposes to continue using 28-day tests with application of the best available multiplier to
assess the potential bioaccumulation of metals from dredged material that is proposed for placement at the
HARS.

COMMENT 10-2:  One peer reviewer suggested using Lee et al. (1994) to determine the need for
steady-state correction factors.  In that reference, they suggest that correction factors should generally be
applied for those organic chemicals with a log Kow greater than 4 and a depuration half-life of more than
nine days.  Another reviewer suggested that correction factors only be applied to 28-day results when the
variability in replicate bioaccumulation tests is less than 50% of the difference between the 28-day and
steady-state tissue concentrations.

RESPONSE 10-2:  EPA Region 2 agrees that these physiochemical characteristics appear appropriate
for determining the need for application of steady-state correction factors to 28-day measured
concentrations of organic contaminants (i.e. whether tissue concentrations measured in bioaccumulation
test organisms following 28-days of exposure represent steady state concentrations).  The theoretical
relationship between log Kow of neutral organic compounds and the proportion of the steady state
concentration that is attained after 28-days of exposure is shown in Figure 6-1 of the Inland Testing
Manual (EPA/USACE 1998).  The relationship reported in Figure 6-1 is proposed for use in the HARS
Framework to: (a) determine the need for application of steady state correction factors for neutral organic
contaminants; and (b) estimate the appropriate correction factor if an empirically-derived correction
factor is not available in the scientific literature. 

Limiting application of the steady state correction factors to those test results in which variability is lowest
does not appear to be practicable or appropriate.  Limiting application of the steady state correction
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factors in this manner presents certain practical and regulatory difficulties. Strict QA/QC guidelines exist
for conducting bioaccumulation test exposures and for chemical analysis of tissues (outlined in the Green
Book (EPA/USACE, 1991) and the EPA Region 2/USACE-NYD Regional Testing Manual
(EPA/CENAN 1992)).  These guidelines are designed  to minimize variability in test results.  September
14, 2000 these testing guidelines, variability in test results may be introduced by non-treatment factors
(e.g., laboratory performance).  By not applying steady state correction factors to highly varying test
results, we risk ‘rewarding’ poor laboratory performance.  Therefore, EPA Region 2 proposes to continue
to apply steady state multipliers, where appropriate, to all 28-day bioaccumulation test results under the
proposed HARS Framework.

COMMENT 10-3: One peer reviewer indicated that the development of adjustment factors for metals is
problematic and suggested that EPA consider using longer duration bioaccumulation tests (>28 days)
when there is a high level of concern regarding a particular metal.  One reviewer suggested that because
metals may not conform to the steady state context, it might be more accurate to estimate the
concentration reached during the average lifespan of the organism. 

RESPONSE 10-3:  EPA agrees that the bioaccumulation of metals by marine organisms is much more
complex than for organic compounds.  This process can be dramatically affected by factors such as metal
speciation and the formation of various complexes (e.g., ligand associations, etc.) (Simkiss and Taylor,
1989; Newan and Jagoe, 1994).  In fact, there is evidence to indicate that in many situations a “true”
steady state is never attained for metals because tissue body burdens vary seasonally due to differences
in growth, body composition, sexual condition, nutrition, temperature and salinity (Amiard-Triquet et al.,
1986; Coleman et al., 1986; Coimbra and Carraca, 1990; Swaileh and Adelung, 1994).  An extensive
review of the literature was conducted to evaluate the manner in which metals are accumulated by
benthic organisms, including bivalves, polychaetes, and crustaceans (Battelle, 1999a).  This review
concluded that substantial differences in uptake, regulation and depuration by marine organisms appear to
exist between essential and non-essential metals.

For essential metals (i.e. arsenic, chromium, copper, nickel, and zinc), an initial increase in tissue
concentrations was typically observed, with tissue concentrations leveling off with continued exposure.
This relationship was observed at all but the highest exposure concentrations (White and Rainbow, 1982;
Camusso et al., 1994), indicating that many marine organisms have the ability to regulate those metals that
are essential to their health (e.g., copper and zinc), despite large variance in the sediment concentrations
to which they are exposed (Camusso et al., 1994; Ahsanullahs and Williams, 1991; Rainbow and White,
1989; White and Rainbow, 1982).   For example, concentrations of zinc appear to plateau around 200
mg/kg, despite elevated external exposure concentrations (White and Rainbow, 1982).  This implies that
the continued uptake of non-essential metals is primarily a function of the tissue concentration, rather than
the length of exposure or a steady-state relationship with external media.

For non-essential metals (i.e., silver, cadmium, mercury, and lead), the relationship is less clear.  The
ability of benthic organisms to regulate the uptake of non-essential metals appears to be very much
diminished, with levels often appearing to accumulate over time (Camusso et al., 1994; Ahsanullah and
Williams., 1991).  However, despite the apparent uptake into tissues, there is evidence to indicate that
metabolic mechanisms work to eliminate these nonessential elements from the organism when body
burdens reach certain levels of saturation (Holcombe et al., 1976; Spehar, 1976; Riisgard et al., 1985).  
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Based on the above information, it appears clear that the kinetics of accumulation of metals by marine
organisms is extremely complex and cannot easily be characterized in general terms.  Application of
steady state correction factors as defined for the organic compounds is not appropriate for metals,
because a “true” steady state for metals does not exist.  

The extrapolation of 28-day results to the lifetime of the organism is impractical because it is exceedingly
difficult to estimate the average lifetime for a benthic organism.  Likewise, assuming a constant linear rate
of uptake of metals and extrapolation of a calculated daily uptake rate from the 28-day exposure for the
life span of the organism also does not appear to be scientifically appropriate, given the documented
effects of changes in a non-constant environment on uptake and depuration kinetics.  Nevertheless,
because of (1) the potential for 28-day tests to underestimate uptake of metals (particularly non-essential
metals), (2) less evidence for regulation of non-essential metals by exposed marine organisms, and (3) the
higher level of human health and ecological concern regarding non-essential metals (e.g. mercury and
cadmium), EPA Region 2 has elected to derive a safety (uncertainty) factor to apply to 28-day
bioaccumulation test results for non-essential metals for the proposed HARS Framework.

To develop an appropriate safety factor for application to 28-day test results for non-essential metals,
EPA Region 2 compiled and compared sediment concentrations and polychaete tissue concentrations in
co-located samples from the vicinity of the HARS, reported by Battelle (1995).  It is assumed that metals
concentrations measured in the organisms collected in this effort represent a range of exposure durations
and conditions that are typical of benthic organisms at the HARS.  The results of this analysis indicate
that despite sediment concentrations which varied by as much as two orders of magnitude, tissue
concentrations of non-essential metals in field collected benthic organisms varied within a factor of three
(i.e., maximum reported concentrations of all non-essential metals were approximately three times higher
than the lowest concentration reported).  Therefore, EPA Region 2 is proposing to use a safety factor of
three applied to the results of the 28-day bioaccumulation test for non-essential metals (i.e. silver,
cadmium, mercury, and lead) to reflect this pattern in field tissue accumulation under the proposed HARS
Framework.  EPA Region 2 believes this represents an appropriately conservative factor to account for
potential underestimation of non-essential metals accumulation by the 28-day duration of the test
exposure.

COMMENT 10-4:  Three peer reviewers suggested that steady state correction factors should be
derived for and applied to 28-day bioaccumulation of dioxins and furans.  One reviewer suggested that
these correction factors be based on Pruell et al. (1993).  This study suggested that there was no
significant difference in Macoma nasuta  tissue concentrations of dioxins between 28 and 128 days. 
Therefore, steady state correction factors would be necessary only for Nereis virens. 

RESPONSE 10-4: See response to comment 5-8.
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Charge Group: Calculations

Charge No. 11: Is the calculation and use of BaP toxicity equivalence an appropriate way to
estimate the potential carcinogenicity of PAHs?  (Please see Region2/CENAN
joint evaluation memorandum, Appendix for Table 1, Section C.)

 

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 11 Comment (1 para):
I think it is a reasonable way to estimate carcinogenicity, given the current state-of-the-science.  The
assumption of additivity inherent in the summation of TEFs reflects current understanding of the effects of
PAHs.  Toxicological data are scarce and not available for all compounds, but the use of BaP TEFs is
probably the best way to estimate cumulative risk.   However,  the EPA/COE Memo for the Record has
ignored the advice of U.S. EPA (1993), the cited source of the PAH TEFs.  First, US EPA (1993) says,
“These are not proposed as toxicity equivalency factors (TEF)”, but the EPA/COE Memo identifies them
as TEFs.  This is more than a matter of semantics.  Second, US EPA (1993) says, “The list of PAHs is
not sufficiently extensive to meet the needs of Programs and Regions.”  There is a clear conflict between
the uncertainties highlighted in the source document and the proposed application of these numbers.

Clifford Charge No. 11 Comment (1  para):
My concerns regarding use of body burdens as surrogates for exposure values aside, the conversion
technique itself is, in general, appropriate.  See comment response No. 2 regarding moles vs. milligrams.

Gentile Charge No. 11 Comment (1 para):
Yes, I thought the description and rationale was well thought out.  The only question is that the BaP
Toxicity Equivalence estimate relies entirely on data collected in 1980s.  Isn’t there more recent data that
can be used to support the derivation of the equivalence value of 8,021ppb ?

Solomon/Sibley Charge No. 11 Comment (1 para):
BaP TEs are judged to be an appropriate method for estimating the carcinogenicity of PAHs.  PAHs
usually require metabolic activation as they are pro-carcinogens.  With high exposures to mixtures of
PAHs, metabolism may be reduced by substrate overload, thus lowering the carcinogenic risk.  As
exposures reported in this assessment are generally low, this is unlikely to occur, however, the qualifier
discussed above in relation to extrapolation and repair mechanisms needs to be considered.  The use of
BaP TEQs is judged to be somewhat conservative.

Newman Charge No. 11 Comment (1 para):
The calculations and use of toxic equivalence appear adequate.
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Dillon Charge No. 11 Comment (1 para):
PAH toxicity to aquatic organisms, not a BaP toxicity equivalence approach, is discussed in Appendix for
Table 1, Section C.  Carcinogenicity is an important endpoint for human health but generally not
appropriate for ecological receptors.

Agency Response to Reviewers’ Comments:

COMMENT 11-1: One reviewer notes that we should not identify the conversion factors as Toxicity
Equivalency Factors (TEFs) (as per EPA, 1993).

RESPONSE 11-1: EPA Region 2 acknowledges that the conversion factors should not be identified as
TEFs. EPA’s (1993) provisional guidance for quantitative risk assessment of PAHs states that the
“Office of Health and Environmental Assessment (OHEA) has chosen not to label the risk assessment
numbers in this document as “toxicity equivalency factors” but rather as “estimated orders of potential
potency.” The reason for this determination was that PAH carcinogens do not meet all the guiding criteria
for application of TEFs to mixtures (EPA, 1991), primarily because the toxicity data upon which to base
the TEFs are not sufficient.  Most toxicological studies involving PAHs are for carcinogenic, genotoxic,
and mutagenic effects; there is only limited data for systemic (non-cancer) toxicity. Because of this
deficiency, EPA (1993) recommends using the “weighting of potential potency” for carcinogenicity (see
comment and response to comment 11-2).  In addition, EPA (1993) reported that an adequate consensus
on TEFs for PAHs had not been determined; different TEF values can be generated depending on the
carcinogenicity test data evaluated.  Another problem noted by EPA (1993) is that the additivity of PAH
carcinogenic potencies has not been proven. However, the data supporting additivity of PAH
carcinogenicity are of about the same quality as the data supporting additivity of toxicity of PCBs and
PCDF/PCDDs, for which TEFs have been developed and are widely used.  

Despite the limitations described above, EPA Region 2 believes that using the Benzo(a)pyrene (BaP)
equivalency approach described in the Framework is the most appropriate method for evaluating the
potential carcinogenicity of PAHs at this time (see response to comment 11-2).  EPA Region 2 proposes
to continue using the current TEF process for evaluation of the total carcinogenicity of PAHs.  However,
the values will be referred to as “potential potency factors” (i.e., PPFs) instead of TEFs. 

COMMENT 11-2: Two of the reviewers caution that the BaP-equivalency approach is generally only
applicable to the carcinogenic (human health) endpoint.  

RESPONSE 11-2: EPA Region 2 agrees.  Under the current and proposed HARS Frameworks, the
BaP potential potency factors (PPF) approach for PAHs is only used to estimate cancer risks to human
consumers of fishery products. This is consistent with EPA’s 1993 provisional guidance for quantitative
risk assessment of PAHs which states that “the guidance in this paper should be applied only to
assessment of carcinogenic hazard from oral exposure to PAHs.” 

COMMENT 11-3: One reviewer inquires as to whether there are more recent data sets that we may
use to set BaP-potential potency factors. 
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RESPONSE 11-3: EPA Region 2 agrees that the most recent applicable data sets available at this time
should be used and a review of the literature was conducted to identify any applicable studies.  A more
recent study applied  TEFs (i.e., potential potency factors) developed by Nisbet and LaGoy (1992) to
estimate the carcinogenicity of PAH-contaminated air emissions from different pyrogenic sources (Petry
et al., 1996). These factors were developed for 16 carcinogenic or suspected carcinogenic PAHs (Nisbet
and LaGoy, 1992). Nevertheless, benzo(a)pyrene was found to be responsible for 27 to 67 percent of the
estimated carcinogenicity of the complex air emissions samples, similar to the results reported by EPA
(1993). Because of the importance of benzo(a)pyrene to the carcinogenicity of the mixtures, variations in
the relative concentrations of other PAHs in the mixtures did not have much effect on the estimated
carcinogenicity of the different air emissions. Thus, it is uncertain if use of alternative potential potency
factors would improve the estimation of the carcinogenicity of PAH mixtures in fish from the HARS. 

 EPA Region 2 believes that use of the EPA (1993) potential potency factors provides a better estimate
of  carcinogenicity of the PAH mixture than would use of the carcinogenicity of benzo(a)pyrene alone or
setting the carcinogenicity of each of the individual potentially carcinogenic PAHs in the samples equal to
the carcinogenicity of benzo(a)pyrene.  EPA Region 2 believes that the BaP PPFs used in the current
framework are based on the best available information and, therefore, proposes to use them in the
proposed revisions to the HARS Framework.

COMMENT 11-4: One reviewer indicates that molar concentrations are necessary for summation of
the total BaP potential potency.  

RESPONSE 11-4:  EPA Region 2 agrees that the BaP potential potency approach should be based on
molar concentrations rather than mass/mass concentrations. The carcinogenicity of a nonpolar organic
chemical is proportional to the number of molecules of that chemical at the site(s) of carcinogenic action
in the tissues of the organism. Equimolar concentrations of all chemicals contain the same number of
molecules. Thus, molar concentrations are the better way to express the additive contributions of several
chemicals to the carcinogenicity of a mixture. Glass and Easterly (1994) recommend using molar
concentrations in deriving carcinogenicity potency factors for PAHs and other chemical carcinogens.  

Most potency factors were developed based on laboratory toxicity tests that were reported in mass/mass
doses, however, conversion from mass to molar units would be a simple task.  This conversion would
probably result in slightly different potency factor values.  For example, the molecular weight of the
carcinogenic PAHs that are present most frequently in tissues of marine fisheries products range from
228.3 (benz[a]anthracene) to 276.3 (indeno[1,2,3-cd]pyrene). The molecular weight of benzo(a)pyrene is
252.3. Therefore, the error introduced by using mass units instead of molar units is small,  ± 10 percent. 
Despite the relatively small potential difference, the EPA proposes to incorporate this modification into the
proposed Framework.

COMMENT 11-5: One reviewer noted that the CBR approach was probably more appropriate for
evaluating the ecological risks for PAHs. 

RESPONSE 11-5: EPA Region 2 agrees that the narcotic critical body residue (CBR) approach is a
more appropriate model for evaluating ecological risks from PAHs than is the BaP potential potency
factor approach.  The cancer endpoint is not ordinarily used in ecological risk assessment, because cancer
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risk is usually expressed as individual risk rather than population risk, and there are few data available on
the carcinogenicity of nonpolar organic chemicals to marine organisms. In the proposed Framework, EPA
Region 2 proposes to use the narcotic critical body residue approach to evaluate risks of PAHs to
ecological receptors (see responses to comment 8) and to limit application of the BaP potential potency
factor approach to assessing cancer risk to human consumers of fisheries products from the HARS area.
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Charge Group: Calculations

Charge No. 12: Similar to PCBs, only a subset of those PAHS present in New York Harbor are
measured for testing evaluation.  How should the remainder be considered?

 

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 12 Comment (1 para):
PAHs tend to covary in their contaminant distributions.  Measurement of 16 parent PAH compounds is
likely to detect a PAH contamination problem.  It is possible that in marginal cases a real problem might
be missed if the contribution of other PAHs was necessary to exceed a critical body residue.  To
minimize this possibility, a couple of substituted PAHs could be added to analyte list, e.g. alkylated
phenanthrenes or naphthalenes.  Also, a GC/MS scan could be used to detect peaks that might represent
other PAHs of concern on a site-specific basis.

Gentile Charge No. 12 Comment (1 para):
The selection of 22 PCB congeners was based upon their toxicology (e.g, potency), and biological
importance, bioaccumulation potential, persistence, and presence in the environment.  If, using these or
some other set of criteria a case can be made for sub-setting the PAHs then it should be done particularly
if it provides value added by providing additional predictive power, scientific defensibility, or reduction of
uncertainty for the risk manager.

Berry/Lake/Pruell Charge No. 12 Comment (1 para):
Dr. Lake felt that PAHs pose a different problem than PCBs with regard to quantitation. Presently, there
isn’t a good way to effectively quantitate all PAHs (including alkyl homologues) present in extracts. The
only alternative is to select a subset.  Dr. Pruell agreed, and added that eventually we will need to get a
better understanding of the effects of the other PAHs (as well as the saturated organic compounds).

Solomon/Sibley Charge No. 12 Comment (1 para):
In this reviewers experience, (with PAHs in creosote) the concentration of the 15 EPA priority PAHs
follows the toxicity of the balance of the components of the mixture although, prior to weathering, the
complete mixture is usually more toxic than would be predicted from the 15 priority PAHs.  Given the age
of the sediments in the site being assessed, the 15 priority PAHs are judged appropriate for estimating
toxicity.

Newman Charge No. 12 Comment (1 para):
I lack sufficient background to give an informed answer.

Lee Charge No. 12 Comment (1 para):
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The problem with the PAHs may be more difficult than with the PCBs since there are multiple natural
and anthropogenic sources.  Therefore, the ratios among various PAHs is likely to vary more than
among PCB congeners.  The simplest approach would be to have a single ratio of total to the measured
PAHs based on empirical studies.  I believe a better approach would be to break down the PAHs into
functional classes and have empirical ratios for each. The simplest functional classes would be high and
low molecular weight but there may be other grouping that better capture the various local sources (e.g., 
petroleum vs. combustion vs pyrogenic PAHs).  Note that this problem becomes more acute if the
alkylated-PAHs are included.   

Dillon Charge No. 12 Comment (1 para):
See peer reviewer's responses to 8.A and 16.

Agency Response to Reviewers’ Comments:

COMMENT 12-1: Several reviewers commented that current analytical methods cannot effectively
quantitate all PAHs.  Reviewers suggested alternate methods for quantifying PAHs, including EPA
Method SW 846-8310 or a GC/MS scan.

RESPONSE 12-1: EPA Region 2 concurs that alternate analytical methods should be used in an attempt
to achieve low detection limits and to detect PAH compounds that are not quantified by the current
method (EPA Method 8270).   To this end, EPA Region 2 evaluated alternate analytical methods to
identify a method to attain these goals (quantitation of additional PAHs at low detection limits). 

EPA Region 2 proposes to continue using EPA Method 8270 to quantify PAHs in test organism tissue. 
However, EPA Region 2 also proposes to require EPA Method 8270 to be performed with specific
analytical sample cleanup procedures and analytical instrument configurations which have been optimized
to allow detection and quantitation of parent PAHs and their alkylated homologues.  Using these sample
cleanup procedures and instrument configurations, a greater range of PAH compounds (i.e. unsubstituted
parent PAHs and their C1 to C4 alkylated homologues) could be measured than is possible using other
standard methodologies. This analytical option has been used by the National Oceanic and Atmospheric
Administration (NOAA) National Status and Trends (NS&T) Program (NOAA, 1998).  The required
sample cleanup procedures and instrument configurations are detailed in Procedures for Analysis of
PAH and Alkyl PAH in Sediment and Tissue at Risk-based Detection Limits (Battelle, 1999b).  A copy
of Battelle (1999b) is included as Appendix G of this document.
      
Method detection limits (dry weight) of approximately 10 ug/kg and 5 ug/kg are associated with
measurement of individual PAH compounds in sediment and tissue matrices (respectively), using these
procedures.  These low detection limits represent an additional advantage of using this method for
measuring trace levels of PAHs.  

Using the proposed sample cleanup and instrument configurations described in Battelle (1999b), EPA
Region 2 proposes to designate the additional alkylated homologues as standard target analytes, in addition
to the parent PAH compounds.  However, because calibration standards do not exist for the thousands of
alkylated PAHs that are detected and quantified using the proposed procedures, measured concentrations
of the C1 to C4 alkylated homologues of the parent (unsubstituted) PAHs would be considered as
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estimates of the actual concentration present for purposes of assessing risk.  Overall data acceptability
would be determined using measures of laboratory performance generated for the parent PAH
compounds for which calibration standards are available.

COMMENT 12-2:    Two of the reviewers felt that given the current uncertainties associated with
detecting and evaluating the wide range of possible PAH compounds, evaluation of a standard subset (i.e.,
the 15 priority pollutant PAHs) is appropriate, similar to the method established for the PCB congeners. 
One of the reviewers suggested that these subsets should be based on similarities in toxicology.  The other
recommended creating functional classes reflecting local sources (e.g., petroleum associated PAHs
versus combustion PAHs).

RESPONSE 12-2: EPA Region 2 acknowledges the suggestion for quantifying a subset of PAHs.  
However, as discussed in the response to comment 12-1, robust sample cleanup and instrument
configuration procedures are proposed to enable EPA Method 8270 to address the need to quantify the
full range of PAHs in the sample.  These procedures would allow detection of the parent (unsubstituted)
PAHs and their C1 to C4 alkyl homologues.  

Molar concentrations of these compounds can be readily estimated using these procedures which will
allow the data to be readily incorporated into the narcotic critical body residue (CBR) model (see
responses to comments 8 and 11).   Because PAHs act toxicologically as Type 1 nonpolar narcotic
contaminants (DiToro et al., 2000), EPA Region 2 does not feel that it will be necessary to group the
PAH compounds into further subsets as suggested by the peer reviewer.  Furthermore, EPA Region 2
believes that evaluation of this comprehensive list of PAHs would also be more protective of human
health.

COMMENT 12-3:  One reviewer noted that while the current methods are appropriate for evaluating
the direct toxicity of PAHs to benthos, the potential effect of the associated metabolites should be
considered when evaluating food web transfers.

RESPONSE 12-3: EPA Region 2 acknowledges the concern that PAH metabolites should be
considered when evaluating food web transfers.  Two studies were identified which compared the
relative trophic transfer efficiencies of a PAH and its metabolites in fish (McElroy and Sisson, 1989;
McElroy et al., 1991).  In those studies, the authors reported that PAH metabolites can be transferred to
predators from prey.  However, transfer of metabolites to fish is significantly lower than transfer of the
parent PAH.  There is currently very little information available with which to quantify the potential
toxicological effects of these compounds. As a result of the paucity of relevant toxicological information
regarding PAH metabolites, EPA Region 2 believes that PAH metabolites cannot be effectively
considered at this time in the evaluation of the potential food web effects of PAHs.
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Charge Group: Calculations

Charge No. 13: Is the assumption of a trophic transfer coefficient of one appropriate for use in
evaluating the potential for human health and ecological impacts associated
with metals in Remediation Material?  Are the trophic transfer factors
calculated for organic compounds correct?  (Please see Region2/CENAN joint
evaluation memorandum, Appendix for Table 1, Attachment C.)

 

Summary of Peer Review Comments

Individual Comments

Bartell Charge No. 13 Comment (2 para):
It was stated in the body of the report (p. 12) that the trophic transfer coefficients for metals were
conservatively assigned a value of 1.0.  Curiously, arsenic is assigned a value of 3, suggesting the potential
for biomagnification, which if justified for any metal would pertain mainly to methyl mercury.  However,
in the absence of human health or toxicity data, arsenic drops out of the analysis at any rate (i.e., Table
1).

The values of trophic transfer coefficients for PAH’s were also conservatively selected (i.e., 0.1,
Attachment C).  Studies described on p. 14 suggest >90% elimination or metabolism of ingested PAHs. A
transfer coefficient of 0.02 was cited between fish and invertebrates, although the value might have been
as high as 0.23.  The transfer values for pesticides were derived using the Gobas (1993) model, which
was developed originally for PCBs.  The resulting values ranged from 1 - 2.47 and appear consistent at
least with observations of some pesticide biomagnification.

Clifford Charge No. 13 Comment (1  para):
My concerns regarding use of body burdens as surrogates for exposure values aside, the conversion
technique itself is, in general, appropriate.  See comment response No. 2 regarding moles vs. milligrams.

Gentile Charge No. 13 Comment (1 para):
Yes, assuming the assumptions, arguments and data used to support them are accurate.

Berry/Lake/Pruell Charge No. 13 Comment (1 para):
Dr. Pruell felt that a trophic transfer coefficient of one may not be appropriate for the metals.  It is
probably too low for mercury, and too high for the other metals.  Further, Dr. Pruell felt that there were
good transfer coefficients available for many of the organics.  Much of the relevant work has been done
at EPA’s laboratory in Duluth, Minnesota, by Phil Cook and others.

Wentsel Charge No. 13 Comment (1 para):
Use of a trophic transfer of 1 for metals is appropriate for metals (excluding MeHg) in risk assessments. 
The conservative aspects of the assessment do not require bioavailability issues to be addressed.
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Solomon/Sibley Charge No. 13 Comment (1 para):
The trophic transfer factors used in evaluation of human and ecotoxicological health in this assessment
are judged to be appropriate.

Newman Charge No. 13 Comment (1 para):
The trophic transfer coefficient of 1 seems conservative (i.e., it could be less than 1 for some metals)
except for mercury.  Because mercury will biomagnify, the coefficient greater than this is required.  
Please see the references cited below for the appropriate coefficient for mercury.

Dillon Charge No. 13 Comment (1 para):
A TTC of  1 is appropriate for metals with the exception of organo-metals which would have higher
values.  Published TTC values for organics vary with study, chemical and trophic level.  The "correct"
TTC is one developed for the specific chemical and trophic level of concern.  

Agency Response to Reviewers’ Comments:

COMMENT 13-1: Several reviewers believed that the trophic transfer factors for metals may be too
high (i.e., conservative) for those metals that do not have an organo-metallic form.  Values less than 1
may be appropriate for these compounds. 

RESPONSE 13-1: EPA Region 2 agrees that the use of a trophic transfer factor of 1 for all metals
appears to be conservative.  As described in Appendix E, EPA Region 2 performed an extensive review
of the available scientific literature to determine the potential for dietary transfer of metals to finfish from
contaminated benthic invertebrate prey (also see response to comment 8).  The data reviewed support the
conclusion that dietary transfer of metals to fish from prey is generally inefficient, usually resulting in
trophic transfer factors of less than one (Appendix E; Reinfelder et al., 1998; Suedel et al., 1994).  
Based on this review, EPA Region 2 will propose alternative values for four cationic metals (i.e., copper,
cadmium, lead and zinc) and arsenic.  

For the purpose of deriving alternative trophic transfer values, EPA Region 2 focused on recent
laboratory studies conducted with field collected benthic organisms from areas known to be contaminated
by metals (Woodward et al., 1994; 1995; Farag et al., 1994; 1999; 2000).  These studies provided
evidence that using contaminated feeds or laboratory-contaminated prey may underestimate the potential
for trophic transfer of metals to fish (Farag et al., 2000; Harrison and Curtis, 1992).  Based on these data
(Appendix  E), the following trophic transfer factors (i.e., benthic invertebrates to fish) were derived and
are being proposed as part of the revised HARS Framework:
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Chemical Trophic Transfer: Prey to Fish Trophic Transfer: Fish to Prey

Arsenic 0.25 ([As]fish / [As]prey) 4.00 ([As]prey  / [As]fish)

Cadmium 0.25 ([Cd]fish / [Cd]prey) 4.00 ([Cd]prey  / [Cd]fish)

Copper 0.21 ([Cu]fish / [Cu]prey) 4.76 ([Cu]prey  / [Cu]fish)

Lead 0.23 ([Pb]fish / [Pb]prey) 4.35 ([Pb]prey  / [Pb]fish)

Zinc 0.24 ([Zn]fish / [Zn]prey) 4.17 ([Zn]prey  / [Zn]fish)

In the absence of sufficient data to derive chemical-specific trophic transfer factors, EPA Region 2 is
proposing to continue to use a conservative factor of 1 be applied to all of the remaining metals except for
mercury (see response to comment 13-2).  EPA Region 2 believes that these values are appropriately
conservative for the purpose of protecting human health and the environment, and to meet the remedial
goal of the HARS. 

COMMENT 13-2:  The majority of the reviewers felt that a trophic transfer factor of 1 was too low for
mercury, the organic form of which is expected to biomagnify.  

RESPONSE 13-2: EPA Region 2 agrees that a trophic transfer factor of 1 appears to be low for
mercury. Mercury occurs in three valence states in marine ecosystems: zero (elemental), monovalent
(mercurous), and divalent (mercuric) compounds (Rolfhus and Fitzgerald, 1995).  These states may be
transformed to organomercury compounds in aquatic systems, particularly methylmercury. 
Concentrations of the inorganic forms of mercury in marine animal tissues tend to decrease with
increasing trophic level.  In contrast, methylmercury is highly bioavailable and tends to biomagnify in
marine food webs. There is evidence to indicate that the biomagnification of methylmercury resembles
that of hydrophobic trace pollutants such as PCBs (Cabana et al., 1994; Mason et al., 1995). 

Based on the available literature, reported trophic transfer factors for mercury are quite variable, often
because the forms of mercury in different environmental compartments have not been documented
(Suedel et al., 1994).   In addition, most studies evaluating increased mercury concentrations at the top of
aquatic food chains have typically not accounted for differences in body size and physiology (Cabana et
al., 1994).  As discussed by Huckabee et al. (1979), factors such as longevity, growth rates, uptake, and
depuration among species at different trophic levels may have as much impact on observed chemical
concentrations as food chain transfers.  To address this issue Cabana et al. (1994) conducted an
evaluation of mercury levels using individuals from a single species exposed via food chains of varying
lengths.  Based on this evaluation, EPA Region 2 is proposing a trophic transfer factor of 1.95 which was
derived for total mercury.  This value is appropriate for methylmercury and thus was, determined to be
appropriately conservative for the purpose of protecting human health and the environment and to meet
the remedial goal of the HARS.  

While the trophic transfer factor of 1.95 is considered to be appropriate for total mercury, when
evaluating speciated analyses of mercury, this would be very conservative for estimating trophic transfer
of inorganic mercury compounds.  Therefore, in those cases where speciated forms of mercury are
reported, a trophic transfer factor of 1 will be applied for the inorganic mercury species.
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COMMENT 13-3:  One reviewer commented that the trophic transfer coefficients for PAHs were too
conservative. 

RESPONSE 13-3: EPA Region 2 acknowledges the suggestion that the trophic transfer factor of 0.1 for
PAHs appears to be too conservative. Available data suggest that PAHs do not biomagnify in aquatic
food webs (Suedel et al., 1994).  In fact, some studies have suggested that many organisms contain lower
concentrations of PAHs than their food sources (Neff, 1979; Broman et al., 1990) indicating increased
ability to metabolize and excrete these compounds with increasing trophic level.  A value of 0.1 was
selected as representative of the PAH compounds based on the results of two evaluations.  Burns and
Teal (1979) estimated a trophic transfer of 0.1 for total PAHs between mummichog (Fundulus
heteroclitus) and American eel (Anguilla rostrata).  Similarly, Broman et al. (1990) reported a trophic
transfer factor of 0.1 for benzo(a)pyrene between zooplankton and mussels (Mytilus edulis).  Based on
these data, EPA Region 2 believes that this value is a reasonable estimate of the potential trophic transfer
of these compounds and is proposing to use it in the proposed HARS Framework.

COMMENT 13-4: One reviewer suggested that the trophic transfer for arsenic (i.e., 3) was too high.

RESPONSE 13-4: EPA Region 2 agrees that a trophic transfer factor for arsenic of 3 is too high. 
Available evidence indicates that arsenic does not biomagnify in primary or secondary consumers.
Limited biomagnification has been reported in tertiary consumers; however, it is important to consider the
form of arsenic which is accumulated.  Arsenic has an unusual behavior in marine food webs. Inorganic
arsenic species are bioconcentrated by marine algae and converted to organic forms, particularly
arsenosugars (Neff, 1997a). Herbivores and detritivores accumulate the organic arsenic from their algal
food and store it in their tissues, primarily as arsenobetaine, which is not toxic to the animals themselves or
their consumers, including man. More than 90 percent of the arsenic in soft tissues of marine crustaceans
and fish is arsenobetaine. Human consumers of fishery products rapidly excrete unmetabolized
arsenobetaine in the urine. Thus, organic arsenic may be biomagnified to some extent; however, the
inorganic (i.e., toxic) form does not biomagnify (Dillon et al., 1995).  

As described in the response to comment 13-1, EPA Region 2 conducted an extensive review of the
available literature to derive a more realistic estimate of trophic transfer of arsenic.  Based on this
information, a new trophic transfer factor (i.e., prey to fish) for arsenic of 0.25 ([As]fish/[As]prey) is
proposed for determining the suitability of dredged material proposed for use at the HARS as Remediation
Material under the proposed HARS Framework. 

COMMENT 13-5: One reviewer suggested that transfer coefficients for many of the organic chemicals
could be obtained from work performed by EPA’s laboratory in Duluth, MN.

RESPONSE 13-5: EPA Region 2 acknowledges the reviewer’s comment and notes that the trophic
transfer coefficients for chlorinated organic contaminants used in the current and proposed HARS
Frameworks were developed by Dr. Lawrence Burkhard at EPA’s Mid-Continent Ecology Division
(Office of Research and Development, Duluth, MN). 

Dr. Burkhard derived the trophic transfer coefficients for chlorinated organic contaminants using the food
web model of Gobas et al. (1993), run at equilibrium (EPA 1995b).   The food web used in the model was
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described by a simplified New York Bight food chain consisting of three representative trophic levels:
benthic organisms, benthic predators, and upper level predators.  Through numerous discussions/meetings
(1994 to 1996) with a Mud Dump Site Criteria Workgroup (comprised of scientific representatives of the
environmental and regulated communities, NY and NJ resource agencies, USEPA, USACE, and NOAA-
NMFS with knowledge of the NY Bight ecosystem) which was established and convened under the
NY/NJ HEP Dredged Material Management Forum to develop bioaccumulation Criteria for disposal at
the former Mud Dump Site (for additional information on the trophic levels see EPA (1995a)).  Average
lipid contents of each trophic level were calculated from lipid contents of representative organisms in each
level, as reported by NYSDEC (1996).   

Higher level ecological receptors (e.g., piscivorous birds and mammals) were not identified as appropriate
terminal ecological receptors for the food chain in the 1995 characterization, nor were any identified by
U.S. Fish and Wildlife Service, NOAA-NMFS, state resource agencies, or the public in comments
received during the HARS site designation process.  Therefore, predatory fish are proposed for use as the
terminal ecological receptors in the assessment of ecological risks at the HARS.

The Gobas model is sensitive to the log Kow assigned to the compound being modeled. Since different Kow

values have been published for chlorinated organic compounds, it is important to carefully select the
appropriate Kow for use in the model.  Karickhoff and Long (1995) reviewed log Kows and derivation
methods published for various compounds and the methods used to derive those values.  Based on their
review, they recommended values for use by EPA.  Log Kows obtained using the “slow-stirring” or
“shake-flask” methods were usually recommended for use by the authors, depending on the compound.
These recommended log Kow values were used to run the Gobas model.

Log Kows assigned to chlorinated organic pesticides and resultant trophic transfer coefficients predicted
by the Gobas model are reported in the following table.  

Compound log Kow Trophic
Transfer Factor

Compound log Kow Trophic
Transfer Factor

Aldrin 6.5 3.0 DDT 6.53 3

Dieldrin 5.3 1.6 DDD 6.1 2.7

a - chlordane 6.32 2.9 DDE 6.76 3

heptachlor 6.26 2.9 endosulfan
(mixture)

4.1 1.1

heptachlor epoxide 5.0 1.4

Karickhoff and Long (1995) did not review or recommend log Kow values for PCB congeners or mixtures. 
De Bruijn et al. (1989) reported log Kows for 19 PCB congeners that were measured using the slow-stirring
method.  They reported that increasing chlorination level is the primary determinant of log Kow of a given
PCB congener, but also noted that the patterns of chlorine substitution also contributed to a lesser extent to
the log Kow. 
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In deriving guidance values for evaluating risk associated with PCB mixtures, a single trophic transfer
factor of 3 was used to express the potential for trophic transfer of contaminants to upper level predators.
This reflects the most efficiently transferred of the PCB congeners. Assuming equilibrium, use of this
trophic transfer factor is more or less appropriate for PCB congeners with 4 to 6 chlorine atoms (i.e., log
Kows 6.2 -7.1), but is overly conservative for less or more highly chlorinated congeners.  For example,
trophic transfer rates are estimated to be approximately 2.14 for congeners with three or seven chlorines.

Hawker and Connell (1988) published log Kows for each of the 209 PCB congeners. EPA Region 2
proposes to use these values to better predict and consider the trophic transfer of the specific PCB mixtures
that are accumulated by test organisms from dredged material proposed for use at the HARS. Specifically,
EPA Region 2 proposes to adjust reported concentrations of individual congeners by applying a multiplier
that will correct for the difference in the predicted trophic transfer for the individual congener (based on its
log Kow) and that used for deriving the HARS-Specific value (i.e., the trophic transfer factor of three (3)). 
An adjusted total PCB residue would then be calculated and considered against  guidance values derived
using a trophic transfer factor of three.  This approach would minimize the uncertainty and better estimate
trophic transfer of PCB mixtures.  

EPA Region 2 proposes to use similar adjustments in calculating and evaluating risks for mixtures of
chlorinated organic compounds with differing log Kows and shared guidance values that would be derived
with assumptions of uniform, worst-case trophic transfer (i.e., human and ecological assessments of total
DDT and total endosulfans, and ecological assessments of total chlordane and aldrin + dieldrin).
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Charge Group: Calculations

Charge No. 14: Is the assumption of a fish consumption rate of 6.5 g/day appropriate for use in
evaluating the potential for human health impacts associated with metals in
Remediation Material?   (Please see Region2/CENAN joint evaluation
memorandum, Appendix for Table 1, Page  A-5)  Would it be appropriate that
the evaluation focus on a higher consumption population?

 

Summary of Peer Review Comments

Individual Comments

Bartell Charge No. 14 Comment (1 para):
The fish consumption rate of 6.5 g/d converts approximately to one meal of 6 oz. of fish every two weeks
during one year.  The accuracy of applying this number generally across people of different age, size, and
geographical location is certainly open to argument.  However, it would appear highly probable that
certain subpopulations of those who regularly utilize the regional marine resources would characteristically
consumer more fish than the 6.5 g/d value.  It would certainly be appropriate to include an additional
analysis that focused on fishermen and other subsets of the regional populace that eat more than this
default rate.  However, this introduces the question concerning whom the sediment classification criteria
are meant to protect; identification and characterization of the “stakeholders” in relation to this
assessment might assist in refining exposure parameters throughout the entire assessment.

Clifford Charge No. 14 Comment (1  para):
Given my limited expertise in human health risk assessment and setting aside my concerns regarding use
of humans as terminal ecological receptors, I believe the value is appropriate.

Gentile Charge No. 14 Comment (1 para):
Although EPA uses 6.5g/day as their default consumption rate a case can be make for exceptions where
subsistence fishing by specific sub-populations are an issue.  I can’t make a case for increasing the
consumption rate for fish coming from that site unless there is specific subsistence fishing there.  If the
catch is going to the broader market then the 6.5 g/day is fine.  I certainly can’t make a case for
increasing it.

Wentsel Charge No. 14 Comment (1 para):
Consumption of 6.5 g/day has been used as a number.  Recent publications have looked at the distribution
of fish consumption by people. A focus on higher consumption populations may be appropriate for specific
sites, but the various conservative assumptions in this assessment should be protective of those groups.
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Solomon/Sibley Charge No. 14 Comment (1 para):
Given the low likelihood that fish or shellfish directly from the site will be eaten by any particular individual
on a consistent basis (no local subsistence fishery), this assumption of an average consumption of fish of
6.5 g/day is judged to be appropriate and probably conservative.

Newman Charge No. 14 Comment (1 para):
The consumption rate is consistent and reasonable if the focus is the general population.  However, as
suggested in EPA 540/1-89/002 December 1989, "Residents near major commercial or recreational
fisheries or shell fisheries are likely to ingest larger quantities of locally caught fish and shellfish than
inland residents."  I would suggest that consumption surveys be reviewed to identify any possible
subpopulation consuming higher amounts than 6.5 g/day.

Dillon Charge No. 14 Comment (1 para):
6.5 g/day is a standard ingestion rate EPA uses in its risk assessment guidance (RAGS) for Superfund. 
When available, documented site-specific ingestion rates based on target populations are preferred. (See
peer reviewer's comment at end of questions regarding human health.)

Agency Response to Reviewers’ Comments:

COMMENT 14-1:  The general consensus of the peer reviewers was that the 6.5 g/day consumption
rate of fish was developed, and is most appropriate, for protection of the general population.  The ultimate
utility of using this number for evaluating dredged material proposed for placement as Remediation
Material at the HARS is dependent on how similar it is to the actual consumption rates of seafood from
the vicinity of the site.  Peer reviewers recommended that additional analyses be performed to identify
whether there are subpopulations (e.g., recreational and/or subsistence fishermen) that may have higher
consumption rates than the standard fish ingestion rate of 6.5 g/day. 

RESPONSE 14-1:  EPA Region 2 notes that although the charge refers specifically to the use of the 6.5
g/day ingestion rate as it pertains to the potential for human health effects associated with metals in
dredged material proposed for use at the HARS as Remediation Material, the ingestion rate is also used in
the current Framework to assess the potential for impacts associated with organic contaminants.

EPA Region 2 agrees with the observation of two reviewers that a specific subsistence fishery does not
exist at the HARS.  EPA Region 2 proposes to use recreational fishermen as an appropriate
subpopulation for estimating seafood consumption rates that reflect maximal potential human exposure to
contaminants at the HARS.  

EPA Region 2 contacted the New Jersey Department of Health, New Jersey Department of
Environmental Protection and the New Jersey Sea Grant College Program to obtain copies of relevant
studies that assess fish consumption in New Jersey in order to identify an appropriate ingestion rate for
use in the evaluation process.  Two pertinent studies were received and reviewed.  These studies were:
 

• Belton et al. 1985. A Study of Toxic Hazards to Urban Recreational Fishermen and Crabbers. 
New Jersey Department of Environmental Protection. Office of Science and Research.



3The contribution of striped bass to anglers’ diets was not specifically reported in NJMSC (1994). 
It’s contribution to anglers’ diets was assumed to be equal to that of bluefish (i.e., 4 percent). 
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• New Jersey Marine Sciences Consortium. 1994. Fish Consumption Patterns by New Jersey
Consumers and Anglers.  Prepared for the NJDEPE- Division of Science and Research. 
Contract No. P 30695 00962.

The Belton et al. (1985) study focused on urban anglers active on the Hudson River, Upper Bay, and
Newark Bay shorelines and did not attempt to quantify actual consumption rates of the anglers.  The
study, therefore, was judged to be inappropriate and of little utility in estimating human consumption rates
of fish from the HARS area. 

Despite certain limitations that were identified in the report, the second study (NJMSC, 1994) provided
useful data for estimating an appropriate ingestion rate for the target group of consumers (i.e., anglers).
One of the primary limitations of the study was that calculated fish ingestion rates and patterns were
based on consumption in the week preceding the survey (October-November).  This could potentially
result in the introduction of a biased estimate that may not truly represent annual consumption behavior.
The NJMSC study, however, confirmed that the recreational angler community consumes greater
amounts of fish than the general population, and therefore, appears to be a more appropriate target
population for use in evaluating potential for human health risks due to consumption of fish from the area
of the HARS.  

New Jersey anglers were classified into two groups based on whether or not those anglers had consumed
fish in the week preceding the survey.  Overall seafood consumption by anglers that reported having
consumed fish in the preceding week were somewhat higher than those that did not report having
consumed fish in the preceding week.  Therefore, average consumption of those anglers consuming fish
in the preceding week are proposed for use to obtain a more conservative estimate of consumption by
New Jersey anglers.  This group of anglers reported consuming an average of 2.42 meals and 15.23
ounces of fish per week.  This level of consumption (i.e. 15.23 oz/wk) is equivalent to an average daily
seafood consumption rate of approximately 61 grams, confirming that recreational anglers indeed
consume significantly more fish than the national average (i.e., 6.5 g/day).

As part of the NJMSC survey, respondents identified the quantitities and types/species of fish that they
consumed (see page 4-69,  Table 4-14 of NJMSC, 1994).  Of the 15.23 ounces consumed weekly by
recreational anglers, 7.57 ounces were reported to be saltwater finfish.  Approximately 37 percent (2.8
ounces) of the saltwater finfish consumed by recreational anglers were reported to be fresh (i.e. not
canned or processed) fish of varieties that are listed in the HARS SEIS (EPA 1997f) as species that may
occur in the vicinity of the HARS.  In decreasing contribution to angler diet, the reported fish species
include: flounder/fluke, cod, sea bass, haddock, whiting, blackfish, porgy, bluefish, striped bass3, and
weakfish.  

The weekly consumption rate of 2.8 ounces, or 79.38 grams, equates to a daily consumption rate of 11.34
grams of finfish that could potentially occur at the HARS.  This consumption rate, therefore, does not
include consumption of processed fish or of species that are not expected to occur at the HARS, such as
red snapper, orange roughy, and off-shore species (e.g., tuna, swordfish). NJMSC (1994) respondents
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(anglers) indicated that 60% of the fish they consume is prepared in the home. EPA Region 2 assumed
that recreationally-caught fish is consumed by recreational anglers in their home.  If the percentage of
fish that occurs at the HARS that is consumed by recreational anglers in their home is similar to the
overall percentage of home-prepared fish (i.e., 60%) in their diet, then the daily consumption rate of
recreationally-caught (i.e., home-prepared) fish potentially occurring at the HARS by New Jersey anglers
would be estimated to be 6.8 grams (i.e., 11.34 g/day x 60 percent).

Anglers responding to the NJMSC (1994) survey indicated that they annually consume an average of 5.76
lbs. of recreationally-caught fish.   Information on angling habits in New Jersey marine waters is not
available.  Therefore, EPA Region 2 conservatively assumed that there may be a subpopulation of
recreational anglers that preferentially fishes at the HARS and obtains all of the recreationally-caught fish
in their diet from fishing at the HARS.  This equates to an average daily consumption of  7.2 grams of
recreationally-caught fish. Given that such a population exists, their consumption of finfish that are
potentially exposed to the HARS could be estimated at 7.2 g/day.  

The two estimates of consumption of finfish that are potentially exposed to HARS and caught
recreationally by New Jersey anglers (outlined above) agree well.  EPA Region 2 proposes to use the
higher of the two estimates (i.e. 7.2 grams/day) as an appropriate estimate of fish consumption for
assessing the risks to a reasonably maximally exposed (RME) human subpopulation associated with
contaminants in sediments proposed for use as Remediation Material at the HARS.

This estimate of HARS-associated fish consumption by recreational anglers is inherently conservative.
The consumption rate calculated for recreational anglers is based on anglers that reported having
consumed fish during the week preceding the survey.  The calculated rate of 7.2 g/day, therefore reflects
higher consumers within the angler community.  The average consumption rate used for assessment of
risks is based on anglers that reported consuming an average of 2.42 seafood meals/week.  

Approximately 75 percent of anglers in the survey reported consuming less than three meals of seafood
per week. More significantly, all of the recreationally-caught fish consumed by anglers is assumed to be
composed of species occurring at, and obtained from, the HARS.  Certain species that contributed to the
consumption rate and that were assumed to be recreationally caught at the HARS are not generally
targeted at the HARS.  Examples include: structure-associated species, such as porgy, blackfish, and sea
bass; deeper water bottom species, such as cod and haddock; and species generally targeted within bays
and estuaries, such as winter flounder.  However,  EPA Region 2 also recognizes that the contribution of
lobster to the human diet (estimated at 3.2 g/day in NJMSC (1994)) is not reflected in the estimated
consumption rate.  There is, however, no directed recreational lobster fishery at the HARS and therefore
the assumption that all (or 60%) of consumed lobster is obtained at the HARS cannot be supported. 

Eighty-five to 90 percent of the survey participants with consumption rates in this range (i.e., two to three
fish meals/week) also reported that this rate was typical or slightly more than their usual consumption. 
This suggests that the potential bias associated with using a single week’s consumption (identified above)
to extrapolate annual fish consumption may not be significant, using the NJMSC (1994) study.   EPA
Region 2 believes that using the 7.2 g/day consumption rate in assessing human health risks would
represent an appropriately conservative consumption rate to protect the human consumer against adverse
health effects associated with contaminants in dredged material proposed for use as Remediation Material
at the HARS.
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Charge Group: General

Charge No. 15: Is it plausible to replace any other risk assessment assumptions with
assumptions specific to the HARS site?  (Please see Region2/CENAN joint
evaluation memorandum, Appendix for Table 1, Attachment C and Reference
Nos. 88)  Is it appropriate to consider the HARS intended use to be factored
into an evaluation
of effects at the community or population level?

 

Summary of Peer Review Comments

Individual Comments

Bartell Charge No. 15 Comment (2 para):
Depending on the resources and time available to conduct an assessment, it would be possible to develop
regional or more site-specific values for nearly all the factors that enter into the assessment.  Regionally-
specific values for all the exposure parameters in the equations listed in Reference 88 and Attachment C
could in theory be obtained.  (One would hope that the fundamental toxicity of the compounds (e.g.,
Rfd’s) would not vary by region.)  Reality obviously imposes constraints on the number of parameters that
can be estimated on a regional basis.  Therefore, the entire calculus underlying the exposure assessment
should become the focus of a comprehensive and detailed sensitivity/uncertainty analysis.  The results of
such analysis would include the identification and rank-ordering of the input values in terms of their
importance in defining sediment criteria for each of the contaminants of concern.  Using these results,
available resources could be judiciously allocated to obtain regional estimates for the key parameters in
the exposure assessment.  

Unfortunately, while such analyses of exposure have proven valuable in understanding and refining other
risk assessments, sensitivity/uncertainty analyses that have also included the toxic benchmark data have
emphasized that the main limitation in risk assessment lies in the paucity of relevant and reliable toxicity
data.  There is no simple solution to this problem other than acquiring the necessary data.  At the same
time, these more comprehensive sensitivity/uncertainty analyses can rank the contaminants in order of
their probable human health and/or ecological concern. The more critical toxicity data can be identified
through this process.

Clifford Charge No. 15 Comment (1  para):
The only site-specific information that I can think of that could be used to replace some of the default
assessment assumptions would be regarding the character of the food-web at the HARS site.  For
example, while the species selected for evaluation follow guidance and are generally sensitive and
appropriate, if it were known that more or less sensitive species were present at the site or that top-
predators more appropriate for use in risk assessment than humans were potentially at risk, I would
recommend their inclusion in this evaluation.  I do not believe that the HARS intended use is appropriate
for consideration at the risk assessment stage as extant risk is independent of intended future site use. 
Consideration of these kinds of factors should take place at the risk management stage, not the risk
assessment stage.
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Gentile Charge No. 15 Comment (1 para):
I do think that ‘intended use’ is appropriate to use for a site when one sets goals for the ecological
condition of the site (e.g., community and population endpoints).  I’m not sure how to implement the
concept is but I do think ‘intended use’ is relevant.

Wentsel Charge No. 15 Comment (1 para):
Comparative risk assessment methods could be used to compare reduced impacts of the HARS site on
biota by covering with dredged sediment.

Solomon/Sibley Charge No. 15 Comment (1 para):
This reviewer believes that the assumptions used in this assessment are reasonable and consistent with
other assessments of similar situations.  Most of the criteria used in the assessment are aimed at
individuals or individual populations.  They are therefore judged to be sufficiently conservative to be
protective of population and community responses.

Newman Charge No. 15 Comment (1 para):
I believe that effects to populations and communities are appropriate. Please see those points already
discussed relative to community and population level effects.

Dillon Charge No. 15 Comment (1 para):
Yes to both questions.

Agency Response to Reviewers’ Comments:

COMMENT 15-1:  Several of the peer reviewers indicated that incorporating additional site-specific
information would be desirable to support the evaluation.  The peer reviewers’ responses to other related
charges (e.g., Charges 2, 5, and 7) also indicated that, where available, replacement of risk assessment
assumptions with assumptions specific to the HARS are desirable.

RESPONSE 15-1:  The peer reviewers specifically identified the exposure assumptions used in the
current HARS Framework as assumptions that could be improved, if site-specific information were
available.  EPA Region 2 has reviewed the exposure factors and available data; as a result of this review,
EPA Region 2 proposes to use site-specific information to better estimate two exposure assumptions. 
These two exposure factors are: 1) the fish consumption rate of a human target sub-population of concern
(i.e., population identified as recreational fishermen who exclusively consume fish taken from the vicinity
of the HARS); and 2) the time that fish species may be expected to be actually foraging at the site (site
use factor).  EPA Region 2 recognizes that there may be additional exposure assumptions that would be
best estimated using site-specific information (e.g., percent of recreational landings actually taken from
HARS).  However, EPA Region 2 believes that sufficient data to revise the currently assumed values for
these factors are not currently available.
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The data and method used to identify, and estimate fish consumption of, a reasonably maximally-exposed
(RME) human subpopulation (i.e. recreational fishermen) for assessing human health risks associated
with contaminants at the HARS is provided in response to comment 14-1.   EPA Region 2 proposes to
use data on the seasonal presence of fish species in New York Bight waters to derive a site use exposure
factor to better reflect the potential foraging at the HARS of fish species that are consumed by
recreational fishermen (Consumed species are listed in the response to comment 14-1).  Derivation of the
proposed site use factor is described below.

EPA Region 2 reviewed 1993 commercial catch data reported by NOAA/NMFS, along with species
summaries from Bigelow and Schroeder (1953), and Smith (1982) to establish the presence or absence of
species in the New York Bight on a quarterly (seasonal) basis throughout the year.  The NOAA/NMFS
data are summarized in Appendix A of the HARS SEIS, (EPA 1997f).  With the exception of cod, EPA
Region 2 found that 95 percent (by weight) or greater of all fish caught were restricted to three or less of
the 4 quarters for each year.  Catches of cod in the New York Bight were distributed throughout the
year.  No seasonal data were available for haddock; therefore, its seasonal presence was assumed to be
similar to that of cod.

To derive the site use exposure factor, the seasonal presence of species (i.e., minimum percent of year
(as quartiles required to account for 95 percent of species landings) was weighted by the relative
contribution of that species to the total estimated consumption of fish by recreational fishermen.  A single
weighted average was obtained that reflects the seasonal presence (and potential exposure) of consumed
fish at the HARS, considered collectively.  The calculation of this seasonal fish foraging exposure is
summarized in Tables 15-1, 15-2, and 15-3, below.  The seasonal residence factor (i.e., Site Use Factor)
for fish in New York Bight waters (i.e., in the vicinity of the HARS) is estimated to be 77.7 percent of the
year.  Where the duration of exposure of fish is important to the calculation of potential for risk (e.g.,
human health-based values), EPA Region 2 proposes to incorporate a site use exposure factor of 0.777
(or it’s reciprocal (i.e., 1.29), as appropriate) to account for this seasonality.

EPA Region 2 considers the site use exposure factor to be conservative, however, as it assumes that: 1)
when fish migrate to areas away from the HARS vicinity, they return to the HARS; and 2) while fish are
in the general vicinity of the HARS, they feed exclusively at the HARS itself.   Although these two
inherent assumptions are clearly conservative, empirical, site-specific data to support a revised estimate
for those assumptions were not identified by EPA Region 2. 

EPA Region 2 considered using the geographic scale of the HARS to adjust the site use exposure factor,
as the HARS occupies less than 3 percent of total available sea bottom between 60 to 80 feet in the New
York Bight. EPA Region 2 also recognizes that the probability of fish returning to this specific area year
after year is low.  However, EPA Region 2 also recognizes that it is unlikely that fish are entirely
indiscriminate in their choice of habitat and therefore considers the use of such a gross metric (percent of
bottom in depth range) to be inappropriate.   Adjusting site use based on a geographic scale approach was
not considered to be appropriate for the proposed assessment because the additional factors that need to
be considered to predict habitat selection or site fidelity are not well understood and probably vary widely
across species.  Furthermore, the area of the HARS is a popular recreational fishing area specifically
because it appears to appears to ‘hold’ fish. 

To adjust site use based on foraging range, information on the size of feeding or home ranges of fish is
necessary.  It is likely that the foraging or home ranges of fish are species- and size- specific, and density-
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and habitat-dependent functions.  This area of fish behavior is not well studied and no relevant empirical
studies were found by EPA Region 2 to support adjusting the site use factor in the HARS assessment
based on foraging ranges. 

Table 15-1. 1993 Commercial Catch per Quarter (Metric Tons)
Fish Name Q1 (Jan-Mar) Q2 (Apr-Jun) Q3 (Jul-Sep) Q4 (Oct-Dec) Total Annual

Winter Flounder 8.9 61.1 14.9 42.6 127.5

Summer Flounder 3.8 94.3 240.4 43.4 381.9
Yellowtail Flounder 9.5 8.5 0.1 0.1 18.2

Flounders (Totals) 22.2 163.9 255.4 86.1 527.6

Cod 8.7 2.7 2.9 4.5 18.8
Whiting 24.3 50.4 7.1 275.2 357.0
Bluefish 0 202 101.8 56.1 359.9

Porgy 0 4.6 1.8 36 42.4
Blackfish 0.5 13.3 23.3 15.5 52.6
Weakfish 0 7.2 12.5 11.6 31.3

Striped Bass - Present primarily in Spring Fall (Smith 1982)
Sea Bass - Present primarily in Spring Fall (Bigelow and Schroeder, 1953)
Haddock - Assumed to be similar to Cod
Commercial catch data reported by NOAA/NMFS 1993

Table 15-2.  1993 Commercial Catch per Quarter (Percent of Total Annual)

Fish Name Q1 (Jan-Mar) Q2 (Apr-Jun) Q3 (Jul-Sep) Q4 (Oct-Dec)

Minimum
quarters to

explain 95%
of presence

Percent of
catch

Flounders (Totals) 4.2 31.1 48.4 16.3 3 95.8
Cod 46.3 14.4 15.4 23.9 4 100.0
Whiting 6.8 14.1 2.0 77.1 3 98.0
Bluefish 0.0 56.1 28.3 15.6 3 100.0
Porgy 0.0 10.8 4.2 84.9 2 95.8
Blackfish 1.0 25.3 44.3 29.5 3 99.0
Weakfish 0.0 23.0 39.9 37.1 3 100.0

Commercial catch data reported by NOAA/NMFS 1993

Table 15-3.  Seasonal Residence Weighted by Contribution to Fish Consumption

Fish Name Contribution to HARS diet
(%)

Seasonal residence  at 
HARS
 (%)

Seasonal Residence
Weighted by

Contribution to HARS
diet  
(%)

Flounders (all spp.) 48.6 75 36.49
Cod 10.8 100 10.81
Whiting 2.7 75 2.03
Bluefish 10.8 75 8.11
Striped Bass 10.8 75 8.11
Haddock 2.7 100 2.70
Porgy 2.7 50 1.35
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Blackfish 2.7 75 2.03
Weakfish 2.7 75 2.03
Sea Bass 5.4 75 4.05

99.9

Site Use Factor (% Year Present at the HARS) 77.70

COMMENT 15-2:  One reviewer felt that the process should be based on a more detailed evaluation of
the site-specific food web, to ensure that all sensitive species have been identified, and that the most
appropriate upper trophic level species are evaluated. 

RESPONSE 15-2:  See response to comment 1-2.

COMMENT 15-3:  One reviewer suggested that comparative risk assessments could be used to
evaluate the impact coverage of the HARS site on biota.

RESPONSE 15-3:  See response to comment 1-2.

COMMENT 15-4:  One reviewer suggested that considering the intended use of the HARS in risk
assessment would be inappropriate, stating that such consideration should take place at the risk
management stage.  Another reviewer felt that considerations of “use” are not appropriate when
evaluating ecological risk–implying that nonhuman use of the site is not an elective attribute as it is with
human use of the site (e.g., fishing).

RESPONSE 15-4:  The evaluation of suitability of dredged material for use as Remediation Material at
the HARS is intended to ensure that the potential for adverse impacts (both ecological and human health)
at the site are reduced as a result of remediation activities.  The goals of the HARS remediation effort are
intended to attain this goal.
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Charge Group: General

Charge No. 16: Is use of the Squibb et al. (1991) report appropriate for identifying the
contaminants of concern?  Are there contaminants which should be added to or
deleted from the list of contaminants for which we presently test? Please see
Reference No. 51)

 

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 16 Comment (1 para):
Squibb et al. (1991) did an excellent job of summarizing and identifying chemicals of concern for the
NY/NJ harbor estuary based on 1990 and earlier reports.  There was a substantial literature available to
them and I suspect that an evaluation of the more recent literature would not substantially change the list
of contaminants of concern.  Nonetheless, I recommend that such a literature survey be conducted to
ensure that recent studies with more modern analytical methods have not identified additional chemicals
that should be added to the list.

There are several chemicals that appear on the Squibb et al. (1991) Table 19 list of toxics of concern for
the estuary that are not included in Table 1 of the Memo for the Record.  Two chemicals that seem to
warrant further consideration are lindane and hexachlorobenzene.  Both of these chemicals are included
on the list of chemicals of concern for the entire NY Bight.   Both occur in the tissues of several fish and
invertebrates from the Harbor/Estuary at concentrations that exceed criteria for Category I.B. Pollutants
(Squibb et al. (1991) Table 13).

The Squibb et al. (1991) Table 19 also includes a number of methylated naphthalenes, although they are
listed as being of concern for sediments only.  This class of alkylated PAHs might be added to the Table 1
list to address concerns about the effects of other PAHs (see response to question 16, above).

Gentile Charge No. 16 Comment (1 para):
As stated in the report, this is a first step in the characterization process and one that seems to be
adequate for the intended purpose.  Second the report recognizes deficiencies in QA/QC and has omitted
samples from their estimate as well as spatial and temporal sampling heterogeneity.  The use of the Lake
Ontario Toxics Management Plan appears sound as do the seven criteria used to make a determination of
concern.  A decision to remove chemicals should emerge from this review.  However, the decision to add
chemicals would likely come from the analysis of recent data or other toxic regulatory policies that
showed other chemicals are a cause for concern.  I noted that the basis for the selection of {NOTE:
MISSING WORDS HERE IN GENTILE COMMENT}

Berry/Lake/Pruell Charge No. 16 Comment (1 para):
The Squibb et al. (1991) reports seems appropriate for identifying contaminants of concern.  We would
not delete or add any compounds from the list currently tested, but would recommend the use of
approaches which allow chemicals to be summed within a chemical class (e.g. narcosis).
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Wentsel Charge No. 16 Comment (1 para):
Appears appropriate.  However, recent attention to endocrine disruptors may require a reassessment of
the document.  

Solomon/Sibley Charge No. 16 Comment (1 para):
The Toxics Characterization Report (Squibb et al. 1991) is judged to be appropriate for the identification
of potential contaminants.  Analyses of some compounds such as the minor metabolites of DDT and some
of the other pesticides is judged to be less necessary as they are less toxic, however, they are usually
analyzed along with other analytes and the information would be available anyway.

Newman Charge No. 16 Comment (1 para):
The report seems appropriate.  Perhaps organotins such as TBT should be added.

Lee Charge No. 16 Comment (1 para):
I did not review Squibb et al (1991) in detail, however, it appears to have been a reasonably complete
analysis.  I suggest that rather than just listing TCDD (as in their Table 19), it is more appropriate to
evaluate dioxins and furans.  I did not see TBT mentioned.  TBT is a possible contaminant to consider,
especially if the area is used by the Navy.  As a check on Squibb, you might consider going over NPDES
reports of discharges into the area to determine if there are compounds with a high bioaccumulation
potential that were not found.   

Dillon Charge No. 16 Comment (1 para):
Squibb et al. is one source which is appropriate for identifying contaminants of concern.  The analytes
listed in Tables 4-4A and 4-4B of the RIM are also appropriate.  Consider EPA method SW 846-8310 to
achieve lower detection limits for PAHs. 

Agency Response to Reviewers’ Comments:

COMMENT 16-1:  In general, the reviewers felt that the use of the Squibb et al. (1991) report was
appropriate for the purpose of identifying chemicals of concern in dredged material proposed for use as
Remediation Material at the HARS.  Although use of  this study was determined to be appropriate for
identifying chemicals of concern, several reviewers recommended reviewing more current studies and
regulatory data (such as National Pollutant Discharge Elimination System (NPDES)) to determine if any 
additional compounds should be added to the list.

In addition, reviewers recommended that several specific contaminants be considered for inclusion to the
list.  These contaminants were: lindane (gamma BHC), hexachlorobenzene, tributyl tin (TBT), alkylated
PAHs (including methyl naphthalene), and endocrine disruptors.

RESPONSE 16-1: EPA Region 2 reviewed relevant data sets that have been generated in the NY/NJ
Harbor estuary and the New York Bight since Squibb et al. (1991) along with other scientific information
to evaluate the need to add constituents to the list of contaminants of concern for the evaluation of
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dredged material that is proposed for use as Remediation Material at the HARS.  These data were
reviewed with specific regard to the contaminants identified by the peer reviewers (i.e. lindane,
hexachlorobenzene, organotins (TBT), alkylated PAHs and endocrine disruptors).  The results of that
review are summarized below.

Lindane/Hexachlorobenzene
Squibb et al. (1991) compiled available data on chemical concentrations in sediment, water, and fish
collected from the New York/New Jersey Harbor Estuary.  Chemicals were categorized as “of concern”
or “not of concern”, based on comparison of measured concentrations in water or biota with available
federal and state marine water quality or fish tissue standards for the protection of marine life and human
health, and with NOAA effects-range values for sediment concentrations.  Due to the varying confidence
in the data supporting these classifications, the identification of certain chemicals (including lindane and
hexachlorobenzene) as “of concern” by the authors was intended to indicate a need for further evaluation
and monitoring before a definitive conclusion could be reached.  Squibb et al. (1991) documented their
conclusions in a December, 1991 report to the NY/NJ Harbor Estuary Program’s Toxics Workgroup
entitled “NY-NJ Harbor Estuary Program Module 3.1: Toxics Characterization Report”.
  
In Fall/Winter 1993-4, the Toxics Management Workgroup funded a systematic sampling and analysis
program to further investigate levels of contaminants identified by Squibb et al. (1991) in biota from
various areas of the NY/NJ Harbor estuary, including the New York Bight Apex.  In this study, 23
species of fish, 6 species of bivalves, 2 crustaceans and a cephalopod (squid) were sampled and analyzed
for chemical body burdens.  The results of this study were documented in a series of reports by the New
York State Department of Environmental Conservation (NYSDEC) entitled, “Chemicals in Fish,
Shellfish, and Crustaceans from the New York-New Jersey Harbor Estuary”.  Lindane and
hexachlorobenzene concentrations in tissues of resident biota of the NY/NJ Harbor estuary region were
reported in one of these reports (NYSDEC, 1996).  With the exception of elevated hexachlorobenzene in
blue crab hepatopancreas in one sampling area (Arthur Kill/Newark Bay/Kill van Kull), concentrations of
these two compounds were either reported at the detection limit (i.e., ‘J’ values) or as not detected in all
samples.

EPA Region 2 also evaluated data from the vicinity of the HARS and the former Mud Dump Site, to
determine if these chemicals might be associated with historical disposal of dredged material.  As part of
the monitoring of the former Mud Dump Site, concentrations of numerous chemicals were determined for
sediment and polychaete tissue body burdens from the New York Bight (Battelle, 1996b).  Using these
data, EPA Region 2 reviewed the concentrations of lindane and hexachlorobenzene measured in tissues
of polychaetes sampled from 19 locations from within the area encompassed by the HARS.  EPA Region
2 limited its review to sediments within this area because concentrations for other contaminants were
elevated in these samples relative to samples obtained from areas outside the HARS, and because
contaminants in this areas are more likely to be associated with the historical disposal of NY/NJ harbor
dredged material.  Lindane was not detected in any of the samples reviewed, while hexachlorobenzene
was detected in 10 samples. However, (with the exception of a single outlier of 9.28 ppb) all detected
concentrations of hexachlorobenzene were below 1.0 ppb and the average concentration of these samples
(0.3 ppb) was below the detection limit required in the EPA Region 2/USACE-NYD Regional
Implementation Manual (EPA/CENAN, 1992) for analysis of chlorinated pesticides.
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EPA Region 2 believes that the reports and studies mentioned above are the most relevant and
appropriate data sets available for the purpose of identifying additional potential contaminants of concern
for evaluation of dredged material in the HARS Framework.  However, based on this review, EPA
Region 2 proposes to not require the addition of lindane and hexachlorobenzene to the list of contaminants
of concern for evaluation of dredged material proposed for use as Remediation Material at the HARS. 
This conclusion is further strengthened by the fact that based on the review of the regional NPDES
database (1993 to present) for dischargers in the lower Hudson River estuary (Bronx, NY to Sandy Hook,
NJ), there were no violations of discharge limits of lindane or hexachlorobenzene to the lower estuary.

After reviewing the available data, the Toxics Workgroup of the New York/New Jersey Harbor Estuary
Program has (independent of this scientific peer review process) chosen to not identify these
contaminants as ‘of concern’ to biota in the NY/NJ Harbor estuary.  Therefore, EPA Region 2 is not
proposing to add lindane or hexachlorobenzene to the list of contaminants of concern at the HARS.

Tributyl Tin
Tributyl Tin (TBT) as the sum of TBT-related compounds (monobutyl-, dibutyl-, tributyl-, and tetra-n-butyl
tin) [CAS Registry Number: 56-35-9] is one of several man-made organotin compounds with various
industrial uses. Tri-substituted organotins find uses as biocides in agriculture and industry. Tributyl tin may
be used as an anti-fouling agent in marine paints within the limits set by the Organotin Antifouling Paints
Control Act of 1988, which restricts the release rate of organotin paints used on ships in the U.S.  TBT
has been linked to a disturbance in sex hormone production and damaged immune systems.  Organotins
are now being recorded in wildlife at the top of food chains which spend their lives in deeper water well
away from crowded shipping lanes and coastal maritime traffic. In fact, marine wildlife the world over is
now contaminated with organotins.  Organotins are known to cause not only reproductive disturbances in
marine molluscs, but also damage to the central nervous system in mammals. They have also been linked
with disturbances in immune systems in humans.       
       
TBT concentrations in environmental media of the NY/NJ Harbor estuary were not evaluated by Squibb
et al. (1991), and were not measured by NYSDEC in their 1993-94 sampling effort.  EPA Region 2 also
reviewed the regional NPDES database for dischargers in the lower Hudson River estuary (Bronx, NY to
Sandy Hook, NJ) and determined that there are no known permitted discharges of TBTs to the lower
estuary.  However, TBT concentrations in polychaete tissues from 10 stations located in and around the
former Mud Dump Site were measured and reported in Battelle (1996b).  Although sampling of this
contaminant was limited, accumulated concentrations of TBT were measured in polychaetes from all
samples and were generally higher in polychaetes sampled within the HARS than in polychaetes sampled
outside the HARS (i.e.,average concentrations of 34.5 ppb [63.2 ppb total organotins] and 17.2 ppb [34.1
ppb total organotins], respectively).  This data suggests that bioaccumulation of TBT is occurring in NY
Bight polychaetes and that NY/NJ Harbor dredged material may be a contributing factor.  Therefore,
EPA Region 2 believes that revision of the HARS Framework should include the addition of organotins
(i.e. TBT) to the list of contaminants of concern for evaluation of dredged material proposed for use as
Remediation Material at the HARS.

EPA believes that the analytical method of Rice et al. (1987) should be used for the analysis of
organotins.  This method is recommended in the 1991 Green Book and the Inland Testing Manual
(EPA/USACE 1991, 1998).
  
Alkylated PAHs
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Alkylated PAHs are not analyzed in most environmental monitoring and assessment programs and are not
currently analyzed in evaluations of dredged materials’ suitability for use as Remediation Material at the
HARS.  EPA agrees that, for most environmental monitoring and assessment applications, the analysis of
the 16 parent PAH compounds is sufficient as it allows relative PAH contamination levels to be
determined and compared between samples.  However, parent compounds do not generally occur as the
sole PAH contaminants in field situations, but rather co-occur with their alkylated homologues.  Failure to
consider alkylated PAH compounds in risk evaluations (such as narcotic and carcinogenic potential) of
PAH mixtures can lead to underestimation of risk.  

As described in response to comment 12-1, EPA proposes to require EPA Method 8270 to be performed
with specific analytical sample cleanup procedures and analytical instrument configurations which have
been optimized to allow detection and quantitation of parent PAHs and their alkylated homologues.  
These proposed sample cleanup and instrument configuration requirements will be an adaptation of the
method (i.e. EPA Method 8270) that is currently approved for analysis of the parent PAH compounds.   

In the absence of available toxicological values required for the derivation of the HARS-Specific Values
(e.g., cancer slope factor, RfD) for the specific alkyl PAH homologues, the values reported for the
associated parent compound would be used.  Similarly, these chemicals would be assumed to be
equivalent to their respective parent compounds for the purpose of deriving steady state factors and
trophic transfer factors.  The combined molar concentration of the parent PAHs and the alkylated PAHs
would be considered in evaluating the potential for narcotic effects using the CBR approach as described
in the response to comment 8-1.

Endocrine Disruptors
EPA Region 2 is aware of, and concerned about, information indicating the possibility of adverse impacts
on human health and the environment associated with exposure to endocrine disruptors.  At the present
time, however, there is little knowledge of, or agreement on, the extent of the problem.  Based on the
current state of the science, EPA Region 2 does not consider endocrine disruption to be an adverse
endpoint per se, but rather a mode or mechanism of action potentially leading to other outcomes (e.g.,
carcinogenic, reproductive, or developmental effects, routinely considered in reaching regulatory
decisions; EPA, 1998).

On December 28, 1998 EPA published a Notice (See 63 FR Vol 248 Pages 71541-71568) providing 
details and an opportunity for public comment on the Endocrine Disruptor Screening Program (EDSP). 
EPA is proposing that the EDSP include the following considerations:

• human and ecological (fish and wildlife) effects;
• effects on estrogen, androgen, and thyroid hormone systems (EAT) related processes;
• evaluate endocrine disrupting properties of chemical substances and common mixtures.  The

universe of chemicals and mixtures to be prioritized for endocrine-disruptor screening and testing
numbers more than 87,000 and includes commercial chemicals, active pesticide ingredients,
ingredients in cosmetics, nutritional supplements, and food additives.

 The Notice states that:
“Taken collectively, the body of scientific research on human epidemiology, laboratory animals, and
fish and wildlife provides a plausible scientific hypothesis that environmental contaminants can disrupt
the endocrine system leading to adverse-health consequences.  A critical issue is whether ambient



138

environmental levels are sufficiently high to exert adverse effects on the general population.  Various
types of scientific studies (epidemiology, mammalian toxicology, and ecological toxicology) are
necessary to resolve many of the scientific questions and uncertainty surrounding the endocrine
disruptor issue.  Many such studies are currently underway by government agencies, industry, and
academia.”

The proposed rule also states that, “...the EDSP is divided into several stages, including a priority-setting
stage, a stage involving screening tests (Tier 1 screening), and a stage involving confirmatory testing (Tier
2 testing)”.  EPA Region 2 believes that the results from the entire battery of tests required in the Tier 1
screening and Tier 2 testing stages (or their equivalents) are necessary to make the statutory
determination of whether a particular substance “may have an effect in humans that is similar to an effect
produced by a naturally occurring [hormone]” (21 U.S.C. 346a(p)).

For the reasons stated above, EPA Region 2 is not proposing to evaluate endocrine disruptors in the
HARS Framework at this time.  

Based on a review of available information, the following compounds are being proposed to be added as
contaminants of concern for dredged material proposed for use at the HARS as Remediation Material:

• Organotins (TBT)
• Alkylated PAHS (See Response to Comment 12)
• Co-planar PCBs (See Response to Comments 5-1 and 9-3) 

COMMENT 16-2: One reviewer suggested that EPA method SW 846-8310 be considered to achieve
lower detection limits for PAHs.

RESPONSE 16-2:  EPA Region 2 has investigated the alternative method and determined that it would
be unlikely to result in significantly lower detection limits than those obtained with the current methods. 
EPA Region 2, however, believes it is appropriate to propose requiring specific analytical sample cleanup
procedures and instrument configurations to be used in conjunction with the current method for analyzing
PAHs.  A full discussion of this procedure for the evaluation of PAHs is provided in the response to
comment 12.
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Charge Group: General

Charge No. 17: Should risks from synergistic effects, from exposure to multiple contaminants,
be evaluated using results from tissue analyses?  If so, how?  If not, why not?

 

Summary of Peer Review Comments

Individual Comments

Bartell Charge No. 17 Comment (2 para):
It is certainly desirable to develop the capability to assess the possible synergistic effects of exposure to
multiple contaminants - multiple exposure is the real-world situation. We currently lack the necessary data
and toxicological understanding to consistently and reliably predict the impacts of exposure to multiple
contaminants.  The additive model appears to work for certain classes of compounds, as suggested by the
equipotency observations in McCarty’s work.  At the same time, there are repeated instances of the
failure of the additive model.  Certainly, if one of the contaminants is more acutely toxic than others, it will
likely “mask” the effect of the less malevolent compounds and additivity will not be observed.  In other
instances, the presence of one contaminant can increase the effectiveness of other co-contaminants. 
Unfortunately, we by and large lack the models to quantitatively predict from among these possible
alternatives.  

While research continues to address synergistic effects, it seems prudent to at least continue with general
application of the linear model in developing an overall site-wide assessment of risk.

Clifford Charge No. 17 Comment (1  para):
Although this is a laudable goal, I believe that it is generally intractable given the current state-of-the-
science.  Under conditions where such cumulative effects are both understood and quantifiable for the
contaminants in question and the species of interest, such attempts should be made.  However, since this
will be the exception rather than the rule, it may be best to relegate such evaluations to the uncertainty
section that I have recommended should be added to this framework.  For the time being, the actual
toxicity tests (section V.C.1), as they integrate all of these potential cumulative effects, might be given
greater weight in the process and testing could be extended to move from the current, essentially acute
tests, to test durations more reflective of truly reflective of chronic exposures.  In that manner such
effects  will be accounted for as inherent components of the actual bioassays.  To my way of thinking
such empirical information is of greater value to a decision-maker than modeled or interpreted
evaluations.

Gentile Charge No. 17 Comment (1 para):
I don’t think it is feasible at this time because to my knowledge there are no models out there that address
this issue at the concentrations occurring in the environment.  First, the issue of synergistic effects is often
a ‘red herring’ because we don’t have enough evidence that this is occurring on a wide scale.  Of course
lack of evidence is not proof that interactions are not occurring.  Further, synergistic effects are generally
thought of being additive when in fact they could just as easily be antagonistic but either case is difficult to
demonstrate at environmental concentrations. Yes there are laboratory studies that suggest this occurs but
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the number of compounds and interactions are very limited and in no way capture the scope of the
potential problem in the environment. Don’t get caught in this trap! 

Berry/Lake/Pruell Charge No. 17 Comment (1 para):
Synergistic effects are poorly understood, except within classes of compounds (e.g. narcosis within
narcotic compounds).  We do not see how they could be included.  Dr. Pruell thought that antagonism
was probably more commonly reported than synergy, but that in the absence of additional data additivity
was probably the most reasonable approach.

Wentsel Charge No. 17 Comment (1 para):
If it is know that the substances have the same mechanism of action, then the responses can be additive,
for example, as toxic units.  When substances are know to act independently a hazard rate approach is
more appropriate.

Solomon/Sibley Charge No. 17 Comment (2 para):
Additivity seems to be the rule where stressors are present at concentrations below their individual
physiologically active concentrations.  Toxic units are commonly used to assess such mixtures.  The most
appropriate uses of the toxic unit approaches are when the stressors are known to act additively.  When
the stressors are known to act independently, the hazard rate approach is more suitable.  When the
stressors are known to act synergistically, by potentiation, or by antagonism the use of multivariate
procedures is more appropriate, however the data requirements may be large and empirical experimental
techniques may be more appropriate.  Pharmacologically based toxicodynamic models may be applicable
in some instances where sufficient data are available (Kooijman and Bedaux 1996).

Although synergism and potentiation of substance-mediated responses are perceived to be a major
concern in the assessment of many interactions, the likelihood of these occurring in the case of mixtures
of substances in the environment is not as great as might be expected and neither is the degree of
interaction.  For example, Alabaster and Lloyd showed that the majority of toxic interactions between
components of effluents were less than additive and that the likelihood of observing synergistic ratios
greater than 8 was small (Alabaster and Lloyd 1980)  Könemann and Pieters report that, in several
studies on the toxicity of mixtures of substances where the individual components were present at specific
fractions of a standardized response (e.g., LC50), the mixtures were never less toxic than the most toxic
component and potentiation was not observed Könemann and Pieters 1996.  Under the conditions of
exposures to low concentrations that are described in this assessment, the most appropriate approach is to
assume additivity.  Synergism is judged to be unlikely to occur.

Newman Charge No. 17 Comment (1 para):
This is a good point that has no clear answer.  Synergism should be considered if there are high
concentrations of  specific toxicants known to have synergistic effects.  However, additivity is likely the
best option if such information is lacking.

Dillon Charge No. 17 Comment (1 para):
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These risks should be evaluated.  However, I'm less convinced a residue-based approach is optimal.  See
peer reviewer's comment at end of questions regarding ecological receptors. 

Agency Response to Reviewers’ Comments:

COMMENT 17-1: There was a general consensus among the reviewers that the current state-of-the-
science would not support an evaluation of risks from synergistic effects or from exposures to multiple
contaminants and therefore should not be considered.

RESPONSE 17-1: EPA Region 2 agrees that the current state of science does not support the
evaluation of synergistic effects from exposures to multiple contaminants.  

Synergism is defined in the following manner (Rand, 1995):

“A phenomenon in which the toxicity of a mixture of chemicals is greater than that which would
be expected from the simple summation of the toxicities of the individual chemicals present in the
mixture.”

and  it has been noted that (Marking, 1985):

“A frequent misconception is that the toxicity of chemical mixtures results from simple addition or
summation of the activities of the components.  Instead, additive toxicity covers the full range
between the general terms antagonism and synergism, because at both extremes there is a
summation of toxic action. The degree of antagonism or synergism must be defined and quantified
before the advantages or disadvantages of chemical mixtures can be understood or assessed.”

EPA has recently released draft guidance for conducting human health risk assessments for chemical
mixtures (EPA, 1999), however, substantial uncertainty still exists in the methods presented; and methods
for evaluating exposures to ecological receptors such as those at the HARS have not yet been developed. 
Application of the approach recommended by EPA would require a significant amount of additional
research to quantitatively evaluate complex mixtures such as those that would be expected in dredged
material, and would still involve substantial uncertainties.

Given the level of effort and remaining associated uncertainties, it does not seem prudent at this time to
attempt to quantify the potential for synergistic effects.  See response to comment 1-2 regarding use of
risk assessment. 

COMMENT 17-2:  One reviewer suggested that some measure of synergy could be achieved through
greater reliance on toxicity bioassays, particularly if the length of the test was extended to better reflect
chronic exposures.

RESPONSE 17-2:  EPA Region 2 agrees.  However, these tests are currently in the development phase
and cannot be effectively implemented until the laboratories have become more proficient at implementing
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the methodologies.  Once approved protocols, guidance, and implementation information are available,
EPA Region 2 will evaluate and consider incorporating chronic toxicity bioassays into the Framework.

COMMENT 17-3:  Several reviewers commented that in the absence of information on how to address
synergistic effects, additive effects could be evaluated in the form of toxic units.  

RESPONSE 17-3:  EPA Region 2 agrees it would be prudent to evaluate additive effects. In fact, dose
additivity for non-carcinogenic compounds and response additivity for carcinogenic compounds have been
incorporated in various EPA guidance documents including the Risk Assessment Guidance for
Superfund (12/89) and the Soil Screening Guidance: Technical Background Document (5/96). 
EPA Region 2 is proposing to add a step to the evaluation process that addresses the additivity of
carcinogenic and non-carcinogenic compounds for evaluating effects to human health.  In the absence of
synergistic effects, dose additivity was supported as a model for non-carcinogens sharing a similar mode-
of-action/toxic endpoint by the Science Advisory Board (SAB) in its 1993 review of the Risk Assessment
Guidance for Superfund.  More recently, the final draft Guidance for Conducting Health Risk
Assessment of Chemical Mixtures (9/99) has proposed dose additivity for non-carcinogens sharing a
similar mode-of-action/toxic endpoint as a default approach for assessing the effects of chemical
mixtures. This same guidance document proposes response additivity as the default approach for
assessing chemical mixtures of carcinogens (i.e., the individual cancer risk from all carcinogens in a
chemical mixture are summed).

Consequently, in addition to the chemical-specific comparisons to proposed HARS-Specific Values, a
cumulative cancer risk would be estimated by summing the individual cancer risks posed by each
constituent using the following standard risk assessment equations:

Equation 1
Estimated Conc. in Fish (µg/kg)   =   [Measured Tissue Level (µg/kg)] x [Trophic Transfer Factor]
                                                                                     [Whole Body/Fillet Factor]

Equation 2
Toxicological Dose (µg/day)   =    [Estimated Conc. in Fish (µg/kg)] x [Seafood Cons.(7.2 g/day)] 
                                                                                [103 g/kg] x [Site Use Factor (0.777)]
                                                 
Equation 3
Estimated Cancer Risk (unitless)  =   [Toxicological Dose (µg/day)] x [Cancer Potency Factor (kg-day/mg)]
                                                                    [Body Weight (70 kg)fn3] x [103 µg/mg]

Under the proposed approach, these individual cancer risk levels would be summed, and the summation
would be compared to the target risk level of 10-4.  If the total summed cancer risk is below the
acceptable cancer risk level, the material may be suitable for use as Remediation Material at the HARS. 
If the total summed cancer risk is greater than the acceptable cancer risk level, the material may not be
suitable for use as Remediation Material at the HARS. 
 
Similarly, under the proposed approach of dose additivity, non-carcinogenic effects would be evaluated
using a hazard index approach.  For the purpose of this approach, hazard quotients would be derived for
each individual chemical according to the following equations:
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Equation 1
Conc. in Fish (µg/kg)    =   [Measured Tissue Level (µg/kg)] x [Trophic Transfer Factor] x [Forage Factor (0.777)]
                                                                           [Whole Body/Fillet Factor]

Equation 2
Toxicological Dose (µg/day)   = [Conc. in Fish (µg/kg)] x [Seafood Cons. (7.2 g/day)] x  [10-3kg/g]

Equation 3
Hazard Quotient (unitless) =   [Toxicological Dose (µg/day)] / [Body Weight (70 kg)]
                                                             [Reference Dose (mg/kg-day)] x [103 µg/mg]

Under the proposed approach, these individual hazard quotients would be summed according to target
organ (see Table 17-1) to derive a total hazard index for each organ system (i.e., circulatory system, liver,
central nervous system, and kidney).  If all of these hazard indices are below 1, this indicates that there is
no potential for significant undesirable effects and, therefore, the material is suitable for use as
Remediation Material.  If any of the hazard indices are greater than 1, this indicates that there is the
potential for significant effects and, therefore, the material may not be suitable for use as Remediation
Material.
  

Table 17-1. Summary of Target Systems Evaluated in Hazard Index Approach

Target System Chemical

Circulatory Zinc, Fluorene, Fluoranthene

Liver Acenaphthene, Fluorene

Central Nervous System Mercury

Kidney Cadmium, Endosulfan, Pyrene

In addition, EPA Region 2 is proposing to consider the total body residue of all organic contaminants in
evaluating the potential for narcosis (see response to comment 8). 
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Charge Group: General

Charge No. 18: Is test tissue concentration exceeding reference tissue concentration by less
than 10X a meaningful evaluative criterion? (Please see page 9 of the
Region2/CENAN joint evaluation memorandum)?

 

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 18 Comment (1 para):
No, it is not a meaningful evaluative criterion and should not be used, even as a screen, to assess the
acceptability of sediments for ocean placement.  There are two principal reasons why the 10X factor
should not be used.  First, as indicated in the EPA/COE joint memorandum, reference values are variable. 
If the reference value is very low,  the 10X factor may be overly protective, but if the reference value is
relatively high, the 10X factor may be under protective.  Second, and more importantly,  the derivation of
the 10X factor is entirely arbitrary with respect to the potential for biological effects.  Indeed, there
probably would be instances where the bioaccumulation from test sediment is  < 10X that from reference
sediment, but still greater than one or more of the biological standards listed in Table 1, columns 14-20. 
This is evident in the hypothetical project data of Table 1.  The tissue concentration of lead in clams is
1.010 mg/kg for  the test sediment, a factor of only 2.5X greater than the concentration for the reference
sediment (0.398 mg/kg).  According to the 10X screen, lead might not receive further attention. 
However, the test sediment lead concentration is quite close to the comparison standard for Human
Health Non-Cancer risk (1.3 mg/kg, Table 1, column 15).  The test sediment lead tissue concentration
would exceed that standard if it was as little as 3.5X that of the reference sediment. 

I consider the reference material to be more of a procedural control than a standard of comparison.  The
primary comparison should be between the test sediment tissue concentration and the comparison
standards of Table 1, column 14-20.

Gentile Charge No. 18 Comment (2 para):
This depends on the magnitude of the variability in the data.  There is no explanation of the 10X derivation
in the report or are you just suggesting using that figure?  What makes me nervous is the statistical
analyses in Table 1.  Here you state that both cadmium and mercury residues in the test sediment are
statistically greater than in the reference.  Comparing Columns 1 and 3 for cadmium indicate a less than
two fold difference in the means for cadmium (0.043ug/Kg vs 0.076ug/Kg) is statistically significant and
for mercury it is even less credible - 0.034ugKg and 0.040ug/Kg are claimed to be statistically different.
Given the variability of natural samples and the variability of analytical procedures I find these numbers
troubling.  Likewise for Zn 11.83ug/Kg and 14.34ug/Kg are significantly different.  I find it hard to believe
the statistics let alone the ecological significance of such differences.  So two points are raised by  Table
1: how good are the assumptions that have gone into the statistical analyses and what is the potential value
of statistical significance relative to biological significance.  We have many cases where differences can
be statistically significant but be meaningless to the biology.  There is rarely a relationship between
statistical significance and biological significance purely surreptitious.  Statistics is looking at variability, the



145

less variability in a measure then the more power to detect small differences no biological corollary
whatsoever.  My other concern with the statistics is dealing with ‘below detectable’ values. What do you
choose and why? Many folks say don’t make comparisons when you don’t have measurable values with
their variability.  A second approach is to use the upper limit of detection since you can at least argue with
some degree of confidence that the reference sediment is not higher than that value but you have no idea
how much lower.  On Page 9 it is stated that  ‘Exceedence of reference values is common where
reference values are very low or ‘non-detect’ as here.’  There is no indication of how “non-detects”
were handled.

Proposing a 10X exceedence as a more reasonable indicator of potential ecological effects can only be
determined if there is evidence to support that hypothesis. Unless analyses are conducted to determine the
incremental increase above background where effects occur then selection of 10X is arbitrary.  A
suggestion might be to attempt to quantify the from sediment contaminant concentrations to tissue
residues to ecological effects and in so doing develop a basis for selecting minimally important magnitude
differences that are ecologically important.  By using the enormous benthic data bases where community
structure, sediment chemistry, and toxicity have been measured simultaneously (Chapman’s Triad
Concept), the data bases where sediment chemistry and bioaccumulation are measured and
bioaccumulation and ecological effects are compared one might be able to develop such a relationship to
support the 10X or some other factor. 

Berry/Lake/Pruell Charge No. 18 Comment (1 para):
The basis for the “10X” criterion is not stated, so it is difficult to assess its suitability.  If the “10X”
criterion is derived from an understanding of the sediment-to-sediment variability in bioaccumulation tests,
then it might be appropriate.  However, Dr. Pruell could not see where the 10X number came from, and
felt that it might be appropriate in some samples near the detection limit, but that it may be too high in
samples where a compound is present at concentrations well above the detection limit.

Solomon/Sibley Charge No. 18 Comment (1 para):
No, the choice of the reference can confound the results (see discussion on question 3 above).

Newman Charge No. 18 Comment (1 para):
 No.  If pressed to apply such a rule, I would express exceedance in the context of standard deviations
above the mean of the reference.  (Also please remember that some of the difficulties with applying these
types of comparisons is the invalid use of "<DL" observations.) The more important point is whether the
tissue concentrations are close to or above some toxicological threshold.

Lee Charge No. 18 Comment (3 para):
Not really.  For example, if a person's sodium level were 9-fold higher than average, they probably would
be dead.  Having said that, it is appropriate to use the extent of deviation from the reference site as a
qualitative factor in a risk assessment especially if no residue-effects relationships are available.

I believe a more powerful ecological argument can be made by comparing the test sediment to the
background at the disposal site.  Assuming that the disposal site is not impacted (e.g., benthic analysis)
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and tissue residues in benthos and fish are acceptable (at least for the compound of concern), this is
reasonable evidence that the test material would not cause undesirable effects if it did not exceed the
background values.  There are, however, a few caveats.  First, is that the statistical tests have sufficient
power to detect physiologically/ecologically relevant differences so it is critical to consider both Type I
and Type II errors.  Given that the number of replicates is fixed, one approach is fix the statistical power
and then adjust the alpha as needed.  This puts the risk on the "discharger" rather than the "environment"
and does not "reward" poor replication or high variance.  Another approach is to rephrase the null
hypothesis from "dredge material = background" to "dredge material >background", so that it is in the
discharger's interest to have sufficient replication and low variance. 

Second, with the benthos it is important to compare species with similar feeding habitats.  Comparing a
filter-feeding bivalve (e.g., Mercenaria) from the dredge site to Macoma might incorrectly indicate
that the test sediment has a higher bioaccumulation potential than the background material.  Third, in
evaluating the high trophic levels, it is important to collect fish and megafauna (e.g., lobster) from the
dredge site that are either territorial or are not highly mobile.  In highly mobile species, unacceptable tissue
levels could be diluted by time spend outside the dredge site. 

Agency Response to Reviewers’ Comments:

COMMENT  18-1:  There was a consensus among the reviewers that the use of a 10X factor was not
appropriate.  In general, the reviewers felt that there was no clear basis for the value, and that it has no
relevance to the actual potential for toxic effects.  Two reviewers illustrated the potential pitfalls of using
10X exceedance as an evaluative criterion using lead and sodium as examples (i.e., exceedance of a
reference concentration by less than 10X would still lead to exceedance of risk values or lethality
thresholds).  Other complications, such as the comparison of data for different species or the method of
evaluation concentrations below the detection limits were cited.

RESPONSE 18-1: In the current Framework, the 10X factor is used in the comparison of 28-day
bioaccumulation test tissue results for the proposed dredged material to similar test results for the
reference material.  EPA Region 2 also agrees that use of the 10X factor may not be the most effective
criterion for assessing effects from bioaccumulation of contaminants in dredged material proposed for use
at the HARS as Remediation Material.  EPA Region 2 agrees that using the 10X factor is not important
to the bioaccumulation effects evaluation because it is not effects-based, is dependant on the
concentrations in the reference tissue, and is sensitive to chemicals reported as below the method
detection limits.  As such, EPA Region 2 has proposed to modify the Framework to eliminate the use of
the 10X factor.

COMMENT 18-2:  Individual reviewers suggested that if the 10X (or other exceedance level) factor
can be demonstrated to reflect either: a) minimal magnitude differences that are ecologically important
(for example, the reviewer suggests using sediment quality triad databases to define this difference level),
or b) sediment-to-sediment variability or if the reference value is near the detection limit; then the use of
an exceedance factor as a criterion could be useful.

RESPONSE 18-2:  EPA Region 2 does not believe that either of the suggested approaches are
appropriate for using the 10X factor for evaluating dredged material proposed for use at the HARS as
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Remediation Material.  First, with regard to attempting to quantify the magnitude of ecologically
significant differences from existing sediment/tissue contaminant data, there is currently not a sufficient
effects-based database of tissue concentrations with which to identify a meaningful exceedance factor. 
EPA Region 2 acknowledges the suggestions made by the reviewers (i.e., the triad concept analyses,
sediment-to-sediment variability, or near-detection limit reference values) for developing a basis for
establishing an exceedance factor.   However, EPA Region 2 is proposing not to pursue these options at
this time preferring to use effects-based HARS-Specific Values.  EPA Region 2 believes that the
suggested relative measures are secondary to an effects-based evaluation process.

COMMENT 18-3:  One reviewer indicated that if this method of interpreting the significance of
exceeding reference is applied, exceedance might be more appropriately expressed using standard
deviations above the mean for the reference.  A preference for the use of exceedance over background
(rather than reference) tissue concentrations was also stated by one reviewer. 

RESPONSE 18-3:  EPA Region 2 acknowledges this suggestion to use the standard deviations above
reference.  While this is a statistically appropriate method to compare proposed dredged material
bioaccumulation test results to reference tissue contaminants, EPA Region 2 is not proposing to pursue an
evaluation of magnitude above reference approach at this time, preferring a bioaccumulation evaluation
process using HARS-Specific Values which are effects-based (see response to comment 18-2).
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Charge Group: General

Charge No. 19: Are the studies from which background tissue concentrations were calculated
weighted appropriately?  If not, what method is recommended?  Is the use of
the mean the most appropriate measurement of central tendency?  If not, what
measure should be used?  (Please see Reference No. 98)  Are the assumption,
presented on page 14 pertaining to comparisons of  bioaccumulation in test
tissue to tissue concentrations in organisms from the vicinity of the
remediation site, valid for evaluating undesirable effects?

 

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 19 Comment (4 para):
The use of data from a single site (McFarland et al. reference) to define background tissue
concentrations for clams is inadequate.  
Also, the McFarland data for four mollusc taxa (Nucula, Yoldia, Mercenaria , “mollusca”) is quite variable
and strongly influenced by high tissue concentrations in Nucula.  For example, phenanthrene
concentrations in the four taxa were 8.18, 15.77, 16.20, and 90.51 ppb (arithmetic mean = 32.67 ppb).  It
seems problematic to compare such data with Macoma used in lab bioaccumulation tests.  Clearly, there
are order of magnitude differences among mollusc species in bioaccumulation potential that may relate to
feeding behavior, substrate relation and other biological factors.  If it was reasonable to make such a
comparison, the geometric mean would seem to be a better measure of central tendency than the
arithmetic mean used to derive the Table 1, column 16 value of 32.7 ppb.

The even weighting of all stations from all studies seems appropriate for the polychaete data.  Use of
geometric rather than arithmetic means would have minimized effects of extreme values among stations. 
Data are not presented in reference 98 that allow evaluation of interspecific differences in
bioaccumulation among polychaetes for all four studies.  The McFarland data sometimes show extreme
values among the four polychaete taxa.  For example, the Ni concentrations were 0.96, 1.44, 1.50, and
18.07 ppm (arithmetic mean = 5.49 ppm).

The comparison of test results to background tissue concentrations in organisms in the general area of the
HARS would make sense if the test species inhabited the area near the HARS or if there was little
difference among resident taxa in tissue levels.  Unfortunately, the test species are not resident and there
are sometimes order of magnitude or greater differences among taxa.  Thus it is not true, as claimed on
page 14 of the Memo for the Record, that “When bioaccumulation in organisms exposed to project
sediments is not greater than tissue concentrations in organisms from the vicinity of the remediation site
(the background levels), this means that placement of the material would not result in bioaccumulation
above existing ambient levels in the general area and thus does not have a potential to cause undesirable
effects.”  This statement might be valid for intraspecific comparisons, but it is not valid for interspecific
comparisons.
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The concept of comparison to background conditions near the HARS is nonetheless appealing. Valid
comparisons could be made by collecting a data set for tissue concentrations in test species
experimentally exposed to near-HARS sediments following the standard 28-d experimental method.

Gentile Charge No. 19 Comment (1 para):
The decision to preserve the variability of the data sets by using even weighting for all concentrations was
appropriate as was the use of the mean as a measure of central tendency. I will assume that standard
statistical procedures were used.  I think the assumptions for comparing test sediment tissue residues with
tissue residues from similar species in the vicinity of the site compliment the comparisons of test sediment
tissue residues to residues derived from reference sediments and offer a middle ground for the manager. 
In other words, the material is better than what is on the site but not as clean as a reference.

Berry/Lake/Pruell Charge No. 19 Comment (3 para):
An even weighting seems appropriate.  

Without knowing the distribution of the data is difficult to know which measure of central tendency is best,
as was true with the matrix values.  An arithmetic mean might be particularly susceptible to being skewed
by “hot spot” values.  Depending on the statistical distribution of the data, a geometric mean, or the
median, might be more appropriate.

The assumptions on page 14 seem reasonable.

Solomon/Sibley Charge No. 19 Comment (1 para):
Where sufficient data are available, a distribution, rather than a mean should be used.  This would allow
probabilistic risk assessment techniques to be used.  Where the underlying distribution of the data is
known, a statistical measure of central tendency can be used (e.g., geometric mean of log-normally
distributed data).  However, the use of the central tendency in the absence of knowledge of the range or
variance is counterintuitive - we should be more interested in the upper centiles of exposure and the lower
centiles of sensitivity.  Where the data sets are small and the underlying distribution is not know, the
arithmetic mean is appropriately conservative.  Where contributions to the whole are being calculated,
only the arithmetic mean should be used.  A recent paper by Parkhurst discusses  this in more detail
(Parkhurst 1998).

Newman Charge No. 19 Comment (1 para):
The weighting was adequate.  Again, the treatment of "<DL" observations is invalid, i.e. substitution with
1/2DL (see Newman (1995) for details).  Relative to the use of the mean,  distributions of contaminant
concentrations generally conform to a log normal distribution more often than they conform to a normal
distribution.  Therefore, the arithmetic mean is probably not the best estimate of central tendency.  I
would test for differences using log transformed concentrations, not arithmetic concentrations.  Relative to
comparisons of background tissue concentrations to those estimated in the 28 day bioaccumulation test, I
feel that such a comparison has limited value.  I would prefer to compare the concentrations in biota at
the material source to concentrations in biota near the HARS.
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Lee Charge No. 19 Comment (2 para):
As discussed under Question 18, the comparison to background tissue residues can be a defensible
method of evaluating potential risk.  Because of the various uncertainties, comparisons to background
should not replace decisions based on individual residue criteria, if available.

If the data approach a normal distribution, the mean is best measure of central tendency.  If the data
approach a lognormal distribution, a geometric mean should be considered.  An advantage of the mean is
that the public understands it.

Agency Response to Reviewers’ Comments:

Responses

COMMENT 19-1: One reviewer felt that it was problematic to compare data for Macoma exposed in
the lab to the background data identified for mollusc taxa.  The reviewer noted that four taxa yielded
variable tissue concentrations strongly influenced by one particular high tissue concentration. 

RESPONSE 19-1: Background, reference, and baseline data (sediment and body burden) are all
established and available for the HARS in the New York Bight Apex.  Baseline refers to data within the
designated boundaries of the HARS.  Reference refers to data collected from the HARS Reference Site
located approximately one nautical mile south of the HARS.  Reference is defined in the Green Book
(EPA/USACE, 1991) as a sediment, substantially free of contaminants, that is as similar to the grain size
of the dredged material and the sediment disposal site as practical, and reflects conditions that would exist
in the vicinity of the disposal site had no dredged material disposal ever occurred, but had all other
influences on sediment condition taken place.  Background represents ambient conditions over a large
area outside the HARS, and contains contamination from assorted regional influences (various former
ocean disposal sites, New York/New Jersey Harbor plume, atmospheric deposition, etc.).  Background
and Reference areas in the New York Bight Apex are not representative of pristine natural conditions. 
Both may have been impacted to varying extent by non-HARS activities. 

As part of the eight factors for LPC compliance listed (see response to comment 3) in the Green Book
(EPA/USACE, 1991), comparison to field-collected organisms is performed to compare the laboratory
steady-state bioaccumulation to steady-state body burden of contaminants in the vicinity around the
HARS.  While it is preferred that those field-collected organisms be the same species as those used for
laboratory analyses, Macoma is not available in the vicinity of the HARS.  Therefore assorted bivalve
species were collected and analyzed to represent background steady-state body burden levels of
contaminants of concern in the vicinity of the site.  EPA Region 2 agrees that one background species 
may not be comparable to Macoma for background comparison.  Specifically, bioaccumulative
contaminants in sediments are more available to Macoma, a deposit feeder, than they are for
Mercenaria , a filter feeder.  Therefore we agree that the calculation of the background value should not
include body burden levels in Mercenaria .  Revised background levels are presented below.  Regarding
the strong influence of a particular tissue sample, please see response to comment 19-3.
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Mean Background Concentrations in Field-Collected Organism

Constituent
Background Levels

in Clam
Background Levels

in Worm

 PAHs (ug/Kg) (ug/Kg)

Acenaphthene 9.7 0.5

 Anthracene 12.8 1.6

 Fluorene 9.0 0.3

 Naphthalene 28.4 4.5

 Phenanthrene 40.8 4.7

 Benzo(a)pyrene 31.9 7.6

 Fluoranthene 56.0 10.6

 Pyrene 65.6 26.6

 TOTAL PAHs 552.0 104.6

 PESTICIDES

 Aldrin 0.98 0.14

 Dieldrin 0.14

 "Chlordane 0.73

 Heptachlor 0.05

 Heptachlor epoxide 0.17

Total Residual Chlordane/Heptachlor 1.70

Total Endosulfans 0.35

Total DDT 11.13

 TOTAL PCBs 133.1 88.1

 1,4-Dichlorobenzene 1

 METALS  (mg/Kg)

Arsenic 4.89

 Cadmium 1.49 0.11

 Chromium (total) 1.55 1.31

 Copper 6.95 2.78

 Lead 0.90 1.64

 Mercury 0.053 0.026

 Nickel 1.34 0.77

 Silver 0.15

Zinc 11.00 20.61

1 There are no field collected background data assembled for this constituent.

As discussed in response to comments 1-3 and 3, EPA Region 2 has proposed to modify the HARS
Framework by replacing the “Evaluation of Solid Phase Bioaccumulation Results for Dredged Material as
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a Whole” section (which included the eight factors for LPC compliance listed in the Green Book) with the
“Consideration of Combined Effects Evaluation: CBR, Total Carcinogenicity, and Non-Cancer Hazard
Index” approach.  As such, EPA Region 2 is proposing that background values no longer be used as part
of the Framework for determining the suitability of dredged material proposed for use at the HARS as
Remediation Material.  While comparison to background levels would not directly be a part of the project-
specific evaluative process, background levels will be considered in the derivation of the HARS-Specific
Values.  Comparisons to background levels will provide perspective to assumptions used in deriving the
Values.  

COMMENT 19-2:  The same reviewer also judged that comparison of test tissue to background tissue
would be valid if the bioaccumulation test tissue data were compared to the same species, but not valid
when inter-species comparisons were made.  The reviewer suggested that background values could be
based on 28-day exposures of appropriate test organisms in the lab to near-HARS sediments.  

RESPONSE 19-2:  EPA Region 2 acknowledges that comparison to the same species may be
preferred, but disagrees with the proposed alternative paradigm that background should be established
based on 28-day exposures of appropriate test organisms in the laboratory to sediments collected near the
HARS (see response to 1-4). 

COMMENT 19-3:  Several reviewers cautioned against the use of an arithmetic mean as the best
measure of central tendency.  Other measures, such as geometric mean and median were suggested. 
One review advocated use of the arithmetic mean where data sets are small and distribution is not known. 
In addition two reviewers recommended the use of ranges or distributions.
 
RESPONSE 19-3:  EPA Region 2 recognizes that the arithmetic means calculated for some of the
constituents may be biased by the individual data points.  While use of a geometric mean as a measure of
central tendency would produce values less influenced by a single high or low datum, geometric means
tend to be biased low.  EPA Region 2 prefers to use an arithmetic mean as an appropriately conservative
measure of central tendency for the given simple data sets, and would propose continued use of the
arithmetic mean in the proposed revisions to the HARS Framework.  

Regarding the reviewers recommendation for ranges or distributions to support probabilistic risk
assessment to be used, we feel this is not warranted in the existing framework.   EPA Region 2's position
is that the mean is the appropriate measure for estimating background.  However, as discussed in
response to comment 19-1, EPA Region 2 is proposing to eliminate use of background values from the
Framework used to determine the suitability of dredged material proposed for use at the HARS as
Remediation Material.
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COMMENT 19-4:  One reviewer regarded the use of half the detection limits for undetected
observations as invalid.

RESPONSE 19-4:  EPA Region 2 disagrees that this treatment of detection limit is invalid in the process
of establishing background for this regulatory testing process.  While we recognize that use of half
detection limit for undetected analyses could be viewed as introducing bias to the calculation, it is a
convention that is consistent with the policy that we employ for assessing typical data generated by
dredging applicants.  This process is used in other programs and is appropriately conservative to achieve
the remedial goals of the HARS.  However, as discussed in response to comment 19-1, EPA Region 2 is
proposing to eliminate use of background values from the Framework used to determine the suitability of
dredged material proposed for use at the HARS as Remediation Material.

COMMENT 19-5:  One reviewer felt that it was more appropriate to compare concentrations in biota
from the proposed dredging site to biota near the HARS.  

RESPONSE 19-5:  EPA Region 2 disagrees with this strategy (see response to comment 1-6).  In
addition, there are several issues that make this strategy neither plausible nor technically valid.  Collection
of organisms at the dredging site would yield uncertain results with regard to areal and depth distribution. 
Sample collection needs to be representative of the project area and depth.  The Green Book describes
the method used for consistently and representatively assessing/sampling dredged material.  A site or sites
near the HARS would need to be selected for consistency in all project evaluations, as the proposed direct
tissue comparisons would need to be consistent throughout the entire permit evaluation program. 
However, as discussed in response to comment 19-1, EPA Region 2 is proposing to eliminate use of
background values from the Framework used to determine the suitability of dredged material proposed for
use at the HARS as Remediation Material.
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Charge Group: General

Charge No. 20: Can baseline tissue concentrations, from appropriate benthic organisms
resident to the HARS, be used as standards to determine suitability for
Remediation Material as defined above?

 

Summary of Peer Review Comments

Individual Comments

Swartz Charge No. 20 Comment (1 para):
No.  Specimens resident to the HARS may be exposed to the historic, unacceptable levels of sediment
contamination at the HARS.  Use of the tissue concentrations in such specimens as standards would tend
to perpetuate the historic contamination and defeat the purpose of the remediation.

As explained in the answer to question 1, tissue concentrations determined in 28-d bioaccumulation tests
applied to HARS sediment might be used to define a critical tissue concentration above the background
level, but substantially less than the HARS level.

Gentile Charge No. 20 Comment (1 para):
If the “no further degradation principal” is adopted,  then the HARS residues could be used as a baseline. 
The assumption being that test sediments resulting in benthic residues statistically similar to HARS would
present no further degradation. If however, the HARS  benthic residues for the test sediments exceed the
HARS  then one could argue further degradation and reject the use of test sediment.  Obviously one
question would be how do the HARS site tissue residues compare with reference site tissue residues?

Berry/Lake/Pruell Charge No. 20 Comment (1 para):
It seems appropriate to use background concentrations from organisms in the area around the HARS, but
not from organisms directly in the HARS, if the assumption is that the HARS is degraded.  If the goal
was only to prevent further degradation it might be appropriate to use organisms from within the HARS
as well.

Solomon/Sibley Charge No. 20 Comment (1 para):
Yes, with the qualifier on lipid normalization noted above.

Newman Charge No. 20 Comment (1 para):
Yes.  This has been mentioned in several of my answers above.
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Lee Charge No. 20 Comment (1 para):
Yes, given the caveats discussed under Questions 18 and 19. 

Agency Response to Reviewers’ Comments:

COMMENT 20-1: Three of the reviewers state that use of HARS baseline contaminant concentrations
is not appropriate for determinations, primarily because it contradicts the no-degradation intent and would
perpetuate the historic contamination and defeat the purpose of the remediation. 

RESPONSE 20-1: EPA agrees (see response to comment 1-4).

COMMENT 20-2: Three other reviewers thought that it was appropriate to use the baseline
concentrations. 

RESPONSE 20-2: EPA disagrees (see response to comment 1-4).

COMMENT 20-3:  One reviewer suggested that it seems appropriate to use background concentrations
from organisms in the area around the HARS, but not from organisms directly in the HARS, if the
assumption is that the HARS is degraded.  If the goal was only to prevent further degradation it might be
appropriate to use organisms from within the HARS as well.

RESPONSE 20-3:  EPA disagrees (see response to comment 1-4).
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APPENDIX B (PEER REVIEW CHARGE)

SCIENTIFIC PEER REVIEW OF THE 
EPA REGION 2/CENAN FRAMEWORK FOR EVALUATING DREDGED MATERIAL 

FOR PROPOSED PLACEMENT AT THE HARS

Introduction:  Goals of the Peer Review

The August 29, 1997 Final Rule, Simultaneous De-designation and Termination of the Mud Dump
Site and Designation of the Historic Area Remediation Site , specifies that the historic area remediation
site (HARS) will be remediated with uncontaminated dredged material (i.e., dredged material that meets
current Category I standards and will not cause significant undesirable effects including though
bioaccumulation; hereinafter referred to as “Remediation Material”).  The rule further specifies that the
HARS will be managed so as to reduce impacts within the Priority Remediation Area (PRA) to
acceptable levels in accordance with 40 CFR 228.11.  Placement of dredged material within the PRA is
restricted to Remediation Material.  This material will not cause significant undesirable effects, including
through bioaccumulation or unacceptable toxicity in accordance with 40 CFR 227.6.
Evaluation of proposed dredged material regarding unacceptable toxicity is clearly defined in the Green
Book as statistical criteria which require no interpretation.  Evaluation regarding significant undesirable
effects including through bioaccumulation requires assessment of chemical analyses of tissue from 28-day
bioaccumulation tests.  There are no specific regulatory criteria for this evaluation; however there are
existing regional guideline values that have been developed and used, by the U.S. Environmental
Protection Agency (EPA) Region 2 and the U.S. Army Corps of Engineers New York District, to
evaluate the constituents in accordance with 227.6.  

This peer review charge is to assess whether the testing evaluation process is adequate to properly
determine whether a tested sediment is suitable for Remediation Material as defined.   Your review
should focus on the framework for evaluation of bioaccumulation data and guideline values used; it should
not deal with on toxicity/mortality testing.  Please bear in mind that the testing evaluation applies to risks
pertaining to ocean placement of the sediment, and not to risks pertaining to other alternatives such as
leaving the sediment in place.  

This charge is in the form of questions on critical aspects of the evaluation framework.  General
references are cited in each charge question to aid in finding the issue in question.  Note that these are
general guiding referrals and should not be considered the only review item for those specific issues. 
Please answers the assigned questions as directly as possible, given the provided materials and your own
expertise.  If you are unable to answer a particular question on the basis of the provided materials, please
inform us of information needed to answer the question.  Also, keep in mind that there are additional
environmental data resources and test data pertaining to the New York Bight available in EPA Region 2,
if they are needed.
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Framework

1. Is the EPA Region2/CENAN Framework for evaluating bioaccumulation results scientifically
appropropriate for determining the suitability of dredged material as Remediation Material?  If not,
describe deficiencies.  (Please see Region2/CENAN joint evaluation memorandum, Figure 1)

2. Which of the risk-based values derived constitute “true” conservative estimates of risk levels (i.e.,
exceeding the value should be interpreted as sufficient cause to conclude that significant
undesirable effects may result through bioaccumulation)?  Which of the risk-based values derived
constitute conservative screening values (i.e., test tissue concentrations below the value can
confidently be interpreted to pose no risk of significant undesirable effects and exceeding should
be further evaluated before the probability of significant undesirable effects can be assessed)? 
How can the “true” risk levels be calculated for those compounds which you believe only to have
screening values?  How should test concentrations be compared to risk-based levels to determine
whether they are exceeded.

3. In conducting the integrated effects evaluation using the types of data provided by the applicant,
which of the eight factors for LPC compliance listed in the Green Book are appropriate and
relevant?  How can a quantitative/strategic framework be established to evaluate tissue data for
those factors?  Considering that comparison to regional Matrix values and site-specific risk values
represent case-specific evaluations, is it necessary to conduct the integrated effects evaluation of
the bioaccumulation results?  (Please see Reference No. 61, page 6-6)

Benchmark and Risk Evaluation Values

4. Regional Matrix Values

A. Are the Matrix values suitable for determining the suitability for placement at the HARS as
Remediation Material?  

B. Regional Matrix values were developed in 1981 by compiling available field data for mercury,
cadmium, PCBs, and total DDTs.  Were these values derived appropriately for their intended
use?  Based on current data sets and scientific literature, are these 1981 values suitable for
predicting the significant undesirable effect due to bioaccumulation?  (Please see Reference
No. 57)  If not, identify more current references, data sets, and/or actual chemical specific
values that would be more appropriate. 

5. Regional Dioxin Values

A. Currently, the presence of 2,3,7,8-TCDD at a detectable concentration (i.e., greater than or
equal to one part per trillion (pptr)) in tissues of organisms exposed to dredged material
precludes its classification as Category I (hence Remediation Material); presence of the
remaining dioxin/furan congeners, at concentrations of TEQs equal to or greater than 4.5 pptr,
results in a similar conclusion.  When 28-day tissue concentrations exceed these values, is
there sufficient cause to conclude that placement of the material is not suitable as HARS
Remediation Material?  If not, what levels indicate sufficient cause for this conclusion? 
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(Please see Reference No. 89) 

B. Are dioxin values suitable for predicting the significant undesirable effects due to
bioaccumulation?  If not, should these values be based on a risk analysis paradigm in which
the size of the human population subgroup potentially exposed through intentional behavior is
compared to the size of the general population in the region?  Since the primary route of
exposure is through consumption of fish and shellfish, should the variability in potential
exposure due to differences in fishing behavior (e.g., target species, seasonal preferences) be
incorporated in the risk paradigm?  How would a benchmark protective of human health
compare to benchmarks determined using an ecological risk analysis paradigm for resident
fish and piscivorus wildlife?

6. FDA Action Levels (Please see Reference No.61, Sec. 6.3) 

A. Are FDA Action Levels useful as upper limit human health benchmarks?

B. Would the evaluation be improved by omitting comparison of tissue results to FDA Action
Levels?

7. Human Health Risk, Cancer and Noncancer

A Are the risk values suitable for determining the suitability for placement at the HARS as
Remediation Material?  If there are better alternatives for human risk, specifically what are
they?

B. Benthic tissue levels for cancer protection were derived using assumptions focused on
attaining a cancer protection at the 10-4 risk level.  Is this risk appropriate for a determination
of ocean placement of Remediation Material?  (Please see Region2/CENAN joint
evaluation memorandum, Appendix for Table 1, Page A-4, A-5)  

C. Benthic tissue levels for noncancer protection were derived using Reference Dose (RfD) of
several organic and inorganic contaminants for the protection of human health.  Are these
values appropriately and consistently derived?  Is the whole body/fillet conversion factor of
1.35 an appropriate factor for all of the contaminants considered if human exposure is
assumed to be primarily via consumption of the fillet portion of the fish?  (Please see
Region2/CENAN joint evaluation memorandum, Appendix for Table 1, Attachments B
and C)  If not, what factors would be appropriate?  For the lead noncancer value, since there
is no RFD for lead the value was derived differently than the other metals.  Was the value
derived appropriately? (Please see Reference No. 88)

D. Are the risk values suitable for predicting the significant undesirable effects due to
bioaccumulation?  Since the primary route of exposure is through consumption of fish and
shellfish, should the variability in potential exposure due to differences in fishing behavior
(e.g., target species, seasonal preferences) be incorporated in the risk paradigm?

8. Ecological Risk
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A. Ecological effects benchmarks include the Water Quality Criteria Tissue Level (WQCTL),
Critical Body Residue (CBR) associated with narcotic responses, and certain
mutagenic/teratogenic effects.  Is it valid to use the CBR effect end point for evaluating
significant undesirable effect?  Are there other ecological end points that should be used to
measure ecological risk that are protective of marine benthic and fish life via trophic transfer,
particularly for PAHs?  If so, identify.  With regard to a narcotic effect for chlorinated
organic compounds, should an additive approach be considered to include the contribution of
chlorinated hydrocarbons against this narcotic (CBR) endpoint.

B. Is the Region 2 WQCTL approach (i.e., multiplying the Water Quality Criterial Chronic Value
by the Bioconcentration factor) appropriate for determining ecological effects levels of the
contaminants for which they were developed?  Specifically, are the appropriate BCFs used
(for fish, bivalves, etc)?  (Please see Region2/CENAN joint evaluation memorandum,
Appendix for Table 1, Page  A-1) 

C. BCFs reported for fish were used in the calculations of WQCTLs for organics; is this derived
level appropriate for setting benthic tissue ecological effects levels?  If the fish tissue levels
are used, should adjustments be made to the derived levels to reflect the higher lipid contents
of the benthic organisms used in the testing program?

D. Are the WQCTLs calculated for metals using bivalve BCFs appropriate for setting levels for
polychaetes or vice versa?

E. Are the uncertainty factors applied while deriving ecological effects levels for PAH
contaminants appropriate?  Does this adequately address the uncertainty around the derived
values?  Can uncertainty be accounted for using these order of magnitude adjustments? 
Should they be applied elsewhere to the other risk-based values?

F. Are the risk values suitable for predicting the significant undesirable effects due to
bioaccumulation; are there better alternatives for ecological nonspecific risk?

G. If you believe that these values are over- or under- conservative, what do you believe to be
an appropriate way to improve them.) 

Calculations

9. Should total PCBs continue to be estimated by doubling the total of 22 congeners or should it be
quantified directly using another measure of quantification?  What method is most appropriate for
sediments in the NY/NJ Harbor area?  (Please see Reference No. 60, Table 4-4B)

10. Currently, 28-day tissue concentrations of certain organic contaminants are adjusted by some
multiplier to estimate the concentrations of those compounds had the exposure been of sufficient
duration to allow attainment of steady state levels.  (Please see Reference Nos.5 and 46) Are
these adjustments appropriate?  Should steady state corrections be applied to any other of the
listed contaminants?  Are there other compounds for which we test that are not expected to
approach steady state within the 28-day period?
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11. Is the calculation and use of BaP toxicity equivalence an appropriate way to estimate the potential
carcinogenicity of PAHs?  (Please see Region2/CENAN joint evaluation memorandum,
Appendix for Table 1, Section C.)

12. Similar to PCBs, only a subset of those PAHS present in New York Harbor are measured for
testing evaluation.  How should the remainder be considered?

13. Is the assumption of a trophic transfer coefficient of one appropriate for use in evaluating the
potential for human health and ecological impacts associated with metals in Remediation
Material?  Are the trophic transfer factors calculated for organic compounds correct?  (Please
see Region2/CENAN joint evaluation memorandum, Appendix for Table 1, Attachment C.)

14. Is the assumption of a fish consumption rate of 6.5 g/day appropriate for use in evaluating the
potential for human health impacts associated with metals in Remediation Material?   (Please see
Region2/CENAN joint evaluation memorandum, Appendix for Table 1, Page  A-5)  Would it
be appropriate that the evaluation focus on a higher consumption population?

General

15. Is it plausible to replace any other risk assessment assumptions with assumptions specific to the
HARS site?  (Please see Region2/CENAN joint evaluation memorandum, Appendix for
Table 1, Attachment C and Reference Nos. 88)  Is it appropriate to consider the HARS
intended use to be factored into an evaluation of effects at the community or population level?

16. Is use of the Squibb et al. (1991) report appropriate for identifying the contaminants of concern? 
Are there contaminants which should be added to or deleted from the list of contaminants for
which we presently test? Please see Reference No. 51)

17. Should risks from synergistic effects, from exposure to multiple contaminants, be evaluated using
results from tissue analyses?  If so, how?  If not, why not?

18. Is test tissue concentration exceeding reference tissue concentration by less than 10X a
meaningful evaluative criterion? (Please see page 9 of the Region2/CENAN joint evaluation
memorandum)? 

19. Are the studies from which background tissue concentrations were calculated weighted
appropriately?  If not, what method is recommended?  Is the use of the mean the most
appropriate measurement of central tendency?  If not, what measure should be used?  (Please
see Reference No. 98)  Are the assumption, presented on page 14 pertaining to comparisons of 
bioaccumulation in test tissue to tissue concentrations in organisms from the vicinity of the
remediation site, valid for evaluating undesirable effects?

20. Can baseline tissue concentrations, from appropriate benthic organisms resident to the HARS, be
used as standards to determine suitability for Remediation Material as defined above?
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APPENDIX C
Background on Category I, II, and III 

Prior to the de-designation of the MDS, EPA Region 2 and the USACE-NYD used a three category system to
evaluate dredged material proposed for ocean disposal at that site.  The definitions are as follows : 

Category I : Dredged material that meets the ocean dumping criteria (including the requirements regarding acute
toxicity) and:

- bioaccumulation test results are below the regional Matrix levels a for cadmium, mercury, total PCBs, and total

DDT, and below the regional Category I values for dioxin b; and

- bioaccumulation test results for the other bioaccumulative chemicals of concern identified in USEPA Region

2/USACE-NYD (1992) do not indicate a potential for undesirable effects using conservative assessment
techniques.c

Category II: Dredged material that meets the ocean dumping criteria (including the requirements regarding acute

toxicity) and:

- bioaccumulation test results exceed any of the regional Matrix levels for cadmium, mercury, total PCBs, and total
DDT, or exceed the regional Category I values for dioxin but are less than the regional Category III value for
dioxin; or

- bioaccumulation test results indicate a potential for those compounds or other bioaccumulative chemicals of
concern to accumulate at levels that could indicate a potential for undesirable effects using environmentally
conservative assessment techniques, but do not indicate that dumping would result in significant undesirable
effects. 

Category III: Sediments which do not meet ocean dumping criteria.  These sediments are those that fail acute toxicity
testing or pose a threat of significant undesirable effects due to bioaccumulation that cannot be addressed through
available disposal management practices.  These sediments cannot be disposed in the ocean.

a Regional Matrix values are predetermined values for cadmium, mercury, total PCBs, and total DDT that indicate a
potential to accumulate at levels that could indicate a potential for undesirable effects using environmentally
conservative assessment techniques, but do not indicate that dumping would result in significant undesirable
effects.

b The regional values for dioxin are as follows:

Category I   Tissue concentrations for each test species resulting from 28 day exposure to test sediment are
less than: 

1 part per trillion (pptr) 2,3,7,8 TCDD; 

                      AND

4.51 pptr total equivalent toxicity using total equivalent factors (TEF’s) for the 16 other 2,3,7,8-
substituted dioxin/furan compounds (congeners). 

Category II  The material is not Category I, but tissue TEF concentrations for each test species resulting from
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28 day exposure to test sediment are at or below 10 pptr for the sum of all 17 of the 2,3,7,8
congeners. 

Category III  Tissue TEF concentrations for either test species resulting from 28 day exposure to test sediment

are above 10 pptr for the sum of all 17 of the 2,3,7,8 congeners.  

c Environmentally conservative assessment techniques include evaluating human and ecological risk and other
relevant synergistic effects information, as provided for in the Green Book.
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Appendix D.  

Development of Benthic Tissue Values for the Assessment of the
Potential for Ecological effects Resulting from Bioaccumulation of
Contaminants in Dredged Material Proposed for Use as Remediation
Material at the 

Historic Area Remediation Site (HARS)
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I. Purpose:

To review relevant published and peer-reviewed studies to identify tissue contaminant levels that could be
used as conservative estimates of thresholds for the potential for adverse ecological effects.  These
values would be developed in response to comments by scientific peer reviewers and would be proposed
to be considered in the evaluation of results of 28-day bioaccumulation testing of dredged materials
proposed for placement as Remediation Material at the Historic Area Remediation Site (HARS).  EPA
Region 2 proposes that the use of empirical data that relate the incidence of adverse effects and body
residues (such as the data generated by studies used for this effort) to be the preferred method for
deriving proposed benthic tissue values for the protection of ecological receptors.

The primary criterion for a study to be considered relevant for this effort is a study design that ensures
that organisms are exposed to a single contaminant.  This study design maximizes our ability to assign
causality of any observed effects to the body burden of the specific contaminant considered.  While
USEPA recognizes that organisms that are exposed to dredged materials are generally simultaneously
exposed to more than one contaminant, we judge the potential for significant synergism and antagonism of
contaminants to be low (see response to peer reviewers’ comments to charge 17).  Values that would be
developed using these empirical studies would not establish a probability for adverse effects but rather
would estimate a tissue residue above which the potential for adverse effects is presented.   EPA Region
2 believes that this threshold (avoidance of the potential for significant undesirable effects) is an
appropriate goal for the assessment of bioaccumulation test results, given the remedial intent of the
HARS.  

II.  Compilation and Organization of Data

Available datasets relating measured tissue contaminant residues and incidence of effects (linked residue-
effect data) were identified through an exhaustive review of peer-reviewed scientific studies.  As noted
above, only those studies that related residues and incidence of effects of single contaminants were
considered relevant for the development of the proposed values.  The primary tools used in identifying
relevant peer reviewed studies were the databases compiled by the U.S. Environmental Protection
Agency Office of Research and Development’s Mid-Continent Ecology Division in Duluth MN (Jarvinen
and Ankley 1999) and the U.S. Army Corps of Engineers’ Waterways Experiment Station in Vicksburg,
MS (USACE 1998).  Additional relevant studies that were published since release of these databases
were identified through literature searches with the assistance of staff from the USEPA-Office of
Research and Development (Duluth, MN).  
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Compiled data were organized into separate tables for each contaminant of concern: one for tissue
residues associated with adverse effects; and another for tissue residues that were not associated with
adverse effects.  Effective and non-effective residues were further grouped into data reported for
specific classes of aquatic organisms (i.e. molluscs, infaunal worms, crustaceans and fish). 

Information regarding the species, exposure pathway (e.g. water, sediment, diet, injection), whole body
(or organ) residue, endpoint (e.g. survival), and magnitude of effect was recorded in the tables for each
observation.  References (or reference notations from the databases) were also included for each
observation to facilitate comparison of effective and non-effective residues within individual studies.

III.  Uncertainties Associated with the Linked Residue-Effect Approach

There are various areas of uncertainty associated with using linked body residue-effect data to develop
tissue residues that serve as values for the assessment of the potential for ecological effects due to
bioaccumulation of contaminants from sediments. Jarvinen and Ankley (1999) provide an excellent
discussion and examples of uncertainties associated with the use of linked data in the text that prefaces
the USEPA-ORD database.  It is important to note, however, that other approaches that are alternatively
used to derive tissue residue-based values (e.g. WQCTLs) share essentially all of these areas of
uncertainty and often introduce additional uncertainties associated with estimating rates of uptake and
assimilation of contaminants by organisms from external media. Several areas of uncertainty associated
with this method are listed and discussed below.

The use of linked residue-effect data to identify tissue residues that are interpreted as thresholds for
effect assumes that there is a critical body residue above which the potential for effects materializes. 
The critical body residue assumption relies on a relatively constant body burden threshold for effects
regardless of differences in exposure conditions.  This criterion, however, has been shown to not hold
entirely true in many instances and for most contaminants. The specifics of exposure conditions often
alter the body burden at which lethality, or other adverse effects, occurs.  Factors affecting estimates of
the critical body residue include:

-Salinity, temperature, hardness, pH, and other water quality parameters;
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-Presence vs. absence of sediment during exposure;

-Medium/pathway to (by) which organisms are exposed to a contaminant;

-Duration of exposure;

-Rate of contaminant uptake by organism;

-Differences in the whole body residue vs. residue at specific target organs;

-Changes in toxicity due to physiological state (can be seasonal or lifecycle related);

-Feeding/non-feeding during exposure;

-Specific compound used in exposure (e.g. metal salts or speciation);

-Ages of test organisms used;

-action associated with unmeasured metabolites rather than parent compound; 

Additional areas of uncertainty that must be recognized are: 1) the absence of multi-generational effects
data in many cases; 2) the possibility for unmeasured adverse effects; 3) differences between body
residues measured in surviving and dead organisms within the same treatment; and 4) the potential for
differences in critical body residues between species of a given organism class (e.g. similar organisms
residing in freshwater vs. saltwater).
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As noted above, most of these attendant uncertainties also accompany other methods that are currently
being used to derive tissue guidance levels and cannot be avoided altogether.  It is therefore of paramount
importance that data are carefully considered before a guidance level is derived so that the potential for
gross error to be introduced by these uncertainties is minimized.  Studies would be carefully reviewed and
screened via specific criteria (criteria used for screening are listed below in Section V) to ensure that only
those data that were most relevant and robust would be used in the derivation of tissue residue values. 

IV.  Screening of Data: Rationale and Assumptions

The effects of differences in exposure conditions on the body burdens associated with effects often
seemed to follow general patterns. For example, higher lethal body burdens appeared to be required to
elicit responses in organisms at lower temperatures and at higher salinities.  However, these relationships
are not consistent enough to justify applying these apparent patterns as general rules for screening data. 
It was, however, deemed appropriate to more heavily weigh values resulting from exposures that were
conducted with conditions that most closely resembled those anticipated to be associated with placement
of Remediation Material at the HARS.  A description of environmental conditions at the HARS is
provided in the Supplemental Environmental Impact Statement prepared for the site (USEPA, 1997). 
Salinity, temperature, pH and most other environmental parameters of bottom water at the site are typical
for seawater in temperate areas. As might be obvious, exposure to contaminants in dredged sediments
will occur in the presence of sediment.  Therefore, when an individual study reported linked effect-residue
data using differing exposure conditions, the exposures were examined to identify the effective (or non-
effective) residue that resulted from conditions that most closely resembled conditions at the HARS (e.g.
presence of sediment, temperature (~25 oC), salinity (~30 ppt), pH (~8)); 

Benthic organisms, such as molluscs, small crustaceans, and worms are assumed to be directly exposed to
contaminants through dermal contact or ingestion of sediment and pore water (or both), as opposed to
motile predators.  Therefore, studies in which exposure was achieved through absorption from water may
resemble actual field exposure sufficiently to enable the results of these studies to be used as estimates of
body residues associated with effects to these benthic organisms.  

Motile predators, such as fish, are assumed to be primarily exposed to contaminants in sediments at the
HARS through predation on infaunal and epifaunal benthic organisms that reside in HARS sediments. 
Therefore, using the results of absorption studies for identifying body residues associated with effects in
these organisms needs to be approached with caution. To reflect the exposure pathway of concern in
these organisms (i.e. fish), data relating the effects of dietary exposure to body burdens are considered to
be most relevant for the development of tissue values associated with protection of these organisms  to
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reflect the realistic exposure pathway.  The potential for trophic transfer of contaminants from prey
organisms residing at the site to predators was also considered.  This would be accomplished through the
proposed application of dietary assimilation and exposure factors in the back-calculation of tissue residues
in benthic prey associated with effects levels in predator species.  Many dissolved metals are believed to
exert their toxic effect at the gill (also a primary locus for accumulation of waterborne metals), and
therefore use of the measured whole body residue reported in absorption studies for development of
guidance levels based on fish residues will likely result in a guidance value that is overly conservative.

Effects on reproduction in aquatic organisms are reported in the literature. The potential for decreased
reproductive output was reported using endpoints such as egg production, egg hatching, and larval survival
rates.   Most of the studies reporting linked effect-residue data associated with reproduction, however,
were designed to assess the potential for reproductive effects due to waterborne contaminants.  These
data were carefully examined to select only those data that were relevant to the interpretation of
sediment-related bioaccumulation test results.  Specifically, only reproductive effects that were
attributable to parental (i.e. maternal) tissue residues were deemed to be relevant to the interpretation of
results of bioaccumulation assays.  An example of a reproductive effect that could usually be linked to the
maternal whole body residue is decreased fecundity (egg production). 

In many studies, decreased egg and larval survival rates could not be attributed to parental tissue residues
because eggs continued to be exposed to contaminated water after spawning.  Data relating egg
contaminant residues and reduced viability could conceivably be considered with other methods (e.g.
partitioning models) to assess the potential for impacts due to sediment-sorbed contaminants in dredged
material placed at the HARS.  Such effects are not likely to be ecologically significant at the HARS,
since: a) most marine organisms at the HARS have pelagic eggs and therefore their eggs are not
expected to come into significant contact with sediment-sorbed contaminants; and b) those HARS fish
species that do have demersal, adhesive eggs (including winter flounder, Atlantic herring, little skate,
ocean pout, sea raven, longhorn sculpin) (USEPA 1997) do not primarily spawn in the vicinity of the
HARS (Grosslein and Azarovitz, 1982). 

 

Data were screened for applicability to the development of benthic tissue guidance values for the
evaluation of results of bioaccumulation tests conducted on dredged material proposed for placement as
Remediation Material at the HARS.  Criteria used in screening the data are outlined below.  Confidence
in the resulting estimates varied among the contaminants due to the number and quality of studies
available.  Despite the associated uncertainties, the benthic tissue guidance values derived using this
approach would have the benefit of being empirically supported and could be applied with greater
confidence than tissue values derived from effective concentrations in external media (e.g. sediment,
water).
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V. Criteria for Screening Data/Studies

In light of the considerations discussed above (Section IV), the following specific screening criteria were
used to maximize the relevancy and appropriateness of studies and data to be included in this effort. (In
deriving values for contaminants for which little data was available, the criteria for inclusion would be
somewhat more liberally applied.)

 

For data to be included in this exercise:

1)  Effective residues would have to be related to impacts on survival, growth, or reproduction to be
considered as presenting a potential threshold for significant effect.  The ecological relevance of
physiological, behavioral or endocrine responses is impossible to assess at this time.  (The absence of
these responses, however, could be considered in the evaluation of contaminants for which there is a
paucity of relevant data);

2)  Tissue residues would have to be reported on a whole-body residue basis (in certain instances,
however, sufficient information may be provided to estimate whole body data from organ data.  Inclusion
of these data could be considered in the evaluation of contaminants for which there was a paucity of
relevant data);

3) Effective residues reported within a given study would have to support a dose-dependent response (i.e.
accumulation of the contaminant of concern would have to have occurred and effects would have to be
consistently associated with higher accumulations of the contaminant);

4)  Exposures resulting in reported effects would have to be conducted in a controlled setting (i.e.
exposures conducted in the field would be excluded from this exercise);

5) Exposures would have to have been initiated at post-hatch stages or later (i.e. no egg/embryo
absorption studies).

In addition, the data were carefully reviewed to maximize the likelihood that the effects reported to
individual organisms were severe enough to equate to probable effects at the population level to
organisms at the HARS.  Because effects on individuals would be used to estimate significant adverse
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effects on populations in the field, preference would be given to using ER50s (tissue residues resulting in a
50% reduction in survival or growth or causing an effect in 50% of exposed organisms) in identifying
tissue residues to be used as remediation values for evaluating bioaccumulation test results.    Use of this
effect level is proposed by Region 2 to be appropriate, because the 50% effect level was used by EPA in
setting water quality criteria and a suitable model for evaluating population level effects, and thereby for
justifying the use of a different effect level, is not available for the benthic environment of the HARS and
its environs.

Because estimates of effective (or non-effective) residues can differ widely with exposure conditions it
will be necessary to carefully consider these conditions while identifying the effective residues used in
setting benthic tissue remediation values.  To this end, the following approaches will be used to review
data for maximum relevance:

a)  When an individual study reported linked effect-residue data using differing exposure conditions, the
exposures will be examined to identify the effective (or non-effective) residue that resulted from
conditions that most closely resembled conditions at the HARS (e.g. presence of sediment, temperature
(~25 oC), salinity (~30 ppt), pH (~8));

b) When overlap in the range of effective and non-effective residues for a given species occurs within
the same study and exposure conditions, the lowest effective concentration within the range that
exceeds the range of non-effective residues (i.e. the highest non-effective residue) will be used to
estimate the benthic tissue value that would result from that dataset;

c) When ER50s are not reported the following methods are proposed to be used in the interpretation of
results.  In most cases, effective residues that are identified as being below an ER50 would not be used to
set the benthic tissue HARS remediation values. Rather these results would be used to assess the
protectiveness of the final selected values (the ER50 residue was estimated as being greater than the
reported value).  If effective residues were identified as being greater than the ER50, the ER50 would be
approximated by linear interpolation between the reported effective residue and the highest non-effective
residue or between effective residues bracketing the ER50.  The assumption of linearity is conservative
because the dose-response relationship of many contaminants is exponential (i.e. using the assumption of
linearity results in an underestimate of the ER50 if the dose-response relationship is exponential, rather
than linear).
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VI.  HARS Benthic Tissue Remediation Values

Benthic tissue remediation values would be developed for the following contaminants using linked
empirical observations of tissue residues and effects:

Metals

Cadmium (Cd) Lead (Pb)

Mercury (Hg) Zinc (Zn)

Arsenic (As) Chromium (Cr)

Silver (Ag) Nickel (Ni)

Copper (Cu) Tributyltins (TBT)

Organic Compounds

total polychlorinated biphenyls (PCBs) aldrin/dieldrin

total DDT total chlordane

total endosulfans 

Trophic transfer (expressed as dietary assimilation and exposure  factors) would be considered in the
derivation of values for the protection of fish (see response to comment 13).  Dietary assimilation by fish
of contaminants in benthic prey would be expressed as a trophic transfer factor (the ratio of body burdens
in fish predators and their prey).  Trophic transfer factors for organic contaminants were derived by L.
Burkhard of the EPA Mid-Continent Ecology Division using the Gobas food web model (EPA, 1995). 
The proposed trophic transfer factor for mercury would be based on work by Cabana et al. (1994). 
Proposed trophic transfer factors for selected metals were derived based on a review of the available
literature.  Their derivation is reported in Appendix E.  In addition, from the preponderance of evidence
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regarding the seasonal nature of fish residency at the HARS (see USEPA, 1997), EPA Region 2
proposes incorporating a site use factor to reflect fish residency in the derivation of tissue values for
evaluating risk to ecological receptors (see response to comment 15-1).  

Certain endpoints would be intended to be applied to sums of organic compounds (e.g. endosulfans,
chlordane, aldrin/dieldrin) with differing molecular weights.  Equipotency would be assumed for these
compounds (but see Lotufo et al. 2000), and the residues of higher molecular weight compounds would be
adjusted to the lowest molecular weight of any compounds considered in the total.  Adjusting the total
value in this manner results in a conservative estimate of the value while addressing the fact that molar
concentrations are appropriate for expressing the toxicity of mixtures of compounds.

An example of development of a benthic invertebrate tissue value using the methods outlined above is
presented below.  This example derives a benthic tissue guideline that is proposed for use in evaluating the
potential for adverse ecological effects from polychlorinated biphenyls (PCBs).  The data that was
compiled for other contaminants and proposed for use in developing guidance values for the other
compounds (or classes) listed above are also provided below.

Polychlorinated Biphenyls (tPCB)

Linked Residue-Effect Data: Data linking the incidence of adverse effects to aquatic organisms with
simultaneously measured tissue residues of tPCB are readily available in the scientific literature.  Data
from studies reported in the two databases (Jarvinen and Ankley, 1999; USACE 1998) are presented in
Table A-12(a-c).

Species Coverage:  Whole body tissue tPCB residues and incidence of effects were reported for 6
species of molluscs, 1 species of infaunal worm, 8 species of crustaceans, and 13 species of fish.  Organ-
specific or egg/embryo data were reported for 3 additional fish species.

Development of Tissue Values: 
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Molluscs

A whole body tPCB residues associated with adverse impacts on molluscan survival was reported at 1.4
ppm in the blue mussel, M. edulis. Whole body tPCB residues of 4.0 and 425 ppm were reported to be
associated with reduced growth of the oyster, C. virginica.  Non-effective whole body residues
associated with survival of molluscs were reported to 425 ppm, and with growth at 101 ppm.  No whole
body residues were reported simultaneously with observations on reproduction of molluscs.  

Endpoint Measured Conc. Est. ER50 Conc.

M. edulis Survival 1.4 ppm 1.0 ppma

C. virginica Growth (ER10) 4.0 ppm >4.0 ppm

C. virginica Growth 425 ppm 263 ppma

a Magnitude of effect was not reported in Jarvinen and Ankley (1999).  ER50 was estimated using reported non-
effective residues and assuming measured effective residue was ER100

In light of these results, bioaccumulation of tPCB to 1.0 ppm (1,000 ppb) is concluded to be safe for
prevention of adverse effects to molluscs resulting from placement of dredged material as Remediation
Material at the HARS.

Infaunal Worms
The sole reported whole body tPCB residue associated with incidence of effect on infaunal worms was a
non-effective residue of 0.63 ppm (630 ppb) associated with survival.

In light of this result, bioaccumulation of tPCB to >0.63 ppm (630 ppb) is concluded to be safe for
prevention of adverse effects to infaunal worms resulting from placement of dredged material as
Remediation Material at the HARS.

Crustaceans
Reported whole body tPCB residues associated with adverse impacts on crustacean survival ranged from
3.9 to 409 ppm, growth from 0.7 to 11 ppm, and reproduction from 246 to 552 ppm.  Non-effective whole
body residues associated with survival of crustaceans were reported to 552 ppm, with growth to 74.5
ppm, and with reproduction to 127 ppm.
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Species Endpoint Measured Conc. Est. ER50 Conc.

G. pseudolimnaeus Survival 409 ppm 398 ppma

L. polyphemus Survival (ED>50) 31.9 ppm 23.7 ppma

P. pugio Survival (ER45, 60) 27, 65 ppm 39.7 ppm

P. duorarum Survival 3.9 - 16 ppm 2.6 - 8.0 ppma

P. aztecus Survival (ER43) 42 ppm >42 ppm

D. magna Growth 0.7 - 11 ppm 4.0 - 6.15 ppma

G. pseudolimnaeus Reproduction 246 - 552 ppm 159 - 340 ppma

a Magnitude of effect was not reported in Jarvinen and Ankley (1999).  ER50 was estimated using reported non-
effective residues and assuming measured effective residue was ER100

In light of these results, bioaccumulation of tPCB to 2.6 ppm (2,600 ppb) is concluded to be safe for
prevention of adverse effects to crustaceans resulting from placement of dredged material as
Remediation Material at the HARS.

Fish
Reported whole body tPCB residues associated with adverse impacts on fish survival ranged from 0.36 to
4300 ppm, with growth from 11.0 to 52.7 ppm, and with reproduction from 9.3 to 553 ppm.  Non-effective
whole body residues associated with survival and growth of fish were reported to 1253 ppm, and with
reproduction to 567 ppm.  

Species Endpoint Measured Conc. Est. ER50 Conc.

11 species Survival (various) 0.36 - 4300 ppm 0.765 - 2590 ppma

P. promelas Growth 11.0 - 50.0 ppm 30.6 ppma

O. mykiss Growth (non-effective) 52.7 ppm >52.7 ppmb

P. phoxinus Reproduction 170 - 180 ppm 95.5 ppma

P. promelas Reproduction 83 - 553 ppm 133 ppmc

C. variegatus Reproduction (ER23-74) 9.3 - 25 ppm 17.15 ppm
a Magnitude of effect was not reported in Jarvinen and Ankley (1999).  ER50 was estimated using reported non-
effective residues and assuming measured effective residue was ER100
 b Whole body residue was estimated as 1.35*residue in fillet
c ER50 assigned using overlap of effective and non-effective residues

In light of these results, the benthic tissue tPCB value developed for interpretation of bioaccumulation test
results will prevent adverse effects to fish if it is designed to ensure that tissue residues in fish preying on
benthic organisms at the HARS will not exceed 0.765 ppm.  To backcalculate benthic tissue values, it is
necessary to incorporate conservative estimates of: a) the amount of time that fish can reasonably be
expected to be foraging at the HARS; and b) the efficiency by which tPCB in prey is assimilated by fish
(i.e. accomplished by the application of trophic transfer factors (food chain multipliers)) into the
calculations.  The amount of time that fish actually spend foraging within the confines of the HARS is
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difficult if not impossible to measure.  Most fish species, however, exhibit seasonal patterns in abundance
at given locations due to migration (Bigelow and Schroeder 1953; Grosslein and Azarovitz 1982).  Region
2 staff examined landings in the vicinity of the HARS and derived a ‘seasonal residency-site use factor’
to account for the absence of fish species from the vicinity of the HARS during certain times of the year. 
Major fish species were estimated to be present in the area of the HARS during approximately 78% of
the year (See response to comment 15-1).  Therefore, a multiplier of 1.29 is applied in the back-
calculation of benthic tissue values to account for the seasonality of fish distribution and abundance at the
HARS.  In this calculation, benthic prey tPCB residues are estimated by backcalculating from whole fish
tissue residues by applying a trophic transfer factor of 0.333, developed by L. Burkhard (USEPA, Office
of Research and Development.  Duluth MN) using the Gobas et al. (1993) food chain model.

In light of the presented results and after consideration of the potential for trophic transfer and the
seasonal presence of fish that may be potentially foraging at the site, bioaccumulation of tPCB to 0.329
ppm, or 329 ppb, in benthic prey organisms (this results from the lowest ER50 for adverse effects (0.765
ppm) X the seasonal residency-site use factor (1.29) X the trophic transfer factor (0.333)) is concluded to
be safe for prevention of adverse effects to fish resulting from placement of dredged material as
Remediation Material at the HARS.

Proposed Benthic Ecological Tissue Value for tPCB:
The benthic tissue value for evaluation of the potential for ecological effects of tPCB in dredged material
proposed for use as Remediation Material at the HARS is 329 ppb, based on the benthic prey residue
associated with the lowest ER50 reported in the literature for survival of fish
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Table  A-1 (a). Effective Whole Body Residues - Cadmium, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference2

Cd chloride snail (FW) Helisoma spp water 125 S (ER50) Carlson et al.,1991
Cd chloride snail (FW) P.integra water 30 S (ER80) Spehar et al.,1978
Cd chloride mussel -SW M.galloprovincialis water 39 S (ER90) Pavicic and Jarvenpaa,

1974
Cd chloride rock oyster S.commercialis water 48 - 85 S (ER100) Ward, 1982
Cd chloride zebra mussel D.polymorpha water 160 - 200 S (ER96) Kraak et al.,1992
Cd chloride zebra mussel D.polymorpha water 108 - 120 S (ER50) Kraak et al.,1992
Cd chloride clam - SW C.fluminea water 9 S (ER40) Baudrimont et al., 1997

cadmium worm - SW N.arenaceodentata water 16.86 G (ER43) Jenkins and Sanders,
1986

cadmium worm - SW N.arenaceodentata water 61.82 R (ER100) Jenkins and Mason,
1988

Cd chloride oligochaete - FW L.variegatus water 134 S Carlson et al., 1991

Cd chloride brine shrimp nauplii A.salina water 5.4 - 7.5 G Jayasekara et al.,1986
Cd chloride cladoceran (FW) D.galeata mendotae water 3.5 S, R Marshall, 1978
Cd nitrate cladoceran (FW) D.magna diet 8.8 S Ferard et al., 1983
Cd nitrate cladoceran (FW) D.magna diet 6.4 R Ferard et al., 1983

Cd chloride cladoceran (FW) M.macrocopa diet 9.0 -20 S,G,R Hatakeyama and
Yasuno, 1981

Cd chloride mysid shrimp M.bahia water 4.4 S, R Carr et al.,1985
Cd chloride mysid shrimp M.bahia water 2.4 S (ER50) Carr et al.,1985
Cd chloride mysid shrimp M.bahia water 1.3 G (ER32) Carr et al.,1985

CdCl hydrate amphipod - FW G.fossarum diet & water (hard) 53 - 101.6 S Abel  and Barlocher,
1988

CdCl hydrate amphipod - FW G.fossarum water 5.4 - 54 S Wright and  Frain, 1981
Cd chloride amphipod - FW G.fossarum diet 4.4 S Duddrudge and

Wainwright, 1980
CdCl hydrate amphipod - FW E.echinosetosus water 16 - 22 S (ER40) Martinez et al., 1996
Cd chloride amphipod E.estuarius water 20, 72 - 88 S (ER50) Meador, 1993
Cd chloride amphipod (adult) P.affinis water 11.4 S Sundelin, 1983
Cd chloride amphipod (juvenile) P.affinis water 15.6 S Sundelin, 1983
Cd chloride amphipod P.affinis water 3 R (egg devt) Sundelin, 1983
Cd chloride amphipod - FW H.azteca water (w/sed) 17.2, 19.6 S (ER50) Borgmann et al.,1991
Cd chloride amphipod A.compressa water 36, 60 S (ER57), G (ER70) Ahsanullah  and 

Williams, 1991
Cd chloride grass shrimp P.pugio water (5 ppt) 8 G Vernberg et al.,1977
Cd chloride crayfish C.latimanus water 22 S Thorp et al.,1979
Cd chloride crayfish O.virilis water 5.7 - 11.2 S (ER25 -74) Mirenda, 1986

Cadmium R.trout O.mykiss water (hard) 0.7 S(ER80) Pascoe et al.,1986
Cadmium R.trout O.mykiss water 0.96 G Kumada et al.,1973
Cadmium R.trout O.mykiss diet 1.6 G Kumada et al.,1973

Cd chloride Bk.trout* S.fontinalis water 0.25 G (ER73) Benoit et al.,1975
Cd chloride Bk.trout S.fontinalis water 0.41 S (ER50) Hamilton et al.,1987
Cd chloride Lgmouth bass * M.salmoides sediment 12 S Francis et al., 1984
Cd chloride Flagfish J.floridae water 6 S Spehar et al.,1978
Cd chloride Flagfish J.floridae water 4 -15.6 S, G Spehar, 1976
Cd chloride Flagfish J.floridae water 2.0 - 8 R (ER51 - ??) Spehar, 1976
Cd chloride Guppy P.reticulata diet 0.8 -12 S (ER16) Hatakeyama  and 

Yasuno, 1982
Cadmium Stickleback G.aculeatus injection 2.94 S (ER27) Woodworth  and

Pascoe, 1983 
Cadmium Stickleback G.aculeatus water 0.9 S (ER80) Pascoe  and  Mattey,

1977
Cd chloride Seabass L.calcarifer water 20.4 S (ER50) Shazili, 1995
Cd sulfate bluegill L.macrochirus water 0.35 S (ER50) Cearley and Coleman,

1974
Cadmium Spot (larvae) L.xanthurus water 8.0 - 69 S (ER50) Middaugh et al.,1975

1S, R, and G refer to survival, reproduction and growth effects, respectively.
2USACE (1998) was reviewed and revealed no effective residues lower than those in Jarvinen and Ankley (1999).
* Exposure was initiated during egg stage
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Table A-1 (b).  Non-Effective Whole Body Residues - Cadmium, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference2

Cd chloride snail (FW) V.georgianus water 33 S, G Tessier and Blais, 1996
Cd chloride snail (FW) Helisoma spp water 78, 90 S Carlson et al., 1991
Cd chloride snail (FW) P.integra water 10 S Spehar et al.,1978
Cd chloride blue mussel M.edulis water 3.7 S Eertman et al.,1996
Cd chloride blue mussel M.edulis water 30 G Poulsen et al.,1982
Cd chloride mussel -SW M.galloprovincialis water 28.7 S Pavice  and Jarvenpaa,

1974
Cd chloride oyster C.virginica water 54 R Zaroogian  and  Morrison,

1981
Cd chloride oyster C.virginica water 58.4 S Zaroogian, 1980
Cd chloride rock oyster S.commercialis water 25 S Ward, 1982
Cd chloride mussel - FW E.complanata water 4 S Wang and  Evans, 1993
Cd chloride mussel - FW E.complanata water 17.6 S, G Tessier et al., 1996
Cd chloride zebra mussel D.polymorpha water 100 S Kraak et al.,1994
Cd chloride zebra mussel D.polymorpha water 32 S Mersch  et al.,1993
Cd chloride zebra mussel D.polymorpha water 114 S Kraak et al.,1992
Cd chloride zebra mussel D.polymorpha water 4.2 S Tessier  and Blair, 1996
Cd chloride clam - SW C.fluminea water 2 S Baudrimont et al., 1997
Cd chloride clam - SW C.fluminea water 1.7 S,G Inza et al., 1997
Cd chloride clam - SW C.fluminea sediment 0.7 S,G Inza et al., 1997
Cd chloride snail (FW) B.hainanensis water >27.6 S Lam et al., 1997

cadmium polychaete -SW N.arenaceodentata water 1.12 G Jenkins and Sanders, 1986
cadmium polychaete -SW N.arenaceodentata water 4.5 R Jenkins and Mason, 1988

Cd chloride polychaete -SW N.virens sediment 63.8 S Olla et al.,1988
Cd chloride polychaete -SW N.caeca sediment 7.8 S Olla et al.,1988
Cd chloride worm - SW G.dibranchiata sediment 24 S Olla et al.,1988
Cd chloride oligochaete - FW L.variegatus water 60 S Carlson et al.,1991
Cd chloride oligochaete - FW L.variegatus sediment 138 S Carlson et al.,1991
Cd chloride oligochaete - FW L.variegatus sediment 4.6 S Peterson et al., 1996

Cd chloride brine shrimp A.salina diet & water 194.4 S Jennings and Rainbow, 1979
Cd chloride brine shrimp nauplii A.salina water 0.36 G Jayasekara et al.,1986
Cd nitrate cladoceran (FW) D.magna diet 6.4 S Ferard  et al.,1983
Cd nitrate cladoceran (FW) D.magna diet 0.27 R Ferard et al.,1983

Cd chloride cladoceran (FW) M.macrocopa diet 7.0 -10 S,G,R Hatakeyama and Yasuno,
1981

Cd chloride mysid shrimp M.bahia water 2.4 R Carr et al.,1985
Cd chloride mysid shrimp M.bahia water 0.08 G Carr et al.,1985

CdCl hydrate amphipod - FW G.fossarum water (hard) 53.4 S Abel  and Barlocher, 1988
Cd chloride amphipod (adult) P.affinis water 6 S Sundelin, 1983
Cd chloride amphipod (juvenile) P.affinis water 2.3 S Sundelin, 1983
Cd chloride amphipod P.affinis water 11.4 R (fecundity) Sundelin, 1983
Cd chloride amphipod (juvenile) P.affinis water 15.6 G Sundelin, 1983
Cd nitrate amphipod - FW H.azteca water 0.61 S Stephenson and Mackie,

1989
Cd chloride amphipod - FW H.azteca water (w/sed) 9.4, 12.4 S Borgmann et al.,1991
Cd chloride grass shrimp P.pugio water (20 ppt) 1.8 S (ER0-5) Vernberg et al.,1977
Cd chloride grass shrimp P.pugio water (10 ppt) 4.6 G Vernberg et al.,1977
Cd chloride crayfish C.latimanus water 22 G Thorp et al.,1979
Cd chloride crayfish C.latimanus water 14.9 S Thorp et al.,1979
Cd chloride crayfish O.propinquis water 534.4 S Gillespie et al.,1977
Cd chloride crayfish O.virilis water 0.9 S Mirenda, 1986

Cd chloride Eel A.anguilla water 0.56 S Noel-Lambot and
Bouquegneau, 1977

Cadmium R.trout O.mykiss water 0.96 S Kumada et al.,1973
Cadmium R.trout O.mykiss water 0.54 G Kumada et al.,1973
Cadmium R.trout O.mykiss diet 0.47 G Kumada et al.,1973

Cd chloride Bk.trout* S.fontinalis water 0.13 G Benoit  et al.,1976
Cd chloride Bk.trout S.fontinalis water 0.75 G Hamilton et al.,1987
Cd nitrate FW Fish L.delineatus diet 0.15 S Ferard et al.,1983

Cd chloride Flagfish J.floridae water 2.0 -8.0 S, G Spehar, 1976
Cd chloride Flagfish J.floridae water 1.2 - 5 R Spehar, 1976
Cd chloride Guppy P.reticulata diet 0.8 -12 G Hatakeyama  and  Yasuno,

1982
Cd chloride Guppy P.reticulata diet 0.8 S Hatakeyama  and  Yasuno,

1982
Cadmium Stickleback G.aculeatus injection 0.11 S Woodworth and Pascoe,

1983
Cd chloride Stickleback G.aculeatus water 0.39 S Pascoe and Mattey, 1977
Cadmium Loach N.barbatulus water 2.3 S Douben, 1989
Cd sulfate Loach N.barbatulus diet 0.29 S Douben, 1989
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Cd chloride goldfish * C.auratus sediment 0.92 S Francis et al., 1984
Cd chloride Lgmouth bass * M.salmoides sediment 2.95 S Francis et al., 1984
Cd chloride Seabass L.calcarifer water 2.5 S Shazili, 1995
Cd sulfate bluegill L.macrochirus water 1.33 S Cope et al.,1994
Cd sulfate bluegill L.macrochirus water 0.036 S Cearley and Coleman, 1974
Cd nitrate Perch P.fluviatilis water 0.075 S Edgren and  Notter, 1980
Cadmium Spot (larvae) L.xanthurus water 5.4 - 5.8 S Middaugh et al.,1975

Cd chloride Dace T.hakonensis water 0.69 S, G Kumada et al.,1973
1S, R, and G refer to survival, reproduction and growth effects, respectively.
2USACE (1998) was reviewed and revealed no effective residues lower than those in Jarvinen and Ankley (1999).
* Exposure was initiated during egg stage

Table A-1 (c).  Effective and non-effective organ and egg/embryo residues.  Cadmium, ppm
Effective Organ and Egg/Embryo Residues - Cadmium, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference2

Cd chloride Eel (organs) A.japonica water 4.0 -35 S Yang and Chen, 1996
Cd chloride Herring (embryo) C.harengus water 38 - 52 S Westernhagen et al.,1974
Cd sulfate R.trout (organs) O.mykiss water 0.6 - 16.4 R Brown et al.,1994
Cd chloride R.trout (liver) O.mykiss water 0.09 - 0.145 G Ricard et al., 1998
Cd chloride Atl. Salmon (embryo) S.salar water 0.56, 4.0 S Rombough and Garside, 1982
Cd chloride Atl. Salmon (embryo) S.salar water 0.12, 0.4 G Rombough  and Garside,

1982
Cd chloride Bk.trout (organs) S.fontinalis water 0.94 - 10 S Benoit  et al.,1976
Cd chloride Bk.trout (organs) S.fontinalis water 1.0 -13 S, G, R Benoit  et al.,1976
Cd sulfate Bullhead (gills) L.nebulosus water 30 -1000 S Mount and Stephan, 1967
Cd chloride Garpike (embryo) B.belone water 10.0 -28 S Westernhagen  et al.,1975
Cadmium FW fish (organs) C.punctatus water 59.4 -1224 S (ER50) Gupta and Rajbanshi, 1988
Cd sulfate bluegill (gills) L.macrochirus water 30 -1000 S Mount and Stephan, 1967
Cd sulfate bluegill (organs) L.macrochirus water 4.2 -107.6 S (ER50) Eaton, 1974
Cd sulfate Lgmouth bass (organs) M.salmoides water 0.007 - 0.009 S Cearley and Coleman, 1974
Cadmium Spot (larvae) L.xanthurus water 8.0 - 69 S (ER50) Middaugh et al.,1975

Cd chloride Mullet (organs) M.cephalus water 1.5 -252.4 S (ER20) Thomas et al.,1982
Cd chloride Dab (organs) L.limanda water 0.03 -1.37 S Westernhagen et al.,1980
Cd chloride Flounder (egg) P.flesus water 4.0 - 18 S Westernhagen and

Dethlefsen, 1975
Cd chloride Plaice (organs) P.platessa water 0.07 - 4.4 S (ER89) Westernhagen et al.,1980

Non-Effective Organ and Egg/Embryo Residues - Cadmium, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference2

Cd chloride mussel - organs - FW A.cygnea water 2.8 - 4.8 S Cassini et al.,1986
Cd chloride mussel - organs - FW U.elongatus water 1.7 - 7.0 S Cassini et al.,1986
Cd chloride clam (organs) -SW T.crocea water 0.86 - 127.4 S Duquesne and Coll, 1995

Cd chloride lobster (organs) N.norvegicus water 0.58 - 32.5 S Canli and Furness, 1995
Cd chloride crayfish (organs) P.acutus water 1.4 - 40.8 S Dickson et al.,1982

Cd chloride Eel (organs) A.japonica water 2.0 - 7.0 S Yang and Chen, 1996
Cd chloride Herring (embryo) C.harengus water 29 S Westernhagen et al.,1974
Cd chloride R.trout (organs) O.mykiss water 0.08 - 3.3 S Handy, 1992
Cd chloride R.trout (organs) O.mykiss water 0.83 - 3.0 G Zelikoff et al.,1995
Cd chloride R.trout (organs) O.mykiss water 0.02 - 0.38 S Calamari et al.,1982
Cd sulfate R.trout (organs) O.mykiss water 2.8 - 66.3 S, G Brown et al.,1994
Cd sulfate R.trout (organs) O.mykiss water 0.4 - 1.6 R Brown et al.,1994
Cd sulfate R.trout (organs) O.mykiss water 0.02 - 3.54 G Roberts et al.,1979
Cd sulfate R.trout (organs) O.mykiss water 3.75 - 7.3 G Olsson et al.,1989
Cd chloride R.trout (liver) O.mykiss water 0.07 - 0.16 G Ricard et al., 1998
Cd chloride Atl. Salmon (embryo) S.salar water 0.25, 2.0 S Rombough  and Garside,

1982
Cd chloride Atl. Salmon (embryo) S.salar water 0.06, 0.3 G Rombough  and Garside,

1982
Cd sulfate Brown trout (organs) S.trutta water 0.09 - 55.4 G Roberts et al.,1979
Cd chloride Bk.trout (organs) S.fontinalis injection 0.02 - 0.55 S Sangalanag and Freeman,

1979
Cd chloride Bk.trout (organs) S.fontinalis water 0.5 - 3.2 S Benoit et al.,1976
Cd chloride Lake trout (organs) S.namaycush water 2.13 - 3.43 G Kislalioglu et al.,1996
Cd sulfate Bullhead (gills) L.nebulosus water 0.04 - 26 S Mount and Stephan, 1967
Cd chloride Garpike (embryo) B.belone water 7.0 - 19 S Westernhagen et al.,1975
Cadmium FW fish (organs) C.punctatus water 49.2 - 955 S (ER0-5) Gupta and Rajbanshi, 1988
Cd sulfate bluegill (gills) L.macrochirus water 0.04 - 26 S Mount and Stephan, 1967
Cd sulfate bluegill (organs) L.macrochirus water 6.8 - 40.2 S Eaton, 1974
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Cd sulfate Lgmouth bass (organs) M.salmoides water 0.007 - 0.009 G Cearley and Coleman, 1974
Cd sulfate Lgmouth bass (organs) M.salmoides water 0.003 -0.005 S Cearley and Coleman, 1974
Cd chloride Lgmouth bass (organs) M.salmoides water 0.09 - 1.49 G Melgar et al., 1997
Cadmium Tilapia (organs) O.mossambicus water 0.01 - 3.11 S, G Pelgrom et al.,1995

Cd chloride Tilapia (organs) T.aureus water 0.1 - 41.6 S Allen, 1995
Cd chloride Mullet (organs) M.cephalus water 0.16 - 1.44 S Thomas et al.,1982
Cd chloride Dab (organs) L.limanda water 0.03 -0.59 S Westernhagen et al.,1980
Cd chloride Flounder (liver) P.americanus implant 17.5 S Jessen-Eller and Crivello,

1998
Cd chloride Flounder (egg) P.flesus water 2.0 - 6 S Westernhagen et al.,1975
Cd chloride Flounder (egg) P.flesus water 8.0 - 18 G Westernhagen et al.,1975
Cd chloride Carp (organs) C.carpio water 1.8 - 60 S Cinier et al.,1997
Cd chloride Plaice (organs) P.platessa water 0.02 - 0.34 S Westernhagen et al., 1980

1S, R, G and D refer to survival, reproduction and growth effects, respectively.
2USACE (1998) was reviewed and revealed no effective residues lower than those in Jarvinen and Ankley (1999).
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Table A-2 (a). Effective Whole Body Residues - Mercury, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference2

Hg chloride limpet C.fornicata water 22 - 48 G (ER30) Thain, 1984
Hg chloride limpet C.fornicata water 10.0 - 17 R (ER20) Thain, 1984
Hg chloride limpet C.fornicata water 4.0 - 8.0 D Thain, 1984
Hg acetate oyster C.virginica water 140.7 S (ER65) Cunningham and Trip, 1973

Hg chloride cladoceran (FW) D.magna water 4.66 R Biesinger et al.,1982
Meth-Hg-Chl cladoceran (FW) D.magna water 3.28 R Biesinger et al.,1982

Hg chloride Eel A.anguilla water 15.3 S (ER25) Noel-Lambot and
Bouquegneau, 1977

Hg chloride goldfish C.auratus water 5.6, 7.0 S (ER80, ?) Heisinger et al.,1979
Hg chloride Fathead minnow P.promelas water 4.2 S Snarski and Olson, 1982
Hg chloride Fathead minnow P.promelas water 1.3, 1.4, 4.8 G Snarski and Olson, 1982
Hg chloride Fathead minnow P.promelas water 4.47 R Snarski and Olson, 1982
Hg chloride Channel catfish I.punctatus water 0.34 S (ER49)  Birge et al.,1979

Meth-Hg-Chl R.trout O.mykiss injection 5.1 S (ER50) Hawryshyn and Mackay,
1979

Meth-Hg-Chl R.trout O.mykiss water 11.2 S Niimi and Kissoon, 1994
Meth-Hg-Chl R.trout O.mykiss oral 12.2 S Miettinen et al., 1970
Meth-Hg-Chl R.trout O.mykiss diet 7.6 , 11,  35 G Rodgers and Beamish,

1982
Meth-Hg-Chl Bk.trout  S.fontinalis water 9.4 S, G, R McKim et al.,1976
Meth-Hg-OH Pike E.lucius oral 12.5, 23.2 S Miettinen et al., 1970
Meth-Hg-Chl Bluegill L.macrochirus water (21oC) 10.7 S Cember et al.,1978

Table A-2 (b). Non-Effective Whole Body Residues - Mercury, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference2

Hg chloride limpet (SW) C.fornicata water 10.0 - 17 G Thain, 1984
Hg chloride limpet (SW) C.fornicata water 4.0 - 8.0 R Thain, 1984
Hg nitrate snail (FW) V.georgianus water 6 S, G Tessier et al.,1996

Hg acetate oyster C.virginica water 28 S Cunningham and Trip, 1973
Hg nitrate mussel (FW) E.complanata water 3 S, G Tessier et al.,1996
MethylHg mussel (FW) P.grandis water 0.045 S, G, R Malley et al.,1996

Hg chloride clam - SW C.fluminea water 8 S Baudrimont et al., 1997
Hg chloride clam - SW C.fluminea water 1.75 S, G Inza et al., 1997
Hg chloride clam - SW C.fluminea sediment 0.125 S, G Inza et al., 1997

Meth-Hg-Chl clam - SW C.fluminea water 6.3 S, G Inza et al. 1997
Meth-Hg-Chl clam - SW C.fluminea sediment 0.48 S, G Inza et al., 1997

Hg chloride cladoceran (FW) D.magna water 4.66 S Biesinger et al.,1982
Hg chloride cladoceran (FW) D.magna water 3.05 R Biesinger et al.,1982
Hg chloride grass shrimp P.pugio water 1.1 - 2.1 S Barthalmus, 1977

Meth-Hg-Chl cladoceran (FW) D.magna water 36.8 S Biesinger et al.,1982
Meth-Hg-Chl cladoceran (FW) D.magna water/diet 5 S, R Lock,1975

Hg chloride goldfish C.auratus water 6.1 S Heisinger et al., 1979
Hg chloride Fathead minnow P.promelas water 2.8, 7.6 S Snarski and Olson, 1982
Hg chloride Fathead minnow P.promelas water 0.8, 2.64 G Snarski and Olson, 1982
Hg chloride Fathead minnow P.promelas water 2.8 R Snarski and Olson, 1982
Hg chloride Guppy P.reticulata water 0.2 S Scherer et al.,1975
Hg chloride Fish - FW G.affinis water 5.4 S Kania and O'Hara, 1974

Meth-Hg-Chl R.trout O.mykiss injection 1.91 S Hawryshyn and Mackay,
1979

Meth-Hg-Chl R.trout O.mykiss water (pH ranged) 0.05 - 0.09 S Ponce and Bloom, 1991
Meth-Hg-Chl R.trout O.mykiss oral 11 S Miettinen et al., 1970
Meth-Hg-Chl R.trout O.mykiss diet 7.6 - 35 S Rodgers and Beamish,

1982
Meth-Hg-Chl R.trout O.mykiss diet 29 G Rodgers and Beamish,

1982
Meth-Hg-Chl R.trout O.mykiss water 12 S Niimi and Lowe-Jinde, 1984
Meth-Hg-Chl R.trout O.mykiss water/diet 10.4, 5 S, G Lock, 1975
Meth-Hg-Chl R.trout O.mykiss water 2.3 - 8.6 G Phillips and Buhler, 1978
Meth-Hg-Chl Bk.trout  S.fontinalis water 3.4 S, G, R McKim et al.,1976
Meth-Hg-Chl Fathead minnow P.promelas water 10.9 S, G Olson et al.,1975

1S, R, G and D refer to survival, reproduction and growth effects, respectively.
2USACE (1998) was reviewed and revealed no effective residues lower than those in Jarvinen and Ankley (1999).
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Table A-2 (c).  Effective and non-effective organ and egg/embryo residues.  Mercury, ppm
Effective Organ and Egg/Embryo Residues - Mercury, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference2

Hg chloride crab (organs) C.maenas water (salt) 1.4 - 70 S (ER50) Bianchini and Gilles, 1996
Hg chloride crab (organs) C.pagurus water (salt) 1.6 - 110 S Bianchini and Gilles, 1996
Hg chloride crab (FW - organs) E.sinensis water (salt) 0.5 - 22 S Bianchini and Gilles, 1996
Hg chloride zooplankton (cytoplasm) field/water 0.04 G Brown and Parsons, 1978

Hg chloride Salmon (liver) O.keta field/water 0.96 G Brown and Parsons, 1978
Hg chloride Salmon (muscle) O.keta field/water 5.8 G Koeller and Wallace,

1977
Hg chloride R.trout (organs) O.mykiss water 0.7 - 117 S Niimi and Kissoon, 1994
Hg chloride R.trout (egg) O.mykiss water 96.8 S Birge et al.,1979
Hg chloride R.trout (edible flesh) O.mykiss water 2.4 - 2.9 S (ER10) MacLeod and Pessah,

1973
Hg chloride R.trout (organs) O.mykiss water 7-448,  8-271 S Niimi and Kissoon, 1994
Hg chloride R.trout (embryos) O.mykiss water 0.04, 0.27, 0.9 S (ER55, 77, ?) Birge et al.,1979
Hg chloride Medaka (embryo) O.latipes water 29 - 56 S (ER80-100) Heisinger and Green,

1975
Mercury Walleye (organs) S.vitreum diet 4 -232 S Scherer et al.,1975

Hg nitrate Fish (organs - FW) A.scandens water 2.8 - 3.0 G, D (Blinding) Panigrahi and Misra, 1978
Meth-Hg-Chl R.trout (pooled organs) O.mykiss water 6.9 - 7.9 S Wobeser, 1975
Meth-Hg-Chl R.trout (muscle) O.mykiss diet 19 -30 G Wobeser, 1975
Meth-Hg-Chl Bk.trout (organs) S.fontinalis water 23.5 - 200 S (ER88), R

(ER100)
McKim et al.,1976

Meth-Hg-Chl Bk.trout (embryo) S.fontinalis water 2.2 S McKim et al.,1976

Non-Effective Organ and Egg/Embryo Residues - Mercury, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference2

Hg chloride mussel (organs - SW) M.galloprovincialis water 23.2 - 212.6 S Pagliarani et al.,1996

Hg chloride Lobster (organs) N.norvegicus water 0.34 - 46.5 S Canli and Furness, 1995
Meth-Hg-Chl Lobster (organs) N.norvegicus water 1.8 - 38 S Canli and Furness, 1995
Hg chloride zooplankton (cytoplasm) field/water 0.02 G Brown and Parsons, 1978

Hg chloride Salmon (liver) O.keta field/water 0.17 G Brown and Parsons, 1978
Hg chloride Salmon (muscle) O.keta field/water 0.5 G Koeller and Wallace,

1977
Hg chloride Salmon (muscle) O.keta field/water 5.8 S Koeller and Wallace,

1977
Hg chloride R.trout (edible flesh) O.mykiss water 1.2 - 1.6 S MacLeod and Pessah,

1973
Hg chloride R.trout (organs) O.mykiss water 60 S, G, R Farmer et al., 1979
Hg chloride Carp (organs) C.carpio water 0.28 - 4.44 G Yediler and Jacobs, 1995
Hg chloride Medaka (embryo) O.latipes water 16 S Heisinger and Green,

1975
Hg nitrate Fish (organs - FW) A.scandens water 2.8 - 3.0 S Panigrahi and Misra, 1978

Meth-Hg-Chl R.trout (pooled organs) O.mykiss water 4.8 S Wobeser, 1975
Meth-Hg-Chl R.trout (muscle) O.mykiss diet 30 S Wobeser, 1975
Meth-Hg-Chl R.trout (muscle) O.mykiss diet 12.5 G Wobeser, 1975
Meth-Hg-Chl Bk.trout (organs) S.fontinalis water 9.2 - 41.8 S, R McKim et al., 1976
Meth-Hg-Chl Channel Catfish (blood) I.punctatus oral 0.106 S McCloskey et al., 1998

1S, R, G and D refer to survival, reproduction and growth effects, respectively.
2USACE (1998) was reviewed and revealed no effective residues lower than those in Jarvinen and Ankley (1999).
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Table A-3 (a). Effective Whole Body Residues - Arsenic, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference2

Arsenic snail - FW H.campanulata combined 4.2 S (ER16) Spehar et al.,1980

Arsenic cladoceran D.magna water 87 S (ER50) Enserink et al.,1991
Arsenic cladoceran D.magna water 33 R (ER10) Enserink et al.,1991

Na arsenate R.trout O.mykiss water (15oC) 8.1 - 8.6 S (ER50) McGeachy and Dixon, 1992
multiple As spp R.trout O.mykiss diet 11.2, 17.9 S (ER<20) Cockell and Hilton, 1988

Na arsenite Flounder* P.americanus implant 12.2* S (ER50) Eller-Jessen and Crivello, 1998
Na arsenate Sunfish L.cyanellus water 6.7 S (ER50) Sorensen, 1976
Na arsenite Bluegill (adult) L.macrochirus field/water 11.6 G Gilderhus, 1966
Na arsenite Bluegill (juvenile) L.macrochirus field/water 5.6 G (ER54) Gilderhus, 1966
Na arsenite Bluegill (juvenile) L.macrochirus field/water 5.6 S (ER50) Gilderhus, 1966

*calculated from reported As residues in liver  (34 ppm) and body remainder (12 ppm) and reported LSI (liver-somatic index)

Table A-3 (b).  Non-Effective Whole Body Residues - Arsenic, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference2

Arsenic snail - FW H.campanulata combined 4.0 - 16 S Spehar et al., 1980
Arsenic snail - FW S.emarginata combined 3.6 S Spehar et al., 1980

Arsenic cladoceran D.magna water 3.8 - 9.8 S Spehar et al., 1980
Na arsenate grass shrimp P.pugio water & diet 1.28 G Linday and Sanders, 1990

Arsenic stonefly P.dorsata combined 6 - 8.4 S Spehar et al., 1980
arsenic (MSMA) crayfish P.clarkii water 2.8 - 9.0 S Naqvi et al., 1990

Na arsenate R.trout O.mykiss water (15oC) 2.0 - 3.4 S, G McGeachy and Dixon, 1990
Na arsenite Flounder* P.americanus implant 1.1* S Eller-Jessen and Crivello, 1998
Na arsenite Bluegill (adult) L.macrochirus water 5.5 G Gilderhus, 1966
Na arsenite Bluegill (juvenile) L.macrochirus field/water 1.8 S,G Gilderhus, 1966

Arsenic  Bluegill L.macrochirus field/water 0.52 S Barrows et al.,1980
*estimated from reported liver residue by applying whole body:liver ratio derived from ER50 data, above (i.e. 1.0 : 0.359) 

Table A-3 (c).  Effective and non-effective organ and egg/embryo residues.  Arsenic, ppm
Effective Organ and Egg/Embryo Residues - Arsenic, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

Na arsenate Sunfish (organs) L.cyanellus water (20-30 oC) 8 - 212 S Sorensen, 1976
Na arsenite Flounder (liver) P.americanus implant 34 S (ER50) Eller-Jessen and Crivello, 1998
Na arsenite Flounder (less liver) P.americanus implant 12 S (ER50) Eller-Jessen and Crivello, 1998

Non-Effective Organ and Egg/Embryo Residues - Arsenic, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference2

multiple As Spp R.trout (carcass) O.mykiss water 6.1, 6.9, 11.4 S, G Cockell and Hilton, 1988
Arsenic trioxide R.trout (carcass) O.mykiss water 8.8 S Cockell and Hilton, 1988
Arsenic trioxide R.trout (carcass) O.mykiss water 0.9 G Cockell and Hilton, 1988
Arsenic trioxide R.trout (carcass) O.mykiss water 2.6 - 4.7 S, G Dixon and Sprague, 1981
diNa arsenate R.trout (carcass) O.mykiss diet 9.1 G Cockell and Hilton, 1988
Na arsenite Flounder (liver) P.americanus implant 2.5 S Jessen-Eller and Crivello, 1998
Na arsenite Flounder (liver) P.americanus implant 3 S Eller-Jessen and Crivello, 1998

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-4 (a).  Effective Whole Body Residues - Silver, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Ag nitrate gastropod C.fornicata water 7.53 R (ER49) Nelson et al.,1983
silver clam - SW C.fluminea water 2510 S Diamond et al.,1990
silver clam - SW C.fluminea water 1650 G Diamond et al.,1990

silver copepod - SW Acartia spp diet 0.37 S (ER40) Hook & Fisher (submitted)
silver copepod - SW Acartia spp diet 0.14 R (ER50) Hook & Fisher (submitted)
silver cladoceran - FW C. dubia/Simoceph. diet 0.06 R (ER50) Hook & Fisher (submitted)
silver cladoceran - FW C. dubia/Simoceph. water 0.07 R (ER25) Hook & Fisher (submitted)

Ag nitrate sculpin O.maculosus water (32 psu) 1.3 S (ER50) Shaw et al., 1998

Table A-4 (b). Non-effective Whole Body Residues - Silver, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Ag nitrate gastropod C.fornicata water 5.36 R Nelson et al.,1983
silver clam - SW C.fluminea water 1650 S Diamond et al., 1990
silver clam - SW C.fluminea water 800 G Diamond et al., 1990

Ag sulfide oligochaete - FW L. variegatus sediment 16.1 S, G, R Hirsch, 1998

silver cladoceran - SW Acartia spp. water 0.28 S Hook & Fisher (submitted)

Ag nitrate sculpin O.maculosus water 0.54 S Shaw et al., 1998
Ag nitrate Bluegill L.macrochirus water 0.06 S, G Coleman and Cearley, 1974

Table A-4 (c).  Effective and non-effective organ and egg/embryo residues.  Silver, ppm
Effective Organ and Egg/Embryo Residues - Silver, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

Ag nitrate R trout (liver) O.mykiss water 25 - 40 S (ER43) Galvez et al., 1998
Ag nitrate R trout (liver) O.mykiss water (brack) 19.0 - 21.1 S (ER50) Galvez and Wood, 1997
Ag nitrate R trout (organs) O.mykiss water 0.3 - 34.1 S (ER5) Wood et al.,1996

Non-effective Organ and Egg/Embryo Residues - Silver, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Ag sulfide R.trout (organs) O.mykiss diet 0.05 - 2.47 G, behav Galvez and Wood, 1999
Ag nitrate R trout (liver) O.mykiss water 0.6 S Galvez et al., 1998
Ag nitrate R. trout (liver/gill) O.mykiss water (brack) 200/200 S Hogstrand et al., 1996
Ag nitrate R trout (liver) O.mykiss water (brack) 1.89 S Galvez and Wood, 1997
Ag nitrate R trout (organs) O.mykiss water 0.07 - 10.5 S Wood et al., 1996a
Ag thiosulf R trout (organs) O.mykiss water 0.88 - 73.2 S Wood et al., 1996b
Ag nitrate Lgmth Bass (organs) M.salmoides water 0.003 - 0.12 S, G Coleman and Cearley, 1974

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-5 (a).  Effective Whole Body Residues - Copper, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Cu sulfate blue mussel M.edulis water + sed 22.1 S (ER80) Kaitala, 1988
copper blue mussel M.edulis water 67.4 S (ER50)  Hvilsom, 1983
copper blue mussel M.edulis water 10.8 S (ER100) Martin, 1979

Cu chloride bivalve - SW M.balthica water+sed 22 S (ER87) Kaitala, 1988
Cu chloride bivalve - SW M.balthica water 23.2 S (ER32) Absil et al.,1996

copper clam - SW M.casta water 201 S (ER50) Kumaraguru et al., 1980
Cu sulfate snail - FW L.praerosa water/field 27.3, 16.3 S (ER15, 70) Reed-Judkins et al., 1997

Cu sulfate worm-SW P.maculata water 48.9 - 87.5 S McLusky and Phillips, 1975
Copper worm-SW N.arenaceodentata water 199 - 293 S Pesch, 1979

Cu sulfate worm-SW C.spirabrancha water 10.7 S (ER50) Milanovich et al.,1976
Cu sulfate worm-SW C.spirabrancha water 12.8 G Milanovich et al.,1976
Cu chloride worm-SW N.diversicolor water (20oC) 46 S (ER50) Fernandez & Jones, 1990

Cu sulfate amphipod - FW H. azteca sediment 32.8 S (ER55) Borgmann and Norwood, 1997
Cu sulfate amphipod - FW H. azteca sediment 29.2 G Borgmann and Norwood, 1997
Cu sulfate amphipod - SW A. compressa water 100 G Ahsanullah and Williams, 1991

copper amphipod C.volutator water 18.4 R (ER54) Ericksson and Weeks, 1994 
copper cladoceran D.magna water 68 S (ER50) Enserink et al., 1991
copper cladoceran D.magna water 5.8 R (ER10) Enserink et al., 1991

copper R.trout O.mykiss water 2.22 S (ER57) Handy, 1992
Cu chloride R.trout O.mykiss water 1.4 G (ER27) Marr et al.,1996

copper R.trout O.mykiss combined 4.5 - 5.5 S (ER30) Mount et al.,1994 

Table A-5 (b).  Non-Effective Whole Body Residues - Copper, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Cu chloride bivalve - SW M.balthica sediment 14.4 S Absil et al.,1996
Cu sulfate zebra mussel D.polymorpha water 32 S Kraak et al.,1994
Cu sulfate zebra mussel D.polymorpha water 30-43 S Mersch et al.,1996
Cu sulfate zebra mussel D.polymorpha water 40-80 S Kraak et al.,1992
Cu sulfate zebra mussel D.polymorpha water 20 S Mersch et al.,1993
Cu sulfate clam-SW P.staminea water 9.3 S Roesijadi, 1980
Cu sulfate snail - FW L.praerosa water/field 25 S Reed-Judkins et al., 1997

Cu sulfate worm-SW P.maculata water 95.5 S McLusky and Phillips, 1975
Copper worm-SW N.arenaceodentata water 6.32 S Pesch, 1979

Cu sulfate worm-SW C.spirabrancha water 6.42 S Milanovich et al.,1976
Cu sulfate worm-SW C.spirabrancha water 12.9 G Milanovich et al.,1976

Cu sulfate amphipod - FW H.azteca sediment 30.6 S, G Borgmann and Norwood, 1997
Cu sulfate crayfish O.virilis water 50 S Evans, 1980

copper crayfish O.rusticus water 2.0 - 26 S Evans, 1980
copper amphipod C.volutator water 15.2 R Ericksson and Weeks, 1994    
copper amphipod C.volutator water 15.2 - 23.8 S Ericksson and Weeks, 1994  

Cu sulfate R.trout O.mykiss water 1.04 S (ER6) Handy, 1992
Copper R.trout O.mykiss diet 3.4 S Handy, 1992

Cu chloride R.trout O.mykiss water 0.74 - 0.97 G Marr et al., 1996
copper R.trout O.mykiss combined 0.7 - 7.2 S Mount et al., 1994 

Cu nitrate Carp (larvae) C.carpio water 7.4 S Stouthart et al.,1996
1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-5 (c).  Effective and non-effective organ and egg/embryo residues. Copper, ppm
Effective Organ and Egg/Embryo Residues - Copper, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

Cu sulfate blue mussel (organ) M.edulis water 7.95 - 9.01 S Harrison and Berger,1982
Cu sulfate clam-SW (gill) P.staminea water 31.2 S (ER86) Roesijadi, 1980

Cu chloride crab (hemolymph) C.maenas water 52.5 S (ER10) Rtal et al., 1996

Cu sulfate Cod (organs) G.morhua water 0.76 - 7.0 S (ER59) Larsen et al., 1997 
Cu acetate Coho salmon (organs) O.kisutch water 1.1 - 36 G Buckley et al.,1982
Cu sulfate R.trout (organs) O.mykiss water 0.5 - 72 S (ER63) Handy, 1992
Cu sulfate R.trout (organs) O.mykiss diet 3.4 - 637 S, G Lanno et al.,1985
Cu sulfate R.trout (liver) O.mykiss water 82 - 119 S Dethloff and  Bailey, 1998
Cu sulfate Bullhead (organs) I.nebulosus water 1.54 - 6.8 S Brungs et al.,1973
Cu sulfate Channel Catfish (organs) I.punctatus diet 0.3 -1.84 G Murai et al.,1981

Cu sulf
pentahyd

Channel Catfish (liver) I.punctatus water 21.5 S Griffin et al., 1997

Cu sulfate Stone loach (organs) N.barbatulus water 0.8 - 97.8 S (ER80-100) Solbe and Cooper, 1976
Cu sulfate Bluegill (organs) L.macrochirus water 2.6 - 96 S Benoit, 1975
Cu sulfate Sheepshead (organs) A.probatocephalus water 0.1 -16.3 S Cardeilhac et al.,1979
Cu sulfate Tilapia (organs) O.mossambicus water 1078 - 2100 S (ER15) James et al., 1998

Carp (organs) C. carpio water 0.49 - 50.3 G DeBoeck et al., 1997
Cu nitrate Carp (egg) C.carpio water 42 S Stouthart et al.,1996
Cu nitrate Carp (egg-larvae) C.carpio water 11.1, 11.7 S Stouthart et al.,1996

Non-Effective Organ and Egg/Embryo Residues - Copper, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Cu sulfate blue mussel (organ) M. edulis water 2.74 S Harrison and Berger, 1982

Cu sulfate oligochaete - SW (sections) T. tubifex water 120 - 200 Physiology Lucan-Bouche et al., 1999

Cu chloride crab (hemolymph) C. maenas water 12.6 S Rtal et al., 1996

Cu sulfate Cod (organs) G.morhua water 0.34 - 5.4 S Larsen et al., 1997 
Cu chloride R.trout (organs) O.mykiss water 0.6 - 47 S Grosell et al., 1997
Cu sulfate R.trout (organs) O.mykiss water 0.5 - 100 S Handy, 1992

Copper R.trout (liver) O.mykiss water 70 - 231 S Olsson et al.,1987
Copper R.trout (liver) O.mykiss diet 4.4 - 329 S, G Lanno et al.,1985

Cu sulfate R.trout (liver) O.mykiss water 82 - 119 G Dethloff & Bailey, 1998
Cu sulfate R.trout (liver) O.mykiss water 64 - 102 S Dethloff & Bailey, 1998
Cu sulfate R.trout (organs) O.mykiss water 1.34 - 47.8 S, G, R McKim and Benoit, 1971
Cu chloride Roach (organs) R.rutilis water 4.0 -7.6 S Segner, 1987
Cu sulfate Bullhead (organs) I.nebulosus water 2.0 -6.6 S Brungs et al.,1973
Cu sulfate Channel Catfish (organs) I.punctatus diet 0.28 -1.0 G Murai et al.,1981

Cu sulf
pentahyd

Channel Catfish (liver) I.punctatus water 15.8 S Griffin et al., 1997

Cu sulf
pentahyd

Channel Catfish (liver) I.punctatus water 9.9 - 34 S Perkins et al., 1997

Cu sulf
pentahyd

Channel Catfish (liver) I.punctatus water 4.8 - 20 G Perkins et al., 1997

Cu sulfate Stone loach (organs) N.barbatulus water 0.7 - 15.4 S Solbe and Cooper, 1976
Cu sulfate Bluegill (organs) L.macrochirus water 1.2 - 11.4 S Benoit, 1975

Copper Tilapia (organs) O.mossambicus water 0.9 -23.9 S Pelgrom et al.,1995
Cu sulfate R.trout (egg) O.mykiss water 1.4 S, G, R McKim and Benoit, 1971
Cu sulfate R.trout (embryo) O.mykiss water 5.6 S McKim and Benoit, 1971
Cu sulfate Carp (organs) C. carpio water 0.46 - 29.3 G DeBoeck et al., 1997
Cu nitrate Carp (egg) C.carpio water 10.6 - 34.3 S Stouthart et al.,1996
Cu nitrate Carp (egg-larvae) C.carpio water 7.4 S Stouthart et al.,1996

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-6 (a).  Effective Whole Body Residues - Lead, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Pb nitrate zebra mussel D.polymorpha water 200 S,G Kraak et al., 1994

Pb nitrate amphipod - FW G.pseudolimnaeus water 98 S (ER50) Spehar et al., 1978
Lead cladoceran D.magna water 5040 S (ER50) Enserink  et al., 1991
Lead amphipod - FW H.azteca water 70 - 110 S (ER50) Maclean et al.,1993
Lead amphipod - FW H.azteca (young) water 14.5 S (ER50) MacLean et al., 1996
Lead amphipod - FW H.azteca (juvenile) water 19.1 S (ER50) MacLean et al., 1996
Lead amphipod - FW H.azteca (adult) water 30.2 S (ER50) MacLean et al., 1996

Pb nitrate Bk.trout S.fontinalis water 4.0 - 8.8 G (ER57) Holcombe et al.,1976
Lead fathead P.promelas water 44.2 Enzyme Ind. Weber et al.,1991

Table A-6 (b).  Non-Effective Whole Body Residues - Lead, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Pb nitrate snail P.integra water 200 S Spehar et al.,1978
Pb nitrate oyster C.virginica water 2.3 - 2.6 G,S,R Zaroogian et al.,1979
Pb nitrate zebra mussel D.polymorpha water 36 S,G Kraak et al.,1994
Pb nitrate zebra mussel D.polymorpha water 40 S,G Bleeker et al.,1992

Lead zebra mussel D.polymorpha water 2.0 - 30 S Kraak et al.,1994
Pb acetate clam - SW M.mercenaria water 8.44 - 10.4 S Alcutt and Pinto, 1994
Pb nitrate oyster C.gigas water 270.2 G Almeida et al., 1998

Lead amphipod P.affinis combined 4 S Sundelin,1984
Lead barnacle B.crenatus combined 90 Enzyme Ind. Powell and White, 1990
Lead amphipod - FW H.azteca (young) water 9.7 S MacLean et al., 1996
Lead amphipod - FW H.azteca (juvenile) water 9 S MacLean et al., 1996
Lead amphipod - FW H.azteca (adult) water 16.6 S MacLean et al., 1996

Pb nitrate Bk.trout S.fontinalis water 2.5 - 5.1 G Holcombe et al.,1976
Pb nitrate R.trout  O.mykiss diet 1.3 - 2.6 S, G Mount et al.,1994 

Lead fathead P.promelas water 26.2 Enzyme Ind. Weber et al.,1991
1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-6 (c).  Effective and non-effective organ and egg/embryo residues.  Lead, ppm
Effective Organ and Egg/Embryo Residues - Lead, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

Lead SW Catfish (organs) M. gulio (juvenile) water 0.37 - 7.6 G Kasthuri & Chandran, 1997
Lead SW Catfish (organs) M. gulio (adult) water 0.44 - 22.3 G Kasthuri & Chandran, 1997

Pb nitrate Bk.trout (organs) S.fontinalis water 26.8 - 65.2 S, G, R Holcombe et al.,1976
Lead Bk.trout (organs) S.fontinalis water 3.2 - 30 behavior Holcombe et al.,1976
Lead Bk.trout (eggs) S.fontinalis water 4.02 G, D Holcombe et al.,1976

Pb nitrate Bk.trout (embryo) S.fontinalis water 0.4 S Holcombe et al.,1976

Non-Effective Organ and Egg/Embryo Residues - Lead, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Pb nitrate FW mussel (org) P.grandis water 18 - 48 G Black et al.,1996

Pb nitrate SW worm (ant/post) T.tubifex water 30/50 Physiol. Lucan-Bouche et al., 1999

Lead SW Catfish (organs) M. gulio (juvenile) water nd - 7.4 G Kasthuri & Chandran, 1997
Lead SW Catfish (organs) M. gulio (adult) water nd - 21.4 G Kasthuri & Chandran, 1997
Pb R.trout (sacfry-blood) O.mykiss water 0.64 S, G Hodson et al.,1980

Pb nitrate R.trout (organs) O.mykiss water 1.15 - 65 S Hodson et al.,1978
Pb nitrate Bk.trout (organs) S.fontinalis water 2.4 - 140 S, G, R Holcombe et al.,1976

Lead Bk.trout (organs) S.fontinalis water 0.2 - 100 S, G, R Holcombe et al., 1976
Pb acetate Fish, SW (organs) G. mirabilis water 2.5 - 220 S Somero et al.,1977

Lead Bk.trout (eggs) S.fontinalis water 1.6, 2.55 S, G, D Holcombe et al., 1976
Pb nitrate Bk.trout (embryo) S.fontinalis water 0.34 S Holcombe et al.,1976

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-7 (a). Effective Whole Body Residues - Zinc, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Zn blue mussel M.edulis particle 148 S (ER100) Burbidge et al.,1994
Zn chloride zebra mussel D.polymorpha water 600 S (ED>50) Kraak et al.,1994
Zn sulfate snail - FW L. praerosa water 88 S (ER30) Reed-Judkins et al., 1997

Zn sulfate worm - SW N. diversicolor water- 20o 174.4 S (ER50) Fernandez and Jones, 1990

Zn chloride amphipod - FW H. azteca sediment 60.8 S (ER67) Borgmann and Norwood, 1997
Zn sulfate amphipod - SW A. compressa water 24 S (ER90), G Ahsanullah and Williams, 1991
Zn sulfate amphipod - SW A. compressa water 30 S (ER30) Ahsanullah and Williams, 1991
Zn sulfate crayfish O.virilis water 69.2 S (ER61) Mirenda, 1986
Zn sulfate crayfish O.virilis water 37.8 S (ER42) Mirenda, 1986
Zn sulfate crayfish O.virilis water 35.2 S (ER22) Mirenda, 1986

Zn sulfate Flagfish J.floridae water 44 S (ER80) Spehar, 1976
Zn sulfate Flagfish J.floridae water 40 G Spehar, 1976

Table A-7 (b). Non-effective Whole Body Residues - Zinc, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Zn blue mussel M.edulis particle 78 S Burbidge et al.,1994
Zn sulfate blue mussel M.edulis water 38.4 S Kaitala, 1988
Zn sulfate clam M.balthica water 55.8 S Kaitala, 1988
Zn chloride zebra mussel D.polymorpha water 122 S Kraak et al.,1994
Zn chloride zebra mussel D.polymorpha water 150 S Kraak et al.,1994
Zn chloride zebra mussel D.polymorpha water 600 G Kraak et al.,1994
Zn sulfate snail - FW L. praerosa water 27 S Reed-Judkins et al., 1997

Zn sulfate worm - SW N. diversicolor water 6-12o 73 - 170 S Fernandez & Jones, 1990
Zn chloride worm - FW L. variegatus sediment 47.7 S Peterson et al., 1996

Zn sulfate amphipod - SW A. compressa water 26 S, G Ahsanullah and Williams, 1991
Zn sulfate crayfish O.virilis water 12.7 S Mirenda, 1986

Zinc barnacle B.crenatus combined 3200 B (feeding) Powell  and White, 1990
Zn chloride amphipod - FW H. azteca sediment 30.2 -53.6 S Borgmann and Norwood, 1997

Zn sulfate Flagfish J.floridae water 40 S Spehar, 1976
Zn sulfate Flagfish J.floridae water 34 G Spehar, 1976

Zn R.trout O.mykiss diet/water 32.6 - 60.6 S, G Mount et al., 1994 
Zinc sulfate Atl Salmon S. Salar water 60 S, G Farmer et al.,1979
Zn sulfate Guppy P.reticulata water 280, 320-480 S, G, R Pierson, 1981

1S, R, and G refer to survival, reproduction and growth effects, respectively.



A-242

Table A-7 (c).  Effective and non-effective organ and egg/embryo residues.  Zinc, ppm
Effective Organ and Egg/Embryo Residues - Zinc, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

Zn sulfate lobster (gill) H.americanus water 360 - 514 S (ER17) Haya et al.,1983

Zn sulfate Flagfish (embryo) J.floridae water 60-64 G Spehar, 1976
Zn sulfate Flagfish (embryo) J.floridae water 60-68 S Spehar et al.,1978
Zn sulfate dogfish (organs) S.canicula water 13.6 - 124.1 S Flos et al.,1979
Zn sulfate Bk.trout (organs) S.fontinalis water 37 - 77 R Holcombe et al.,1979

Non-Effective Organ and Egg/Embryo Residues - Zinc, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

Zn chloride mussel (organs) M.galloprovincialis water 57.4 - 160.4 S Pagliarani et al.,1996

Zn sulfate Flagfish (embryo) J.floridae water 60-68 S Spehar, 1976, 1978
Zn sulfate dogfish (organs) S.canicula water 22 - 560 S, G Crespo and Balasch, 1980
Zn sulfate dogfish (organs) S.canicula water 9.3 - 46 S Flos et al.,1979

Zn  R.trout (liver) O.mykiss water 15.2 - 26.8 S Olsson et al.,1987
Zn sulfate R.trout (organs) O.mykiss water 15 - 75 S Hogstrand et al.,1994
Zn sulfate R.trout (organs) O.mykiss water 60 S, G, R Farmer et al.,1979
Zn sulfate R.trout (organs) O.mykiss diet 23.2 -257.5 S Kock and Bucher, 1997
Zn sulfate Bk.trout (organs) S.fontinalis water 37 - 77 S, G Holcombe et al.,1979

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-8 (a). Effective Whole Body Residues - Chromium, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

K dichromate worm N.arenaceodentata water 6.03 R (ER35) Oshida and Word, 1982

K dichromate sand crab (larvae) P.pelagicus water 3.2, 6.3 G Mortimer and Miller,
1994

chromium cladoceran D.magna water 55 S (ER50) Enserink et al.,1991

chromium VI R.trout  O.mykiss water 10.5 S (ER50) Van De Putt  et al.,1981
chromium R.trout (enzyme) O.mykiss water 0.87 P (ER50) Buhler et al.,1977

Table A-8 (b).  Non-Effective Whole Body Residues - Chromium, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

K dichromate worm N.arenaceodentata water 4.42, 8.28 R Oshida and Word, 1982

K dichromate amphipod A.compressa water 9.2 S,G Ahsanullah and
Williams, 1991

K dichromate sand crab (larvae) P.pelagicus water 1.0, 3.2 G Mortimer and Miller,
1994

chromium VI R.trout  O.mykiss water 2.3 S Van De Putte  et
al.,1981 

chromium R.trout (enzyme) O.mykiss water 0.87 P (ER50) Buhler  et al.,1977

Table A-8 (c).  Effective and non-effective organ and egg/embryo residues - Chromium, ppm
Effective Organ and Egg/Embryo Residues - Chromium, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

None reported.

Non-effective Organ and Egg/Embryo Residues - Chromium, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

K dichromate R.trout (organs) O.mykiss water 0.58 - 3.48 S Calamari et al.,1982
Chromium III Gray mullet (liver) C.labrosus water 1.6, 33.8 S, G Walsh et al.,1994

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-9 (a).  Effective Whole Body Residues - Nickel, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

NiCl bivalve C. derma water 575 S Wilson, 1983
Nickel clam - SW C.edule water 56.6 S (ER50) Wilson, 1983

Nickel worm-FW L.hoffmeisteri sediment 30 - 45 Physiological Martinez-Tabche et al., 1999

Nickel cladoceran D.magna water 223 S (ER50) Enserink  et al.,1991 

Table A-9 (b).  Non-Effective Whole body Residues - Nickel, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

NiCl bivalve C. derma water 79 S Wilson, 1983

Table A-9 (c).  Effective and non-effective organ and egg/embryo residues.  Nickel, ppm
Effective Organ and Egg/Embryo Residues - Nickel, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

NiCl FW mussel (org) L.marginalis water 328-1456 S (ER50) Sreedevi et al., 1992

NiCl Carp (organs) C.carpio water 82.2 - 227 S Sreedevi et al., 1992

Non-effective Organ and Egg/Embryo Residues - Nickel, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

NiCl FW mussel (org) L.marginalis water 180-570 S Sreedevi et al., 1992

NiCl Carp (organs) C.carpio water 36.4 - 103 S Sreedevi et al., 1992
NiCl R. trout (organs) O.mykiss water 0.8 - 4.0 S Calamari et al., 1982

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-10 (a).  Effective Whole Body Residues - (Tributyl Tin, ppm)
Compound Organism Species Exposure Residue Endpoint 1 Reference

TBT snail-FW M.cornuarietis water 0.32 - 0.36 R Schulte-Oehlmann et al.,
1995

TBT-paint snail-SW N.lapillus water 0.46, 1.17 R Gibbs and Bryan, 1987
TBT-chloride snail-SW N.lapillus water 0.67 R Bryan et al., 1988
TBT-chloride snail-SW N.lapillus injection 0.27 - 0.43 R  Bryan et al., 1988

TBT snail-SW I.obsoleta water/field 20 R(ER40-50) Bryan et al.,1989
TBT mussel - SW M.edulis water/field 2 G Salazar and Salazar, 1988

TBT-paint mussel - SW M.edulis water 2.2 G Thain, 1986
TBT-paint oyster - SW C.gigas water 2.38 G Thain, 1986
TBT-paint oyster - SW O.edulis water 1.23 G Thain, 1986
TBT-paint oyster - SW O.edulis water 0.4 R Thain, 1986
TBT-paint clam - SW V. decussata (spat) water 2.64, 2.91 G Thain, 1986

TBT clam - SW S. plana sediment 5.0 - 6.0 S Langston and Burt, 1991
TBT chloride snail-SW T. clavigera injection 0.2, 0.32 S (ER25, 70) Horiguchi et al., 1997

TBT-chloride worm-SW N.arenaceodentata diet 3.4 S Moore et al., 1991
TBT-chloride worm-SW N.arenaceodentata diet 1.3 G, R Moore et al., 1991
TBT-chloride worm-SW A.brevis water 5.6, 7 S(ER7, 14) Meador, 1997
TBT-chloride worm-SW A.brevis sediment 8.1 - 18.4 S Meador et al., 1997

TBT-chloride amphipod - SW E. estuarius water 7 - 11.6 S(ER50) Meador, 1993
TBT-chloride amphipod - SW R. abronius water 6 - 14.2 S(ER50) Meador, 1993
TBT-chloride amphipod - SW E. estuarius water 10 S(ER14) Meador et al., 1993
TBT-chloride amphipod - SW R. abronius water 10.8, 28 S(ER20, 80) Meador et al., 1993
TBT-chloride amphipod - SW E. washingtonianus water 8.4, 10.5 S(ER20, 75) Meador et al., 1993
TBT-chloride amphipod - SW R. abronius water 5.1, 13.5 S(ER19, 60) Meador, 1997
TBT-chloride amphipod - SW R. abronius sediment 9.45 - 56 S Meador et al., 1997
TBT-chloride amphipod - SW E. washingtonianus sediment 7.35 - 16.8 S Meador et al., 1997
TBT-chloride amphipod - FW H.azteca (adult) water 36.6 S (ER75) Borgmann et al., 1996
TBT-chloride amphipod - FW H.azteca (juvenile) water 1.16, 5.8 S (ER20, 50) Borgmann et al., 1996
TBT-chloride cladoceran - FW D.magna water 0.65 S Fent and Looser, 1995

TBT-chloride guppy -FW P.reticulata water 3.77 - 8.7 S Tas et al., 1993; 1996
TBT-chloride flounder - SW P.stellatus water 2.0, 5.1 S(ER5, 36) Meador, 1997
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Table A-10 (b).  Non-Effective Whole body Residues - (Tributyl Tin, ppm)
Compound Organism Species Exposure Residue Endpoint 1 Reference

TBT snail-FW M.cornuarietis water 0.16 R Schulte-Oehlmann et al., 1995
TBT-paint snail-SW N.lapillus water 0.62 R Gibbs and Bryan, 1987

TBT-chloride snail-SW N.lapillus injection 0.23 R Bryan et al., 1988
TBT-oxide snail-SW N.lapillus water 1.03 S Davies et al., 1997

TBT snail-SW I.obsoleta water/field 4 R Bryan et al.,1989
TBT mussel - SW M.edulis water/field 1 G Salazar and Salazar, 1988
TBT mussel - SW M.edulis water/field 4.5 S Salazar and Salazar, 1988

TBT-paint mussel - SW M.edulis water 2.2 S Thain, 1986
TBT-paint mussel - SW M.edulis water 0.56 G Thain, 1986
TBT-paint oyster - SW C.gigas water 0.63 G Thain, 1986
TBT-paint oyster - SW O.edulis water 1.23 S Thain, 1986
TBT-paint oyster - SW O.edulis water 0.4 G Thain, 1986
TBT-paint oyster - SW O.edulis water 0.19 R Thain, 1986
TBT-paint oyster - SW O.edulis (spat) water 0.53 S, G Thain, 1986

TBT mussel - FW D.polymorpha water 12.7 S, G van Slooten and Tarradellas, 1994
TBT-paint clam - SW V. decussata (spat) water 2.64, 2.91 S Thain, 1986
TBT-paint clam - SW V. decussata (spat) water 0.16, 1.48 G Thain, 1986

TBT clam - SW S. plana sediment 1 S Langston and Burt, 1991

TBT-chloride worm-SW N.arenaceodentata diet 1.3 S Moore et al., 1991
TBT-chloride worm-SW N.arenaceodentata diet 0.6 G, R Moore et al., 1991

TBT chloride crab - SW C.sapidus diet 0.12 G Rice et al., 1989
TBT-chloride amphipod - SW E. estuarius water 6.0 - 8.0 S Meador et al., 1993
TBT-chloride amphipod - SW R. abronius water 5.94 S Meador et al., 1993
TBT-chloride amphipod - FW H.azteca (adult) water 18.3 S Borgmann et al., 1996
TBT-chloride cladoceran - FW D.magna water 0.39 S Fent and Looser, 1995

TBT-chloride Carp C.carpio water 4.1 S Tsuda et al., 1990a
TBT-oxide minnow - SW C.variegatus water 2.6, 2.95 S Ward et al., 1981

TBT-chloride guppy -FW P.reticulata water 0.07, 0.26 S Tsuda et al., 1990b
TBT-chloride fish -FW T.thymallus water 20 S Fent and Looser, 1995
TBT-oxide bream -SW P.major water 0.41 S Yamada and Takayanagi, 1992
TBT-oxide mullet - SW M.cephalus water 0.37 S Yamada and Takayanagi, 1992
TBT-oxide filefish -SW R. ercodes water 0.4 S Yamada and Takayanagi, 1992

1S, R, and G refer to survival, reproduction and growth effects, respectively.

Table A-10 (c).  Effective and non-effective organ and egg/embryo residues (Tributyl Tin, ppm)
Effective Organ and Egg/Embryo Residues - Tributyl Tin, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

TBT-paint snail-SW (embryo) N.lapillus water 0.18 R Gibbs et al., 1988
TBT-paint snail-SW (egg) N.lapillus water/field 0.029 R Gibbs and Bryan, 1987

TBT Bream (organs) P. major water 0.94 - 3.3 S (ER9) Yamamoto et al., 1997

Non-effective Organ and Egg/Embryo Residues - Tributyl Tin, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

TBT-paint snail-SW (embryo) N.lapillus water 0.08 R Gibbs et al., 1988
TBT-paint snail-SW (egg) N.lapillus water/field 0.016 R Gibbs and Bryan, 1987
TBT-paint snail-SW (organs) N.lapillus water 0.02 - 0.18 S Bryan et al., 1993
TBT-oxide mussel - SW (orgs) M.edulis water 1.3 -4.9 S Laughlin and French, 1988

TBT-chloride Carp (organs) C.carpio water 0.013 - 0.818 S Tsuda et al., 1988
TBT-oxide Carp (organs) C.carpio water 1.05 - 6.64 S Tsuda et al., 1988

TBT Bream (organs) P. major water 0.94 - 3.3 G Yamamoto et al., 1997
TBT Bream (organs) P. major water 0.54 - 2.0 S Yamamoto et al., 1997

Bream (organs) P. major water 0.19 - 0.46 S Yamada and Takayanagi, 1992

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-11(a).  Effective Whole Body Residues - DDT, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

DDT cladoceran (FW) D.magna water 1150 S (ER50) Crosby and Tucker,
1971

DDT+metabolites Blue crab C.sapidus diet 1 S Leffler, 1975
DDT Pink shrimp P.duorarum water 0.15 - 0.21 S Nimmo et al., 1970

DDT+metabolites Cutthroat trout O.clarki maternal 0.567 S (ER30) Cuerrier et al., 1967
tDDT Salmon  O.kisutch diet 113 S (ER85) Buhler et al., 1969

DDT+metabolites R.trout O.mykiss maternal 1.14 - 1.42 S (ER90) Cuerrier et al., 1967
DDT+metabolites Salmon (4.4g fingerling) O.tshawytscha diet (39days) 21.7 S (ER55) Buhler et al., 1969
DDT+metabolites Salmon (1.1g fingerling) O.tshawytscha diet (40days) 11.4 S (ER53) Buhler et al., 1969
DDT+metabolites Bk.trout S.fontinalis maternal 0.46 S (ER70) Cuerrier et al., 1967

DDT Bk.trout S.fontinalis maternal 2.8 - 7.6 R Macek, 1968
DDT Lake trout S.namaycush maternal 2.93 S Burdick et al., 1964

DDT+metabolites Goldfish C.auratus water&diet 400 S (ED>80) Rhead and Perkins,
1984

DDT+metabolites Goldfish C.auratus water&diet 200 S (ED>20) Rhead and Perkins,
1984

DDT+metabolites Fathead minnow P.promelas water 160 S (ER50) Jarvinen et al., 1976;
1977

DDT+metabolites Fathead minnow
(larvae)

P.promelas water&diet 88 - 96 S (ER100) Jarvinen et al., 1976;
1977

DDT+metabolites Fathead minnow P.promelas maternal 209 R (ER81) Jarvinen et al., 1976;
1977

DDT+metabolites mosquitofish G.affinis water 26.5 S (ER50) Pillai et al., 1977
DDT+metabolites sailfin molly (SW) P.latipinna water 77.3 S, G Benton et al., 1994
DDT+metabolites sunfish & pumpkinseed Lepomis spp. water/field 24 S Hamelink et al., 1971

DDE Lake trout S.namaycush water & diet 0.29 S Berlin et al., 1981

Table A-11 (b). Non-Effective Whole Body Residues - DDT, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

tDDT polychaete H.filiformis sediment 5.9 S Mulsow and Landrum,
1995

DDT+metabolites Pink shrimp P.duorarum water 0.06 S Nimmo et al., 1970
DDT+metabolites Blue crab C.sapidus diet 0.13 S Leffler, 1975

DDT+metabolites Menhaden B.tyrannus diet 24 G Warlen et al., 1977
tDDT Salmon  O.kisutch diet 16.6 S Buhler et al., 1969

DDT+metabolites R.trout O.mykiss diet 4.67 S, G Macek et al., 1970
DDT+metabolites R.trout O.mykiss maternal 0.064 - 0.178 S Cuerrier et al., 1967
DDT+metabolites R.trout O.mykiss water 0.15 - 0.30 S Hopkins et al., 1969
DDT+metabolites Salmon (1.1g fingerling) O.tshawytscha diet (40days) 2.2 - 11.4 S Buhler et al., 1969
DDT+metabolites Bk.trout S.fontinalis water, diet 1.92, 25.6 S Macek and Korn, 1970

DDT + metabolites Bk.trout S.fontinalis diet 0.008 -0.042 S Wang and Simpson, 1996
DDT + metabolites Bk.trout S.fontinalis injection 1.0 - 5.0 S, G Addison and Zinck, 1977
DDT+metabolites Bk.trout S.fontinalis diet/field 2.8 - 7.6 S, G Macek, 1968
DDT+metabolites Goldfish C.auratus diet&water 130 S Rhead and Perkins, 1984
DDT+metabolites Golden shiner N.crysoleucas diet &water 0.03 - 3.6 S Courtney and Reed, 1971
DDT+metabolites Fathead minnow P.promelas water 40 S Jarvinen et al., 1976;

1977
DDT+metabolites sailfin molly (SW) P.latipinna water 43 S, G Benton et al., 1994

DDE Lake trout S.namaycush water & diet 2.68 G Berlin et al., 1981
1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-11 (c).  Effective and non-effective organ and egg/embryo residues.  DDT, ppm
Effective Organ and Egg/Embryo Residues - DDT, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

DDT+metabolites Pink shrimp (organs) P.duorarum water 0.19 - 40.4 S Nimmo et al., 1970
DDT+metabolites White shrimp (organs) P.setiferus water 0.02 - 11 S Nimmo et al., 1970

DDT+metabolites Salmon (embryo) O.kisutch water 1.09 - 2.76 S Johnson and Pecor,
1969

DDT+DDE R.trout (brain) O.mykiss oral 11.7 - 14.8 S Mayer et al., 1972
DDT+metabolites R.trout (ovary) O.mykiss water 3.47 R Hopkins et al., 1969

DDT Catfish (organs) H.fossilis injection 50.5 - 1473 S Agarwal and Gupta,
1974

DDT+metabolites mummichog (organs) F.heteroclitus water 1.7 - 14.2 S (ER94) Crawford and Guarino,
1976

DDT+metabolites airbreathing fish (organs) C.striatus water 0.12 - 31.99 S Pandian and
Bhaskaran, 1983

DDT+DDE Winter flounder (embryo) P.americanus maternal 2.5 - 3.8 S (ER91-99) Smith and Cole, 1973

Non-Effective Organ and Egg/Embryo Residues - DDT, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

tDDT polychaete H.filiformis sediment 5.9 S Mulsow and Landrum,
1995

DDT +metabolites Pink shrimp (organs) P.duorarum water 0.02 -0.7 S Nimmo et al., 1970

DDT+metabolites Salmon (embryo) O.kisutch water 0.55 -0.66 S Johnson and Pecor,
1969

DDT+DDE R.trout (brain) O.mykiss oral 8.7 S Mayer et al., 1972
DDT+metabolites R.trout (ovary) O.mykiss water 0.31 - 0.83 R Hopkins et al., 1969
DDT+metabolites mummichog (organs) F.heteroclitus water 1.5 - 5.1 S Crawford and Guarino,

1976
DDT+metabolites mummichog (egg) F.heteroclitus maternal 0.16 S Crawford and Guarino,

1976
DDT+DDE Winter flounder (embryo) P.americanus maternal 1.55 S Smith and Cole, 1973

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-12 (a) Effective Whole Body Residues - PCBs, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

PCBs blue mussel M.edulis combined 1.4 S Velduizen-Tsoerkan et
al.,1991

PCBs oyster C.virginica water 4 G (ER10)  Hansen et al.,1974
PCBs oyster C.virginica water 425 G  Lowe et al., 1972

1254 Pink shrimp P.duorarum water (20 days) 16 S (ER72) Duke et al., 1970
1254 Pink shrimp P.duorarum water (2 days) 3.9 S Duke et al., 1970
1254 Grass shrimp P.pugio water 27 S (ER45) Nimmo et al., 1974
1254 Grass shrimp P.pugio water 65 S (ER60) Nimmo et al., 1974
1016 horseshoe crab (23 mg) L.polyphemus water 31.9 S (ED>50) Neff and Giam, 1977
1248 amphipod - FW G.pseudolimnaeus water 552 R Nebeker and Puglisi,

1974
1242 amphipod - FW G.pseudolimnaeus water 409 S Nebeker and Puglisi,

1974
1242 amphipod - FW G.pseudolimnaeus water 246 - 387 R Nebeker and Puglisi,

1974
Individual PCB cladoceran D.magna water 0.7 G Dillon et al., 1990
individual PCBs cladoceran-neonate D.magna water 11 G Dillon et al., 1990

PCBs Brown shrimp P.aztecus water 42 S (ER43) Hansen et al.,1974

1254 Coho salmon O.kisutch diet 645 - 659 S (ER100) Mayer et al., 1977
1254 Lake trout S.namaycush combined 1.53 S Berlin et al., 1981
1254 Fathead minnow P.promelas water 648-745 S van Wezel et al., 1995
1254 Fathead minnow P.promelas water 83-553 R Nebeker et al., 1974
1254 pinfish L.rhomboides water (20-32 ppt) 14 S (ER66) Hansen et al., 1971
1254 spot L.xanthurus water (16-32 ppt) 46 - 120 S (ER51-53) Hansen et al., 1971
1254 minnow - SW (adult) C. variegatus maternal 9.3 - 9.7, 25 R (ER23, 74) Hansen et al., 1973
1016 minnow - SW (juvenile) C.variegatus water 1100 S (ER88) Hansen et al., 1975
1016 minnow - SW (larvae) C.variegatus water 200 S Hansen et al., 1975
1248 Fathead minnow P.promelas water 11.0 - 50 G Defoe et al., 1978
1242 Fathead minnow P.promelas water 1.28 - 20.5 S van Wezel et al., 1995
1260 Fathead minnow P.promelas water 0.36 - 10 S van Wezel et al., 1995
1268 Fathead minnow P.promelas water 0.45 - 4.53 S van Wezel et al., 1995

Clophen A50 goldfish C.auratus water 250 - 324 S Hattula and Karlog,
1972

Clophen A50 minnow - SW P.phoxinus diet 170 - 180 S (ER50), R Bengtsson, 1980
PCB mixture zebrafish - FW B.rerio water 4300 S (ER83) Bouraly and Millischer,

1989
individual PCBs guppy P.reticulata diet 144 - 446 S Opperhuizen and

Schrap, 1988
individual PCBs Chinook salmon O.tshawytscha water 3.6 -3.8 S Broyles and Noveck,

1979
individual PCBs Lake trout S.namaycush water 8.4 -9.2 S Berlin et al., 1981

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-12 (b). Non-Effective Whole Body Residues - PCBs, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

1254 oyster C.virginica water 33 S Duke et al., 1970
PCB mixture clam - FW C.fluminea field/water 0.45 - 0.76 S Peterson et al., 1994
PCB mixture hard clam M.mercenaria sediment 0.12 S Rubinstein et al., 1983

individual PCBs zebra mussel D.polymorpha diet/water/sedime
nt

1.73 - 4.3 S Brieger and Hunter,
1973

PCBs blue mussel M.edulis combined 0.6 S Velduizen-Tsoerkan et
al.,1991

indiv PCB blue mussel M.edulis water 1.1 S Eertman et al., 1996
PCBs oyster C.virginica water 101 G  Lowe et al., 1972
PCBs oyster C.virginica water 101, 425 S  Lowe et al., 1972
PCBs clam - SW M.nasuta ingestion 1.7 S Boese et al.,1995 

PCB mixture sandworm N.virens sediment 0.63 S Rubinstein et al., 1983

1254 Pink shrimp P.duorarum water (2 days) 1.3 S Duke et al., 1970
1254 Grass shrimp P.pugio water 5.4 - 18 S Nimmo et al., 1974
1254 Grass shrimp P.pugio sediment/field 0.42 S Nimmo et al., 1974

PCB mixture Grass shrimp P.pugio sediment 0.1 S Rubinstein et al., 1983
1254 blue crab C.sapidus water 23 S Duke et al., 1970
1016 horseshoe crab (23 mg) L.polyphemus water 7.7 S Neff and Giam, 1977
1016 horseshoe crab (23 mg) L.polyphemus water 31.9 G Neff and Giam, 1977
1248 amphipod - FW G.pseudolimnaeus water 552 S Nebeker and Puglisi,

1974
1248 amphipod - FW G.pseudolimnaeus water 127 R Nebeker and Puglisi,

1974
1242 amphipod - FW G.pseudolimnaeus water 246 - 387 S Nebeker and Puglisi,

1974
1242 amphipod - FW G.pseudolimnaeus water 71 - 80 R Nebeker and Puglisi,

1974
1242 amphipod - FW H.azteca water 28.4 S, G, R Borgmann et al., 1990

Individual PCB cladoceran D.magna water 4.0 - 26.6 S, G, R Dillon et al., 1990
individual PCBs cladoceran-neonate D.magna water 1.3 G Dillon et al., 1990
Individual PCB amphipod - FW H.azteca water 53.9 - 74.5 S, G, R Borgmann et al., 1990

1254 Coho salmon O.kisutch diet 54-57 S Mayer et al., 1977
1254 R.trout O.mykiss diet 81 S, G Nestel and Budd, 1975
1254 R.trout O.mykiss diet 8.5 S, G Lieb et al., 1974
1254 Lake trout S.namaycush combined 26.3 G Berlin et al., 1981
1254 Lake trout S.namaycush combined 2.0 - 4.0 S, G Mac and Seelye, 1981
1254 Fathead minnow P.promelas water 741-1253 S, G Nebeker et al., 1974
1254 Fathead minnow P.promelas water 54-133 R Nebeker et al., 1974
1254 Channel catfish I.punctatus diet 21 S, G Mayer et al., 1977
1254 pinfish L.rhomboides water 17 S Duke et al., 1970
1254 spot L.xanthurus water (10-34 ppt) 17 - 27 S Hansen et al., 1971
1254 minnow - SW (adult) C.variegatus water 49 S, R Hansen et al., 1973
1016 minnow - SW (adult) C.variegatus water 100 - 110 S Hansen et al., 1975
1254 minnow - SW (adult) C. variegatus maternal 1.9 - 2.5 R Hansen et al., 1973
1016 minnow - SW (juvenile) C.variegatus water 230 S Hansen et al., 1975
1016 minnow - SW (larvae) C.variegatus water 57 S Hansen et al., 1975
1248 Fathead minnow P.promelas water 190 - 360 S, R DeFoe et al., 1978
1248 Fathead minnow P.promelas water 2.8 - 30.6 G DeFoe et al., 1978
1248 Channel catfish I.punctatus diet 13 S, G Mayer et al., 1977
1242 Fathead minnow P.promelas water 278 - 514 S, G Nebeker et al., 1974
1260 Fathead minnow P.promelas water 350 - 567 S, G, R DeFoe et al., 1978
1260 Channel catfish I.punctatus diet 32 S, G Mayer et al., 1977
1232 Channel catfish I.punctatus diet 14 S, G Mayer et al., 1977

Clophen A50 minnow - SW P.phoxinus diet 170 - 180 G Bengtsson, 1980
Clophen A50 minnow - SW P.phoxinus diet 15 - 21 S,  R Bengtsson, 1980

individual PCBs R.trout O.mykiss oral 0.032 - 0.197 S Niimi and Oliver, 1983
individual PCBs R.trout O.mykiss water 4.2 S Guiney et al., 1977
individual PCBs Channel catfish I.punctatus sediment & diet 0.03 S, G Dabrowska et al., 1996
individual PCBs guppy P.reticulata diet 100 S Opperhuizen and

Schrap, 1988
individual PCBs R.trout O.mykiss diet 18 G Da Costa and Curtis,

1995
individual PCBs Chinook salmon O.tshawytscha water 0.8 S Broyles and Noveck,

1979
individual PCBs Lake trout S.namaycush water 0.78 S Broyles and Noveck,

1979
1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-12 (c). Effective and non-effective organ and egg/embryo residues.  PCBs, ppm
Effective Organ and Egg/Embryo Residues - PCBs

Compound Organism Species Exposure Residue Endpoint 1 Reference

1254 Bk.trout (embryo) S.fontinalis water 77.9 S Freeman and Idler, 1975
1254 Bk.trout (egg) S.fontinalis water 284 S (ER50) Mauck et al., 1978
1254 Bk.trout (egg) S.fontinalis water 71 G Mauck et al., 1978
1254 Cod (testes, liver) G.morhua diet 1.3, 156 S (ER90) Sangalang et al., 1981
1254 Cod (testes, liver) G.morhua diet 0.38, 22.3 - 31.8 R Sangalang et al., 1981

Clophen A50 minnow - SW (gonad) P.phoxinus maternal 6.2 R Bengtsson, 1980
indiv PCB R.trout (egg) O.mykiss injection 1.35 S(ER50) Walker and Peterson, 1991

1254 minnow - SW (embryo) C.variegatus maternal 170 S Hansen et al., 1977

Non-Effective Organ and Egg/Embryo Residues - PCBs, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

1254 Bk.trout (fillet) S.fontinalis diet 39 S, G Addison et al., 1978
1254 Bk.trout (embryo) S.fontinalis water <0.5 S Freeman and Idler, 1975
1254 Bk.trout (egg) S.fontinalis water 71 S Mauck et al., 1978
1254 Bk.trout (egg) S.fontinalis water 31 G Mauck et al., 1978
1254 Cod (testes, liver) G.morhua diet 0.66, 101 S Sangalang et al., 1981
1254 Cod (testes, liver) G.morhua diet 0.02 - 0.06, 8.96 R Sangalang et al., 1981
1016 minnow - SW (egg) C.variegatus water 77 S Hansen et al., 1975
1242 Catfish (w/o stomach) I.punctatus diet 10.9 - 14.3 S, G Hansen et al., 1976

Clophen A50 minnow - SW (gonad) P.phoxinus maternal 0.5 R Bengtsson, 1980
Clophen A50 Stickleback -(carcass) G.aculeatus diet 289 R Holm et al.,1993

1254 R.trout (blood) O.mykiss diet 3.7 S, G Nestel and Budd, 1975
1242/1254 mixture R.trout (carcass) O.mykiss diet 40.3 S Leatherland and Sonstegard, 1980

indiv PCB R.trout (egg) O.mykiss injection 0.074 S Walker and Peterson, 1991
individual PCBs R.trout (egg) O.mykiss water 3.72 S Guiney et al., 1980

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-13 (a). Effective Whole Body Residues - aldrin/dieldrin, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

dieldrin oyster C.virginica water 1.44 B (feeding)  Mason and Rowe, 1976

dieldrin grass shrimp P.pugio combined 2.1 S Parrish et al., no date
dieldrin pink shrimp P.duorarum combined 0.23 S (ER50) Parrish et al., no date
dieldrin ostracod C.arcuata water 1 S Kawatsk and Schmulbach, 1971

dieldrin fathead minnow P.promelas combined 52.9 S (ER50) Parrish et al., no date
dieldrin mosquitofish G.affinis combined 28 S  Metcalf, 1974
dieldrin guppy P.reticulata water 10.7 G  Burnett and Liss, 1990
dieldrin goldfish C.auratus water 3.8 Behavior  Gakstatter and Weiss, 1967
dieldrin bluegill L.macrochirus water 3.7 Behavior Gakstatter and Weiss, 1967
dieldrin R.trout O.mykiss water 5.65 S (ER50) Shubat and Curtis, 1986

Table A-13 (b).  Non-Effective Whole Body Residues - aldrin/dieldrin, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

dieldrin oyster C.virginica combined 13.9 S Parrish et al., no date
dieldrin oyster C.virginica water 107.4 S Emanuelsen et al.,1978
dieldrin oyster C.virginica water 1.44, 18.6 S  Mason and Rowe, 1976
dieldrin clam M.mercenaria combined 0.19 - 0.38 B (feeding)  Butler, 1971
dieldrin clam M.arenaria combined 0.87 - 2.3 B (feeding)  Butler, 1971
dieldrin oyster (cellular) C.virginica water 1.03, 11,107 cellular  Emanuelsen et al.,1978

dieldrin grass shrimp P.pugio combined 0.09 S Parrish et al., no date
dieldrin pink shrimp P.duorarum combined 0.01 S Parrish et al.,no date
aldrin cladoceran D.magna water 0.48 S  Johnson et al.,1971

dieldrin striped bass M.saxatilis diet 8.1 G Santerre et al.,1997
dieldrin fathead minnow P.promelas combined 12.8 S Parrish et al., no date
dieldrin mosquitofish G.affinis combined 0.157 S  Metcalf, 1974
dieldrin R.trout O.mykiss water 0.548 S Shubat and Curtis, 1986
dieldrin R.trout O.mykiss water 0.36, 1.4 G Shubat and Curtis, 1986
dieldrin R.trout O.mykiss diet 2.13 S, G Macek et al.,1970

aldrin/dieldrin fish - FW L.idus absorption 138, 151 S Freitag et al.,1985

Table A-13 (c).  Effective and non-effective organ and egg/embryo residues-aldrin/dieldrin, ppm
Effective Organ and Egg/Embryo Residues - aldrin/dieldrin, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

dieldrin catfish-FW (muscle) C. gariepinus water 0.1, 0.3 G (ER47, 90) Lamai et al.,1999
dieldrin catfish-FW (muscle) C. gariepinus water 0.1, 0.3 R (ER100) Lamai et al.,1999
dieldrin R.trout (fat) O.mykiss combined 0.14 G (ER40)  Poels et al.,1980
dieldrin W.flounder (embryo) P.americanus water 1.21 -1.74 S (ER98-100) Holcombe et al.,1979

Non-Effective Organ and Egg/Embryo Residues - aldrin/dieldrin, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

None reported.

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-14 (a).  Effective Whole Body Residues - Endosulfans, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

endosulfan Grass shrimp P.pugio water 0.48, 0.21 S (ER65, 35) Schimmel et al., 1977
Buhler et al., 1969

endosulfan fish - FW Serranochromis spp field/water 1.15 S Matthiessen et al.,
1982

endosulfan fish - FW Clarias spp field/water 0.07 S Matthiessen et al.,
1982

endosulfan pinfish L.rhomboides water 0.27 S (ER35) Schimmel et al., 1977
endosulfan spot L.xanthurus water 0.26 S (ER90) Schimmel et al., 1977
endosulfan spot L.xanthurus water 0.07 S (ER45) Schimmel et al., 1977
endosulfan spot L.xanthurus water 0.03 S (ER35) Schimmel et al., 1977
endosulfan fish - FW Haplochromis spp field/water 1.08 S Matthiessen et al.,

1982
endosulfan fish - FW P.philander field/water 1.46 S Matthiessen et al.,

1982
endosulfan fish - FW Sarotherodon+Tilapia field/water 1.1 S Matthiessen et al.,

1982
endosulfan mullet M.cephalus water 0.43 - 0.49 S (ER90) Schimmel et al., 1977
endosulfan mullet M.cephalus water 0.36 S (ER40) Schimmel et al., 1977

Table A-14 (b).  Non-Effective Whole Body Residues - endosulfans, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

endosulfan blue mussel M.edulis water 8.1 S Roberts, 1972

endosulfan Grass shrimp P.pugio water 0.07 S Schimmel et al.,
1977

endosulfan pinfish L.rhomboides water 0.2 S Schimmel et al.,
1977

Table A-14 (c).  Effective and non-effective organ and egg/embryo residues.  Endosulfans, ppm .

Effective Organ and Egg/Embryo Residues - Endosulfans, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

endosulfan crayfish (gills) P.clarkii water 0.721, 0.806 S (ER50) Cebrian et al., 1993
Buhler et al., 1969

endosulfan Pike (organs) H.odoe water 0.05 - 6.73 S Matthiessen et al.,
1982

endosulfan carp (organs) C.carpio water 3.48 - 4.94 S Nowak et al., 1995
endosulfan tilapia (organs) T.aurea water 0.115 - 1.07 S Herzberg, 1986

Non-effective Organ and Egg/Embryo Residues - Endosulfans, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

endosulfan crayfish (gills) P.clarkii water 0.033, 0.042 S Cebrian et al., 1993

endosulfan Pike (organs) H.odoe field/water 0.03 - 0.8 S Matthiessen et al.,
1982

endosulfan carp (organs) C.carpio water 0.017 - 0.15 S Nowak et al., 1995
endosulfan fish - FW (viscera) M.macrolepidotus field/water 1 S Matthiessen et al.,

1982
endosulfan fish - FW (organs) S.mystus field/water 0.06 - 0.14 S Matthiessen et al.,

1982
endosulfan fish - FW (organs) Clarias spp field/water 0.05 - 0.14 S Matthiessen et al.,

1982
endosulfan catfish (liver) T.tandanus water 0.082 S Nowak, 1996
endosulfan fish - FW (viscera) S.macrochir field/water 0.16 S Matthiessen et al.,

1982
endosulfan tilapia (organs) T.aurea water 0.078 - 0.356 S Herzberg, 1986

1S, R, and G refer to survival, reproduction and growth effects, respectively.
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Table A-15 (a). Effective Whole Body Residues - Chlordane, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

chlordane oyster C.virginica combined 27 G  Parrish et al.,1976
chl+hept+hept ep oyster C.virginica water 22.4 G (ER50)  Schimmel et

al.,1976 

hept+hept ep pink shrimp P.duorarum water 0.146 S (ER50)  Schimmel et
al.,1976 

hept+hept ep pink shrimp P.duorarum water 0.056, 0.073 S (ER50)  Schimmel et
al.,1976  

hept+hept ep grass shrimp P.vulgaris water 2.44 S (ER50)  Schimmel et
al.,1976 

chlordane pink shrimp P.duorarum combined 1.7 S  Parrish et al.,1976
chlordane grass shrimp P.vulgaris combined 4.5 S Parrish et al.,1976

hept+hept ep pinfish L.rhomboides water 44.6 S (ER50)  Schimmel et
al.,1976 

chlordane pinfish L.rhomboides combined 16.6 S  Parrish et al.,1976
chl+hept+hept ep s.minnow C.variegatus water 59.0 - 61.8 S (ER50)  Schimmel et

al.,1976 
chlordane s.minnow C.variegatus combined 3.18 S, R  Parrish et al.,1976

chl+hept+hept ep spot L.xanthurus water 18.9 S (ER50)  Schimmel et
al.,1976 

heptachlor spot L.xanthurus water 11.5 S Schimmel et al.,
1976

Table A-15 (b).  Non-Effective Whole Body Residues - Chlordane, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

chl+hept+hept ep oyster C.virginica water 0.046 G Schimmel et
al.,1976

chlordane oyster C.virginica combined 11 G Parrish et al.,1976
heptachlor hard clam M.mercenaria water 0.11 B (feeding) Butler, 1971
heptachlor soft-shelled clam M.arenaria water 1.3 B (feeding) Butler, 1971

hept+hept ep pink shrimp P.duorarum water 0.01, 0.062 S (ER5) Schimmel et
al.,1976

hept+hept ep grass shrimp P.vulgaris water 0.312 S (ER6) Schimmel et
al.,1976

chlordane pink shrimp P.duorarum combined 0.7 S Parrish et al., 1976
chlordane grass shrimp P.vulgaris combined 4.8 S Parrish et al., 1976

hept + hept epox pinfish L.rhomboides water 8.8 S (ER5) Schimmel et al.,
1976

hept + hept epox s.minnow C.variegatus water 0.063 S Schimmel et al.,
1976

chlordane s.minnow C.variegatus combined 1.38 S,R Parrish et al.,1976
chl+hept+hept ep spot L.xanthurus water 0.034 S Schimmel et al.,

1976
hept + hept epox spot L.xanthurus water 2.3 S Schimmel et al.,

1976
heptachlor spot L.xanthurus water 2.9, 5.3 S Schimmel et al.,

1976
hept + hept epox spot L.xanthurus water 4.9, 9 S Schimmel et

al.,1976

Table A-15 (c).  Effective and non-effective organ and egg/embryo residues.  Chlordane, ppm
Effective Organ and Egg/Embryo Residues - Chlordane, ppm

Compound Organism Species Exposure Residue Endpoint 1 Reference

heptachlor s.minnow (eggs) C.variegatus water 16 S Hansen and Parrish,
1977

heptachlor s.minnow (eggs) C.variegatus water 20 R Hansen and Parrish,
1977

heptachlor epoxide s.minnow (eggs) C.variegatus water 8 S (ER39) Goodman et al.,
1977
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Non-Effective Organ and Egg/EmbryoResidues - Chlordane, ppm
Compound Organism Species Exposure Residue Endpoint 1 Reference

heptachlor fathead  (no guts) P.promelas water 17.73 S Macek et al., 1976
heptachlor epoxide s.minnow (eggs) C.variegatus water 3.6, 4.2, 8 D Goodman et al.,

1977
heptachlor epoxide s.minnow (eggs) C.variegatus water 3.6, 4.2 S Goodman et al.,

1977
1S, R, and G refer to survival, reproduction and growth effects, respectively.

Appendix E.

Potential for Trophic Transfer of Metals in Benthic Invertebrate Prey to
Finfish.



1Excludes outlier of 156%, initial/control concentrations were not reported by authors

2Excludes outlier of 375%, initial/control concentr. not reported; diet concentr. questionable

A-256

Summary:  
This appendix reviews available peer-reviewed literature regarding the potential for dietary transfer of metals to
finfish from contaminated benthic invertebrate prey.  The data presented in these studies was also used to
determine whether a trophic transfer factor of one is appropriate for relating fish tissue levels of concern to tissue
levels of concern in benthic invertebrate prey. 

It is concluded that the assumption of a trophic transfer of one is an overly conservative estimate of this
parameter and alternative values are derived and proposed for four cationic metals- copper, cadmium, lead, and
zinc; and for arsenic.  Appropriately conservative estimates were selected from the available data using the
scientific information presented in the reviewed papers.

Background and State of the Science
Much of the early work that examined the importance of the dietary pathway for transfer of metals to fish in
metals-contaminated systems focused on the relative concentrations of metals in fish and prey collected from
within the same system or area (e.g. Metayer et al. 1980, Dallinger and Kautzky 1985, and references in Table
E-1).   These field studies suggested that dietary transfer of metals from prey could significantly contribute to fish
body burdens of metals and in certain exposure situations could be of greater importance than absorption from the
water.  Results of certain field studies, however, were inconclusive (see Metayer et al. 1980, and Dallinger and
Kautzky 1985).  Field-derived ratios suggested that the transfer of metals to fish from prey, was generally
inefficient (i.e. ratios of consumer/prey concentrations tended to be less than one).  Suedel et al. (1994) reviewed
available data in efforts to assess the potential for trophic transfer of metals in aquatic foodwebs.  The data that
was considered by Suedel et al. is summarized in Table B-1.  Based on this data they concluded that trophic
transfer of metals to fish should not generally be described as biomagnification and noted that “concentrations of
most metals were often higher in tissues of producers and primary consumers...than carnivorous fish”.

Trophic transfer ratios of less than 1 are consistent with the findings of Reinfelder et al. (1998).  Using the kinetic
model approach, they concluded that trophic transfer of cationic metals (however only cadmium was specifically
modeled in that paper) to fish is expected to be less than one.

Since publication of Suedel et al. 1994, the potential for trophic transfer of metals has been increasingly
investigated in the laboratory under controlled conditions.  Laboratory studies have been conducted with
commercial feeds or live prey (e.g. Artemia) that were contaminated with known amounts of metals in the
laboratory and fed to fish (e.g. Handy et al. 1992;  Cockell and Hilton 1988; Hatakeyama and Yasuno 1982;
Kumada et al.  1973; Mount et al.  1994; ) or with benthic organisms that were collected from the field from
areas known to be contaminated by metals and fed to fish (Woodward et al. 1994, 1995; Farag et al. 1994, 1999).
Results of these studies are summarized in Table E-2.
 
In laboratory studies, body burdens of copper in fish ranged from 0 to 20.6% (n = 28, ave. 4.6%, median 2.1%) of
the dietary copper concentration to which the fish were exposed.  Body burdens of cadmium in fish ranged from 0
to 25%1 (n = 31, ave. 6.6%, median 5.0%) of the dietary cadmium concentration to which the fish were exposed. 
Body burdens of lead in fish ranged from 0 to 22.7%2 (n = 19, ave. 5.5%, median 3.9%) of the dietary lead
concentration to which the fish were exposed.  Body burdens of zinc in fish ranged from 0 to 89.9% (n = 16, ave.
18.4%, median 11.4%) of the dietary zinc concentration to which the fish were exposed.  Body burdens of arsenic
in fish ranged from 0 to 29.7% (n = 37, ave. 8.6%, median 6.1%) of the dietary arsenic concentration to which the
fish were exposed.  
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Farag et al. (2000) showed that the degree of association of the metal with organic compounds (proteins) within
prey significantly effects the efficiency of trophic transfer of metals to fish (i.e. increased covalent bonding and
complexation of metals enhances the bioavailability of metals to fish consumers).  Harrison and Curtis (1992)
demonstrated that uptake of cadmium is higher from natural diets raised in contaminated environments than from
Cd-contaminated commercial feeds.  Farag et al. (2000) also demonstrated that metals in laboratory-dosed and
field-collected invertebrates are processed differently by fish consumers during digestion and metals in laboratory-
dosed prey are less available to fish.  Therefore, results of studies that are conducted using contaminated feeds or
laboratory-contaminated prey differ significantly from those of studies using natural prey and may underestimate
the potential for trophic transfer of metals to fish.  
 
In light of the above considerations, studies such as those conducted by Farag et al. (1994, 1999) and Woodward
et al. (1994,1995), that used field-collected and contaminated prey were deemed to be the most relevant and
appropriate studies for use in deriving a conservative estimate of trophic transfer potential of metals to fish from
benthic invertebrate prey. Table E-3 lists results of those studies in which field-collected contaminated prey was
used to estimate trophic transfer.

The maximum trophic transfer values reported for these compounds are proposed for use as appropriately
conservative estimates of the potential for trophic transfer of metals to fish from benthic invertebrates exposed to
dredged material for use in interpreting the results of 28 day laboratory bioaccumulation tests.  These factors are:

Copper: 0.21 ([Cu]fish/[Cu]prey) 4.76 ([Cu]prey/[Cu]fish)
Cadmium: 0.25 ([Cd]fish/[Cd]prey)  4.00 ([Cd]prey/[Cd]fish)
Lead: 0.23 ([Pb]fish/[Pb]prey)  4.35 ([Pb]prey/[Pb]fish)
Zinc: 0.24 ([Zn]fish/[Zn]prey)  4.17 ([Zn]prey/[Zn]fish)
Arsenic: 0.25 ([As]fish/[As]prey)  4.00 ([As]prey/[As]fish)

While these factors are less conservative than the factor of one that is used in the current evaluation process, they
still reflect the results of these studies in a conservative manner.  Median trophic transfer factors reported in these
studies for copper, cadmium, lead and arsenic ranged from 0.06 to 0.12 (median factor for zinc was 0.21 ). 
Because it is impossible to assess how the availability of metals in the prey species used in these studies (e.g.
caddisfly and stonefly larvae) relates to availability in dominant prey species at the HARS (i.e. polychaetes and
amphipods) and how uptake by trout may differ from fish species at the HARS, EPA Region 2 believes that the
conservative interpretation of this dataset is reasonable.
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Table 1.  Trophic Transfer of Metals to Fish Reported by Suedel et al. (1994)

Arsenic Species Common Name SW/FW Field/Lab TTC Reference
Hexanchus griseus shark SW field 20.9 LeBlanc and Jackson (1973)
Hexanchus griseus shark SW field 10 LeBlanc and Jackson (1973)
Hexagrammos spp greenling SW field 0.3 LeBlanc and Jackson (1973)
Hydrolagus colliei ratfish SW field 15.2 LeBlanc and Jackson (1973)
Diaphus dumerili headlightfish SW field 0.1 Leatherland et al. (1973)
Carassius auratus goldfish FW laboratory 0.2 Maeda et al. 1990

Cadmium Species Common Name SW/FW Field/Lab TTC Reference
omnivorous fish FW field 1.1 Ward et al. (1986)

Diaphus dumerili headlightfish SW field 0.1 Leatherland et al. (1973)

Chromium Species Common Name SW/FW Field/Lab TTC Reference
Carpiodes cyprinus quillback FW field 0.03 Mathis and Cummings (1973)
M. dolomieu smallmouth bass FW field 0.5 Mathis and Cummings (1973)

postlarval fish SW laboratory 0.1 Baptist and Lewis (1969)
Fundulus hetroclitus mummichog SW laboratory 1.6 Baptist and Lewis (1969)

Copper Species Common Name SW/FW Field/Lab TTC Reference
Carpiodes cyprinus quillback FW field 0.02 Mathis and Cummings (1973)
M. dolomieu smallmouth bass FW field 0.7 Mathis and Cummings (1973)
Pleuronectes
platessa

plaice SW laboratory 0.5 Saward et al. (1975)

Lead Species Common Name SW/FW Field/Lab TTC Reference
Etheostoma
flabellare

fantail darter FW field 0.3 Enk and Mathis (1977)

M. dolomieu smallmouth bass FW field 0.9 Enk and Mathis (1977)
Carpiodes cyprinus quillback FW field 0.1 Mathis and Cummings (1973)
M. dolomieu smallmouth bass FW field 0.9 Mathis and Cummings (1973)

omnivorous fish SW field 2.6 Ward et al. (1986)
Helotes sexlineatus trumpeter SW field 0.4 Ward et al. (1986)
Platichthyes flesus flounder SW field 0.7 Hardisty et al. (1974)

Nickel Species Common Name SW/FW Field/Lab TTC Reference
Carpiodes cyprinus quillback FW field 0.03 Mathis and Cummings (1973)
M. dolomieu smallmouth bass FW field 0.7 Mathis and Cummings (1973)
Oncorhynchus
mykiss

rainbow trout FW field 0.01 Dallinger and Kautzky (1985)

M. dolomieu smallmouth bass FW field 1.6 Wren et al. (1983)
Salvelinus
namaycush

lake trout FW field 1 Wren et al. (1983)

Zinc Species Common Name SW/FW Field/Lab TTC Reference
Carpiodes cyprinus quillback FW field 0.06 Mathis and Cummings (1973)
M. dolomieu smallmouth bass FW field 1 Mathis and Cummings (1973)
Gobius spp omnivorous fish SW field 0.1 Ward et al. (1986)
Helotes sexlineatus trumpeter SW field 0.4 Ward et al. (1986)
Platichthyes flesus flounder SW field 1.4 Hardisty et al. (1974)
Diaphus dumerili headlightfish SW field 0.1 Leatherland et al. (1973)

postlarval fish SW laboratory 0.68 Baptist and Lewis (1969)
Fundulus hetroclitus mummichog SW laboratory 0.11 Baptist and Lewis (1969)
Leiostomus
xanthurus

spot SW laboratory 0.17 Willis and Sunda (1984)
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Table E-2.  Trophic transfer of metals to fish from contaminated prey/food.

Concentrations

Species Metal Diet Initial
Control

Final TTC (%) Reference Notes

Copper
R.trout Copper 110 2.9 4.6 1.55 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 140 2.9 4.7 1.29 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 200 2.9 4.4 0.75 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 250 2.9 5.9 1.20 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 440 5.7 19.6 3.16 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 830 5.7 22.4 2.01 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 1000 5.7 27.7 2.20 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 55 2.9 3.4 0.91 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 110 2.9 5.1 2.00 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 200 2.9 6.4 1.75 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 340 2.9 7.1 1.24 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 320 2.9 8.8 1.84 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 200 5.75 17 5.63 Handy 1992 32 d, feed, no depuration
R.trout Copper 200 5.75 5.5 0.00 Handy 1992 32 d, feed, w/ 12 d depuration
B.trout Copper 87 8.5 11.5 3.45 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Copper 178 6 26 11.24 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Copper 174 7.5 34 15.23 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
R.trout Copper 381 6.25 33.5 7.15 Woodward et al. 1994 91d, collected, dead, starved 24h before

analysis
R.trout Copper 14 6.25 3.5 0.00 Woodward et al. 1994 91d, collected, dead, starved 24h before

analysis
R.trout Copper 12 6.25 4.35 0.00 Woodward et al. 1994 80d, feed, starved 24h before analysis
R.trout Copper 109 6.25 16 8.94 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Copper 415 6.25 39 7.89 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Copper 38.8 8 20.62 Farag et al. 1994 21d, collected, dead, starved 24 h
R.trout Copper 185.7 6.5 3.50 Farag et al. 1994 21d, collected, dead, starved 24 h
C.trout Copper 9.9 5.2 3.5 0.00 Farag et al. 1999 90d, feed, starved 24h
C.trout Copper 32.9 5.2 6.1 2.74 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Copper 61.5 5.2 9 6.18 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Copper 43.8 5.2 12.3 16.21 Farag et al. 1999 90d, collected, starved 24h, vitamins

Cadmium
R.trout Cadmium 7.6 0.36 0.69 4.34 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 16 0.36 0.95 3.69 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 23 0.36 1.08 3.13 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 21 0.36 1.29 4.43 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 9.5 0.76 1.31 5.79 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 36 0.76 2.76 5.56 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 69 0.76 6.83 8.80 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 150 0.15 5.45 3.53 Handy 1992 32 d, feed, no depuration
R.trout Cadmium 150 0.15 0.985 0.56 Handy 1992 32 d, feed, w/ 12 d depuration
Guppy Cadmium 69.5 3 4.32 Hatekeyama and Yasuno

1982
30 d, live, 1 d water depuration

Guppy Cadmium 125.9 5 3.97 Hatekeyama and Yasuno
1982

30 d, live, 1 d water depuration

Guppy Cadmium 170.6 6 3.52 Hatekeyama and Yasuno
1982

30 d, live, 1 d water depuration

R.trout Cadmium 3 0.05 0.3 8.33 Kumada et al. 1973 12 wks, feed, no depuration
R.trout Cadmium 3 0.04 0.1 2.00 Kumada et al. 1973 12 wks, feed, 6 wks depuration
R.trout Cadmium 10 0.05 0.65 6.00 Kumada et al. 1973 12 wks, feed, no depuration
R.trout Cadmium 10 0.04 0.09 0.50 Kumada et al. 1973 12 wks, feed, 6 wks depuration
R.trout Cadmium 30 0.05 1.9 6.17 Kumada et al. 1973 12 wks, feed, no depuration
R.trout Cadmium 30 0.04 0.12 0.27 Kumada et al. 1973 12 wks, feed, 6 wks depuration
R.trout Cadmium 100 0.05 5.6 5.55 Kumada et al. 1973 12 wks, feed, no depuration
R.trout Cadmium 100 0.04 0.27 0.23 Kumada et al. 1973 12 wks, feed, 6 wks depuration
B.trout Cadmium nd (<0.27) 0.075 0.15 na Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
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B.trout Cadmium nd (<0.27) 0.225 na Woodward et al. 1995 88 d, collected, dead, 24h no feed before
analysis

B.trout Cadmium 0.26 0.044 0.45 156.25 Woodward et al. 1995 88 d, collected, dead, 24h no feed before
analysis

R.trout Cadmium 3.12 0.05 0.8 24.04 Woodward et al. 1994 91d, collected, dead, starved 24h before
analysis

R.trout Cadmium 0.36 0.05 0.05 0.00 Woodward et al. 1994 91d, collected, dead, starved 24h before
analysis

R.trout Cadmium 0.5 0.05 0.095 9.00 Woodward et al. 1994 80d, feed, starved 24h before analysis
R.trout Cadmium 1.2 0.05 0.11 5.00 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Cadmium 2.39 0.05 0.6 23.01 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Cadmium 0.9 0.225 25.00 Farag et al. 1994 21d, collected, dead, starved 24h
R.trout Cadmium 1 0.085 8.50 Farag et al. 1994 21d, collected, dead, starved 24h
C.trout Cadmium 0.21 0.04 0.04 0.00 Farag et al. 1999 90d, feed, starved 24h
C.trout Cadmium 0.97 0.04 0.1 6.19 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Cadmium 29.9 0.04 2.88 9.50 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Cadmium 29.1 0.04 4.33 14.74 Farag et al. 1999 90d, collected, starved 24h, vitamins
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Table E-2.  Trophic transfer of metals to fish from contaminated prey/food.  (Continued)

Concentrations

Species Metal Diet Initial
Control

Final TTC (%) Reference Notes

Cadmium
R.trout Lead 33 0.98 1.93 2.88 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 58 0.98 2.37 2.40 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 90 0.98 2.31 1.48 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 82 0.98 3.09 2.57 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 88 1.74 6.29 5.17 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 130 1.74 8.96 5.55 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 210 1.74 10 3.93 Mount et al 1994 60 d, live, combined aqueous/diet
B.trout Lead 7 1 1.2 2.90 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Lead 15 1.1 2.5 9.33 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Lead 15 0.95 4.35 22.67 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
R.trout Lead nd (<2.0) 0.5 0.6 na Woodward et al. 1994 91d, collected, dead, starved 24h before

analysis
R.trout Lead 32.7 0.5 2.5 6.12 Woodward et al. 1994 91d, collected, dead, starved 24h before

analysis
R.trout Lead 0.36 0.5 nd

(<0.2)
0.00 Woodward et al. 1994 80d, feed, starved 24h before analysis

R.trout Lead 9.69 0.5 1 0.00 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Lead 28.4 0.5 2.4 6.69 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Lead 0.2 0.75 375.00 Farag et al. 1994 21d, collected, dead, starved 24 h
R.trout Lead 8.6 0.25 2.91 Farag et al. 1994 21d, collected, dead, starved 24 h
C.trout Lead 0.2 0.2 0.2 0.00 Farag et al. 1999 90d, feed, starved 24h
C.trout Lead 7.4 0.2 1.2 13.51 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Lead 792 0.2 36.8 4.62 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Lead 452 0.2 52.3 11.53 Farag et al. 1999 90d, collected, starved 24h, vitamins

Zinc
R.trout Zinc 300 88 101 4.33 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 460 88 104 3.48 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 720 88 92 0.56 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 740 88 107 2.57 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 920 116 163 5.11 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 930 116 189 7.85 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 1900 116 303 9.84 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 185 165 89.19 Woodward et al. 1994 80d, feed, starved 24h before analysis
R.trout Zinc 655 155 23.66 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Zinc 1070 180 16.82 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Zinc 148.2 nd  nd Farag et al 1994 21d, collected, dead, starved 24h
R.trout Zinc 320.9 nd  nd Farag et al 1994 21d, collected, dead, starved 24h
C.trout Zinc 135 78 130 38.52 Farag et al. 1999 90d, feed, starved 24h
C.trout Zinc 384 78 160 21.35 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Zinc 2336 78 380 12.93 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Zinc 2119 78 520 20.86 Farag et al. 1999 90d, collected, starved 24h, vitamins

Arsenic
R.trout Arsenic 35 3.1 4.6 4.29 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Arsenic 40 3.1 5.3 5.50 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Arsenic 51 3.1 5.4 4.51 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Arsenic 63 3.1 6.7 5.71 Mount et al 1994 60 d, live, combined aqueous/diet
B.trout Arsenic 6.5 0.8 0.95 2.31 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Arsenic 19 1.85 3.55 8.95 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Arsenic 19 1.45 3.9 12.89 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
R.trout Arsenic 6.5 0.15 1 13.08 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
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R.trout Arsenic 19 0.45 2.9 12.89 Woodward et al. 1995 88 d, collected, dead, 24h no feed before
analysis

R.trout Arsenic 19 0.25 3.6 17.63 Woodward et al. 1995 88 d, collected, dead, 24h no feed before
analysis

R.trout Arsenic 3.5 1.25 1 0.00 Woodward et al. 1994 91d, collected, dead, starved 24h before
analysis

R.trout Arsenic 43.1 1.25 12 24.94 Woodward et al. 1994 91d, collected, dead, starved 24h before
analysis

R.trout Arsenic 2.8 1.25 1.15 0.00 Woodward et al. 1994 80d, feed, starved 24h before analysis
R.trout Arsenic 5 1.25 1.05 0.00 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Arsenic 42 1.25 7.5 14.88 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Arsenic 1.5 nd  nd Farag et al 1994 21d, collected, dead, starved 24h
R.trout Arsenic 15.4 nd  nd Farag et al 1994 21d, collected, dead, starved 24h
C.trout Arsenic 3.5 0.76 1.8 29.71 Farag et al. 1999 90d, feed, starved 24h
C.trout Arsenic 2.6 0.76 0.9 5.38 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Arsenic 50.8 0.76 3.3 5.00 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Arsenic 13.5 0.76 2.4 12.15 Farag et al. 1999 90d, collected, starved 24h, vitamins
R.trout Arsenic 180 4.5 15.5 6.11 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 360 4.5 44 10.97 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 732 4.5 89.5 11.61 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 1477 4.5 108 7.01 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 137 4.5 34.5 21.90 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 262 4.5 45.5 15.65 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 500 4.5 56 10.30 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 1053 4.5 72.5 6.46 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 163 2.5 15 7.67 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 362 2.5 22 5.39 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 793 2.5 34.5 4.04 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 1497 2.5 57 3.64 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 193 2.5 10 3.89 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 405 2.5 16 3.33 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 735 2.5 19 2.24 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 1503 2.5 30.5 1.86 Cockell and Hilton, 1988 56 d, feed, no depuration 
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Table E-3.  Trophic transfer of metals from field collected benthic invertebrates

Concentrations

Diet Initial/Contro
l

Final TTC (%) Reference

Copper
B.trout 87 8.5 11.5 3.45 Woodward et al. 1995
B.trout 178 6 26 11.24 Woodward et al. 1995
B.trout 174 7.5 34 15.23 Woodward et al. 1995
R.trout 381 6.25 33.5 7.15 Woodward et al. 1994
R.trout 14 6.25 3.5 0.00 Woodward et al. 1994
R.trout 109 6.25 16 8.94 Woodward et al. 1994
R.trout 415 6.25 39 7.89 Woodward et al. 1994
R.trout 38.8 8 20.62 Farag et al. 1994
R.trout 185.7 6.5 3.50 Farag et al. 1994
C.trout 32.9 5.2 6.1 2.74 Farag et al. 1999
C.trout 61.5 5.2 9 6.18 Farag et al. 1999
C.trout 43.8 5.2 12.3 16.21 Farag et al. 1999

Cadmium
B.trout nd (<0.27) 0.075 0.15 na Woodward et al. 1995
B.trout nd (<0.27) 0.225 na Woodward et al. 1995
R.trout 3.12 0.05 0.8 24.04 Woodward et al. 1994
R.trout 0.36 0.05 0.05 0.00 Woodward et al. 1994
R.trout 1.2 0.05 0.11 5.00 Woodward et al. 1994
R.trout 2.39 0.05 0.6 23.01 Woodward et al. 1994
R.trout 0.9 0.225 25.00 Farag et al. 1994
R.trout 1 0.085 8.50 Farag et al. 1994
C.trout 0.97 0.04 0.1 6.19 Farag et al. 1999
C.trout 29.9 0.04 2.88 9.50 Farag et al. 1999
C.trout 29.1 0.04 4.33 14.74 Farag et al. 1999

Lead
B.trout 7 1 1.2 2.90 Woodward et al. 1995
B.trout 15 1.1 2.5 9.33 Woodward et al. 1995
B.trout 15 0.95 4.35 22.67 Woodward et al. 1995
R.trout nd (<2.0) 0.5 0.6 na Woodward et al. 1994
R.trout 32.7 0.5 2.5 6.12 Woodward et al. 1994
R.trout 9.69 0.5 1 0.00 Woodward et al. 1994
R.trout 28.4 0.5 2.4 6.69 Woodward et al. 1994
R.trout 8.6 0.25 2.91 Farag et al. 1994
C.trout 7.4 0.2 1.2 13.51 Farag et al. 1999
C.trout 792 0.2 36.8 4.62 Farag et al. 1999
C.trout 452 0.2 52.3 11.53 Farag et al. 1999

Zinc
R.trout 655 155 23.66 Woodward et al. 1994
R.trout 1070 180 16.82 Woodward et al. 1994
R.trout 148.2 nd  nd Farag et al 1994
R.trout 320.9 nd  nd Farag et al 1994
C.trout 384 78 160 21.35 Farag et al. 1999
C.trout 2336 78 380 12.93 Farag et al. 1999
C.trout 2119 78 520 20.86 Farag et al. 1999

Arsenic
B.trout 6.5 0.8 0.95 2.31 Woodward et al. 1995
B.trout 19 1.85 3.55 8.95 Woodward et al. 1995
B.trout 19 1.45 3.9 12.89 Woodward et al. 1995
R.trout 6.5 0.15 1 13.08 Woodward et al. 1995
R.trout 19 0.45 2.9 12.89 Woodward et al. 1995
R.trout 19 0.25 3.6 17.63 Woodward et al. 1995
R.trout 3.5 1.25 1 0.00 Woodward et al. 1994
R.trout 43.1 1.25 12 24.94 Woodward et al. 1994
R.trout 5 1.25 1.05 0.00 Woodward et al. 1994
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R.trout 42 1.25 7.5 14.88 Woodward et al. 1994
R.trout 1.5 nd  nd Farag et al 1994
R.trout 15.4 nd  nd Farag et al 1994
C.trout 2.6 0.76 0.9 5.38 Farag et al. 1999
C.trout 50.8 0.76 3.3 5.00 Farag et al. 1999
C.trout 13.5 0.76 2.4 12.15 Farag et al. 1999

Appendix F.

Discussion of Uncertainties Associated with Evaluating the Potential for
Bioaccumulation of Contaminants in Dredged Material Using 28-day

Sediment Tests:  Specific Reference to HARS-Specific Evaluation Process
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APPENDIX F.  UNCERTAINTY

VI. EXTRAPOLATING FROM LABORATORY TO FIELD
A. Representativeness of Sediment Samples Used in Bioassay Testing

1. Sampling and Testing Plans Design
2. Mixing and Homogenization of Sediments

B. Representativeness of Surrogate Testing Organisms
1. Surrogate Test Species in Relation to Benthic Community of the HARS:

Identification of Dominant Field Taxa.
2. Surrogate Test Species in Relation to Benthic Community of the HARS:

Comparison of Phylogenies of Test and Field Organisms
C. Representativeness of Testing Paradigm

1. Limited Duration of Exposure (28-days)
2. Controlled Conditions of the Laboratory Exposure
3. Reference Approach/statistical Uncertainties.
4. Pretest Contaminant Levels in Test Organism
5. Designated Analytes for Bioaccumulation Testing Analysis
6. Selection of Analytical/Quantitation Methods

a. Quantitation of Metal Residues
b. Quantitation of Polychlorinated Biphenyls
c. Quantitation of Polycyclic Aromatic Hydrocarbons
d. Analytical Performance

II. UNCERTAINTY ASSOCIATED WITH ASSESSING EXPOSURE TO CONTAMINANTS
AT HARS
A.  Estimating Exposure of Humans to HARS Contaminants

1.  Seafood Consumption Patterns of Humans
a.  Seafood Consumption Rate

i.  Use of the National Default Consumption Rate
ii. Identification of Target Sub-Population of Concern
iii. Estimating Consumption Rate for Sub-Population of

Concern
iv. Source of Fish Consumed by Sub-Population of Concern
v. Exposure to potentially HARS-exposed species other than

recreationally caught finfish
b. Effects of Seafood Preparation on Contaminant Exposure
c.  Exposure Duration

i. Mobility
ii. Angling Cessation
iii. Mortality

B.  Estimating Exposure of Wildlife to HARS
1.  Characterizing the Food Web at the HARS: Identification of Receptors 
2. Estimating Site Use by Ecological Receptors
3. Estimating Trophic Transfer of Contaminants

a. Trophic Transfer of Chlorinated Organic Contaminants
i.  Log Kow

ii.  Pathway of Concern
iii.  Equilibrium State Assumption
iv.  Lipid Weights Assigned to Food Web Organisms
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b. Trophic Transfer of Polycyclic Aromatic Hydrocarbons (PAHs)
c. Trophic Transfer of Metals
d. Trophic Transfer of Mercury

III.  RISK CHARACTERIZATION (EFFECT)
A. Human Health

1. Reference Doses and Hazard Quotient Estimates
2. Cancer Slope Factor and Risk Estimates
3. Additivity of Risk and Hazard

B. Ecological Effects (Linked Residue-Effect Data)
1. Relating Contaminant Residue Concentrations and Probabilities for Adverse

Effect
2. ‘Linked Residue-Effect’ Guidelines

a. Narcosis
b. Non-narcosis
c. Endpoints
d. Mode of Exposure
e. Using ER50 (Median Effective Residue) as Threshold for Significant Effect
f. Interspecific Differences in Sensitivities

2. REFERENCES

Table 1.  Trophic transfer of metals to fish reported by Suedel et al. (1994)
Table 2.  Trophic transfer of metals to fish from contaminated prey/food.
Table 3.  Trophic transfer of metals from field-collected benthic invertebrates
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Appendix F:  Discussion of Uncertainties associated with evaluating the potential
for bioaccumulation of contaminants in dredged material using 28-day sediment
tests:  Specific reference to HARS-specific evaluation process

Laboratory methods to assess bioaccumulation provide meaningful information regarding the propensity for
contaminants in dredged sediments to accumulate in benthic organisms following re-introduction of the
sediments to the aquatic environment.  This memorandum documents areas of uncertainty associated with the
assessment of potential for bioaccumulation of contaminants from sediments discharged into the aquatic
environment using the prescribed 28-day bedded sediment tests and with the evaluation of the potential for risks
associated with measured tissue residues in those test organisms.  The areas of uncertainty described in this
memorandum are discussed in a predominately qualitative manner.

Specific reference is made to uncertainty associated with the current and proposed EPA Region 2 frameworks
for evaluating the suitability of dredged materials for use as Remediation Material at the HARS. 

I.  EXTRAPOLATION FROM LABORATORY TO FIELD

Major areas of uncertainty regarding the use of the laboratory method to extrapolate to accumulation in the field
include:

A.  Representativeness of Sediment Samples Used in Bioassay Testing
1.  Sampling and Testing Plans Design
Generally, sediments that are used in bioassay testing for HARS suitability are composites of discrete samples
collected from specific locations within the area that is proposed for dredging.  Samples of dredged material are
usually obtained with vibracoring units. This type of sampling equipment obtains a sample of the vertical profile
of the sediments that are proposed for dredging. The number and location of samples taken, the compositing of
discrete samples, and the methods used to homogenize the sediments introduce uncertainty regarding the
representativeness of the sample used in the bioassay test.

The number, location and compositing strategy of sediment samples that will be required to characterize the
dredged materials of a given project area is determined after review of available data by USACE-NYD and
EPA Region 2 scientists.  The selected sampling and testing protocol is developed using professional judgement
and considering such factors as: locations of possible sources of contaminants and sediments (including point
and non-point sources), the bathymetry and geometry of the project area, and results of historical sediment
testing in the area (if available).  The overall goal of the Agencies’ scientists in designing the sampling and
testing plan for a given project area is to sample and test sediments in such a way that maximizes the probability
that sediments are of similar physical, chemical, and toxicological qualities when composited for testing.  In
some cases, this requires dividing the proposed project area into smaller areas for testing.

Sample locations are generally assigned to shoals closest to point sources (or potentially different
sediment/contaminant sources, such as tributaries) and to shoals having the thickest accumulated deposits.  
Proposed project areas that represent large geographic areas or that have suspected differences in hydrological
influence (e.g., differing geometries or project depths within the project area) are often split into smaller areas
for testing.  These smaller areas are referred to as testing reaches.  Sampling locations and testing reaches are
assigned based on the professional judgement of staff.  The only general rule applied by USACE-NYD and
EPA Region 2 technical staffs in designing sampling and testing plans is that each testing reach is represented
by at least three (and generally, not more than 13) core samples with a sample spacing of approximately 300
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feet within continuous shoals.  Other sediment assessment programs may use generic formulas based on
volumes and geographical ranges to calculate the required number and locations of samples.  USACE-NYD
and EPA Region 2 believe that using generic mathematical formulas to assign samples will not significantly
improve the representativeness of sampling because the patterns of shoaling and relationships of point source
locations to shoals in channels can be quite complex.  Furthermore, USACE-NYD and EPA Region 2 believe
the need to assign prescribed numbers of samples based on volumes is lessened when vibracores are used since
the lengths of samples reflect shoal thicknesses (and therefore volumes).  

Because the relative contaminant load and bioavailability in sediments are related to the grain size of sediments,
a first order measure of the efficacy of the method used by USACE-NYD and EPA Region 2 to reduce
variability in sediments by compositing for testing can be obtained by examining the relative variability of the
grain sizes of samples in proposed areas and in testing reaches.  In general, the grain size of New York Harbor
dredged materials (expressed as percent sand and larger) is moderately variable - the average coefficient of
variability of specific contiguous dredging project areas is approximately 80 percent (n = 26).  The average
coefficient of variability of sediments in testing reaches of all contiguous project areas as tested, however, was
reduced to approximately 65 percent (Reiss, unpubl. obs.).  This suggests that the factors considered by the
staff designing these sampling plans appear to be appropriate and the subdivision of project areas for testing
using these factors decreases sediment variability in the samples used for testing. 

2.  Mixing/Homogenization of Sediments
Over long time scales, the geochemical environment of bedded sediments attains equilibrium (this is a dynamic
equilibrium) with the specific modulating factors of the environment to which the sediments are exposed. 
Important geochemical characteristics of equilibrated sediments include: 1) the presence of a fine layer of
organic-rich sediments on the surface that is important food for surface, deposit-feeding benthos.  This layer
may therefore dictate dietary exposure of these organisms to sediment-associated contaminants; and 2) a
vertical profile of changing redox chemistry which affects the availability of contaminants to benthos.  This
redox chemistry is  particularly significant for inorganic contaminants (i.e., metals).  Mixing of sediments in the
laboratory results in the loss of the structure associated with equilibrated sediments.

The disruption of potential geochemical structure may be of secondary importance in characterizing the
bioavailability and risk of contaminants in dredged material.  This lesser importance is anticipated because
dredged material (in most cases) is unlikely to be in equilibrium while in place at the bottom of navigational
channels. Berthing and channel areas are often highly depositional environments and/or the dredged material
may be periodically subjected to physical disturbance by the passage of vessels that use the channel (i.e., by
propeller wash or hull displacement waves).  Furthermore, preserving in situ conditions for testing purposes is
not an appropriate goal for assessing materials that are proposed for dredging.  Dredging and open-water
discharge of dredged materials are inherently disruptive processes that will necessarily result in the mixing and
aeration of the sediment.  

Following discharge of the materials at an open water location, however, dredged materials may be expected to
attain a dynamic equilibrium with disposal site conditions over longer time scales.  Simulating these long time
scale conditions in the laboratory is impractical.  There is no easy way to predetermine an appropriate length of
time and set of conditions to allow sediments to equilibrate prior to initiating testing.  

In addition, aeration of sedimentary micro-environments (i.e., burrows, tubes) by infaunal benthic organisms is
commonly reported and therefore the small scale sedimentary environment conditions that might actually be
controlling exposures of these organisms to contaminants in the field may be aerated and therefore not differ
substantially from those in the tests.  Impacts on sediment ingesters, such as polychaetes, may also not differ
significantly between lab and field as these organisms burrow through the sediment and often selectively ingest
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particles, based on nutritional or physical preferences.  Exposures of surface deposit feeders to sediment-sorbed
contaminants may, in fact, be overpredicted during testing. Under test conditions, organisms are constrained to
feed on sedimentary matter sampled from the dredging project area, whereas in the field the organic matter on
which surface deposit-feeders feed may settle out of the overlying water column and be less contaminated.  

EPA Region 2 believes that disruption of sediment structure during testing does not introduce unacceptable
uncertainty in the assessment of contaminant bioavailability and risk.

B.  Using Measured Accumulations in Selected Species (Clam/worm) as Surrogates for
Accumulations in Benthic Species Occurring at the HARS.
The standard methods for assessing bioaccumulation, as outlined in the Green Book (USACE/USEPA, 1991),
require that two benthic organisms be exposed for 28 days to samples of the sediment proposed for dredging.  It
must be recognized, however, that bioaccumulation observed in the tested species are only directly applicable
to the individual species used.  The prediction of residues expected in organisms that colonize sediments in the
field using levels accumulated by the tested species is an area of uncertainty that is necessarily associated with
the bioassay approach to assessing contaminant bioavailability.

The Green Book (USEPA/USACE 1991) lists appropriate organisms for assessing bioaccumulation.  Listed
organisms interact closely with the sediments (and therefore, sediment-sorbed contaminants) via their specific
life histories characteristics, such as feeding or burrowing.  The two Green Book-listed organisms that are
generally used in regional testing of dredged material are the bent-nosed clam (Macoma nasuta) and the
sandworm (Nereis virens).  

Macoma nasuta  is a surface, deposit-feeding (facultative suspension-feeding) bivalve. Nereis virens is a
burrowing, soft-bodied, sediment-ingesting worm.  The two species probably differ significantly in their abilities
to metabolize polycyclic aromatic hydrocarbons (PAHs).  N. virens efficiently metabolizes PAHs (McElroy,
1985), while most bivalves are considered to be limited in this capacity (Meador et al. 1995b; James, 1989). The
two species also differ in their lipid compositions (which affects accumulation of organic contaminants).   

Accumulations measured in these two species are most appropriately extrapolated to organisms that share
similar life strategies and physiological characteristics (e.g., the accumulations exhibited by M. nasuta may be
expected to more closely resemble accumulations by other deposit feeding bivalves than accumulations by
suspension feeding bivalves).  The relevance of the results for estimating field residues in resident species at the
HARS, however,  is dependent on how closely the lifestyles and phylogenies of species at the site resemble
those represented by the two test organisms. The resident benthic community of the HARS is described below.

1. Surrogate Test Species in Relation to Benthic Community of the HARS:  Identification of
Dominant Taxa 
Macrofaunal benthic community structure at the HARS was surveyed by EPA-Region 2 in October, 1994
(Battelle, 1996).  Benthic community structure was surveyed at 40 stations and revealed two distinct
assemblages of organisms in the Study Area.  The two assemblages were associated with differences in the
grain size distribution and organic content of the bottom sediments from which organisms were sampled.  

The benthos present in areas with a substantial fraction (i.e., <10 percent by weight) of fine-grained sediments
are assumed to be representative of the organisms that will colonize dredged materials following placement at
the HARS (as most dredged materials are predominately fine-grained).  The benthic community in these
sediments (n = 21 stations) was shown to be numerically dominated by Nucula proxima , a particle-selective,
deposit feeding bivalve (Pearce et al. 1981), and various infaunal worms.   Collectively, these organisms
represented 65 - 97 percent of the individuals present.  Patterns in relative biomass were similar to numerical
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abundance. N. proxima was the sole mollusc present in all but two samples3 and was the most abundant
organism overall in nine samples.    The numerical dominance of N. proxima and infaunal worms in benthic
communities associated with fine-grained sediments in New York Bight was also reported by NOAA
researchers during different times of the year (Chang et al., 1992; Pearce et al., 1981).  

Small crustaceans (predominantly amphipods) and cnidarians are also present in the benthic community
associated with fine-grained sediments (Battelle, 1996).  They occur, however, at extremely low densities
(averaging 250 crustaceans/m2 and 488 cnidarians/m2, equivalent to 1 and 2 percent of total organisms in
sample) or are absent from many samples.  Abundances of crustaceans in less contaminated, sandy sediments
were variable, but were often much higher (1448(±2690) crustaceans/m2) than in silty sediments. It is unclear
whether the low densities (or absence) of amphipods in fine-grained sediments are related to grain size
preferences or to contaminant intolerance. Regardless of the cause of the disparity in abundances of these
organisms, the low overall abundances of crustaceans and cnidarians in fine-grained sediments (relative to N.
proxima and infaunal worms) suggest that organisms used in testing need not be specifically selected to
represent accumulations in these organisms. Therefore, assessing the comparability that might be expected
between accumulation by test organisms and by N. proxima and infaunal worms at the HARS should address
the most ecologically significant areas of uncertainty regarding extrapolation from laboratory to field organisms.

2.  Surrogate Test Species in Relation to Benthic Community of the HARS: Comparison of
Phylogenies of Test and Field Organisms
Models predict that concentrations of non-polar organic contaminants in organisms will increase until the
concentration in lipids is in equilibrium to the concentration of the contaminant in the organic carbon fraction of
the sediment to which the organism is exposed (these models are termed equilibrium partitioning models). 
Equilibrium partitioning theory suggests that the relationship at equilibrium between contaminant concentrations
in these two pools (i.e., organism lipid and sediment organic carbon) can be expressed by a factor called the
biota-sediment accumulation factor, or BSAF.  The BSAF for a non-polar organic contaminant for a given
species is primarily a function of the lipophilicity of the compound.  The lipophilicity of a compound is expressed
as a physicochemical coefficient termed the octanol-water partitioning coefficient, or Kow.  Other factors that
also affect the BSAF are the total organic content and contaminant load of the sediment, so that the BSAF may
also be, albeit to a lesser extent, a sediment-specific characteristic.  

Hansen and Tracey (1996) compared BSAFs reported for various benthic organisms having differing degrees
of association with sediments and different feeding strategies.  They reported that BSAFs were fairly
comparable between benthic species within these groups.  As noted above, BSAFs relate organic carbon-
normalized sediment contaminant concentrations to lipid-normalized tissue contaminant residues.  It follows that,
if BSAFs are relatively constant across species, resultant tissue residues in organisms following exposure to a
given sediment is expected to increase with increasing lipid content of the organism. 

Lipid contents of infaunal worms sampled from the vicinity of the HARS on October 1994 and September 1995
were measured by USEPA-Region 2 (Battelle, 1997).  Lipid content (dry weight basis) of infaunal worms in
these samples averaged 6.7 ± 1.6 percent (n = 19).  Measured lipid content for N. proxima in the New York
Bight was reported by McFarland et al. (1994) to average 5.0 ± 1.9 percent.  Lipid contents of two individual
species of worms (i.e., Cerebratulus and Nephthys spp.) were reported by McFarland et al. (1994) to be
significantly higher (i.e., 24.7 (±10.6)  and 18.7 (±8.6) percent, respectively) than those reported in Battelle
(1997).  Although not abundant during the September 1994 survey (Battelle 1996), data presented by NOAA
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suggests that Nephthys spp. are abundant in fine sediments of the New York Bight (Chang et al.1992; Pearce,
1981).  

Lipid contents of marine organisms can vary seasonally with reproduction cycles and/or to intra-annual
differences in the physical condition of organisms associated with food availability or other environmental
factors.  Lipid values reported in Battelle (1997) and McFarland et al. (1994) were measured in organisms that
were sampled during the same season of the year (i.e., August to October) and may not reflect the potential
seasonality of lipid concentrations in these organisms.  It is possible that the higher lipid content measured by
McFarland et al. (1994) reflects the reproductive state of the organisms at the time of sampling, because
Sanders (1956) reported a late summer spawning peak of Nephthys spp.

The lipid content of organisms used in testing of federal projects since 1993 (n = 13) were comparable to
reported lipid values in the field collected organisms.  Lipid contents of organisms used in testing of federal
dredging project materials since 1993 average 7.9 (±3.9) and 4.5 (±2.1) percent in N. virens and M. nasuta , 
respectively (CENAN, 1993 - 2000).  Clear patterns of intra-annual differences in lipid contents in N. virens or
M. nasuta used in dredged material testing are not apparent in the data set.  Measured lipids were mostly found
to occur within a relatively narrow range of concentrations (4-8 and 2-6 percent, dry weight, respectively).  The
data however, do suggest a potential elevation in lipid contents occurring in N. virens used for testing during the
spring (April-May).  This potential seasonality is consistent with the reported timing of oocyte maturation for
this species (Wilson and Ruff, 1988).

Seasonal enrichment in lipid content may act to temporarily increase the organic contaminant load of organisms.
Researchers have documented that when the gametes are spawned, the contaminant load associated with the
lipid-rich gametes is also shed (Rossi and Anderson, 1977).  Indeed, the actual contaminant load in other organs
of spawning individuals may also be lowered due to partitioning of contaminants to gametes from these organs
prior to their release (Isaac Wirgin-NYU School of Medicine, submitted). The consequences of this temporarily
increased contaminant load may not be significant to the fitness of the individual organism, as organic
contaminants associated with the storage lipid pool of an organism are considered by most toxicologists to be
non-reactive.  Therefore, fattier individuals may be able to accumulate higher total loads of organic
contaminants before adverse effects are experienced by the organism (Peter Landrum-NOAA, pers. comm.).
However, it is also important to note that the higher concentrations associated with gametes may have
implications for gamete/progeny survival and fitness and that the higher concentrations of contaminants in
reproductively ripe (i.e., lipid-enriched) individuals will also be available to predators.

As described above, equilibrium partitioning theory and the observations of Tracey and Hansen (1996) suggest
that similarities in sediment-mediated chemical exposure exist across benthic species and therefore BSAFs of
benthic species should not vary widely.  Other studies, however, suggest that there can be significant inter-
specific differences in tissue residues of bioaccumulative contaminants as a result of (for example) differing
feeding and lifestyle strategies, or their abilities to metabolize compounds.  In general, these studies show that
deposit feeders accumulate organic contaminants from sediments to significantly higher levels than do filter
feeders (e.g., Kaag et al., 1997;  Foster et al., 1987) and that residues of certain contaminants (particularly
PAHs) are lower in species having higher abilities to metabolize them (e.g., Kane-Driscoll and McElroy, 1996).

During the 28-day test,  pathways by which M. nasuta  and N. virens are exposed to contaminants are
expected to approximate those of HARS deposit feeders, and exceed those of HARS filter feeders. Based on
the similarities in lipid content, equilibrium partitioning theory would predict that laboratory-measured
accumulations of organic contaminants in these organisms should be fairly representative of accumulations in
field deposit-feeding benthos.  Although nereid worms (including N. virens) are active metabolizers of PAHs
and other hydrocarbons (Kane-Driscoll and McElroy, 1996), the benthic worm community in fine-grained
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sediments at the HARS is often dominated by spionid and capitellid worms (comprising 48 (±28) percent of
worms, by abundance) that are also able to metabolize hydrocarbons to varying degrees.  No information is
available for the remaining classes of organisms.  Insufficient data is available, however, to quantitatively
describe the relative metabolic capacities of organisms at the HARS and test species and so some level of
uncertainty is associated with extrapolation of lab accumulation to field.  This area of uncertainty regarding
metabolism has also been identified by Meador et al. (1995b) and Kane-Driscoll and McElroy (1996).

Overall, the analysis of uncertainty suggests that the use of N. virens and M. nasuta  as surrogate species for
use in approximating accumulations of organic contaminants in benthic organisms that dominate fine-grained
sediment communities at the HARS (i.e., N. proxima and infaunal worms) is adequate for evaluating
bioaccumulation.

Predictive models for assessing uptake of metal contaminants by marine organisms are extremely complex. 
The extent of accumulation of metals by specific organism is dependent on the relative ability of the organism to
regulate internal concentrations of the metal.  Regulation of metals is a function of the ingestion and excretion
rates and the assimilation efficiencies of the specific organism and metal.  Values expressing these parameters
and therefore the overall ability to regulate internal metals concentrations varies widely between and within
phylogenic groups (see Chapman, 1997; and data in Thomann et al., 1995).  Furthermore, the digestive tracts of
deposit-feeding benthos have been shown to be microenvironments that efficiently solubilize inorganic
contaminants from sediments (e.g., Mayer et al. 1996), and Reinfelder et al. (1995) suggest that differences in
digestion have important implications for metals uptake.  Given the species-specificity of these attributes the
representativeness of accumulations of metals in the tested organisms as surrogates for organisms in the field
cannot be ascertained.  

The intent of regulatory evaluations of dredged materials proposed for aquatic placement is to evaluate
accumulations in test organisms in a manner that is protective of the range of benthic species that might be
expected to colonize the material following its placement.  Therefore, accumulations of contaminants
(particularly inorganics) measured in the test species should not be considered as accumulations in the two
individual species (i.e., M. nasuta  and N. virens) but rather should be considered as accumulations that are
characteristic of two “generic” infaunal benthic organisms that interact closely with sediment (and are therefore
maximally exposed to sediment contaminants), and that differ significantly in terms of their specific lifestyles,
feeding strategies and metabolic/regulatory capabilities. 

Use of the higher level of bioaccumulation of inorganic contaminants exhibited in either test species for
comparisons to tissue evaluation values, such as is done in the evaluations using HARS-specific values, most
conservatively interprets the potential for bioaccumulation indicated by the 28-day bedded sediment assay.  In
essence, by using the higher of the two accumulations, a measure of accumulation by a theoretical ‘worst-case’
benthic organism is derived, that accumulates inorganic contaminants to higher levels than will either of the two
species individually.  In the case of the species used in regional testing, we might describe this model benthic
organism as an organism that has individual characteristics of N. virens and M. nasuta  that maximizes the
accumulation of each inorganic contaminant. 

The use of this approach is conservative and may overestimate the bioaccumulation of certain inorganic
contaminants in certain organisms, however, its use ensures that a broader range of organisms are protected
while allowing use of standardized laboratory exposures with a manageable number of treatment subjects.  In
certain instances, where accumulation by a specific benthic species (ecological ‘keystones’ or important prey
species) must be assessed and accumulations in that species is better extrapolated from accumulation of one or
the other species used in testing, the use of the ‘worst case’ organism approach may not be appropriate. 
Indeed, more sophisticated risk assessments may require that the actual species of concern or of a species that
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closely mimics the species of concern be used in bioassay testing for all contaminants of concern rather than
the benthic ‘white rats’ that are routinely used. 

C. Representativeness of the Testing Paradigm

1.  Limited Duration of Exposure (28 days)
A 28 day exposure to assess bioaccumulation is of sufficient duration to allow certain compounds to attain an
equilibrium between internal (test organism tissues) and external (sediment) concentrations.  This dynamic
equilibrium is referred to as ‘steady-state’.  This exposure duration, however, is insufficiently long to allow
certain other compounds to attain steady state.  Nonetheless, the 28-day exposure can be appropriately used to
predict whether contaminants in the sediments will bioaccumulate in exposed organisms. The concentration
measured at day 28 can also be used to predict the steady state concentrations of those compounds that will not
equilibrate within 28 days but that would eventually attain steady state at some time.  Certain contaminants
(metals) do not attain a true ‘steady state’ but rather uptake and/or internal concentrations of the contaminant
are regulated to varying degrees by exposed organisms.

As noted above, equilibrium partitioning models predict that the concentration of a non-polar organic
contaminants in an organism will increase until the concentration in lipids is in equilibrium to the concentration of
the contaminant in the organic carbon fraction of the sediment to which the organism is exposed.  As stated, the
octanol-water partitioning coefficient, or Kow, is a major factor in determining the extent of bioaccumulation of a
given compound by organisms exposed to contaminated sediment.   Similarly, the Kow (actually the log Kow) can
also be used to predict the rate at which accumulations of non-polar organic contaminants in marine organisms
reaches dynamic equilibrium with the concentrations in sediments to which the organisms are exposed.

Figure 6-1 of the Inland Testing Manual (EPA/USACE, 1998) illustrates the theoretical relationship between
the log Kow of a neutral organic compound and the proportion of steady state concentration that is reached by
organisms at day 28 of exposure to sediments.  This relationship indicates that organisms will not attain steady
state concentrations of neutral organic compounds that have log Kows between 5 and 9 within 28 days.
Residues of readily-metabolized compounds, such as low molecular weight PAHs, may be overestimated by
equilibrium-partition models.  These compounds will tend to attain an apparent steady state within 28 days due
to metabolism by the organism.

Equilibrium partitioning models cannot predict metals uptake and general rules cannot be applied for predicting
accumulation of metals in marine organisms.   Accumulation of metals by marine organisms is dependent on the
kinetics of uptake and depuration (excretion) and is extremely complex.  There are three basic models of metals
uptake.  The three basic models of metals accumulation can be illustrated by the accumulation of three metals:
copper/zinc, cadmium, and mercury (Handy, pers. comm.).  

Depuration rates of marine organisms of many essential metals (such as copper and zinc) tend to be high
enough such that under a wide range of environmentally realistic exposure conditions the overall body residue of
the metal can be maintained within an optimal (or tolerable) range.  The process of maintaining internal
concentrations within range is referred to as regulation.  Aquatic organisms are generally able to regulate
internal concentrations of essential metals due to the higher ability to depurate these compounds.  Essential
metals include zinc, copper, chromium, nickel.

On the other extreme, with respect to regulation of internal concentrations by marine organisms, is mercury. 
The depuration rate of methylmercury in essentially all marine organisms is very low (close to zero) and
therefore accumulation by exposed organisms can be characterized as additive.  The depuration rates of
cadmium are also quite low in marine organisms, and therefore methylmercury and cadmium loads in an
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exposed marine organisms are expected to increase over the lifetime of the organism. Given this expectation,
the use of laboratory tests of defined durations necessarily introduces uncertainty with respect to assessing
tissue residues of these contaminants that might be expected to occur in field-exposed organisms.

A method to interpret the results of bioaccumulation assays for metals which have extremely slow depuration
rates, such as methyl mercury and cadmium, is to use the uptake rates evidenced  in the 28-day assay to
estimate the residues in organisms after lifelong exposure to the dredged material. There are two major
difficulties associated with this approach: 1) estimating the average life expectancy of benthic organisms is not
straightforward as it requires that natural mortality and predation rates for the organisms be quantified. 
Mortality and predation rates vary substantially and can be both environmentally and density-dependent; and 2)
while increases in the metal load in organisms may be expected to occur, predicting the actual tissue
concentration of the metal at some future time is complicated by the need to identify growth rates (growth can
dilute the contaminant by growth of the organism) and to identify any changes in uptake and depuration kinetics
that might be associated with life cycles. For example, spawning activity can alter the residue levels in the
parent organism.   In addition, certain organisms of concern may have evolved novel adaptations to maintain
tolerable levels of metals in tissues.  For example, a species of marine worm has been shown to be able to
maintain internal residues of metals by shunting metals to its posterior segments and then shedding those
segments without apparent ill effect to the organism (Lucan-Bouche et al. 1999).

The current approach for evaluating the potential bioaccumulation of metals from dredged material that is
proposed for use as Remediation Material at the HARS uses the metals residues measured after 28 days of
exposure for assessing risks.  Due to the possibility that not all metals have attained steady state after 28 days
of exposure, this approach may underestimate bioaccumulation and associated risks of those metals. 

The proposed approach to assessing bioaccumulation of metals applies safety factors to reflect the potential for
accumulation of non-essential metals in field organisms to be underestimated by the 28-day measure.  This
value was derived from variance in metals residues measured in field-collected polychaetes from the vicinity of
the HARS.  Field-collected polychaetes displayed limited variability in tissue residues of non-essential metals.
The highest measured residues were approximately three times the lowest measured, despite much larger
variance in the metals concentrations in the sediments from which they were taken.  It was assumed that the
sampled organisms represented varying lengths of exposure to the sediments, since  exposure histories and
durations of the sampled polychaetes was not determined.  

In light of the limited variability in field-collected organisms at the HARS, EPA Region 2 proposes to apply a
safety factor of three to 28-day residues of non-essential metals (Ag, Cd, Hg, Pb) for evaluating associated
risk.  EPA Region 2 believes that application of a safety factor of this magnitude (i.e. 3X)provides a substantial
measure of conservativeness in interpreting bioaccumulation assay results.  However, the application of the
safety factor does not altogether eliminate the uncertainty.

Assessing bioaccumulation through laboratory procedures involving exposure of organisms for periods
significantly beyond 28 days introduces a level of complexity to regulatory assessment that will significantly
increase the cost of testing and also introduce the potential for additional areas of uncertainty (i.e.,  how do the
levels and bioavailability/activity of contaminants in the sediments change over longer time scales?) and
difficulty (i.e., maintaining healthy test organisms).  Because models for estimating steady state concentrations
exist for most compounds that do not attain steady state in 28 days, the added expense and difficulty of longer
term assays does not appear to be warranted.

2.  Controlled Conditions of Laboratory Exposure
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During laboratory exposures, environmental conditions (e.g., water temperature, salinity, and oxygen content)
are maintained within a relatively narrow range.  The acceptable ranges for testing are based on the
environmental preferences of the organisms that are used in the testing.  By maintaining exposure conditions
within this range, organism stress due to non-treatment factors is minimized.  The constancy of these conditions,
however, may not mimic environmental variability in the field.

Owing to the offshore location and water depth of the Historic Area Remediation Site, environmental
parameters in bottom water are anticipated to be relatively constant over shorter time scales.  Seasonal and
stochastic (e.g., storms) variability, however, may affect the environmental conditions of exposure.  Seasonal
differences in the physiological state of the organism (such as those resulting from reproduction cycles) may
also be anticipated to affect bioaccumulation in the field.  While seasonal variation in environmental conditions
can be measured, it is difficult to quantitatively translate the external environmental variability to differences in
tissue residue levels. 

3.  Reference Approach/Statistical Uncertainties
The statistical comparison of concentrations of contaminants in tissues of organisms exposed to proposed
Remediation Material to those of organisms exposed to reference sediment are conducted using methods
recommended in the “Green Book” and establishing the 95 percent confidence that is required in the
Regulations. Compounds that do not bioaccumulate to statistically higher levels in test organisms than in
reference organisms are considered to not bioaccumulate to ecologically significant levels.  EPA Region 2
believes this is an appropriate conclusion due to the specific characteristics of the reference sediment being
used in the HARS evaluation process.

Type I error (i.e., errors in which effects are predicted mistakenly) does not result from comparison of test
sediment and reference sediment bioaccumulation test results.  Residues of contaminants in test organism
tissues that statistically exceed reference organism residues are retained for further evaluation of the risks
associated with those levels of accumulation.  The possibility for Type II error (i.e., errors in which no effect is
predicted mistakenly) to be inadvertently committed is attendant to the use of statistical comparisons, however
there are certain aspects of the HARS evaluation process (described below) that serve to minimize the potential
for Type II error.

The potential for Type II error is minimized in the current and proposed evaluation processes for several
reasons: 1) reference sediment used in evaluating the suitability of proposed Remediation Material for use at the
HARS is >95 percent sand and is collected from an area that is geographically removed from the direct
influence of sources of contamination; 2) the method for assigning values to non-detected concentrations for
statistical comparisons to reference and for use in comparison to threshold values was specifically designed to
minimize the potential for Type II error (i.e.when undetected residues are reported at higher than required
detection limits, the actual residue of test and reference samples are estimated at the reported detection limit
and zero, respectively); and 3) when total concentrations for organic contaminants (i.e., total PCBs, total DDT,
total PAHs (or narcotic contaminant load), total BaP-equivalency, total endosulfans, total chlordane/heptachlor,
and total and TEQ dioxins/furans) are used in the risk evaluation process the calculated total used for the
evaluation includes contributions from all relevant compounds, regardless of the statistical significance of the
individual compounds contributing to the total. .

The methods for dealing with elevated detection limits and for evaluating risk associated with mixtures of
organic contaminants are conservative and may overpredict actual risk.
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4.  Pretest Contaminant Levels in Test Organisms
The organisms that are used for bioaccumulation assays are collected from near-pristine, field locations.  As
such, the organisms used in the testing are anticipated to have only trace levels of background contaminants in
their tissues (referred to hereafter as “pretest” contaminant levels) and the presence of these low levels of
contaminants are generally assumed to not significantly affect the kinetics of uptake and depuration during 28
day exposures.  However, despite having been collected from areas that are not influenced by known point
sources of contaminants, elevated concentrations of certain contaminants have been measured in pretest
tissues.  The potential of elevated (and to a lesser extent, trace) pretest contaminant levels to affect measured
residues following 28 days of exposure to dredged material introduces uncertainty into the interpretation of
bioaccumulation.  The concern for elevated pretest levels appears to be more significant in the evaluation of
results of tests conducted with M. nasuta  than with N. virens (Reiss, unpubl. obs.) 

The significance of pretest contaminant levels varies with the level of contaminant and with the specific
environmental behavior of the compound.  The effect of pretest concentrations of certain metals (e.g., copper
and zinc) on 28-day bioaccumulation results may be expected to be minimal since these metals are regulated by
many organisms (including bivalves).  Other metals (e.g., mercury and cadmium) are not excreted at
appreciable rates by marine organisms and therefore pretest levels might be expected to not affect kinetics of
uptake and depuration and therefore act solely in an additive manner.  Organic contaminants differ from metals
as residues resulting from exposure are expected to be dictated by the relative contaminant concentrations in
the lipid of the organism and the organic carbon fraction of the sediment (as discussed above). 

To examine the uncertainty associated with pretest levels, EPA Region 2 staff (Reiss, unpubl. obs.) examined
37 sets of paired pretest/28-day metals residues for M. nasuta. This review indicated that pretest contaminant
levels are positively correlated with 28-day residues for essentially all of the metals examined (a possible
exception was chromium) and was a better predictor of the 28 day residue than bulk or organic carbon/grain
size-normalized sediment chemistry. The review also suggested that the relationships of pretest and 28-day
residues were not consistent across metals and were not predictable for certain metals.  28-day metal residues
showed that silver, chromium, copper, mercury, and lead are usually bioaccumulated by organisms exposed to
New York-New Jersey Harbor dredged materials; cadmium and nickel are sometimes bioaccumulated; and
arsenic and zinc are infrequently bioaccumulated.  (In this study, bioaccumulation was defined as a 28-day
residue of at least 20 percent greater than the pretest residue ).   In addition, the data support the theoretical
prediction that mercury pretest concentrations contribute additively to the load accumulated during the 28-day
exposure.  This relationship was also supported for lead.  More extensive evaluation of the effect of pretest
levels on 28-day outcomes is necessary before quantitative consideration may be given to this area of
uncertainty. 

The potential for pretest levels of a given contaminant to alter the uptake and depuration kinetics of other
contaminants during the 28-day exposure is an additional area of concern associated with pretest contaminants.
This interaction of contaminants has been reported extensively in the literature (see review in Brown and Neff,
1995), however these interactions cannot be confidently quantified or corrected for.     

Past regional policy has been to allow for retesting of proposed dredged materials when pretest levels are
shown to have been elevated and are suspected of having contributed significantly to a determination that the
material is unsuitable for its intended use based on the bioaccumulation results.  Given the state of the science,
continuing this course of action appears to be the most equitable and environmentally prudent manner to address
this area of uncertainty.

   
5. Selected Analyte List and Analytical Methods



A-278

Analytes for New York/New Jersey Harbor dredged sediments were selected based on a review of regional
data (Squibb et al. 1991) sponsored by the Toxics Workgroup of the New York/New Jersey Harbor Estuary
Program and represent a consensus recommendation of New York/New Jersey Harbor stakeholders.  The
current list of analytes includes: polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs),
dioxin and furans (and dioxin-like compounds), several pesticides (DDT, aldrin/dieldrin, endosulfans, and total
chlordane), 1,4-dichlorobenzene, and priority pollutant metals (including silver, arsenic, cadmium, chromium,
copper, mercury, nickel, lead, and zinc-measured as totals).  Organotin compounds are proposed as additional
analytes.

It is prohibitively expensive, and essentially impossible, to measure for all contaminants that may be present in
dredged materials in heavily impacted systems (like New York-New Jersey Harbor).  Therefore, regulatory
programs only measure subsets of contaminants that are deemed to be of greater potential environmental
significance.  Factors such as: the prevalence and concentration of the contaminant in the waterbody; the
intrinsic toxicity or potency of the contaminant; and the potential for accumulation and biomagnification of the
contaminant in the food chain are considered by managers when evaluating the need for including a specific
compound as a contaminant of concern. Generally speaking, a compound will only be selected as an analyte
when there is evidence that suggests that it may be present at potentially harmful levels in the environment.

Obviously, risks associated with bioaccumulated levels of contaminants which are not measured in assays
cannot be considered.  It is difficult to quantitatively consider this area of uncertainty.  Uncertainty is minimized
by appropriate consideration and characterization of the screening criteria identified above when identifying
target analytes. 

As significant synergism (or antagonism) between contaminants is not expected to commonly occur at
environmentally relevant exposure levels (Konemann and Pieters, 1996), the potential occurrence of
unmeasured compounds is of lesser importance in considering the potential for effects associated with
contaminants of concern having specific modes of toxic action.  The potential occurrence of unmeasured
compounds is of greater importance however in assessing the potential for effects from contaminants that share
a common mode of toxic action (e.g., narcosis, carcinogenesis).  

It is important to note that acute toxicity to sensitive benthic organisms using whole sediment is also assessed as
part of the overall process for evaluating dredged material.  The acute toxicity bioassay assesses the combined
toxicity of all contaminants in the sediment.  Sediments that are found to be unacceptably toxic in acute toxicity
tests are excluded from use as Remediation Material at the HARS.  Therefore, the use of this test offers a level
of protection for contaminants that are present in the sediment but not measured in the bioaccumulation test
tissues.

6.  Selection of Analytical/Quantitation Methods
This section discusses areas of uncertainty associated with the analytical methods selected for use in evaluating
bioaccumulation test tissue residues. 

a.  Quantitation of Metals Residues
Metal residues in tissues of organisms exposed to dredged material proposed for use at the HARS are
measured as total metals.  Evaluation of the risks associated with the metals, however, is generally conducted
by using potency characteristics (e.g., carcinogenic slope factors, reference doses, toxicity indices) that are
associated with a specific valence state or organometallic complex of higher toxicological importance.  This
approach results in the inherently conservative assumption that all of the metal that is measured in test organism
tissues is present in its most toxicologically potent form.  The appropriateness of this assumption differs across
metals, depending on how much of the measured total is in the form being used for the risk assessment.
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In order to minimize the expense and difficulty of analyses, subsets of specific analytes within organic
contaminant classes are often measured in lieu of measuring the entire suite of potential compounds.  This is the
approach taken to analyze PAH and PCB residues in tissues of organisms exposed to dredged material
proposed for use as Remediation Material at the HARS.  The quantification of a subset introduces uncertainty
into the risk assessment.  This uncertainty is qualitatively described below.

b.  Quantitation of Polychlorinated Biphenyls
Polychlorinated biphenyls (PCBs) are contaminants of concern in the New York/New Jersey Harbor estuary
system and at the HARS and have been introduced from a variety of sources.  There are 209 possible
configurations (called congeners) for PCB compounds, however only a subset of 100 or so of these compounds
are environmentally abundant.  Still fewer are toxicologically important (McFarland and Clarke, 1989).

Regional guidance for assessing contaminants in dredged material (CENAN/USEPA 1992) recommends an
analytical method developed by NYSDEC (1991) to quantify concentrations of PCBs on a congener-specific
basis.  In the recommended approach, 22 PCB congeners are measured and their mass is then doubled to
estimate the total mass of PCBs in the sample. This approach is consistent with the approach used by NOAA in
the Status and Trends Program.  The reliable prediction of total PCBs from the measured subset has been
verified on a national level by NOAA contractors (Dr. T. Wade - Texas A&M University) using NOAA Status
and Trends sediment and tissue data.  This method is preferred by NOAA and EPA because the subset allows
for prediction of the total PCB mass, while minimizing the expense and difficulty of the analysis.

Because of the demonstrated ability to reliably predict total PCB mass from measured concentrations of a
subset of congeners, EPA Region 2 judges the use of this analytical approach to introduce relatively little
uncertainty into the evaluation process.

c.  Quantitation of Polycyclic Aromatic Hydrocarbons
For PAHs, standard EPA methods generally analyze the 16 PAHs listed by EPA as priority pollutants.  These
methods do not quantify alkylated PAH homologues which are present in environmental PAH mixtures at
varying relative abundances.

PAHs are produced naturally through diagenic (and other) processes, however, the overwhelming sources of
PAHs in most aquatic systems, including New York/New Jersey Harbor, are anthropogenic.  Alkylated PAHs
are of higher relative importance at sites affected by petrogenic sources of PAHs (i.e., sites contaminated by
releases of petroleum products), than at sites affected by pyrogenic sources (i.e., sites affected by combustion)
(Battelle, 1999).  

NOAA Status and Trends (NOAA 1995) quantified parent PAHs and five alkylated compounds in 36 samples
of New York/New Jersey Harbor sediments. Alkyl PAHs only comprised a minor fraction of the total PAHs
measured in these samples (averaging 12.8±13.6 percent).  However, if the mass of alkylated naphthalenes
(which were four of the five alkylated PAHs quantified by NOAA) are compared with the mass of parent
naphthalene, alkylated compounds comprised 58.2 ± 8.8 percent of total naphthalene.  This suggests that the
measurement of the 16 parent PAHs to estimate total PAHs may underestimate actual PAH concentrations by
as much as 60 percent.  Alkylated napthalenes were shown by Hellou et al. (1994) to predominate (90-100
percent of mass of 27 measured polycyclic aromatic compounds) PAH residues in muscle tissue of flounder
exposed to oil-contaminated sediments.  Alkylated naphthalenes accounted for 30-60 percent of the mass in the
sediments used in that study.  This enrichment suggests that alkylated PAHs are transferred to exposed
organisms and may in fact be more efficiently transferred than parent compounds.  This characteristic supports
the need to quantify and consider alkylated PAHs when assessing the risks associated with PAH mixtures.



A-280

EPA Region 2 proposes to require specific sample cleanup procedures and instrument configurations to be used
when analyzing for PAH residues using Method 8270 (see Appendix G of this document).  These procedures
will allow the mass of alkylated PAH residues to be estimated in a sample and used in the risk assessment
process.  EPA Region 2 believes that using these procedures will significantly reduce the uncertainty by which
risks due to PAHs are assessed. 

d.  Analytical Performance
Rigorous QA/QC limits (see CENAN/USEPA 1992) are intended to ensure that only demonstrably accurate
and precise results are used in evaluating the potential for bioaccumulation.  There is, however, inherent
variability in analytical results that is associated with the performance of the laboratory methods themselves.  
The acceptable precision limits reflect the inherent variability in method performance.  Acceptable limits for
triplicate analyses are relative percent differences (RPDs) within 30 percent for organic contaminants and
RPDs within 20 percent for inorganics.  

Because the acceptable range is an absolute range, it cannot be ascertained whether a reported concentration
somewhat under- or overestimates the actual residue in the sample. However, the potential 20-30 percent
difference between reported and true concentration in the sample introduces a margin of uncertainty that is
narrow with respect to other areas of uncertainty associated with the overall evaluation process. 

II.  UNCERTAINTY ASSOCIATED WITH ASSESSING EXPOSURE TO CONTAMINANTS AT
HARS

A.  Estimating Exposure of Humans to HARS Contaminants
Estimating exposure of humans in light of the various site/population-specific characteristics that potentially
influence exposure introduces several areas of uncertainty into the assessment of risks associated with dredged
material at the HARS.   It is therefore appropriate to assess the specific nature of the site and identify
pathways by which exposure is most likely to occur. Because the HARS is located offshore and in deep water,
and because suspended and dissolved constituents of dredged material do not persist in the water column
following release from the barge, pathways of human exposure other than consumption of seafood (e.g.,
inhalation, or direct exposure through bathing) are not deemed appropriate for assessing the associated risk. 
Ecological receptors, however, could be exposed to contaminants through direct contact and/or food web
transfer pathways. 

1. Seafood Consumption Patterns of Humans

a.  Seafood Consumption Rate
i.  Use of the National Default Consumption Rate
When site-specific data are unavailable to estimate seafood consumption rates, risk assessments often employ a
national default estimate of seafood consumption to estimate exposure to contaminants in seafood.  The default
consumption rate is based on national per capita  seafood consumption and is calculated as the total amount of
edible fish and shellfish product that is landed in or imported by the U.S., divided by the national population.  

The current process for evaluating the suitability of dredged material for use at the HARS uses acceptable
benthic tissue concentrations (based on human health) that were derived using a default seafood consumption
rate of 6.5 g/day.   Clearly, use of this consumption rate may underestimate exposure by many seafood
consumers.  The proposed HARS evaluation framework and guidance values employ an estimate of seafood
consumption that is based on responses obtained in a survey of fish consumption by New Jersey residents.  The
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survey (NJMSC, 1994) was conducted by the New Jersey Marine Sciences Consortium, the New Jersey
Department of Agriculture and Rutgers University.  Areas of uncertainty that are generally associated with
estimating consumption rates and areas associated specifically with the use of the results of the NJMSC study
are discussed below.

ii. Identification of Target Sub-Population of Concern
To replace the default value with a more site-relevant consumption rate, it is necessary to identify whether
there are groups whose patterns in consuming seafood may lead to exposures that significantly differ from the
default rate and may be more appropriate receptors for assessing risks.  Factors that must be considered are:
amounts and types of seafood consumed by those persons; methods generally used by those persons to prepare
seafood; and the sources from which these persons obtain their seafood.  Effort must also be placed in
identifying whether there may be significant seasonal changes in the seafood consumption rate or source. 
These, and other, areas of uncertainty are discussed below.

The current and proposed processes for evaluating risks associated with contaminants in dredged material
proposed for use at the HARS assume that recreational fishers (and their families) represent a reasonably
maximally exposed (RME) population for assessing risks to humans.  More explicitly stated, EPA Region 2
assumes that there is a population that fishes exclusively at the HARS and that these anglers have seafood
consumption patterns (types and amounts) that are similar to those of the average New Jersey angler (as
represented by respondents to the NJMSC (1994) survey).  The assessment further assumes that all fish
consumed by those anglers that could potentially occur at the HARS are, in fact, obtained by angling at the
HARS.  In addition, the assessment assumes that fish are filleted prior to cooking (and consumption).  These
assumptions are discussed below.

In identifying this sub-population, the recreational angler, it was acknowledged that the children of these anglers
would also be consuming fish caught from the HARS. Consistent with EPA’s Children’s Health Initiative, a
child receptor was evaluated in developing the HARS-Specific Values for human health.  For reasons discussed
below, this assessment was performed qualitatively.  

The somewhat unique exposure scenario associated with the HARS (i.e., estimating exposure from fish
consumption from fishing at a 15.7 square mile area 3.5 miles from the coast) necessarily introduced a
considerable amount of uncertainty (discussed elsewhere in this report) into the risk assessment.  Addressing
this uncertainty, while maintaining the tenet of estimating a reasonable maximum exposure scenario, dictated a
high degree of conservatism into the risk assessment process.  In establishing human exposure assumptions, this
conservatism is apparent, for example, when considering the amount of time that a fish forages at the HARS. 
This site use adjustment is conservative as it assumes that: 1) when fish migrate to areas away from the HARS
vicinity, they return to the HARS; and 2) while fish are in the general vicinity of the HARS, they feed
exclusively at the HARS itself.  These two inherent assumptions are clearly conservative, however they are
appropriate in the absence of empirical site-specific data to better estimate those factors.

iii. Estimating Consumption Rate for Sub-Population of Concern
NJMSC survey results confirmed that recreational anglers consume greater quantities of seafood than do non-
fishing seafood consumers. Because the HARS is an area that ‘holds’ fish, it is a popular fishing area for
recreational fishers targeting coastal species.  Based on this characteristic of the HARS and the higher seafood
consumption rate of anglers, recreational anglers appear to be appropriate target populations for assessing risks
from seafood obtained at, or exposed to, the HARS. 

Average seafood consumption reported by NJMSC survey respondents that identified themselves as
recreational fishers was 15.23 ounces/week (62 grams/day).  The overall average fish consumption by New
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Jersey fish consumers was 10.85 ounces/week (44 grams/day).  Of this weekly total, 7.57 ounces are saltwater
finfish.  Approximately 37 percent (2.8 ounces) of the saltwater finfish consumed by recreational anglers were
reported to be fresh (i.e. not canned or processed) fish of varieties that are listed in the HARS SEIS (EPA
1997a) as species that may occur in the vicinity of the HARS.  The weekly consumption rate of 2.8 ounces, or
79.38 grams, equates to a daily consumption rate of 11.34 grams of finfish that could potentially occur at the
HARS.  This consumption rate does not include consumption of processed fish or of species that are not
expected to occur at the HARS, such as red snapper, orange roughy, and off-shore species (e.g., tuna,
swordfish). 

NJMSC (1994) respondents (anglers) indicated that 60% of the fish they consume is prepared in the home.
EPA Region 2 assumed that recreationally-caught fish is consumed by recreational anglers in their home.  If the
percentage of fish that occurs at the HARS that is consumed by recreational anglers in their home is similar to
the overall percentage of home-prepared fish (i.e., 60%) in their diet, then the daily consumption rate of
recreationally-caught (i.e., home-prepared) fish potentially occurring at the HARS by New Jersey anglers
would be estimated to be 6.8 grams (i.e., 11.34 g/day x 60 percent).

Anglers responding to the NJMSC (1994) survey indicated that they annually consume an average of 5.76 lbs.
(or 7.2 grams/day) of recreationally-caught fish.   Information on angling habits in New Jersey marine waters is
not available.  Therefore, EPA Region 2 conservatively assumed that there may be a subpopulation of
recreational anglers that preferentially fishes at the HARS and obtains all of the recreationally-caught fish in
their diet from fishing at the HARS.  Given that such a population of recreational anglers exists, their
consumption of finfish that are potentially exposed to the HARS was estimated at 7.2 g/day. 

The two estimates of consumption of finfish that are potentially exposed to HARS and caught recreationally by
New Jersey anglers (outlined above) agree well.  EPA Region 2 proposes to use the higher of the two
estimates (i.e. 7.2 grams/day) as an appropriate estimate of fish consumption for assessing the risks to a
reasonably maximally exposed (RME) human subpopulation associated with contaminants in sediments
proposed for use as Remediation Material at the HARS.  Although use of an average consumption rate does
not reflect consumption by all consumers within the angler population, the averages exclude those fishers that
did not report having eaten fish in the week preceding the survey and, therefore, probably represents higher
consumers within the angler group.  The average consumption rate used for assessment of risks is equivalent to
an average consumption of 2.42 seafood meals/week, approximately 75 percent of anglers in the survey
reported consuming less than three meals of seafood per week.

Taking the exposure assessment a step further by estimating the fish consumption rate in children of
recreational anglers introduces more uncertainty due to the limited data on childhood fish consumption rates. 
Exacerbating this issue is the absence of information on the meal patterns of recreational anglers (high-end fish
consumers) and their children. Survey data in a recent draft (dated March, 2000) of EPA’s Child-Specific
Exposure Factors Handbook indicates that, normalized to body weight, children under the age of fourteen may
ingest approximately twice as much fish as adults, however these data are not specific to recreational anglers.

In this particular assessment, the comparatively modest increase in possible exposure to children (and the high
degree of associated uncertainty) argues in favor of a qualitative analysis of the childhood exposure pathway.
The aforementioned considerations, coupled with the conservative nature of the recreational angler exposure
assessment, provides a reasonably confident basis for concluding that the HARS risk assessment methodology
is protective of both children and adults alike.

Because the NJMSC survey relies on information regarding  fish consumption during a single week period
during the Fall to extrapolate annual consumption rates of consumer groups, it is necessary to discuss the
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uncertainty associated with this extrapolation.  While it is possible that there may be significant interseasonal
differences in the amount of fish that is consumed, $90 percent of survey respondents that reported consuming
2-3 fish meals in the past week also reported that their previous week’s consumption did not differ significantly
from their typical consumption.  Therefore, the seafood consumption rate reported by these anglers was
assumed to be an appropriate estimate of annual consumption.

What is more probable, however, is that the proportion of fish that is obtained by recreational fishing at the
HARS may differ significantly over the year.  This difference could be the result of seasonal restrictions
imposed by resource agencies or due to decreased fishing activity during winter months. However, because
certain New Jersey fishers may freeze a portion of their catch for consumption during these times (May and
Burger, 1996), the estimated proportion of fish was not adjusted to account for potential seasonal differences.

iv. Source of Fish Consumed by Sub-Population of Concern
The assumptions that 100 percent of recreationally caught fish are of species occurring at the HARS and that
they are caught exclusively at the HARS are extremely conservative.  Recreationally caught fish consumed by
anglers actually includes freshwater (e.g., trout) and offshore, pelagic (e.g., tuna) species of fish. Fish in these
two groups constituted up to 19 percent of consumed fish that were reported as recreationally caught “in New
Jersey waters” by NJMSC survey respondents.  most inshore species that occur at the HARS (e.g., summer
flounder, weakfish, bluefish, and striped bass) will be caught from various locations by the typical recreational
angler depending on various factors, including time of year (based on fish distributions) and weather (which
influences fishing area accessibility based on sea state).   In addition, certain species that contributed to the
consumption rate and that were assumed to be recreationally caught at the HARS are not generally targeted at
the HARS.  Examples include: structure-associated species, such as porgy, blackfish, and sea bass; deeper
water bottom species, such as cod and haddock; and species generally targeted within bays and estuaries, such
as winter flounder.   

v. Exposure to Potentially HARS-Exposed Species Other than Recreationally Caught Finfish
There are significant commercial finfish and lobster fisheries in the New York Bight.  Commercial harvesting
occurs throughout the New York Bight, including the Apex and the HARS.  The consumption rate used to
assess risk to recreational anglers from contaminants at the HARS (i.e., 7.2 g/d) does not explicitly consider the
contribution of fish and lobster from commercial sources.  As such, the actual consumption rate of HARS-
exposed finfish could be as high as 11.34 g/day.  This would depend on all commercial harvesting of species
that potentially occur at the HARS having actually been obtained there.  Because the area of the HARS
represents only a small fraction of commercially fished area, use of this assumption would be extremely
unrealistic. 

Sixteen percent of crustaceans contributing to New Jersey angler diets were attributed to lobster meals
(constituting 3.3 g/day).  While there is a lobster fishery at the HARS, the assumption that all lobster consumed
by anglers is commercially fished at the HARS is also extremely unrealistic.

It is possible to derive a proportion of total finfish and lobster landings that might come from the HARS for use
in the risk assessment.  However, given the limited geographic extent of the HARS with respect to the areas
occupied by these fisheries, the resultant contribution to risk was assumed to be negligible compared to directed
recreational fishing at the HARS.

b. Effects of Seafood Preparation on Contaminant Exposure.
The current and proposed processes for evaluating risks to human consumers from seafood at the obtained at
the HARS assume that recreational anglers prepare and consume the fillet portion of the fish, rather than the
whole fish.  This is an important assumption since tissue in the fillet (muscle) portion of fish has been shown to
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harbor substantially lower concentrations of organic and inorganic contaminants than other organ tissues (see
EPA, 1997b).  The current and proposed processes adjust the predicted whole-body contaminant concentration
(based on trophic transfer from benthic prey at the HARS, as represented by bioaccumulation test organisms)
to estimate the lower concentrations in the fillet being consumed by humans.  Fifty-five percent of NJMSC
survey respondents (anglers) indicated that they always fillet fish prior to consumption and 6 percent indicated
that they rarely or never fillet fish.  Conversely, 27 percent of angler respondents indicated that they always
serve whole, gutted fish and 50 percent indicated that they rarely or never do so.  Nevertheless, the majority of
the fish that is actually consumed by humans (independent of the method of preparation) is the muscle portion
of the fish.

The current and proposed processes for evaluating risks to human consumers from seafood obtained at the
HARS do not consider the potential reductions in organic contaminant concentrations in fish tissues during
cooking.  This reduction is attributable to separation of contaminated lipid from fish tissues during cooking.  In
addition, volatilization may account for added losses when, under higher temperatures, the chemical is released. 
Loss of lipids is a function of the temperature and cooking duration, with higher temperatures and longer
cooking times causing a greater loss of fat and accumulated chemicals from the edible tissue.  Cooking methods
such as frying, baking, or broiling are particularly effective at removing organic chemicals (EPA 1997b).

Results of several studies indicate that cooking can lead to substantial reductions in organic chemical
concentrations in fish tissues.  For example, the results of Sherer and Price (1993), indicate that cooking leads
to reductions in PCB levels in fish ranging from zero (0) to 74 percent.  Similarly, studies by Stachiw et al.
(1988), and Zabik and Zabik (1995), have shown reductions in TCDD concentrations ranging from about 30 to
100 percent.  Finally, several studies have shown that cooking can reduce pesticide concentrations two to 72
percent in fish tissue (Reinert et al., 1972; Smith et al., 1973; Zabik et al., 1982; EPA 1997b). For these
reasons, regulatory agencies frequently recommend that anglers cook their fish before consumption and that
they use a cooking method that does not reuse the fish oils (NYSDEC, 1991). Ninety-five percent of NJMSC
survey respondents (anglers) reported that they never reuse the fish oils.

Because the actual dose received by anglers during consumption is determined by the amount of chemical in
each fish meal, any reduction that occurs during the cooking process will result in a reduction in the exposure
concentration.  Research has shown that anglers in the northeastern United States typically use cooking
methods that reduce organochlorine levels in self-caught fish, with frying, baking and broiling 62, 18, and 16
percent of the time, respectively (ChemRisk, 1992; Connelly et al., 1992).   Somewhat different patterns were
reported by New Jersey fish consumers (not all fish consumers were anglers) with baking accounting for
approximately 50 percent, and broiling-barbecuing accounting for 42 percent, of seafood meals prepared in one
study (New Jersey Department of Agriculture as reported in NJMSC 1994). Broiling/grilling, baking and frying
accounted for the majority of prepared fresh saltwater fish meals, respectively, in a second survey of New
Jersey fish consumers (NJMSC, 1994).  

Contaminant losses due to cooking were not considered in deriving values for assessing human health risk in the
current or proposed processes.  Therefore, cooking loss may actually lower exposures of most recreational
anglers to contaminants in fish obtained from the HARS to levels somewhat lower than those used for assessing
risks in the current and proposed processes.

c.  Exposure Duration
A critical component of any risk assessment is estimating how long or how often an individual may be exposed
to the chemicals of potential concern.  The exposure duration of recreational angler is also affected by the time
an angler begins fishing and continuing until the angler no longer catches and consumes fish from the Site.  The
point at which an angler stops fishing varies with the individual angler.  Three factors influence the time when
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an angler stops fishing: 1) the probability that an individual will relocate from his/her current residence
(mobility); 2) the probability that an individual will decide to no longer participate in the sport of fishing (angling
cessation); and 3) the probability that an individual will die (mortality).  The duration of exposure can only be
properly estimated when these three factors are considered.  The current and proposed processes for
evaluating suitability of dredged material for use at the HARS assume that individuals will be exposed for 70
years.  For the purpose of this uncertainty evaluation, a quantitative analysis was beyond the scope of this
qualitative evaluation.  However, it is instructive to discuss these uncertainties in a qualitative fashion.

i. Mobility
Residential mobility is an accurate predictor of exposure duration for many sources of contamination that occur
in or near, the home.  An individual's potential exposure to indoor air pollution or contaminated soil, air, and
groundwater near their residence is a function of the amount of time spent at home.  This exposure may
conceivably continue throughout the individual's lifetime unless the person changes their residence.  EPA human
health risk assessors often use a 30 year, rather than 70 year, period to conservatively estimate durations of
exposure to contaminants near their homes based on typical residential mobility.

When evaluating the influence of the mobility factor on exposure duration for fish consumption, however, it is
necessary to go beyond a strict consideration of residential mobility because changes in household location may
not lead to changes in fishing behavior.  Only when an individual moves a sufficient distance will a change likely
be made in preferred fishing locations.  While interstate or U.S. regional mobility data could be used to estimate
the number of individuals who give up fishing at a preferred fishing location (due to a significant move in
distance), intrastate moves (within state) that would also result in a change in angling practices also need to be
considered.  It is likely that the actual number of anglers who stop fishing at a specific location would be
underestimated by relying on interstate or regional mobility data.  County mobility, however, may be an
appropriate surrogate for representing the probability that an individual gives up angling because he/she moves
sufficiently far enough away.  These data are available from the U.S. Bureau of Census (1988, 1991) which
publishes information on the number of individuals who move out of a given county, but still remain within the
same state.

Factors such as age and gender can also influence mobility.  For example, the frequency of moving is highly
dependent on age.  Individuals between the ages of 20 to 29 have a greater probability of moving than
individuals over 30.  Gender also has an impact on mobility.  Due to gender-specific tendencies, men are
somewhat more likely to move than are women (U.S. Bureau of the Census, 1991).  To account for these
patterns and to identify the range of variability found in the angler population, it is necessary to identify a
distribution of intercounty mobility rates for males and females of each age.  Specifically, data on county
mobility by age group and gender in the Northeast region may be appropriate to further characterize potential
exposure duration. However, in support of using a 70 year exposure duration, surveys (EPA, 1997c) indicate
that approximately 70 percent of those who change residences move within a 20-mile radius.  Thus, there is a
likelihood that moving would not necessarily restrict ready access to fishing at the HARS.

ii. Angling Cessation
In addition to moving, an angler may give up fishing due to lack of interest, bad weather, increasing age, or a
number of other reasons.  In fact, at every age there is a certain probability that an individual will permanently
give up the sport.  However, due to the difficulty of collecting these data, no study has specifically evaluated
this phenomenon.  Not only is it difficult for individuals to predict whether they will give up fishing, individuals
who report giving up fishing one year may only temporarily withdraw from the sport.  These same individuals
may start and stop fishing many times over the course of their lifetimes.
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As an example, an initial analysis using data collected by ChemRisk (1992) indicates that the percentage of
anglers in the population increases from age 18 until the mid-20s, where it remains relatively constant for about
20 years.  In the mid-40s until the late 60s angling begins to decline significantly.  Finally, after about the age of
67, the number of anglers is again roughly stable until age 81, the oldest age recorded in the survey.

A survey in the State of Maine determined that 72 percent of all licensed anglers fish every year once they start
fishing (Boyle et al., 1990).  This study supports the fact that the majority of anglers are extremely dedicated to
their sport, indicating that the number of anglers in the total state population should be relatively constant
between years.  This type of information can be used to determine the age-specific probability that an individual
will permanently cease angling.  The change in the number of anglers with increasing age can then be used to
estimate the probability that an individual will give up angling.  No such survey has been conducted to
characterize the New Jersey angler community.

iii. Mortality
Mortality also determines how long an individual potentially catches and consumes fish from the Site. Standard
actuarial mortality tables can be used to predict the life expectancy of a given angler and whether that individual
would likely remain a member of the population of living anglers.  Age- and gender-specific data on mortality
are available from the National Center for Health Statistics (1990) and can be used to create a complete
distribution of the probability of dying at each age.  Such a consideration, however,  is beyond the scope of this
effort. 

B.  Estimating Exposure of Wildlife to HARS
When assessing risks to ecological receptors that may be associated with bioaccumulation of contaminants from
sediments it is necessary to consider effects to sessile or “full-time” resident biota and to species that may only
be exposed to the site of concern for varying portions of their lifetime.  In addition, the relative importance of
direct and indirect exposure pathways must be evaluated when assessing risks to a given species.  The
estimates and assumptions that are necessary to evaluate these risks introduce uncertainty into the process. 
These areas are identified and discussed below.  Many of the exposure assumptions are also important for
considering risks to human consumers of these seafood species. 

1.  Characterizing the Food Web at the HARS: Identification of Receptors 
For the current and proposed processes for assessing risks to ecological receptors (and in support of assessing
risks to human consumers through the food web), a simplified description of the food web is used to describe
trophic relationships between species anticipated to be present at the HARS.  The food web used in the model
was described by a simplified New York Bight food chain consisting of three representative trophic levels:
benthic organisms, benthic predators, and upper level predators which was developed by EPA Region 2
(through the former Mud Dump Site Criteria Workgroup), in consultation with representatives from the state
and federal resource agencies, industry and the environmental community (EPA, 1995a).

Higher level ecological receptors (e.g., piscivorous birds and mammals) were not identified as appropriate
terminal ecological receptors for the food chain in the 1995 effort, nor were any identified by U.S. Fish and
Wildlife Service, NOAA-NMFS, state resource agencies, or the public in comments received during the HARS
site designation process.  Therefore, predatory fish are used as the terminal ecological receptor in the
assessment of ecological risks at the HARS.  

The composition of the food web significantly affects estimates of exposure and trophic transfer of
contaminants.  The use of this simplified food web introduces uncertainty into the risk assessment process.
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2. Estimating Site Use by Ecological Receptors
Estimating the extent and duration of exposure to the HARS for organisms that are sessile, or of very limited
mobility, is simple.  Specifically, sessile organisms (e.g., oysters, mussels) are by definition exposed to the
HARS for their entire benthic existence.  Other organisms, such as worms, clams and amphipods, are also
likely to be exposed to the HARS for their entire benthic existence.  Estimating the extent and duration of
exposure for highly mobile species, such as finfish, is much more difficult and introduces uncertainty into the
risk assessment process.  This section discusses this area of uncertainty.

The current process for assessing risks associated with sediments at the HARS assumes that fish species
present at (or caught at) the HARS have been present at the HARS for their entire lifetime.  This relates to a
site use factor of 100 percent, which results in the conclusion that all of their food is coming from the HARS. 
This assumption, however, is recognized to be overly conservative.  However, development of a more realistic
estimate of site use is not a straight forward exercise. 

The HARS occupies only 15.7 square nautical miles of total habitat available to, or used by fish during their
lifetime.  For certain species, such as bluefish and striped bass, that undergo extensive seasonal migrations an
area of this size probably represents only a minute fraction of the total area in which they forage during their
lifetimes.  For other species that exhibit less dramatic migrations (a possible example may be blackfish) this
area could represent a more significant component of their range.  As a result, general rules regarding site use
are difficult to apply across species.

Being located at a temperate latitude, the environment and ecological characteristics of the HARS exhibit
pronounced seasonal differences. Generally speaking, fish species that are associated with the HARS are only
present for a portion of the year.  Clearly, when fish are not present in the geographical area of the HARS, they
cannot possibly be feeding on benthos at the HARS.  EPA Region 2 used quarterly landings data from 1993 to
adjust site use by fish based on their presence/absence in commercial landings. Using the portion of the year
that accounted for 95 percent of landings , EPA Region 2 adjusted site use to reflect the percent of the year
that a “typical fish”  (which was weighted by each species relative contribution to the diet of an angler) may be
expected to be present in the vicinity of the HARS.  This approach resulted in an adjustment to reflect that fish
are only present in waters near (and therefore could only be feeding at) the HARS for approximately 78
percent of the year.  Although this estimate is based on landings of a single year, seasonality of fish occurrence
is fairly constant from year to year (J. Waldman, Hudson River Foundation, pers. comm.).  Using commercial
landings data (and specifically, using the number of quarters in which 95 percent of fish of a given species are
landed) is a conservative approach to estimating seasonal presence as the residence of the individual rather than
the population determines exposure duration.   Furthermore, using quarterly data, rather than monthly data, to
estimate population residency is also slightly conservative.

The above site use adjustment is conservative, however, as it assumes that: 1) when fish migrate to areas away
from the HARS vicinity, they return to the HARS; and 2) while fish are in the general vicinity of the HARS,
they feed exclusively at the HARS itself.   These two inherent assumptions are clearly conservative, however
empirical data to better estimate those factors is lacking.  The first of these two assumptions is important for
predicting residues of contaminants  (e.g., cadmium, mercury, dioxin) that are the result of the lifelong exposure
history of the organism.  The second assumption, however, is of greater importance for predicting residues of
contaminants (e.g., PAHs, metals) that reflect the recent exposure history of the organism.

The HARS occupies less than 3 percent of total available seabottom between 60 to 80 feet in the New York
Bight. The probability of fish returning to this specific site year after year is low.  However, it is unlikely that
fish are entirely indiscriminate in their choice of habitat and therefore use of such a gross metric (percent of



1Draft lipid data that was eventually published in NYSDEC (1996) was used to run the Gobas
model.
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bottom in depth range) cannot be confidently used to modify site use.   Adjusting site use based on a geographic
scale approach was not considered to be appropriate for the proposed assessment because the additional
factors that need to be considered to predict habitat selection or site fidelity are not well understood and
probably vary across species.  As noted above, the area of the HARS appears to attract and hold fish. 

To adjust site use based on foraging range, information on the size of feeding or home ranges of fish is
necessary.  It is likely that the foraging or home ranges of fish are species- and size- specific, and density- and
habitat-dependent functions.  This area of fish behavior is not well studied and no relevant empirical studies
were found to support adjusting the site use factor in the risk assessment.

Site-use by fish is recognized to have been conservatively estimated in assessing exposure to, and risk
associated with, contaminants at the HARS.

3. Estimating Trophic Transfer of Contaminants
To assess the risk of contaminants at the HARS, it is necessary to estimate the potential trophic transfer of
contaminants in benthic prey to predator organisms.   The current and proposed evaluation processes use
biomagnification (or trophic transfer) factors (i.e., ratios of prey and predator tissue contaminant
concentrations) to estimate the relative residue levels expected in organisms at different trophic levels in the
food web.  The trophic transfer factor is a critical parameter in calculating body burdens of, and risks
associated with, upper level ecological receptors (i.e., fish). Trophic transfer factors for predicting chlorinated
organic contaminant residues in predators from those in prey were derived using the Gobas food web model. 
Similar trophic transfer factors were derived from the literature to relate PAH and metals residues.  Areas of
uncertainty associated with the biomagnification factors used in the current and proposed processes are
discussed below.

a.  Trophic Transfer of Chlorinated Organic Contaminants
Trophic transfer factors (ratios of prey and predator tissue contaminant concentrations) for chlorinated
pesticides were derived for use in the current and proposed evaluation processes using the Gobas food web
model (EPA 1995b). The New York Bight food web used in the model was described by a simplified food
chain consisting of three representative trophic levels.  These trophic levels were selected by consensus
(including representatives of the environmental and regulated communities, the two state resource agencies,
USEPA and NOAA-NMFS) and were described in EPA (1995a) as: benthic organisms, benthic predators, and
upper level predators. Average lipid contents of each trophic level were calculated from lipid contents of
representative organisms in each level, as reported by NYSDEC (1996)1.  The model was run assuming
equilibrium and two states of disequilibrium.  Resulting trophic transfer factors used (and proposed for continued
use) in evaluating suitability of dredged material were reported on a lipid-normalized basis. 

Burkhard (1998) compared bioaccumulation predictions in an aquatic (Great Lakes) food web obtained by the
Gobas model to another generally accepted food web model (i.e., the Thomann model). Burkhard found that
predictions of bioaccumulation in piscivorous fish for compounds with log Kows <8.0 and input sensitivities were
generally comparable using the two models. Burkhard (1998) concluded that predictions obtained using the
Gobas model have less overall uncertainty associated with them (i.e., a factor of 3.3 to 5.5 for compounds with
log Kows < 7.6) than those obtained using Thomann. 
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The most sensitive input parameters to the Gobas model are log Kow, lipid content, and equilibrium state
(sediment-water chemical concentration quotient) (Burkhard, 1998).  In addition, assumptions regarding the
structure of the food web are the foundation for running the model and therefore are important when assessing
uncertainty with predicting trophic transfer of contaminants.  These areas of uncertainty with the application of
the Gobas model are discussed below.

i.  Log Kow

The Gobas model is sensitive to the log Kow.  Since different Kow values have been published for chlorinated
organic compounds, it is important to carefully select the appropriate Kow for use in the model.  Karickhoff and
Long (1995) reviewed log Kows and derivation methods published for various compounds and the methods used
to derive those values.  Based on their review, they recommended values for use by EPA.  Log Kows obtained
using the “slow-stirring” or “shake-flask” methods were usually recommended for use by the authors,
depending on the compound. These recommended values were used to run the Gobas model.

Karickhoff and Long (1995) did not review or recommend log Kow values for PCB congeners or mixtures.  De
Bruijn et al. (1989) reported log Kows for 19 PCB congeners that were measured using the slow-stirring
method.  They reported that increasing chlorination level is the primary determinant of log Kow of a given PCB
congener, but also noted that the patterns of chlorine substitution also contributed to a lesser extent to the log
Kow. 

In deriving guidance values for evaluating risk associated with PCB mixtures, a single trophic transfer factor of
3 was used to express the potential for trophic transfer of contaminants to upper level predators.  Assuming
equilibrium, use of this trophic transfer factor is more or less appropriate for PCB congeners with 4 to 6
chlorine atoms (i.e., log Kows 6.2 -7.1), but is overly conservative for less or more highly chlorinated congeners. 
For example, trophic transfer rates are estimated to be approximately 2.14 for congeners with three or seven
chlorines.

Hawker and Connell (1988) published log Kows for each of the 209 PCB congeners. This data can be used with
the Gobas model to estimate trophic transfer factors of individual congeners.  EPA Region 2 proposes to use
the log Kows reported by Hawker and Connell (1988) to better estimate trophic transfer of accumulated PCBs
in test organism tissues to upper level receptors. Specifically, reported concentrations of each congener will be
multiplied by a factor that reflects the difference of three and the trophic transfer factor for the specific
congener based on its log Kow.   An adjusted total PCB residue can then be calculated and considered against
the guidance values that were derived using a trophic transfer factor of three.  This approach will minimize the
uncertainty associated with estimating trophic transfer of this complex mixture of compounds.  

Similar adjustments will be applied in calculating and evaluating risks for mixtures (e.g. DDT, chlordane,
endosulfans) of compounds with differing log Kows and shared guidance values that were derived with
assumptions of uniform, worst-case trophic transfer.

ii.  Pathway of Concern
The Gobas model provided estimates of trophic transfer to benthic predators and upper level predators.  A
biomagnification factor >1 indicates a potential for higher concentrations in the predator than those found in
their prey.  Trophic transfer of contaminants in benthic invertebrates to upper level predators assumes that
upper level predators are exposed to those contaminants through consumption of benthic predators.

For purposes of this model, most fish are assumed to be upper level predators.  Therefore, their modeled
exposure reflects consumption of benthic predator organisms.  Certain fish, however, do not follow this
assumed trophic pathway and to a large extent feed directly on benthic organisms (e.g., winter flounder,



1Dissolved and particulate organic carbon concentrations for New York Bight water reported in
Farley et al. (1999), New York Bight dioxin water concentrations measured in New York Bight as part of
the Contaminant Assessment and Reduction Program (CARP) of the New York/New Jersey Harbor
Estuary Program (S. Litten, unpublished data), and dioxin and total organic carbon concentrations of
surficial sediments in and around the HARS (Battelle, 1996) were used as inputs to these equations.
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porgy(scup)). Trophic transfer of compounds with log Kows between 5.6 and 7.7 to these fish are predicted to
be #50 percent of the trophic transfer factor used in the evaluation (based on upper predator fishes).

iii.  Equilibrium State Assumption
Biomagnification (trophic transfer) factors that resulted from model runs that were conducted at equilibrium
conditions are used, and are proposed for continued use, to conservatively estimate the potential for
biomagnification of contaminants in upper trophic levels of the food web. 

At equilibrium, the model predicted that the greatest degree of biomagnification (i.e., 2- to 3-fold enrichment in
upper predator residues) would occur for compounds with log Kows between 5.6 and 7.5.  Incorporating an
assumption of disequilibrium, the model predicts a narrower range of highly biomagnifying compounds. At
disequilibrium, highly biomagnifying compounds are restricted to those compounds with log Kows between 6.4
and 7.5.  Compounds with log Kows below 4.4 and 5.9 (at equilibrium and disequilibrium, respectively) or above
8.0 (at all equilibrium states) were predicted to not biomagnify in upper level predators.  Model predictions for
trophic transfer to upper level predators from prey conducted at disequilibrium were not significantly affected
by the extent of disequilibrium assumed.

To date, the equilibrium state of sediment-sorbed contaminants at the HARS with the overlying water column
has not been specifically evaluated.  As noted above, this assumption regarding the equilibrium state has
important ramifications for modeling trophic transfer of chlorinated organic contaminants.  An estimate of the
relative equilibrium (disequilibrium) state of dioxin (2,3,7,8-TCDD) in surficial sediments in and around the
HARS was obtained using the equations in Burkhard (1998)1.  Calculated disequilibrium factors ranged from 9
to 230 (median of 33, n = 28), suggesting that surficial sediments in and around the HARS are in disequilibrium
with the overlying water column. 

In light of the above calculation, the use of trophic transfer factors predicted by the Gobas model at equilibrium
is conservative and likely to overestimate the potential for biomagnification of contaminants in upper trophic
level organisms.   Differences in equilibrium and disequilibrium model predictions are greatest for compounds
with log Kows lower than 5.3 (which includes 1,4-dichlorobenzene, endosulfans, heptachlor epoxied and
mono/dichlorinated biphenyls).  Predicted biomagnification for these compounds at equilibrium are at least an
order of magnitude higher than at disequilibrium.  Biomagnification of compounds with log Kows between 5.3
and 6.1 (which includes DDD, tri/tetrachlorinated biphenyls,and dieldrin) is predicted to be two to seven times
greater at equilibrium than at disequilibrium).  Biomagnification of compounds with log Kows above 6.1
(including penta- through decachlorinated biphenyls, chlordane, dioxin, DDT, and DDE) differ by 50% or less.

iv.  Lipid Weights Assigned to Food Web Organisms
As stated above, Burkhard (1995) found that the Gobas model is sensitive to lipid weights assigned to organisms
at the various trophic levels of the food web being modeled.  Estimated lipid concentrations for polychaetes
used in the model were within the range reported in Battelle (1996). Lipid concentrations for molluscs used in
the model were somewhat higher than that reported for N. proxima by McFarland et al. (1994) and those
reported for six other species in NYSDEC (1996).  Lipid concentrations used for individual upper level
predators were somewhat (approximately 50 percent) higher than those reported in NYSDEC (1996) and the
overall lipid weight assigned to the upper level predator trophic level was heavily influenced by the inclusion of
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adult bluefish.  Overestimates of prey and predator lipid concentrations have opposite effects on the trophic
transfer predicted by the model (i.e., lipid enrichment in predators, relative to prey, increases trophic transfer of
contaminants). 

Trophic transfer factors used in the current and proposed evaluation processes were derived on a lipid-
normalized basis.  Specifically, the trophic transfer factors relate the concentration of contaminant in the lipid of
predator to that in the lipid of their prey.  Trophic transfer factors, however, are being used in the current and
proposed evaluation processes to predict whole-body concentrations in predators.  The use of lipid-normalized
trophic transfer factors is only appropriate for relating whole-body concentrations when prey and predator lipid
contents are approximately equal.  When lipid contents of predator and prey are different, the trophic transfer
factors need to be adjusted accordingly.

Lipid concentrations reported for fish in NYSDEC (1996) show that most (13 of 19) species of fish caught in
the New York Bight have average lipid weights around or below 3.0 percent.  These 13 species are considered
to be adequately represented by the trophic transfer factors generated using the Gobas model (as run).  The
only fish having higher lipid contents were: larger bluefish ($30.5 cm) and striped bass ($45.7 cm), butterfish,
searobins, spot, and porgy.  These species are of secondary importance in the risk evaluation process given
their limited site usage and/or their contribution to the diet of recreational anglers (see discussions above). 

b.  Trophic Transfer of Polycyclic Aromatic Hydrocarbons (PAHs)
One of the primary limitations of the Gobas food web model is that trophic transfer of compounds that are
extensively metabolized cannot be accurately modeled.  Polycyclic aromatic hydrocarbons are readily
metabolized by many organisms, including many polychaetes, crustaceans and fish (see Varanasi, 1989 and
references therein).  

The current and proposed evaluation processes incorporate a 0.1 trophic transfer factor to reflect the inefficient
assimilation of PAHs by higher trophic levels.  This inefficient assimilation reflects the metabolism of PAH
compounds.  The value (0.1) equates to the average assimilation efficiency reported for finfish of 13 individual
parent and alkylated PAH compounds by various researchers, as summarized by Brown and Neff (1995). 
Individual efficiencies reported ranged from 0.01 to 0.32.   The median value was somewhat lower than 0.1
(i.e., 0.06). 

Overall, the trophic transfer factor used for PAHs is judged to introduce little uncertainty into the HARS
evaluation process.  

c.  Trophic Transfer of Metals
The current process for evaluating suitability of dredged material for use as Remediation Material assumes that
residues of cationic metals in predator species will be equivalent to the residues of cationic metals in prey.  This
assumption was based on the results of a survey of available literature published by Suedel et al. (1994). A
biomagnification factor (or trophic transfer factor) of one is used to reflect this assumption.   

EPA Region 2 also conducted a review of available peer-reviewed literature regarding the potential for dietary
transfer of metals to finfish from contaminated benthic invertebrate prey.  This review concluded that the
assumption of a trophic transfer of one is an overly conservative estimate of this parameter for many metals.
Alternate trophic transfer factors were derived for four cationic metals (copper, cadmium, lead, and zinc) and
arsenic. 

Much of the early work that examined the importance of the dietary pathway for transfer of metals to fish in
metals-contaminated systems focused on the relative concentrations of metals in fish and prey collected from
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within the same system or area (e.g., Metayer et al. 1980, Dallinger and Kautzky 1985, and references in Table
1).   These field studies suggested that dietary transfer of metals from prey could significantly contribute to fish
body burdens of metals in fish and in certain exposure situations could be of greater importance than absorption
from the water. Results of certain field studies, however, were inconclusive (see Metayer et al. 1980, and
Dallinger and Kautzky 1985).  Field-derived ratios suggested that the transfer of metals to fish from prey, was
generally inefficient (i.e., ratios of consumer/prey concentrations tended to be less than one).  Suedel et al.
(1994) reviewed available data in efforts to assess the potential for trophic transfer of metals in aquatic
foodwebs (Table 1).  Based on this data, they concluded that trophic transfer of metals to fish should not
generally be described as biomagnification and noted that “concentrations of most metals were often higher in
tissues of producers and primary consumers...than carnivorous fish.”

Trophic transfer ratios of less than 1 are consistent with the findings of Reinfelder et al. (1998).  Using the
kinetic model approach, they concluded that trophic transfer of cationic metals (although only cadmium was
specifically modeled in that paper) to fish is expected to be less than one.

Since publication of Suedel et al. (1994), the potential for trophic transfer of metals has been increasingly
investigated in the laboratory under controlled conditions.  Laboratory studies have been conducted with
commercial feeds or live prey (e.g., Artemia) that were contaminated with known amounts of metals in the
laboratory and fed to fish (e.g., Handy et al. 1992;  Cockell and Hilton 1988; Hatakeyama and Yasuno 1982;
Kumada et al.  1973; Mount et al.  1994; ) or with benthic organisms that were collected from the field from
areas known to be contaminated by metals and fed to fish (Woodward et al. 1994, 1995; Farag et al. 1994,
1999).  Results of these studies are summarized in Table 2. 

In laboratory studies, body burdens of copper in fish ranged from 0 to 20.6 percent (n = 28, ave. 4.6 percent,
median 2.1 percent) of the dietary copper concentration to which the fish were exposed.  Body burdens of
cadmium in fish ranged from 0 to 25 percent2 (n = 31, ave. 6.6 percent, median 5.0 percent) of the dietary
cadmium concentration to which the fish were exposed.  Body burdens of lead in fish ranged from 0 to 22.7
percent3 (n = 19, ave. 5.5 percent, median 3.9 percent) of the dietary lead concentration to which the fish were
exposed.  Body burdens of zinc in fish ranged from 0 to 89.9 percent (n = 16, ave. 18.4 percent, median 11.4
percent) of the dietary zinc concentration to which the fish were exposed.  Body burdens of arsenic in fish
ranged from 0 to 29.7 percent (n = 37, ave. 8.6 percent, median 6.1 percent) of the dietary arsenic
concentration to which the fish were exposed.  

Farag et al. (2000) showed that the degree of association of the metal with organic compounds (proteins) within
prey significantly effects the efficiency of trophic transfer of metals to fish (i.e., increased covalent bonding and
complexation of metals enhances the bioavailability of metals to fish consumers).  Harrison and Curtis (1992)
demonstrated that uptake of cadmium is higher from natural diets raised in contaminated environments than
from cadmium-contaminated commercial feeds.  Farag et al. (2000) also demonstrated that metals in
laboratory-dosed and field-collected invertebrates are processed differently by fish consumers during digestion
and metals in laboratory-dosed prey are less available to fish.  Therefore, results of studies that are conducted
using contaminated feeds or laboratory-contaminated prey differ significantly from those of studies using natural
prey and may underestimate the potential for trophic transfer of metals to fish.  

In light of the above considerations, studies such as those conducted by Farag et al. (1994, 1999) and
Woodward et al. (1994,1995), that used field-collected and contaminated prey were deemed to be the most
relevant and appropriate studies for use in deriving a conservative estimate of trophic transfer potential of
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metals to fish from benthic invertebrate prey. Table 3 lists results of those studies in which field-collected
contaminated prey was used to estimate trophic transfer.

The maximum trophic transfer values reported for these compounds in studies using field-collected and
contaminated prey are proposed as conservative estimates of the potential for trophic transfer of metals to fish
from benthic invertebrates exposed to dredged material for use in interpreting the results of 28 day laboratory
bioaccumulation tests.  These factors are:

Copper: 0.21 ([Cu]fish/[Cu]prey) 4.76 ([Cu]prey/[Cu]fish)
Cadmium: 0.25 ([Cd]fish/[Cd]prey)  4.00 ([Cd]prey/[Cd]fish)
Lead: 0.23 ([Pb]fish/[Pb]prey)  4.35 ([Pb]prey/[Pb]fish)
Zinc: 0.24 ([Zn]fish/[Zn]prey)  4.17 ([Zn]prey/[Zn]fish)
Arsenic: 0.25 ([As]fish/[As]prey)  4.00 ([As]prey/[As]fish)

While these factors are less conservative than the factor of one that is used in the current evaluation process,
they still reflect the results of these studies in a conservative manner.  Median trophic transfer factors reported
in these studies for copper, cadmium, lead and arsenic ranged from 0.06 to 0.12 (median factor for zinc was
0.21 ).  Because it is impossible to assess how the availability of metals in the prey species used in these studies
(e.g., caddisfly and stonefly larvae) relates to availability in dominant prey species at the HARS (i.e.,
polychaetes and amphipods) and how uptake by trout may differ from fish species at the HARS, EPA Region 2
believes that the conservative interpretation of this data set is reasonable.

Overall, the proposed trophic transfer factors for these five metals are judged to reduce uncertainty in the
HARS evaluation process, relative to the current factors used.  It is also judged that the continued use of a
trophic transfer of 1.0 for the other cationic metals (i.e., silver, chromium, nickel) may overestimate actual
trophic transfer of these metals by a similar margin (approximately 4X). 

d.  Trophic Transfer of Mercury
In general, the potential biomagnification of mercury depends on the form that is present in the environment. 
Concentrations of the inorganic forms of mercury in marine animal tissues tend to decrease with increasing
trophic level.  In contrast, methylmercury is highly bioavailable and tends to biomagnify in marine food webs.
There is evidence to indicate that the biomagnification of methylmercury resembles that of hydrophobic trace
pollutants such as PCBs (Cabana et al., 1994; Mason et al., 1995).  Trophic transfer values reported in the
literature for mercury vary widely, ranging from 0.2 to 6.8 for total mercury and 0.2 to 141 for methyl mercury
(Suedel et al., 1994).  However, the majority of the values greater than 2 have been reported for large, long-
lived, carnivorous fish and do not account for the effects of increased exposure of these upper trophic level
species.  As discussed by Huckabee et al. (1979), factors such as longevity, growth
rates, uptake, and depuration among species at different trophic levels may have as much impact on observed
mercury concentrations as food chain transfers.

The current evaluation incorporates a trophic transfer factor of 1.95 based on an evaluation conducted by
Cabana et al. (1994).  This study was designed to account for potential artifacts such as differences in
longevity, growth rates, uptake and depuration rates among species of different trophic levels, and thus focused
on individuals from a single species (i.e., lake trout) exposed via food chains of varying lengths.  The value of
1.95 represents the average trophic transfer observed per trophic level. This trophic transfer factor (i.e., 1.95) is
proposed for continued use in the HARS framework. 

Given the wide range of values reported for this compound and the associated confounding factors, it is difficult
to estimate the uncertainty associated with the selected value.  However, EPA Region 2 believes that the
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selected value represents an appropriately conservative estimate. The evaluation estimates the transfer of
contaminants from fish to benthic invertebrates,
thus representing species foraging at lower trophic levels.  The selected trophic transfer factor represents the
upper end of values reported for transfers among species feeding at this level.

III.  RISK CHARACTERIZATION (EFFECT)
An important facet of the method and use of risk assessment concerns the recognition of uncertainties and
limitations inherent in the process which arise in connection with the use of dose-response models (or linked
residue-effect observations) to develop values associated with a relative potential for adverse effects of
contaminants.  In human health risk assessment there is uncertainty associated with animal to human
extrapolation, while across species extrapolation is an area of uncertainty associated with assessing ecological
risk.  The transport and fate of contaminants in compartments of the food web (or within the body) and the
potential for interactions between contaminants are areas of uncertainty shared by both ecological and human
health risk assessment.   These areas of uncertainty are qualitatively discussed below.

A.  Human Health
1.  Reference Doses and Hazard Quotient Estimates
Significant uncertainty is associated with the evaluation of noncarcinogenic effects of chemicals in the
environment.  Primary sources of uncertainty include the derivation and use of chemical specific toxicity values
and the limitations inherent in the hazard index (HI) methodology, such as the assumption of additivity for
multiple chemical exposure and the inability of the Hazard Quotient (HQ; i.e., chronic daily intake/RfD) to
predict the likelihood of adverse effects occurring at doses above the RfD.

Toxicity values based on human epidemiological studies are not available for most chemicals, and in general
human studies suffer from poorly characterized exposure data and any number of potential confounding factors,
including concomitant exposure to multiple chemicals, recall bias, and lifestyle effects. Therefore, for many
chemicals, data from studies of laboratory animals provide the basis for toxicity values.  The practice of
extrapolating effects observed in experimental animals to predict human toxic response to chemicals is a major
source of uncertainty in risk assessment (EPA, 1989).

RfDs are generally developed by dividing NOAELs from animal studies by "safety factors," to adjust for
uncertainties in the physiological differences between humans and laboratory animals, variation in sensitivity
among individuals of human subpopulations, and differences between subchronic and chronic exposures. These
safety factors are typically set at 10X to account for kinetic and dynamic differences within and between
species.  Thus, when all three factors are combined, the resultant safety factor is equal to 1,000 (10 x 10 x 10)
(Barnes and Dourson, 1988).

However, analysis of toxicological data indicate that a value less than ten for an individual safety factor may be
adequate, depending on the relative magnitude of uncertainty associated with the critical study. For example,
Lewis et al. (1990) reviewed the data from eighteen laboratory animal studies and found that the average
difference between NOAELs based on subchronic exposures and NOAELs based on chronic exposures was a
factor of 3.5 or less, not the default value of 10 that is typically applied. Similarly, a factor of 1 for extrapolation
from laboratory animals to humans is appropriate if there are adequate data which indicate a likelihood that the
test species is significantly more sensitive to the chemical-specific effect than humans.

In cases when the RfD is based on a study which reports a LOAEL but does not report a NOAEL, an
additional safety factor is generally applied to the LOAEL to derive an estimated NOAEL.  This safety factor
may range from 1 to 10, depending upon the study and the severity of the effects observed.  When Dourson
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and Starra (1983) compared LOAELs and NOAELs from a variety of studies that reported both, they found
that 96 percent of those studies had LOAEL:NOAEL ratios of 5:1 or less.  Based on their evaluation, Dourson
and Starra (1983) concluded that a safety factor in the range of 1 to 10 is supportable for extrapolating from a
LOAEL to a NOAEL.  In addition, Dourson and Starra (1983) suggested that the severity of the effect is a
critical determinant in establishing a LOAEL to NOAEL safety factor.  For example, for liver necrosis, a
relatively severe effect, a relatively high value (i.e., 10) was suggested.  However, for a less severe effect,
such as fatty infiltration of the liver, which results in increased liver weight, a factor of 3 was suggested
(Dourson and Starra, 1983).

There is regulatory precedent for use of safety factors totaling less than 1,000.  In calculating an RfD for 2,4-
dichlorophenol, EPA applied an uncertainty (or safety) factor of 100 to the value reported as a NOAEL to
account for extrapolation from animal data to humans and for protection of sensitive populations.  In deriving
the RfD for Aroclor 1254, the EPA applied a safety factor of 300 to the LOAEL observed in the critical study. 
EPA justified the safety factor of 300 by reasoning that: a 10-fold factor for interspecies was unnecessary due
to similarities between humans and monkeys; only a "partial factor" was needed to account for use of a
LOAEL because the effect (nail bed changes) was not considered serious; and a "reduced" factor for
extrapolation from subchronic to chronic exposure was adequate because the critical effects did not appear to
be dependent upon the duration of the study.  Thus, the uncertainty factor of 300 applied by EPA in this case
was significantly lower than the safety factor of 10,000 which would have resulted if four individual uncertainty
factors of 10 had been combined.

In conclusion, many conservative assumptions are used to account for various sources of uncertainty associated
with the evaluation of noncarcinogenic effects.  One example of this conservatism and the health-protective
nature of HIs calculated in this assessment is the use of multiple safety factors in the derivation of the RfD. 
Typically, a safety factor of 1,000 is applied to the NOAEL in deriving an RfD; however, the EPA has applied
combined safety factors as low as 100.  Therefore, use of a safety factor of 1,000 may be overly conservative
for some chemicals by a factor of ten or more (Lewis et al., 1990).

2.  Cancer Slope Factor and Risk Estimates
In establishing slope factors, regulatory agencies implement methods that introduce multiple sources of
uncertainty that ultimately increase the overall conservatism inherent to the cancer risk estimates.  Major
uncertainties exist in the extrapolation from animals to humans and from high doses to low doses (51 FR
185:33992-34003, September 24, 1986).  For example, species differ substantially in their uptake, metabolism,
organ distribution, and target-site susceptibility of carcinogens.  While laboratory animals are exposed to
controlled concentrations at extremely high doses, humans are typically exposed to lower environmental levels
(Crump et al., 1989).  In addition, the potency of a chemical is influenced by the size and lifespan of the species
experimentally exposed.  This has important implications due to the long latency period of many carcinogenic
responses.  An individual's susceptibility to a carcinogenic compound is also influenced by the variability that
exists within human populations.  Variables include genetic constitution, diet, occupational and home
environments, activity patterns, and other cultural factors (51 CFR 185:33992-34003, September 24, 1986).

To compensate for these various sources of uncertainty in the dose response assessment, conservatism is
incorporated into the derivation of the slope factor.  The slope factor represents the upper 95th percent
confidence limit on the probability of a carcinogenic response per unit intake of a chemical over a lifetime
(EPA, 1989c).  In other words, there is only a five percent chance that the probability of a response would be
greater than the estimated value.  Therefore, slope factors are likely to overestimate the actual potency of a
carcinogen.  The accuracy of risk estimates, associated with low doses, predicted by the LMS model is
unknown, but may in fact be zero (EPA, 1986).
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3.  Additivity of Risk and Hazard
A high level of uncertainty is also associated with exposures to multiple chemicals.  For evaluation of
cumulative effects from exposure to multiple chemicals, EPA (1989) recommends that risks be summed across
chemicals for each exposure pathway.  However EPA risk assessment guidance also recommends that dose
additivity for non-carcinogens be performed for only those chemicals that share a similar mode-of-action and/or
toxic endpoint. Accordingly, this approach was employed.  It is acknowledged that such an approach may not
account for synergistic or antagonistic effects, but is considered appropriate for screening levels analyses (EPA,
1992). 

In the absence of chemical-specific toxicity information and consistent with EPA (1989, 1993, 1994) interim
guidance and practice, relative toxicity schemes were employed for evaluating additive risks associated with
exposure to, or by combined action of, PCDD/PCDFs, PAHs, and coplanar PCBs (EPA, 1989, 1993, 1994). As
described by EPA (1989), there is significant uncertainty associated with the use of relative toxicity values, such
as TEFs.  These uncertainties are the focus of a number of current research programs. 

B.  Ecological Effects (Linked Residue-Effect Data)
Interpretation of risks to ecological receptors associated with accumulated contaminants is an area of ongoing
study and debate in the scientific and risk assessment communities.  Historically, scientists have focused on
measuring contaminant concentrations in an external medium (e.g. sediment and water) to interpret risks to
ecological receptors (e.g. Veith et al., 1979).  The current HARS guidelines for evaluating the potential for
ecological effects of many contaminants were estimated from concentrations in an external medium (i.e.
USEPA Water Quality Criteria).
 
Current residue guidelines for several compounds (aldrin, dieldrin, total chlordane, total endosulfans, 1,4-
dichlorobenzene, arsenic, chromium, copper, lead, nickel, silver, zinc) were estimated from chronic marine water
quality criteria using a single bioconcentration factor selected from the scientific literature.  The residue
guideline that is approximated by this method is entirely dependant on the selected bioconcentration factor. 
Bioconcentration factors for specific compounds vary extensively among different species, within taxonomic
groups, and under different environmental conditions.  As a result, significant uncertainty exists in the scientific
community regarding the use of bioconcentration factors as the sole means of developing residue guidelines
(Franke, 1996; Chapman et al., 1996). 

The proposed process for evaluating dredged material evaluates risks to ecological receptors by comparing
measured residues to guidelines developed using tissue residues of individual contaminants that were associated
with adverse effects to exposed organisms (‘linked residue-effect data’) in the scientific literature.  Studies in
which residues were measured in organisms adversely affected by exposure to environmental contaminants
offer correlative data without the confounding problem of estimating residues from external concentrations. 
Therefore, the use of ‘linked residue-effect’ data for interpreting risks to ecological receptors is deemed to be
(at least conceptually) less uncertain than the current approach.  Areas of uncertainty associated with the
current and proposed methods for deriving guidelines for evaluating the potential for ecological effects are
qualitatively discussed below.

1.  Relating Contaminant Residue Concentrations and Probabilities for Adverse Effect
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Using specific tissue residues as guidelines for assessing ecological risk assumes that there is a critical body
residue above which the potential for effects materializes. Furthermore, the use of specific tissue residues as
guidelines assumes that the probability for ecological effects increases with increasing tissue concentration
beyond the critical body residue.  The critical body residue assumption relies on a relatively constant body
burden threshold for effects regardless of differences in exposure conditions.  This criterion, however, does not
hold true in many cases. Exposure conditions and experimental design (sampling) often alter the body burden at
which lethality, or other adverse effects, occurs (or is measured).  Factors affecting estimates of the critical
body residue include:

• Salinity, temperature, hardness, pH, and other water quality parameters;
• Presence vs. absence of sediment during exposure;
• Medium/pathway to (by) which organisms are exposed to a contaminant;
• Duration of exposure;
• Rate of contaminant uptake by organism;
• Differences in the whole body residue vs. residue at specific target organs;
• Changes in toxicity due to physiological state (can be seasonal or lifecycle related);
• Feeding/non-feeding during exposure;
• Specific compound used in exposure (e.g. metal salts or speciation);
• Ages of test organisms used;
• Action associated with unmeasured metabolites rather than parent compound. 

Additional areas of uncertainty that must be recognized are: 1) the absence of multi-generational effects data in
many cases; 2) the possibility for unmeasured adverse effects; 3) differences between body residues measured
in surviving and dead organisms within the same treatment; and 4) the potential for differences in critical body
residues between species.

It is important to emphasize, however, that most of the areas of uncertainty outlined above are attendant to
using residues to predict effect and are independent of the method that is used to develop residue guidelines for
evaluating risk.   The associated areas of uncertainty outlined above cannot easily be quantitatively considered. 

2.  ‘Linked Residue-Effect’ Guidelines
Proposed guidelines for evaluating ecological risk would be based on published ‘linked residue-effect’ data and
presented as ranges of relative concern.  ‘Linked residue-effect’ data will be interpreted in an environmentally-
conservative manner to develop relative concern ranges.  The lower of the two numbers in the range will
represent the lowest residue associated with effects that has been published in the scientific literature.  As such,
it will only reflect the specific conditions of exposure and design of that particular experiment.  Therefore, it
would be most appropriately applied as a screening guideline.  The higher of the two numbers assigned to the
ecological guideline range would reflect residues at which adverse effects have been exhibited in multiple
taxonomic groups or by multiple exposure modes.   Therefore, as the high end of the range is approached by
test tissue residues, the potential for adverse impacts in a variety of species or taxonomic groups will be judged
to increase correspondingly.

‘Linked residue-effect’- based guidelines will be derived for contaminants that exert their toxicity through
narcosis and for contaminants (or contaminant classes) that have specific modes of toxic action.  The critical
body residue concept is generally accepted by toxicologists for assessing risk of narcotic contaminants.  The
propriety of this assumption for developing guidelines for contaminants with specific modes of toxic action is
less accepted and is currently the subject of much debate in the scientific community (McCarty and MacKay,



A-298

1993; Deneer et al. 1999).  Therefore, areas of uncertainty associated with linked residue-effect guidelines for
contaminants with narcotic and specific modes of action are discussed below separately.
 
a.  Narcosis
Narcosis is a sublethal effect characterized as a disruption of cell membrane function resulting from binding of
organic contaminants to elements in the lipid bilayer.  Narcosis causes progressive lethargy, unconsciousness,
and (eventually) death in the affected organism.  Critical body residues associated with narcosis have typically
been reported to vary within an order of magnitude (Chaisuksant et al. 1999).  

Despite certain limitations in the application of the critical body residue model for evaluating narcotic potential,
use of this approach is generally accepted for non-polar, narcotic compounds.  As such, the ensuing discussion
of uncertainty will be limited to the residue guideline levels (and the assumptions made in their derivation) that
are specifically identified in the current and proposed processes for evaluating the suitability of dredged material
for use as Remediation Material at the HARS.

The current process for evaluating the potential for narcosis differs fundamentally from the proposed evaluation
process in two regards.  First, the current process for evaluating bioaccumulation test results considers  the total
mass of only the 16 parent PAHs accumulated by organisms to evaluate the potential for narcotic effects. 
Narcosis is described as a “baseline” mode of action that is shared by all nonpolar organics (Chaisuksant et al.
1999), including those that exert toxic effects through specific modes of action at significantly lower residue
levels (Chaisuksant et al., 1999; McCarty and MacKay 1993;  V. McFarland (USACE-Waterways Experiment
Station), pers. comm.; S. Kane-Driscoll (Menzie-Cura Assoc.) pers. comm.; B. Brownawell (State University
of New York at Stony Brook) pers. comm.; P. Landrum (NOAA), pers. comm.).  Therefore, limiting
consideration of the potential for narcosis to the total mass of the 16 parent PAHs underestimates the true
narcotic dose represented by organic contaminants accumulated from the dredged material.  As a result, the
proposed process for evaluating the narcotic potential of accumulated contaminants will include the contribution
of all organic contaminants that are analyzed.  This approach more accurately reflects the potential for narcosis
from the measured analytes (see below).  There is remaining uncertainty with respect to the potential
contribution of unmeasured contaminants to the total narcotic dose.

Second, the potential for narcosis is determined in the current process by comparing total PAH mass in test
organism tissues to a critical body residue of 0.2 mmol/Kg.  The 0.2 mmol/Kg used in the current process was
estimated for chronic lethality from the low end of acute critical body residues typically associated with lethality
(2 mmol/Kg) (McCarty, 1991).  The range of narcotic critical body residues associated with acute lethality in
McCarty (1991) has been supported by other researchers using a variety of aquatic organisms.  However, the
order of magnitude lower residues for chronic lethality were estimated by McCarty (1991) without empirical
support.  This estimate was based on ratios of acute and chronic effective external concentrations (e.g., water
contaminant concentrations) (McCarty and MacKay, 1993).  To address this issue, revised estimates of critical
body residues for evaluating narcotic potential are proposed for use in evaluating dredged material.  These
estimates were derived based on a review of published data that relates narcotic contaminant load and
incidence of effects.  Guidelines developed based on these data would be protective of sublethal, chronic
effects.

Based on the review of published data, acute narcotic effects were reported in the literature at levels below the
range reported by McCarty (1991).  van Wezel et al. (1995a) reported lethal residues of dihalogenated
benzenes as low as 0.3 to 0.6 mmol/kg in two age classes of rainbow trout (Oncorhynchus mykiss).  Fay et al.
(in press) reported a lethal residue of a tetrachlorinated PCB of 0.57 mmol/kg in the amphipod, Ampelisca
abdita.  Narcotic residues associated with acute sublethal effects below the acute residue range of McCarty
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(1991) were also reported.  Decreased feeding was associated with PAH residues of 0.08-0.14 mmol/kg in
mussels (Donkin et al. 1989) and 0.2 mmol/kg in benthic copepods (Lotufo, 1998).   

Chronic narcotic effects in the literature were also reported at residues below the chronic range of critical body
residues estimated by McCarty (1991).  Reduced reproduction in fathead minnows was associated with an
anthracene residue of 0.1 mmol/kg (Hall and Oris, 1991).  Reduced growth, feeding, and survival was reported
in bluegill to occur at PAH residues of 0.05-0.14 mmol/kg (Finger et al. 1985).

Data reported by van Wezel et al. (1995b) and Pawlisz and Peters (1995) suggest that critical body residue and
length of exposure are not easily related.  Therefore, estimating chronic residue guidelines from acute residue
data is not well-advised despite the suggestion of an order of magnitude adjustment by McCarty (1991).  It is
noted, however, that had chronic critical body residues been estimated as 0.1 times reported acute residues, the
chronic critical body residues associated with lethality would be equal to or greater than 0.03 mmol/kg.  

Emery and Dillon (1996) reported a very low body burden (i.e. 0.0044 µmol/g) associated with decreased
reproduction of the marine worm, Neanthes arenaceodentata, after chronic exposure to a neutral narcotic
organic contaminant (i.e. the PAH, phenanthrene).  In that study, the authors speculated that other modes of
action may have been contributors to the observed effect.  Although evidence to support this conclusion that
toxicity was not the result of narcosis was not provided by the authors, it is clear from review of the scientific
literature regarding narcosis that the reported residue could not have been associated with a narcotic response.
In addition, because this study included only a single treatment, dose-dependency of the response could not be
confirmed (nor rejected).  

In light of the results of the data review outlined above, a critical body residue range for chronic, sublethal
effects due to narcosis is proposed as 0.05 - 0.1 mmol/kg.

b.  Non-narcosis
As stated above, using the critical body residue approach to derive residue guidelines for evaluating
contaminants with specific modes of toxic action is less certain than for evaluating the potential for narcotic
effects.   Areas of uncertainty that limit the predictability of effects based on residue levels (discussed above)
are not easily addressed quantitatively.  EPA Region 2 will maximize the utility of the linked residue-effect data
by employing several assumptions.  Using these assumptions significantly affects the magnitude of the guidance
levels that will ultimately be derived from this data.  Uncertainty associated with these assumptions is
qualitatively discussed below.

c.  Endpoints   Guidelines derived from linked residue-effect data by EPA Region 2 will be limited to reported
effects on growth, reproduction, or survival.  While the ecological relevance of these endpoints is clear, other
sublethal effects of contaminants could also impair the fitness of exposed organisms.  For example, the ability to
withstand anoxia was decreased in mussels exposed to cadmium or PCBs (Veldhuizen-Tsoerkan et al.,
1991),and  prey capture and predator avoidance rates were decreased in fish exposed to fluorene (Finger et al.,
1985).  Subtle impacts to organism fitness may not be manifested or measured in the duration or controlled
design of experiments, despite their potentially important ecological significance in the field.  Therefore, relying
on linked residue-effect data associated with reduced growth, reproduction or survival during the conduct of the
experiment introduces uncertainty into the guidelines that could contribute to potentially underestimating the
actual risk associated with contaminant residues. 

d.  Mode of Exposure    The medium (water, diet, sediment) by which organisms are exposed to contaminants
varies from study to study.  Most of the linked residue-effect data that has been published to date has been
attained in studies that exposed organisms to contaminants in water.  However, this method of exposing
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organisms may underestimate whole body residues that are associated with adverse effects.  For example,
adverse effects (e.g., lowered survival) may result from elevated concentrations at sites of exposure (e.g., gill)
that may not be in equilibrium with the remainder of the body.  In most cases, EPA Region 2 will not
differentiate between residues resulting from different exposure pathways for the purpose of this evaluation. As
a result, those guidelines that rely on water exposures may potentially overestimate risk associated with
contaminant residues for those species which are not primarily exposed via uptake from the water.

e.  Using ER50 (Median Effective Residue) as Threshold for Significant Effect    EPA Region 2 proposes to
derive guidelines for evaluating ecological risk using the lowest ER50 (residue associated with 50% reduction in
growth, reproduction, or survival or associated with adverse effects in 50% of exposed individuals) reported in
individual studies to express effects. The 50% level has historically been used in environmental regulation (e.g.
USEPA Water Quality Criteria).  Its use, however, introduces uncertainty regarding the magnitude of impact
necessary to result in environmental consequences at the population level. Data that are necessary to support
the models needed to answer this question are not available for populations at the HARS.  Furthermore, linked
residue-effect data is available for only a limited number of species that occur at the HARS and the
interspecific differences in sensitivities cannot easily be assessed.

Overall, EPA Region 2 believes that the use of ER50s (as opposed to lower effect levels) reported in individual
studies will not significantly affect the overall guidance levels derived for evaluating ecological risks.  In most
cases, using alternate effect residue levels within individual studies would only slightly change the estimated
effective concentration assigned to that individual study.  Ranges of effective (and non-effective) residues
reported in the linked residue-effect literature spans several orders of magnitudes for almost every contaminant. 
Because of this range, and because the lowest reported ER50 within a taxonomic group would be used as the
screening concentration for effects in that group, the use of alternate effect residue levels would result in a very
modest difference.

Overall, the use of ER50s is judged to be a somewhat non-conservative interpretation of individual study results. 
However, in light of the overall conservative approach that is proposed  to derive guidance levels for evaluating
ecological risk, their use is deemed to introduce only a small degree of uncertainty. It must be noted, that the
method that is proposed to estimate ER50s for individual studies will often be extremely conservative. 
Specifically, when the magnitude of effect associated with specific residues is not reported in the data base
(Jarvinen and Ankley, 1999), the magnitude of effect will be assumed to be 100%.  Similarly, when non-
effective residue concentrations are not reported they will be assumed to be zero (0).   

f.  Interspecific Differences in Sensitivities  Species vary in their relative sensitivities to environmental
contaminants.  The confidence by which guidelines based on linked residue-effect data can be used to evaluate
ecological risk is dependant on the number of species that are represented by the available data.  For certain
contaminants (e.g. chromium, silver), few linked residue-effect observations are reported in the literature.  EPA
Region 2 will derive guidelines based on available data, even when interspecific representation is lean. It is not
possible to quantify how well the species for which data is available represents those species occurring in the
field. 

EPA Region 2 will assume that the sensitivities of species within a taxonomic group (i.e., molluscs, infaunal
worms, crustaceans, and finfish) are more comparable than the sensitivities of species in different taxonomic
groups.  The lowest reported residue associated with effects in an individual taxonomic group will be used as a
screening concentration for effects in organisms within that group.  As stated above, the appropriateness of
using the lowest reported residue as a screen is a function of the number of species that are represented by
non-effective or lowest observed effect residue concentrations above the selected residue level.
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EPA Region 2 proposes to use the assumption of greater differences in contaminant sensitivity between
taxonomic groups to assign ranges of relative concern for evaluating ecological risks associated with
accumulated contaminants.  The lowest overall effective residue associated with effects across all species (and
therefore all taxonomic groups) is proposed for use as a screening level for interpreting overall ecological risk.
Risk to ecological receptors will be concluded to be minimal when residues are below these screening levels. 
Ecological risk associated with test organism residues above the overall ecological screening levels will be
evaluated on a case by case basis. EPA Region 2 proposes to conclude that there is additional (unacceptable)
ecological concern when a contaminant residue in test organism tissue exceeds the screening residue levels for
more than one taxonomic group.  An example of overall relative concern residue ranges that are proposed to be
developed for individual contaminants is presented for PCBs:

Contaminant Ecological
Screen Residuea

Taxonomic
group, Exposure,
Effectb

Higher Concern
(multiple taxonomic
group) Residuea

Taxonomic group,
Exposure, Effectb

total PCBs 0.329 F, C, S 0.630 W, C, SL
a Residues are in ug/g, wet weight. 
b Taxonomic group (M=mollusc, W=infaunal worm, C=crustacean, F=fish), exposure (D=diet, W=water, S=sediment,

C=combined), endpoint (S=survival, G=growth, R=reproduction, SL=other sublethal effect)
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Table 1.  Trophic Transfer of Metals to Fish Reported by Suedel et al. (1994)

Arsenic Species Common Name SW/FW Field/Lab TTC Reference
Hexanchus griseus shark SW field 20.9 LeBlanc and Jackson (1973)
Hexanchus griseus shark SW field 10 LeBlanc and Jackson (1973)
Hexagrammos spp greenling SW field 0.3 LeBlanc and Jackson (1973)
Hydrolagus colliei ratfish SW field 15.2 LeBlanc and Jackson (1973)
Diaphus dumerili headlightfish SW field 0.1 Leatherland et al. (1973)
Carassius auratus goldfish FW laboratory 0.2 Maeda et al. 1990

Cadmium Species Common Name SW/FW Field/Lab TTC Reference
omnivorous fish FW field 1.1 Ward et al. (1986)

Diaphus dumerili headlightfish SW field 0.1 Leatherland et al. (1973)

Chromium Species Common Name SW/FW Field/Lab TTC Reference
Carpiodes cyprinus quillback FW field 0.03 Mathis and Cummings (1973)
M. dolomieu smallmouth bass FW field 0.5 Mathis and Cummings (1973)

postlarval fish SW laboratory 0.1 Baptist and Lewis (1969)
Fundulus hetroclitus mummichog SW laboratory 1.6 Baptist and Lewis (1969)

Copper Species Common Name SW/FW Field/Lab TTC Reference
Carpiodes cyprinus quillback FW field 0.02 Mathis and Cummings (1973)
M. dolomieu smallmouth bass FW field 0.7 Mathis and Cummings (1973)
Pleuronectes
platessa

plaice SW laboratory 0.5 Saward et al. (1975)

Lead Species Common Name SW/FW Field/Lab TTC Reference
Etheostoma
flabellare

fantail darter FW field 0.3 Enk and Mathis (1977)

M. dolomieu smallmouth bass FW field 0.9 Enk and Mathis (1977)
Carpiodes cyprinus quillback FW field 0.1 Mathis and Cummings (1973)
M. dolomieu smallmouth bass FW field 0.9 Mathis and Cummings (1973)

omnivorous fish SW field 2.6 Ward et al. (1986)
Helotes sexlineatus trumpeter SW field 0.4 Ward et al. (1986)
Platichthyes flesus flounder SW field 0.7 Hardisty et al. (1974)

Nickel Species Common Name SW/FW Field/Lab TTC Reference
Carpiodes cyprinus quillback FW field 0.03 Mathis and Cummings (1973)
M. dolomieu smallmouth bass FW field 0.7 Mathis and Cummings (1973)
Oncorhynchus
mykiss

rainbow trout FW field 0.01 Dallinger and Kautzky (1985)

M. dolomieu smallmouth bass FW field 1.6 Wren et al. (1983)
Salvelinus
namaycush

lake trout FW field 1 Wren et al. (1983)

Zinc Species Common Name SW/FW Field/Lab TTC Reference
Carpiodes cyprinus quillback FW field 0.06 Mathis and Cummings (1973)
M. dolomieu smallmouth bass FW field 1 Mathis and Cummings (1973)
Gobius spp omnivorous fish SW field 0.1 Ward et al. (1986)
Helotes sexlineatus trumpeter SW field 0.4 Ward et al. (1986)
Platichthyes flesus flounder SW field 1.4 Hardisty et al. (1974)
Diaphus dumerili headlightfish SW field 0.1 Leatherland et al. (1973)

postlarval fish SW laboratory 0.68 Baptist and Lewis (1969)
Fundulus hetroclitus mummichog SW laboratory 0.11 Baptist and Lewis (1969)
L. xanthurus spot SW laboratory 0.17 Willis and Sunda (1984)
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Table 2.  Trophic transfer of metals to fish from contaminated prey/food.

Concentrations

Species Metal Diet Initial
Control

Final TTC (%) Reference Notes

Copper
R.trout Copper 110 2.9 4.6 1.55 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 140 2.9 4.7 1.29 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 200 2.9 4.4 0.75 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 250 2.9 5.9 1.20 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 440 5.7 19.6 3.16 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 830 5.7 22.4 2.01 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 1000 5.7 27.7 2.20 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 55 2.9 3.4 0.91 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 110 2.9 5.1 2.00 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 200 2.9 6.4 1.75 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 340 2.9 7.1 1.24 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 320 2.9 8.8 1.84 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Copper 200 5.75 17 5.63 Handy 1992 32 d, feed, no depuration
R.trout Copper 200 5.75 5.5 0.00 Handy 1992 32 d, feed, w/ 12 d depuration
B.trout Copper 87 8.5 11.5 3.45 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Copper 178 6 26 11.24 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Copper 174 7.5 34 15.23 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
R.trout Copper 381 6.25 33.5 7.15 Woodward et al. 1994 91d, collected, dead, starved 24h before

analysis
R.trout Copper 14 6.25 3.5 0.00 Woodward et al. 1994 91d, collected, dead, starved 24h before

analysis
R.trout Copper 12 6.25 4.35 0.00 Woodward et al. 1994 80d, feed, starved 24h before analysis
R.trout Copper 109 6.25 16 8.94 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Copper 415 6.25 39 7.89 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Copper 38.8 8 20.62 Farag et al. 1994 21d, collected, dead, starved 24 h
R.trout Copper 185.7 6.5 3.50 Farag et al. 1994 21d, collected, dead, starved 24 h
C.trout Copper 9.9 5.2 3.5 0.00 Farag et al. 1999 90d, feed, starved 24h
C.trout Copper 32.9 5.2 6.1 2.74 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Copper 61.5 5.2 9 6.18 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Copper 43.8 5.2 12.3 16.21 Farag et al. 1999 90d, collected, starved 24h, vitamins

Cadmium
R.trout Cadmium 7.6 0.36 0.69 4.34 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 16 0.36 0.95 3.69 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 23 0.36 1.08 3.13 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 21 0.36 1.29 4.43 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 9.5 0.76 1.31 5.79 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 36 0.76 2.76 5.56 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 69 0.76 6.83 8.80 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Cadmium 150 0.15 5.45 3.53 Handy 1992 32 d, feed, no depuration
R.trout Cadmium 150 0.15 0.985 0.56 Handy 1992 32 d, feed, w/ 12 d depuration
Guppy Cadmium 69.5 3 4.32 Hatekeyama and Yasuno

1982
30 d, live, 1 d water depuration

Guppy Cadmium 125.9 5 3.97 Hatekeyama and Yasuno
1982

30 d, live, 1 d water depuration

Guppy Cadmium 170.6 6 3.52 Hatekeyama and Yasuno
1982

30 d, live, 1 d water depuration

R.trout Cadmium 3 0.05 0.3 8.33 Kumada et al. 1973 12 wks, feed, no depuration
R.trout Cadmium 3 0.04 0.1 2.00 Kumada et al. 1973 12 wks, feed, 6 wks depuration
R.trout Cadmium 10 0.05 0.65 6.00 Kumada et al. 1973 12 wks, feed, no depuration
R.trout Cadmium 10 0.04 0.09 0.50 Kumada et al. 1973 12 wks, feed, 6 wks depuration
R.trout Cadmium 30 0.05 1.9 6.17 Kumada et al. 1973 12 wks, feed, no depuration
R.trout Cadmium 30 0.04 0.12 0.27 Kumada et al. 1973 12 wks, feed, 6 wks depuration
R.trout Cadmium 100 0.05 5.6 5.55 Kumada et al. 1973 12 wks, feed, no depuration
R.trout Cadmium 100 0.04 0.27 0.23 Kumada et al. 1973 12 wks, feed, 6 wks depuration
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B.trout Cadmium nd (<0.27) 0.075 0.15 na Woodward et al. 1995 88 d, collected, dead, 24h no feed before
analysis

B.trout Cadmium nd (<0.27) 0.225 na Woodward et al. 1995 88 d, collected, dead, 24h no feed before
analysis

B.trout Cadmium 0.26 0.044 0.45 156.25 Woodward et al. 1995 88 d, collected, dead, 24h no feed before
analysis

R.trout Cadmium 3.12 0.05 0.8 24.04 Woodward et al. 1994 91d, collected, dead, starved 24h before
analysis

R.trout Cadmium 0.36 0.05 0.05 0.00 Woodward et al. 1994 91d, collected, dead, starved 24h before
analysis

R.trout Cadmium 0.5 0.05 0.095 9.00 Woodward et al. 1994 80d, feed, starved 24h before analysis
R.trout Cadmium 1.2 0.05 0.11 5.00 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Cadmium 2.39 0.05 0.6 23.01 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Cadmium 0.9 0.225 25.00 Farag et al. 1994 21d, collected, dead, starved 24h
R.trout Cadmium 1 0.085 8.50 Farag et al. 1994 21d, collected, dead, starved 24h
C.trout Cadmium 0.21 0.04 0.04 0.00 Farag et al. 1999 90d, feed, starved 24h
C.trout Cadmium 0.97 0.04 0.1 6.19 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Cadmium 29.9 0.04 2.88 9.50 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Cadmium 29.1 0.04 4.33 14.74 Farag et al. 1999 90d, collected, starved 24h, vitamins

Table 2.  Trophic transfer of metals to fish from contaminated prey/food.  (Continued)

Concentrations

Species Metal Diet Initial
Control

Final TTC (%) Reference Notes

Lead
R.trout Lead 33 0.98 1.93 2.88 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 58 0.98 2.37 2.40 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 90 0.98 2.31 1.48 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 82 0.98 3.09 2.57 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 88 1.74 6.29 5.17 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 130 1.74 8.96 5.55 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Lead 210 1.74 10 3.93 Mount et al 1994 60 d, live, combined aqueous/diet
B.trout Lead 7 1 1.2 2.90 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Lead 15 1.1 2.5 9.33 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Lead 15 0.95 4.35 22.67 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
R.trout Lead nd (<2.0) 0.5 0.6 na Woodward et al. 1994 91d, collected, dead, starved 24h before

analysis
R.trout Lead 32.7 0.5 2.5 6.12 Woodward et al. 1994 91d, collected, dead, starved 24h before

analysis
R.trout Lead 0.36 0.5 nd

(<0.2)
0.00 Woodward et al. 1994 80d, feed, starved 24h before analysis

R.trout Lead 9.69 0.5 1 0.00 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Lead 28.4 0.5 2.4 6.69 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Lead 0.2 0.75 375.00 Farag et al. 1994 21d, collected, dead, starved 24 h
R.trout Lead 8.6 0.25 2.91 Farag et al. 1994 21d, collected, dead, starved 24 h
C.trout Lead 0.2 0.2 0.2 0.00 Farag et al. 1999 90d, feed, starved 24h
C.trout Lead 7.4 0.2 1.2 13.51 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Lead 792 0.2 36.8 4.62 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Lead 452 0.2 52.3 11.53 Farag et al. 1999 90d, collected, starved 24h, vitamins

Zinc
R.trout Zinc 300 88 101 4.33 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 460 88 104 3.48 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 720 88 92 0.56 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 740 88 107 2.57 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 920 116 163 5.11 Mount et al 1994 60 d, live, combined aqueous/diet
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R.trout Zinc 930 116 189 7.85 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 1900 116 303 9.84 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Zinc 185 165 89.19 Woodward et al. 1994 80d, feed, starved 24h before analysis
R.trout Zinc 655 155 23.66 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Zinc 1070 180 16.82 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Zinc 148.2 nd  nd Farag et al 1994 21d, collected, dead, starved 24h
R.trout Zinc 320.9 nd  nd Farag et al 1994 21d, collected, dead, starved 24h
C.trout Zinc 135 78 130 38.52 Farag et al. 1999 90d, feed, starved 24h
C.trout Zinc 384 78 160 21.35 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Zinc 2336 78 380 12.93 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Zinc 2119 78 520 20.86 Farag et al. 1999 90d, collected, starved 24h, vitamins

Arsenic
R.trout Arsenic 35 3.1 4.6 4.29 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Arsenic 40 3.1 5.3 5.50 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Arsenic 51 3.1 5.4 4.51 Mount et al 1994 60 d, live, combined aqueous/diet
R.trout Arsenic 63 3.1 6.7 5.71 Mount et al 1994 60 d, live, combined aqueous/diet
B.trout Arsenic 6.5 0.8 0.95 2.31 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Arsenic 19 1.85 3.55 8.95 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
B.trout Arsenic 19 1.45 3.9 12.89 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
R.trout Arsenic 6.5 0.15 1 13.08 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
R.trout Arsenic 19 0.45 2.9 12.89 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
R.trout Arsenic 19 0.25 3.6 17.63 Woodward et al. 1995 88 d, collected, dead, 24h no feed before

analysis
R.trout Arsenic 3.5 1.25 1 0.00 Woodward et al. 1994 91d, collected, dead, starved 24h before

analysis
R.trout Arsenic 43.1 1.25 12 24.94 Woodward et al. 1994 91d, collected, dead, starved 24h before

analysis
R.trout Arsenic 2.8 1.25 1.15 0.00 Woodward et al. 1994 80d, feed, starved 24h before analysis
R.trout Arsenic 5 1.25 1.05 0.00 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Arsenic 42 1.25 7.5 14.88 Woodward et al. 1994 80d, collected, dead, starved 24h, vitamins
R.trout Arsenic 1.5 nd  nd Farag et al 1994 21d, collected, dead, starved 24h
R.trout Arsenic 15.4 nd  nd Farag et al 1994 21d, collected, dead, starved 24h
C.trout Arsenic 3.5 0.76 1.8 29.71 Farag et al. 1999 90d, feed, starved 24h
C.trout Arsenic 2.6 0.76 0.9 5.38 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Arsenic 50.8 0.76 3.3 5.00 Farag et al. 1999 90d, collected, starved 24h, vitamins
C.trout Arsenic 13.5 0.76 2.4 12.15 Farag et al. 1999 90d, collected, starved 24h, vitamins
R.trout Arsenic 180 4.5 15.5 6.11 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 360 4.5 44 10.97 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 732 4.5 89.5 11.61 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 1477 4.5 108 7.01 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 137 4.5 34.5 21.90 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 262 4.5 45.5 15.65 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 500 4.5 56 10.30 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 1053 4.5 72.5 6.46 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 163 2.5 15 7.67 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 362 2.5 22 5.39 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 793 2.5 34.5 4.04 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 1497 2.5 57 3.64 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 193 2.5 10 3.89 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 405 2.5 16 3.33 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 735 2.5 19 2.24 Cockell and Hilton, 1988 56 d, feed, no depuration 
R.trout Arsenic 1503 2.5 30.5 1.86 Cockell and Hilton, 1988 56 d, feed, no depuration 
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Table 3.  Trophic transfer of metals from field-collected benthic invertebrates

Concentrations

Diet Initial/Contro
l

Final TTC (%) Reference

Copper
B.trout 87 8.5 11.5 3.45 Woodward et al. 1995
B.trout 178 6 26 11.24 Woodward et al. 1995
B.trout 174 7.5 34 15.23 Woodward et al. 1995
R.trout 381 6.25 33.5 7.15 Woodward et al. 1994
R.trout 14 6.25 3.5 0.00 Woodward et al. 1994
R.trout 109 6.25 16 8.94 Woodward et al. 1994
R.trout 415 6.25 39 7.89 Woodward et al. 1994
R.trout 38.8 8 20.62 Farag et al. 1994
R.trout 185.7 6.5 3.50 Farag et al. 1994
C.trout 32.9 5.2 6.1 2.74 Farag et al. 1999
C.trout 61.5 5.2 9 6.18 Farag et al. 1999
C.trout 43.8 5.2 12.3 16.21 Farag et al. 1999

Cadmium
B.trout nd (<0.27) 0.075 0.15 na Woodward et al. 1995
B.trout nd (<0.27) 0.225 na Woodward et al. 1995
R.trout 3.12 0.05 0.8 24.04 Woodward et al. 1994
R.trout 0.36 0.05 0.05 0.00 Woodward et al. 1994
R.trout 1.2 0.05 0.11 5.00 Woodward et al. 1994
R.trout 2.39 0.05 0.6 23.01 Woodward et al. 1994
R.trout 0.9 0.225 25.00 Farag et al. 1994
R.trout 1 0.085 8.50 Farag et al. 1994
C.trout 0.97 0.04 0.1 6.19 Farag et al. 1999
C.trout 29.9 0.04 2.88 9.50 Farag et al. 1999
C.trout 29.1 0.04 4.33 14.74 Farag et al. 1999

Lead
B.trout 7 1 1.2 2.90 Woodward et al. 1995
B.trout 15 1.1 2.5 9.33 Woodward et al. 1995
B.trout 15 0.95 4.35 22.67 Woodward et al. 1995
R.trout nd (<2.0) 0.5 0.6 na Woodward et al. 1994
R.trout 32.7 0.5 2.5 6.12 Woodward et al. 1994
R.trout 9.69 0.5 1 0.00 Woodward et al. 1994
R.trout 28.4 0.5 2.4 6.69 Woodward et al. 1994
R.trout 8.6 0.25 2.91 Farag et al. 1994
C.trout 7.4 0.2 1.2 13.51 Farag et al. 1999
C.trout 792 0.2 36.8 4.62 Farag et al. 1999
C.trout 452 0.2 52.3 11.53 Farag et al. 1999

Zinc
R.trout 655 155 23.66 Woodward et al. 1994
R.trout 1070 180 16.82 Woodward et al. 1994
R.trout 148.2 nd  nd Farag et al 1994
R.trout 320.9 nd  nd Farag et al 1994
C.trout 384 78 160 21.35 Farag et al. 1999
C.trout 2336 78 380 12.93 Farag et al. 1999
C.trout 2119 78 520 20.86 Farag et al. 1999

Arsenic
B.trout 6.5 0.8 0.95 2.31 Woodward et al. 1995
B.trout 19 1.85 3.55 8.95 Woodward et al. 1995
B.trout 19 1.45 3.9 12.89 Woodward et al. 1995
R.trout 6.5 0.15 1 13.08 Woodward et al. 1995
R.trout 19 0.45 2.9 12.89 Woodward et al. 1995
R.trout 19 0.25 3.6 17.63 Woodward et al. 1995
R.trout 3.5 1.25 1 0.00 Woodward et al. 1994
R.trout 43.1 1.25 12 24.94 Woodward et al. 1994
R.trout 5 1.25 1.05 0.00 Woodward et al. 1994
R.trout 42 1.25 7.5 14.88 Woodward et al. 1994
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R.trout 1.5 nd  nd Farag et al 1994
R.trout 15.4 nd  nd Farag et al 1994
C.trout 2.6 0.76 0.9 5.38 Farag et al. 1999
C.trout 50.8 0.76 3.3 5.00 Farag et al. 1999
C.trout 13.5 0.76 2.4 12.15 Farag et al. 1999


