

### Indicators and Implicit Weighting Scheme of the Hazard Ranking System (HRS)

Demonstration of MIRA flexible hierarchy construction and weighting scheme using HRS variables

### What is the HRS?

- Hazard Ranking System established 12/14/90 in the Federal Register (55FR51532), effective March 14, 1991.
- Under Section 105(8)(A) of the Comprehensive Environmental Response, Compensition, and Liability Act (CERCLA), commonly called Superfund.
- HRS is a formula used to calculated an environmental score for a contaminated site that considers 4 major pathways: groundwater (S<sub>GW</sub>), surface water (S<sub>sw</sub>), soil (S<sub>s</sub>), and air (S<sub>A</sub>).



Max pathway value (S) = 100; Max HRS score = 100.

### Current Use of HRS

- Based on Federal Register, users evaluate a site by calculating a HRS score to determine priorities among releases or threatened releases of hazardous substances for the purpose of taking remedial action and to determine the urgency of such action.
- BUT HRS could be used in other ways and the same components could be considered more flexibly depending on availability of data, stakeholders, and specific application...

### Hazard Ranking System (HRS) Example

- Possible to use HRS score in different ways with MIRA:
  - Option 1: Use HRS as a decision criterion.
  - Option 2: Use HRS criteria and allow for flexibility for expert input and decision maker judgment.
    - Appropriate when you don't have or can't get type of data required by HRS; i.e., need to use surrogate indicators.

### Option 1: HRS as Criterion

- Suppose you want to evaluate both the condition of the region and program effectiveness within the region to include:
  - Public health impacts
  - Ecological impacts
  - Balance condition with program (in)effectiveness.
- Possible to set up a decision hierarchy something like this...

#### Option 1: Sample MIRA Decision Hierarchy



### **Option 1: Indicator Examples**

- Condition
  - HRS score
  - Economic/social costs
  - Ozone concentration, Nutrient load
  - Cancer risk, Exposure
- Program
  - # permits/regulations approved; % impaired streams
  - % regulations that include evaluation of alternative control technologies.
  - Amount of time between submittal and approval of...regulation/permit/plan.
  - "x" type of Hazardous Waste implementation plan producing change/improvement in "y" type of risk parameter by "z" amount.

# Option 1: How to use HRS with other criteria

- Need to consider the relative environmental significance of HRS with other criteria.
  - Expert discussion
  - What does HRS indicate? Is it a more decision significant indicator than economic cost (for example)?
  - If you believe no other criterion than HRS needs to be considered, you don't need MIRA.

# Option 2: Using HRS criteria as the analysis

- Suppose you only want to consider hazardous waste criteria as currently used in calculating HRS...
- OR: You are unable to get data required/ expected by HRS and must use surrogate indicators...
- Possible to set up decision hierarchy as follows...



### HRS Calculation Example 1

- HRS: Likelihood of Release (LR) = greater of observed release or potential to release
  - To replicate in MIRA: one of these criterion will have a weight of zero in the calculation (Other = 1.0).
  - MIRA alternative (if not regulatory): weight these criteria in any way that adds up to 1.0 (or 100%).

### HRS Calculation Example 2

- HRS Calculation Methodology
- Pathway Score, S = (Likelihood of Release x Waste Characteristics x Targets)/82,500
  - Max values for LR = 550, Waste = 100, Targets = 150.

### Cont'd Example 2

- To replicate in MIRA:
  - Calculate relative weights for each of 3 factors.
  - E.g. LR weight = (550/82,500)/(550/82,500 + 100/82,500 + 150/82,500) = 0.691
  - (LR) x 0.691 x (waste) x 0.124 x (targets) x 0.185
    (Fixed weights via HRS method)
  - Likelihood of Release is designed to be the most important criterion in the HRS calculation method (69% vs. 12% vs. 18%).
- With MIRA, you can change weights if desired (and allowed by law).

### **HRS Calculation Example 3**

• HRS = 
$$\sqrt{\frac{S_{GW}^2 + S_{SW}^2 + S_S^2 + S_A^2}{4}}$$

- Max pathway score (S) = 100.
- HRS equation appears to weight all pathways equally BUT actually weights the pathway score that is highest most heavily (due to squaring).
- In MIRA: possible to replicate weights via above equation or use other weights.

### Option 2: HRS Component analysis with MIRA

- What's different about using HRS criteria in MIRA vs. just calculating HRS?
  - Allows for transparency in seeing relative importance (weights) of all the criteria composing the HRS.
  - Possible to use additional criteria (economic/ social) if desired.
  - Possible to use surrogate criteria if data required by HRS is not available.
- If law requires HRS method, using MIRA is not an option.
  - BUT could use MIRA to inform other decisions.

### Summary: Advantages to using HRS in MIRA under Options 1 or 2

- Option 1: Consider other important criteria (i.e. consider hazardous substance pathways and other criteria)
- Option 2: Even when limiting analysis to hazardous substances, allow for different stakeholder perspectives of relative pathway importance.