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A new approach to environmental policy analysis is
introduced that is designed to mitigate the exacerba-
tion of environmental problems, which can result from
the application of traditional approaches in environ-
mental decision making. These approaches are prob-
lematic because they tend to rely on technical fixes, a
single-discipline focus, and optimality. When such tra-
ditional approaches are applied, complex environ-
mental problems are simplified beyond recognition,
and the solution produced no longer matches the origi-
nal problem. An alternative approach has been devel-
oped at the U.S. Environmental Protection Agency
(EPA) that is designed to improve the utilization of sci-
entific research results and data (social, physical, and
biological) through a more inclusive problem-solving
process aimed particularly at difficult and complex en-
vironmental issues. Using a policy application per-
taining to the EPA’s 1995 decision to approve a fuel
additive, the authors illustrate how integrated environ-
mental policy decision analysis can be made opera-
tional using this new approach.
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Decision analysis in many fields, including that of
environmental policy and regulation, is often guided
by the goal of finding a single “optimal” answer from
the multitude of possibilities. This premise is a result
of our training and is subsequently exhibited in our
decision making (Kuhn, 1970; Vanderburg, 2000). In
such a system, when there is a crisis that forces diver-
gent views together, the debate and process are
focused on selecting the single “best” answer rather
than expanding overall knowledge and understanding
among participants.

Frequently, environmental decisions are reduced to
the search for so-called least-cost options, which nec-
essarily require monetizing the decision criteria. As a
result, for social and ecological factors to be consid-
ered, they must be filtered by an economic perspective.
As such, these criteria become represented by a surro-
gate measure (i.e., cost) that may not fully capture their
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meaning or content. Furthermore, criteria that are dif-
ficult or impossible to monetize are often excluded
from consideration. Factors such as the impact on a
beautiful vista, sensitive or unique species, recre-
ational enjoyment, and social justice may not be part of
the least-cost perspective (i.e., a search for the optimal,
lowest cost solution).

Optimal, least-cost decision analysis processes may
offer little opportunity for meaningful stakeholder par-
ticipation because stakeholders must become versed in
economic optimization methods to contribute. When
economic or other single-criterion perspectives serve
as the basis for analysis in environmental policy deci-
sion analysis rather than integrating a diversity of per-
spectives, the decision analysis process is typically
reduced to a power struggle, with advocates of one view
pitted against advocates of another, and “resolution” is
found in the declaration of a survivor or winner.

Traditional scientific approaches to decision analy-
sis often do not alter the fundamental property of a
search for single answers. Only the search domain is
changed, with analytical approaches evaluating
research-inspired solutions rather than, for example,
economic or political power. Learning through a
diversity of perspectives is seldom a key element of
this process, even if a more analytical search style is
embraced. Instead, the process is often governed by
adversarial and exclusionary practices.

Recent discussions of environmental policy high-
light the difficult conflicts that occur when environ-
mental decisions are made (Kinsman, 2000; Masera,
2000; Sankovski, 2000). These conflicts occur
because sustainable environmental solutions require
compatible but difficult social, economic, and political
changes (Byrne & Rich, 1992). Complex policy ques-
tions have ecological, social, economic, and political
impacts, the implications of which cannot be resolved
through optimality-based solutions that conventional
social, physical, and biological science render.
Crafting sustainable policies requires policy makers to
simultaneously address the full range of complexities.
Furthermore, policy makers seeking holistic strategies
need to draw from multiple theories, methods, and so
on. In so doing, these policy makers need to under-
stand that this will change our comprehension of our
problems and our views of what are acceptable and
practical solutions. Policy makers facing these sorts of
challenges need a multicriteria decision analysis
framework that (a) brings together technical knowl-
edge and social values and (b) fosters learning and
seeks a consensus solution. In this article, we discuss a

new framework that takes these conceptual aims and
offers a concrete opportunity for policy makers and
other stakeholders to explore decision options that
manifest sustainable strategies.

Current Approaches

Decision analysis approaches have been exten-
sively employed for the past several decades to resolve
public-sector planning and regulatory problems
(Dyer, Fishburn, Steuer, Wallenius, & Zionts, 1992;
Giupponi, Eiselt, & Ghetti, 1999; Martin, Bender, &
Shields, 2000; Ridgley & Lumpkin, 2000; Saaty,
1990b; U.S. Environmental Protection Agency [EPA],
Ecological Benefit Assessment Workgroup, Social
Sciences Discussion Group, Science Policy Council,
2002). Most decision analysis models are built on opti-
mization algorithms and depend on probability-based
modules to rank alternative options (Chechile, 1991;
Dyer et al., 1992; Saaty, 1982, 1990a, 1990b; Winkler,
1972). Any single decision may have multiple goals or
objectives and will involve trade-offs among relevant
objectives. In decision analysis, decision makers’
opinions typically are modeled as sources of rankings
or relative priorities among the impacts and objectives.
Once these are entered into the model, results are
determined and optimized. That is, present-day deci-
sion models are generally designed to find the single
best solution from a predetermined set of options.

Other decision analysis models rely on the participa-
tion of stakeholders in finding the best decision. One
type of participation decision model relies on value-tree
structures and group Delphi methods to extract consen-
sual expert judgments (Renn, Webler, Rakel, Dienel, &
Johnson, 1993). These expert-stakeholder models allow
for the use of technical (expert) information and social
value judgments with the aim to determine an optimal
consensus among expert and lay opinions.

Other public participation decision models rely on
stakeholder judgment alone, without the use of inde-
pendent experts. In effect, “expert” opinion is deduced
from stakeholder discussions in a manner that com-
bines expert data with social value judgments as a sin-
gle exercise. All stakeholders’ opinions are accepted
as the basis for possible solutions (Gregory & Keeney,
1994).

The Problem

To date, multicriteria decision tools have been
applied only to find the “best solution” from a set of
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predefined options using technological and single-
discipline approaches. Approaching decision analysis
as an optimization exercise assumes that learning is a
less important feature of the analytical process than
determining an optimal solution. Applying this
approach to the policy decision analysis process can
result in misunderstanding and polarization among
stakeholders and hampers the creation of options that
could otherwise have developed had the process
afforded participants a learning opportunity.

Expert-stakeholder models using methods such as
group Delphi tend to blur the important differences
between expert judgments and stakeholder values and,
like the optimization approaches, do not offer a
learning-based framework for consensus building.
Because the ability to derive consensus from the range
of expert and lay opinions is presumed, these models
are less helpful when the science is controversial or
when significant lifestyle issues are involved.

Stakeholder-only models are also problematic
because without a structured means for discussing
expert information and relevant social issues, stake-
holders are not offered an opportunity to learn from a
discourse shaped by expert information and other
stakeholder perspectives. Although stakeholder opin-
ions are valuable, they are not always unchangeable.
Stakeholders may choose to change their opinions
when informed through applicable expert data. Like-
wise, expert choices may change when researchers
learn about social concerns not previously examined
in analytical models.

Consequently, a new approach to decision analysis
is needed that provides an interdisciplinary atmo-
sphere for learning that can lead to the resolution of
multifaceted issues while integrating expert judgment
with stakeholder values rather than seeking an opti-
mized solution. In the following sections, we discuss a
new learning-based approach to environmental deci-
sion analysis and present both a description of its prin-
ciples and a case example.

Multi-Criteria Integrated
Resource Assessment (MIRA)

MIRA is a new approach to environmental policy
decision analysis. Its purpose is to facilitate decision
analysis through an improved understanding and inter-
connection between both the scientific data and the
societal values that are present in all environmental
policy questions. MIRA incorporates the latest meth-
ods and concepts of, for example, ecologists, toxicolo-

gists, economists, statisticians, and sociologists in an
innovative, interactive system. Through MIRA, links
among previously isolated facts or models can be
made and analyzed. In addition, MIRA offers the
opportunity for stakeholders to shape the core ele-
ments of decision analysis—criteria, ranking, and
options—according to the knowledge and perspec-
tives relevant to their concerns.

MIRA’s major components are a data automation
interface (the Data Collection Manager [DCM]), an
innovative indicator formulation methodology (the
Geostatistical Indicators Module [GIM]), and a deci-
sion analysis module using the Analytic Hierarchy
Process (AHP). The application of the AHP to air qual-
ity and other environmental decisions is not new
(Kangas, 1993; Lahdelma, Salminen, & Hokkanen,
2000; Qureshi & Harrison, 2001), but the AHP
approach taken in MIRA is new. Principally, MIRA
uses the AHP as a learning rather than an optimization
tool.

Figure 1 illustrates the structural components of
MIRA. The DCM allows an analyst to store, sort, and
retrieve data such as source emissions, demographics,
and air quality values. Because of the traditionally
discipline-bound nature of environmental analysis,
separate systems of data collection and warehousing
have developed among different organizations within
the U.S. EPA. For example, this can be seen through
the various analytical tools that the U.S. EPA uses to
determine impacts from utilities, motor vehicles, and
sources of toxic air pollutants (U.S. EPA, Assessment
and Standards Division, Office of Transportation
and Air Quality, 2002; U.S. EPA, Office of Air
Quality Planning and Standards, 1994; U.S. EPA,
Office of Air and Radiation, Clean Air Markets Divi-
sion, 2002). Each of these analytical tools has its
own data requirements and uses its own data systems
as inputs (U.S. EPA, Office of Air and Radiation,
Clean Air Markets Division, 2001; U.S. EPA, Technol-
ogy Transfer Network, Clearinghouse for Inventories
and Emission Factors, 1996, 2001). Consequently,
within the U.S. EPA, there is currently no integrated
system that allows for the storage and custom retrieval
of data, which can also then be used directly in deci-
sion analysis.

The indicator methodology in the GIM provides a
means to reduce spatial fields of pollutant concentra-
tion, usually presented as contour maps, to a single
quantitative index value. These contour maps are pro-
duced from results of the Fate and Transport Module
(see Figure 1), which houses fate and transport models
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such as those that determine air quality impacts. The
creation of this area-weighted index allows an analyst
the unique ability to compare the environmental
impact among different and, if desirable, noncontigu-
ous areas. Both the data from the DCM and the indices
from the GIM can be used to populate the decision cri-
teria in MIRA’s decision analysis module. In addition,
data from other expert systems, such as ecological
indicators, can be incorporated into the MIRA frame-
work and used in the decision analysis module
(Lefohn & Foley, 1992; Suter, 2001; U.S. EPA,
Regional Vulnerability Assessment Program, 2002).
Decision maker and stakeholder preferences and judg-
ments are obtained and used in the decision analysis
spreadsheet to rank decision alternatives. The modular
construction of MIRA permits an analyst the flexibil-
ity to determine which aspects of the DCM and the
GIM will be used with the decision analysis module. It
is the decision analysis module that is the focus of this
article.

For environmental decisions to be driven by science
and social values, it is necessary to introduce technical
knowledge and value judgments without presuming a
particular relationship between them. Instead, the
architecture of a decision model must permit users to
explore different ways to interconnect the two
domains. A methodology is needed that integrates
social value judgments with expert knowledge even
while maintaining the “identities” of each of these
stakeholder attributes. In MIRA, the separate identi-
ties of expert data and social value judgments are pre-
served, which then allows users to generate and evalu-

ate various decision options in a learning-based rather
than an optimization-based framework.

Key to MIRA’s approach is the increased opportu-
nity for meaningful participation by decision makers
and other stakeholders. These participants play active
roles in providing insight and judgment to the data rel-
ative to the particular decision at hand. As will be dis-
cussed below, stakeholders use MIRA to determine the
quantitative importance of decision criteria, which
stakeholders identify, in this decision context.
Through MIRA’s analytical framework, all stake-
holders educate themselves about the data and their
interests or values relative to the decision. One of
MIRA’s strengths is the ability for decision makers and
other stakeholders to examine the sensitivity of a deci-
sion to both expert data and social value judgments. By
avoiding optimization, MIRA leaves open the possi-
bility of crafting a consensus decision based on mutual
learning among all stakeholders.

The General Method

Figure 2 illustrates the process flow of decision
analysis using MIRA. This figure shows only a partial
representation of the MIRA process because space
limitations preclude showing all possible feedbacks
from stakeholders and experts and their interactions
with the relevant data and criteria definition. In Figure 2,
stakeholder and expert input are shown as entering
once at the top of the process figure, but these inputs in
fact can and should occur throughout the process. The
MIRA process consists of the following nine major
steps: (1) Define decision criteria; (2) select the “prob-
lem set,” which is the set of elements that are to be
ranked using MIRA (e.g., the decision options or pol-
lutant sources); (3) gather the data needed for each cri-
terion; (4) index the data; (5) weight the criteria; (6)
create an initial “decision set,” which is a problem set
whose elements are ranked on the basis of the data and
criteria weighting; (7) create many different decision
sets for the initial problem set and modify that problem
set if appropriate as learning occurs and additional
options are discovered (iteration); (8) conduct stake-
holder deliberation; and (9) make the final decision. In
the next sections, we conceptually describe some of
MIRA’s key features: indexing, criteria weighting,
learning, and the increased opportunity for consensus
building among stakeholders. We follow with a case
study that concretely illustrates how MIRA might be
applied to policy decisions.
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Indexing

In general, data alone offer limited insight until
value and significance to a decision are applied by
decision makers and other stakeholders. For example,
cost data can be used in multiple contexts, and whereas
$100 might be considered expensive for a pencil, the
same $100 might be considered a bargain for a car.
Furthermore, in many situations, the same data often
provide different insights to different people. In
MIRA, the relevant decision criteria are connected to a
decision through an indexing process (Saaty, 1990b).

Where the data already provide common insight to all
stakeholders, MIRA is not needed. Without a frame-
work such as MIRA, critical differences in data value
and significance are often not communicated among
the different parties and may underlie many disagree-
ments, which become a barrier to arriving at consen-
sus. Although MIRA does not presume any insight, it
does require that it be expressed explicitly. This forces
stakeholders to debate and discuss the given insight for
the data relative to the decision at hand. In these dis-
cussions, stakeholders are free to examine a variety of
insights and their effect on potential decision out-

Stahl et al. / ENVIRONMENTAL DECISION ANALYSIS 447

Law and Complaints
and/or

Stakeholder/
Expert Input

Identify elements of
the problem and  criteria

Rank and index criteria; 
Weight relative importance of criteria

Output decision
set #n

Develop new
sets from expert/ 

stakeholder
input

Iterate from
1 to  n

Make final decision based on
stakeholder negotiation and input

Gather data

Deliberate n decision sets

Need more
decision sets?

YesNo
Make recommendations to decision makers

Implicit Political Factors

Political Factors:  Implicit, Explicit

Does problem
need to be
redefined?

Yes

NoImplicit Political Factors

Data Analysis via GIM/

other models

Figure 2. Multi-Criteria Integrated Resource Assessment Process Flow



comes before coming to consensus. The indexing pro-
cess is the methodology in MIRA that provides con-
textual meaning to the data.

A fundamental part of the indexing process is to
index all criteria to a common scale. Because the vari-
ous decision criteria are likely to have different units
and scales, converting these units to a common deci-
sion attribute scale is needed to rank the elements of
the problem set. It is through this process of deciding
how each criterion is to be placed on the decision scale
that insight is given to the data. Indexing is the first
place in MIRA at which decision makers and stake-
holders add social value judgments to a decision.

In the next section, we discuss how MIRA’s deci-
sion criteria are weighted on the basis of stakeholders’
opinions regarding their relative importance. The AHP
is used in MIRA to explicitly incorporate these social
value judgments into the decision analysis process.

Criteria Weighting

After indexing the decision criteria, a decision
maker now uses the AHP to determine the relative
importance among decision criteria. Through a series
of pairwise comparisons among the stakeholder-
identified decision criteria, the relative importance
among decision criteria can be assigned. Importantly,
the assigned weights are not assumed to be optimal. In
fact, weighting schemes can themselves become the
focus for learning in MIRA, with changes in them used
as a key means to probe for expert and stakeholder con-
sensus and conflicts. When decision criteria are
arranged hierarchically, pairwise comparisons are
conducted at each level of the hierarchy until the rela-
tive criteria weights have been established for each cri-
terion. The overall preferences among the criteria are
determined by the product of indexed criteria and
stakeholder judgments. In this manner, MIRA allows a
decision maker to combine scientific and social value
judgment elements in a consistent and systematic
manner to evaluate and learn about different decision
options.

We choose to use the AHP rather than multiattribute
utility theory in MIRA because the AHP can be used in
a manner that avoids the derivation of a single optimal
answer (Chechile, 1991; Saaty, 1990b). The AHP is
used to produce an array of outcomes or options,
which are dependent on stakeholder-determined crite-
ria weighting, creating a learning environment for the
participants. Stakeholders’ identities are preserved,
because the data that represent stakeholders’ interests

are kept constant while allowing for changes in rela-
tive weighting among the criteria.

Learning

The key to MIRA’s learning-based decision analy-
sis approach is its iterative feedback capability. An ini-
tial ranking of the problem set (i.e., a decision set) is
produced by following the above process for indexing
and criteria weighting with stakeholders’ preferences.
However, the stakeholders may be interested in deter-
mining what other options (or decision sets) are avail-
able if the initial ranking and decision makers’ prefer-
ences are changed. Through experimentation with
indexing and criteria weighting, decision makers and
other stakeholders can learn about other decision
options. The effect of scientific uncertainties on the
decision set can be examined as well. Such experimen-
tation, combined with stakeholder discussions, repre-
sents MIRA’s decision analysis feedback loop and
allows for the generation of other decision possibilities.

By altering preferences and indexing and reexamin-
ing data, decision makers and other stakeholders
debate the relative importance of each of the decision
criteria and the data used in an exercise to determine
their effect on the problem set rankings. In this man-
ner, the subsequent decision is informed by the rele-
vant data as well as by stakeholder discussion and
debate. Participants with preconceived ideas for the
final decision may find that their ideas need to change
because of the new insight learned through the data-
driven MIRA approach. To this end, some intractable
decision conflicts may be resolvable when decision
makers and stakeholders use the MIRA framework to
help inform their opinions.

In Figure 2, the feedback loop indicates a return to
the beginning of the process when, in fact, stake-
holders and experts can agree to revisit any of the steps
from indexing to correcting or manipulating the physi-
cal or social science data to test the sensitivity of the
decision sets to uncertainties. Conflicts among experts
can be handled by evaluating the sources of conflicts
and determining their effects on the resulting decision
options. Similarly, conflicts among stakeholders and
between stakeholders and experts can be examined
through multiple MIRA runs, together with a discus-
sion of the underlying interests and decision criteria.
Therefore, the iterative learning process in MIRA is
decision specific and includes not only the ability to
test different criteria, indexing, and preference
weights but also the importance of uncertainties and

448 BULLETIN OF SCIENCE, TECHNOLOGY & SOCIETY / December 2002



value conflicts and other factors that in other decision
models might be dropped because of their supposed
intractability.

Stakeholder Deliberation—
Facilitating Consensus

Consensus building and conflict resolution are
facilitated by focusing on issues and discerning inter-
ests (Brunsson, 1985; McKearnan, Susskind, &
Thomas-Larmer, 1999; Susskind, Levy, & Thomas-
Larmer, 2000). By offering transparency in analysis
and accessibility to information and by placing the
emphasis on learning, MIRA has a greater potential to
support consensus building than current analytical
methods. Different stakeholders’ interests and per-
spectives as represented by indexed and weighted
decision criteria can be tested and examined as part of
the policy negotiation or discussion. MIRA can facili-
tate conflict resolution and consensus building by
helping stakeholders understand each of their underly-
ing interests, explore salient issues, and deliberate
potential options.

In contrast to the existing expert-stakeholder or
stakeholder-only methodologies, MIRA maintains the
separate identities and roles of experts and stake-
holders while allowing for their integrated participa-
tion in the decision analysis process. Expert data are
used directly, and stakeholders’ judgments are applied
separately but directly to those expert data. Experts
and stakeholders are both part of the process but hold
separate roles. MIRA supports science-intensive envi-
ronmental policy decision analysis while embracing
stakeholder participation and allowing all stake-
holders to learn from one another and the critical data.
From this process, new decision options can be
explored, and consensus building can be pursued as a
question of learning rather than optimality.

MIRA Illustrated
by Case Example

MIRA’s utility is best illustrated through a policy
example. In particular, MIRA’s handling of stake-
holders’ identities (represented by different sets of
weighted decision criteria) and the process of stake-
holder feedback (including examining uncertainty)
are demonstrated in the case study below. Our case
study is the decision to choose among alternative fuel
options for the purpose of reducing ozone air pollu-
tion, which is a subject of current debate at the U.S.

EPA. In this case study, the analysis of different fuel
additives is assessed with respect to their capacity to
reduce air pollution, to minimize toxicological risks,
and to minimize water contamination. This case is
chosen to demonstrate MIRA’s utility in real policy
and is an illustrative example of the kind of analysis
that can be done with MIRA. Readers are cautioned
about making too much of the particular case study
results shown here. Interested investigators are
encouraged to examine the analytical framework, dis-
cuss criteria and data, and incorporate stakeholders’
input where necessary before producing creditable
policy options for the fuels decision.

Alternative Fuels Case Study

In 1995, the EPA decided to approve the use of the
gasoline additive methyl tertiary butyl ether (MTBE)
to reduce ozone pollution and toxic air compounds
(U.S. EPA, 1994a, 1994b). This decision was met with
resistance and hostility by those who criticized the
resulting contamination of groundwater by MTBE1

spilled during refueling and other vehicle opera-
tions (Marcus, 1997; Moolenaar, Hefflin, Ashley,
Middaugh, & Etzel, 1994; Squillace, Zogorski,
Wilber, & Price, 1995; U.S. EPA, 1987; U.S. EPA, Cri-
teria Assessment Office, 1993). The groundwater
contamination made drinking water in several U.S.
communities unacceptable for drinking. These com-
munities were not reassured by the EPA’s statements
that drinking water was still safe to drink, even though
the MTBE contamination made the drinking water
odorous (U.S. EPA, Office of Water, 1997). MTBE is
extremely odorous compared with other gasoline con-
stituents. It is a compound that, when spilled, seeks
water sources. The remediation of MTBE contamina-
tion in groundwater and soils is difficult (Squillace,
Pankow, Korte, & Zogorski, 1996). By the use of
MTBE as a fuel additive, however, gasoline refiners
are able to reduce the amount of benzene added to the
gasoline, which is considered a positive move in
reducing the level of toxic air compounds in gasoline.
The emissions of volatile organic compounds and car-
bon monoxide from MTBE gasoline–burning vehicles
are less than those in vehicles burning regular gasoline
(Committee on Toxicological and Performance
Aspects of Oxygenated and Reformulated Motor
Vehicle Fuels, Board on Environmental Studies and
Toxicology, Commission on Life Sciences, &
National Research Council, 1996; National Science
and Technology Council, Committee on Environment
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and Natural Resources, 1996). However, although
MTBE proved to be an extremely effective pollution
control measure for reducing the harmful effects of
gasoline to the air environment, the communities were
unwilling to accept the scientific trade-off that was
made to allow for any amount of groundwater contam-
ination, even though it was determined to be within
acceptable health standards. Because of the pressures
from the social and political communities, in 1999, the
EPA was forced to rethink its gasoline strategy (Blue
Ribbon Panel on Oxygenates in Gasoline, 1999).

In this case study, some of the policy alternatives to
the use of MTBE as a fuel additive are examined.
These are the use of ethanol-based fuels,2 the increased
inspections and enforcement of underground storage
tanks (USTs) storing fuels (including MTBE fuels),
and improvements in the USTs themselves by the
installation of double-walled tanks (double-walled
USTs). All these alternatives are compared with the
pre-1995 situation, when regular unleaded gasoline
without any fuel additives was used. Each of three fuel
types (gasoline, MTBE fuel, and ethanol fuel) are
compared alone and with the two possible UST
options, increased inspections and double-walled
tanks. This results in a total of nine options being con-
sidered for this analysis (see Table 1).

Selecting the Decision Criteria

There are 19 decision criteria used in the fuels case
study example. Figure 3 shows that these criteria are
arranged hierarchically and, on the primary level,
include drinking water odor, air quality criteria, eco-
nomics, and toxicology. The toxicology criterion, on
the secondary level, includes the toxicology from the
air pathway and toxicology from the water pathway.
Risk factors from the inhalation of benzene, 1,3-
butadiene, formaldehyde, and acetaldehyde are part of
the air pathway toxicology criterion at the tertiary level
of the decision criteria.

As discussed above, social value judgments enter
the MIRA process at both the indexing and criteria-
weighting stages. To explain the operation of MIRA,
we discuss only 3 of the criteria—economics, air qual-
ity (tailpipe emissions), and air pathway toxicology.
However, the results of using all 19 criteria are shown
in the “Results” section to illustrate how learning
occurs when all criteria are simultaneously analyzed
with the MIRA approach.

Indexing

Having selected and organized the decision criteria,
the next step in the MIRA process is to index the data.
Different quantitative decision criteria may have dif-
ferent units. In our example, costs have the units of
dollars, whereas, for example, the risk from benzene is
expressed as benzene emissions in grams per mile,
weighted by the EPA weighting factor for benzene
risk. As discussed above, direct comparison among
these criteria is accomplished by converting the data to
the decision units of a common decision attribute
scale. Because our decision problem is to determine
which fuel alternative is more preferable, all data must
be expressed on a scale that represent an option’s
degree of preference. By convention, we establish our
decision preference scale such that smaller values
favor an option and higher values indicate a less favor-
able option.

The indexing process can be illustrated conceptu-
ally as a bin filled with marbles. Each option might be
considered a bin, with each of the decision criteria
(properties of that option) contributing different num-
bers of marbles (i.e., criteria value in decision units) to
each option. The more marbles an option amasses in
the analysis, the less that option is preferred. By estab-
lishing the number of index categories, a decision
maker is establishing the “number of marbles” among
which each of the criteria values will be distributed. In
effect, deciding on the number of index categories
determines the extent of the decision scale. In our case
example, we use eight index categories, which estab-
lishes a maximum indexed value of 8 for any criteria
data value.

The overriding consideration in selecting the length
of the decision scale is to provide a degree of resolu-
tion that enables a decision maker to adequately differ-
entiate degrees of preference for all of the criteria.
Studies have indicated that seven plus or minus two
index groupings are generally sufficient for discerning
differences among choices (Saaty, 1990b). In our fuels
analysis, we found, through the iterative learning pro-
cess, that eight index categories (i.e., a decision scale
ranging from 1 to 8 decision units) was adequate.

Once the decision attribute scale has been deter-
mined, the criteria are then indexed. Indexing allows
decision makers to distinguish problem set elements
(in our example, the nine fuel options) on the basis of
the values of their various decision criteria. At this
point in the process, because no judgment has been
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made regarding the relative importance among the
decision criteria, all criteria (for a given hierarchy
level) have equal importance. The relative importance
among criteria will be established during the
preferencing stage of the process. In our example,
costs at the gas pump for the different fuel options’
data range from $1.33 to $1.42 for the nine fuel alter-
natives being considered. We chose to group the data
into eight index category ranges as follows: Index Cat-
egory 1, $1.341 and below; Index Category 2, $1.342
to $1.353; Index Category 3, $1.354 to $1.364; Index
Category 4, $1.365 to $1.375; and so on. The criteria

data can be distributed evenly or not among the index
categories.

At this point, decision makers with other stake-
holders should discuss the significance of a $0.09 price
spread among the fuel options. If either the data are
incorrect or the stakeholders determine that the signifi-
cance between $1.33 and $1.42 does not warrant the
spread between Index Category 1 and Index Category
8, the stakeholders are free to spread the costs within a
narrower index range, such as between Index Catego-
ries 2 and 4, or choose to eliminate price as a decision
criterion because it does not sufficiently help distin-
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Table 1. Test Preferences Used to Generate Decision Sets #1 and #2 for the Fuels Case Example

Decision Set #1: Equal Decision Set #2: Air
Decision Criteria Criteria Preferences Quality Is Preferred

Primary level
Drinking water odor 0.25 0.067
Economics 0.25 0.271
Air quality 0.25 0.51
Toxicology 0.25 0.152

Economics—secondary level
Cost at the pump 0.25 0.281
Cost to remediate spills 0.25 0.34
Cost to install double-walled USTs 0.25 0.239
Cost to increase inspections and enforcement of USTs 0.25 0.14

Air quality—secondary level
Tailpipe emissions 0.5 0.4
Evaporative emissions 0.5 0.6

Toxicology—secondary level
Air pathway 0.5 0.857
Drinking water pathway 0.5 0.143

Tailpipe emissions—tertiary level
Carbon monoxide 0.33 0.163
Nitrogen oxides 0.33 0.297
Volatile organic compounds 0.33 0.540

Air pathway—tertiary level
Benzene 0.25 0.518
1,3-butadiene 0.25 0.228
Formaldehyde 0.25 0.153
Acetaldehyde 0.25 0.101

Drinking water pathway—tertiary level
Inhalation 0.5 0.75
Ingestion 0.5 0.25

Inhalation—quaternary level
Benzene 0.33 0.634
MTBE 0.33 0.192
Ethanol 0.33 0.174

Ingestion—quaternary level
Benzene 0.33 0.342
MTBE 0.33 0.524
Ethanol 0.33 0.134

Note: UST = underground storage tank; MTBE = methyl tertiary butyl ether.



guish among the options. Because data relevance
depends primarily on the decision context, MIRA is
designed intentionally to provide an analyst with flexi-
bility to determine how best to construct the decision
scale. The final determination of the number of index
categories, the category data ranges, and how the data
should vary within categories is driven by two factors.
The first is the need to appropriately differentiate the
elements of the problem set. The second factor is,
within the decision context, the determination of the
relative significance among the decision criteria when
compared to one another. Learning about the sensitiv-
ity of the problem set to the adapted indexing approach
occurs through an iterative process.

Preserving Data Resolution

In situations in which it is desirable to preserve data
resolution, a useful indexing approach is to normalize
the data within each of the index categories. For exam-
ple, in our case study, the costs of installing a double-
walled UST are indexed from 1 to 8, where Index Cate-
gory 1 represents costs of $52,500 and less, Index Cat-
egory 2 represents costs between $52,501 and
$105,000, and so on up to Index Category 8, which
represents costs greater than $367,500. Normalizing
the costs within each index category allows us to dif-
ferentiate between $26,250 at an index value of 1.0 and

$48,562 at an index value of 1.85. Without such nor-
malization, two fuel options having costs of $26,250
and $48,562 would receive the same index value of
1.0. Although the normalization within each index cat-
egory allows an analyst the option of preserving the
high resolution of the cost data, deciding on how the
data are to be indexed depends on the decision context.
Simply because the data are highly resolved does not
mean that such resolution is important to the decision.
Allowing stakeholders to deliberate and affirmatively
determine the relevance of the data to the decision at
hand is an important and unique feature of the MIRA
approach to decision analysis.

In the risk factors for the fuel options, we track four
fuel constituents: benzene, 1,3-butadiene, formalde-
hyde, and acetaldehyde. The unit risk factors for each
of these fuel constituents are converted to potency-
weighted toxic values to allow for a comparison
among the different fuel options, each of which would
result in a different exposure to the four fuel constitu-
ents. The potency-weighted toxic values are obtained
by multiplying the EPA-weighted risk factor, derived
from the fuel constituent’s unit risk factor, by the
amount of that fuel constituent in each fuel option
(National Science and Technology Council, Commit-
tee on Environment and Natural Resources, 1996).
Although the existing data indicate that the potency-
weighted toxic values for these four compounds vary
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Figure 3. Hierarchy of Decision Criteria for Fuels Case Example
Note: CA = California; UST = underground storage tank; CO = carbon monoxide; NOx = nitrogen oxides; VOC = volatile organic com-
pounds; MTBE = methyl tertiary butyl ether.



only slightly, for illustrative purposes, we treat these
potency-weighted toxic values as if slight differences
are important to the fuels decision. For example, the
potency-weighted toxic values for benzene among the
nine fuel options vary between 2.58 × 10–4 to 2.7 × 10–4

g/vehicle mile traveled. Similarly small differences
among each of the potency-weighted toxic values for
the other three fuel constituents are also found. There-
fore, although in this example the differences in
potency-weighted toxic values are not appreciably dif-
ferent and should not be treated as such, the flexibility
in MIRA’s analytical framework allows for data reso-
lution when it is needed.

Addressing Qualitative Data

Not all data relevant to a decision are quantitative.
MIRA allows for the quantifiable use of decision crite-
ria that are not typically quantified. Although there
were no qualitative criteria used in the current fuels
case example, it is possible for qualitative criteria to be
included in a quantitative MIRA analysis. For exam-
ple, some qualitative criteria might include whether a
fuel constituent is part of a carcinogenic classification
or not. Unlike costs or risks, which are a continuum of
numerical values, these qualitative criteria are dichot-
omous and categorical. These kinds of criteria can be
included in the MIRA analysis by placing them into
the index scheme in a manner that is equivalent in pur-
pose to the quantitative data. For example, we deter-
mine that a constituent in a fuel option that is a carcino-
gen would make that fuel option less preferred than
another that has a constituent that is only a possible
carcinogen and therefore should receive a higher
indexed value. If the indexing scheme ranges from 1 to
8, an index value of 8 may be chosen for a carcinogen,
whereas those that are in a class of possible carcino-
gens receive index values of 2. Choosing a difference
of 8 compared with 2 rather than some other combina-
tion is a stakeholder-determined choice that is made
regarding the relationship between the data (carcino-
genicity) and the decision (preference for a fuel
option). It is important to note that the final choice
regarding the indexing specifics is not reached until
the participants have analyzed and learned from the
data through MIRA’s initialization and iterative learn-
ing process.

Addressing Data Thresholds

Through its indexing module, MIRA has the ability
to address not only the overall magnitude of risks or

health standards but also thresholds and uncertainties
related to those thresholds. The current case example
of fuels does not contain data with thresholds, but this
is an important analytical feature of MIRA that investi-
gators may want to use in future studies. For example,
health standards may exist for one or more fuel constit-
uents, and it is important for investigators to know not
only whether a particular policy option may include a
concentration of a fuel constituent beyond the standard
but how far the concentration estimate is from the
health standard. This feature of MIRA allows investi-
gators to examine and address data uncertainties.
Therefore, if there is a concern about whether a stan-
dard will be exceeded, a concentration estimate that is
farther below the health standard indicates more cer-
tainly that the compound is safe than an estimate that is
close to that standard. Consequently, a fuels analysis
that considers data thresholds may be structured such
that the indexing reflects data uncertainty with respect
to each policy option.

Criteria Weighting

As discussed above, determining the relative impor-
tance among expert and social values can be addressed
in the MIRA decision analysis process at the
preferencing step. This step can be automated with a
variety of available computer software, including
Expert Choice. In this step, decision makers use the
AHP to make pairwise comparisons among all the cri-
teria. However, before proceeding with AHP criteria
weighting obtained from stakeholders, it can be useful
to produce a benchmark decision set that represents
equal preferences among all criteria. Comparing
future decision sets created through stakeholder-
derived criteria weights to this benchmark can help
analysts and stakeholders better understand how sensi-
tive the decision (i.e., problem set rankings) is to
changes in relative criteria weights. The benchmark
decision set preferences represented by equal prefer-
ences among all the criteria can be seen in Table 1.

We can use three criteria—odor, cost, and toxicol-
ogy—as our set of decision criteria to illustrate the
criteria-weighting process. Using the AHP, a decision
maker determines the importance of odor compared
with cost, cost compared with toxicology, and toxicol-
ogy compared with odor. In these pairwise compari-
sons, a decision maker indicates not only which crite-
ria are more important with respect to the fuels
decision but also by how much (i.e., using a scale rang-
ing from 1 to 9) (Saaty, 1990b). It is important to note
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that the underlying data associated with each of these
criteria remain the same even as the relative weights
among the criteria are altered to explore new decision
options. Once the relative importance among the crite-
ria is determined, the MIRA framework ranks the fuel
alternatives (from most preferred to least preferred) on
the basis of all the indexed criteria as weighted by
stakeholder preferences.

Through experimentation, many different prefer-
ence schemes can be generated and tested. In Table 1,
two such preference schemes are shown. The first was
used to generate the benchmark preferences used to
produce Decision Set #1, and the second was used to
produce Decision Set #2. When the preferences used
to produce each decision set are examined together
with the decision sets (shown in Table 2), decision
makers and other stakeholders can begin a learning
process to determine the influence of preferences and
criteria data on the ranking of potential decision
options. Furthermore, on the basis of discussions
spurred from the learning produced from early deci-
sion sets, stakeholders can discuss whether more
appropriate criteria should be added (such as the carci-
nogenicity of fuel constituents) or whether additional
options should be considered and tested. By summing
the products of the indexed criteria data with stake-
holders’ preferences for each of the criteria identified
in the analysis (criteria sum), the decision options are
ranked quantitatively as shown in Table 2. In Table 2,
we indicate the decision options’ ranks and also, in
parenthesis, the criteria sums for each of those deci-
sion options.

Results

The learning process in MIRA occurs in two places.
The first place is in the construction of the analysis and
the increased understanding of the relationship of the
data to the decision problem. The data used in the fuels
case study came from many different sources. Not all
research results are directly comparable, because
study parameters are different in the various studies. In
addition, some data were simply conflicting. There-
fore, for the illustration of MIRA’s concepts, we used
average data or simply chose an extreme result to use
in the initial demonstration with the intent to test the
other extreme in the next iteration. MIRA’s analytical
framework allows investigators to test different data,
including data uncertainties, by rerunning the analysis
and examining the sensitivity of the decision to the
data. Therefore, while constructing the fuels case
example, the gaps in the toxicological research and
areas of data uncertainty became clearer. The clarity
offered by MIRA’s analytical framework helps deci-
sion makers and other stakeholders determine their
resolve for the final decision on the basis of the sound-
ness of the available data.

The second place in which learning occurs in MIRA
is in the iterative analysis, which consists of varying
MIRA’s input components (e.g., criteria, indexing,
preferencing, etc.) and reranking the problem set to
produce a variety of decision sets. Table 2 shows how
different judgments can affect the decision set. Table 2
is a comparison of the nine fuel options (ranked from
most preferred to least preferred) when the criteria are
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Table 2. Effect of Stakeholders’ Preferences on the Fuels Decision Sets

Fuel Option (ranked from most Decision Set #1: Equal Decision Set #2: Air Quality
preferred to least preferred) Preference Rank (criteria sum) Most Preferred Rank (criteria sum)

Gasoline 1 (0.6004) 3 (0.4343)
Gasoline–double-walled UST 2 (0.4715) 7 (0.2684)
MTBE–double-walled UST 3 (0.46) 1 (0.4476)
Gasoline–UST inspection 4 (0.4575) 5 (0.30)
Ethanol 5 (0.4378) 6 (0.2784)
Ethanol–double-walled UST 6 (0.4348) 9 (0.2522)
Ethanol–UST inspection 7 (0.4171) 8 (0.2570)
MTBE–UST inspection 8 (0.3322) 4 (0.4297)
MTBE 9 (0.3162) 2 (0.4465)

Note: UST = underground storage tank; MTBE = methyl tertiary butyl ether.



judged to be equally preferred (namely, the benchmark
decision set) compared with a decision set that, in gen-
eral, assigns the greatest importance to the air quality
criterion. In the column labeled Decision Set #1 in
Table 2, all 19 criteria used are judged to be equally
important.

Discussion of Results

As a point of reference, we use MTBE fuel, which
was the EPA’s decision option in 1995 that produced so
much controversy. With all criteria determined to be
equally important, the MTBE option ranks last of all
options at ninth when compared with the other eight
fuel options that were evaluated. We now begin a
learning process to determine how much the ranking
of the MTBE option changes when we alter the judg-
ments from equality. After altering preferences among
all 19 criteria, we selected one decision set generated
from iterative learning to highlight the MIRA process.

In the column labeled Decision Set #2 in Table 2, air
quality is assumed to be more important than the other
criteria when the overall decision is weighted 51% by
air quality. The other criteria preferences for Decision
Set #2 are shown in Table 1. The result is that the
MTBE option is ranked second out of the list of nine
fuel options. Although the rank of second in the second
decision set is the result of more than just a single
change in the importance of air quality relative to other
criteria, the comparison underscores an important pol-
icy implication, namely, that the MTBE option is more
likely to be ranked as a preferred option when air quality
is determined to be more important than other criteria.

By comparing the rank of the MTBE option in Deci-
sion Set #2, in which air quality is preferred over all the
other criteria, with its rank in Decision Set #1, in which
all criteria are equally preferred, we can see how the
U.S. EPA’s decision makers could have come to their
1995 decision by considering air quality over the other
criteria. Note also that the other fuel options also
change their relative rankings when decision makers’s
preferences favor air quality over the other criteria. For
example, the option of gasoline with double-walled
UST moves from a rank of second in Decision Set #1
to a rank of seventh in Decision Set #2. The degree to
which a particular fuel option is preferred over
another option depends on both the data and the pref-
erences for the combination of the relative expense of
the UST options (double wall and inspection), the
reduction in risks, the reduction in tailpipe emissions,
and other criteria.

MIRA Compared
With the Current Process

In the typical environmental policy decision analy-
sis process, illustrated in Figure 4, the decision analy-
sis process starts in a manner that is similar to MIRA.
However, the important differences between the two
processes become evident as decision criteria are
determined, stakeholders participate, and decision
options are generated. As the typical environmental
policy decision analysis process proceeds, certain
important factors that reflect stakeholders’ interests
can remain unexpressed even though they affect the
decision outcome. Without identifying these critical
factors, other stakeholders can misunderstand or mis-
construe the impact of the identified criteria on the
possible decision options. In contrast, through MIRA,
the process of identifying problem set elements and
decision criteria makes such factors and interests
explicit. All criteria identified by stakeholders as hav-
ing relevance to the decision are explicitly indexed and
weighted. This links stakeholders’ interests to the data
and to the particular policy decision being discussed.

The potential involvement of stakeholders in the
MIRA process is strikingly different from that offered
in the typical environmental policy decision analysis
process. The nontransparent nature of the typical pro-
cess requires stakeholders to know how to participate,
thereby limiting participation to those stakeholders
with access to expert data and analyses, resources, and
decision makers. Furthermore, the typical process is
different from the MIRA process in that the problem is
not deconstructed into explicit decision criteria and the
relative importance of each decision criterion to the
others. The result is that decision makers are less likely
to consider all stakeholders’ interests or clearly iden-
tify how such interests are considered in the decision.
Such ineffective communication can result in a failure
to discover innovative decision options because of
unrecognized biases. In the typical decision analysis
process, options tend to be predetermined because
there is little opportunity to use the data to inform
alternative decision options.

MIRA fosters the generation of additional decision
options by allowing stakeholders greater access to
expert data and analyses and by explicitly incorporat-
ing stakeholders’ interests (criteria selection and
preferencing) into the decision process. By using
existing stakeholder participation processes to guide
discussion and elicit stakeholders’ interests, coupled
with MIRA’s structured means of utilizing these inter-
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ests, the potential for building consensus is greatly
enhanced. Participation is more meaningful because
different interests, as represented by decision criteria
and their weighting, can be included in MIRA’s trans-
parent, analytical framework. Through this increased
opportunity for participation, MIRA facilitates learn-
ing among stakeholders and decision makers, which
offers a potential for building consensus that is not
available with existing optimization methodologies.
We believe that MIRA’s framework offers new oppor-
tunities for preserving diverse stakeholders’ identi-
ties and for learning that have not previously been
available.

As discussed above, the MIRA process provides for
more effective stakeholder involvement than is present
in the typical environmental policy decision analysis
process. Under the typical process, we could not have
produced the kinds of decision sets with regard to

MTBE that so clearly show us the effect of changing
preferences among the decision criteria of air quality,
emissions, risks, and so on. Through MIRA, decision
makers and other stakeholders are able to discern
salient differences and similarities between MTBE
and other fuel options when preferences are changed.
By comparing these and other fuel options, decision
makers and other stakeholders can better understand
the criteria and data important for the consideration of
different fuel options. Therefore, under the typical
environmental policy decision analysis process, the
options that are produced are not only based on
nonexplicit decision-influencing factors but are also
more limited because learning about the decision is not
explicitly part of that process. The power of MIRA is
that it allows stakeholders to explore the circum-
stances of the decision in such a way that many possi-
ble solutions can be found.
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Conclusion

With MIRA, decision analysis is informed through
a process of learning by organizing the data relative to
a particular decision and treating decision analysis as
an exploratory, iterative effort to find alternatives. A
decision-specific composite of possibilities for
consensus-directed discussion among decision mak-
ers and other stakeholders is created. Single optimal
answers are avoided in favor of examining the many
possible solutions that are generated using diverse per-
spectives. MIRA improves environmental policy deci-
sion analysis by offering users the opportunity to
rethink options at each stage in the decision analysis
process. Through MIRA’s holistic approach, a deci-
sion maker learns about possible decision options by
first establishing the relevant criteria, using the latest
expert data, and applying social value judgment. This
approach avoids purely technical, discipline-bound,
and optimality-oriented methodologies that character-
ize current environmental decision policy analyses.
MIRA provides unprecedented flexibility for decision
makers and other stakeholders to generate, test,
debate, and potentially resolve difficult decision issues
in a socially and ecologically sustainable manner.

MIRA’s output is not an optimal decision but infor-
mation that spurs discussion, debate, learning, and
consensus building. With MIRA, environmental pol-
icy decision analysis is treated as an ongoing process
rather than a single, discrete event. Learning and con-
sensus building occur when decision criteria are
framed within MIRA’s transparent, analytical
approach. The MTBE case example is typical of the
kinds of multicriteria decision analyses that the U.S.
EPA is tasked to do. As such, MIRA is a useful deci-
sion analytical approach that can allow the EPA to
avoid the problems brought on by the application of
technical fixes, discipline-bound approaches, and
optimization.

Notes

1. Methyl tertiary butyl ether (MTBE) is used as a fuel additive
that is on average 11% by volume of the gasoline. Therefore,
MTBE fuels are still primarily gasoline by volume.

2. On average, ethanol fuels are 5.7% by volume ethanol in
gasoline.
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