Eagle Mine

2008 Background Water Quality Report for Groundwater Discharge Permit

GW1810162

Prepared for
Kennecott Eagle Minerals Company
October 2008
Table of Contents

1.0 INTRODUCTION ... 1
 1.1 SITE DESCRIPTION .. 1
 1.2 SCOPE OF DOCUMENT ... 2

2.0 METHODS ... 3
 2.1 GROUNDWATER QUALITY SAMPLING ... 3
 2.2 ANALYTICAL METHODS ... 4
 2.3 STATISTICAL METHODS ... 4
 2.4 FIELD AND LABORATORY QUALITY CONTROL ... 6

3.0 RESULTS .. 7
 3.1 FIELD AND LABORATORY QUALITY CONTROL DATA .. 7
 3.2 GROUNDWATER QUALITY ... 7

4.0 REFERENCES ... 8

TABLES
FIGURES
APPENDICES
TABLES

TABLE 1 Groundwater Quality Analytical Data May – October 2008
TABLE 2 Statistical Summary of Results May – October 2008

FIGURES

FIGURE 1 Site Location Map
FIGURE 2 Monitoring Well Locations
FIGURE 3 A Zone Groundwater Elevation Contours, May 2008
FIGURE 4 B/D Zone Groundwater Elevation Contours, May 2008

APPENDICES

APPENDIX A Field Data Report
APPENDIX B Parameters, Analytical Methods and Reporting Limits
APPENDIX C Quality Control Report
APPENDIX D Laboratory Report
APPENDIX E Effect of Turbidity on Analytical Results
APPENDIX F Statistical Data Analysis
1.0 Introduction

In May 2008, Kennecott Eagle Minerals Company (KEMC) initiated six months of background groundwater quality data collection at locations associated with the proposed treated mine water discharge system at its Eagle Project (Project) in northern Marquette County, Michigan (Figure 1). This report presents the analytical water quality results and provides a characterization of background conditions as required under the schedule of compliance listed in Part 1, Condition 5 (f) of Michigan Department of Environmental Quality Groundwater Discharge Permit No. GW1810162 (Permit), issued December 14, 2007.

1.1 Site Description

The wells required for monitoring under this Permit are shown on Figure 2, along with the proposed treated water infiltration system (TWIS) location and other surface facility footprints.

The wells were installed and developed in March and April of 2008 (North Jackson Company 2008a). Potentiometric surface maps for the A zone and B/D zone are presented in Figures 3 and 4, respectively. These maps were generated from groundwater elevations recorded during May 2008 and reflect spring runoff and groundwater recharge conditions. These contours depict flow patterns consistent with those previously reported (North Jackson Company 2006a, 2006b) and described in the Permit application.

All potentiometric data strongly indicate flow towards the east/northeast from the proposed discharge area within the Salmon Trout River East Branch tributary system groundwater basin. Salmon Trout East Branch tributary streams are located approximately 3,000 to 7,000 feet downgradient from the TWIS.
As shown by the potentiometric surface contour models, downgradient wells are located at QAL050A, QAL051A/D, QAL052A, and QAL057A/D. Side-gradient and upgradient data are provided by wells QAL008A/D, QAL026A/D, QAL029A/D, QAL053A, QAL055A and QAL056A.

1.2 Scope of Document

Section 1 presents the site description, organization, content, and objectives of this report. Section 2 describes the methods used for groundwater quality sample collection and analysis. Section 3 includes field and laboratory analytical results and provides a statistical summary of background water quality for each monitoring location as required under the Permit (Part 1, Condition 5 (f)).

Supporting documentation data is included in the appendices as follows:

- Appendix A: Field Report
- Appendix B: Parameters, Analytical Methods and Reporting Limits
- Appendix C: Quality Control Report
- Appendix D: Lab Report
- Appendix E: Effect of Turbidity on Analytical Results
- Appendix F: Statistical Data Analysis
2.0 Methods

2.1 Groundwater Quality Sampling

Water quality samples were collected monthly over a 6-month period in 2008 to meet Permit requirements for establishing background conditions. Groundwater samples were collected at 14 locations (QAL008A/D, QAL026A/D, QAL029A/D, QAL051A, QAL052A, QAL053A, QAL055A, QAL056A and QAL057A/D) (Figure 2) on the following six events:

- May 14 and 15;
- June 10 and 11;
- July 1 and 2;
- August 12, 13 and 21;
- September 16, 17 and 18; and,
- October 1 and 2.

Samples were collected from each well using dedicated sampling pumps and discharge tubing. Sampling protocols comply with Michigan Department of Environmental Quality (MDEQ) requirements described in Remediation and Redevelopment Division Operational Memorandum No. 2 (MDEQ 2007) and follow low-flow (minimum drawdown) procedures recommended by the United States Environmental Protection Agency (1996). Documentation of low-flow stabilization criteria are presented in the field sampling reports (Appendix A).

Although great care was taken to fully develop each well and select appropriate filter packs and screen slot sizes for the wells, significant amounts of fine-grained material (passing #200 sieve) exist in the screened formation at some locations. Turbidity measurements recorded while purging were therefore used to guide the decision of whether or not to field filter samples collected for metals parameters.
In general, if the turbidity measurement was less than 3 NTU, the sample was not filtered. Exceptions are noted in the field report and in water quality summary tables. In order to document the potential affect of turbidity on analytical results from filtered versus unfiltered samples, several locations were selected for both filtered and unfiltered metals and cation sample collection. These locations were selected to represent a range of turbidity measurements.

Samples were shipped under chain-of-custody to TriMatrix Laboratories Inc. (Grand Rapids, Michigan) in ice-filled coolers using an overnight delivery service. Field reports associated with each monthly sampling event are contained in Appendix A.

2.2 Analytical Methods

Samples were submitted for laboratory analysis of metals (antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, vanadium and zinc), major anions (bicarbonate alkalinity, chloride, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total phosphorous and sulfate) and major cations (calcium, magnesium, potassium and sodium). Hardness was calculated using calcium and magnesium concentrations (Freeze and Cherry 1979). Appendix B contains the laboratory analytical method and reporting limit for each parameter.

2.3 Statistical Methods

Statistical analysis was completed for each 6-month dataset in order to determine the representative background concentration of the aquifer at each location. The minimum, maximum, range, average, standard deviation and 95% confidence limit were calculated for all datasets with at least one detection (i.e., with a reported concentration above the reporting limit for that parameter). Each non-detection was included as one-half the parameter’s reporting limit for these
calculations. The minimum reported concentration is listed as one-half the reporting limit if there was at least one non-detection.

To determine the representative concentration and the upper and lower 95% confidence limits (UCL and LCL), the following procedures were used:

1. For datasets with all reported concentrations below the reporting limit, the representative concentration is listed as less than the reporting limit and no confidence limits are calculated.

2. Datasets with 50% or less non-detections were tested to see if the data exhibited normal distribution using the statistical interface provided by the MDEQ website (MDEQ 2002), which relies upon the Shapiro-Wilk goodness of fit procedure.

3. For datasets that exhibited normal distribution, the 95% UCL and LCL were calculated using the tabulated percentile values for Student’s t distribution for n-1 degrees of freedom, where n is the number of values used for the analysis.

4. As a quality control procedure, UCLs were also generated for normally distributed datasets using the MDEQ statistical interface tool, which relies upon the exact method.

5. For datasets that did not exhibit normal distribution and for datasets with greater than 50% non-detections (but less than 100%) the UCL and LCL were calculated as: mean +/- 1.65 * standard deviation (Idaho Department of Environmental Quality 2008).

6. In cases where the calculated representative concentration, UCL and/or LCL is less than the reporting limit for a given parameter, the value is listed as such.
7. For datasets with 50% or less non-detections, outliers were identified by determining whether a given value was within 3 standard deviations of the mean concentration of the balance of the dataset. Outliers were removed from the statistical analysis to determine representative concentration if a basis to do so was identified.

2.4 Field and Laboratory Quality Control

Field quality control procedures consisted of collecting a masked duplicate and field blank sample on each sampling date. Laboratory quality control procedures consisted of the analysis of matrix spike recovery, matrix spike duplicate, instrument blank, laboratory control, method preparation blank, and laboratory fortified blank samples.
3.0 Results

3.1 Field and Laboratory Quality Control Data

Field and laboratory quality control procedures and results were reviewed and determined acceptable. Analytical data presented in this report are considered valid for all samples. Quality control data for the field blank and masked duplicate samples are included in Appendix C. Complete laboratory reports are contained in Appendix D.

3.2 Groundwater Quality

Analytical results for each monthly sampling event at each monitoring location are included in Table 1. Field parameters (specific conductivity, pH dissolved oxygen and turbidity) are also included on the table.

Analytical results for samples collected to assess the affect of turbidity on metals and cation concentrations are included in Appendix E. These results support the use of the sampling protocol that requires field filtering of samples with turbidity values >~3 NTU. Parameters that appear to be most strongly affected by turbidity levels and filtering include chromium, copper, iron, and manganese and nickel (Appendix E).

Summary statistics generated for each well, including the representative concentration and 95% confidence limits, are presented in Table 2. Appendix F contains statistical output (normality test results, UCLs generated by the MDEQ statistical interface tool, and the outlier analysis). UCLs generated by the MDEQ statistical interface tool (Appendix F) were compared and found to agree with those calculated the Student’s t method (Table 2).
4.0 References

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>55</td>
<td>56</td>
<td>49</td>
<td>53</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>9.4</td>
<td>9.3</td>
<td>9.4</td>
<td>9.3</td>
<td>9.3</td>
<td>9.4</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>11.4</td>
<td>11.2</td>
<td>11.2</td>
<td>11.4</td>
<td>11.7</td>
<td>8</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td><6.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td>1.3</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td><35</td>
<td><21</td>
<td><43</td>
<td><20</td>
<td><19</td>
<td><20</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>9.5</td>
<td>8.1</td>
<td>9.6</td>
<td>8.2</td>
<td>8.8</td>
<td>8.5</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td><1.0</td>
<td>1.8</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>26</td>
<td>20</td>
<td>20</td>
<td>26</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td><1.0</td>
<td><1.0</td>
<td>1.0</td>
<td>1.1</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.15</td>
<td>0.20</td>
<td>0.21</td>
<td>0.18</td>
<td>0.18</td>
<td>0.22</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.0227 s</td>
<td>0.0334</td>
<td>0.0152</td>
<td>0.0118</td>
<td><0.0100</td>
<td><0.0100</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.9</td>
<td>1.7</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>8.6</td>
<td>7.5</td>
<td>8.6</td>
<td>8.0</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.52</td>
<td>0.62</td>
<td>0.50</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.52</td>
<td><0.50</td>
<td>0.57</td>
<td>0.56</td>
<td>0.56</td>
<td>0.51</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated)</td>
<td>mg/L</td>
<td>26</td>
<td>24</td>
<td>27</td>
<td>25</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

e Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

s Potential false positive value. Compound present in blank sample.

† Sample was not filtered and all values are total concentrations.
Table 1
Groundwater Quality Data
Quaternary Deposit Monitoring Location QAL008D
Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>100</td>
<td>90</td>
<td>94</td>
<td>65</td>
<td>139</td>
<td>143</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>8.8</td>
<td>8.7</td>
<td>9.3</td>
<td>8.6</td>
<td>8.7</td>
<td>8.8</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>6.0</td>
<td>6.1</td>
<td>5.4</td>
<td>7.8</td>
<td>6.4</td>
<td>4</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>4.3</td>
<td>3.7</td>
<td>3.6</td>
<td>3.7</td>
<td>3.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>7.1</td>
<td>6.7</td>
<td>7.0</td>
<td>6.7</td>
<td>7.0</td>
<td>6.6</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td>5.0</td>
<td>1.7</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td>2.1</td>
<td>1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td><2.0</td>
<td><2.0</td>
<td>3.6</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td>1.5</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>43</td>
<td>42</td>
<td>42</td>
<td>39</td>
<td>41</td>
<td>39</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>14</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>ug/L</td>
<td>49</td>
<td>88</td>
<td>58</td>
<td>53</td>
<td>55</td>
<td>51</td>
</tr>
<tr>
<td>Chloride</td>
<td>ug/L</td>
<td>1.1</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>ug/L</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.075</td>
</tr>
<tr>
<td>Nitrogen, Nitite</td>
<td>mg/L</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>ug/L</td>
<td>0.0226</td>
<td>0.0202</td>
<td>0.0100</td>
<td>0.0143</td>
<td>0.297</td>
<td><0.0100</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ug/L</td>
<td>4.8</td>
<td>5.1</td>
<td>5.0</td>
<td>4.7</td>
<td>4.8</td>
<td>5.0</td>
</tr>
<tr>
<td>Major Cations</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>3.1</td>
<td>2.8</td>
<td>3.0</td>
<td>3.1</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.98</td>
<td>1.1</td>
<td>0.82</td>
<td>0.89</td>
<td>0.88</td>
<td>0.92</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>1.3</td>
<td>1.2</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td></td>
<td>50</td>
<td>44</td>
<td>47</td>
<td>48</td>
<td>47</td>
<td>48</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

e Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

s Potential false positive value. Compound present in blank sample.

T Sample was not filtered and all values are total concentrations.
Table 1
Groundwater Quality Data
Quaternary Deposit Monitoring Location QAL026A
Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>µmhos/cm @ 25°C</td>
<td>31</td>
<td>34</td>
<td>25</td>
<td>27</td>
<td>41</td>
<td>44</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>7.0</td>
<td>7.4</td>
<td>7.4</td>
<td>7.4</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>10.7</td>
<td>10.8</td>
<td>10.9</td>
<td>11.4</td>
<td>11.6</td>
<td>8</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Metals</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Barium</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><6.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>13*</td>
<td><1.0</td>
<td>3.5</td>
<td>1.6</td>
<td>1.8</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>540** a</td>
<td>47</td>
<td>150</td>
<td>55 e</td>
<td>22</td>
<td>82</td>
</tr>
<tr>
<td>Lead</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>9.7**</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>9.6**</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td><1.0</td>
<td><1.0</td>
<td>1.2</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>10</td>
<td>8.2</td>
<td>9.5</td>
<td>9.1</td>
<td>9.6</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>11</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>ug/L</td>
<td>11</td>
<td>13 a,e</td>
<td>12</td>
<td>13 e</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Chloride</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>ug/L</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>ug/L</td>
<td>0.33</td>
<td>0.33</td>
<td>0.20 e</td>
<td>0.16</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>ug/L</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>ug/L</td>
<td>0.0243 s</td>
<td>0.0223</td>
<td>0.0195</td>
<td>0.0143</td>
<td>0.431</td>
<td><0.0100</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ug/L</td>
<td>2.0</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Major Cations</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>4.3</td>
<td>4.2</td>
<td>3.7</td>
<td>3.4</td>
<td>3.3</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.81</td>
<td>0.69</td>
<td>0.64</td>
<td>0.64</td>
<td>0.62</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.72</td>
<td>0.80</td>
<td>0.59</td>
<td>0.51</td>
<td><0.50</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>0.69</td>
<td>0.62 s</td>
<td>0.67</td>
<td>0.67</td>
<td>0.63</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>General Chemistry</td>
<td>mg/L</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.
e Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.
s Potential false positive value. Compound present in blank sample.
T Sample was not filtered and all values are total concentrations.
** Turbidity was >3 NTU however sample for this parameter was not filtered and reported concentration is elevated. This value is not included in summary statistics.
Table 1: Groundwater Quality Data

Quaternary Deposit Monitoring Location QAL026D

Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5/13/08</td>
<td>6/10/08</td>
<td>7/2/08</td>
<td>8/12/08</td>
<td>9/17/08</td>
<td>10/1/08</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>61</td>
<td>62</td>
<td>55</td>
<td>61</td>
<td>60</td>
<td>88</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>9.2</td>
<td>9.1</td>
<td>9.1</td>
<td>9.0</td>
<td>7.8</td>
<td>9.1</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>11.2</td>
<td>11.1</td>
<td>11.1</td>
<td>11.7</td>
<td>NM</td>
<td>8</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Metals</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>>1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Barium</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td><1.0</td>
<td><1.0</td>
<td>1.4</td>
<td><1.0</td>
<td><1.0</td>
<td>1.1</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td>2.5</td>
<td>1.3</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td><20</td>
<td>20</td>
<td>13</td>
<td>21 e</td>
<td><20</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td>5.6</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td><1.0</td>
<td><1.0</td>
<td>1.6</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>11</td>
<td>9.4</td>
<td>10</td>
<td>9.4</td>
<td>10</td>
<td>9.0</td>
<td><10</td>
</tr>
<tr>
<td>Thallium</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td><1.0</td>
<td><1.0</td>
<td>1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>20</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>>1.0</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Chloride</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>0.092</td>
<td>0.11</td>
<td>0.11</td>
<td>0.093</td>
<td>0.078</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.0224 s</td>
<td>0.0271</td>
<td>0.0193</td>
<td>0.0237</td>
<td><0.0100</td>
<td><0.0100</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>2.0</td>
<td>1.8</td>
<td>2.0</td>
<td>2.1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Major Cations</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>10</td>
<td>9.1</td>
<td>9.4</td>
<td>9.4</td>
<td>8.6</td>
<td>9.4</td>
<td>9.4</td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.4</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.52</td>
<td>0.75</td>
<td>0.50</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.66</td>
<td>0.63 s</td>
<td>0.63</td>
<td>0.66</td>
<td>0.61</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>General Chemistry</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>31</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>27</td>
<td>29</td>
<td>29</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

e Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

s Potential false positive value. Compound present in blank sample.

T Sample was not filtered and all values are total concentrations.

NM Not measured.
<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>QAL029A</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>May 08</td>
<td>Jun 08</td>
</tr>
<tr>
<td></td>
<td>5/14/08D</td>
<td>6/10/08D</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td>pH</td>
<td>8.4</td>
<td>9.1</td>
</tr>
<tr>
<td>D.O.</td>
<td>11.2</td>
<td>11.1</td>
</tr>
<tr>
<td>Turbidity</td>
<td>24</td>
<td>71</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Barium</td>
<td><5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td><15</td>
<td>15</td>
</tr>
<tr>
<td>Copper</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td><20</td>
<td>74</td>
</tr>
<tr>
<td>Lead</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td><8.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>4.16**</td>
<td>0.622</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>6.7</td>
<td>7.9</td>
</tr>
<tr>
<td>Thallium</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Zinc</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Chloride</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.0666</td>
<td>0.114</td>
</tr>
<tr>
<td>Sulfate</td>
<td>3.7</td>
<td>5.4</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>7.1</td>
<td>4.3</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.75</td>
<td><0.50</td>
</tr>
<tr>
<td>Potassium</td>
<td><0.50</td>
<td><0.50</td>
</tr>
<tr>
<td>Sodium</td>
<td>2.3</td>
<td>5.3</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>21</td>
<td>12</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

** Estimated value. Duplicate precision for this parameter exceeded quality control limit.

** Sample for metal and major cation parameters was filtered and values are dissolved concentrations. (* indicates that mercury sample was not filtered).

** Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

** Potential false positive value. Compound present in blank sample.

** NM Not measured.

** Turbidity was >3 NTU however sample for this parameter was not filtered and reported concentration is elevated. This value is not included in summary statistics.
Table 1: QAL029D

Groundwater Quality Data

Quaternary Deposit Monitoring Location QAL029D

Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>µmhos/cm @ 25°C</td>
<td>118</td>
<td>102</td>
<td>94</td>
<td>110</td>
<td>100</td>
<td>94</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.5</td>
<td>8.1</td>
<td>9.0</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>4.0</td>
<td>5.6</td>
<td>6.5</td>
<td>4.8</td>
<td>5.5</td>
<td>5.2</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>62</td>
<td>90</td>
<td>15</td>
<td>42</td>
<td>45</td>
<td>12</td>
</tr>
</tbody>
</table>

Metals

<table>
<thead>
<tr>
<th>Metal</th>
<th>ug/L</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1.6</td>
<td>2.1</td>
<td>2.3</td>
<td>2.3</td>
<td>2.0</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>7.6</td>
<td>7.3</td>
<td>6.7</td>
<td>7.0</td>
<td>6.0</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>5.9</td>
<td><1.0</td>
<td>1.7</td>
<td><1.0</td>
<td><1.0</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td>1.7</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>18 a</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Lead</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td><8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td><8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>5.96**</td>
<td>0.539 s</td>
<td>1.26</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td>5.8</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>29</td>
<td>28</td>
<td>26</td>
<td>29</td>
<td>24</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>2.0</td>
<td>2.9</td>
<td>2.4</td>
<td>2.4</td>
<td>2.0</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
</tbody>
</table>

Major Anions

<table>
<thead>
<tr>
<th>Anion</th>
<th>ug/L</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>82</td>
<td>84 a,e</td>
<td>60</td>
<td>58 e</td>
<td>54</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>1.0 a</td>
<td>1.2</td>
<td><1.0</td>
<td>1.5</td>
<td><1.0</td>
<td>1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>0.059</td>
<td>0.092</td>
<td>0.10 e</td>
<td>0.054</td>
<td>0.074</td>
<td>0.098</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.142</td>
<td>0.0868</td>
<td>0.121</td>
<td>0.100</td>
<td>0.0573</td>
<td>0.0346</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>5.4</td>
<td>4.7</td>
<td>4.2</td>
<td>5.3</td>
<td>3.8</td>
<td>3.6</td>
<td></td>
</tr>
</tbody>
</table>

Major Cations

<table>
<thead>
<tr>
<th>Cation</th>
<th>mg/L</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>4.1</td>
<td>3.9</td>
<td>3.8</td>
<td>3.8</td>
<td>3.7</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>2.3</td>
<td>2.2</td>
<td>2.2</td>
<td>2.1</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>1.2</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
<td>1.3</td>
<td>1.3</td>
<td></td>
</tr>
</tbody>
</table>

General Chemistry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>mg/L</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>57</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

b Sample for metal and major cation parameters was filtered and values are dissolved concentrations (* indicates that mercury sample was not filtered).

c Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

d Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

s Potential false positive value. Compound present in blank sample.

** Turbidity was >3 NTU however sample for this parameter was not filtered and reported concentration is elevated. This value is not included in summary statistics.
<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>76</td>
<td>70</td>
<td>70</td>
<td>79</td>
<td>NM</td>
<td>118</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>7.5</td>
<td>8.8</td>
<td>8.9</td>
<td>8.8</td>
<td>8.5</td>
<td>9.0</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>10.5</td>
<td>10.6</td>
<td>10.0</td>
<td>10.5</td>
<td>11.2</td>
<td>10</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Metals</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1.4</td>
<td>1.1</td>
<td>1.2</td>
<td>1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Barium</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><6.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td><1.10</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td><20</td>
<td><20</td>
<td><10</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Lead</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>22</td>
<td>19</td>
<td>21</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>1.4</td>
<td>1.2</td>
<td>1.5</td>
<td>1.2</td>
<td>1.4</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>12</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>45</td>
<td>40 a,e</td>
<td>40</td>
<td>48 e</td>
<td>40</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>1.0 s</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>0.099</td>
<td>0.11</td>
<td>0.11 e</td>
<td>0.10</td>
<td>0.12</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.0169 s</td>
<td>0.0205</td>
<td>0.0125</td>
<td>0.0103</td>
<td><0.0100</td>
<td><0.0100</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Major Cations</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.2</td>
<td>2.0</td>
<td>2.3</td>
<td>2.3</td>
<td>2.2</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.63</td>
<td>0.68</td>
<td>0.67</td>
<td>0.58</td>
<td>0.62</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>0.89</td>
<td>0.84 s</td>
<td>0.95</td>
<td>0.89</td>
<td>0.88</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>General Chemistry</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>39</td>
<td>36</td>
<td>39</td>
<td>37</td>
<td>37</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.
 a Estimated value. Duplicate precision for this parameter exceeded quality control limit.
 e Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.
 s Potential false positive value. Compound present in blank sample.
 T Sample was not filtered and all values are total concentrations.
 NM Not measured.
<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>i</td>
<td>19</td>
<td>i</td>
<td>13</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>i</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>i</td>
<td>1.3</td>
<td>1.2</td>
<td>1.4</td>
<td><1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>i</td>
<td>14</td>
<td>8.3</td>
<td>8.0</td>
<td>11</td>
<td>7.4</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>i</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>i</td>
<td>38</td>
<td>20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>i</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>i</td>
<td><1.0</td>
<td>1.2</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>i</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>i</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>i</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>i</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>i</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>i</td>
<td>10</td>
<td>17</td>
<td>22</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Mercury</td>
<td>ng/L</td>
<td>i</td>
<td>2.37</td>
<td>2.22</td>
<td>1.74</td>
<td>0.801</td>
<td>s</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td>i</td>
<td>46</td>
<td>13</td>
<td><10</td>
<td>27</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>i</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>i</td>
<td><1.0</td>
<td><1.0</td>
<td>1.8</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>i</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>i</td>
<td>36</td>
<td>30</td>
<td>26</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td>i</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>i</td>
<td>1.8</td>
<td>2.2</td>
<td>2.7</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>i</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>ug/L</td>
<td>i</td>
<td>74 a,e</td>
<td>55</td>
<td>63 e</td>
<td>53</td>
<td>55</td>
</tr>
<tr>
<td>Chloride</td>
<td>ug/L</td>
<td>i</td>
<td>1.2</td>
<td>1.4</td>
<td><1.0</td>
<td>1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>ug/L</td>
<td>i</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>ug/L</td>
<td>i</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>ug/L</td>
<td>i</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>ug/L</td>
<td>i</td>
<td>0.0632</td>
<td>0.0367</td>
<td>0.0351</td>
<td>0.0204</td>
<td>0.0262</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ug/L</td>
<td>i</td>
<td>4.1</td>
<td>4.1</td>
<td>3.3</td>
<td>2.7</td>
<td>3.1</td>
</tr>
<tr>
<td>Major Cations</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>i</td>
<td>14</td>
<td>15</td>
<td>13</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>i</td>
<td>2.0</td>
<td>2.2</td>
<td>1.9</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>i</td>
<td>5.0</td>
<td>2.2</td>
<td>1.8</td>
<td>3.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>i</td>
<td>3.1</td>
<td>1.8</td>
<td>1.2</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>mg/L</td>
<td>i</td>
<td>43</td>
<td>47</td>
<td>40</td>
<td>49</td>
<td>47</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

d Sample for metal and major cation parameters was filtered and values are dissolved concentrations.

e Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

i Insufficient water for collection of field parameters and/or sample.

s Potential false positive value. Compound present in blank sample.
Table 1
Groundwater Quality Data
Quaternary Deposit Monitoring Location QAL051D
Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>117</td>
<td>111</td>
<td>116</td>
<td>80</td>
<td>172</td>
<td>180</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>7.4</td>
<td>8.7</td>
<td>9.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.7</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td>1.4</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>3.4</td>
<td>2.3</td>
<td>2.2</td>
<td>4.2</td>
<td>3.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>15</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>23</td>
<td>21</td>
<td><10</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td>1.3</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td><1.0</td>
<td>1.3</td>
<td>1.2</td>
<td><1.0</td>
<td><1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>11</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>86</td>
<td>79</td>
<td>88</td>
<td>81</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>2.6</td>
<td>1.4</td>
<td>1.3</td>
<td>1.2</td>
<td>1.3</td>
<td><1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td>ug/L</td>
<td>64</td>
<td>96</td>
<td>73</td>
<td>66</td>
<td>65</td>
<td>62</td>
</tr>
<tr>
<td>Chloride</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrate, Ammonia</td>
<td>ug/L</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Nitrate, Nitrite</td>
<td>ug/L</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>ug/L</td>
<td>0.0190</td>
<td>0.0178</td>
<td><0.0100</td>
<td>0.0124</td>
<td><0.0100</td>
<td><0.0100</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ug/L</td>
<td>5.9</td>
<td>6.1</td>
<td>5.7</td>
<td>5.8</td>
<td>5.3</td>
<td>5.8</td>
</tr>
<tr>
<td>Major Cations</td>
<td>mg/L</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>3.6</td>
<td>3.3</td>
<td>3.5</td>
<td>3.5</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>1.4</td>
<td>1.4</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>3.2</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>

General Chemistry

| Hardness, (calculated) as CaCO3 | mg/L | 54 | 54 | 54 | 54 | 54 | 54 |

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

** Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

b Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

c Potential false positive value. Compound present in blank sample.

d Sample was not filtered and all values are total concentrations.
Table 1
Groundwater Quality Data
Quaternary Deposit Monitoring Location QAL052A
Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>QAL052A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance (μmhos/cm @ 25°C)</td>
<td></td>
<td>May 08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/14/08</td>
</tr>
<tr>
<td>pH (SU)</td>
<td></td>
<td>8.1</td>
</tr>
<tr>
<td>D.O.* (ppm)</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony (μg/L)</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic (μg/L)</td>
<td>1.3</td>
<td><1.0</td>
</tr>
<tr>
<td>Barium (μg/L)</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Beryllium (μg/L)</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron (μg/L)</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Cadmium (μg/L)</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium (μg/L)</td>
<td><1.1</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt (μg/L)</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Copper (μg/L)</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron (μg/L)</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Lead (μg/L)</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium (μg/L)</td>
<td><8.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese (μg/L)</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Mercury (ng/L)</td>
<td><0.500</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum (μg/L)</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Nickel (μg/L)</td>
<td>7.3</td>
<td>10</td>
</tr>
<tr>
<td>Selenium (μg/L)</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver (μg/L)</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium (μg/L)</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>Thallium (μg/L)</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium (μg/L)</td>
<td>2.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Zinc (μg/L)</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate (μg/L)</td>
<td>76</td>
<td>68 a,e</td>
</tr>
<tr>
<td>Chloride (μg/L)</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia (μg/L)</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate (μg/L)</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrite (μg/L)</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total (μg/L)</td>
<td>0.0290 s</td>
<td>0.0295 s</td>
</tr>
<tr>
<td>Sulfate (μg/L)</td>
<td>7.3</td>
<td>7.4</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium (mg/L)</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Magnesium (mg/L)</td>
<td>3.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Potassium (mg/L)</td>
<td>1.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Sodium (mg/L)</td>
<td>1.3</td>
<td>1.6 s</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td>mg/L</td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>58</td>
<td>59</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

b Sample for metal and major cation parameters was filtered and values are dissolved concentrations (* indicates that mercury sample was not filtered).

c Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.
s Potential false positive value. Compound present in blank sample.
Table 1: QAL053A Groundwater Quality Data
Quaternary Deposit Monitoring Location QAL053A
Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>113</td>
<td>102</td>
<td>113</td>
<td>114</td>
<td>161</td>
<td>101</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>8.8</td>
<td>8.5</td>
<td>9.3</td>
<td>8.5</td>
<td>8.7</td>
<td>9.0</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>2.7</td>
<td>2.6</td>
<td>3.2</td>
<td>2.6</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

Metals

<table>
<thead>
<tr>
<th></th>
<th>ug/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7.7</td>
</tr>
<tr>
<td>Barium</td>
<td>7.9</td>
</tr>
<tr>
<td>Beryllium</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>34</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td><20</td>
</tr>
<tr>
<td>Lead</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>83</td>
</tr>
<tr>
<td>Thallium</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>1.5</td>
</tr>
<tr>
<td>Zinc</td>
<td><10</td>
</tr>
</tbody>
</table>

Major Anions

<table>
<thead>
<tr>
<th></th>
<th>ug/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>56</td>
</tr>
<tr>
<td>Chloride</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td><0.0020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td><0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.0225 s</td>
</tr>
<tr>
<td>Sulfate</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Major Cations

<table>
<thead>
<tr>
<th></th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>15</td>
</tr>
<tr>
<td>Magnesium</td>
<td>3.6</td>
</tr>
<tr>
<td>Potassium</td>
<td>1.2</td>
</tr>
<tr>
<td>Sodium</td>
<td>1.8</td>
</tr>
</tbody>
</table>

General Chemistry

<table>
<thead>
<tr>
<th></th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, (calculated) as CaCO₃</td>
<td>52</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

e Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

s Potential false positive value. Compound present in blank sample.

t Sample was not filtered and all values are total concentrations.
Table 1: QAL055A

Groundwater Quality Data
Quaternary Deposit Monitoring Location QAL055A
Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td><code>μmhos/cm @ 25°C</code></td>
<td>75</td>
<td>65</td>
<td>69</td>
<td>47</td>
<td>104</td>
<td>113</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>9.1</td>
<td>8.9</td>
<td>9.7</td>
<td>8.8</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>9.5</td>
<td>10.1</td>
<td>9.9</td>
<td>NM</td>
<td>10.2</td>
<td>9.9</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td><1</td>
<td>1</td>
<td><1</td>
<td>2</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Metals</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>2.0</td>
<td>1.4</td>
<td>1.4</td>
<td>1.3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Barium</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>24</td>
<td>27</td>
<td><20</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Lead</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>24</td>
<td>21</td>
<td>22</td>
<td>21</td>
<td>23</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Thallium</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>37</td>
<td>37</td>
<td>42</td>
<td>40</td>
<td>35</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>0.066</td>
<td>0.074</td>
<td>0.060</td>
<td>0.075</td>
<td>0.066</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.0153</td>
<td>0.0162</td>
<td><0.0100</td>
<td>0.0151</td>
<td><0.0100</td>
<td><0.0100</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>2.0</td>
<td>2.0</td>
<td>2.2</td>
<td>2.2</td>
<td>2.0</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Major Cations</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>11</td>
<td>9.5</td>
<td>9.9</td>
<td>10</td>
<td>9.5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.4</td>
<td>2.0</td>
<td>2.3</td>
<td>2.3</td>
<td>2.2</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.73</td>
<td>0.82</td>
<td>0.53</td>
<td>0.61</td>
<td>0.64</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>0.97</td>
<td>0.85</td>
<td>1.0</td>
<td>0.95</td>
<td>0.87</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>General Chemistry</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>37</td>
<td>32</td>
<td>34</td>
<td>34</td>
<td>33</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

e Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

s Potential false positive value. Compound present in blank sample.

T Sample was not filtered and all values are total concentrations.

NM Not measured.
Table 1: Groundwater Quality Data

Quaternary Deposit Monitoring Location QAL056A

Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>57</td>
<td>57</td>
<td>50</td>
<td>56</td>
<td>80</td>
<td>51</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>11.6</td>
<td>11.5</td>
<td>11.5</td>
<td>11.8</td>
<td>11.8</td>
<td>11.4</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Metals</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td><1.0</td>
<td><1.0</td>
<td>1.1</td>
<td><1.0</td>
<td><1.0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td><20</td>
<td>24</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
<td><0.50</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td><1.0</td>
<td><1.0</td>
<td>1.4</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>11</td>
<td>9.0</td>
<td>9.7</td>
<td>9.0</td>
<td>10</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Major Anions</td>
<td>ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>28</td>
<td>22</td>
<td>35</td>
</tr>
<tr>
<td>Chloride</td>
<td>1.2</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>0.076</td>
<td>0.079</td>
<td>0.052</td>
<td>0.071</td>
<td>0.055</td>
<td>0.069</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>0.0235</td>
<td>0.0286</td>
<td><0.0100</td>
<td>0.0143</td>
<td><0.0100</td>
<td><0.0100</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>1.9</td>
<td>1.8</td>
<td>2.1</td>
<td>2.1</td>
<td>1.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Major Cations</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>9.1</td>
<td>7.9</td>
<td>8.3</td>
<td>8.2</td>
<td>7.8</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>1.4</td>
<td>1.2</td>
<td>1.4</td>
<td>1.4</td>
<td>1.3</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td><0.50</td>
<td>0.71</td>
<td><0.50</td>
<td><0.50</td>
<td>0.50</td>
<td><0.50</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>0.54</td>
<td>0.52</td>
<td>0.61</td>
<td>0.56</td>
<td>0.52</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>General Chemistry</td>
<td>mg/L</td>
<td>28</td>
<td>25</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>29</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

e Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

s Potential false positive value. Compound present in blank sample.

t Sample was not filtered and all values are total concentrations.
Table 1
Groundwater Quality Data
Quaternary Deposit Monitoring Location QAL057A
Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>Specific Conductance (\mu \text{mhos/cm} @ 25^\circ\text{C})</th>
<th>May 08</th>
<th>Jun 08</th>
<th>Jul 08</th>
<th>Aug 08</th>
<th>Sep 08</th>
<th>Oct 08</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5/13/08(^1)</td>
<td>6/10/08(^1)</td>
<td>7/10/08(^2)</td>
<td>8/12/08(^3)</td>
<td>9/16/08(^4)</td>
<td>10/10/08(^5)</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>7.8</td>
<td>9.1</td>
<td>9.0</td>
<td>8.8</td>
<td>9.1</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>11.3</td>
<td>10.6</td>
<td>10.5</td>
<td>NM</td>
<td>11.0</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td></td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td></td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td></td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td></td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td></td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td></td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td><15</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.2</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td><8.0</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td><5.0</td>
<td>5.8</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td><5.0</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>ng/L</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td><0.500</td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td><10</td>
<td>21</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>Major Anions</td>
<td>ug/L</td>
<td>36</td>
<td>46 (^{ae})</td>
<td>37</td>
<td>33 (^e)</td>
<td>38</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>ug/L</td>
<td>36</td>
<td>46 (^{ae})</td>
<td>37</td>
<td>33 (^e)</td>
<td>38</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>ug/L</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>ug/L</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td><0.020</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>ug/L</td>
<td>0.11</td>
<td>0.11</td>
<td>0.095 (^e)</td>
<td>0.10</td>
<td>0.11</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>ug/L</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td><0.050</td>
<td></td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>ug/L</td>
<td>0.0158 (^s)</td>
<td>0.0168</td>
<td><0.0100</td>
<td>0.0134</td>
<td><0.0100</td>
<td><0.0100</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>ug/L</td>
<td>2.1</td>
<td>2.1</td>
<td>2.7</td>
<td>2.3</td>
<td>2.2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Major Cations</td>
<td>mg/L</td>
<td>11</td>
<td>9.7</td>
<td>10</td>
<td>10</td>
<td>9.6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.59</td>
<td>0.69</td>
<td><0.50</td>
<td>0.54</td>
<td>0.54</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.68</td>
<td>0.63 (^s)</td>
<td>0.73</td>
<td>0.69</td>
<td>0.66</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>35</td>
<td>31</td>
<td>32</td>
<td>32</td>
<td>31</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- *Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.
- \(^1\) Estimated value. Duplicate precision for this parameter exceeded quality control limit.
- \(^2\) Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.
- \(^3\) Potential false positive value. Compound present in blank sample.
- \(^4\) Sample was not filtered and all values are total concentrations.
- NM Not measured.
Table 1: Groundwater Quality Data
Quaternary Deposit Monitoring Location QAL057D
Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>QAL057D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>May 08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/13/08</td>
</tr>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μhos/cm @ 25°C</td>
<td>104</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>7.6</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>4.3</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td><1</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>5.3</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.9</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>ul/g</td>
<td>24</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td><20</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>ng/L</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>64</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>1.1</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td>ug/L</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>ug/L</td>
<td>69</td>
</tr>
<tr>
<td>Chloride</td>
<td>ug/L</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>ug/L</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>ug/L</td>
<td><0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>ug/L</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>ug/L</td>
<td>0.0334</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ug/L</td>
<td>5.4</td>
</tr>
<tr>
<td>Major Cations</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>17</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>3.6</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>1.2</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>1.4</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>mg/L</td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L</td>
<td>57</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

a Estimated value. Duplicate precision for this parameter exceeded quality control limit.

e Estimated value. The laboratory statement of data qualifications indicates that a quality control limit for this parameter was exceeded.

s Potential false positive value. Compound present in blank sample.

T Sample was not filtered and all values are total concentrations.
Table 2: Statistical Summary of Results
May - October 2008
Quaternary Monitoring Location QAL008A
Eagle Project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL008A</th>
<th>RL</th>
<th>n</th>
<th># ND</th>
<th>% ND</th>
<th>Min</th>
<th>Average</th>
<th>Max</th>
<th>Range</th>
<th>Std Dev</th>
<th>Normal Distr</th>
<th>95% LCL</th>
<th>Rep Conc</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>NA</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>49</td>
<td>61</td>
<td>76</td>
<td>27</td>
<td>11.50</td>
<td>0.20</td>
<td>Y</td>
<td>51</td>
<td>61</td>
<td>70</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>NA</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>9.3</td>
<td>9.3</td>
<td>9.4</td>
<td>0.2</td>
<td>0.06</td>
<td>Y</td>
<td>9.3</td>
<td>9.3</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>NA</td>
<td>5</td>
<td>0</td>
<td>0%</td>
<td>11.2</td>
<td>11.4</td>
<td>11.7</td>
<td>0.5</td>
<td>0.20</td>
<td>Y</td>
<td>11.2</td>
<td>11.4</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><5.0</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><20</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.20</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>6%</td>
<td>0.6</td>
<td>1.3</td>
<td>0.33</td>
<td>--</td>
<td><1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><15</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>6%</td>
<td>0.7</td>
<td>1.4</td>
<td>0.37</td>
<td>--</td>
<td><1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20</td>
<td>6</td>
<td>3</td>
<td>67%</td>
<td>10</td>
<td>22</td>
<td>43</td>
<td>33</td>
<td>14.43</td>
<td>Y</td>
<td><20</td>
<td>22</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><8.0</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><5.0</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.50</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>mg/L</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><10</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.0</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.20</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.20</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Strontium</td>
<td>mg/L</td>
<td>5.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>8.1</td>
<td>8.8</td>
<td>8.6</td>
<td>1.5</td>
<td>0.64</td>
<td>Y</td>
<td>8.3</td>
<td>8.8</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>mg/L</td>
<td>2.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.0</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Vanadium</td>
<td>mg/L</td>
<td>1.0</td>
<td>6</td>
<td>5</td>
<td>83%</td>
<td>0.5</td>
<td>0.7</td>
<td>1.3</td>
<td>0.53</td>
<td>--</td>
<td><1.0</td>
<td><1.0</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/L</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>83%</td>
<td>5.0</td>
<td>7.3</td>
<td>19</td>
<td>14</td>
<td>5.72</td>
<td>--</td>
<td><10</td>
<td><10</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>20</td>
<td>24</td>
<td>29</td>
<td>9</td>
<td>3.60</td>
<td>--</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0</td>
<td>6</td>
<td>4</td>
<td>67%</td>
<td>0.5</td>
<td>0.7</td>
<td>1.1</td>
<td>0.6</td>
<td>0.29</td>
<td>--</td>
<td><1.0</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td>0.02</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.020</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.05</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>0.150</td>
<td>0.190</td>
<td>0.220</td>
<td>0.070</td>
<td>0.03</td>
<td>Y</td>
<td>0.17</td>
<td>0.19</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td>0.05</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.050</td>
<td>--</td>
<td></td>
<td>--</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.010</td>
<td>6</td>
<td>2</td>
<td>33%</td>
<td>0.005</td>
<td>0.016</td>
<td>0.033</td>
<td>0.028</td>
<td>0.01</td>
<td>Y</td>
<td><0.010</td>
<td>0.016</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>1.7</td>
<td>1.9</td>
<td>2.0</td>
<td>0.3</td>
<td>0.10</td>
<td>N</td>
<td>1.7</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>7.5</td>
<td>8.0</td>
<td>8.6</td>
<td>1.1</td>
<td>0.54</td>
<td>N</td>
<td>7.1</td>
<td>8.0</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>0.1</td>
<td>0.05</td>
<td>N</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>3</td>
<td>50%</td>
<td>0.25</td>
<td>0.4</td>
<td>0.62</td>
<td>0.4</td>
<td>0.17</td>
<td>Y</td>
<td><0.50</td>
<td><0.50</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50</td>
<td>5</td>
<td>1</td>
<td>20%</td>
<td>0.51</td>
<td>0.5</td>
<td>0.57</td>
<td>0.1</td>
<td>0.03</td>
<td>Y</td>
<td>0.52</td>
<td>0.54</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>24</td>
<td>25</td>
<td>27</td>
<td>3</td>
<td>1.47</td>
<td>Y</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

RL Reporting limit.
n Number of data points used in analysis.
NA Not applicable.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL008D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>RL, n, # ND, % ND, Min, Average, Max, Range, Std Dev, Normal Distr, 95% LCL, Rep Conc, 95% UCL</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>NA, 6, 0, 0%, 8.6, 8.8, 9.3, 0.7, 0.24, Y, 8.6, 8.8, 9.0</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>NA, 6, 0, 0%, 4.0, 5.9, 7.8, 3.8, 1.25, Y, 4.9, 5.9, 7.0</td>
</tr>
<tr>
<td>Metals/Inorganics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0, 6, 6, 100%, --, --, --, --, --, --, --, <1.0, --</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0, 6, 0, 0%, 3.6, 3.8, 4.3, 0.7, 0.27, N, 3.3, 3.8, 4.2</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0, 6, 0, 0%, 6.6, 6.9, 7.1, 0.5, 0.21, Y, 6.7, 6.9, 7.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0, 6, 6, 100%, --, --, --, --, --, --, --, <1.0, --</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20, 6, 6, 100%, --, --, --, --, --, --, --, <20, --</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20, 6, 6, 100%, --, --, --, --, --, --, --, <0.20, --</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0, 5, 2, 40%, 0.5, 1.1, 1.7, 1.2, 0.54, Y, <1.0, 1.1, 1.6</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15, 6, 6, 100%, --, --, --, --, --, --, --, <15, --</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0, 6, 5, 83%, 0.5, 0.8, 2.1, 1.6, 0.65, --, <1.0, <1.0, 1.8</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20, 6, 4, 67%, 10, 17, 41, 31, 12.50, --, <20, <20, 37</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0, 6, 6, 100%, --, --, --, --, --, --, --, <1.0, --</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0, 6, 6, 100%, --, --, --, --, --, --, --, <8.0, --</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0, 6, 6, 100%, --, --, --, --, --, --, --, <5.0, --</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.500, 6, 6, 100%, --, --, --, --, --, --, --, <0.500, --</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>mg/L</td>
<td>10, 6, 6, 100%, --, --, --, --, --, --, --, <10, --</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0, 6, 5, 83%, 1.0, 1.4, 3.6, 2.6, 1.06, --, <2.0, <2.0, 3.2</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0, 6, 5, 83%, 0.5, 0.7, 1.5, 1.0, 0.41, --, <1.0, <1.0, 1.3</td>
</tr>
<tr>
<td>Silver</td>
<td>mg/L</td>
<td>0.20, 6, 6, 100%, --, --, --, --, --, --, --, <0.20, --</td>
</tr>
<tr>
<td>Strontium</td>
<td>mg/L</td>
<td>5.0, 6, 6, 100%, 38, 40, 43, 5, 1.97, Y, 39, 40, 42</td>
</tr>
<tr>
<td>Thallium</td>
<td>mg/L</td>
<td>2.0, 6, 6, 100%, --, --, --, --, --, --, --, <2.0, --</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>1.0, 6, 6, 100%, 1.9, 2.0, 2.1, 0.2, 0.08, Y, 1.9, 2.0, 2.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>10, 6, 6, 100%, --, 5.0, --, --, --, --, --, --, <10, --</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0, 5, 0, 0%, 49, 53, 58, 9, 3.49, Y, 50, 53, 57</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0, 6, 5, 83%, 0.5, 0.6, 1.1, 0.6, 0.24, --, <1.0, <1.0, 1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td>0.020, 6, 6, 100%, --, --, --, --, --, --, --, <0.020, --</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.050, 6, 1, 17%, 0.025, 0.062, 0.085, 0.060, 0.02, Y, 0.045, 0.062, 0.078</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td>0.050, 6, 6, 100%, --, --, --, --, --, --, --, <0.050, --</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.01000, 5, 2, 40%, 0.005, 0.013, 0.023, 0.018, 0.01, Y, <0.010, 0.013, 0.021</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.0, 6, 0, 0%, 4.7, 4.9, 5.1, 0.4, 0.15, Y, 4.8, 4.9, 5.0</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50, 6, 0, 0%, 13, 14, 15, 2, 0.63, Y, 13, 14, 15</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50, 6, 0, 0%, 2.8, 3.0, 3.1, 0.3, 0.12, N, 2.8, 3.0, 3.2</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50, 6, 0, 0%, 0.82, 0.93, 1.1, 0.3, 0.10, Y, 0.85, 0.93, 1.0</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50, 6, 0, 0%, 1.2, 1.3, 1.4, 0.2, 0.06, Y, 1.2, 1.3, 1.4</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L</td>
<td>3, 6, 0, 0%, 44, 47, 50, 6, 1.99, Y, 46, 47, 49</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

LCL Lower confidence limit.
UCL Upper confidence limit.
RL Reporting limit.
n Number of data points used in analysis.
NA Not applicable.

Table 2: QAL008D
Table 2: QAL026A

Field Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL026A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>µmhos/cm @ 25°C</td>
<td>NA 6 0 0% 25 34 44 19 7.58 Y 27 34 40</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>NA 6 0 0% 7.0 7.3 7.4 0.4 0.15 Y 7.2 7.3 7.4</td>
</tr>
<tr>
<td>D.O. *</td>
<td>ppm</td>
<td>NA 5 0 0% 10.7 11.1 11.6 0.9 0.40 Y 10.7 11.1 11.5</td>
</tr>
</tbody>
</table>

Metals/Inorganics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL026A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0 6 6 100% -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0 6 6 100% -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0 6 6 100% -- -- -- -- -- -- <5.0 --</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0 6 6 100% -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20 6 6 100% -- -- -- -- -- -- <20 --</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20 6 6 100% -- -- -- -- -- -- <0.20 --</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0 5 5 100% 0.5 1.9 3.5 3.0 1.08 Y <1.0 1.9 3.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15 6 6 100% -- -- -- -- -- -- <15 --</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0 6 6 100% -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20 5 0 0% 22 71 150 128 48.98 Y 25 71 118</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0 6 6 100% -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0 6 6 100% -- -- -- -- -- -- <8.0 --</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0 5 5 100% -- -- -- -- -- -- <5.0 --</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.500 6 6 100% -- -- -- -- -- -- <0.500 --</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td>10 6 6 100% -- -- -- -- -- -- <10 --</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0 5 5 100% -- -- -- -- -- -- <2.0 --</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0 6 5 83% 0.5 0.6 1.2 0.7 0.29 -- <1.0 <1.0 1.1</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.20 6 6 100% -- -- -- -- -- -- <0.20 --</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>5.0 6 0 0% 8.2 9.3 10 1.8 0.62 Y 8.7 9.3 9.8</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td>2.0 6 6 100% -- -- -- -- -- -- <2.0 --</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>1.0 6 6 100% -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>10 6 5 83% 5 6 11 6 2.45 -- <10 <10 10</td>
</tr>
</tbody>
</table>

Major Anions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL026A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0 6 0 0% 11 13 14 3 1.05 Y 12 13 13</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0 6 6 100% -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Nitrogen, Ammonium</td>
<td>mg/L</td>
<td>0.020 6 6 100% -- -- -- -- -- -- <0.020 --</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.050 6 0 0% 0.160 0.242 0.330 0.170 0.07 Y 0.18 0.24 0.30</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td>0.050 6 6 100% -- -- -- -- -- -- <0.050 --</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.0100 5 1 20% 0.005 0.017 0.024 0.019 0.01 Y 0.010 0.017 0.024</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.0 6 0 0% 1.7 2.0 2.2 0.5 0.21 Y 1.8 2.0 2.1</td>
</tr>
</tbody>
</table>

Major Cations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL026A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50 6 0 0% 3.3 3.8 4.3 1.0 0.41 Y 3.4 3.8 4.1</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50 6 0 0% 0.62 0.68 0.81 0.19 0.07 Y 0.63 0.68 0.74</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50 6 1 17% 0.25 0.57 0.80 0.55 0.19 Y <0.50 0.57 0.72</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50 6 0 0% 0.62 0.65 0.69 0.07 0.03 Y 0.63 0.65 0.68</td>
</tr>
</tbody>
</table>

General Chemistry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL026A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L</td>
<td>3 6 0 0% 11 12 14 3 1.27 Y 11 12 13</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

LCL: Lower confidence limit.
UCL: Upper confidence limit.
RL: Reporting limit.
n: Number of data points used in analysis.
NA: Not applicable.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL026D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>µmhos/cm @ 25°C</td>
<td>RL 5 n 5 # ND 0 % ND 0% Min 55 Average 60 Max 62 Range 7 Std Dev 2.77 Normal Distn Y 95% LCL 57 Rep Conc 60 95% UCL 62</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>RL NA n 5 # ND 0 % ND 0% Min 9.0 Average 9.10 Max 9.2 Range 0.2 Std Dev 0.07 Normal Distn Y 95% LCL 9.0 Rep Conc 9.1 95% UCL 9.2</td>
</tr>
<tr>
<td>D.O. *</td>
<td>ppm</td>
<td>RL NA n 5 # ND 0 % ND 0% Min 8.0 Average 10.6 Max 11.7 Range 3.7 Std Dev 1.49 Normal Distn Y 95% LCL 8.2 Rep Conc 10.6 95% UCL 13.1</td>
</tr>
<tr>
<td>Metals/inorganics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L 1.0</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L 1.0</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L 5.0</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L 1.0</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L 20</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L 0.20</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L 1.0</td>
<td>RL 6 n 4 # ND 87% Min 0.5 Average 0.8 Max 1.4 Range 0.9 Std Dev 0.40 Normal Distn Y 95% LCL -- Rep Conc <1.0 95% UCL 0.8 1.4</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L 15</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L 1.0</td>
<td>RL 6 n 4 # ND 67% Min 0.5 Average 1.0 Max 2.5 Range 2.0 Std Dev 0.82 Normal Distn Y 95% LCL <1.0 Rep Conc 1.0 2.3</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L 20</td>
<td>RL 6 n 2 # ND 33% Min 10 Average 18 Max 35 Range 25 Std Dev 9.54 Normal Distn Y 95% LCL <20 Rep Conc <20 95% UCL 26</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L 1.0</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc <1.0 95% UCL --</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L 8.0</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc <8.0 95% UCL --</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L 5.0</td>
<td>RL 6 n 5 # ND 83% Min 2.5 Average 3.0 Max 5.5 Range 3.0 Std Dev 1.22 Normal Distn Y 95% LCL <5.0 Rep Conc 5.0 95% UCL 5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L 0.500</td>
<td>RL 6 n 5 # ND 83% Min 0.25 Average 0.30 Max 0.55 Range 0.30 Std Dev 0.12 Normal Distn Y 95% LCL <0.50 Rep Conc 0.50 95% UCL 0.50</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>mg/L 10</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc <10 95% UCL --</td>
</tr>
<tr>
<td>Nickel</td>
<td>mg/L 2.0</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Selenium</td>
<td>mg/L 1.0</td>
<td>RL 6 n 5 # ND 83% Min 0.5 Average 0.7 Max 1.6 Range 1.1 Std Dev 0.45 Normal Distn Y 95% LCL <1.0 Rep Conc 0.7 1.4</td>
</tr>
<tr>
<td>Silver</td>
<td>mg/L 0.20</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL <0.20 Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Strontium</td>
<td>mg/L 5.0</td>
<td>RL 6 n 0 # ND 0% Min 9.0 Average 10 Max 11 Range 2.0 Std Dev 0.70 Normal Distn Y 95% LCL 9.2 Rep Conc 9.8 95% UCL 10.4</td>
</tr>
<tr>
<td>Thallium</td>
<td>mg/L 2.0</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL <2.0 Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Vanadium</td>
<td>mg/L 1.0</td>
<td>RL 6 n 5 # ND 83% Min 0.5 Average 0.6 Max 1.0 Range 0.5 Std Dev 0.20 Normal Distn Y 95% LCL <1.0 Rep Conc <1.0 95% UCL 0.9</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/L 10</td>
<td>RL 6 n 5 # ND 83% Min 5 Average 8 Max 20 Range 15 Std Dev 6.12 Normal Distn Y 95% LCL <10 Rep Conc <10 95% UCL 18</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L 2.0</td>
<td>RL 5 n 5 # ND 0% Min 27 Average 31 Max 36 Range 9 Std Dev 3.70 Normal Distn Y 95% LCL 27 Rep Conc 31 95% UCL 34</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L 1.0</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L 0.020</td>
<td>RL 6 n 6 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL -- Rep Conc <1.0 95% UCL --</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L 0.050</td>
<td>RL 6 n 0 # ND 0% Min 0.078 Average 0.101 Max 0.120 Range 0.042 Std Dev 0.02 Normal Distn Y 95% LCL 0.088 Rep Conc 0.101 95% UCL 0.113</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L 0.050</td>
<td>RL 6 n 0 # ND 100% Min -- Average -- Max -- Range -- Std Dev -- Normal Distn Y 95% LCL <0.020 Rep Conc -- 95% UCL --</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L 0.0100</td>
<td>RL 6 n 2 # ND 33% Min 0.005 Average 0.017 Max 0.027 Range 0.022 Std Dev 0.01 Normal Distn Y 95% LCL <0.010 Rep Conc 0.017 95% UCL 0.025</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L 1.0</td>
<td>RL 6 n 0 # ND 0% Min 1.8 Average 2.0 Max 2.1 Range 0.3 Std Dev 0.10 Normal Distn Y 95% LCL 1.8 Rep Conc 2.0 95% UCL 2.1</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L 0.50</td>
<td>RL 6 n 0 # ND 0% Min 8.6 Average 9.3 Max 10 Range 1.4 Std Dev 0.46 Normal Distn Y 95% LCL 8.9 Rep Conc 9.3 95% UCL 9.7</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L 0.50</td>
<td>RL 6 n 0 # ND 0% Min 1.2 Average 1.3 Max 1.4 Range 0.2 Std Dev 0.08 Normal Distn Y 95% LCL 1.3 Rep Conc 1.3 95% UCL 1.4</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L 0.50</td>
<td>RL 6 n 3 # ND 50% Min 0.25 Average 0.4 Max 0.75 Range 0.5 Std Dev 0.21 Normal Distn Y 95% LCL <0.50 Rep Conc <0.50 95% UCL 0.59</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L 0.50</td>
<td>RL 6 n 0 # ND 0% Min 0.61 Average 0.6 Max 0.66 Range 0.1 Std Dev 0.02 Normal Distn Y 95% LCL 0.62 Rep Conc 0.64 95% UCL 0.65</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated)</td>
<td>mg/L 3.0</td>
<td>RL 6 n 0 # ND 0% Min 27 Average 29 Max 31 Range 4 Std Dev 1.36 Normal Distn Y 95% LCL 28 Rep Conc 29 95% UCL 30</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

RL Reporting limit.
n Number of data points used in analysis.
NA Not applicable.

LCL Lower confidence limit.
UCL Upper confidence limit.
Table 2
Statistical Summary of Results
May - October 2008
Quaternary Monitoring Location QAL029A
Eagle Project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL029A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>µmhos/cm @ 25°C</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>D.O. *</td>
<td>ppm</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Metals/Inorganics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Nickel</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Selenium</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Silver</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Strontium</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Thallium</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Vanadium</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated)</td>
<td>as CaCO₃ mg/L</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

RL Reporting limit.
n Number of data points used in analysis.
NA Not applicable.

LCL Lower confidence limit.
UCL Upper confidence limit.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL029D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RL</td>
<td>n</td>
</tr>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>NA</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>NA</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>NA</td>
</tr>
<tr>
<td>Metals/inorganics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>mg/L</td>
<td>10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>10</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td>0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.0100</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated)</td>
<td>mg/L</td>
<td>3</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

LCL: Lower confidence limit.
UCL: Upper confidence limit.
RL: Reporting limit.
n: Number of data points used in analysis.
NA: Not applicable.

Table 2: QAL029D
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL050A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>µmhos/cm @ 25°C</td>
<td>RL</td>
</tr>
<tr>
<td>pH</td>
<td>NA</td>
<td>4</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>NA</td>
</tr>
<tr>
<td>Metals/Inorganics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td>10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>10</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td>0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.0100</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L</td>
<td>3</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

RL Reporting limit.
n Number of data points used in analysis.
NA Not applicable.

Table 2: QAL050A
Table 2: QAL051A

Statistical Summary of Results
May - October 2008
Quaternary Monitoring Location QAL051A
Eagle Project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL051A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>RL n # ND % ND Min Average Max Range Std Dev Normal Distn 95% LCL Rep Conc 95% UCL</td>
</tr>
<tr>
<td>Metals/inorganics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0 5 5 100% -- -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0 5 1 20% 0.5 1.2 1.5 1.0 0.40 Y <1.0 1.2 1.6</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0 5 0 0% 7.4 9.7 14 6.6 2.75 Y 7.1 9.7 12</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0 5 5 100% -- -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20 5 3 60% 10 18 38 28 12.20 -- <20 <20 29</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20 5 5 100% -- -- -- -- -- -- -- <0.20 --</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0 5 4 80% 0.5 0.6 1.2 0.7 0.31 -- <1.0 <1.0 <1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15 5 5 100% -- -- -- -- -- -- -- <15 --</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0 5 5 100% -- -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20 5 5 100% -- -- -- -- -- -- -- <20 --</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0 5 5 100% -- -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0 5 5 100% -- -- -- -- -- -- -- <8.0 --</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0 5 0 0% 10 14 22 12 5.03 Y 10 14 19</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.500 5 0 0% 0.55 1.54 2.37 1.82 0.83 Y 0.75 1.54 2.32</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td>10 5 2 40% 5 19 46 41 17.47 Y <10 19 36</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0 5 5 100% -- -- -- -- -- -- -- <2.0 --</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0 5 5 100% -- -- -- -- -- -- -- <1.0 --</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.20 5 5 100% -- -- -- -- -- -- -- <0.20 --</td>
</tr>
<tr>
<td>Strontium</td>
<td>mg/L</td>
<td>5.0 5 0 0% 26 30 36 10 4.10 Y 26 30 34</td>
</tr>
<tr>
<td>Thallium</td>
<td>mg/L</td>
<td>2.0 5 5 100% -- -- -- -- -- -- -- <2.0 --</td>
</tr>
<tr>
<td>Vanadium</td>
<td>mg/L</td>
<td>1.0 5 0 0% 1.4 2.1 2.7 1.3 0.49 Y 1.6 2.1 2.5</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/L</td>
<td>10 5 5 100% -- -- -- -- -- -- -- <10 --</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0 5 0 0% 53 60 74 21 8.72 Y 52 60 68</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0 5 3 80% 0.5 0.8 1.4 0.9 0.44 -- <1.0 <1.0 1.2</td>
</tr>
<tr>
<td>Sodium, Ammonia</td>
<td>mg/L</td>
<td>0.020 5 5 100% -- -- -- -- -- -- -- <0.020 --</td>
</tr>
<tr>
<td>Sodium, Nitrate</td>
<td>mg/L</td>
<td>0.050 5 5 100% -- -- -- -- -- -- -- <0.050 --</td>
</tr>
<tr>
<td>Sodium, Nitrite</td>
<td>mg/L</td>
<td>0.050 5 5 100% -- -- -- -- -- -- -- <0.050 --</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.0100 5 0 0% 0.020 0.036 0.063 0.043 0.02 Y 0.021 0.036 0.052</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.0 5 0 0% 2.7 3.5 4.1 1.4 0.62 Y 2.9 3.5 4.1</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50 5 0 0% 13 15 16 3 1.14 Y 14 15 16</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50 5 0 0% 1.9 2.1 2.3 0.4 0.16 Y 2.0 2.1 2.3</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50 5 0 0% 1.8 2.8 5.0 3.2 1.35 Y 1.6 2.8 4.1</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50 5 0 0% 1.20 1.8 3.1 1.9 0.74 Y 1.1 1.8 2.5</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L</td>
<td>3 5 0 0% 40 45 49 9 3.52 Y 42 45 49</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

** Notes:**
- LCL: Lower confidence limit.
- UCL: Upper confidence limit.
- RL: Reporting limit.
- n: Number of data points used in analysis.
- NA: Not applicable.

Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.
Table 2: Statistical Summary of Results for Quaternary Monitoring Location QAL051D

Eagle Project

Table 2: QAL051D

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>RL</th>
<th>n</th>
<th>% ND</th>
<th>Min</th>
<th>Average</th>
<th>Max</th>
<th>Range</th>
<th>Std Dev</th>
<th>Normal Distr</th>
<th>95% LCL</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Parameters</td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>NA</td>
<td>6</td>
<td>0%</td>
<td>80</td>
<td>129</td>
<td>180</td>
<td>100</td>
<td>38.70</td>
<td>Y</td>
<td>97</td>
<td>129 161</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>NA</td>
<td>6</td>
<td>0%</td>
<td>7.4</td>
<td>8.5</td>
<td>9.5</td>
<td>2.1</td>
<td>0.68</td>
<td>Y</td>
<td>8.0</td>
<td>8.5</td>
</tr>
<tr>
<td>D.O. *</td>
<td>ppm</td>
<td>NA</td>
<td>6</td>
<td>0%</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.06</td>
<td>Y</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Metals/Inorganics</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>5%</td>
<td>0.5</td>
<td>0.7</td>
<td>1.4</td>
<td>0.9</td>
<td>0.37</td>
<td>--</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>0%</td>
<td>2.2</td>
<td>3.0</td>
<td>4.2</td>
<td>2.0</td>
<td>0.83</td>
<td>Y</td>
<td>2.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>0%</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>2.0</td>
<td>0.75</td>
<td>Y</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6%</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.06</td>
<td>Y</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20</td>
<td>6</td>
<td>0%</td>
<td>21</td>
<td>21</td>
<td>23</td>
<td>2.0</td>
<td>0.82</td>
<td>N</td>
<td><20</td>
<td>21 23</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20</td>
<td>6</td>
<td>6%</td>
<td>0.5</td>
<td>0.6</td>
<td>1.3</td>
<td>0.8</td>
<td>0.33</td>
<td>--</td>
<td><0.20</td>
<td>--</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>5%</td>
<td>0.5</td>
<td>0.6</td>
<td>1.3</td>
<td>0.8</td>
<td>0.33</td>
<td>--</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>3%</td>
<td>0.5</td>
<td>0.9</td>
<td>1.4</td>
<td>0.9</td>
<td>0.44</td>
<td>N</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20</td>
<td>6</td>
<td>6%</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.06</td>
<td>Y</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6%</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.06</td>
<td>Y</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0</td>
<td>6</td>
<td>6%</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.06</td>
<td>Y</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>0%</td>
<td>11</td>
<td>16</td>
<td>20</td>
<td>9.0</td>
<td>3.15</td>
<td>Y</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.500</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.50</td>
<td>--</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td>10</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><10</td>
<td>--</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.0</td>
<td>--</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.20</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.20</td>
<td>--</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>0%</td>
<td>79</td>
<td>85</td>
<td>89</td>
<td>10</td>
<td>4.17</td>
<td>Y</td>
<td>82</td>
<td>85</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td>2.0</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.0</td>
<td>--</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>1%</td>
<td>0.5</td>
<td>1.4</td>
<td>2.6</td>
<td>2.1</td>
<td>0.68</td>
<td>Y</td>
<td><1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>10</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><10</td>
<td>--</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0</td>
<td>5</td>
<td>0%</td>
<td>62</td>
<td>66</td>
<td>73</td>
<td>11</td>
<td>4.18</td>
<td>Y</td>
<td>62</td>
<td>66</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td>0.020</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.020</td>
<td>--</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.050</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.050</td>
<td>--</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td>0.050</td>
<td>6</td>
<td>6%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.050</td>
<td>--</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.0100</td>
<td>6</td>
<td>3%</td>
<td>0.005</td>
<td>0.011</td>
<td>0.019</td>
<td>0.014</td>
<td>0.01</td>
<td>Y<0.010</td>
<td>0.011</td>
<td>0.016</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.0</td>
<td>6</td>
<td>0%</td>
<td>5.3</td>
<td>5.8</td>
<td>6.1</td>
<td>0.8</td>
<td>0.27</td>
<td>Y</td>
<td>5.5</td>
<td>5.8</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0%</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>2</td>
<td>0.82</td>
<td>N</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0%</td>
<td>3.3</td>
<td>3.5</td>
<td>3.6</td>
<td>0.3</td>
<td>0.10</td>
<td>Y</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0%</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>0.4</td>
<td>0.19</td>
<td>N</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0%</td>
<td>2.80</td>
<td>3.0</td>
<td>3.2</td>
<td>0.4</td>
<td>0.13</td>
<td>Y</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L</td>
<td>3</td>
<td>6</td>
<td>0%</td>
<td>54</td>
<td>55</td>
<td>60</td>
<td>6</td>
<td>2.33</td>
<td>N</td>
<td>51</td>
<td>55</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.
LCL Lower confidence limit.
UCL Upper confidence limit.
RL Reporting limit.
n Number of data points used in analysis.
NA Not applicable.
Table 2: QAL052A

Statistical Summary of Results

May - October 2008

Quaternary Monitoring Location QAL052A

Eagle Project

<table>
<thead>
<tr>
<th>Field Parameters</th>
<th>Units</th>
<th>QAL052A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>NA</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>NA</td>
</tr>
<tr>
<td>D.O. ppm*</td>
<td></td>
<td>NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metals/inorganics</th>
<th>Units</th>
<th>QAL052A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony ug/L</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Arsenic ug/L</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Barium ug/L</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Beryllium ug/L</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Boron ug/L</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Cadmium ug/L</td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Chromium ug/L</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Cobalt ug/L</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Copper ug/L</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Iron ug/L</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Lead ug/L</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Lithium ug/L</td>
<td></td>
<td>8.0</td>
</tr>
<tr>
<td>Manganese ug/L</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Mercury ng/L</td>
<td></td>
<td>0.500</td>
</tr>
<tr>
<td>Molybdenum ug/L</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Nickel ug/L</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Selenium ug/L</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Silver ug/L</td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>Strontium ug/L</td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Thallium ug/L</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Vanadium ug/L</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Zinc ug/L</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Anions</th>
<th>Units</th>
<th>QAL052A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Bicarbonate mg/L</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Chloride mg/L</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Chloride mg/L</td>
<td></td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Ammonia mg/L</td>
<td></td>
<td>0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrate mg/L</td>
<td></td>
<td>0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrite mg/L</td>
<td></td>
<td>0.050</td>
</tr>
<tr>
<td>Phosphorus, Total mg/L</td>
<td></td>
<td>0.0100</td>
</tr>
<tr>
<td>Sulfate mg/L</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Cations</th>
<th>Units</th>
<th>QAL052A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium mg/L</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>Magnesium mg/L</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>Potassium mg/L</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>Sodium mg/L</td>
<td></td>
<td>0.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Chemistry</th>
<th>Units</th>
<th>QAL052A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, (calculated) as CaCO3 mg/L</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

*Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

RL Reporting limit.

n Number of data points used in analysis.

NA Not applicable.

LCL Lower confidence limit.

UCL Upper confidence limit.
Table 2: QAL053A

Quaternary Monitoring Location QAL053A

Eagle Project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>RL</th>
<th>n</th>
<th># ND</th>
<th>% ND</th>
<th>Min</th>
<th>Average</th>
<th>Max</th>
<th>Range</th>
<th>Std Dev</th>
<th>Normal Distn</th>
<th>95% LCL</th>
<th>Rep Conc</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Parameters</td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>NA</td>
<td>5</td>
<td>0</td>
<td>0%</td>
<td>101</td>
<td>109</td>
<td>114</td>
<td>13</td>
<td>6.50</td>
<td>N</td>
<td>98</td>
<td>109</td>
<td>119</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>NA</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>8.5</td>
<td>8.8</td>
<td>9.3</td>
<td>0.9</td>
<td>0.32</td>
<td>Y</td>
<td>8.5</td>
<td>8.8</td>
<td>9.1</td>
</tr>
<tr>
<td>D.O. *</td>
<td>ppm</td>
<td>NA</td>
<td>5</td>
<td>0</td>
<td>0%</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>0.2</td>
<td>0.07</td>
<td>Y</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Metals/inorganics</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>6.6</td>
<td>7.1</td>
<td>7.7</td>
<td>1.1</td>
<td>0.40</td>
<td>Y</td>
<td>6.8</td>
<td>7.1</td>
<td>7.4</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>7.1</td>
<td>7.6</td>
<td>8</td>
<td>0.9</td>
<td>0.36</td>
<td>Y</td>
<td>7.3</td>
<td>7.6</td>
<td>7.9</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>27</td>
<td>30</td>
<td>34</td>
<td>7.0</td>
<td>2.34</td>
<td>Y</td>
<td>28</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.20</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>5</td>
<td>83%</td>
<td>0.5</td>
<td>0.6</td>
<td>1.1</td>
<td>0.6</td>
<td>0.24</td>
<td>--</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><15</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20</td>
<td>6</td>
<td>5</td>
<td>83%</td>
<td>10</td>
<td>12</td>
<td>24</td>
<td>14.0</td>
<td>5.72</td>
<td><20</td>
<td><20</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><8.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><5.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.50</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><10</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.20</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.20</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>69</td>
<td>75</td>
<td>83</td>
<td>14</td>
<td>5.35</td>
<td>Y</td>
<td>70</td>
<td>75</td>
<td>79</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td>2.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>1.2</td>
<td>1.4</td>
<td>1.5</td>
<td>0.3</td>
<td>0.13</td>
<td>Y</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><10</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>56</td>
<td>61</td>
<td>66</td>
<td>10</td>
<td>4.29</td>
<td>Y</td>
<td>57</td>
<td>61</td>
<td>65</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td>0.020</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.020</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.050</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.050</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td>0.050</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.050</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.0100</td>
<td>6</td>
<td>1</td>
<td>17%</td>
<td>0.005</td>
<td>0.017</td>
<td>0.026</td>
<td>0.021</td>
<td>0.01</td>
<td>Y</td>
<td>0.010</td>
<td>0.017</td>
<td>0.023</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>5.7</td>
<td>6</td>
<td>2</td>
<td>6.2</td>
<td>6.5</td>
<td>0.8</td>
<td>0.29</td>
<td></td>
<td></td>
<td>Y</td>
<td>5.9</td>
<td>6.2</td>
<td>6.4</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>2</td>
<td>0.82</td>
<td>Y</td>
<td>15</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>3.5</td>
<td>3.8</td>
<td>4</td>
<td>0.5</td>
<td>0.19</td>
<td>Y</td>
<td>3.6</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>0.1</td>
<td>0.05</td>
<td>N</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>1.70</td>
<td>1.8</td>
<td>2</td>
<td>0.3</td>
<td>0.12</td>
<td>Y</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO₃</td>
<td>mg/L</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>49</td>
<td>54</td>
<td>56</td>
<td>7</td>
<td>2.76</td>
<td>Y</td>
<td>51</td>
<td>54</td>
<td>56</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.
LCL Lower confidence limit.
UCL Upper confidence limit.
RL Reporting limit.
n Number of data points used in analysis.
NA Not applicable.
Table 2: QAL055A

Statistical Summary of Results
May - October 2008
Quaternary Monitoring Location QAL055A
Eagle Project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>RL n</th>
<th># ND</th>
<th>% ND</th>
<th>Min</th>
<th>Average</th>
<th>Max</th>
<th>Range</th>
<th>Std Dev</th>
<th>Normal Distr</th>
<th>95% LCL</th>
<th>Rep Conc</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Parameters</td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>NA 6 0 0%</td>
<td>47</td>
<td>79</td>
<td>113</td>
<td>66</td>
<td>24.97</td>
<td>Y</td>
<td>58</td>
<td>79</td>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>NA 6 0 0%</td>
<td>8.8</td>
<td>9.1</td>
<td>9.7</td>
<td>0.9</td>
<td>0.31</td>
<td>Y</td>
<td>8.8</td>
<td>9.1</td>
<td>9.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.O.*</td>
<td>ppm</td>
<td>NA 5 0 0%</td>
<td>9.5</td>
<td>9.9</td>
<td>10.2</td>
<td>0.6</td>
<td>0.25</td>
<td>Y</td>
<td>9.7</td>
<td>9.9</td>
<td>10.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metals/inorganics</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>1.0</td>
<td>1.4</td>
<td>2</td>
<td>1.0</td>
<td>0.37</td>
<td>Y</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><20</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20</td>
<td>6</td>
<td>2</td>
<td>33%</td>
<td>10</td>
<td>20</td>
<td>27</td>
<td>17</td>
<td>7.53</td>
<td>Y</td>
<td><20</td>
<td><20</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.500</td>
<td>6</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.20</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>5.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>21</td>
<td>23</td>
<td>24</td>
<td>3</td>
<td>1.38</td>
<td>Y</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td>2.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>1.0</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><10</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>35</td>
<td>38</td>
<td>42</td>
<td>7</td>
<td>2.50</td>
<td>Y</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0</td>
<td>6</td>
<td>5</td>
<td>83%</td>
<td>0.5</td>
<td>0.6</td>
<td>1.0</td>
<td>0.5</td>
<td>0.20</td>
<td>--</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td>0.020</td>
<td>6</td>
<td>6</td>
<td>100%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.050</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>0.060</td>
<td>0.072</td>
<td>0.093</td>
<td>0.033</td>
<td>0.01</td>
<td>Y</td>
<td>0.063</td>
<td>0.072</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td>0.050</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td><0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.0100</td>
<td>6</td>
<td>3</td>
<td>50%</td>
<td>0.005</td>
<td>0.010</td>
<td>0.016</td>
<td>0.011</td>
<td>0.01</td>
<td>N</td>
<td><0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.0</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>0.2</td>
<td>0.11</td>
<td>N</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>9.5</td>
<td>10</td>
<td>11</td>
<td>1.5</td>
<td>0.55</td>
<td>Y</td>
<td>9.5</td>
<td>10</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>2.0</td>
<td>2.3</td>
<td>2.4</td>
<td>0.4</td>
<td>0.15</td>
<td>Y</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>0.5</td>
<td>0.6</td>
<td>0.82</td>
<td>0.3</td>
<td>0.12</td>
<td>Y</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>0.84</td>
<td>0.9</td>
<td>1.0</td>
<td>0.2</td>
<td>0.07</td>
<td>Y</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

General Chemistry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>RL n</th>
<th># ND</th>
<th>% ND</th>
<th>Min</th>
<th>Average</th>
<th>Max</th>
<th>Range</th>
<th>Std Dev</th>
<th>Normal Distr</th>
<th>95% LCL</th>
<th>Rep Conc</th>
<th>95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0%</td>
<td>32</td>
<td>34</td>
<td>37</td>
<td>5</td>
<td>1.87</td>
<td>Y</td>
<td>33</td>
<td>34</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

LCL Lower confidence limit.
UCL Upper confidence limit.

RL Reporting limit.
n Number of data points used in analysis.
NA Not applicable.

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

LCL Lower confidence limit.
UCL Upper confidence limit.

RL Reporting limit.
n Number of data points used in analysis.
NA Not applicable.
Table 2: QAL056A

Statistical Summary of Results

May - October 2008

Quaternary Monitoring Location QAL056A

Eagle Project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL056A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RL n</td>
<td># ND ? ND % ND</td>
</tr>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>NA</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>NA</td>
</tr>
<tr>
<td>D.O. *</td>
<td>ppm</td>
<td>NA</td>
</tr>
<tr>
<td>Metals/Inorganics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td>10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.20</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>10</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td>0.020</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L</td>
<td>0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.0100</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L</td>
<td>3.0</td>
</tr>
</tbody>
</table>

*Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.

RL = Reporting limit.
n = Number of data points used in analysis.
NA = Not applicable.

LCL = Lower confidence limit.
UCL = Upper confidence limit.
Table 2
Statistical Summary of Results
May - October 2008
Quaternary Monitoring Location QAL057A
Eagle Project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL057A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RL</td>
<td>n</td>
</tr>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>NA</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>D.O. *</td>
<td>ppm</td>
<td>NA</td>
</tr>
<tr>
<td>Metals/inorganics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L</td>
<td>20</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L</td>
<td>0.20</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L</td>
<td>15</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L</td>
<td>20</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Lithium</td>
<td>ug/L</td>
<td>8.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>mg/L</td>
<td>0.500</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ug/L</td>
<td>10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ug/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Silver</td>
<td>ug/L</td>
<td>0.200</td>
</tr>
<tr>
<td>Strontium</td>
<td>ug/L</td>
<td>5.0</td>
</tr>
<tr>
<td>Thallium</td>
<td>ug/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ug/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Zinc</td>
<td>ug/L</td>
<td>10</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L</td>
<td>2.0</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L</td>
<td>0.02</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L</td>
<td>0.050</td>
</tr>
<tr>
<td>Nitrogen, Nitrile</td>
<td>mg/L</td>
<td>0.050</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>0.0100</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>1.0</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L</td>
<td>0.50</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L</td>
<td>3</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.
LCL: Lower confidence limit.
UCL: Upper confidence limit.
RL: Reporting limit.
n: Number of data points used in analysis.
NA: Not applicable.
Table 2: Statistical Summary of Results
May - October 2008
Quaternary Monitoring Location QAL057D
Eagle Project

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>QAL057D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>μmhos/cm @ 25°C</td>
<td>NA 6 0 0%</td>
</tr>
<tr>
<td>pH</td>
<td>NA 6 0 0%</td>
<td>7.6 8.5 8.8 1.2 0.47 N</td>
</tr>
<tr>
<td>DO *</td>
<td>NA 6 0 0%</td>
<td>3.5 4.3 5.5 2.0 0.89 Y</td>
</tr>
<tr>
<td>Metals/Inorganics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>ug/L 1.0</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ug/L 1.0</td>
<td>6 0 0%</td>
</tr>
<tr>
<td>Barium</td>
<td>ug/L 5.0</td>
<td>6 2 33%</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ug/L 1.0</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Boron</td>
<td>ug/L 20</td>
<td>6 0 0%</td>
</tr>
<tr>
<td>Cadmium</td>
<td>ug/L 0.20</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Chromium</td>
<td>ug/L 1.0</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ug/L 15</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Copper</td>
<td>ug/L 1.0</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Iron</td>
<td>ug/L 20</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Lead</td>
<td>ug/L 1.0</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Major Anions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity, Bicarbonate</td>
<td>mg/L 2.0</td>
<td>6 0 0%</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L 1.0</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Nitrogen, Ammonia</td>
<td>mg/L 0.020</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Nitrogen, Nitrate</td>
<td>mg/L 0.050</td>
<td>6 3 50%</td>
</tr>
<tr>
<td>Nitrogen, Nitrite</td>
<td>mg/L 0.050</td>
<td>6 6 100%</td>
</tr>
<tr>
<td>Phosphorus, Total</td>
<td>mg/L 0.0100</td>
<td>6 1 17%</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L 1.0</td>
<td>6 0 0%</td>
</tr>
<tr>
<td>Major Cations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/L 0.50</td>
<td>6 0 0%</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/L 0.50</td>
<td>6 0 0%</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/L 0.50</td>
<td>6 0 0%</td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/L 0.50</td>
<td>6 0 0%</td>
</tr>
<tr>
<td>General Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness, (calculated) as CaCO3</td>
<td>mg/L 3</td>
<td>6 0 0%</td>
</tr>
</tbody>
</table>

* Measured D.O. concentrations are considered to be biased high due to required sample collection methods and resulting field measurement bias.
LCL Lower confidence limit.
UCL Upper confidence limit.
RL Reporting limit.
n Number of data points used in analysis.
NA Not applicable.
MONITORING WELL LOCATIONS

- OUTCROP
- PROPOSED MINE FACILITIES
- TREATED WATER INFILTRATION SYSTEM (TWIS)
- MONITORING WELL

Reference

Data provided by Michigan Center for Geographic Information, North Jackson Company

Projection & Datum: UTM NAD 83 Zone 16N

Scale: 1:4,800

Figure: 2

Eagle Mine
2008 Background Water Quality Report
for Groundwater Discharge Permit
GWV810161
Reference
Data provided by Michigan Center for Geographic Information, North Jackson Company
Projection & Datum: UTM NAD 83 Zone 16N

Figure: 3

ore body
outcrop
groundwater flowline
proposed mine facilities
groundwater contour elevation
[10' contour interval, dashed where inferred]
groundwater basin divide
treated water infiltration system (TWIS)
stream elevation point
[source: digital elevation model: 98 ft resolution]
monitoring well
wetland piezometer
surface water monitoring station

Groundwater elevation (ft MSL on 5/29/2008)

Groundwater Basin Divide

(1415.59) Groundwater elevation

Scale: 1:9,600

0 800 1,600 Feet