

LAB XL PROGRESS REPORT FOR 2003

UNIVERSITY OF MASSACHUSETTS BOSTON

Submitted July 1, 2004

Introduction

Despite resource constraints and cutbacks in the Environmental, Health and Safety Office at the University of Massachusetts Boston, we have continued to demonstrate effective management and improvement in the implementation of the Chemical Hygiene/Environmental Management Plan. Section 8 of this Report provides an overview of performance. Waste data in this Report represents activities for the calendar year 2003. Other activities and data represent the UMB fiscal and academic year, July 1, 2003 – June 30, 2004

EPI #1: Annual Surveys of Hazardous Chemicals of Concern

Results to date:

The goal of the first EPI is to assure that outdated hazardous chemicals of concern are appropriately removed from laboratory shelves and disposed properly.

As stated previously, UMass Boston is required by the Boston Fire Department to maintain chemical inventories for all labs. Therefore, all laboratories (100%) have had a survey of Hazardous Chemicals of Concern (HCOCs) and updated these inventories. EH&S implemented a chemical bar code based tracking system on a lab-by-lab basis in 2001/2002. For each Principal investigator, the EH&S Office has taken the inventory from each laboratory and generated Operational Material Safety Data Sheets for each laboratory. In addition, each information package provided by EH&S to a laboratory includes the inventory list with HCOC's marked and an explanation of HCOCs

Lessons learned:

The bar code system is currently operated by EH&S and provides only a snapshot in time of any single lab's inventory.

We have yet to conduct a second inventory of labs to verify that our existing tracking measures (e.g., purchasing records, PI updates, waste disposal) can be relied upon to provide accurate snapshots of chemical inventories. A re-inventory will allow us to determine how "accurate" our inventories are at a given time and may give us some information about movement of materials from one lab to another.

Lab XL Report

Page 1 of <u>16</u>

,1	Deleted: 16
1	Inserted: 16
{	Deleted: 16

Once the re-inventory is complete, we should be able to more carefully evaluate trends in HCOCs on the shelf.

We believe that the computerized tracking system may enhance the ability of EH&S to identify potential pollution prevention and redistribution opportunities however, we have not investigated this to date.

We have built an on-line searchable database for our Operational Material Safety Data Sheets, which allows lab workers in the Chemistry Department to access information on any chemical as needed. We anticipate introducing this tool to all lab workers in the Fall 2004 semester. In addition, we hope to network the barcode inventory program so that individual departments will have real-time access to the inventories, which will allow them to update the system as new materials enter their labs and search for chemicals, when needed, from other labs.

EPI #2: Verification of HCOC Surveys

Results to date:

The second EPI measures the participation rate in the HCOC inventory effort. As stated above, with the bar-coding system in place, all HCOCs have been identified, and surveys have been conducted for all (100%) labs.

EPI #3: Pollution Prevention Opportunity Assessments

EH&S continues to emphasize pollution prevention concepts during training and researchers are encouraged, during both waste pickups and lab inspections, to incorporate pollution prevention ideas such as product substitution, limited purchasing and waste minimization into their everyday work. The EH&S Office encourages researchers to examine pollution prevention opportunities at the time of experimental design and when they are developing their Standard Operating Procedures. After the experimental design process is in place, we remind them to purchase only what they need. Finally, we suggest that they determine whether a treatment method can be incorporated at the end of the experiment. At a small university, we are able to remind and reinforce the P2 message with faculty, staff and graduate students during our many informal EH&S/researcher interactions.

We believe this approach is quite effective. In 2002/2003 we conducted a P2 survey of all UMB PIs. Results of that survey showed that 73%, nearly ³/₄ of all PIs had already downsized their experiments, substituted chemicals or changed their processes to use less toxic material in their experiments. The survey also showed that 25% of the PIs would look to another laboratory if they run out of a chemical.

1	Deleted: 16
-{	Inserted: 16
-{	Deleted: 16

Lab XL Report

Page 2 of <u>16</u>

In 2004, we embedded several P2 statements into our Annual Environmental Awareness Survey and asked respondents to rank the statements from 1-5 with 1 being "strongly agree " to 5 being "strongly disagree". The survey results were very encouraging and indicated that:

- 100% believed it was the lab workers responsibility to reduce their environmental impact.
- 40% believed they could produce 10% less waste.
- 95% believed scientists should find safer chemicals to use in experiments.
- 92% believed that it was their responsibility to make changes in order to produce less waste.

For EH&S, now the task is to try and encourage the researchers to put their beliefs into practice.

EPI #4: Hazardous Materials Reuse and Redistribution

Results to date:

EH&S continues to evaluate laboratory wastes for reuse when these materials are collected from labs. EH&S maintains a list of excess chemicals and publishes them to the EH&S website. At least once a semester, EH&S notifies all PIs about the list via email. PIs or laboratory workers may request excess re-usable chemicals on the list and EH&S will deliver the material to their laboratory. If an excess chemical remains in the EH&S inventory for more than 2 years, the material will be disposed of. As in previous years, there have been few inquiries or requests for these excess stock materials. Chemicals were requested from EH&S and delivered to laboratories on only two occasions.

Lessons learned:

We learned from previous years' Pollution Prevention (P2) surveys that P2 is already occurring. Pls report that they have downsized their experiments, substituted chemicals or changed processes to decrease their use of toxic chemicals. These changes have occurred independent of EH&S efforts promoting a central chemical waste reuse program and measuring its success.

Clearly, EH&S cannot dictate how researchers do their work and an EH&S implemented P2 program will not be effective. However, a communication from EH&S to labs on a frequent basis may be of value in reminding researchers to think about P2.

EPI #5: Laboratory Waste Generation Rates

Results to date:

Deleted: 16	
Inserted: 16	
Deleted: 16	

Lab XL Report

Page 3 of <u>16</u> UMass Boston

EPI #5 concerns the amount of laboratory waste generated. The data are presented in Table 1 on the next page. UMB's hazardous waste generation decreased by roughly 16% from the previous year. In total, we have experienced a 25% reduction of hazardous waste since the beginning of the XL Pilot Program. We have also seen the reduction of certain highly hazardous wastes (e.g., organic peroxides, pyrophorics, oxidizers). It is impossible to determine whether these reductions are attributable to a better managed program or these reductions simply reflect changes in research activities.

Lab XL Report

Page 4 of <u>16</u>

UMass Boston

Table 1. UMass Boston Laboratory Waste Generation (in lbs)

Waste Stream	Calendar Year				
	1999	2000	2001	2002	2003
Labpack with poisons	192.83	335.57	1083.36	335.28	374.10
Labpack with corrosives	1161.46	959.94	2165.53	1497.22	919.95
Labpack with acutely hazardous wastes	31.48	2.00	16.78	8.39	18.78
Labpack with misc. hazardous waste	739.57	819.62	31.00	6.00	151.96
Labpack with organic peroxides	19.57	0.00	8.39	0.00	0.00
Labpack with spontaneously combustible material	11.68	0.00	1.00	14.00	2.00
Labpack with pyrophorics	21.34	10.00	28.39	9.00	2.00
Labpack with flammable liquids	2470.02	1168.39	1543.44	2010.64	1750.24
Labpack with flammable solids	11.70	33.39	15.39	65.57	29.00
Labpack with oxidizers	148.48	121.75	225.10	303.42	52.39
Compressed gases and aerosols	264.27	20.00	156.39	15.57	40.39
Non-hazardous/non-regulated waste	512.07	240.00	310.00	690.00	830.00
TOTAL	5584.47	3710.66	5584.77	4955.09	4170.81
Difference (lbs)		1873.81	-1874.11	629.68	784.28
% Difference		-33.55	+50.51	-11.27	-15.83

Lessons learned:

Despite five years of tracking hazardous waste generation at UMass Boston, it is still difficult to gain insight into any trends. While yearly totals continue to vary according to many factors including type and amount of research, number of researchers and other factors, we have experienced a 25% reduction in the annual generation of hazardous wastes from laboratories. The collected data also points to another important issue for

Deleted: 16	
Inserted: 16	
Deleted: 16	

Lab XL Report

Page 5 of <u>16</u> UMass Boston

colleges and universities – the generation of acute hazardous wastes. –UMass Boston would clearly be a small quantity generator if EPA p-listed materials were not considered. Even in 2000, when the smallest amount of waste was generated, one disposal event put us into the large quantity generator category because of the disposal of certain acute hazardous wastes.

EPI #6: Environmental Awareness Survey

Results to date:

Summary results for five years of Environmental Awareness Survey data are shown in Table 2. We have made some modifications to the survey this year, based on lessons learned from previous surveys. The new questions were designed to elicit more feedback regarding pollution prevention and other attitudes/behaviors associated with a more mature management program. Many of the questions remain the same as in previous years to ensure year to year comparisons. A copy of the new survey can be found in the Appendix. Only selected questions that were the same each year are included below in Table 2. The correct answer(s) is italicized.

<u>Table 2</u> Environmental Awareness Survey Results

	2000	2001	2002	2003	2004
Number of Respondents	87	54	60	45	38
2. Ultimately, most chemical wastes					
generated in laboratories are:					
a. incinerated	32%	17%	23%	18%	34%
b. sent to a land-fill	15%	6%	10%	9%	18%
c. release to a sewer	23%	28%	12%	11%	16%
d. treated	30%	49%	55%	53%	26%
4. Which costs more, purchase or disposal of laboratory chemicals?					
a. disposal costs more	51%	78%	77%	51%	71%
b. purchase costs more	24%	4%	5%	17%	8%
c. costs are roughly the same	25%	18%	18%	15%	13%
6. What is the proper way to dispose of strong mineral acids?					
a. Dilution with water	26%	13%	17%	9%	0%
 b. Neutralization with lime 	33%	24%	24%	24%	13%
 c. Collection for pick-up by hazardous waste personnel 	8%	56%	53%	42%	76%
d. Mixing with organic chemicals	8%	0%	3%	2%	0%
e. Other	25%	7%	3%	0%	6%

				· · · · · · · · · · · · · · · · · · ·	Deleted: 16
2000	2001	2002	2003	2004	Inserted: 16
2000	2001	2002	2000	2004	Deleted: 16

Lab XL Report

Page 6 of <u>16</u>

Number of Respondents	87	54	60	45	38
10. In general, how are fume hood					
emissions controlled in your					
laboratory?					
a. Filtration to remove particles	21%	17%	40%	13%	34%
b. Carbon filtration to remove gases	30%	20%	35%	40%	29%
c. Dilution with laboratory room air	24%	63%	13%	20%	32%
d. No hoods in lab		0%	7%	4%	0%
Unknown		0%	5%	22%	3%
12. Typically, what is the largest					
environmental impact of laboratory					
work?					
a. release of toxic chemicals through	1 5 0/	69/	20/	20/	220/
the fume hood	15%	070	270	270	23%
b. disposal of toxic chemicals with a	25%	100/	250/	220/	620/7
hazardous waste disposal company	25%	19%	25%	22%	03%
c. release of chemicals to the sewer	220/	100/	470/	20%	0%
system	3270	40 %	4770	2970	0 %
d. energy use to cool or heat	15%	13%	23%	40%	23%
laboratory space	1070	1576	2576	4078	2576
Unknown	13%	14%	3%	7%	3%
			*most gave	more than o	one answer
– 1	000/		100/	400/	0.50/
Faculty	22%	28%	18%	18%	35%
Staff - Administrator	6%	2%	2%	0%	2%
Staff - Lab Tech	11%	17%	17%	20%	8%
Graduate Student	15%	30%	40%	45%	50%
Undergraduate Student	46%	23%	23%	18%	5%
16 How many years have you been					
working in college or university					
laboratories?					
Less than 1 year	40%	22%	16%	13%	13%
1-2 years	22%	20%	39%	18%	21%
3-5 years	10%	17%	20%	16%	18%
more than 5 years	28%	41%	25%	38%	47%
nore than 5 years	2070	- 170	20/0	50 /0	-1/0
Respondents Trained in CH/FM					
Plan	0%	68%	47%	53%	71%
-			l	1	-

Lessons learned:

Respondents generally continue to score at levels recorded during the past two years, or slightly higher. The audience for the surveys has differed over time. This year's respondents were primarily faculty and graduate students. The environmental awareness survey continues to provide important feedback with respect to the effectiveness of the EMP at UMB. The results of the survey continue to give us valuable information about the issues that require greater explanation during outreach efforts.

l	Deleted: 16
ſ	Inserted: 16
{	Deleted: 16

Lab XL Report

Page 7 of <u>16</u> UMass Boston

Additionally, it gives us an objective measure of how effective our training efforts have been in reaching the laboratory population of interest and generating ideas about how to improve our training.

It is important to train graduate students at UMB because they: (a) are less likely to turnover on a year-to-year basis; and (b) offer an opportunity to extend training and instruction to temporary lab workers, such as undergraduates.

EPI #7: Environmental Awareness Training

Results to date:

EPI #7 measures the amount of training conducted for laboratory workers with regard to environmental compliance and awareness. EH&S has built an accurate training database. Each semester, we send out forms to the PIs asking them to identify all laboratory personnel under their supervision that require training. EH&S has entered the information into a database and is able to generate the information on a semester-by-semester basis for the PI to update thus insuring that our training records are accurate and up-to-date. The number of laboratory workers trained in the CH/EM Program has dropped from 89% in 2002 to 60% in 2003. This change is due to two factors: (a) a more accurate database of laboratory workers; and (b) EH&S Department cutbacks that curtailed certain training initiatives.

Lessons learned:

As long as we are flexible and available to provide training in a variety of settings, we should continue to have a high training rate. Additionally, the use of an accurate database, based on information from the PIs, is critical to insure that we are training the correct population.

EPI #8: Environmental Management Program Effectiveness

The following list summarizes progress toward the goals of the XL Program as set for in the Project XL FPA. The Project XL goals have acted as the de facto environmental "objectives" for the EH&S Department with respect to the management of laboratories

- EPI#1. It appears as though there is a sharp decline in outdated chemicals in laboratory--however, it has not been directly measured to date.
- EPI#2. The EH&S Office has a complete chemical inventory from the bar-coding system. All HCOCs have been identified and flagged on the inventories.
- EPI#3. P2 continues to be an area that we would like to improve on. At this point, because of our staffing problems, we are not sure exactly how to proceed. We anticipate trying to get more involvement from the Chemical Hygiene Committee and potentially the Dean of Sciences.

,{	Deleted: 16
-{	Inserted: 16
{	Deleted: 16

Lab XL Report

Page 8 of <u>16</u>

- EPI#4. The amount of laboratory waste collected for reuse has increased substantially, however the amount of laboratory waste reused or redistributed has not yet increased by 20%.
- Updated EPI #5. The amount of laboratory waste disposed of decreased in total for 2003 by 15.83% from 2002 and approximately 25% from baseline.
- EPI#6 The Environmental Awareness Survey was completed and the results are similar to survey results from 2002.
- EPI#7. The number of laboratory workers trained in the CH/EM has dropped to 60% from last years' 89%. EH&S believes that there are two reasons for the decrease in number of individuals trained. First, our training database is more accurate now than it has been in the past giving us better data. In addition, it appears as though more PIs are listing a greater number of students that should be trained on the plan than in past years. Second, with the decrease in staff in the EH&S Office, fewer training sessions were conducted. We anticipate that the majority of those currently needing training will be targeted in the Fall 2004 semester. See Appendix 2, Figure 2 for more data.
- EPI#8 Some EPIs are on-track (decrease in laboratory waste disposal, outdated chemicals, internal and external audits); while others like pollution prevention continue to need more attention.
- EPI#9. Audits show significant compliance with the Minimum Performance Criteria
 of the XL Regulation. Overall results were similar to last year. It appears as though
 the only way that scores can increase in the future is to implement a large-scale P2
 program for all laboratories. It is not clear to us that such a large-scale effort is
 feasible (e.g., EH&S budget cuts) or effective (e.g., see comments in P2 section
 regarding informal, small university efforts).

EPI #9: Environmental Management Plan Conformance

Results to date:

Normally, UMB EH&S staff conduct annual laboratory inspections beginning in June to measure conformance with the Environmental Management Plan. This year however, inspections began in April in an effort to complete the inspections by the current XL progress report due date. For 2004, 96 inspections were completed, and the results continue to show progress. See Figure 1.

Again, we utilized the C2E2 "audit grading" system that converts the results of the laboratory audit checklist used by the pilot schools into grades on the issues most important to the Lab-XL project:

- Chemical container management
- Laboratory housekeeping
- Pollution prevention

Lab XL Report

Page 9 of <u>16</u> UMass Boston

Deleted: 16	
Inserted: 16	
Deleted: 16	

- Laboratory self inspections
- Training and awareness

This grading system was applied to UMB laboratory inspections previously conducted in 2000, 2001, and 2002. In applying scores to each laboratory for the categories listed above, certain assumptions were made. Since training in the Environmental Management Plan was not initiated until 2001, each laboratory was assigned a score of '0' for the 'Training and Awareness' category prior to 2001. In addition, the UMB pollution prevention program was not initiated until 2001, so each laboratory received a score of '0' for the Pollution Prevention' category prior to 2001.

Certain assumptions were made for the 2002 scores as well. In conducting laboratory inspections, it was often impossible to ascertain whether or not everyone who worked in in a laboratory was trained or not, since some labs were unoccupied at the time of inspection and our training database was incomplete. EH&S personnel relied instead upon the presence of the EMP in a laboratory to determine training status. If the EMP was present in a laboratory, it was assumed that some of its regular occupants had been trained in the new regulations, since the Plan was distributed only at training sessions. Thus, a laboratory was assigned a score of '1' for the 'Training and Awareness' category if the plan was present, and '0' if it was not. In both cases, self-inspection grades were solely based in the one page checklist that laboratories send to EH&S monthly, not on the container self-inspection checklists posted in each laboratory. In many cases, the posted checklists were filled out even if the monthly self-inspection sheets had not been sent to EH&S.

For 2003 and 2004 inspections, audit forms were completed during the inspection and the scores are based on actual observations for container management, housekeeping and self-inspection. For training, EH&S records were examined. Again for pollution prevention, all laboratories were given a score of 1.

	Table 3: 2000 Audit Grading Results at UMass Boston							
Score	Container Management	House- keeping	Pollution Prevention	Self inspection	Training	Total Grade		
NA	12							
0	6	12	120	103	120	1		
1	39	86		16		20		
2	63	22		1		31		
3						42		
4						25		
5						1		
6								
7								
8								
Total	120	120	120	120	120	120		
Average Score						2.67		

Lab XL Report

Page 10 of <u>16</u>

Table 4: 2001 Audit Grading Results at UMass Boston								
Score	Container Management	House- keeping	Pollution Prevention	Self inspection	Training	Total Grade		
NA	9							
0		3		83	50			
1	7	33	104	18	54			
2	88	68		3		1		
3						7		
4						20		
5						34		
6						33		
7						7		
8						2		
Total	104	104	104	104	104	104		
Average Score						5.13		

Table 5: 2002 Audit Grading Results at UMass Boston									
Score	Container Management	House- keeping	Pollution Prevention	Self inspection	Training	Total Grade			
NA									
0		1		29	33				
1	20	36	98	24	26				
2	70	61		45	39				
3	8					1			
4						8			
5						19			
6						16			
7						18			
8						24			
9						7			
10						5			
Total	98	98	98	98	98	98			
Average Score						6.73			

Lab XL Report

Page 11 of <u>16</u> UMass Boston

Table 6: 2003 Audit Grading Results at UMass Boston									
Score	Container Management	House- keeping	Pollution Prevention	Self inspection	Training	Total Grade			
NA									
0	2	1	0	6	0				
1	0	14	96	20	15				
2	5	81	0	70	81				
3	89								
4									
5						1			
6						0			
7						4			
8						18			
9						25			
10						49			
Total	96	96	96	96	96	96			
Average Score						9.22			

Score	Container Management	House- keeping	Pollution Prevention	Self inspection	Training	Total Grade
NA						
0	0	0	0	22	4	
1	0	24	96	1	1	
2	6	72	0	74	91	
3	90					
4						
5						1
6						4
7						10
8						11
9						11
10						59
Total						96
Average Score						9.11

,{	Deleted: 16
. {	Inserted: 16
-	Deleted: 16

Lab XL Report

Page 12 of <u>16</u>

Figure 1 is a graph of all audit scores for the five years of the pilot program. Year 1 represents 2000, while Year 5 represents audits completed in Spring 2004.

Lab XL Report

 Page 13 of 16
 UMass Boston

APPENDIX 1

Spring 2004 (38 responses) Question Response chosen (%) 1. When I need health/safety MSDS Merck Manual 13 Hazardous Chemical Desk Reference Supervisor A Lab Colleague 10 comsult (indicate the two most common sources): Use of toxic Utility use (energy and chemicals Hazardous waste production Biomedical/sharps waste production Animal waste production 2. Which of these factors do you think is the largest overall environmental impact of laboratory work: Use of toxic Utility use (energy and water) Hazardous waste production Biomedical/sharps waste production Animal waste production 2. Which of these factors do you think is the largest overall environmental impact of laboratory work: 17 24 7 2 3. Which of these factors do you think is the largest overall environmental impact of laboratory work: The laboratory building and its occupants The outside environment 4 4 4. The purpose of a fume hood is to workp: 1 2 3 4 5 5. It is the responsibility of vorky: 36 2 0 0 0 5. It is the environmental impact of their work. 36 2 0 0 0	Table 8	: UMB La	ab Worker	Environmental A	wareness Surv	/ey
(38 responses) Question Response chosen (%) 1. When I need health/safety information about a chemical I consult (indicate the two most common sources): MSDS 24 Merck Manual 13 Hazardous Chemical Desk Reference 10 Supervisor 11 A Lab Colleague 13 2. Which of these common sources): Use of toxic (energy and water) Utility use (energy and water) Hazardous waste production Biomedical/sharps waste production Animal waste production 2. Which of these factors do you think is the largest overall environmental impact of laboratory work: 9 9 21 2 1 3. Which of these factors do you think is the largest overall environmental impact of laboratory work: 17 24 7 2 4. The purpose of a fume hood is to protect (pick the best answer as it applies to your work): 1 2 3 4 5 5. It is the responsibility of every lab worker to minimize the environmental impact of their work. 36 2 0 0 0 6. With careful be able to produce 10% less 36 7 9 4 3			Sp	oring 2004		-
QuestionMSDS MSDS Internationabout a chemical i consult (indicate the two mostMSDS 24Merck Manual 13Hazardous Chemical Desk Reference 10Supervisor 11A Lab Colleague 13Consult (indicate the two most common sources):Use of toxic (energy and chemicalsUtility use (energy and water)Hazardous waste productionBiomedical/sharps waste productionAnimal waste production2. Which of these factors do you think is the largest overall9921213. Which of these factors do you think is the largest overall91724723. Which of these factors do you think is the largest overallThe laboratory work:Equipment in the laboratory workerThe laboratory building and its occupantsThe outside environment disagree4. The purpose of a fume hood is to protect (pick the best answer as it applies to your worky:123455. It is the responsibility of every lab worker to minimize the environmental impact of their worker3620006. With careful building and of the product their worker to minimize the environmental impact of their worker3679436. With careful planning, I would be able to produce 10% less87943			(38	responses)		
I. When I need health/safety information about a chemical information about builtity use of toxic chemicals Merck Manual 13 Hazardous Chemical Desk Reference 10 Supervisor 11 A Lab Colleague 13 2. Which of these factors do you think is the largest overall environmental impact of laboratory work: Use of toxic Utility use (energy and water) Hazardous waste production Biomedical/sharps waste production Animal waste production 2. Which of these environmental impact of laboratory work: 9 9 21 2 1 3. Which of these environmental impact of laboratory work: 7 24 7 2 4. The purpose of laboratory work: The laboratory work: 11 The laboratory building and its occupants The outside environment 5. It is the responsibility of every lab worker to minimize the environmental impact of their work. 3 7 9 4 3 6. Which careful planning, I would be able to produce <t< th=""><th>Question</th><th></th><th>•</th><th>Response choser</th><th>າ (%)</th><th></th></t<>	Question		•	Response choser	າ (%)	
common sources):Hazardous waste productionBiomedical/sharps waste production2. Which of these factors do you think is the largest overall environmental impact of laboratory work:9921213. Which of these factors do you think is the largest overall environmental impact of laboratory work:91724724. The purpose of best answer as it applies to your work):The alboratory agree1724725. It is the responsibility of work:123455. It is the responsibility of work:3620006. With careful planning, I would best answer work.879436. With careful planning, I would best answer work.879436. With careful planning, I would best answer work.87943	1. When I need health/safety information about a chemical I consult (indicate the two most	MSDS 24	Merck Manual 13	Hazardous Chemical Desk Reference 10	Supervisor 11	A Lab Colleague 13
2. Which of these factors do you think is the largest overail environmental impact of laboratory work: 9 9 21 2 1 3. Which of these factors do you think is the largest overail environmental impact of laboratory work: 9 17 24 7 2 4. The purpose of a furme hood is to protect (pick the best answer as it applies to your work): The laboratory worker Equipment in the laboratory worker The laboratory building and its occupants The outside environment 4 5. It is the responsibility of every lab worker to minimize the environmental impact of their work. 36 2 0 0 0 6. With careful planning, I would be able to produce 10% less 8 7 9 4 3	common sources):	Use of toxic chemicals	Utility use (energy and water)	Hazardous waste production	Biomedical/sharps waste production	Animal waste production
3. Which of these factors do you think is the largest overall environmental impact of laboratory work: 1 17 24 7 2 4. The purpose of a fume hood is to protect (pick the best answer as it applies to your work): The laboratory the laboratory worker 38 The laboratory building and its occupants 6 The outside environment 4 5. It is the responsibility of every lab worker to minimize the environmental impact of their work. 36 2 0 0 0 6. With careful planning, I would be able to produce 10% less laboratory waste without affecting my research 8 7 9 4 3	2. Which of these factors do you think is the largest overall environmental impact of laboratory work:	9	9	21	2	1
4. The purpose of a fume hood is to protect (pick the best answer as it applies to your work): The laboratory worker Equipment in the laboratory 11 The laboratory building and its occupants The outside environment 1 2 3 4 5 Strongly agree 1 2 3 4 5 5. It is the responsibility of every lab worker to minimize the environmental impact of their work. 36 2 0 0 0 6. With careful planning, I would be able to produce 10% less laboratory waste without affecting my research 8 7 9 4 3 <td>3. Which of these factors do you think is the largest overall environmental impact of laboratory work:</td> <td>9</td> <td>17</td> <td>24</td> <td>7</td> <td>2</td>	3. Which of these factors do you think is the largest overall environmental impact of laboratory work:	9	17	24	7	2
1 Strongly agree2345 Strongly disagree5. It is the responsibility of every lab worker to minimize the environmental impact of their work.3620006. With careful planning, I would be able to produce 10% less laboratory waste without affecting my research87943	4. The purpose of a fume hood is to protect (pick the best answer as it applies to your work):	The laboratory worker 38	Equipment in the laboratory 11	The laboratory building and its occupants 6	The outside environment 4	
5. It is the responsibility of every lab worker to minimize the environmental impact of their work. 36 2 0 0 0 6. With careful work. 8 7 9 4 3 9. With careful be able to produce 10% less laboratory waste without affecting my research 8 7 9 4 3		1 Strongly agree	2	3	4	5 Strongly disagree
6. With careful 8 7 9 4 3 planning, I would be able to produce 10% less 10% less 10% less 10% less laboratory waste without affecting my research 10% less 10% less 10% less	5. It is the responsibility of every lab worker to minimize the environmental impact of their work.	36	2	0	0	Ō
IIIV IESEAICH	6. With careful planning, I would be able to produce 10% less laboratory waste without affecting	8	7	9	4	3
	iny research.		1			

Lab XL Report

Page 14 of <u>16</u>

Question	Response chosen (%)						
7. Hazardous	8	5	13	4	4		
waste is a							
necessary							
byproduct of							
chemical							
research.							
8. It is important	26	8	3	0	1		
for scientists to		-	-	_	-		
find safer							
chemicals to use							
in their							
ovnorimonto							
0 It is not my	1	4	2	0	17		
9. It is not my	1	4	3	õ	17		
responsibility to							
make changes in							
the way my							
research is done							
in order to							
produce less							
hazardous waste.							
10. I have seen	12	7	5	3	4		
articles about							
pollution							
prevention in							
research in my							
discipline's							
iournale							
JUUITIAIS.	Dilution	Moutrolization	Collection for nick up	Missing with a receive			
TT. What is the	Dilution	Neutralization	Collection for pick-up	wixing with organic			
proper way to	with water	with lime	by nazardous waste	cnemicais			
dispose of strong	0	5	personnel	0			
mineral acids?			29				
12. Ultimately,	Incinerated	Sent to a	Released to a sewer	Treated			
most chemical	13	landfill	6	10			
wastes generated		7					
in laboratories are:							
13. In general, the	Less than	Equal to	A little more (less than	A lot more (more than			
cost of disposal of	3	5	twice as much)	twice as much)			
a chemical is			6	21			
the cost of							
buving that							
chemical.							
14. In general	Filtration to	Carbon	Dilution with laboratory	Scrubbing to remove			
how are fume	remove	filtration to	room air	narticulates nases			
hood emissione	narticles	remove dases	12	and toxics			
treated before	12	11	12	6			
hoing released to	13			U			
the environment?							
ule environment?		Dealistics	Disastat	1			
15. Please check	CH/EM	Radiation	Biosafety	Laser safety			
the types of	Plan	Safety	15	1			
laboratory worker	27	15					
training you have							
received at UVM.							
16. What is your	Faculty	Staff	Grad student	Undergrad student			
				U			
current role in	13	4	19	2			

 Deleted: 16

 Inserted: 16

 Deleted: 16

Lab XL Report

Page 15 of <u>16</u> UMass Boston

University of Massachusetts Boston

17. How long have you been working	less than 1 year	1-2 years 8	3-5 years 7	more than 5 years 18	
in a university lab?	5				
18. Have you	Yes	No			
completed an XL	20	18			
Environmental					
Awareness					
Survey in the					
past?					

Page 16 of <u>16</u>

UMass Boston