MEMORANDUM

DATE: July 31, 2006

SUBJECT: Finalization of Interim Reregistration Eligibility Decisions (IREDs) and Interim Tolerance Reassessment and Risk Management Decisions (TREDs) for the Organophosphate Pesticides, and Completion of the Tolerance Reassessment and Reregistration Eligibility Process for the Organophosphate Pesticides

FROM: Debra Edwards, Director
Special Review and Reregistration Division
Office of Pesticide Programs

TO: Jim Jones, Director
Office of Pesticide Programs

As you know, EPA has completed its assessment of the cumulative risks from the organophosphate (OP) class of pesticides as required by the Food Quality Protection Act of 1996. In addition, the individual OPs have also been subject to review through the individual-chemical review process. The Agency’s review of individual OPs has resulted in the issuance of Interim Reregistration Eligibility Decisions (IREDs) for 22 OPs, interim Tolerance Reassessment and Risk Management Decisions (TREDs) for 8 OPs, and a Reregistration Eligibility Decision (RED) for one OP, malathion.1 These 31 OPs are listed in Appendix A.

EPA has concluded, after completing its assessment of the cumulative risks associated with exposures to all of the OPs, that:

(1) the pesticides covered by the IREDs that were pending the results of the OP cumulative assessment (listed in Attachment A) are indeed eligible for reregistration; and

1 Malathion is included in the OP cumulative assessment. However, the Agency has issued a RED for malathion, rather than an IRED, because the decision was signed on the same day as the completion of the OP cumulative assessment.
(2) the pesticide tolerances covered by the IREDs and TREDs that were pending the results of the OP cumulative assessment (listed in Attachment A) meet the safety standard under Section 408(b)(2) of the FFDCA.

Thus, with regard to the OPs, EPA has fulfilled its obligations as to FFDCA tolerance reassessment and FIFRA reregistration, other than product-specific reregistration.

The Special Review and Reregistration Division will be issuing data call-in notices for confirmatory data on two OPs, methidathion and phorate, for the reasons described in detail in the OP cumulative assessment. The specific studies that will be required are:

- 28-day repeated-dose toxicity study with methidathion oxon; and
- Drinking water monitoring study for phorate, phorate sulfoxide, and phorate sulfone in both source water (at the intake) and treated water for five community water systems in Palm Beach County, Florida and two near Lake Okeechobee, Florida.

The cumulative risk assessment and supporting documents are available on the Agency’s website at www.epa.gov/pesticides/cumulative and in the docket (EPA-HQ-OPP-2006-0618).
Attachment A:
Organophosphates included in the OP Cumulative Assessment

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Decision Document</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acephate</td>
<td>IRED</td>
<td>IRED completed 9/2001</td>
</tr>
<tr>
<td>Azinphos-methyl (AZM)</td>
<td>IRED</td>
<td>IRED completed 10/2001</td>
</tr>
<tr>
<td>Bensulide</td>
<td>IRED</td>
<td>IRED completed 9/2000</td>
</tr>
<tr>
<td>Cadusafos</td>
<td>TRED</td>
<td>TRED completed 9/2000</td>
</tr>
<tr>
<td>Chlorethoxyphos</td>
<td>TRED</td>
<td>TRED completed 9/2000</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>IRED</td>
<td>IRED completed 9/2001</td>
</tr>
<tr>
<td>Coumaphos</td>
<td>TRED</td>
<td>TRED completed 2/2000</td>
</tr>
<tr>
<td>DDVP (Dichlorvos)</td>
<td>IRED</td>
<td>IRED completed 6/2006</td>
</tr>
<tr>
<td>Diazinon</td>
<td>IRED</td>
<td>IRED completed 7/2002</td>
</tr>
<tr>
<td>Dicrotophos</td>
<td>IRED</td>
<td>IRED completed 4/2002</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>IRED</td>
<td>IRED completed 6/2006</td>
</tr>
<tr>
<td>Disulfoton</td>
<td>IRED</td>
<td>IRED completed 3/2002</td>
</tr>
<tr>
<td>Ethoprop</td>
<td>IRED</td>
<td>IRED completed 9/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRED addendum completed 2/2006</td>
</tr>
<tr>
<td>Fenitrothion</td>
<td>TRED</td>
<td>TRED completed 10/2000</td>
</tr>
<tr>
<td>Malathion</td>
<td>RED</td>
<td>RED completed 8/2006</td>
</tr>
<tr>
<td>Methamidophos</td>
<td>IRED</td>
<td>IRED completed 4/2002</td>
</tr>
<tr>
<td>Methidathion</td>
<td>IRED</td>
<td>IRED completed 4/2002</td>
</tr>
<tr>
<td>Methyl Parathion</td>
<td>IRED</td>
<td>IRED completed 5/2003</td>
</tr>
<tr>
<td>Naled</td>
<td>IRED</td>
<td>IRED completed 1/2002</td>
</tr>
<tr>
<td>Oxydemeton-methyl</td>
<td>IRED</td>
<td>IRED completed 8/2002</td>
</tr>
<tr>
<td>Phorate</td>
<td>IRED</td>
<td>IRED completed 3/2001</td>
</tr>
<tr>
<td>Phosalone</td>
<td>TRED</td>
<td>TRED completed 1/2001</td>
</tr>
<tr>
<td>Phosmet</td>
<td>IRED</td>
<td>IRED completed 10/2001</td>
</tr>
<tr>
<td>Phostebupirim</td>
<td>TRED</td>
<td>TRED completed 12/2000</td>
</tr>
<tr>
<td>Pirimiphos-methyl</td>
<td>IRED</td>
<td>IRED completed 6/2001</td>
</tr>
<tr>
<td>Profenofos</td>
<td>IRED</td>
<td>IRED completed 9/2000</td>
</tr>
<tr>
<td>Propetamphos</td>
<td>IRED</td>
<td>IRED completed 12/2000</td>
</tr>
<tr>
<td>Terbufos</td>
<td>IRED</td>
<td>IRED completed 9/2001</td>
</tr>
<tr>
<td>Tetrachlorvinphos</td>
<td>TRED</td>
<td>TRED completed 12/2002</td>
</tr>
<tr>
<td>Tribufos</td>
<td>IRED</td>
<td>IRED completed 12/2000</td>
</tr>
<tr>
<td>Trichlorfon</td>
<td>TRED</td>
<td>TRED completed 9/2001</td>
</tr>
</tbody>
</table>
Dear Registrant:

This is to inform you that the Environmental Protection Agency (hereafter referred to as EPA or the Agency) has completed its review of the available data and public comments received related to the preliminary and revised risk assessments for the organophosphate pesticide tetrachlorvinphos. The public comment period on the revised risk assessment phase of the tolerance reassessment process is closed. Based on comments received during the public comment period and additional data received from the registrant, the Agency revised the human health risk assessment and made it available to the public on March 3, 2000. During Phase 5, all interested parties were invited to participate and provide comments and suggestions on ways the Agency might mitigate the estimated risks presented in the revised risk assessment. This public participation and comment period closed on May 29, 2000.

The major means by which the Agency reassesses tolerances is through its reregistration process. Each pesticide registered prior to 1984 is subject to comprehensive evaluation of its effects on human health and the environment. Such an evaluation includes a determination of whether the tolerances are safe. Since tetrachlorvinphos was registered in 1966, it is subject to reregistration. The Agency issued a reregistration eligibility decision (RED) for tetrachlorvinphos in 1995, prior to the passage of Food Quality and Protection Act of 1996 (FQPA). However, tetrachlorvinphos tolerances are subject to reassessment in accordance with the Federal, Food, Drug, and Cosmetic Act (FFDCA) as amended by FQPA. This Act requires EPA to re-evaluate existing tolerances to ensure that children and other sensitive populations are protected from pesticide risk.

Based on its review, EPA has identified risk mitigation measures that the Agency believes are necessary to address the human health risks associated with the current use of tetrachlorvinphos. EPA is now publishing its interim tolerance reassessment eligibility decision (TRED) which includes addenda to the 1995 reregistration eligibility decision and the risk management decisions for the current uses of tetrachlorvinphos. The tolerance reassessment decisions for tetrachlorvinphos will be finalized once the cumulative risks for all of the organophosphate pesticides are considered. The enclosed “Tolerance Reassessment Eligibility Decision for tetrachlorvinphos,” which was approved on July 5, 2002, contains the Agency’s
decision on the individual chemical tetrachlorvinphos.

A Notice of Availability for this is being published in the Federal Register. To obtain a copy of the TRED document, please contact the OPP Public Regulatory Docket (7502C), US EPA, Ariel Rios Building, 1200 Pennsylvania Avenue NW, Washington, DC 20460, telephone (703) 305-5805. Electronic copies of the interim TRED and all supporting documents are available on the Internet. See http://www.epa.gov/pesticides/op.

The TRED is based on the updated technical information found in the tetrachlorvinphos public docket. The docket not only includes background information and comments on the Agency’s preliminary risk assessments, it also now includes the Agency’s revised risk assessments for tetrachlorvinphos, and a document summarizing the Agency’s Response to Comments. The Response to Comments document addresses corrections to the preliminary risk assessments submitted by chemical registrants, as well as responds to comments submitted by the general public and stakeholders during the comment period on the risk assessment. The docket will also include comments on the revised risk assessment, and any risk mitigation proposals submitted during Phase 5. For tetrachlorvinphos, a proposal was submitted by Boehringer Ingelhiem, the technical registrant. Comments on mitigation were also submitted by USDA.

This document and the process used to develop it are the result of a pilot process to facilitate greater public involvement and participation in reregistration and/or tolerance reassessment decisions. As part of the Agency’s effort to involve the public in the implementation of the Food Quality Protection Act of 1996 (FQPA), the Agency is undertaking a special effort to maintain open public dockets on the organophosphate pesticides and to engage the public in the reregistration and tolerance reassessment processes for these chemicals. This open process follows the guidance developed by the Tolerance Reassessment Advisory Committee (TRAC), a large multi-stakeholder advisory body that advised the Agency on implementing the new provisions of the FQPA. The reregistration and tolerance reassessment reviews for the organophosphate pesticides are following this new process.

Please note that the tetrachlorvinphos risk assessment and the attached interim TRED concern only this particular organophosphate. This TRED presents the Agency’s conclusions on the dietary and residential risks posed by exposure to tetrachlorvinphos alone. It also includes an updated assessment of the worker risks associated with the use of tetrachlorvinphos. No assessment for ecological risk was performed since those risks were considered during reregistration in 1995 and no new data were submitted which would warrant a new assessment. Because the FQPA directs the Agency to consider available information on cumulative risk from substances sharing a common mechanism of toxicity, such as the toxicity expressed by the organophosphates through a common biochemical interaction with cholinesterase enzyme, the Agency will evaluate the cumulative risk posed by the entire organophosphate class of chemicals after considering the risks for the individual organophosphates. The Agency has decided to move forward with individual assessments and to identify mitigation measures necessary to address the human health risks associated with the current uses of tetrachlorvinphos. The
The Agency will issue the final tolerance reassessment decision for tetrachlorvinphos and finalize decisions on reregistration eligibility once the cumulative risks for all of the organophosphates are considered.

This document contains a generic Data Call-In (DCI) that outlines further data requirements for this chemical. Note that a complete DCI, with all pertinent instructions, is being sent to registrants under separate cover.

The Agency has determined that tetrachlorvinphos will be eligible for reregistration provided that all the conditions identified in this document are satisfied, including implementation of the risk mitigation measures outlined in Section IV of the document. The Agency believes that current uses of tetrachlorvinphos may pose unreasonable adverse effects to human health and the environment, unless the risk mitigation measures identified herein are implemented. Accordingly, the Agency recommends that registrants implement these risk mitigation measures immediately. Sections IV and V of this TRED describe labeling amendments for end-use products and data requirements necessary to implement these mitigation measures. Instructions for registrants on submitting the revised labeling can be found in the set of instructions for product-specific data that accompanies this TRED.

Should a registrant fail to implement any of the risk mitigation measures outlined in this document, the Agency will continue to have concerns about the risks posed by tetrachlorvinphos. Where the Agency has identified any unreasonable adverse effect to human health, the Agency may at any time initiate appropriate regulatory action to address this concern. At that time, any affected person(s) may challenge the Agency’s action.

If you have questions on this document or the label changes necessary for reregistration, please contact the Chemical Review Manager, Demson Fuller at (703)308-8062.

Sincerely,

Lois A. Rossi, Director
Special Review and
Reregistration Division

Attachment
Interim Tolerance Reassessment Eligibility Decision and Reregistration Eligibility Decision Addenda for Tetrachlorvinphos

Case No. 0321
Tetrachlorvinphos Facts

EPA has assessed the risks of tetrachlorvinphos and completed a Report on FQPA Tolerance Reassessment Progress and Interim Risk Management Decision (or TRED) for this organophosphate (OP) pesticide. Provided that risk mitigation measures are adopted, individual, aggregate risks for tetrachlorvinphos are within acceptable levels.

EPA’s next step is to consider the cumulative risks of the OP pesticides, which share a common mechanism of toxicity. The interim tolerance reassessment decision for tetrachlorvinphos will not be final until these cumulative risks also are considered. Further risk mitigation may be warranted at that time.

EPA completed a Reregistration Eligibility Decision (RED) before the Food Quality Protection Act (FQPA) of 1996 was enacted. At present, only food, occupational, and residential uses of tetrachlorvinphos are being reevaluated, and tolerances (legal limits for residues in food) must be reassessed to ensure that they meet the new safety standard effected by the FQPA.

EPA is reviewing the OP pesticides to determine whether they meet current health and safety standards. Older OPs need decisions about their eligibility for reregistration under FIFRA. OPs with food, drinking water, and other non-occupational exposures must be reassessed to make sure they meet the new FFDCA safety standard, brought about by the FQPA.

The tetrachlorvinphos TRED was developed through the OP public participation process, which increases transparency and maximizes stakeholder involvement in EPA’s development of risk assessments and risk management decisions. EPA worked extensively with affected parties to reach the decisions presented in this interim decision.

The OP Pilot Public Participation Process

The organophosphates (OPs) are a group of related pesticides that affect the functioning of the nervous system. They are among EPA’s highest priority for review in implementing the Food Quality Protection Act (FQPA) of 1996.

EPA encourages the public to participate in the review of the OP pesticides. Through a six-phased pilot public participation process, the Agency has released for review and comment its preliminary and revised scientific risk assessments for individual OPs. (Please contact the OP Docket, telephone 703-305-5805, or see EPA’s web site, www.epa.gov/pesticides/op.)

EPA is exchanging information with stakeholders and the public about the OPs, their uses, and risks through Technical Briefings, stakeholder meetings, and other fora. USDA is coordinating input from growers and other OP pesticide users.

Based on current information from interested stakeholders and the public, EPA is making interim risk management decisions for individual OP pesticides. The Agency will make final decisions after considering the cumulative risks of the OPs. (Please see www.epa.gov/pesticides/cumulative.htm.)
document.

Uses

1. An insecticide, tetrachlorvinphos is currently applied dermally to livestock to control flies and mites; used as a feed-through (oral) larvicide in cattle, hogs, goats, and horses; in cattle ear tags to control flies; in poultry dust boxes to control poultry mites; and as paint on and sprays in poultry houses. Tetrachlorvinphos also is used as a dust/powder, aerosol, and pump spray on pets and in pet sleeping areas, and in collars and shampoos for direct treatment of pets. It is used as a spray to control nuisance and public health pests (flies) in and around refuse sites, recreational areas, and for limited outdoor use as premise sprays for fleas, ticks, chiggers, and mites, around kennels, yards, campgrounds, and parks, and along foot paths and roadways leading to such areas. No tetrachlorvinphos end-use products are currently registered for use on any plant commodity.

2. Approximately 900,000 lbs a.i. of tetrachlorvinphos are used annually, according to Agency and registrant estimates.

Health Effects

3. Tetrachlorvinphos can cause cholinesterase inhibition in humans; that is, it can overstimulate the nervous system causing nausea, dizziness, confusion, and at very high exposures (e.g., accidents or major spills), respiratory paralysis and death. Tetrachlorvinphos is classified as a Group C, possible human carcinogen. The cancer potency factor (Q_1) is 1.83×10^{-3}.

Risks

4. Dietary risks from eating food items containing residues of tetrachlorvinphos are below the level of concern for the entire U.S. population, including infants and children. Drinking water is not a significant source of exposure.

5. Residential handler and post application risks were also not of concern for all exposure scenarios. However, the Agency has concern over the potential for over-application of powder products. Labels need to be modified to specify how much product to apply to treat pets of different sizes. Additionally, based on discussions with stakeholders, EPA believes that directions for outdoor uses as premise sprays around kennels, yards, campgrounds, and parks, and along foot paths and roadways leading to such areas, must clearly limit use to spot treatments only.

6. Worker risks are of concern with the maximum level of protection for mixers, loaders, and applicators in poultry egg production operations applying wettable powder formulations with a low-pressure handwand and paint-on application of the EC formulation. In addition, worker risks exceeded the Agency’s level of concern with baseline PPE for handlers engaging in
backpack, dusting, groundboom, and low pressure handwand activities. Further, the Agency is concerned about workers handling ear tags, mineral blocks, and pellets when these items are put into place. The Agency does not have data for these scenarios, however the Agency has concluded that gloves will mitigate potential concerns which result from dermal contact with these products.

Risk Mitigation

To reduce risks, the following mitigation measures are required:

Worker risks

7. Delete the paint-on use with emulsifiable concentrate (EC) formulations.

1. Restrict the use of low pressure handwands for wettable powder (WP) applications to spot treatment in poultry facilities and require double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators engaging in low pressure handwand activities using the WP formulations in egg and broiler facilities.

• Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment to apply WP formulation as dusts.

• Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators engaging in paint-on activities using WP formulations.

• Double layer clothing and gloves for workers when handling backrubber devices.

• Single layer and gloves for loaders and others handling dust bags.

f. Single layer clothing and gloves for mixers, loaders, and applicators engaging in groundboom activities using the EC and WP formulations.

• Single layer clothing and gloves for mixers, loaders, and applicators engaging in low pressure handwand activities using the EC formulations in poultry facilities.

• Single layer clothing and gloves for mixers, loaders, and applicators engaging in backpack spraying activities.

• Single layer clothing and gloves for workers when handling ear tags, mineral blocks, and pellets (oral larvicide feed-through products).

Residential risks

• Modify directions for use to specify 1/3 oz. of powder for every 10 pounds of body weight of
the cat or dog.

- Restrict outdoor premise uses to spot treatments, one time a year, and along woody borders of kennels, yards, campgrounds, recreational parks, and footpaths and roadways leading to such areas.

- Prohibit the use of outdoor premise treatments by homeowners.

Other Concerns

b. EPA has determined that labels for tetrachlorvinphos feed-through products for horses must state that the product is a cholinesterase inhibitor, describe signs of cholinesterase inhibition in horses, caution against use with other cholinesterase inhibiting compounds, and direct horse owners to consult a veterinarian before using products containing tetrachlorvinphos on debilitated, aged, breeding, pregnant or nursing animals.

Next Steps

c. Numerous opportunities for public comment were offered as this decision was being developed. The tetrachlorvinphos TRED therefore is issued in final without a formal public comment period. (Please see www.epa.gov/pesticides/reregistration/status.htm or www.epa.gov/pesticides/op). The docket remains open, however, and any comments submitted in the future will be placed in this public docket.

d. When EPA has considered the cumulative risks of the OP pesticides, the Agency will issue its final tolerance reassessment decision for tetrachlorvinphos and may request further risk mitigation measures. The Agency will revoke 8 tolerances and amend 16 tolerances for tetrachlorvinphos, now. For all OPs, tolerances will not be raised or established until cumulative risks have been considered.
TABLE OF CONTENTS

Executive Summary ..

I. Introduction ..

II. Chemical Overview ..
 A. Regulatory History ..
 B. Chemical Identification ..
 C. Use Profile ..
 D. Estimated Usage of Pesticide ..

III. Summary of Tetrachlorvinphos Risk Assessment ...
 A. Human Health Risk Assessment ..
 1. Dietary Risk from Food ..
 a. Toxicity ..
 b. Exposure ..
 c. FQPA Safety Factor ...
 d. Exposure Assumptions ..
 e. Food Risk Characterization ...
 2. Dietary Risk from Drinking Water ..
 3. Occupational and Residential Risk ...
 a. Toxicity ..
 b. Exposure ..
 1) Occupational Exposure ...
 2) Residential Exposure ...
 c. Occupational & Residential Handler Risk Summary
 1) Occupational Handler Risk ..
 2) Occupational Post Application Risk ..
 3) Horses ..
 d. Residential Risk Summary ..
 1) Residential Handler Risk ...
 2) Residential Post-Application Risk ...
 4. Aggregate Risk ...

IV. Interim Risk Management & Reregistration Decision ..
 A. Determination of Interim Reregistration Eligibility
 B. Summary of Phase 5 Comments and Responses ..
 C. Regulatory Position ...
 1. FQPA Assessment ...
 a. “Risk Cup” Determination ...
 b. Tolerance Summary ..
 2. Endocrine Disruptor Effects ...
 3. Label Modification ..
D. Regulatory Rationale ..
 1. Dietary Mitigation ..
 2. Drinking Water ..
 3. Occupational Mitigation
 4. Residential Mitigation ..
 5. Other Concerns ..

V. What Registrants Need to Do ...
A. Manufacturing Use Products ..
 1. Additional Generic Data Requirements
 2. Labeling for Manufacturing Use Products
B. End-Use Products ...
 1. Additional Generic Data Requirements
 2. Labeling for End-Use Products
C. Existing Stocks ..
D. Labeling Changes Summary Table

VI. Related Documents and How to Access Them

Appendix A
Appendix B
Appendix C
Appendix D
TETRACHLORVINPHOS TEAM

Office of Pesticide Programs:

Health Effects Risk Assessment

Susan Hanley
Christina Swartz
Jeff Dawson
Virginia Dobozy
Christine Olinger
Mike Metzger

Use and Usage Analysis

William Gross
Tim Kiely

Registration Support

George Larocca

Risk Management

Demson Fuller
John Leahy
GLOSSARY OF TERMS AND ABBREVIATIONS

AE Acid Equivalent
a.i. Active Ingredient
AGDCI Agricultural Data Call-In
ai Active Ingredient
aPAD Acute Population Adjusted Dose
AR Anticipated Residue
ARC Anticipated Residue Contribution
BCF Bioconcentration Factor
CAS Chemical Abstracts Service
CI Cation
CNS Central Nervous System
cPAD Chronic Population Adjusted Dose
CSF Confidential Statement of Formula
CFR Code of Federal Regulations
CSFII USDA Continuing Surveys for Food Intake by Individuals
DCI Data Call-In
DEEM Dietary Exposure Evaluation Model
DFR Dislodgeable Foliar Residue
DRES Dietary Risk Evaluation System
DWEL Drinking Water Equivalent Level (DWEL) The DWEL represents a medium specific (i.e., drinking water) lifetime exposure at which adverse, noncarcinogenic health effects are not anticipated to occur.
DWLOC Drinking Water Level of Comparison.
EC Emulsifiable Concentrate Formulation
EEC Estimated Environmental Concentration. The estimated pesticide concentration in an environment, such as a terrestrial ecosystem.
EP End-Use Product
EPA U.S. Environmental Protection Agency
FAO Food and Agriculture Organization
FDA Food and Drug Administration
FIFRA Federal Insecticide, Fungicide, and Rodenticide Act
FFDCA Federal Food, Drug, and Cosmetic Act
FQPA Food Quality Protection Act
FOB Functional Observation Battery
G Granular Formulation
GENEEC Tier I Surface Water Computer Model
GLC Gas Liquid Chromatography
GLN Guideline Number
GM Geometric Mean
GRAS Generally Recognized as Safe as Designated by FDA
HA Health Advisory (HA). The HA values are used as informal guidance to municipalities and other organizations when emergency spills or contamination
HAFT Highest Average Field Trial
HDT Highest Dose Tested
IR Index Reservoir
LC_{50} Median Lethal Concentration. A statistically derived concentration of a substance that can be expected to cause death in 50% of test animals. It is usually expressed as the weight of substance per weight or volume of water, air or feed, e.g., mg/l, mg/kg or ppm.
LD_{50} Median Lethal Dose. A statistically derived single dose that can be expected to cause death in 50% of the test animals when administered by the route indicated (oral, dermal, inhalation). It is expressed as a weight of substance per unit weight of animal, e.g., mg/kg.
LEL Lowest Effect Level
LOC Level of Concern
LOD Limit of Detection
LOAEL Lowest Observed Adverse Effect Level
MATC Maximum Acceptable Toxicant Concentration
MCLG Maximum Contaminant Level Goal (MCLG) The MCLG is used by the Agency to regulate contaminants in drinking water under the Safe Drinking Water Act.
mg/kg/day Milligram Per Kilogram Per Day
mg/L Milligrams Per Liter
MOE Margin of Exposure
MP Manufacturing-Use Product
MPI Maximum Permissible Intake
MRID Master Record Identification (number). EPA’s system of recording and tracking studies submitted.
NA Not Applicable
N/A Not Applicable
NAWQA USGS National Water Quality Assessment
NOEC No Observable Effect Concentration
NOEL No Observed Effect Level
NOAEL No Observed Adverse Effect Level
NPDES National Pollutant Discharge Elimination System
NR Not Required
OP Organophosphate
OPP EPA Office of Pesticide Programs
OPPT EPA Office of Prevention, Pesticides and Toxic Substances
Pa pascal, the pressure exerted by a force of one newton acting on an area of one square meter.
PAD Population Adjusted Dose
PADI Provisional Acceptable Daily Intake
PAG Pesticide Assessment Guideline
PAM Pesticide Analytical Method
PCA Percent Crop Area
PDP USDA Pesticide Data Program
PHED Pesticide Handler's Exposure Data
PHI Preharvest Interval
ppb Parts Per Billion
PPE Personal Protective Equipment
ppm Parts Per Million
PRN Pesticide Registration Notice
PRZM/EXAMS Tier II Surface Water Computer Model
Q₅⁰ The Carcinogenic Potential of a Compound, Quantified by the EPA's Cancer Risk Model
RAC Raw Agriculture Commodity
RBC Red Blood Cell
RED Reregistration Eligibility Decision
REI Restricted Entry Interval
RfD Reference Dose
RQ Risk Quotient
RS Registration Standard
RUP Restricted Use Pesticide
SAP Science Advisory Panel
SCI-GROW Tier I Ground Water Computer Model
SF Safety Factor
SLC Single Layer Clothing
SLN Special Local Need (Registrations Under Section 24(c) of FIFRA)
TC Toxic Concentration. The concentration at which a substance produces a toxic effect.
TD Toxic Dose. The dose at which a substance produces a toxic effect.
TEP Typical End-Use Product
TGAI Technical Grade Active Ingredient
TLC Thin Layer Chromatography
TMRC Theoretical Maximum Residue Contribution
torr A unit of pressure needed to support a column of mercury 1 mm high under standard conditions.
TRR Total Radioactive Residue
UF Uncertainty Factor
\(\mu g/g \) Micrograms Per Gram
\(\mu g/L \) Micrograms Per Liter
USDA United States Department of Agriculture
USGS United States Geological Survey
UV Ultraviolet
WHO World Health Organization
WP Wettable Powder
WPS Worker Protection Standard
Executive Summary

EPA has completed its review of public comments on the revised tetrachlorvinphos risk assessments and is issuing its risk management decision for tetrachlorvinphos. There are currently 11 tolerances for tetrachlorvinphos. The decisions outlined in this document do not include the final tolerance reassessment decision for tetrachlorvinphos; however, some tolerance actions will be undertaken prior to completion of the final tolerance reassessment. The final tolerance reassessment decision for this chemical will be issued once the cumulative risks for all of the organophosphates are considered. The Agency may need to pursue further risk management measures for tetrachlorvinphos once cumulative risks are considered.

The RED for tetrachlorvinphos was completed in 1995. At that time, the Agency assessed the risk for dietary, occupational, ecological, and residential concerns. With the passage of FQPA, the tolerances for tetrachlorvinphos needed to be reassessed according to the FQPA safety standard. In this current assessment, the Agency looked at dietary, occupational, and residential concerns. This assessment was further updated by a change in the toxicological endpoint than that used in the 1995 RED.

The revised risk assessments are based on review of the required target data base supporting the use patterns of currently registered products and new information which has been recently submitted. The Agency invited stakeholders to provide proposals, ideas or suggestions on appropriate mitigation measures before the Agency issued its risk mitigation decision on tetrachlorvinphos. After considering the revised risks, as well as mitigation proposed by Boehringer Ingelheim and Hartz Mountain Corporation, the technical registrants of tetrachlorvinphos, and comments and mitigation suggestions from other interested parties, including USDA, EPA developed its risk management decision for tetrachlorvinphos. This decision is discussed fully in this document.

Tetrachlorvinphos is an organophosphate insecticide. It is currently applied dermally to livestock to control flies and mites; used as a feed-through (oral) larvicide in cattle, hogs, goats, and horses; in cattle ear tags to control flies; in poultry dust boxes to control poultry mites; and as paint on and sprays in poultry houses. Tetrachlorvinphos also is used as a dust/powder, aerosol, and pump spray on pets and in pet sleeping areas, and in collars and shampoos for direct treatment of pets. It is used as a spray to control nuisance and public health pests (flies) in and around refuse sites, recreational areas, and for general outdoor treatment. No tetrachlorvinphos end-use products are currently registered for use on any plant commodity.

Tetrachlorvinphos was first registered in 1966. It is formulated as a wettable powder, dust, granular, emulsifiable concentrate, impregnated material, ready to use spray, and pressurized aerosol. Use rates vary, depending on animal size, from 0.0004 lb ai/animal on poultry to a maximum of 0.0208 lb ai/animal on livestock. The use rate for pets is 0.016 lb ai/animal. An annual estimate of tetrachlorvinphos total domestic usage is 853,000 pounds ai for 480,000,000 animals treated. The largest market in terms of total pounds ai is poultry and poultry premises (728,000 lbs. ai). The uses with a high percentage of their total animals treated include horses (16%) and poultry (6%), and households with dogs and/or cats (10%).
Overall Risk Summary

Food risk, both acute and chronic, is below the Agency's level of concern. No dietary exposure to tetrachlorvinphos is expected through drinking water. There are no concerns for residential handlers or postapplication exposure based on chemical specific data provided by the registrant though some label modifications are necessary. There are no concerns for aggregate risks. There are concerns for mixer, loaders, and applicators using low pressure handwands on poultry and poultry premises. Additionally, there are concerns with occupational cancer risk.

Dietary Risk

Available data indicate that estimated acute, chronic, and cancer dietary risks are below EPA’s level of concern. Based on the supported use patterns, no dietary exposure to tetrachlorvinphos is expected through drinking water. Therefore, no mitigation is warranted at this time for dietary exposure through food or drinking water.

Occupational Risk

Worker risks are of concern with the maximum level of protection for mixers, loaders, and applicators in poultry egg production operations applying wettable powder formulations with a low-pressure handwand (MOEs ranged from 14 - 80) and paint-on application of the EC formulation (MOEs ranged from 7 -55). Risk to other handlers can be mitigated with personal protective equipment. The Agency also has cancer risk concerns with some risks higher than 1×10^{-6} after adding PPE. The Agency will need the registrant to limit low-pressure handwand usage to “spot” treatment and delete the use of the paint-on EC formulation.

Residential Risk

Estimated short-term and carcinogenic risk for residential handlers are not of concern for all handler scenarios. Residential post application risks were also not of concern for all exposure scenarios.

Aggregate Risk

Aggregate risks for tetrachlorvinphos include dietary (food only), handler, and dermal post-application exposures for residential handlers (adults); and post-application dermal, oral (hand-to-mouth) and dietary (food only) exposures for toddlers. In addition, an aggregate cancer assessment was done for adults. Since dietary exposure through drinking water is not expected based on the use patterns, drinking water exposure is not included in the aggregate assessment. Aggregate acute, short-term, chronic, and cancer risks are not of concern. Likewise, aggregate risks for residential handlers are not of concern.
Ecological Risk

The Agency has not conducted a new risk assessment for the environmental fate and effects of tetrachlorvinphos for the TRED. The conclusions reached in 1995 remain unchanged.

Other Concerns

The Agency is concerned with tetrachlorvinphos feed-through products for horses. EPA believes that use of these products decrease cholinesterase levels in horses, and that until controlled studies show they pose no unacceptable risks to breeding horses, labels should carry warnings regarding the potential cholinergic effects and that these products have not been tested in breeding horses.

The Agency is issuing this interim TRED for tetrachlorvinphos, as announced in a Notice of Availability published in the Federal Register. This interim TRED document includes guidance and time frames for complying with any necessary label changes for products containing tetrachlorvinphos. As part of the process discussed by the TRAC, which sought to open up the process to interested parties, the Agency’s risk assessments for tetrachlorvinphos have already been subject to several public comment periods, and a further comment period for tetrachlorvinphos was deemed unnecessary. Neither the tolerance reassessment nor the reregistration eligibility decision for tetrachlorvinphos can be considered final until the cumulative risks for all organophosphate pesticides are considered. The cumulative assessment may result in further risk mitigation measures for tetrachlorvinphos.

I. Introduction

The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) was amended in 1988 to accelerate the reregistration of products with active ingredients registered prior to November 1, 1984. The amended Act calls for the development and submission of data to support the reregistration of an active ingredient, as well as a review of all submitted data by the U.S. Environmental Protection Agency (referred to as EPA or “the Agency”). Reregistration involves a thorough review of the scientific database underlying a pesticide’s registration. The purpose of the Agency’s review is to reassess the potential hazards arising from the currently registered uses of the pesticide; to determine the need for additional data on health and environmental effects; and to determine whether the pesticide meets the “no unreasonable adverse effects” criteria of FIFRA.

On August 3, 1996, the Food Quality Protection Act of 1996 (FQPA) was signed into law. This Act amends FIFRA to require tolerance reassessment of all existing tolerances. The Agency had decided that, for those chemicals that have tolerances and are undergoing reregistration, the tolerance reassessment will be initiated through this reregistration process. It also requires that by 2006, EPA must review all tolerances in effect on the day before the date of the enactment of the FQPA, which was August 3, 1996. FQPA also amends the FFDCA to require a safety finding in tolerance reassessment based on factors including an assessment of cumulative effects of chemicals with a common mechanism of toxicity. Tetrachlorvinphos belongs to a group of pesticides called
organophosphates, which share a common mechanism of toxicity - they all affect the nervous system by inhibiting cholinesterase. Although FQPA significantly affects the Agency’s reregistration process, it does not amend any of the existing reregistration deadlines. Therefore, the Agency is continuing its reregistration program while it resolves the remaining issues associated with the implementation of FQPA.

The implementation of FQPA has required the Agency to revisit some of its existing policies relating to the determination and regulation of dietary risk, and has also raised a number of new issues for which policies need to be created. These issues were refined and developed through collaboration between the Agency and the Tolerance Reassessment Advisory Committee (TRAC), which was composed of representatives from industry, environmental groups, and other interested parties. The TRAC identified the following science policy issues it believed were key to the implementation of FQPA and tolerance reassessment:

- Applying the FQPA 10-Fold Safety Factor
- Whether and How to Use "Monte Carlo" Analyses in Dietary Exposure Assessments
- How to Interpret "No Detectable Residues" in Dietary Exposure Assessments
- Refining Dietary (Food) Exposure Estimates
- Refining Dietary (Drinking Water) Exposure Estimates
- Assessing Residential Exposure
- Aggregating Exposure from all Non-Occupational Sources
- How to Conduct a Cumulative Risk Assessment for Organophosphate or Other Pesticides with a Common Mechanism of Toxicity
- Selection of Appropriate Toxicity Endpoints for Risk Assessments of Organophosphates
- Whether and How to Use Data Derived from Human Studies

The process developed by the TRAC calls for EPA to provide one or more documents for public comment on each of the policy issues described above. Each of these issues is evolving and in a different stage of refinement. Some issue papers have already been published for comment in the Federal Register and others will be published shortly.

In addition to the policy issues that resulted from the TRAC process, the Agency issued, on Sept. 29, 2000, a Pesticide Registration Notice (PR 2000-9) that presents EPA’s approach for managing risks from organophosphate pesticides to occupational users. The Worker PR Notice describes the Agency’s baseline approach to managing risks to handlers and workers who may be exposed to organophosphate pesticides, and the Agency expects that other types of chemicals will be handled similarly. Generally, basic protective measures such as closed mixing and loading systems, enclosed cab equipment, or protective clothing, as well as increased reentry intervals will be necessary for most uses where current risk assessments indicate a risk and such protective measures are feasible. The policy also states that the Agency will assess each pesticide individually, and based upon the risk assessment, determine the need for specific measures tailored to the potential risks of the chemical. The measures included in this interim RED are consistent with the Worker Pesticide Registration Notice.
This document consists of six sections. Section I contains the regulatory framework for reregistration/tolerance reassessment as well as descriptions of the process developed by TRAC for public comment on science policy issues for the organophosphate pesticides and the worker risk management PR notice. Section II provides a profile of the use and usage of the chemical. Section III gives an overview of the revised human health risk assessment resulting from public comments and other information. Section IV presents the Agency’s interim decision on tolerance reassessment eligibility and risk management decisions. Section V summarizes the label changes necessary to implement the risk mitigation measures outlined in Section IV. Section VI provides information on how to access related documents. Finally, the Appendices lists Data Call-In (DCI) information. The revised risk assessments and related addenda are not included in this document, but are available on the Agency’s web page www.epa.gov/pesticides/op, and in the Public Docket.

II. Chemical Overview

A. Regulatory History

Tetrachlorvinphos was initially registered for use in the United States in 1966 by the U.S. Department of Agriculture. The original registrant of technical tetrachlorvinphos was Shell Chemical. The registration was subsequently transferred to E.I. duPont Nemours. In September, 1992, DuPont transferred ownership of technical tetrachlorvinphos data to Boehringer Ingelheim Animal Health Inc. (formerly Fermenta Animal Health Company) and Hartz Mountain Corporation. Boehringer and Hartz each received their own technical grade product registrations in 1992. DuPont voluntarily canceled its registration in December 1993. Boehringer is responsible for supplying generic data supporting livestock uses and Hartz is responsible for supplying generic data supporting pet uses.

Tetrachlorvinphos was registered for use on various vegetables, feed crops, livestock, pet animals, and in or around buildings. However, the crop uses were voluntarily canceled in 1987. Currently, the primary uses of tetrachlorvinphos are for the control of manure flies in livestock applied as a feed through in the form of feed additives; flies and mites in livestock building premises applied as dusts and sprays; and ticks and fleas on domestic pets applied as dusts, sprays, dips, and collars.

A reregistration eligibility decision (RED) was issued for tetrachlorvinphos in 1995. Based on the reregistration eligibility decision, confirmatory data describing the residues in tissues resulting from dermal and feed-through (oral) larvicide uses in livestock are required. The requirement for the livestock use was deferred in 1995 because the feed additive tolerance was expected to be proposed for revocation; it is however, not going to be revoked. Therefore, these data are now required.

This interim tolerance reassessment review is the Agency’s first reevaluation of tetrachlorvinphos since its reregistration in 1995.
E. Chemical Identification

Tetrachlorvinphos:

- **Common Name:** Tetrachlorvinphos
- **Chemical name:** (Z)-2-chloro-1(2,4,5-trichlorophenyl) vinyl dimethyl phosphate
- **Chemical family:** Organophosphate
- **Case number:** 0321
- **CAS registry number:** 2248-79-9 [(Z) - isomer]
 22350-76-1 [(E) - isomer]
 961-11-5 [mixed isomers]
- **OPP chemical code:** 083701
- **Empirical formula:** \(\text{C}_{10}\text{H}_9\text{Cl}_4\text{O}_4\text{P} \)
- **Molecular weight:** 366.0
- **Trade and other names:** Rabon, Gardona
- **Basic manufacturers:** Boehringer Ingelheirn Animal Health Inc.
 Hartz Mountain Corporation

Technical tetrachlorvinphos is a tan to brown crystalline solid with a melting point of 93-98°C and a bulk density of 50-55 lb/ cu ft. The solubility of tetrachlorvinphos in water at 24°C is 15 ppm. Tetrachlorvinphos has limited solubility in most aromatic hydrocarbons (i.e., 40 ppm in chloroform and dichloromethane, 20 ppm in acetone, and 8 ppm in xylene at 0°C).

F. Use Profile

The following information is based on the currently registered uses of tetrachlorvinphos:

Type of Pesticide: Insecticide
Summary of Use Sites:

Feed: Cattle feedlots

Food: Agricultural/Farm Structures/Buildings and Equipment, Cattle Feedlots, Beef Cattle, Dairy Cattle, Swine, Livestock, Poultry

Residential: Cats, Dogs, Domestic Indoor premises

Public Health: Flies, Ticks

Nonfood: Horses, Mink, Recreational Areas, Refuse/Solid Waste Sites (Outdoor)

Target Pests: Fleas, ticks, lice, flies (adult and larvae), chiggers, mites, spiders, wasps, and cattle grubs

Formulation Types Registered:

Technical: 98.7% a.i.
Wettable powder: 50% a.i.
Dust: 1% to 3%
Granular: 0.2 % to 7.8% a.i.
One product 97.3 % a.i.
Impregnated material: 13.7 % to 14.55 % a.i.
Ready-to Use Spray: 1% to 2% a.i.
Pressurized liquid: 1.1% a.i.
Emulsifiable concentrate 3% to 24% a.i.

Method and Rates of Application:

Application methods include: dip applications to pets, backrubber devices in cattle lots, hand and power sprayers, groundboom applications in poultry facilities, mineral blocks, livestock feed supplements, poultry dust boxes and plungers and shaker cans, pour on treatments to livestock, paint on treatments in poultry facilities, pressurized aerosol cans and pump sprays for pets, pet collars, and cattle ear tags.

Use rates vary from a minimum of 0.0004 lb ai/animal to a maximum of 0.0208 lb ai/animal. The use rate for pets is approximately 0.016 lb ai/animal.

Use Classification: Tetrachlorvinphos is a general use pesticide. Although tetrachlorvinphos is a general use pesticide, there are several products classified as a restricted use due to high acute toxicity.
G. Estimated Usage of Pesticide

This section summarizes the best estimates available for many of the pesticide uses of tetrachlorvinphos based on available pesticide usage information for 1997 and 1998. A full listing of all uses of tetrachlorvinphos, with the corresponding use and usage data for each site, has been completed and is in the “Quantitative Use Assessment” document, which is available in the public docket and the EPA pesticide’s web site. The data, reported on an aggregate and site basis, reflect annual fluctuations in use patterns as well as the variability in using data from various information sources. Approximately 900,000 lbs a.i. of tetrachlorvinphos are used annually, according to Agency and registrant estimates.

<table>
<thead>
<tr>
<th>Site</th>
<th>Lbs. Active Ingredient Applied (000)</th>
<th>Percent Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lbs. Wtd Avg</td>
<td>Est Est Avg Est Max</td>
</tr>
<tr>
<td></td>
<td>Wtd Avg</td>
<td>Est Max</td>
</tr>
<tr>
<td>Beef Cattle</td>
<td>219</td>
<td>439</td>
</tr>
<tr>
<td>Dairy Cattle</td>
<td>68</td>
<td>136</td>
</tr>
<tr>
<td>Horses</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Poultry</td>
<td>466</td>
<td>932</td>
</tr>
<tr>
<td>Swine</td>
<td>56</td>
<td>111</td>
</tr>
<tr>
<td>Dogs and Cats</td>
<td>97</td>
<td>193</td>
</tr>
</tbody>
</table>

III. Summary of Tetrachlorvinphos Risk Assessment

The following is a summary of EPA's human health risk findings for the organophosphate pesticide tetrachlorvinphos, as fully presented in the documents listed below:

- “Tetrachlorvinphos: Summary of Revised Residential Handler and Postapplication Toddler Exposure Risk” dated April 1, 2002
- “Further Revisions to Occupational Risk Assessment for Uses in the Poultry and Cattle Production Industries” dated March 28, 2002
- “Tetrachlorvinphos. Addendum to the HED Human Health Risk Assessment” dated April 5, 2002
- “Tetrachlorvinphos: Addendum for Residential Exposures using updated Standard
Operating Procedures for Residential Exposure” dated June 8, 2001

- Addenda to Previous Occupational and Residential Risk Assessment (February 15, 2001)
- “Tetrachlorvinphos: Revised Occupational and Residential Exposure and Risk Assessment,” dated October 25, 1999
- “Tetrachlorvinphos: Revised Human Health Risk Assessment,” dated December 8, 1999
- “Tetrachlorvinphos, The Revised HED Chapter of the Reregistration Eligibility Decision Document” dated April 1, 1998

The purpose of this summary is to assist the reader by identifying the key features and findings of the risk assessments, and to enhance understanding of the conclusions reached in the assessments. The risk assessments presented here form the basis of the Agency's risk management decision for tetrachlorvinphos; the Agency must consider cumulative risks of all the organophosphate pesticides before any final decisions can be made.

A. Human Health Risk Assessment

EPA issued its preliminary human health risk assessment for tetrachlorvinphos in April 1998. This assessment was amended in November 1998 to incorporate toxicological endpoints for short-and intermediate-term risk. Consequently, the occupational/residential assessment was revised to reflect the new endpoints (November 1998).

In response to studies submitted by Hartz and other public comments received during Phase 3 of the public participation process, the occupational and residential risk assessment was further updated and refined on October 25, 1999. During this period, Hartz also committed to providing additional studies to support pet uses. On December 8, 1999, the Human Health Risk Assessment was revised to incorporate changes to the residential assessment and new Quantitative Usage Analysis (QUA) information.

On February 15, 2001, the Occupational Risk Assessment was revised to incorporate new usage information obtained by the Agency from key states that produced poultry including area treated, equipment used, and typical application rates. On June 8, 2001, the Residential Risk Assessment was again refined to reflect recent changes in the Residential Standard Operating Procedures (SOP’s), as recommended by the FIFRA Scientific Advisory Panel (SAP). A meeting was held with Hartz in July 2001. Hartz submitted exposure and toxicity studies in November 2001. On February 4, 2002, the residential assessment was refined further to incorporate new applicator and postapplication exposure data submitted by Hartz; the toxicity study did not result in a change in the risk assessment. The residential assessment was again refined on April 1, 2002 to incorporate changes to the toxicological endpoint.
On April 5, 2002, the Human Health Risk assessment was again revised to reflect a recalculation of the short and intermediate term endpoint, new residue data to assess dietary concerns, and the new occupational and residential data mentioned above.

1. Dietary Risk from Food

a. Toxicity

The Agency has reviewed all toxicity studies submitted and determined that the toxicity database is essentially complete and supports a tolerance reassessment determination for all currently registered uses. The interim determination pertains only to tetrachlorvinphos alone and does not consider the cumulative risk from all other organophosphates. Further details on the toxicity of tetrachlorvinphos can be found in the April 5, 2002, Human Health Risk Assessment, and the March 6, 1995, “Health Effects Division Carcinogenicity Peer Review Committee Report.” A brief overview of the studies used for the dietary risk assessment and other relevant information is outlined in Table 2.

b. FQPA Safety Factor

An uncertainty factor of 100 (the standard uncertainty factor) to account for both interspecies extrapolation and intraspecies variability was applied to both acute an chronic dietary risk assessments. The FQPA safety factor was reduced to 1X for tetrachlorvinphos due to the completeness of the toxicology database (developmental toxicity study, 2- generation reproduction study, acute and subchronic neurotoxicity studies with no treatment related neuropathology observed), lack of increased susceptibility in pre and post natal studies, and adequacy of the available exposure data. The Agency believes that the assumptions and models used in the assessments do not underestimate the potential risk for infants and children.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Dose</th>
<th>Endpoint</th>
<th>Study</th>
<th>UF</th>
<th>FQPA Safety Factor</th>
<th>aPAD/cPAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Dietary</td>
<td>NOAEL = 6.7 mg/kg/day</td>
<td>Plasma/RBC ChE Inhibition at 13 weeks</td>
<td>Subchronic Rat MRID 43371201</td>
<td>100</td>
<td>1X</td>
<td>0.067 mg/kg/day</td>
</tr>
<tr>
<td>Chronic Dietary</td>
<td>NOAEL = 4.23 mg/kg/day</td>
<td>Histological liver and adrenal changes (LOAEL= 43.2); reduced weight gain/plasma ChE Inhibition in females</td>
<td>Chronic Rat MRID 42980901</td>
<td>100</td>
<td>1X</td>
<td>0.0423 mg/kg/day</td>
</tr>
<tr>
<td>Cancer</td>
<td>Q* = 1.83 x 10^-3</td>
<td>Based on adenomas/carcinomas and pheochromocytomas</td>
<td>Mouse carcinogenicity MRID 00126039</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
c. Population Adjusted Dose (PAD)

The PAD is a relatively new term that characterizes the dietary risk of a chemical, and reflects the Reference Dose, either acute or chronic, that has been adjusted to account for the FQPA safety factor (i.e., RfD/FQPA safety factor). In the case of tetrachlorvinphos, the FQPA safety factor is 1; therefore, the acute or chronic RfD is equal to the acute or chronic PAD. A risk estimate that is less than 100% of the acute or chronic PAD is not a risk concern.

d. Exposure Assumptions

Acute and chronic dietary exposure and risk analyses for tetrachlorvinphos were conducted with the Dietary Exposure Evaluation Model (DEEM™). DEEM incorporates consumption data generated in USDA’s Continuing Surveys of Food Intakes by Individuals (CSFII), 1989-91. For the acute dietary risk assessment, the entire distribution of single day food consumption events was combined with a distribution of residues. This is known as a probabilistic analysis. Risk is reported at the 99.9th percentile of exposure to obtain an exposure estimate in mg/kg/day. For the chronic dietary risk assessment, the three-day average food consumption for each sub-population member was combined with average residues to determine average exposure in mg/kg/day.

In the case of tetrachlorvinphos, a probabilistic acute dietary analysis was conducted using USDA Pesticide Data Program (PDP) monitoring data, metabolism studies, calculated livestock anticipated residues, and percent livestock treated information. Monitoring data from the USDA Food Safety and Inspection Service (FSIS) were also considered for characterization purposes only. FSIS analyzed livestock tissues and milk for tetrachlorvinphos during 1993-2000.

For the acute assessment, a tier 3 probabilistic analysis was completed using the acute anticipated residues, monitoring data, and livestock usage data. For the chronic assessment, a tier 2 analysis was conducted using anticipated residues in livestock commodities. For both the acute and the chronic assessments, use of refined anticipated residues in livestock commodities is still considered to be conservative because of the type of data used (i.e., results of livestock metabolism studies) and because no refinements were made for reduction of residues during cooking/baking.

e. Food Risk Characterization

Generally, a dietary risk estimate that is less than 100% of the acute and chronic PAD is not of concern. The acute dietary risk from residues of tetrachlorvinphos in food alone is not of concern at the 99.9th percentile. The most highly exposed subgroup was children 1-6 years, with 8% of the acute PAD occupied. The chronic dietary risk from food alone is well below the Agency’s level of concern. The most highly exposed subgroup is children 1 to 6 years old with < 1% of the chronic PAD occupied.

Using anticipated residues and percent livestock treated data the dietary cancer risk is estimated to be 2×10^{-7} for the general U.S. population, which is below the Agency’s level of concern for carcinogenic dietary risk. Results of acute and chronic dietary risk analyses are presented in Table
Table 3. Tetrachlorvinphos: Acute and Chronic Dietary Exposure and Risk

<table>
<thead>
<tr>
<th>Population Subgroup</th>
<th>Acute Dietary Exposure 99.9th Percentile</th>
<th>Chronic Dietary Exposure</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%aPAD</td>
<td>%cPAD</td>
<td></td>
</tr>
<tr>
<td>U.S. Population</td>
<td>4</td>
<td><1</td>
<td>2 x 10^{-7}</td>
</tr>
<tr>
<td>All infants (<1 yr)</td>
<td><1</td>
<td><1</td>
<td>N/A*</td>
</tr>
<tr>
<td>Children (1-6 yrs)</td>
<td>8</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Children (7-12 yrs)</td>
<td>5</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Females (13-50 yrs)</td>
<td>4</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Males (13-19 yrs)</td>
<td>5</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Males (20+ yrs)</td>
<td>4</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Seniors (55+ yrs)</td>
<td>3</td>
<td><1</td>
<td></td>
</tr>
</tbody>
</table>

* The Agency generally does not assess cancer risk for children. Agency policy states that when the low dose linear extrapolation approach (Q*) is used for estimating cancer risk for both children and adults, cancer risk for the "general population" which includes infants and children, should be presented. Therefore, the estimate of 0.000093 mg/kg/day for the general U.S. population corresponds to a lifetime cancer risk of approximately 2.7 x 10^{-7}, which is below the Agency’s level of concern.

2. Dietary Risk from Drinking Water

The registered uses of tetrachlorvinphos allow use outdoors for the purpose of treating limited areas near kennels, barns, recreational and picnic areas and other outdoor living areas. However, the area of coverage is generally small, less than one acre in most instances. Therefore, potential for tetrachlorvinphos to contaminate drinking water sources is very small and a drinking water assessment was not conducted.

3. Occupational and Residential Risk

Occupational workers may be exposed to a pesticide through tasks such as mixing, loading, and applying a pesticide, or re-entering treated sites. Residents or homeowners can be exposed to a pesticide through mixing, loading, or applying a pesticide, or through entering or contacting treated sites. Occupational handlers of tetrachlorvinphos include individual farmers or ranchers who mix, load, and/or apply pesticides, and professional or custom agricultural applicators. Residential handlers include homeowner applicators treating their dogs and cats. Residential postapplication exposure to adults and children can also occur from contact with treated dogs and cats. Noncancer risk for all of these potentially exposed populations is measured by a Margin of Exposure (MOE) which determines how close the occupational or residential exposure comes to a No Observed Adverse Effect Level (NOAEL), which is the highest dose given in studies at which no significant toxic effects were observed. Generally, MOEs greater than 100 are not of concern. For cancer, risks below 1x10^{-6}, or 1 in 1 million, are not of concern. For workers, if cancer risks are between 1x10^{-6} and 1x10^{-4} EPA will pursue risk mitigation where feasible.
a. Toxicity

The toxicity of tetrachlorvinphos is integral to assessing the occupational and residential risk. All risk calculations are based on the most current toxicity information available for tetrachlorvinphos. The toxicological endpoints and other factors used in the occupational and residential risk assessments for tetrachlorvinphos are listed below.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Dose</th>
<th>Endpoint</th>
<th>Study</th>
<th>Absorption Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-/Intermediate-Term Dermal</td>
<td>NOAEL=6.7 mg/kg/day</td>
<td>Plasma/RBC ChE Inhibition at 13 weeks (LOAEL=142)</td>
<td>Subchronic Rat MRID 43371201</td>
<td>9.6%</td>
</tr>
<tr>
<td>Short-/Intermediate-Term Inhalation</td>
<td>NOAEL=6.7 mg/kg/day</td>
<td>Plasma/RBC ChE Inhibition at 13 weeks (LOAEL=142)</td>
<td>Subchronic Rat MRID 43371201</td>
<td>100%</td>
</tr>
<tr>
<td>Cancer</td>
<td>Q* = 1.83 x 10^-3</td>
<td>Based on adenomas/carcinomas and pheochromocytomas</td>
<td>Mouse Carcinogenicity</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Tetrachlorvinphos has relatively low acute toxicity in rats via the oral and inhalation routes, and low acute toxicity via the dermal route in rabbits. Based on studies conducted in guinea pigs, it is considered to be a dermal sensitizer.

<table>
<thead>
<tr>
<th>Route of Exposure</th>
<th>MRID No.</th>
<th>Results</th>
<th>Toxicity Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>41222504</td>
<td>LD₅₀ = 1480 mg/kg (M) 465-965 mg/kg (F)</td>
<td>III</td>
</tr>
<tr>
<td>Dermal</td>
<td>41222505</td>
<td>LD₅₀ >2000 mg/kg</td>
<td>III</td>
</tr>
<tr>
<td>Inhalation</td>
<td>00138933</td>
<td>LC₅₀ > 3.61 mg/L</td>
<td>IV</td>
</tr>
<tr>
<td>Eye Irritation</td>
<td>41222506</td>
<td>moderate</td>
<td>III</td>
</tr>
<tr>
<td>Dermal Irritation</td>
<td>41222507</td>
<td>slight</td>
<td>IV</td>
</tr>
<tr>
<td>Dermal Sensitizer</td>
<td>41377902</td>
<td>sensitizer</td>
<td>--</td>
</tr>
</tbody>
</table>

b. Exposure

1) Occupational Exposure

Based on use patterns summarized above, EPA has identified the following major exposure...
scenarios for workers who handle (mix, load, or apply) tetrachlorvinphos:

- mixing/loading emulsifiable concentrates for high pressure handwand applications on livestock or livestock premises,
- mixing/loading emulsifiable concentrates for groundboom applications in broiler facilities,
- mixing/loading emulsifiable concentrates for cattle backrubber applications for livestock,
- mixing/loading wettable powders for high pressure handwand applications on livestock or livestock premises,
- mixing/loading wettable powders for groundboom applications broiler facilities,
- mixing/loading wettable powders for paint-on fly control in poultry premises,
- mixing/loading wettable powders for dusting applications for livestock and poultry,
- applying with high pressure handwand on poultry and poultry premises,
- applying with groundboom in broiler facilities,
- mixing /loading/applying wettable powder with a low pressure handwand on poultry and poultry premises,
- mixing/loading/applying emulsifiable concentrate with a low pressure handwand on poultry and poultry premises,
- mixing/loading/applying with a backpack on poultry and poultry premises,
- mixing/loading/applying for paint-on application, undiluted emulsifiable concentrate for poultry premises,
- mixing/loading/applying for paint-on application, wettable powder for slurry paint-on for poultry premises.
- mixing/loading/applying backrubbers for cattle.
- applying ear tags, feed-through pellets, and mineral blocks to livestock or livestock premises.

The risk assessment for tetrachlorvinphos addressed all elements of the poultry industry which included egg (also referred to as layer) and broiler production. These entities are very distinct from one another in cultural practices so the risks for each use were assessed separately. The Agency also estimated risks associated with beef cattle and dairy production. The uses for tetrachlorvinphos are similar for beef and dairy cattle; therefore, the two uses were grouped together for risk assessment purposes. Use patterns, application methods, and the range of application rates were derived from current labeling and Agency analysis.

One chemical-specific handler exposure study was submitted in support of the reregistration of tetrachlorvinphos in which separate mixer, loader, and applicator exposures were quantified during application of a wettable powder and liquid formulations in poultry houses (MRID 426223-01). These chemical-specific data were in the same range of exposures as those from the Pesticide Handlers Exposure Database (PHED), the database the Agency routinely uses for handler risk assessments when there is no chemical-specific study data available. In the current risk assessment (J. Dawson, March 28, 2002), only the results based on PHED data are summarized because they are similar to results using the chemical specific study, and PHED is a more robust database. Data were available to identify the typical and maximum application rates in poultry, beef cattle and dairy production. These bounding estimates were used for the cancer risk assessment.
Tetrachlorvinphos Exposures Associated With Egg Production

Tetrachlorvinphos is used predominantly in egg production for control of northern fowl mite and to control flies and darkling beetles with direct treatment of birds and chicken litter and/or premises. There are various methods to apply tetrachlorvinphos in egg production. Liquid applications involve the use of handheld equipment, such as low pressure handwands, backpack sprayers, and high pressure handwands for direct treatment on birds or poultry premises. Dust applications involve power dusters, dust boxes, plungers, and shaker cans on birds and premises. Paint-on techniques are also used for fly control in poultry premises.

Application rates specified on tetrachlorvinphos labels for the different methods in egg production are 0.0218 - 0.0436 lb ai/100 birds (liquid applications), 0.01 - 0.24 lb ai/gal (paint-on), 0.078 lb ai/50 birds or 0.078 - 0.030 lb ai/100 ft2 (dust application).

Special care should be given when interpreting the results which have been calculated for the paint-on uses because data have been bridged to these scenarios. Preparation of the paint slurry solutions from wettable powders has been addressed using wettable powder mixer/loader data where a bag of material is typically loaded into a nurse tank and mechanically agitated. In slurry prep, material is usually added to a bucket/hopper where the user is in closer proximity and agitation is done by hand. Also, the painting element of this use pattern was assessed with data generated using typical indoor paint products. In fly-control paint-on applications, the viscosity of the slurries applied tends to be thicker and the active ingredient concentrations are typically much higher. When applying the paint-on, the aesthetics of the end result are not important. Therefore, less care is taken during the application process.

Likewise, there are several different application techniques could be used to apply dust materials including shaker cans, rotary dusters, power dusters, and plungers. The only exposure scenario that has been included in this assessment is for mixing/loading operations. No dust application scenarios have been included due to lack of data (e.g., no data are available for power, plunger, or rotary dusters). It is difficult to estimate what the exposures associated with use of these kinds of equipment might be. However, the Agency readily believes that there would be measurable, and likely, substantial exposure.

Tetrachlorvinphos Exposures Associated With Broiler Production

Tetrachlorvinphos is used predominantly in broiler production for control of flies and other pests. Uses associated with broiler production involve direct application to the floors/litter within a broiler house and also as a paint-on for fly control. Applications occur with handheld equipment for spot treatments, with groundboom type equipment for larger areas (100,000 ft2), and paint-on methods to poultry structures.

Rates specified on tetrachlorvinphos labels for use in broiler production are 0.1 lb, ai/1000 ft2 - 0.333 ai/1000 ft2 for both handheld and groundboom equipment. Risks were calculated using PHED data and one chemical specific study (MRID 426223-01). Again, as mentioned above, only the
results based on PHED data are summarized because they are similar to results of the chemical specific study. Paint-on and dust uses are expected to be similar to those described above for egg production.

Tetrachlorvinphos Exposures Associated With Cattle and Dairy Production

Tetrachlorvinphos is used predominantly for fly control in the cattle industry. The following uses exist for cattle: ear tags, mineral blocks, dust/dust bags, feed-through (oral larvicide) pellets, and backrubbers. The Agency does not have exposure data specific to ear tag, mineral block, and pellet uses, but considers these scenarios to have low potential for significant worker exposure if basic protective measures such as gloves are used.

The Agency quantitatively calculated the risks associated with the use of dust/dust bags and backrubbers in this assessment. Dust exposures are expected to be similar to the loading scenario described above for egg production. The dust scenario for egg production involves loading dusting equipment (power dusters, hand dusters, and plungers), which EPA considered equivalent to loading a dust bag. Therefore, the loader exposure values for egg production adequately represent uses in the cattle industry. The other use that was considered, cattle backrubbers, are charged with a liquid and hung in areas such as feedlots, loafing sheds, corrals, and entries to dairy facilities where cattle can contact the devices. The use of backrubbers involves mixing a solution to charge the device (concentration = 2 lb ai/25 gallons) then placing the device in an appropriate location. Data for mixers and loaders with liquids from PHED were used to calculate risks for mixing the solution and loading into a backrubber. No data were available for quantifying exposures that would be associated with placing the device. In comparison to mixing the solution and loading it into the backrubber, exposures to handlers placing the device could be significant.

Occupational handler exposure assessments are conducted by the Agency using different levels of personal protection. The Agency typically evaluates all exposures with minimal protection and then adds additional protective measures using a tiered approach to obtain an appropriate MOE or cancer risk level (i.e., going from minimal to maximum levels of protection). The lowest tier is represented by the baseline exposure scenario, followed by, if required (i.e., MOEs are less than 100), increasing levels of risk mitigation (personal protective equipment (PPE) and engineering controls). The levels of protection that formed the basis for calculations of dermal and inhalation exposure from tetrachlorvinphos activities include:

- **Baseline:** Long-sleeved shirt and long pants, shoes and socks.
- **Minimum PPE:** Baseline + gloves (single layer clothing, gloves and no respirator)
- **Maximum PPE:** Baseline + double layer clothing + chemical resistant gloves + dust/mist respirator

Post Application Exposure
Supported tetrachlorvinphos uses are not expected to result in significant occupational post application exposures. Therefore, an occupational post-application exposure and risk assessment was not performed.

The Agency has considered the potential post-application exposure arising from re-entering indoor premises, such as poultry houses. Given the nature of activities performed in a poultry house, such as visually checking the condition of caged birds, as well as feeding, and watering, contact of treated surfaces should be minimal. Tetrachlorvinphos can also be used as a feed-through. Given the mechanized systems for feed delivery in most feed-lots and the nature of manure removal, the Agency concludes that post-application exposure is minimal.

All occupational tetrachlorvinphos exposures were considered to be either short-(i.e., 1-30 days) or intermediate-term (i.e., 30 days to several months) in nature. Based on the registered use pattern, no chronic exposures are thought to exist for tetrachlorvinphos.

2) Residential Exposure

For homeowner handler exposure assessments, the Agency does not believe a tiered mitigation approach like that used for assessing occupational handler risk is appropriate. Homeowners often lack access to personal protective equipment (PPE) and also do not possess expertise in the proper use of PPE. As a result, homeowner handler assessments are completed using a single scenario assuming that short-sleeved shirts and short pants are worn (i.e., common homeowner attire during the pesticide application season).

Residential exposure assessments for tetrachlorvinphos were conducted using the Agency’s residential SOPs combined with chemical specific data provided by the registrant. Only short-term exposures were assessed, as the Agency does not believe homeowners who apply tetrachlorvinphos will be exposed for more than 30 days, although it should be noted that the same toxicity endpoint was selected for both short and intermediate term exposures. The Agency feels it is unlikely that a homeowner would be exposed to a product for more than 180 days based on the use pattern and the variety of other products on the market. The exposure scenarios included use of pet dips and application of pet collars, powders, aerosol sprays, and pump sprays. No postapplication exposure is calculated for treated indoor surfaces or turf, because tetrachlorvinphos is only registered for pet and pet bedding applications (i.e., not general area or crack and crevice). However, post application exposure for contact with pets was estimated.

The revised residential risk assessment (S. Hanley, October 25, 1999) was updated to include revisions to the residential SOPs (S. Hanley, June 8, 2001). The residential risk assessment was further revised to include handler and post application data submitted by Hartz Mountain Corporation (S. Hanley, February 4, 2002). These new studies incorporated label changes submitted by the registrant, and provided handler data for dips and powders; and dislodgeable fur residue data for aerosol, powder, and pump spray scenarios to assess post- application exposure from contact with treated pets. The studies were sufficient in scientific quality to refine the assessment. Hartz did not provide new data to assess post-application risks for dip and collar scenarios since the previous
assessment indicated these risks were not of concern. The residential risk assessment was again updated (S. Hanley, April 1, 2002) to incorporate the recalculation of the short and intermediate term endpoint.

The pet dip data used in the 1999 assessment were considered to be of low quality due to the methodology used. The new postapplication exposure data for aerosol, powder, and pump sprays are of much higher quality, and show results in the same range as the data used in the 1999 postapplication assessment for the dip use. This indicates that the low quality of the dip data will not result in an underestimate of exposure and risk from this scenario. Accordingly, the 1999 data for pet dips have been used in the current assessment to evaluate post application risks from this use.

Three products registered for use on livestock and poultry also include directions for limited outdoor use as premise sprays for fleas, ticks, chiggers, and mites, around kennels, yards, campgrounds, and parks, and along foot paths and roadways leading to such areas. Two of these are restricted-use products. Labeling directions are intended to limit applications to spot treatments in border areas, potentially frequented by people, as opposed to broadcast use over large areas. As such, EPA believes there is minimal potential for significant residential exposure; therefore, a residential risk assessment for outdoor uses has not been conducted.

c. Occupational & Residential Handler Risk Summary

1) Occupational Handler Risk

Poultry Production

Risks for most exposure scenarios in egg and broiler production were not of concern at baseline clothing or with additional PPE (see table 4 below). There are two scenarios for which risks are above the level of concern, even at the maximum level of protection considered feasible: mixers, loaders, and applicators have MOEs ranging from 14 to 80 for handling wettable powder using a low pressure handwand; and, MOEs range from 7 to 55 for paint-on application of the EC formulation. Cancer risks are above the Agency’s level of concern for both paint-on EC and low pressure WP scenarios with estimates ranging from 2.1×10^{-6} to 5.7×10^{-6}. Cancer risks for all other scenarios are in the range of 10^{-9} to 10^{-7}, which is below the Agency’s level of concern.

Cattle Production

As mentioned above (part b), no data are available to assess the exposures for ear tag, mineral block, and pellet uses. However, risks from these scenarios are not of concern because handling of these materials are low and likelihood of high exposure is minimal if gloves are used. For dust applications, the risk are expected to be similar to those assessed for poultry, for both mixers, loaders and applicators. Estimated mixer/loader risks for dust are below the level of concern, with MOEs of 197 - 504. But no data are available for applicators who apply dust to cattle. For cattle backrubbers, estimated mixer/loader MOEs range from 421-821 at the baseline clothing scenario; cancer risks are in the 10^7 range. EPA does not have data to assess workers hanging backrubber devices in cattle lots but expects exposures to be significant for this activity. Therefore, additional protective equipment such as double layer clothes and gloves will be needed for workers handling backrubber devices.
Table 4. Summary of Occupational Handler Risks in Poultry Production.

<table>
<thead>
<tr>
<th>Poultry Type</th>
<th>Scenario/Formulation</th>
<th>Application Rate</th>
<th>Non-Cancer</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum Required PPE</td>
<td>MOE</td>
</tr>
<tr>
<td>Egg Production</td>
<td></td>
<td>MIXER/LOADER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High pressure handwand/EC</td>
<td>0.0218 - 0.0436 lb ai/100 birds</td>
<td>193-386</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td>High pressure handwand/WP</td>
<td>0.0417 lb ai/100 birds</td>
<td>141</td>
<td>Minimum PPE</td>
</tr>
<tr>
<td></td>
<td>Paint-On/WP</td>
<td>0.01 to 0.24 lb ai/gal</td>
<td>2458-58995</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td>Dusting/WP^</td>
<td>0.078 lb ai/50 bird or 100 ft^2</td>
<td>Minimum PPE</td>
<td>252-504</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.03 lb ai/100 ft^2</td>
<td>Baseline</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>MIXER/LOADER/APPLICATOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low pressure handwand/EC</td>
<td>0.0218-0.0436 lb ai/100 birds</td>
<td>Minimum PPE</td>
<td>756-1512</td>
</tr>
<tr>
<td></td>
<td>Low pressure handwand/WP</td>
<td>0.0417 lb ai/100 birds</td>
<td>Maximum</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Backpack</td>
<td>0.0218 - 0.0436 lb ai/100 birds</td>
<td>Minimum PPE</td>
<td>200-400</td>
</tr>
<tr>
<td></td>
<td>Paint-On/EC (undiluted)</td>
<td>2 lb ai/gal</td>
<td>Maximum</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Paint-On/WP (Slurry)</td>
<td>0.01 lb ai/gal</td>
<td>Maximum</td>
<td>1340</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.24 lb ai/gal</td>
<td>Minimum PPE</td>
<td>382</td>
</tr>
<tr>
<td></td>
<td>APPLICATOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High pressure handwand</td>
<td>0.0218 - 0.0436 lb ai/100 birds</td>
<td>Baseline</td>
<td>214-428</td>
</tr>
<tr>
<td>Broiler Production</td>
<td></td>
<td>MIXER/LOADER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High pressure handwand/EC</td>
<td>0.333 - 0.696 lb ai/1000ft^2</td>
<td>Baseline</td>
<td>121-841</td>
</tr>
<tr>
<td></td>
<td>High pressure handwand/WP</td>
<td>0.333 lb ai/1000ft^2 [typ = 0.10]</td>
<td>Baseline</td>
<td>177-590</td>
</tr>
<tr>
<td></td>
<td>Groundboom/EC</td>
<td>0.333 - 0.696 lb ai/1000ft^2</td>
<td>Minimum PPE</td>
<td>1981-4141</td>
</tr>
<tr>
<td></td>
<td>Groundboom/WP</td>
<td>0.333 lb ai/1000ft^2 [typical = 0.10 lb ai/1000ft^2]</td>
<td>Minimum PPE</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>Broiler Production</td>
<td>MIXER/LOADER/APPLICATOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low pressure handwand/EC</td>
<td>0.333 - 0.696 lb ai/1000ft^2</td>
<td>Minimum PPE</td>
<td>474-3296</td>
</tr>
<tr>
<td></td>
<td>Low pressure handwand/WP</td>
<td>0.333 lb ai/1000ft^2 [typical = 0.10 lb ai/1000ft^2]</td>
<td>Maximum</td>
<td>100</td>
</tr>
</tbody>
</table>

^ Dusting/WP typically refers to the application rate per 50 birds or 100 ft².
<table>
<thead>
<tr>
<th>Poultry Type</th>
<th>Scenario/Formulation</th>
<th>Application Rate</th>
<th>Non-Cancer</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum Required PPE</td>
<td>MOE</td>
</tr>
<tr>
<td>Backpack</td>
<td></td>
<td>0.333 - 0.696 lb ai/1000ft² [typical = 0.10 lb ai/1000ft²]</td>
<td>Minimum PPE</td>
<td>125-871</td>
</tr>
<tr>
<td>High pressure handwand</td>
<td>0.333 - 0.696 lb ai/1000ft² [typical = 0.10 lb ai/1000ft²]</td>
<td>Baseline</td>
<td>134-933</td>
<td>Baseline</td>
</tr>
<tr>
<td>Groundboom</td>
<td>0.333 - 0.696 lb ai/1000ft² [typical = 0.10 lb ai/1000ft²]</td>
<td>Baseline</td>
<td>3240-22550</td>
<td>Baseline</td>
</tr>
<tr>
<td>Cattle Production</td>
<td>Backrubbers</td>
<td>2 lb ai/25 gallons</td>
<td>Baseline</td>
<td>421-821</td>
</tr>
</tbody>
</table>

1No Data are available for dust application scenarios, but EPA expects measurable, substantial exposure.
2) Post application Risk

Supported tetrachlorvinphos uses are not expected to result in significant occupational post application exposures. Therefore, an occupational post application exposure and risk assessment was not performed.

3) Horses

EPA is concerned with tetrachlorvinphos feed-through products used in horses. EPA has data from multiple sources that show tetrachlorvinphos feed-through products decrease cholinesterase levels. EPA is therefore requesting the registrants add label statements to horse oral larvicides which state that the product is a cholinesterase inhibitor, describe signs of cholinesterase inhibition in horses, caution against the use with other cholinesterase inhibiting compounds, and direct horse owners to consult a veterinarian before using products containing tetrachlorvinphos on debilitated, aged, pregnant or nursing animals.

Several comments were submitted during phase 5 associating reproduction problems in pregnant mares with use of tetrachlorvinphos feed-through products. The Agency does not have data from controlled studies to support a conclusion that such use leads to these problems. EPA notes that other organophosphates mostly used as equine anthelmintics (intestinal wormers) are regulated by the Food and Drug Administration (FDA). Generally, FDA requires reproductive toxicity studies for equine anthelmintics. However, in the absence of such data, products carry statements such as, “This product has not been tested in breeding animals.” Therefore, EPA is requesting that tetrachlorvinphos feed-through labels state that testing in breeding horses has not been conducted.

d. Residential (Homeowner) Risk Summary

1) Residential Handler Risk

A total of four residential handler scenarios were identified: pet dip (sponge on and pour on); applying powders (dusting); applying ready-to-use pump sprayer and aerosol sprays; and applying a flea collar to pets. The target MOE is 100. The residential handler combined dermal and inhalation MOEs ranged between 240 and 26,000. Therefore, risks for residential handlers are not of concern. Based on the 2001 risk assessment which used high-end conservative assumptions with respect to the frequency of applications, cancer risks calculated for residential handlers were also below the Agency’s level of concern for all pet uses (risks were in the range of 2×10^{-7} to 9.3×10^{-9}).

<table>
<thead>
<tr>
<th>Product</th>
<th>TCVP used (lb)</th>
<th>Dermal + Inhal. Exposure</th>
<th>Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dip, Pour-On</td>
<td>0.015</td>
<td>0.0013</td>
<td>5200</td>
</tr>
<tr>
<td>Dip, Sponge-On</td>
<td>0.0037</td>
<td>0.0025</td>
<td>2700</td>
</tr>
<tr>
<td>Spray, Aerosol</td>
<td>0.00086</td>
<td>0.00030</td>
<td>22000</td>
</tr>
<tr>
<td>Spray, Pump</td>
<td>0.00066</td>
<td>0.00026</td>
<td>26000</td>
</tr>
</tbody>
</table>
Table 5. Residential Handlers: Risk Concerns

<table>
<thead>
<tr>
<th>Product</th>
<th>TCVP used (lb)</th>
<th>Dermal + Inhal. Exposure</th>
<th>Dose</th>
<th>MOE</th>
<th>Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder</td>
<td>0.0018</td>
<td></td>
<td>0.0027</td>
<td>2500</td>
<td>1.9 x 10^-8</td>
</tr>
<tr>
<td>Collar</td>
<td>0.011</td>
<td></td>
<td>0.028</td>
<td>240</td>
<td>2.0 x 10^-7</td>
</tr>
</tbody>
</table>

a TCVP used (lb); average value from handler study data [Dips and Powder] or Residential SOPs/label.
b Total Absorbed Dose (mg/kg/day) = Dermal Dose (mg/kg/day) + Inhalation Dose (mg/kg/day).
c MOE = NOAEL (6.7 mg/kg/day) ÷ Total Dose (mg/kg/day).
d Cancer risks were calculated as follows: Total dose x (2 days/365 days) x (50 yrs/70 yrs) x 0.00183 (Q_1)^1

e Collar weight is 33 g., and 14.55% TCVP (total ai/collar = 4.8 g)

1) Residential Post Application Risk

Since tetrachlorvinphos is used for direct pet and pet premise treatment in a residential environment, post application exposure is expected to occur. Some significant short-term residential exposure scenarios that have been identified include contact with treated pets, toddler dermal contact (such as a child hugging a dog), and toddler exposures resulting from hand-to-mouth activity following contact with treated pets.

Assessments were based on the revised residential SOPs and chemical-specific data from submitted studies. Post application exposure to residues from pet collars is considered to be insignificant when compared with exposure to other products. Because other, higher exposure uses were not of concern, an assessment for collars was not conducted. Toddler post application dermal risks were below the Agency's level of concern with MOEs ranging between 412 - 1804 for dermal exposure to pets following treatment with dips, powders, pump sprays, and aerosols. Risks were below the Agency’s level of concern for toddler hand-to-mouth exposures for dips, powders, pump sprays, and aerosols (MOEs ranging between 267 - 809). Combined risks for dermal and hand-to-mouth post-application exposures are below the Agency’s level of concern for all scenarios (MOEs ranging between 130 and 560). Although postapplication risks were not determined for adults, toddler exposures represent the worst case due to typical mouthing behaviors and body weight and surface area considerations; therefore, the risk assessment for toddlers is protective of adults.

Table 6. Postapplication Exposure: Risk Concerns

<table>
<thead>
<tr>
<th>Product</th>
<th>Dermal Exposure and Risk</th>
<th>Hand-to-Mouth Exposure and Risk</th>
<th>Aggregate Exposure and Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MOE</td>
<td>MOE</td>
<td>MOE</td>
</tr>
<tr>
<td>Dip</td>
<td>985</td>
<td>447</td>
<td>310</td>
</tr>
<tr>
<td>Spray, Pump</td>
<td>595</td>
<td>267</td>
<td>180</td>
</tr>
<tr>
<td>Spray, Aerosol</td>
<td>412</td>
<td>267</td>
<td>130</td>
</tr>
<tr>
<td>Powder</td>
<td>1804</td>
<td>809</td>
<td>560</td>
</tr>
</tbody>
</table>
4. **Aggregate Risk**

An aggregate risk assessment combines risk from dietary exposure (food and drinking water routes) and residential exposure to a particular pesticide. For tetrachlorvinphos, three aggregate scenarios were considered: acute, short-term, chronic, and cancer.

Based on the supported use pattern for tetrachlorvinphos, no exposure is expected to occur through consumption of drinking water. Therefore, the acute aggregate assessment only considers dietary (food only) risk.

For short-term aggregate risk exposure to tetrachlorvinphos in food (chronic dietary exposure) and short-term residential exposures (handler and post-application) are combined. All identified residential exposure scenarios were considered to be short-term in nature, and therefore an intermediate-term aggregate assessment was not conducted.

Since there are no chronic residential exposure scenarios and no exposure through drinking water is expected based on tetrachlorvinphos use patterns, the chronic aggregate exposure and risk assessment also includes only food sources of exposure.

Generally, all non-cancer risks from these exposures must have MOEs of greater than 100 to be not of concern to the Agency. Adult aggregate risks for all scenarios were below the Agency's level of concern; the worst case scenario was collars with an MOE of 240. All other scenarios ranged from 2,400 to 19,000 for aerosols, dips, powders, and pump sprays. Aggregate risk for post application (toddlers) exposures were again below the Agency’s level of concern for all scenarios. The lowest MOE was for pump sprays (130). The other risk estimates ranged between 180 and 550 for aerosols, dips, and powders.

Aggregate cancer risks for residential handlers were calculated using the chronic dietary food exposure and the cancer risk numbers generated for handlers applying dips, powders, sprays, and collars. Aggregate cancer risks less than 1×10^6 or one in 1 million, are not of concern to EPA. Aggregate cancer risks for all scenarios were below the Agency’s level of concern. Risk estimates ranged from 1.7×10^{-7} to 3.7×10^{-7}.

IV. Interim Risk Management and Reregistration Decision

A. Determination of Interim Reregistration Eligibility

Section 4(g)(2)(A) of FIFRA calls for the Agency to determine, after submission of relevant data concerning an active ingredient, whether products containing the active ingredient are eligible for reregistration. The Agency has previously identified and required the submission of the generic (i.e., active ingredient specific) data required to support reregistration of products containing tetrachlorvinphos active ingredients.
The Agency has completed its assessment of the occupational and residential risks associated with the use of pesticides containing the active ingredient tetrachlorvinphos, as well as a dietary risk assessment that has not yet considered the cumulative effects of organophosphates as a class. Based on a review of these data and public comments on the Agency’s assessments for the active ingredient tetrachlorvinphos, EPA has sufficient information on the human health effects of tetrachlorvinphos to make interim decisions as part of the tolerance reassessment process under FFDCA and reregistration under FIFRA, as amended by FQPA. The Agency has determined that tetrachlorvinphos is eligible for tolerance reassessment provided that: (i) current data gaps and additional data needs are addressed; (ii) the risk mitigation measures outlined in this document are adopted, and label amendments are made to reflect these measures; and (iii) cumulative risks considered for the organophosphates support a final reregistration eligibility decision. Label changes are described in Section IV. Appendix B identifies the generic data requirements that the Agency reviewed and lists the submitted studies that the Agency found acceptable.

Although the Agency has not yet considered cumulative risks for the organophosphates, the Agency is issuing this interim assessment now in order to identify risk reduction measures that are necessary to support the continued use of tetrachlorvinphos. Based on its current evaluation of tetrachlorvinphos alone, the Agency has determined that tetrachlorvinphos products, unless labeled and used as specified in this document, would present risks inconsistent with FIFRA and/or FQPA. Accordingly, should a registrant fail to implement any of the risk mitigation measures identified in this document, the Agency may take regulatory action to address the risk concerns from use of tetrachlorvinphos.

For tetrachlorvinphos, if all changes outlined in this document are incorporated into the labels, then all current risks will be mitigated. Because this is an interim TRED, the Agency may take further actions, if warranted, to finalize the eligibility decision for tetrachlorvinphos after considering the cumulative risk of the organophosphate class. Such an incremental approach is consistent with the Agency’s goal of improving the transparency of the reregistration and tolerance reassessment processes. By evaluating each organophosphate in turn and identifying appropriate risk reduction measures, the Agency is addressing the risks from the organophosphates in as timely a manner as possible.

Because the Agency has not yet considered cumulative risks for the organophosphates, this does not fully satisfy the reassessment of the existing tetrachlorvinphos food residue tolerances as called for by FQPA. When the Agency has considered cumulative risks, tetrachlorvinphos tolerances will be reassessed in that light. By publishing this interim decision on tolerance reassessment eligibility and requesting mitigation measures now for the individual chemical tetrachlorvinphos, the Agency is not deferring or postponing FQPA requirements; rather, EPA is taking steps to assure that uses which exceed FIFRA’s unreasonable risk standard do not remain on the label indefinitely, pending consideration of cumulative risks. This decision does not preclude the Agency from making further FQPA determinations and tolerance-related rulemakings that may be required on this pesticide or any other in the future.

If the Agency determines, before finalization of the TRED, that any of the determinations described in this interim TRED are no longer appropriate, the Agency will pursue appropriate action,
including but not limited to, reconsideration of any portion of this interim TRED.

B. Summary of Phase 5 Comments and Responses

When making its interim reregistration decision, the Agency took into account all comments received during Phase 5 of the OP Pilot Process. A detailed discussion of these comments received on the Human Health Risk Assessment is in the OPP docket for tetrachlorvinphos (Docket # 34175B). A brief summary of the comments and the Agency response is noted here.

Comment: The registrant Boehringer Ingelheim Vetmedica submitted comments during phase 5 on the Revised Risk Assessments. Boehringer noted a telephone conference call that was held on May 2, 2000, with USDA, EPA, registrants, scientists, and other stakeholders. The call, among other things, highlighted issues regarding the Quantitative Usage Analysis (QUA) report and poultry uses. Boehringer stated that they were concerned with how the Agency assessed backpack sprayers in the risk assessment. They proposed future discussions with the Agency to modify the label to be consistent with current use practices for their products.

Response: The QUA has been updated to include USDA National Agricultural Statistic Survey (NASS) data that gives current estimates of pesticide usage on livestock. For poultry uses, the Agency performed an analysis of use practices in poultry in December 2000. That data was used in the most recent occupational risk assessment (J. Dawson, March 27 2002). For backpack sprayers, due to the recent change in the toxicity endpoint for tetrachlorvinphos (short and intermediate term endpoint is now 6.7 mg/kg/day), risk to backpack sprayers for poultry uses is no longer a concern provided PPE is used.

Comment: The registrant Hartz Mountain submitted comments during phase 5 on the Revised Risk Assessments. Hartz did not agree with the risk assessment and its limited use of exposure data provided by the registrant in June 1999. Consequently, they compiled a listing of the issues that were of concern to the Agency noting those areas that used conservative assumptions to derive estimates.

Response: Since the time that this comment was submitted, the risk assessment has been changed to reflect revisions to the Residential SOPs (1999). In addition, new exposure data were submitted to the Agency which enabled major refinement of the risks. Moreover, the toxicity endpoint was recalculated and this further improved the risk picture.

Comments: Relating to horses: Four citizens submitted comments concerning feed through uses of tetrachlorvinphos products on horses. Most of these comments were anecdotal reports of suspected adverse reactions, particularly those which caused reproductive problems in their horses. However, one commentor provided detailed information concerning the use of a feed through product containing tetrachlorvinphos, and its apparent reproductive effects on his horses.
The registrant Farnam Companies, Inc., submitted comments also. Farnam is a manufacturer and distributor of Equitrol®, which is a pelleted horse feed additive containing tetrachlorvinphos that is designed for fly control. Farnam wanted to address some of the citizens’ comments focused on its product that were submitted during phase 5.

Additionally, a comment was submitted by William B. Ley, DVM, MS, Head of the Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University. Dr. Ley’s comment focused on one comment that was submitted by a citizen during phase 5 of the public process. Dr. Ley stated that the data submitted by this citizen was not conclusive in showing a link between the use of Equitrol® and reproductive problems that occurred with exposed animals. He states that these problems could have been associated with an equine herpes virus.

Response: EPA has analyzed the available data regarding potential effects on horses resulting from use of tetrachlorvinphos products and information regarding cholinesterase inhibition from the use of tetrachlorvinphos and other organophosphate feed additives. EPA has data from multiple sources that show tetrachlorvinphos feed-through products decrease cholinesterase levels. EPA notes that other organophosphates mostly used as equine anthelmintics (intestinal wormers) are regulated by the Food and Drug Administration (FDA). Generally, FDA requires reproductive toxicity studies for equine anthelmintics. However, in the absence of such data, products should carry statements such as, "This product has not been tested in breeding horses."

C. Regulatory Position

1. FQPA Assessment

 a. “Risk Cup” Determination

 As part of the FQPA tolerance reassessment process, EPA assessed the risks associated with this organophosphate. The assessment is for this individual organophosphate, and does not reassess these tolerances as required under FQPA. FQPA requires the Agency to evaluate food tolerances on the basis of cumulative risk from substances sharing a common mechanism of toxicity, such as the toxicity expressed by the organophosphates through a common biochemical interaction with the cholinesterase enzyme. The Agency is in the process of considering the cumulative risk posed by the entire class of organophosphates.

 EPA has determined that risk from exposure to tetrachlorvinphos is within its own “risk cup.” In other words, if tetrachlorvinphos did not share a common mechanism of toxicity with other chemicals, EPA would be able to conclude today that the tolerances for tetrachlorvinphos meet the FQPA safety standards. In reaching this determination EPA has considered the available information on the special sensitivity of infants and children, as well as the chronic and acute food exposure. An
aggregate assessment was conducted for exposures through food and residential uses. Based on the supported use pattern for tetrachlorvinphos, no exposure is expected to occur through consumption of drinking water. Results of this aggregate assessment indicate that the human health risks from these combined exposures are considered to be within acceptable levels; that is, combined risks from all exposures to “fit” within the individual risk cup. Therefore, the tetrachlorvinphos tolerances remain in effect with modifications as summarized in Table 10 below, until a full reassessment of the cumulative risk from all organophosphates is considered.

b. Tolerance Summary

In the individual assessment, tolerances for residues of tetrachlorvinphos in/on plant commodities [40 CFR §180.252] are presently expressed in terms of 2-Chloro-1-(2,4,5-trichlorophenyl) vinyl dimethyl phosphate. All registered uses of tetrachlorvinphos on food or feed plant commodities, including alfalfa, were canceled in 1987. Therefore, EPA will propose to revoke the alfalfa tolerance. In the 1995 RED, EPA recommended revoking the tolerances for sheep fat because there were no registered uses associated with this commodity. Likewise, for the purposes of this TRED, EPA is recommending that the tolerances for goat fat be revoked because no registered uses are associated with this commodity.

At this time, tetrachlorvinphos tolerances for milk fat and the fat of cattle, hogs, and poultry are codified in 40 CFR 180.252. Due to inadequate studies (not reflecting dosing rates representing the maximum expected combined exposures or lacking other data) concerning residues of tetrachlorvinphos found in eggs, milk, poultry, and meat (excludes horses), EPA currently has insufficient data to reassess existing tolerances for milk fat and the fat of cattle, hogs, and poultry as permanent tolerances or for the Agency to provide recommendations in order to establish permanent tolerances for additional cattle, swine, and poultry commodities. However, based on metabolism studies in cattle, poultry, and swine, EPA has developed estimates of tolerances for tetrachlorvinphos in these commodities. Therefore, except for tolerances recommended for revocation, the additional tolerances that should be established and the existing tolerances in 40 CFR 180.252 should be made time-limited for a period of 18 months (should expire and be revoked on a given date at the end of the 18 month period) to permit sufficient time for the registrant to submit required residue studies.

Also, because current labels prohibit the use of tetrachlorvinphos products for horses destined for slaughter, the tolerance for horse fat in 40 CFR 180.252(a)(1) and the tolerance exemption for horse in 40 CFR 252(a)(2) should be revoked because they are no longer needed.

A feed additive regulation has been established for tetrachlorvinphos for use as an additive in the feed of beef cattle, dairy cattle, horses, and swine at the rates of 0.00015 lb per 100 lb body weight per day for cattle and horses, and 0.00011 lb per 100 lb body weight per day for swine. These exemptions should be deleted when time-limited tolerances for meat and milk are established. In addition, the exemption should be deleted for horses because feed through products are not to be used on horses destined for slaughter.
Table 7. Tolerance Summary for Tetrachlorvinphos.

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Current Tolerance, ppm</th>
<th>Time-Limited Tolerance(a) Reassessment*, ppm</th>
<th>Comment/[Correct Commodity Definition]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerances Listed Under 40 CFR §180.252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfalfa</td>
<td>110.0</td>
<td>Revoke</td>
<td>No registered uses exist.</td>
</tr>
<tr>
<td>Cattle, fat</td>
<td>1.5</td>
<td>0.2</td>
<td>Additional data are required.</td>
</tr>
<tr>
<td>Cattle, kidney</td>
<td>None</td>
<td>1</td>
<td>New magnitude of residue studies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cattle and poultry are required</td>
</tr>
<tr>
<td>Cattle, liver</td>
<td>None</td>
<td>0.5</td>
<td>because submitted studies do not</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>reflect dosing rates representing the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maximum expected combined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>exposures and do not contain data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for all residues of concern.</td>
</tr>
<tr>
<td>Cattle, meat</td>
<td>None</td>
<td>2</td>
<td>Additional data are required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New magnitude of residue studies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hogs are required because submitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>studies do not reflect dosing rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>representing the maximum expected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>combined exposures and do not contain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>data for all residues of concern.</td>
</tr>
<tr>
<td>Cattle, meat by-products(b)</td>
<td>None</td>
<td>1</td>
<td>Additional data are required.</td>
</tr>
<tr>
<td>Eggs</td>
<td>0.1</td>
<td>0.2</td>
<td>New magnitude of residue studies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cattle and poultry are required</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>because submitted studies do not</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>reflect dosing rates representing the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maximum expected combined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>exposures and do not contain data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for all residues of concern.</td>
</tr>
<tr>
<td>Goat, Fat</td>
<td>0.5</td>
<td>Revoke</td>
<td>No registered uses exist.</td>
</tr>
<tr>
<td>Hog, Fat</td>
<td>1.5</td>
<td>0.2</td>
<td>Additional data are required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New magnitude of residue studies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hogs are required because submitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>studies do not reflect dosing rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>representing the maximum expected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>combined exposures and do not contain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>data for all residues of concern.</td>
</tr>
<tr>
<td>Hog, meat</td>
<td>None</td>
<td>2</td>
<td>Additional data are required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New magnitude of residue studies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hogs are required because submitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>studies do not reflect dosing rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>representing the maximum expected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>combined exposures and do not contain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>data for all residues of concern.</td>
</tr>
<tr>
<td>Hog, meat by-products(c)</td>
<td>None</td>
<td>1</td>
<td>Additional data are required.</td>
</tr>
<tr>
<td>Hog, liver</td>
<td>None</td>
<td>0.5</td>
<td>New magnitude of residue studies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hogs are required because submitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>studies do not reflect dosing rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>representing the maximum expected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>combined exposures and do not contain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>data for all residues of concern.</td>
</tr>
<tr>
<td>Hog, kidney</td>
<td>None</td>
<td>1</td>
<td>New magnitude of residue studies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hogs are required because submitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>studies do not reflect dosing rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>representing the maximum expected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>combined exposures and do not contain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>data for all residues of concern.</td>
</tr>
<tr>
<td>Horse, fat</td>
<td>0.5</td>
<td>Revoke</td>
<td>Current labels prohibit treatment of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>horses destined for slaughter.</td>
</tr>
<tr>
<td>Milk, fat</td>
<td>0.5</td>
<td>0.05</td>
<td>Reflecting negligible residues in whole</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>milk.</td>
</tr>
<tr>
<td>Poultry, fat</td>
<td>0.75</td>
<td>7</td>
<td>Additional data are required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New magnitude of residue studies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>poultry are required because submitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>studies do not contain data for all</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>residues of concern.</td>
</tr>
<tr>
<td>Poultry, meat</td>
<td>None</td>
<td>3</td>
<td>Additional data are required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New magnitude of residue studies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>poultry are required because submitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>studies do not contain data for all</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>residues of concern.</td>
</tr>
<tr>
<td>Poultry, liver</td>
<td>None</td>
<td>2</td>
<td>Additional data are required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New magnitude of residue studies with</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>poultry are required because submitted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>studies do not contain data for all</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>residues of concern.</td>
</tr>
<tr>
<td>Poultry, meat by-products(d)</td>
<td>None</td>
<td>2</td>
<td>Additional data are required.</td>
</tr>
<tr>
<td>Sheep, fat</td>
<td>0.5</td>
<td>Revoke</td>
<td>No registered uses exist.</td>
</tr>
</tbody>
</table>

Exempted Tolerances (Feed Additive Regulation)

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Exempted</th>
<th>Revoke</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef Cattle</td>
<td>Exempted</td>
<td>Revoke</td>
<td>These exemptions should be revoked when time-limited tolerances for meat and milk are established.</td>
</tr>
<tr>
<td>Dairy Cattle</td>
<td>Exempted</td>
<td>Revoke</td>
<td></td>
</tr>
<tr>
<td>Swine</td>
<td>Exempted</td>
<td>Revoke</td>
<td></td>
</tr>
<tr>
<td>Horses</td>
<td>Exempted</td>
<td>Revoke</td>
<td>This exemption should be revoked since current labels prohibit the treatment of horses for slaughter.</td>
</tr>
</tbody>
</table>

\(a\) Permanent tolerance(s) cannot be made at this time because additional data are required.
\(b\) Excludes kidney and liver
\(c\) Excludes kidney and liver
\(d\) Excludes kidney and liver
Excludes kidney

For Cattle and Swine Commodities
For liver, 0.5 ppm (of which no more than 0.05 is tetrachlorvinphos per se)
For kidney, 1 ppm (of which no more than 0.05 is tetrachlorvinphos per se)
For muscle, 2 ppm (of which no more than 2 is tetrachlorvinphos per se)
For fat, 0.2 ppm (of which no more than 0.1 is tetrachlorvinphos per se)
For milk, 0.05 ppm (of which no more than 0.05 is tetrachlorvinphos per se)

For Poultry Commodities
For liver, 2 ppm (of which no more than 0.05 is tetrachlorvinphos per se)
For muscle, 3 ppm (of which no more than 3 is tetrachlorvinphos per se)
For fat, 7 ppm (of which no more that 7 is tetrachlorvinphos per se)
For eggs, 0.2 ppm (of which no more than 0.05 is tetrachlorvinphos per se)

* The term “reassessed” here is not meant to imply that the tolerance has been reassessed as required by FQPA, since this tolerance may be reassessed only upon consideration of the cumulative risk assessment of all organophosphates, as required by this law. Rather, it provides a tolerance level for this single chemical, if no cumulative assessment was required, that is supported by all of the submitted residue data.

2. Endocrine Disruptor Effects

EPA is required under the FFDCA, as amended by FQPA, to develop a screening program to determine whether certain substances (including all pesticide active and other ingredients) "may have an effect in humans that is similar to an effect produced by a naturally occurring estrogen, or other such endocrine effects as the Administrator may designate." Following the recommendations of its Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC), EPA determined that there were scientific bases for including, as part of the program, the androgen and thyroid hormone systems, in addition to the estrogen hormone system. EPA also adopted EDSTAC’s recommendation that the Program include evaluations of potential effects in wildlife. For pesticide chemicals, EPA will use FIFRA and, to the extent that effects in wildlife may help determine whether a substance may have an effect in humans, FFDCA authority to require the wildlife evaluations. As the science develops and resources allow, screening of additional hormone systems may be added to the Endocrine Disruptor Screening Program (EDSP).

When the appropriate screening and/or testing protocols being considered under the Agency’s EDSP have been developed, tetrachlorvinphos may be subjected to additional screening and/or testing to better characterize effects related to endocrine disruption.

3. Label Modifications

Currently, worker risks are of concern at the maximum level of protection for mixers, loaders, and applicators in poultry egg production operations applying wettable powder formulations with a low-pressure handwand and paint-on application of the EC formulation. Further, additional Personal Protective Equipment (PPE) is needed for several occupational scenarios. In addition, EPA is concerned with tetrachlorvinphos feed-through products for horses. For residential concerns, risk were below the level of concern for both handler and post-application scenarios. However, EPA has concern over the potential for over-application of powder products by consumers. Therefore, label
changes to address this concern are necessary. The following label modifications are needed:

Workers

- Restrict the use of low pressure handwands for wettable powder (WP) applications to spot treatment in poultry facilities.

- Remove the paint-on use with emulsifiable concentrate (EC) formulations.

- Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment to apply WP formulation as dusts; single layer and gloves for loaders and others handling dust bags.

- Single layer clothing and gloves for mixers, loaders, and applicators engaging in groundboom activities using the EC and WP formulations.

- Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators engaging in low pressure handwand activities using the WP formulations in egg and broiler facilities.

- Single layer clothing and gloves for mixers, loaders, and applicators engaging in low pressure handwand activities using the EC formulations in poultry facilities.

- Single layer clothing and gloves for mixers, loaders, and applicators engaging in backpack spraying activities.

- Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators engaging in paint-on activities using WP formulations.

- Single layer clothing and gloves for workers when handling ear tags.

- Single layer clothing and gloves for workers when handling mineral blocks.

- Single layer clothing and gloves for workers when handling pellets (oral larvicide feed-through products).

- Double layer clothing and gloves for workers when handling backrubber devices.

Residential

- Use 1/3 oz. of powder per every 10 pounds of body weight of your cat or dog.

- Restrict outdoor premise uses to spot treatments, one time a year, and along woody borders of kennels, yards, campgrounds, recreational parks, and footpaths and roadways leading to such areas.
• Prohibit the use of outdoor premise treatments by homeowners.

Other Concerns

For feed through products used on horses:

• This product contains tetrachlorvinphos, which is a cholinesterase inhibitor. The most frequently reported clinical signs of cholinesterase inhibition in the horse are abdominal pain, lethargy, sweating, tearing and excessive salivation. If these signs are seen in horses, consult your veterinarian immediately. Do not use this product simultaneously or within a week before or after treatment with cholinesterase inhibiting drugs, pesticides or chemicals. Consult a veterinarian before using this product on debilitated, aged, pregnant or nursing animals.

• This product has not been tested in breeding horses.

E. Regulatory Rationale

1. Dietary (Food) Risk Mitigation

Based on analyses of both acute and chronic dietary risk, the Agency has determined that the risk estimates are not of concern; therefore, no mitigation measures are necessary at this time.

2. Drinking Water Mitigation

No drinking water exposure is anticipated from current uses; therefore, no mitigation is necessary at this time.

3. Occupational Risk Mitigation

The Agency is concerned about exposures resulting to handlers using low pressure handwand WP in egg production facilities and paint-on EC scenarios. MOEs at maximum PPE for short and intermediate term exposures for mixers, loaders, and applicators, are 80 for low pressure handwand scenarios; MOEs at maximum PPE for short and intermediate term exposures for mixers, loaders, and applicators are 55 for paint-on scenarios.

To address these concerns, the registrant needs to limit the use of low pressure handwands WP to “spot treatment” only and delete the use of the EC products for paint-on applications. After consultation from USDA and poultry specialists in various states, EPA concluded that low-pressure handwand use is critical for treating the northern fowl mite, darkling beetle, and flies on birds and in poultry premises. Poultry specialists also concurred that low pressure handwands are not used to treat large areas in poultry facilities. Use is confined to areas where pest infestation is the heaviest.
For paint-on scenarios, poultry specialists indicated that WP paint-on methods are preferable to the EC paint-on methods to treat for the darkling beetle that destroys the wood of poultry houses because they have greater residual efficacy. Since EPA believes risks of concern can be mitigated for the paint-on WP scenario, despite the lack of data that are representative of the use, this is a suitable alternative to the EC paint-on use. However, EPA is requiring confirmatory data to estimate the actual exposures to workers using this scenario.

Worker risks exceeded the Agency’s level of concern with baseline PPE for handlers engaging in backpack, using dust equipment, groundboom, and low pressure handwand activities. To mitigate these exposures to workers handling tetrachlorvinphos products, the following PPE is needed: single layer clothing, gloves, and no respirator.

In addition, the Agency is concerned about workers handling ear tags, mineral blocks, and pellets when these items are put into place. These scenarios were not assessed because the Agency does not have data for these scenarios, however the Agency has concluded that basic protective gloves will mitigate potential concerns which result from dermal contact.

Although risks were acceptable for dusting and paint-on WP mixing and loading scenarios, the Agency does not have data to assess what the actual exposure would be for applicators. For workers using dusting equipment, because there are no data for the application phase, when the greatest potential for exposure exists, EPA cannot with confidence predict risks. Therefore, a mixer/loader/applicator study is needed to confirm that PPE will adequately protect workers using dusting equipment or paint-on methods. Until those data are available, workers applying dusts need to wear double layers of clothing, gloves, and a dust/mist respirator.

4. Residential Risk Mitigation

The revised exposure and risk estimates are significantly below the level of concern for residential handlers and post application exposure for toddlers based on the new data submitted by Hartz. However, the Agency has concern over the potential for over-application of powder products. Due to vague directions regarding the use rates, labels need to be modified to specify how much product to apply to treat pets of different sizes. Therefore, the pet labels should be modified to include the use rate of 1/3 oz. of powder per every 10 pounds of body weight for a cat or dog. By guiding the user with a recommended rate, the potential for over-application will be reduced.

Three products registered for use on livestock and poultry also include directions for limited outdoor use as premise sprays for fleas, ticks, chiggers, and mites, around kennels, yards, campgrounds, and parks, and along foot paths and roadways leading to such areas. Two of these are restricted-use products. Labeling directions are intended to limit applications to spot treatments in border areas, potentially frequented by people, as opposed to broadcast use over large areas. As such, EPA believes there is minimal potential for contamination of drinking water sources or for significant residential exposure; therefore, drinking water and outdoor residential risk assessments have not been conducted.
Based on discussions with stakeholders, EPA is concerned that some users could broadly interpret directions for use on these labels and has decided that labels must clearly limit applications in these areas to only spot treatments, one time per year, along woody borders of kennels, yards, campgrounds, recreational parks, and footpaths and roadways leading to such areas. Further, while these products are all intended for professional use by certified applicators, to ensure applications are made only by professional handlers, labels must prohibit use by homeowners. If any party in the future is interested in expanding the use of tetrachlorvinphos to include broadcast outdoor uses, EPA will evaluate the potential risks associated with that use and additional data may be required.

5. Other Concerns

EPA is concerned with tetrachlorvinphos feed-through products used in horses. EPA has data from multiple sources that show tetrachlorvinphos feed-through products decrease cholinesterase levels. EPA is therefore requesting the registrants add label statements to horse oral larvicides which state that the product is a cholinesterase inhibitor, describe signs of cholinesterase inhibition in horses, caution users against the use with other cholinesterase inhibiting compounds, and direct horse owners to consult a veterinarian before using products containing tetrachlorvinphos on debilitated, aged, pregnant or nursing animals. Also, since no controlled studies have been conducted with breeding horses, labels must state, “this product has not been tested in breeding horses.”

II. What Registrants Need to Do

A. Manufacturing Use Products

1. Additional Generic Data Requirements

The generic data base supporting the reregistration of tetrachlorvinphos for the above eligible uses has been reviewed and determined to be substantially complete. The following data gaps remain:

- 860.1340 Residue Analytical Method
- 860.1360 Storage Stability Data
- 860.1650 Analytical Reference Standards
- 860.1480 Magnitude of Residue - Meat/Milk/Poultry/Eggs
- 870.1200 Acute Dermal Toxicity
- 875.1100 Dermal Exposure (Indoor) for paint-on WP and Dust uses
- 875.1300 Inhalation Exposure (Indoor) for paint-on WP and Dust uses

Also, a Data Call-In Notice (DCI) was recently sent to registrants of organophosphate pesticides currently registered under FIFRA (August 6, 1999 64FR42945-42947, August 18 64FR44922-44923). DCI requirements included acute, subchronic, and developmental neurotoxicity studies. The technical registrants of tetrachlorvinphos, Boehringer Ingelhiem and Hartz Mountain requested a generic data waiver for to the developmental neurotoxicity study, and the Agency denied the requests in letters dated February 6, 2001, and July 31, 2000, respectively. The registrants intend to support the registration of tetrachlorvinphos and have committed to submit the required developmental neurotoxicity study.
2. Labeling for Manufacturing Use Products

To remain in compliance with FIFRA, manufacturing use product (MUP) labeling should be revised to comply with all current EPA regulations, PR Notices and applicable policies.

All registrants need to submit applications for amended registration. This application should include the following items: EPA application form 8570-1 (filled in), five copies of the draft label with all label amendments outlined in Table 11 of this document incorporated, and a description on the application, such as, “Responding to the Tolerance Reassessment Eligibility Decision” document. All amended labels need to be submitted within 90 days of signature of this document. The Registration Division contact is George Larocca (703) 305-6100.

B. End-Use Products

1. Additional Product-Specific Data Requirements

Section 4(g)(2)(B) of FIFRA calls for the Agency to obtain any needed product-specific data regarding the pesticide after a determination of eligibility has been made. Registrants must review previous data submissions to ensure that they meet current EPA acceptance criteria and if not, commit to conduct new studies. If a registrant believes that previously submitted data meet current testing standards, then the study MRID numbers should be cited according to the instructions in the Requirement Status and Registrants Response Form provided for each product.

A product-specific data call-in, outlining specific data requirements, accompanies this interim TRED.

2. Labeling for End-Use Products

Labeling changes are necessary to implement the mitigation measures outlined in Section IV above. Specific language to incorporate these changes is specified in the Table 8 at the end of this section. Registrants need to submit applications for amended registration. This application should include the following items: EPA application form 8570-1 (filled in), five copies of the draft label with all label amendments outlined in Table 9 of this document incorporated, and a description on the application, such as, “Responding to the Tolerance Reassessment Eligibility Decision” document. All amended labels need to be submitted within 90 days of signature of this document. The Registration Division contact is George Larocca (703) 305-6100.

C. Existing Stocks

Registrants may generally distribute and sell products bearing old labels/labeling for 26 months from the date of the issuance of this interim TRED. Persons other than the registrant may generally distribute or sell such products for 50 months from the date of the issuance of this interim TRED. However, existing stocks time frames will be established case-by-case, depending on the
number of products involved, the number of label changes, and other factors. Refer to “Existing Stocks of Pesticide Products; Statement of Policy”; *Federal Register*, Volume 56, No. 123, June 26, 1991.

The Agency has determined that registrants may distribute and sell tetrachlorvinphos products bearing old labels/labeling for 26 months from the date of issuance of this interim TRED. Persons other than the registrant may distribute or sell such products for 50 months from the date of the issuance of this interim TRED. Registrants and persons other than the registrant remain obligated to meet pre-existing label requirements and existing stocks requirements applicable to products they sell or distribute.

D. Labeling Changes Summary Table

In order to be eligible for reregistration, it is necessary to amend all product labels to incorporate the risk mitigation measures outlined in Section IV. The following table describes how language on the labels should be amended.
Table 12: Summary of Required Labeling Changes for Tetrachlorvinphos

<table>
<thead>
<tr>
<th>Description</th>
<th>Required Labeling (Addendum to the 1995 RED Labeling Requirements)</th>
<th>Placement on Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Use Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One of these statements may be added to a label to allow reformulation of the product for a specific use or all additional uses supported by a formulator or user group</td>
<td>“Only for formulation into an insecticide for the following use(s)” [fill blank only with those uses that are being supported by MP registrant].</td>
<td>Directions for Use</td>
</tr>
<tr>
<td></td>
<td>“This product may be used to formulate products for specific use(s) not listed on the MP label if the formulator, user group, or grower has complied with U.S. EPA submission requirements regarding support of such use(s).”</td>
<td>Directions for Use</td>
</tr>
<tr>
<td></td>
<td>“This product may be used to formulate products for any additional use(s) not listed on the MP label if the formulator, user group, or grower has complied with U.S. EPA submission requirements regarding support of such use(s).”</td>
<td></td>
</tr>
<tr>
<td>Environmental Hazards</td>
<td>“Environmental Hazards”</td>
<td>Precautionary Statements</td>
</tr>
<tr>
<td>Statements Required by the TRED and Agency Label Policies.</td>
<td>"Do not discharge effluent containing this product into lakes, streams, ponds, estuaries, oceans, or other waters unless in accordance with the requirements of a National Pollutant Discharge Elimination System (NDPES) permit and the permitting authority has been notified in writing prior to discharge. Do not discharge effluent containing this product to sewer systems without previously notifying the local sewage treatment plant authority. For guidance contact your Water Board or Regional Office of the EPA."</td>
<td></td>
</tr>
</tbody>
</table>
Required Labeling (Addendum to the 1995 RED Labeling Requirements)

<table>
<thead>
<tr>
<th>Description</th>
<th>Placement on Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Use Products Intended for Occupational Use</td>
<td>Handler PPE Statements</td>
</tr>
</tbody>
</table>

Handler PPE requirements (all formulations)

Note the following information when preparing labeling for all end use products:

For **sole-active-ingredient** end-use products that contain tetrachlorvinphos, the product label must be revised to adopt the handler personal protective equipment (PPE)/engineering control requirements set forth in this section. Any conflicting PPE requirements on the current label must be removed.

For **multiple-active-ingredient** end-use products that contain tetrachlorvinphos, the handler PPE/engineering control requirements set forth in this section must be compared with the requirements on the current label, and the more protective language must be retained. For guidance on which requirements are considered to be more protective, see PR Notice 93-7.

PPE that was established on the basis of Acute Toxicity testing and currently appears on end-use product labels must be compared with the active ingredient PPE specified below by the TREAD. The more protective PPE must be placed in the product labeling. For guidance on which PPE is considered more protective, see PR Notice 93-7.
<table>
<thead>
<tr>
<th>Description</th>
<th>Required Labeling (Addendum to the 1995 RED Labeling Requirements)</th>
<th>Placement on Label</th>
</tr>
</thead>
</table>
| PPE Requirements Established by the TRED for Wettable Powder Formulations applied as Sprays only. | “Personal Protective Equipment (PPE)”
“Some materials that are chemical-resistant to this product are” (*registrant* inserts correct chemical-resistant material). “If you want more options, follow the instructions for category” [*registrant* inserts A,B,C,D,E,F,G,or H] “on an EPA chemical-resistance category selection chart.”
“Mixers, loaders, applicators and other handlers supporting or using low-pressure handwand equipment or applying by paint brush must wear:
- Coveralls over long-sleeved shirt and long pants
- Chemical resistant footwear plus socks
- Chemical resistant gloves
- A NIOSH-approved dust mist filtering respirator with MSHA/NIOSH approval number prefix TC-21C or a NIOSH-approved respirator with any N, R, P, or HE filter.”
All other mixers, loaders, applicators and other handlers must wear:
- long-sleeved shirt and long pants
- socks and shoes
- chemical resistant gloves for mixers and loaders supporting ground boom applications and all handlers supporting or using backpack spray equipment.
Note to Registrant: If the product contains oil or bears instructions that will allow application with an oil-containing material, the “N” filter designation must be dropped from the above respirator statement. | Precautionary Statements: Immediately following/below Hazards to Humans and Domestic Animals |
<table>
<thead>
<tr>
<th>Description</th>
<th>Required Labeling (Addendum to the 1995 RED Labeling Requirements)</th>
<th>Placement on Label</th>
</tr>
</thead>
</table>
| PPE Requirements Established by the TRED for Wettable Powder Formulations applied as Dusts only. | “Personal Protective Equipment (PPE)”
“Some materials that are chemical-resistant to this product are” (*registrant inserts correct chemical-resistant material*). “If you want more options, follow the instructions for category [*registrant inserts A,B,C,D,E,F,G, or H*] on an EPA chemical-resistance category selection chart.”
Loaders, applicators and other handlers must wear:
- Coveralls over long-sleeved shirt and long pants
- Chemical resistant footwear plus socks
- Chemical resistant gloves
- A NIOSH-approved dust mist filtering respirator with MSHA/NIOSH approval number prefix TC-21C or a NIOSH-approved respirator with any N, R, P, or HE filter.”
Loaders and others handling dust bags must wear:
- long-sleeved shirt and long pants
- socks and shoes
- chemical resistant gloves.
Note to Registrant: If the product contains oil or bears instructions that will allow application with an oil-containing material, the “N” filter designation must be dropped from the above respirator statement. | Precautionary Statements: Immediately following/below Hazards to Humans and Domestic Animals |
<table>
<thead>
<tr>
<th>Description</th>
<th>Required Labeling (Addendum to the 1995 RED Labeling Requirements)</th>
<th>Placement on Label</th>
</tr>
</thead>
</table>
| PPE Requirements Established by the TRED for Wettable Powder Formulations applied as either as a Sprays or as a Dust | “Personal Protective Equipment (PPE)”
“Some materials that are chemical-resistant to this product are” *(registrant inserts correct chemical-resistant material)*. “If you want more options, follow the instructions for category” *(registrant inserts A,B,C,D,E,F,G,or H)* “on an EPA chemical-resistance category selection chart.”
“Mixers, loaders, applicators and other handlers supporting dusting applications, low-pressure handwand applications or applications by paint brush must wear:
- Coveralls over long-sleeved shirt and long pants
- Chemical resistant footwear plus socks
- Chemical resistant gloves
- A NIOSH-approved dust mist filtering respirator with MSHA/NIOSH approval number prefix TC-21C or a NIOSH-approved respirator with any N, R, P, or HE filter.”
All other mixers, loaders, applicators and other handlers must wear:
- long-sleeved shirt and long pants
- socks and shoes
- chemical resistant gloves for mixers and loaders supporting ground boom applications and all handlers supporting or using backpack spray equipment.
Note to Registrant: If the product contains oil or bears instructions that will allow application with an oil-containing material, the “N” filter designation must be dropped from the above respirator statement. |
<table>
<thead>
<tr>
<th>Description</th>
<th>Required Labeling (Addendum to the 1995 RED Labeling Requirements)</th>
<th>Placement on Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPE Requirements Established by the TRED for EC Formulations</td>
<td>“Personal Protective Equipment (PPE)”</td>
<td>Precautionary Statements: Immediately following/below Hazards to Humans and Domestic Animals</td>
</tr>
<tr>
<td></td>
<td>“Some materials that are chemical-resistant to this product are” (registrant inserts correct chemical-resistant material). “If you want more options, follow the instructions for category” [registrant inserts A,B,C,D,E,F,G,or H] “on an EPA chemical-resistance category selection chart.”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Mixers loaders, applicators and other handlers must wear:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- long-sleeved shirt and long pants,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- shoes plus socks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- chemical resistant gloves for mixers and loaders supporting ground boom applications and all handlers supporting or using backpack or low pressure spray applications.</td>
<td></td>
</tr>
<tr>
<td>PPE Requirements Established by the TRED for Ear Tags, Mineral Blocks or Feed Pellets</td>
<td>“Personal Protective Equipment (PPE)”</td>
<td>Precautionary Statements: Immediately following/below Hazards to Humans and Domestic Animals</td>
</tr>
<tr>
<td></td>
<td>“Some materials that are chemical-resistant to this product are” (registrant inserts correct chemical-resistant material). “If you want more options, follow the instructions for category” [registrant inserts A,B,C,D,E,F,G,or H] “on an EPA chemical-resistance category selection chart.”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Loaders, applicators and other handlers must wear:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- long-sleeved shirt and long pants,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- shoes plus socks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- chemical resistant gloves”</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Required Labeling (Addendum to the 1995 RED Labeling Requirements)</td>
<td>Placement on Label</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| User Safety Requirements | “Follow manufacturer's instructions for cleaning/maintaining PPE. If no such instructions for washables exist, use detergent and hot water. Keep and wash PPE separately from other laundry.
Discard clothing and other absorbent materials that have been drenched or heavily contaminated with this product’s concentrate. Do not reuse them.”
(The above phrase “Discard clothing...” is only required for WP formulations applied as sprays or dusts. It is not required for EC formulations.) | Precautionary Statements: Immediately following the PPE requirements |
| User Safety Recommendations | **“User Safety Recommendations”**
“Users should wash hands before eating, drinking, chewing gum, using tobacco, or using the toilet.”
“Users should remove clothing/PPE immediately if pesticide gets inside. Then wash thoroughly and put on clean clothing.”
“Users should remove PPE immediately after handling this product. Wash the outside of gloves before removing. As soon as possible, wash thoroughly and change into clean clothing.” | Precautionary Statements: Immediately following Engineering Controls |
| Environmental Hazards | **“Environmental Hazards”**
Do not apply directly to water, or to areas where surface water is present or to intertidal areas below the mean high-water mark. Runoff may be hazardous to aquatic organisms in neighboring areas. Do not contaminate water when disposing of equipment wastewater or rinsate. | Precautionary Statements: Immediately following the User Safety Recommendations |
<table>
<thead>
<tr>
<th>Description</th>
<th>Required Labeling (Addendum to the 1995 RED Labeling Requirements)</th>
<th>Placement on Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Restrictions for products</td>
<td>“Do not enter or allow others to enter until sprays have dried”</td>
<td>Directions for Use in the Non-Agricultural Use</td>
</tr>
<tr>
<td>applied as sprays.</td>
<td></td>
<td>Requirements Box.</td>
</tr>
<tr>
<td>Entry Restrictions for products</td>
<td>“Do not enter or allow others to enter until dusts have settled”</td>
<td>Directions for Use in the Non-Agricultural Use</td>
</tr>
<tr>
<td>applied as dusts.</td>
<td></td>
<td>Requirements Box.</td>
</tr>
<tr>
<td>General Application Restrictions</td>
<td>“Do not apply this product in a way that will contact workers or</td>
<td>Place in the Directions for Use</td>
</tr>
<tr>
<td></td>
<td>other persons, either directly or through drift. Only protected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>handlers may be in the area during application.”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Required Labeling (Addendum to the 1995 RED Labeling Requirements)</td>
<td>Placement on Label</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>Other Risk Mitigation Restrictions</td>
<td>EC Formulations:
Remove paint-on use on EC formulations and add the following statement: “This product may not be applied by paint brush”.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wettable Powder Formulations Applied as Sprays:
“When using a low-pressure handwand, this product may only be used for spot treatments.”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feed Through Products (Mineral Blocks or Pellets):
This product contains tetrachlorvinphos, which is a cholinesterase inhibitor.

The most frequently reported clinical signs of cholinesterase inhibition in the horse are abdominal pain, lethargy, sweating, tearing and excessive salivation. If these signs are seen in horses, consult your veterinarian immediately.

Do not use this product simultaneously or within a week before or after treatment with cholinesterase inhibiting drugs, pesticides or chemicals.

Consult a veterinarian before using this product on debilitated, aged, pregnant or nursing animals.

This product has not been tested in breeding horses.</td>
<td>Directions for Use</td>
</tr>
</tbody>
</table>
Description of Additional Risk Mitigation

<table>
<thead>
<tr>
<th>Required Labeling (Addendum to the 1995 RED Labeling Requirements)</th>
<th>Placement on Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Pet Powder Uses:</td>
<td></td>
</tr>
<tr>
<td>Use 1/3 oz. of powder per every 10 pounds of body weight of your cat or dog.</td>
<td></td>
</tr>
<tr>
<td>For Outdoor Premise Uses:</td>
<td></td>
</tr>
<tr>
<td>Restrict uses to only spot treatments.</td>
<td></td>
</tr>
<tr>
<td>The product should be applied only one time per year.</td>
<td></td>
</tr>
<tr>
<td>The product is to be used along woody borders of kennels, yards, campgrounds, recreational parks, and footpaths and roadways leading to such areas.</td>
<td></td>
</tr>
</tbody>
</table>

1. PPE that is established on the basis of Acute Toxicity of the end-use product must be compared to the active ingredient PPE in this document. The more protective PPE must be placed in the product labeling. For guidance on which PPE is considered more protective, see PR Notice 93-7.

2. If the product contains oil or bears instructions that will allow application with an oil-containing material, the “N” designation must be dropped.

Instructions in the **Labeling** section appearing in quotations represent the exact language that should appear on the label.

Instructions in the **Labeling** section not in quotes represents actions that the registrant should take to amend their labels or product registrations.
VI. Related Documents and How to Access Them

This interim Reregistration Eligibility Document is supported by documents that are presently maintained in the OPP docket. The OPP docket is located in Room 119, Crystal Mall #2, 1921 Jefferson Davis Highway, Arlington, VA. It is open Monday through Friday, excluding legal holidays from 8:30 am to 4 pm.

The docket initially contained preliminary risk assessments and related documents as of [date]. Sixty days later the first public comment period closed. The EPA then considered comments, revised the risk assessment, and added the formal “Response to Comments” document and the revised risk assessment to the docket on [date].

All documents, in hard copy form, may be viewed in the OPP docket room or downloaded or viewed via the Internet at the following site: "http://www.epa.gov/pesticides/op."
Appendix A. Table of Use Patterns Eligible for Reregistration

<table>
<thead>
<tr>
<th>Site Application Type</th>
<th>Application Equipment</th>
<th>Formulation</th>
<th>Maximum Single Application Rate1</th>
<th>Use Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef/Range/Feeder Cattle (Meat) & Dairy Cattle (Lactating or Unspecified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Treatment (Backrubber)</td>
<td></td>
<td>24% Emulsifiable Concentrate [4691-132]</td>
<td>2 lb ai/ 25 gallons (25 and 50 gallons of charge solution considered).</td>
<td>Double layer clothing and gloves for workers when handling backrubber devices.</td>
</tr>
<tr>
<td>Animal Treatment - Dust (Dust Bag)</td>
<td></td>
<td>3% Dust [4691-131]</td>
<td>NS2</td>
<td>Single layer and gloves for loaders and others handling dust bags.</td>
</tr>
<tr>
<td>Animal Treatment - Dust (Hand Held Duster) (Rotary Duster)</td>
<td></td>
<td>3% Dust [4691-131]</td>
<td>0.0375 lb ai/animal</td>
<td>Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment.</td>
</tr>
<tr>
<td>Animal Treatment (Shaker Can)</td>
<td></td>
<td>3% Dust [4691-131]</td>
<td>0.0375 lb ai/animal</td>
<td>Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment.</td>
</tr>
<tr>
<td>Animal Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td></td>
<td>24% Emulsifiable Concentrate [4691-132]</td>
<td>0.001295 lb ai/animal</td>
<td></td>
</tr>
<tr>
<td>Enclosed Premise Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td></td>
<td>24% Emulsifiable Concentrate [4691-132]</td>
<td>.2129 lb 1K sq. ft</td>
<td></td>
</tr>
<tr>
<td>Enclosed Premise Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td></td>
<td>50% Wettable Powder [4691-128]</td>
<td>.3333 lb 1K sq. ft</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment (Feed Through Use)</td>
<td></td>
<td>97.3 % Granular [4691-135]</td>
<td>0.00015 lb per 100 lb body weight per day</td>
<td>Single layer clothing and gloves for workers when handling pellets (oral larvicide feed-through products).</td>
</tr>
<tr>
<td>Animal Treatment (Cattle Ear Tag)</td>
<td></td>
<td>13.7% Ear Tag [56493-50]</td>
<td>NS</td>
<td>Single layer clothing and gloves for workers when handling ear tags.</td>
</tr>
</tbody>
</table>

Hog/Pig/Swine (Meat)

<table>
<thead>
<tr>
<th>Site Application Type</th>
<th>Application Equipment</th>
<th>Formulation</th>
<th>Maximum Single Application Rate1</th>
<th>Use Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Bedding/Litter Treatment (Hand Held Duster)</td>
<td></td>
<td>3% Dust [4691-131]</td>
<td>.2 lb 1K sq.ft</td>
<td>Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment.</td>
</tr>
<tr>
<td>Animal Bedding/Litter Treatment (Power Duster)</td>
<td></td>
<td>3% Dust [4691-131]</td>
<td>2 lb 1K sq.ft</td>
<td>Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment.</td>
</tr>
<tr>
<td>Animal Bedding/Litter Treatment (Rotary Duster)</td>
<td></td>
<td>3% Dust [4691-131]</td>
<td>2 lb 1K sq.ft</td>
<td>Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment.</td>
</tr>
<tr>
<td>Site Application Type</td>
<td>Formulation [EPA Reg No.]</td>
<td>Maximum Single Application Rate[^1]</td>
<td>Use Limitations</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Animal Bedding/Litter Treatment (Shaker Can)</td>
<td>3% Dust [4691-131]</td>
<td>2 lb 1K sq.ft</td>
<td>Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment.</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment (Hand Held Duster)</td>
<td>3% Dust [4691-131]</td>
<td>0.075 lb ai/animal</td>
<td>Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment.</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment (Power Duster)</td>
<td>3% Dust [4691-131]</td>
<td>0.075 lb ai/animal</td>
<td>Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment.</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td>24% Emulsifiable Concentrate [4691-132]</td>
<td>0.1575 lb ai/animal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td>50% Wettable Powder [4691-128]</td>
<td>0.02038 lb ai/animal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Treatment (Feed Through)</td>
<td>97.3 % Granular [4691-135]</td>
<td>0.00015 lb per 100 lb body weight per day</td>
<td>Single layer clothing and gloves for workers when handling pellets (oral larvicide feed-through products).</td>
<td></td>
</tr>
<tr>
<td>Enclosed Premise Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td>24% Emulsifiable Concentrate [4691-132]</td>
<td>.2129 lb 1K sq.ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosed Premise Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td>50% Wettable Powder [4691-128]</td>
<td>.3333 lb 1K sq.ft</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Poultry (Egg)

<table>
<thead>
<tr>
<th>Animal Bedding/Litter Treatment (Backpack Sprayer) (Power Sprayer)</th>
<th>24% Emulsifiable Concentrate [4691-132]</th>
<th>0.0436 lb ai/100 ft^2</th>
<th>Single layer clothing and gloves for mixers, loaders, and applicators engaging in low pressure handwand and backpack spraying activities.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Bedding/Litter Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td>50% Wettable Powder [4691-128]</td>
<td>0.0417 lb ai/100 ft^2</td>
<td>Restrict the use of low pressure handwands for wettable powder applications to spot treatment in poultry facilities and require double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators engaging in low pressure handwand activities using the WP formulations in egg facilities.</td>
</tr>
<tr>
<td>Animal Bedding/Litter Treatment (Rotary Duster)</td>
<td>3% Dust [4691-131]</td>
<td>0.078 lb ai/100 ft^2</td>
<td>Double layer clothing, gloves, and dust/mist respirator for mixers, loaders, and applicators using dusting equipment.</td>
</tr>
<tr>
<td>Site</td>
<td>Application Type</td>
<td>Application Equipment</td>
<td>Formulation [EPA Reg No.]</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Animal Bedding/Litter Treatment (Shaker Can)</td>
<td></td>
<td></td>
<td>3% Dust [4691-131]</td>
</tr>
<tr>
<td>Animal Treatment (Dust Box)</td>
<td></td>
<td></td>
<td>3% Dust [4691-131]</td>
</tr>
<tr>
<td>Animal Treatment (Rotary Duster)</td>
<td></td>
<td></td>
<td>3% Dust [4691-131]</td>
</tr>
<tr>
<td>Animal Treatment (Shaker Can)</td>
<td></td>
<td></td>
<td>3% Dust [4691-131]</td>
</tr>
<tr>
<td>Animal Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td></td>
<td></td>
<td>24% Emulsifiable Concentrate [4691-132]</td>
</tr>
<tr>
<td>Animal Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td></td>
<td></td>
<td>50% Wettable Powder [4691-128]</td>
</tr>
<tr>
<td>Animal Premise/Litter Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td></td>
<td></td>
<td>24% Emulsifiable Concentrate [4691-132]</td>
</tr>
<tr>
<td>Animal Premise/Litter Treatment (Backpack Sprayer) (Power Sprayer)</td>
<td></td>
<td></td>
<td>50% Wettable Powder [4691-128]</td>
</tr>
<tr>
<td>Animal Premise/Litter Treatment (Groundboom Sprayer)</td>
<td></td>
<td></td>
<td>24% Emulsifiable Concentrate [4691-132]</td>
</tr>
<tr>
<td>Animal Premise/Litter Treatment (Groundboom Sprayer)</td>
<td></td>
<td></td>
<td>50% Wettable Powder [4691-128]</td>
</tr>
<tr>
<td>Site Application Type</td>
<td>Application Equipment</td>
<td>Formulation</td>
<td>Maximum Single Application Rate¹</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Animal Bedding/Litter Treatment (Aerosol, Pump Spray)</td>
<td></td>
<td>1.08 % Spray [2596-140]</td>
<td></td>
</tr>
<tr>
<td>Animal Bedding/Litter Treatment</td>
<td></td>
<td>3.3 % Powder [2596-78]</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment</td>
<td></td>
<td>13.7 % Collar [4691-151]</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment</td>
<td></td>
<td>3.06 % Dip [2596-119]</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment</td>
<td></td>
<td>3.3 % Powder [2596-79]</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment (Aerosol, Pump Spray)</td>
<td></td>
<td>1.08 % Spray [2596-126]</td>
<td></td>
</tr>
<tr>
<td>Pets (Dogs)</td>
<td></td>
<td>1.08 % Spray [2596-140]</td>
<td></td>
</tr>
<tr>
<td>Animal Bedding/Litter Treatment (Aerosol, Pump Spray)</td>
<td></td>
<td>3.3 % Powder [2596-79]</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment</td>
<td></td>
<td>13.7% Collar [4691-150]</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment</td>
<td></td>
<td>3.06 % Dip [2596-119]</td>
<td></td>
</tr>
<tr>
<td>Animal Treatment</td>
<td></td>
<td>3.3 % Powder [2596-79]</td>
<td></td>
</tr>
<tr>
<td>Site Application Type</td>
<td>Application Equipment</td>
<td>Formulation</td>
<td>Maximum Single Application Rate(^1)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Animal Treatment (Aerosol, Pump Spray)</td>
<td>1.08% Spray [2596-125]</td>
<td>Direct spray towards pet and spray entire coat pressing dispenser with quick short strokes. Move bottle to get even coverage of coat (until tips of hair are moist). Repeat once a week.</td>
<td></td>
</tr>
<tr>
<td>Horses</td>
<td>Feed Through</td>
<td>97.3% Granular [4691-135]</td>
<td>0.00015 lb per 100 lb body weight per day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site Application Type</th>
<th>Application Equipment</th>
<th>Formulation</th>
<th>Maximum Single Application Rate(^1)</th>
<th>Use Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Food Outdoor Residential</td>
<td>Outdoor Premise Treatment (Kennels, Campgrounds, Picnic Areas)</td>
<td>50% Wettable Powder [4691-128]</td>
<td>Restrict usage to spot treatment only. Usage should not exceed one time a year.</td>
<td>Only use along woody borders of kennels, yards, campgrounds, and recreational parks. Prohibit the use of outdoor premise treatment by homeowners.</td>
</tr>
<tr>
<td></td>
<td>Outdoor Premise Treatment (Fence Rows, Hedgerows, Foot Paths)</td>
<td>50% Wettable Powder [4691-128]</td>
<td>Restrict usage to spot treatment only. Usage should not exceed one time a year.</td>
<td>Only use along woody borders of footpaths and roadways leading to such areas. Prohibit the use of outdoor premise treatment by homeowners.</td>
</tr>
</tbody>
</table>

1. Maximum Rates are based on the Label Usage Information System (LUIS) report and the risk management decision
2. Not stated on the label
3. Typically used in conventional power or low pressure backpack sprayers
APPENDIX B

Data Supporting Guideline Requirements for the Reregistration of Tetrachlorvinphos

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>USE PATTERN</th>
<th>CITATION(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCT CHEMISTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Guideline Number</td>
<td>Old Guideline Number</td>
<td></td>
</tr>
<tr>
<td>830.1550 61-1</td>
<td>Product Identity and Composition</td>
<td>All</td>
</tr>
<tr>
<td>830.1600 61-2A</td>
<td>Start. Mat. & Mnfg. Process</td>
<td>All</td>
</tr>
<tr>
<td>830.1670 61-2B</td>
<td>Formation of Impurities</td>
<td>All</td>
</tr>
<tr>
<td>830.1700 62-1</td>
<td>Preliminary Analysis</td>
<td>All</td>
</tr>
<tr>
<td>830.1750 62-2</td>
<td>Certification of limits</td>
<td>All</td>
</tr>
<tr>
<td>830.1800 62-3</td>
<td>Analytical Method</td>
<td>All</td>
</tr>
<tr>
<td>830.6302 63-2</td>
<td>Color</td>
<td>All</td>
</tr>
<tr>
<td>830.6303 63-3</td>
<td>Physical State</td>
<td>All</td>
</tr>
<tr>
<td>830.6304 63-4</td>
<td>Odor</td>
<td>All</td>
</tr>
<tr>
<td>830.7200 63-5</td>
<td>Melting Point</td>
<td>All</td>
</tr>
<tr>
<td>830.7220 63-6</td>
<td>Boiling Point</td>
<td>All</td>
</tr>
<tr>
<td>830.7300 63-7</td>
<td>Density</td>
<td>All</td>
</tr>
<tr>
<td>830.7840 63-8</td>
<td>Solubility</td>
<td>All</td>
</tr>
<tr>
<td>830.7950 63-9</td>
<td>Vapor Pressure</td>
<td>All</td>
</tr>
<tr>
<td>830.7370 63-10</td>
<td>Dissociation Constant</td>
<td>All</td>
</tr>
<tr>
<td>830.7550 63-11</td>
<td>Octanol/Water Partition Coefficient</td>
<td>All</td>
</tr>
<tr>
<td>830.7000 63-12</td>
<td>pH</td>
<td>All</td>
</tr>
<tr>
<td>830.6313 63-13</td>
<td>Stability</td>
<td>All</td>
</tr>
<tr>
<td>830.6314 63-14</td>
<td>Oxidizing/Reducing Action</td>
<td>All</td>
</tr>
<tr>
<td>830.6315 63-15</td>
<td>Flammability</td>
<td>All</td>
</tr>
<tr>
<td>830.6316 63-16</td>
<td>Explodability</td>
<td>All</td>
</tr>
<tr>
<td>830.6317 63-17</td>
<td>Storage Stability</td>
<td>All</td>
</tr>
<tr>
<td>830.7100 63-18</td>
<td>Viscosity</td>
<td>All</td>
</tr>
<tr>
<td>830.6319 63-19</td>
<td>Miscibility</td>
<td>All</td>
</tr>
<tr>
<td>830.6320 63-20</td>
<td>Corrosion characteristics</td>
<td>All</td>
</tr>
<tr>
<td>ECOLOGICAL EFFECTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>850.2100 71-1A</td>
<td>Avian Acute Oral Toxicity</td>
<td>B, C, K</td>
</tr>
<tr>
<td>850.2200 71-2A</td>
<td>Avian Dietary Toxicity - Quail</td>
<td>B, C, K</td>
</tr>
<tr>
<td>850.2200 71-2B</td>
<td>Avian Dietary Toxicity - Duck</td>
<td>B, C, K</td>
</tr>
<tr>
<td>850.1075 72-1A</td>
<td>Fish Toxicity Bluegill</td>
<td>B, C, K</td>
</tr>
<tr>
<td>850.1075 72-1C</td>
<td>Fish Toxicity Rainbow Trout</td>
<td>B, C, K</td>
</tr>
<tr>
<td>Code</td>
<td>72-2A</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>850.1010</td>
<td>Invertebrate Toxicity</td>
<td>B, C, K</td>
</tr>
<tr>
<td>850.1025</td>
<td>Estuarine/Marine Toxicity - Mollusk</td>
<td>40228401</td>
</tr>
<tr>
<td>850.1035</td>
<td>Estuarine/Marine Toxicity - Shrimp</td>
<td>40228401</td>
</tr>
<tr>
<td></td>
<td>141-2</td>
<td>Honey Bee Residue on Foliage</td>
</tr>
</tbody>
</table>

TOXICOLOGY

<table>
<thead>
<tr>
<th>Code</th>
<th>81-1</th>
<th>Description</th>
<th>Code</th>
<th>81-2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>870.1100</td>
<td>Acute Oral Toxicity-Rat</td>
<td>ALL</td>
<td>41222504</td>
<td>870.1200</td>
<td>Acute Dermal Toxicity-Rabbit/Rat</td>
</tr>
<tr>
<td>870.1300</td>
<td>Acute Inhalation Toxicity-Rat</td>
<td>ALL</td>
<td>00138933</td>
<td>870.2400</td>
<td>Primary Eye Irritation-Rabbit</td>
</tr>
<tr>
<td>870.2500</td>
<td>Primary Skin Irritation</td>
<td>ALL</td>
<td>41222507</td>
<td>870.2600</td>
<td>Dermal Sensitization</td>
</tr>
<tr>
<td>870.6100</td>
<td>Acute Delayed Neurotoxicity - Hen</td>
<td>00079791, 41905901</td>
<td></td>
<td>870.6200</td>
<td>Acute Neurotoxicity Screen</td>
</tr>
<tr>
<td>870.3100</td>
<td>Subchronic Oral Toxicity Test (90-Day Feeding - Rodent)</td>
<td>B, L</td>
<td>43371201</td>
<td>870.3250</td>
<td>90-day Subchronic Dermal Toxicity Test, Rat</td>
</tr>
<tr>
<td>870.4100</td>
<td>Chronic Feeding Toxicity - Rodent</td>
<td>B, L</td>
<td>00112525, 42980901</td>
<td>870.4100</td>
<td>Chronic Feeding Toxicity - Non-Rodent</td>
</tr>
<tr>
<td>870.4200</td>
<td>Oncogenicity - Rat</td>
<td>B, L</td>
<td>00117443, 42980901</td>
<td>870.4200</td>
<td>Oncogenicity - Mouse</td>
</tr>
<tr>
<td>870.3700</td>
<td>Developmental Toxicity - Rat</td>
<td>B, L</td>
<td>40152701, 4250101</td>
<td>870.3700</td>
<td>Developmental Toxicity - Rabbit</td>
</tr>
<tr>
<td>870.5375</td>
<td>Structural Chromosomal Aberration</td>
<td>B, C, K, L, M</td>
<td>41312901</td>
<td>None</td>
<td>Other Genotoxic Effects</td>
</tr>
<tr>
<td>870.7485</td>
<td>General Metabolism</td>
<td>B, L</td>
<td>41988401</td>
<td>870.7600</td>
<td>Dermal Penetration</td>
</tr>
<tr>
<td>870.7200</td>
<td>Domestic (Companion) Animal Safety</td>
<td>40436601, 41810101, 41810102</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OCCUPATIONAL/RESIDENTIAL EXPOSURE

<table>
<thead>
<tr>
<th>Code</th>
<th>233</th>
<th>Description</th>
<th>Code</th>
<th>41257101</th>
</tr>
</thead>
<tbody>
<tr>
<td>875.1200</td>
<td>Estimation of Dermal Exposure, Indoor Sites</td>
<td>45519601, 45528801</td>
<td>41257101</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>Value</td>
<td>Description</td>
<td>Codes</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>875.1400 234</td>
<td></td>
<td>Estimation of Inhalation Exposure, Indoor Sites</td>
<td>45519601, 45528801</td>
<td></td>
</tr>
<tr>
<td>875.2400 133-3</td>
<td></td>
<td>Dermal Passive Dosimetry Exposure</td>
<td>42622301, 45485501</td>
<td></td>
</tr>
<tr>
<td>875.2500 133-4</td>
<td></td>
<td>Inhalation Passive Dosimetry Exposure</td>
<td>42622301</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENVIRONMENTAL FATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>160-5</td>
<td>Chemical Identity</td>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>835.2120</td>
<td>161-1</td>
<td>Hydrolysis</td>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>835.4100</td>
<td>162-1</td>
<td>Aerobic Soil Metabolism</td>
<td>B, C, K</td>
<td></td>
</tr>
<tr>
<td>835.1240</td>
<td>163-1</td>
<td>Leaching/Adsorption/Desorption</td>
<td>B, C, K</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>164-A-SS</td>
<td>Dissipation of Residues in Excrement</td>
<td>42848501</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RESIDUE CHEMISTRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>860.1300 171-4B</td>
<td></td>
<td>Nature of Residue - Livestock</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>860.1340 171-4C</td>
<td></td>
<td>Residue Analytical Method - Plants</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>860.1340 171-4D</td>
<td></td>
<td>Residue Analytical Method - Animals</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>860.1380 171-4E</td>
<td></td>
<td>Storage Stability</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>860.1480</td>
<td>171-4J</td>
<td>Magnitude of Residues - Meat/Milk/Poultry/Egg</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00038458, 00084189,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00115939, 00117298,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00117298, 00117339,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00117340, 00117354,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00117389, 00118265,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00120200, 00120206,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00120225, 00120227,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>05006630</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Technical Support Documents

Additional documentation in support of this RED is maintained in the OPP docket, located in Room 119, Crystal Mall #2, 1921 Jefferson Davis Highway, Arlington, VA. It is open Monday through Friday, excluding Federal holidays, from 8:30 am to 4 pm.

The docket initially contained preliminary risk assessments and related documents as of January 15, 1999. Sixty days later the first public comment period closed. The EPA then considered comments, revised the risk assessment, and added the formal “Response to Comments” document and the revised risk assessment to the docket on March 27, 2000.

All documents, in hard copy form, may be viewed in the OPP docket room or downloaded or viewed via the Internet at the following site:

www.epa.gov/pesticides/op

These documents include:

HED Documents

Swartz, Christina (USEPA/OPPTS/OPP/HED) Tetrachlorvinphos. Revised Acute and Chronic

Other Related Documents

Fuller, Demson (USEPA/OPPTS/OPP/SRRD) Letter sent to SRA International. Responding to their comments on the Preliminary Human Health Risk Assessment.

Wilhite, Mark (USEPA/OPPTS/OPP/SRRD) Letter sent to SRA International. Transmiting the
Addendum to the Preliminary Human Health Risk Assessment.

Wilhite, Mark (USEPA/OPPTS/OPP/SRRD) Letter sent to SRA International. Transmitting the Occupational and Residential Exposure Risk Assessment.

Wilhite, Mark (USEPA/OPPTS/OPP/SRRD) Letter sent to Hartz Mountain. Transmitting the Addendum to the Preliminary Human Health Risk Assessment.

USEPA/OPPTS/OPP/SRRD. Tetrachlorvinphos. Minutes to Conference Call. July 24, 2002
Appendix D. Citations Considered to be Part of the Data Base Supporting the Tolerance Reassessment Decision (Bibliography)

GUIDE TO APPENDIX D

1. CONTENTS OF BIBLIOGRAPHY. This bibliography contains citations of all studies considered relevant by EPA in arriving at the positions and conclusions stated elsewhere in the Reregistration Eligibility Document. Primary sources for studies in this bibliography have been the body of data submitted to EPA and its predecessor agencies in support of past regulatory decisions. Selections from other sources including the published literature, in those instances where they have been considered, are included.

2. UNITS OF ENTRY. The unit of entry in this bibliography is called a "study". In the case of published materials, this corresponds closely to an article. In the case of unpublished materials submitted to the Agency, the Agency has sought to identify documents at a level parallel to the published article from within the typically larger volumes in which they were submitted. The resulting "studies" generally have a distinct title (or at least a single subject), can stand alone for purposes of review and can be described with a conventional bibliographic citation. The Agency has also attempted to unite basic documents and commentaries upon them, treating them as a single study.

3. IDENTIFICATION OF ENTRIES. The entries in this bibliography are sorted numerically by Master Record Identifier, or "MRID" number. This number is unique to the citation, and should be used whenever a specific reference is required. It is not related to the six-digit "Accession Number" which has been used to identify volumes of submitted studies (see paragraph 4(d)(4) below for further explanation). In a few cases, entries added to the bibliography late in the review may be preceded by a nine character temporary identifier. These entries are listed after all MRID entries. This temporary identifying number is also to be used whenever specific reference is needed.

4. FORM OF ENTRY. In addition to the Master Record Identifier (MRID), each entry consists of a citation containing standard elements followed, in the case of material submitted to EPA, by a description of the earliest known submission. Bibliographic conventions used reflect the standard of the American National Standards Institute (ANSI), expanded to provide for certain special needs.

 a. Author. Whenever the author could confidently be identified, the Agency has chosen to show a personal author. When no individual was identified, the Agency has shown an identifiable laboratory or testing facility as the author. When no author or laboratory could be identified, the Agency has shown the first submitter as the author.

 b. Document date. The date of the study is taken directly from the document. When the date is followed by a question mark, the bibliographer has deduced the date from the evidence contained in the document. When the date appears as (1999), the Agency was unable to determine or estimate the date of the document.
c. Title. In some cases, it has been necessary for the Agency bibliographers to create or enhance a document title. Any such editorial insertions are contained between square brackets.

d. Trailing parentheses. For studies submitted to the Agency in the past, the trailing parentheses include (in addition to any self-explanatory text) the following elements describing the earliest known submission:

(1) Submission date. The date of the earliest known submission appears immediately following the word "received."

(2) Administrative number. The next element immediately following the word "under" is the registration number, experimental use permit number, petition number, or other administrative number associated with the earliest known submission.

(3) Submitter. The third element is the submitter. When authorship is defaulted to the submitter, this element is omitted.

(4) Volume Identification (Accession Numbers). The final element in the trailing parentheses identifies the EPA accession number of the volume in which the original submission of the study appears. The six-digit accession number follows the symbol "CDL," which stands for "Company Data Library." This accession number is in turn followed by an alphabetic suffix which shows the relative position of the study within the volume.
<table>
<thead>
<tr>
<th>MRID</th>
<th>CITATION</th>
</tr>
</thead>
</table>

359-620; prepared in cooperation with North Carolina State Univ., submitted by Rhone-Poulenc, Inc., Monmouth Junction, N.J.; CDL:003170-L)

6450

6455

6456

6462

6473

6489
Rhone-Poulenc, Incorporated (1967) Toxicity to Bees. Summary of studies 120351-G through 120351-I. (Unpublished study received Jun 13, 1974 under 359-620; prepared in cooperation with Washington State Univ. and Univ. of California, Agricultural Extension Service; CDL:120351-F)

6504

6535

Washington State University, Cooperative Extension Service (19??) Insecticide Toxicity to Honey Bees. (Unpublished study including test no. Port 68-67, received Nov 17, 1975 under 359-620; submitted by Rhone-Poulenc, Inc., Monmouth Junction,
Rhodia, Incorporated (19??) Toxicity to Bees. (pp. 5,8 only; unpublished study received Nov 17, 1975 under 359-620; submitted by Rhone-Poulenc, Inc., Monmouth Junction, N.J.; CDL:223344-M)

Glass, E. (1965) Report No. BB-65-123. (Unpublished study received on unknown date under 7G0575; submitted by Chipman Chemical Co., Inc., Burlingame, Calif.; CDL:090736-AB)

Chipman Chemical Company, Incorporated (1966) Report No. BB 66-126. (Unpublished study received on unknown date under 7G0575; CDL:090736-BK)

Chipman Chemical Company, Incorporated (1966) Report No. BB 66-127. (Unpublished study received on unknown date under 7G0575; CDL:090736-BL)

Lienk, S.E.; Chapman, P.J. (1966) Evaluation of Insecticides on Apple against Codling Moth and Other Orchard Pests. (Unpublished study received Mar 5, 1974 under 3F1308; prepared by New York State Agricultural Experiment Station, submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.; CDL:092222-Z)

E.I. du Pont de Nemours & Company (1971?) Data Supporting the Use of Lannate(R) Methomyl Insecticide on Sugar Beets.

Girardeau, J.H. (1967) Field Tests with Insecticide for the Control of the Budworm. (Unpublished study received Apr 22, 1969 under 352-342; prepared by Georgia Coastal Plain Experiment Station, Entomology Dept., submitted by E.I. du Pont de Nemours & Co., Wilmington, Del.; CDL:003007-R)

under 352-342; submitted by E.I. du Pont de Nemours & Co., Wilmington, Del.; CDL:023294-C)

8271 Hoskins, R.W.; Reed, J. (1969) Control of Cabbage Looper on Lettuce. (Unpublished study received Jun 16, 1971 under 1F1021; prepared in cooperation with Rutgers Univ., New Jersey Agricultural Experiment Station, submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.; CDL:091071-S)

8279 Brett, G.H.; Sullivan, M.J. (1967) Control of Mexican Bean Beetle on Snap Beans: Table 1. (Unpublished study received Jun 16, 1971 under 1F1021; submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.; CDL:091071-AD)

Simpson, C.M. (1968?) Evaluation of New Materials for Berry Moth Control. (Unpublished study received Apr 24, 1975 under 352-342; prepared by Canada, Dept. of Agriculture, Research Station, submitted by E.I. du Pont de Nemours & Co., Wilmington, Del.; CDL:119829-W)

Simpson, C.M. (1968) Comparison of Old and New Materials for Berry Moth Control. (Unpublished study received Apr 24, 1975 under 352-342; prepared by Canada, Dept. of Agriculture, Research Station, submitted by E.I. du Pont de Nemours & Co., Wilmington, Del.; CDL:119829-AB)

McCally ósic|, N. (1969) The Effects of Insecticide Dusts and Sprays on Control of Orange Tortrix Larvae Infesting Grape Clusters, Aug 8, 1969--Table 1. (Unpublished study received Apr 24, 1975 under 352-342; prepared by Univ. of California--Salinas, submitted by E.I. du Pont de Nemours & Co., Wilmington, Del.; CDL:119829-AF)

| 8558 | Drouin, J.A.; Kusch, D.S. (1975) Pesticide Field Trials on Shade and Shelterbelt Trees in Alberta and Saskatchewan, 1974. Edmonton, Alberta: Canada, Forestry Service. (pp. 7-9 only; Northern Forest Research Centre, Information report NOR-X-131; also~in~unpublished submission received Mar 9, 1977 under 352-EX-95; submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.; CDL:228633-I) |
| 8641 | Simpson, C.M. (19??) Potato Insect Control. (Unpublished study received Nov 16, 1971 under 352-342; prepared by Canada, Dept. of Agriculture, Research Station, submitted by E.I. du Pont de Nemours & Co., Wilmington, Del.; CDL:003031-W) |

E.I. du Pont de Nemours & Company (1971) Data Supporting the Use of Lannate Methomyl Insecticide on Sugar Beets. Summary of studies 003024-B through 003024-S. (Unpublished study received Apr 13, 1971 under 352-342; CDL:003024-A)

Davis, A.C. (1970) Control of European Corn Borer with Sprays of Insecticides on a Commercial Basis: Table 3. (Unpublished study received Nov 16, 1971 under 352-342; prepared by Cornell Univ.,

E.I. du Pont de Nemours & Company (1971) Data Supporting the Use of Lannate¼(R)µ Methomyl Insecticide on Sugar Beets. (Unpublished study received Jul 1, 1971 under 352-342; CDL:023298-A)

Thomas, W.O. (1971) The Effects of Foliar Applied Fungicide-Insecticide Treatment on Disease and Insect Control on Staked Tomatoes. (Unpublished study received Dec 20, 1974 under 352-342; prepared by Mississippi State Univ. of Applied Arts and Sciences, Truck Crops Experiment Station, submitted by E.I. du Pont de Nemours & Co., Wilmington, Del.; CDL:028447-K)

submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:093552-AR)

Research Report. (Unpublished study received Nov 10, 1972 under
3F1323; prepared by Univ. of Wisconsin, Dept. of Entomology, submitted
by Ciba-Geigy Corp., Greensboro, N.C.; CDL:093552-AT)

study received Nov 10, 1972 under 3F1323; submitted by Ciba-Geigy
Corp., Greensboro, N.C.; CDL:093552-AW)

12465 Hale, R.; Shorey, H.H. (1969) Control of Tomato Fruitworm and Tomato
Pinworm on Tomatoes. (Unpublished study received Nov 10, 1972 under
3F1323; submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:093552-AZ)

Insects and Other Pests Attacking Vegetable Crops: Number of Project: 1184.
(Unpublished study received Nov 10, 1972 under 3F1323; prepared
by Univ. of Florida, Sub-Tropical Experiment Station, submitted by
Ciba-Geigy Corp., Greensboro, N.C.; CDL:093552-BM)

received Nov 10, 1972 under 3F1323; prepared by Louisiana State Univ.
and Agricultural and Mechanical College, Dept. of Entomology,
Agricultural Center, submitted by Ciba-Geigy Corp., Greensboro, N.C.;
CDL:093552-BR)

received Nov 10, 1972 under 3F1323; prepared by Rutgers Univ.,
submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:093552-BY)

12491 Reed, J.P. (1965) Tomato Insect Control--1965. (Unpublished study
received Nov 10, 1972 under 3F1323; prepared by Rutgers Univ.,
submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:093552-BZ)

12494 Reed, J. (1964) Tomato Plots--1964. (Unpublished study received Nov
10, 1972 under 3F1323; prepared by Rutgers Univ., submitted by
Ciba-Geigy Corp., Greensboro, N.C.; CDL:093552-CH)

12608 Bowen, W.R. (1972) Egyptian Alfalfa Weevil Control in Southern
California. (Unpublished study received May 29, 1975 under 100-501;
prepared by Univ. of California--Riverside, submitted by Ciba-Geigy
Corp., Greensboro, N.C.; CDL:115271-D)

12628 Nielsen, D.G. (1973) Chemical Control of Pine Tortoise Scale,
~Toumeyella numismaticum~. (Unpublished study received May 29,
1975 under 100-501; submitted by Ciba-Geigy Corp., Greensboro, N.C.;
CDL:115271-AM)

14949 Sleesman, J.P. (1972) Vegetable Insect Control Experiments. Wooster: Ohio Agricultural Research and Development Center, Dept. of Entomology. (Ent. misc. publication 73-1; report no. 36258; pp. 1-6, 11-17 only; also~In~unpublished submission received Jul 24, 1973 under 4F1424; submitted by Mobay Chemical Corp., Agricultural Div., Kansas City, Mo.; CDL:094861-I)

14962 Henning, R.C.; Hale, R.; Bowen, B.; et al. (1971) ôUse of Orthene 75 S on Various Cropsö. (Unpublished study received Feb 23, 1972 under 2G1248; prepared in cooperation with Univ. of California--Riverside, Virginia Truck and Ornamentals Research Station and New York State Agricultural Experiment Station, submitted by Chevron Chemical Co., Richmond, Calif.; CDL:095074-P)

<table>
<thead>
<tr>
<th>ID</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>24127</td>
<td>Baker, N.F.; Dougherty, R.B. (1979) Temephos: Efficacy of the 40.7% Temephos Flea Collar against Experimental Flea (Ctenocephalides felis) Infestation on Dogs Weighing Greater Than 9 Kg over an Experimental Period of Nine Months: Experiment C-77-5. (Unpublished study received Aug 29, 1979 under 241-251; prepared in cooperation with Univ. of California--Davis, Agricultural Experiment Station, Dept. of Veterinary Microbiology, submitted by American Cyanamid Co., Princeton, N.J.; CDL:240881-A)</td>
</tr>
</tbody>
</table>

Shell Chemical Company (19??) Determination of the Impurities in Technical SD 8447. (Unpublished study received 1966 under unknown admin. no.; CDL:126307-A)

Forsythe, H.Y., Jr. (1971) Insect and Mite Control Experiments on Apples and Blueberries in Maine. (Unpublished study received May 25, 1973 under 100-426; prepared by Univ. of Maine, Dept. of Entomology, submitted by Ciba-Geigy Corp., Greensboro, N.C., CDL:000194-B)

Benigni, R.; Bignami, M.; Camoni, I.; et al. (1979) A new--in vitro--method for testing plant metabolism in mutagenicity studies. Journal of Toxicology and Environmental Health 5(?):809-819. (Also--In--unpublished submission received Apr 23, 1980 under 400-41; submitted by Uniroyal Chemical, Bethany, Conn.; CDL:242307-A)

Braithwaite, G. (1979) (Ectiban Insecticide: Efficacy in Livestock Premises). (Unpublished study received May 1, 1980 under NM 80/8; submitted by state of New Mexico for ICI Americas, Inc., Wilmington, Del.; CDL:242377-A)

Vidyarthi, A.D.; Sheehan, T.D.; Blazquez, C.H.; et al. (1969) Efficacy Study on Tomato Plants. (Unpublished study received Apr 1, 1970 under 72-454; prepared in cooperation with Virginia Truck Experiment Station, submitted by Miller Chemical and Fertilizer Corp., Hanover, Pa.; CDL:000160-A)

Strong, R.G. (1966) Susceptibility of Stored Product Insects to
Insecticides: Report No. 20691. (Unpublished study received Nov 14, 1967 under 52-197; prepared by Univ. of California--Riverside, Dept. of Entomology, submitted by West Chemical Products, Inc., Lynbrook, N.Y.; CDL:000084-A)

32831 Paullus, J.H. (1966) Transmittal of European Corn Borer and Corn Earworm Control Data; Transmittal of Cabbage Insect Control Data; Transmittal of Pea Aphid Control Data. (Unpublished study received Mar 1, 1966 under 116-30; submitted by Salsbury Laboratories, Charles City, Iowa; CDL:000597-A)

32832 Thornburg, W.W. (1966) Summary of Residue Analysis Data for SD-8447 on Sweet Corn. (Unpublished study received Mar 1, 1966 under 116-30; submitted by Salsbury Laboratories, Charles City, Iowa; CDL:000597-B)

33446 Dean, R.W. (1966) Summary: Delnav Apple Maggot Tests. (Unpublished study received May 31, 1966 under 239-1946; prepared in cooperation with Cornell Univ., New York State Agricultural Experiment Station, Hudson Valley Laboratory, submitted by Chevron Chemical Co., Richmond, Calif.; CDL:001404-A)

33871 Butler, J.F.; Loomis, E.C.; Seawright, J.A.; et al. (1971) Efficacy of Insecticides on Cattle Parasites. (Unpublished study including published data received Apr 18, 1972 under 241-33; prepared by Univ. of Florida, Institute of Food and Agricultural Sciences, Dept. of Entomology and Nematology and others, submitted by American Cyanamid Co., Princeton, N.J.; CDL:001658-A)

34624 Livingston, J.M.; Yearian, W.C.; Young, S.Y., III (1972) Evaluation of new insecticides for control of the loblolly pine saw-fly. Arkansas Farm Research XXI(3):4. (Also~In~unpublished submission received May 6,
1976 under 352-342; submitted by E.I. du Pont de Nemours & Co., Wilmington, Del.; CDL:224073-X)

36614 Shell Chemical Company (1972) Summary: Gardona. (Unpublished study received Feb 6, 1973 under 2F1281; CDL:092176-A)

37490 Young, R., Jr.; Schmidtmann, E.T. (1977) File Trial Efficacy of SD8447 Horse Oral Larvicide and SD 4294 Pyrethrin/Repellent Horse Spray: Project Nos. 61751.00 & 61754.00. (Unpublished study received Jun 27, 1980 under 0H5269; prepared by Cornell Univ., Dept. of Entomology, submitted by Diamond Shamrock Agricultural Chemicals, Cleveland, Ohio; CDL:242705-B)

37491 Diamond Shamrock Agricultural Chemicals (19??) Safety of the Food Additive. (Unpublished study received Jun 27, 1980 under 0H5269; CDL:242780-C)

37492 Young, R.; Sharp, M.L. (1972) Tolerance of Horses to Grain Containing Rabon½(R)µ Insecticide: Report No. 70-61754.00. (Unpublished study received Jun 27, 1980 under 0H5269; prepared by Shell Development Co., submitted by Diamond Shamrock Agricultural Chemicals, Cleveland, Ohio; CDL:242780-D)

37494 Sharp, J.E.; Young, R., Jr.; Brown, L.J.; et al. (1971) Effect of Feeding Rabon½(R)µ Insecticide to Pigs for 31 Days: TIR-70-054-71. (Unpublished study received Jun 27, 1980 under 0H5269; prepared by Shell Chemical Co., submitted by Diamond Shamrock Agricultural Chemicals, Cleveland, Ohio; CDL:242780-F)

38457 Sharp, J.E.; Young, R.; Olson, W.M.; et al. (1975) The Larvicidal Efficacy and Degradation Rate of Rabon in Manure from Horses Fed Rabon½(R)µ Oral Larvicide: Project No. 61754.00. (Unpublished study received Jun 27, 1980 under 0H5269; submitted by Diamond Shamrock Agricultural Chemicals, Cleveland, Ohio; CDL:242780-A)

38458 Schultz, D.R.; Rawn, D.T.; DeKay, D.E. (1973) Residues of SD 8447 in Biopsy Fat Samples from Pigs Fed 400 and 800 PPM Stirofos in the
Ration: TIR-26-005-73. (Unpublished study received Jun 27, 1980 under 0H5269; prepared by Shell Development Co., submitted by Diamond Shamrock Agricultural Chemicals, Cleveland, Ohio; CDL:242780-G)

Shell Chemical Company (19??) Toxicology. (Unpublished study received Feb 25, 1966 under unknown admin. no.; CDL:107943-A)

U.S. Agricultural Research Service (19??) Summary of Toxicologic Studies of Shell Compound 8447 in Cattle and Sheep. (Animal Disease and Parasite Research Div., Toxicological Investigations Laboratory, unpublished study; CDL:107943-G)

Shell Chemical Company (1964) Stability of SD 8447 in Rat Chow. (Unpublished study received Feb 25, 1966 under unknown admin. no.; CDL:107943-H)

Shell Chemical Company (19??) Compound SD 8447 Reproduction Study. (Unpublished study received Feb 25, 1966 under unknown admin. no.; CDL:107943-I)

103

Shell Chemical Company (19??) Cattle Feeding Studies with SD 8447. (Unpublished study received Feb 25, 1966 under unknown admin. no.; CDL:107943-P)

Shell Chemical Company (19??) SD 8447 Insecticide. (Unpublished study received on unknown date under unknown admin. no.; CDL:107964-A)

ICI Americas, Ag. Chem. Div. (19??) Toxicity and Activity against Resistant Houseflies of Permethrin (Ectiban Insecticide) Compared with Other Commonly Recommended Housefly Control Products. (Unpublished study received May 5, 1980 under MO 80/8; CDL:242418-A)

Shellenberger, T.E. (1965) Letter sent to E.F. Feichtmeir dated Jun 1,

50608 Shell Chemical Company (19??) Metabolic Studies in Animals with SD 8447. (Unpublished study received Feb 25, 1966 under unknown admin. no.; CDL:107963-A)

54374 ICI Americas, Incorporated (1979) Efficacy Study of Ambush® and Ectiban®. (Compilation; unpublished study received Nov 3, 1980 under CO 80/19; submitted by Colorado, Dept. of Agriculture, Pesticide
Toxicity of various compounds to the mosquito fish~Gambusia~
affinis~. (Unpublished study received Dec 15, 1964 under 201-157;
prepared by Univ. of California--Riverside, Citrus Research Center and
Agricultural Experiment Station, Dept. of Entomology, submitted by Shell
Chemical Co., Washington, D.C.; CDL:100375-V)

Shell Chemical Company (1973) Toxicology Section: Summary.
Summary of studies 001048-B through 001048-K. (Unpublished study
received Apr 9, 1973 under 201-345; CDL:001048-A)

Collars in Dogs: SRI Project LSC 868-20; Report No. 4. Rev.
(Unpublished study received Apr 9, 1973 under 201-345; prepared by
Stanford Research Institute, submitted by Shell Chemical Co.,
Washington, D.C.; CDL:001048-B)

Stearns, S.M.; Albert, J.R. (19??) Determination of the Effects in the Dog
following a Forced Feeding of a 10% Stirofos Flea Collar:
TLR-72-023-73. (Unpublished study received Apr 9, 1973 under
201-345; submitted by Shell Chemical Co., Washington, D.C.;
CDL:001048-C)

Olson, W.M.; Young, R., Jr. (19??) The Effects of Moisture and
Rabon¼(R)µ Insecticide Pet Collars on the Skin Reaction of Dogs:
TIR-70-007-73. (Unpublished study received Apr 9, 1973 under
201-345; submitted by Shell Chemical Co., Washington, D.C.;
CDL:001048-D)

Albert, J.R. (1972) Long-Term Repeat Exposure of Dogs to 10% Stirofos
Flea Collars: TIR-72-012-73. (Unpublished study received Apr 9, 1973
under 201-345; submitted by Shell Chemical Co., Washington, D.C.,
CDL:001048-E)

Stearns, S.M.; Albert, J.R. (1972?) Drug Interaction Potential of Several
Drugs and Treatments in Dogs Fitted with the 10% Stirofos Flea Collar:
TIR-72-013-73. (Unpublished study received Apr 9, 1973 under 201-345;
submitted by Shell Chemical Co., Washington, D.C.; CDL:001048-F)

Albert, J.R. (1973) Evaluation of Liver Function in Dogs at the
Termination of a Long-Term Repeat Exposure Study of Dogs to the 10%
Stirofos Flea Collar: TIR-72-014-73. (Unpublished study including letter
dated Jan 15, 1973 from V.R. Augst to James Albert, received Apr 9, 1973
under 201-345; prepared by Laboratory Research Enterprises, Inc.,
submitted by Shell Chemical Co., Washington, D.C.; CDL:001048-G)

Albert, J. (1972?) Evaluation of Kidney Function in Dogs at the
Termination of a Long-Term Exposure Study of Dogs to the 10% Stirofos Flea Collar: TIR-72-015-73. (Unpublished study including letter dated May 19, 1972 from V. Augst to Dr. Alberts received Apr 9, 1973 under 201-345; prepared by Laboratory Research Enterprises, Inc., submitted by Shell Chemical Co., Washington, D.C.; CDL:001048-H)

63589 U.S. Department of Health, Education, and Welfare (1978) Bioassay of Tetrachlorvinphos for Possible Carcinogenicity. HEW. (CAS no. 961-11-5; NCI-CG-TR-33; National Cancer Institute carcinogenesis technical report series no. 33; DHEW publication no. (NIH) 78-833; Public Health Service, National Cancer Institute, Div. of Cancer Cause and Prevention, Carcinogenesis Program, Carcinogen Bioassay and Program Resources Branch; published study; CDL:233821-A)

63626 Piccirillo, V.J. (1978) 26-Week Progress Report: 104-Week Chronic

67142 Hartz Mountain Corporation (1975) Efficacy of Rabon 2 for Tick and Flea Collars. (Compilation; unpublished study received Mar 11, 1977 under 2596-62; CDL:230755-A)

67463 Shell Chemical Company (1973) Revised Data To Support the Use of Rabon as a Wipe-on or Spray Solution on Horses for Insect Control. (Unpublished study received May 14, 1973 under 201-339; CDL:001040-A)

68708 Shell Chemical Company (1969) Information in Support of Rabon for Controlling Pests. (Reports by various sources; unpublished study received Sep 13, 1972 under 201-336; CDL:001039-A)

69314 Farnam Companies, Incorporated (19??) Flea and Tick Pet Collars. (Unpublished study received Sep 15, 1978 under 270-EX-1; CDL:235685-B)

70260 Shell Chemical Company (1973) Performance Section: Summary: Rabon. (Compilation; unpublished study received Apr 9, 1973 under 201-345; CDL:001045-A)

70856 Sharp, M.L. (1971) Tolerance of Horses to Grain Containing Rabon (R) Insecticide: Project No. 70-61754.00. (Unpublished study received Apr 15, 1980 under 677-418; prepared by Shell Development Co., submitted by Diamond Shamrock Agricultural Chemicals, Cleveland, Ohio; CDL:242548-A)

70857 Diamond Shamrock Agricultural Chemicals (1977) Efficacy of Rabon. (Compilation; unpublished study received Apr 15, 1980 under 677-418; CDL:242548-B)

70858 Diamond Shamrock Agricultural Chemicals (1976) Fly Control by Feeding Rabon (R) Oral Larvicide to Horses. (Compilation; unpublished study received Mar 16, 1981 under 677-418; CDL:244579-A)

Shell Chemical Company (1979) Toxicology of Rabon¼(R)µ. Summary of studies 237921-B through 237921-D. (Unpublished study received Mar 30, 1979 under 201-407; CDL:237921-A)

Shell Oil Company (1977) A Critique of Bioassay of Tetrachlorvinphos for Possible Carcinogenicity. (Compilation; unpublished study received Mar 30, 1979 under 201-407; CDL:237922-A; 237921)

Shell Chemical Company (1968?) Summary of Toxicology for Gardona¼(R)µ Insecticide (Formerly SD 8447). (Unpublished study received Jul 5, 1972 under 201-EX-44; CDL:122727-B)

Shell Chemical Company (1971) Testing the Activity of Various Insecticide Devices against Fleas and Ticks. (Compilation; unpublished study received Jul 5, 1972 under 201-EX-44; CDL:122727-D)

Shell Chemical Company (1965?) Information Relative to the Toxicity of SD 8447 to Fish and Wildlife. Summary of studies 128498-B through 128498-L. (Unpublished study received Feb 8, 1966 under unknown admin. no.; CDL:128498-A)

Bond, C.E. (1965) Letter sent to Stanley T. Ichikawa dated Aug 5, 1965 Results of tests with SD 11831 and SD 8447. (Unpublished study received Feb 8, 1966 under unknown admin. no.; prepared by Oregon
Results of tests with SD 8447 on small rainbow trout and bluegills. (U.S.
Fish and Wildlife Service, Fish-Pesticide Research Laboratory;
unpublished study; CDL:128498-C)

Laboratory tests regarding SD-8447. (Unpublished study received Feb 8,
1966 under unknown admin. no.; prepared by Univ. of
California--Riverside, Agricultural Experiment Station, Dept. of
Entomology, submitted by Shell Chemical Co., Washington, D.C.;
CDL:128498-G)

Acute toxicity trial data. (U.S. Fish and Wildlife Service, Section of
Chemical, Physiological and Pesticide-Wildlife Studies; unpublished
study; CDL:128498-H)

Shell Chemical Company (1964) Results of Tests on Birds with Various
Chemical Compounds. (Compilation of studies by U.S. Fish and Wildlife
Service, Denver Wildlife Research Center; unpublished study;
CDL:128498-J)

Confidential report on work with SD 8447. (Unpublished study received
Feb 8, 1966 under unknown admin. no.; prepared by Univ. of Hawaii,
Dept. of Entomology, submitted by Shell Chemical Co., Washington,
D.C.; CDL:128498-K)

Tests involving Shell compounds. (U.S. Fish and Wildlife Service,
Denver Wildlife Research Center; unpublished study; CDL:128498-L)

Shell Chemical Company (1965) Summary: SD 8447. Summary of study
128498-I. (Unpublished study received Feb 8, 1966 under unknown
admin. no.; CDL:128498-M)

Shell Chemical Company (1966) Determination of the Impurities in
Technical SD 8447. (Unpublished study received Feb 8, 1966 under
unknown admin. no.; CDL:128498-O)

Shell Development Company (1966) Assay of Technical SD 8447:
Tentative Infrared Spectrophotometric Method. Method MMS-74/66
dated Jan 26, 1966. (Unpublished study received Feb 8, 1966 under
unknown admin. no.; CDL:128498-P)
Acute toxicity trial data on SD-8447. (U.S. Fish and Wildlife Service,
Section of Chemical, Physiological and Pesticide-Wildlife Studies;
unpublished study; CDL:090706-P)

Diamond Shamrock Agricultural Chemicals (1980) Background
Information and Summary of Safety and Efficacy--Mink Oral Larvicide
Containing Rabon½(R)µ. Summary of studies 245370-B and 245370-C.
(Unpublished study received Jul 1, 1981 under 677-422; CDL:245370-A)

Report on mink feeding trial incorporating Rabon oral insecticide.
(Unpublished study received Jul 1, 1981 under 677-422; prepared by Fur
Breeders Agricultural Cooperative, submitted by Diamond Shamrock
Agricultural Chemicals, Cleveland, Ohio; CDL:245370-B)

1981 Bioassay results of feces from Rabon oral larvicide fed to mink.
(Unpublished study received Jul 1, 1981 under 677-422; prepared by Purdue Univ., Dept. of Entomology, submitted by Diamond Shamrock
Agricultural Chemicals, Cleveland, Ohio; CDL:245370-C)

Shell Chemical Company (1966) Summary of Toxicology for
Gardona½(R)µ Insecticide. Summary of studies 091166-B through
091166-D and 091166-F through 091166-R. (Unpublished study received
May 23, 1967 under 8G0665; CDL:091166-A)

Acute oral toxicity of SD 8447 to rats and mice: Project PB-1008, Report
No. 80. (Unpublished study received May 23, 1967 under 8G0665;
prepared by Stanford Research Institute, submitted by Shell Chemical Co.,
Washington, D.C.; CDL:091166-B)

Shellenberger, T.E. (1965) Letter sent to Rene Blondeau dated Nov 9,
1965 Rabbit blood cholinesterase following percutaneous application of
SD 8447: Project B 868-1, Report No. 30. (Unpublished study received

Shellenberger, T.E. (1966) Subacute Toxicity Studies of Shell Compound
SD 8447: SRI Project B-868-1, Report No. 35. (Unpublished study
received May 23, 1967 under 8G0665; prepared by Stanford Research
Institute, submitted by Shell Chemical Co., Washington, D.C.;
CDL:091166-G)

Toxicity of the Halophenyl Vinyl Phosphate Insecticide SD 844 to Rats:
Report M(T)-3-65. (Unpublished study received May 23, 1967 under
8G0665; prepared by Shell Research Ltd., England, submitted by Shell

Shell Development Company (19??) Metabolic Fate of SD 8447 in Plants. (Unpublished study received May 23, 1967 under 8G0665; CDL:091166-R)

Shell Chemical Company (1964) Toxicity and Repellency of SD8447 to Blackbirds and Starlings. (Compilation of reports by U.S. Fish and Wildlife Service, Denver Wildlife Research Center; unpublished study; CDL:091166-AA)

Shell Chemical Company (1966) Summary of Residue Data: Gardona. (Compilation; unpublished study received May 23, 1967 under 8G0665; CDL:091166-AD)

81229 Young, R., Jr.; Olson, W.M. (1973) The Effects of Moisture and Rabon(R)µ Insecticide Pet Collars on the Skin Reaction of Dogs: TIR-70-007-73. (Unpublished study received Apr 9, 1973 under 201-345; submitted by Shell Chemical Co., Washington, D.C.; CDL:008408-C)

83136 Shell Chemical Company (1972) Summary of Basic Data for Technical Rabon(R)µ Insecticide. Rev. San Ramon, Calif.: Shell. (Technical data bulletin ACD:67-111; also~In~unpublished submission received Jul 5, 1972 under 201-EX-44; CDL:122727-A)

83743 Shell Chemical Company (19??) SD 8447 Insecticide. (Unpublished study received Feb 8, 1966 under unknown admin. no.; CDL: 128498-N)

83744 Shell Chemical Company (1965) Performance Data: Summary. (Compilation; unpublished study received Feb 8, 1966 under unknown admin. no.; CDL:128498-Q)
Chronic toxicity studies: The effect of SD 8447 on hen eggs and tissues.
(Unpublished study received Sep 4, 1981 under 43688-1; prepared by
Univ. of Hawaii, Dept. of Entomology, submitted by Shu-Fly Industries,
Inc., Reno, Nev.; CDL:245998-B)

toxicity test on ducklings. (Unpublished study received Sep 4, 1981 under
43688-1; prepared by Cornell Univ., Dept. of Poultry Science, Duck
Research Laboratory, submitted by Shu-Fly Industries, Inc., Reno, Nev.;
CDL:245998-D)

(Rabon¼(R)µ) in Eggs of Laying Hens Treated for Northern Fowl Mite
Control by Dipping. (U.S. Dept. of Agriculture, Science and Education
Administration, Agricultural Research, Veterinary Toxicology and
Entomology Research Laboratory; unpublished study; CDL:245949-A)

Shell Chemical Company (19??) Ingredient Statement: Gardona¼(R)µ
Insecticide 50: Wettable Powder. (Unpublished study received Feb 12,
1970 under 201-270; CDL:008409-A)

Shell Chemical Company (1969) Summary: Gardona Insecticide:
Efficacy. (Compilation; unpublished study, including published data,
received Feb 12, 1970 under 201-270; CDL:008409-B)

into Cubes: AJS 80-05-17. Final rept. (Unpublished study received Nov
30, 1981 under 677-416; submitted by Diamond Shamrock Agricultural
Chemicals, Cleveland, Ohio; CDL:246280-A)

Diamond Shamrock Agricultural Chemicals (19??) Final Report to
Protocol AJS 800518: Safety of Sol in Market Swine. (Unpublished study
received Nov 30, 1981 under 677-416; CDL:246280-B)

Diamond Shamrock Agricultural Chemicals (1981) Clinical Evaluation of
the Safety of Horse Oral Larvicide in Gestating Mares, Their Offspring
and Breeding Stallions. (Unpublished study received Nov 30, 1981 under
677-416; CDL:246280-C)

Ladd, R. (1972) Report to ...: Teratogenic Study with Gardona Insecticide
Technical in Albino Rabbits: IBT No. J239. (Unpublished study received
Feb 6, 1976 under 201-225; prepared by Industrial Bio-Test Laboratories,
Inc., submitted by Shell Chemical Co., Washington, D.C.;
CDL:223348-C)

Farnam Companies, Incorporated (19??) Flea and Tick Pet
Collars. (Unpublished study received Feb 13, 1978 under
270-EX-1; CDL:232933-B)

Cope, O.B. (1967) Letter sent to William J. Hughes dated Nov 21, 1967 Results of toxicity tests with Shell compunds SD 7727, SD 8447, and SD
8530 against fish. (U.S. Fish and Wildlife Service, Fish-Pesticide Research Laboratory; unpublished study; CDL:093138-L)

96682 Diamond Shamrock Agricultural Chemicals (1981) Cattle Grub Control Rabon® Insecticide Formulation. (Compilation; unpublished study received Sep 11, 1981 under 677-391; CDL:245980-A)

107576 Shell Chemical Co. (1974) Shell Horse Fly Free Gel. (Compilation; unpublished study received Mar 13, 1974 under 201-340; CDL:023151-A)

107578 Young, R. (19??) Effects of Whole Body Application of the Rabon Insecticide Horse Wipe-on Solution: TIR-74-008-74. (Unpublished study received Jun 7, 1974 under 201-339; submitted by Shell Chemical Co., Washington, DC; CDL:023155-A)

107634 Goble, G.; Eisenlord, G. (1972) Acute Toxicity Studies of Horse
Wipe-on or Spray in Experimental Animals: Report No. 15.
(Unpublished study received Nov 15, 1972 under 201-339;
prepared by Hine Laboratories, Inc., submitted by Shell Chemical
Co., Washington, DC; CDL:051022-A)

108645 Shell Chemical Co. (1966) Efficacy of SD8447 and Other
Insecticides on Cattle. (Compilation; unpublished study received
Sep 15, 1966 under unknown admin. no.; CDL:122673-A)

108646 Ivey, M.; Hoffman, R.; Claborn, H. (19??) Residues of SD-8447 in
the Body Tissues of Sprayed Cattle. (U.S. Agricultural Research
Service, Entomology Research Div.; unpublished study; CDL:
122673-B)

108675 Shell Chemical Co. (1968) Efficacy of Gardona 75 Insecticide:
Tests on Apples. (Compilation; unpublished study received Oct
30, 1968 under 201-EX-31; CDL:122707-A)

112519 Skahen, R. (1965) Pathology Summary; Gross Examination: SRI
Project 5434-3. (Unpublished study received Aug 17, 1968 under
9F0739; submitted by Shell Chemical Co., Washington, DC;
CDL:091274-A)

Toxicity of the Halophenyl Vinyl Phosphate Insecticide SD 8447
to Rats: Report M(T)-3-65. (Unpublished study received Aug 17,
1968 under 9F0739; prepared by Shell Research Ltd., Eng.,
submitted by Shell Chemical Co., Washington, DC;
CDL:091274-C)

112521 Stanford Research Institute (1966) Letter sent to R. Blondeau
dated Feb 7, 1966 Subacute percutaneous toxicity study and
cholinesterase evaluation of SD 8447: Ref. B 5692-3, Letter
Report No. 1. (Unpublished study received Aug 17, 1968 under
9F0739; submitted by Shell Chemical Co., Washington, DC;
CDL:091274-E)

112522 Eisenlord, G.; Loquvam, G.; Nemenzo, J. (1966) Results of Re-
production Study of Rats Fed Diets Containing SD 8447
Insecticide over Three Generations: Report No. 28. (Unpublished
study received Aug 17, 1968 under 9F0739; prepared by Hine
Laboratories, Inc., submitted by Shell Chemical Co., Washington,
DC; CDL:091274-G)

112523 Shell Chemical Co. (1968) Toxicology Section: Gardona
Insecticide. Summary of studies 091274-B through 091274-G and
091274-I through 091274-O. (Unpublished study received Aug

Diamond Shamrock Agricultural Chemicals (1977) 90% Dimethyl T. (Unpublished study received Sep 13, 1977 under 677-388; CDL: 231597-A)

Shell Chemical Co. (1972) Residue Data in Reply to EPA's July 10, 1972 Letter of Special Review for Ciovap EC Insecticide. (Compilation; unpublished study received Sep 20, 1972 under 201-244; CDL:000948-A)

Shell Chemical Co. (1970) Efficacy of Rabon on Livestock]. (Compilation; unpublished study received Jan 19, 1970 under 1F1090;CDL:090850-A)

Shell Chemical Co. (1970) Residue Data Developed from the Use of Dairy Cattle: Rabon. (Compilation; unpublished study received Jan 19, 1970 under 1F1090; CDL:090850-B)

Shell Chemical Co. (1972) Data in Support of Label Registration for Use of Gardona 75 WP Insecticide on Pears, Cherries, Plums, Cranberries and Tomatoes. (Compilation; unpublished study received Aug 18, 1972 under 1F1023; CDL:090874-A)

Shell Chemical Co. (1970) Performance Data in Support of the Use of Gardona 75 WP Insecticide To Control Certain Insect Pests of
Pears, Cherries, Plums, Prunes, Peaches, Cranberries and Tomatoes. (Compilation; unpublished study received Nov 9, 1970 under 1F1023; CDL:091075-A)

116552 Shell Chemical Co. (1971) Summary: Gardona on Alfalfa in California: Performance Data. (Compilation; unpublished study received Oct 12, 1972 under 2F1281; CDL:091818-A)

116553 Shell Chemical Co. (1971) The Results of Tests on the Amount of Residues Remaining, Including a Description of the Analytical Methods Used: Gardona. (Compilation; unpublished study received Oct 12, 1972 under 2F1281; CDL:091818-B)

116789 Shell Chemical Co. (1972) Additional Data: Gardona Insecticide. (Compilation; unpublished study received on unknown date under 2F1187; CDL:090999-A)

116790 Shell Chemical Co. (1971) The Results of Tests on the Amount of Gardona Residues Remaining, Including a Description of the Analytical Methods Used. (Compilation; unpublished study received May 1, 1972 under 2F1187; CDL:090999-B)

116876 Shell Chemical Co. (1968) Performance Data To Support the Use of Rabon Insecticide for the Control of Certain Ectoparasites on Livestock. (Compilation; unpublished study received Feb 7, 1969 under 9F0805; CDL:092153-A)

116886 Shell Chemical Co. (1971) Performance Data in Support of the Use of Gardona Insecticide To Control Certain Insect Pests of Forage and Pasture Grasses, Cotton, Green, Field and Snap Beans. (Compilation; unpublished study received Aug 6, 1971 under 2F1187; CDL:092059-A)

116957 Shell Chemical Co. (1969) Performance Data To Support the Use of Rabon Insecticide for the Control of Certain Ectoparasites of Poultry. (Compilation; unpublished study received May 14, 1969 under 9F0835; CDL:092283-A)

117277 Shell Chemical Co. (1964) 6SD-8447: Toxicity to Birds. (Compilation; unpublished study received Feb 8, 1966 under 201-195; CDL:000915-A)

117279 Shell Chemical Co. (1965) Residue: SD 8447--Corn|. (Compilation; unpublished study received Feb 8, 1966 under 201-195; CDL:000915-E)

117280 Shell Chemical Co. (1965) Performance Data: óSD 8447--Corn|. (Compilation; unpublished study received Feb 8, 1966 under 201-195; CDL:000915-F)

117281 Shell Chemical Co. (1966) óSD 8447: Chemical Study|. (Compilation; unpublished study received Feb 25, 1966 under 201-195; CDL:000926-A)

117282 Shell Chemical Co. (1964) SD 8447 and Other Pesticides: Toxicity to Aquatic Life|. (Compilation; unpublished study received Feb 25, 1966 under 201-195; CDL:000926-E)

117285 Shell Chemical Co. (1966) Performance Data: SD 8447|. (Compilation; unpublished study received Feb 25, 1966 under 201-195; CDL:000926-M)

117287 Stearns, S.; Albert, J. (19??) Acute Dermal Toxicity of Ravap Insecticide in the Rabbit: TIR-72-082-72. (Unpublished study received Jul 17, 1972 under 201-303; submitted by Shell Chemical Co., Washington, DC; CDL:001003-B)

unpublished study received Dec 2, 1970 under 11312-5; CDL:004829-A)

117289 Shell Chemical Co. (1973) Rabon Collars for Cats and Dogs: Efficacy. (Compilation; unpublished study received Sep 7, 1973 under 201-346; CDL:008791-A)

117290 Shell Chemical Co. (1974) Data on Rabon Oral Larvicide on Cattle. (Compilation; unpublished study received Dec 20, 1974 under 201-359; CDL:009655-A)

117291 Hartz Mountain Corp. (1975) Reports Concerning Rabon Tick and Flea Collar for Dogs and Cats and the Hartz 2 in 1 Collar. (Compilation; unpublished study received Jan 15, 1975 under 2596-49; CDL:009733-A)

117292 Hartz Mountain Corp. (1975) Hartz 2 in 1 Collar for Dogs and Cats: Data in Support of Application for Amended Registration. (Compilation; unpublished study received Jan 15, 1975 under 2596-49; CDL:028590-A)

117293 Shell Chemical Co. (1973) Safety in Cattle: Summary of Toxicity Data on Rabon. (Unpublished study received Oct 17, 1973 under 201-359; CDL:050006-A)

117294 Sharp, J.; Young, R. (19??) Preliminary Observations on Determining the No Effect Level of SD 8447 in Rations Consumed by Steers: TIR-70-014-72. (Unpublished study received Oct 17, 1973 under 201-359; submitted by Shell Chemical Co., Washington, DC; CDL:050006-B)

117295 Sharp, J.; Young, R. (19??) The Determination of the Effect of Feeding High Levels of SD 8447 to Young Dairy Calves: TIR-70-012-72. (Unpublished study received Oct 17, 1973 under 201-359; submitted by Shell Chemical Co., Washington, DC; CDL:050006-C)

117296 Young, R. (19??) Effect of Feeding Steers 30 Miligrams Rabon Insecticide per Kilogram of Body Weight for 90 Days: TIR-70-056-71. (Unpublished study received Oct 17, 1973 under 201-359; submitted by Shell Chemical Co., Washington, DC; CDL:050006-D)

Shell Chemical Co. (1970?) Safety to Wildlife: Stirofos: Toxicity Data Summary. (Unpublished study received Oct 17, 1973 under 201-359; CDL:050007-A)

117307 Bond, C. (1965) Preliminary Results of Contamination of Salmon and Guppies by SD 11831 and SD 8447. (Unpublished study received Oct 17, 1973 under 201-359; prepared by Oregon State Univ., Agricultural Experiment Station, Dept. of Fisheries and Wildlife, submitted by Shell Chemical Co., Washington, DC; CDL: 050007-E)

117309 Rider, J. (1968) Toxicity Evaluation of Gardona in Humans. (Unpublished study received Oct 17, 1973 under 201-359; prepared by Franklin Hospital, Gastrointestinal Research Laboratory, submitted by Shell Chemical Co., Washington, DC; CDL:050007-H)

117311 Shell Chemical Co. (1971) Safety in Domestic Animals: Summary: Toxicity of Stirofos. (Unpublished study received Oct 17, 1973 under 201-359; CDL:050007-K)

117312 Young, R. (19??) Effect of Feeding Rabon Insecticide to Pigs for 31 Days: TIR-70-054-71. (Unpublished study received Oct 17, 1973 under 201-359; submitted by Shell Chemical Co., Washington, DC; CDL:050007-L)

Sherman, M. (1965) Toxicity of SD 8447 to Poultry. (Unpublished study received Oct 17, 1973 under 201-359; prepared by Univ. of Hawaii, Dept. of Entomology, submitted by Shell Chemical Co., Washington, DC; CDL:050007-P)

Shell Chemical Co. (1968) Data Concerning Gardona Residues in Apples, Including Analytical Methods. (Compilation; unpublished study received on unknown date under 9F0739; CDL: 093050-A)

Shell Chemical Co. (1968) The Name, Chemical Identity and Composition of the Pesticide Chemical: Gardona. (Compilation; unpublished study received Jul 10, 1968 under 9F0739; CDL:093050-B)

Shell Chemical Co. (1968) Performance Data To Support the Use of Rabon Insecticide for the Control of Certain Ectoparasites on Livestock. (Compilation; unpublished study received Feb 7, 1969 under 9F0805; CDL:092153-A)

Shell Chemical Co. (1969) Gardona: Residues in Corn. (Compilation; unpublished study received Nov 19, 1969 under 9F0804; CDL:093113-A)

Shell Chemical Co. (1969) Efficacy of Gardona on Corn. (Compilation; unpublished study received Nov 19, 1969 under 9F0804;CDL:093113-B)

Shell Chemical Co. (1968) The Name, Chemical Identity and Composition of the Pesticide Chemical: Gardona. (Compilation; unpublished study received Feb 4, 1969 under 9F0804; CDL:093113-C)

Shell Chemical Co. (1971) Efficacy of Rabon on Cattle. (Compilation; unpublished study received Feb 7, 1969 under 9F0805; CDL:093114-A)

128
Shell Chemical Co. (1968) The Name, Chemical Identity and Composition of the Pesticide Chemical: Rabon. (Compilation; unpublished study received Feb 7, 1969 under 9F0805; CDL:093114-B)

Shell Chemical Co. (1969) Gardona: Residues in Milk and Other Subjects. (Compilation; unpublished study received on unknown date under 9F0805; CDL:093114-C)

Shell Chemical Co. (1968) The Name, Chemical Identity and Composition of the Pesticide Chemical: Gardona. (Compilation; unpublished study received Jun 20, 1969 under 9G0850; CDL:093146-A)

Shell Chemical Co. (1971) Additional Phytotoxicity Data: Gardona Insecticide. (Compilation; unpublished study received on unknown date under 1F1023; CDL:093332-A)

Shell Chemical Co. (1968) The Name, Chemical Identity, and Composition of the Pesticide Chemical: Gardona. (Compilation; unpublished study received Aug 7, 1970 under 1F1023; CDL:093332-B)

Shell Chemical Co. (1968) The Name, Chemical Identity and Composition of the Pesticide Chemical: Rabon. (Compilation; unpublished study received Dec 16, 1970 under 1F1090; CDL:093403-A)

Shell Chemical Co. (1971) The Results of Tests on the Amount of Rabon Residues Remaining, Including a Description of the Analytical Method. (Compilation; unpublished study received Dec 16, 1970 under 1F1090; CDL:093403-B)

Shell Chemical Co. (1971) Performance Data To Support the Use of Rabon Insecticide in the Control of Certain Ectoparasites on Swine: Supplement No. 1. (Compilation; unpublished study received Oct 18, 1971 under 1F1121; CDL:093431-A)

Shell Chemical Co. (1968) The Name, Chemical Identity and Composition of the Pesticide Chemical: Rabon. (Compilation; unpublished study received Dec 13, 1970 under 1F1121; CDL:093431-B)
Shell Chemical Co. (1969) Residue Data Developed from the Use of Rabon on Livestock. (Compilation; unpublished study received Dec 13, 1970 under 1F1121; CDL:093431-C)

Shell Chemical Co. (1969) Residue Data for Rabon Metabolites in Chicken Tissues and Eggs from California. (Compilation; unpublished study received Dec 1, 1969 under 9F0835; CDL:093538-A)

Shell Chemical Co. (1965) 1965 Residue Data for Sweet Corn from York, Nebraska. (Unpublished study received Aug 1, 1966 under 201-195; CDL:101214-A)

Harris, T.; Mitchell, L. (19??) Gardona Insecticide: Toxicity Data and Manufacturing Process. (Unpublished study received May 12, 1970 under unknown admin. no.; prepared in cooperation with U.S. Food and Drug Administration, submitted by Shell Chemical Co., Washington, DC; CDL:110575-A)

Anon. (19??) Summary of Residue Data for the Recommended Rate of Application: (Gardona). (Unpublished study received on unknown date under unknown admin. no.; submitted by ?; CDL:118497-A)

Teeters, W. (1973) Dermal and Ocular Irritation Test of Ravap Insecticide Emulsible Concentrate. (Unpublished study received Jul 24, 1973 under 201-246; prepared by U.S. Pharmacology Laboratory, submitted by Shell Chemical Co., Washington, DC; CDL:121711-A)

Teeters, W. (1973) Acute Oral and Dermal Toxicity of Ravap Insecticide Emulsible Concentrate. (Unpublished study received Jul 24, 1973 under 201-246; prepared by U.S. Pharmacology Laboratory, submitted by Shell Chemical Co., Washington, DC; CDL:121711-B)

Shell Chemical Co. (1968) Performance Data in Support of a Label for the Use of Gardona Insecticide on Insects Attacking Corn. (Compilation; unpublished study received Feb 4, 1969 under 9F0804; CDL:096400-A)

Shell Chemical Co. (1971) Rabon Insecticide: Cattle Performance Data. (Compilation; unpublished study received May 24, 1971 under 201-306; CDL:094778-A)
Shell Chemical Co. (1970) Gardona: Residues in Cotton and Other Crops. (Compilation; unpublished study received Aug 6, 1971 under 2F1187; CDL:093510-A)

Shell Chemical Co. (1971) The Name, Chemical Identity, and Composition of the Pesticide Chemical: Gardona. (Compilation; unpublished study received Aug 6, 1971 under 2F1187; CDL:093510-B)

Shell Chemical Co. (1971) The Name, Chemical Identity and Composition of the Pesticide Chemical: Gardona. (Compilation; unpublished study received Jun 12, 1972 under 2F1281; CDL: 094938-A)

Shell Chemical Co. (1973) Residue Data: SD-8447]. (Compilation;unpublished study received Oct 17, 1973 under 201-359; CDL: 101173-A)

Shell Chemical Co. (1965) Performance Data: SD 8447]. (Compilation; unpublished study received Feb 8, 1966 under 201-EX-25; CDL:122701-N)

Shell Chemical Co. (1965?) Information Relative to the Toxicity of SD 8447 to Fish and Wildlife: Summary. (Unpublished study received Feb 25, 1966 under unknown admin. no.; CDL:128579-A)

U.S. Agricultural Research Service (19??) Summary of Toxicologic Studies of Shell Compound 8447 in Cattle and Sheep. (Unpublished study received on unknown date under unknown admin. no.; prepared by Animal Disease and Parasite Research Div., Toxico logical Investigations Laboratory, submitted by Shell Chemical Co., Washington, DC; CDL:133477-C)

Shell Chemical Co. (19??) Compound SD 8447 Reproduction Study--Rats. (Unpublished study received on unknown date under unknown admin. no.; CDL:133477-D)

Hunter, C.; Brown, V.; Ferrigan, L. (1965) Demyelination Studies
with the Insecticide SD 8447: Tox 8/65. (Unpublished study received on unknown date under unknown admin. no.; prepared by Shell Research, Ltd., Eng., submitted by Shell Chemical Co., Washington, DC; CDL:133477-F)

117360 Whetstone, R.; Phillips, D.; Sun, Y.; et al. (1965) 2-Chloro-1-(2, 4,5-trichlorophenyl) Vinyl Dimethyl Phosphate: A New Safe Insecticide. (Presented at the 149th Meeting of the American Chemical Society; Apr 4-9, 1965, Detroit, MI; unpublished study received on unknown date under unknown admin. no.; prepared in cooperation with Stanford Research Institute, submitted by Shell Chemical Co., Washington, DC; CDL:133477-G)

117361 Shell Chemical Co. (1975) Rabon Oral Larvicide Self-fed Supplement:Label Application. (Compilation; unpublished study received Jul 22, 1975 under 201-392; CDL:220992-A)

117362 Hine Laboratories, Inc. (19??) Eye Irritation Test of Ravap Insecticide Emulsible. (Unpublished study received Feb 11, 1976 under 201-225; submitted by Shell Chemical Co., Washington, DC; CDL:222926-A)

117364 Hartz Mountain Corp. (1976) Chemistry of Hartz 2 in 1 Tick & Flea Collar. (Compilation; unpublished study received Feb 20, 1976 under 2596-62; CDL:223245-A)

117365 Hartz Mountain Corp. (1975) Data in Support of Label Applications for Hartz 2 in 1 Tick and Flea Collar for Dogs and Cats: Summary of Efficacy Studies. (Unpublished study received Feb 20, 1976 under 2596-62; CDL:223245-B)

117366 Hartz Mountain Corp. (19??) Summary: Hartz 2 in 1 Collar--Toxicology. (Unpublished study received Feb 20, 1976 under 2596-62; CDL:223245-C)

Hartz Mountain Corp. (1976) Hartz 2 in 1 Tick & Flea Collar: Chemical Study. (Compilation; unpublished study received Feb 20, 1976 under 2596-63; CDL:223253-A)

Shell Chemical Co. (1970) Efficacy of Gardona. (Compilation; unpublished study received Feb 6, 1976 under 201-225; CDL:223349-A)

Shell Chemical Co. (1976) Rabon Insecticide Tick and Flea Collars: General Chemistry. (Compilation; unpublished study received Jan 21, 1976 under 201-345; CDL:223774-A)

V.M.S., Inc. (1975) Vitamin-mineral Supplements: Efficacy on Cattle. (Compilation; unpublished study received Mar 4, 1976 under 10461-7; CDL:223924-B)

V.M.S., Inc. (1975) Vitamin-mineral Supplements: Efficacy on Cattle. (Compilation; unpublished study received Mar 4, 1976 under 10461-8; CDL:223925-B)

Shell Chemical Co. (1974) Study: Rabon Efficacy--Cattle]. (Compilation; unpublished study received Jul 22, 1975 under 201-392; CDL:220993-C)

Sharp, J.; Young, R. (19??) Determination of the SD 8447
Maximum No Effect Dose in Cattle: TIR-70-019-72.
(Unpublished study received Jul 22, 1975 under 201-392;
submitted by Shell Chemical Co., Washington, DC;
CDL:220993-F)

117381
Sweetlix 3-in-1 Mineral Block: TIR-40-005-75. (Unpublished
study received Sep 16, 1975 under 8450-11; prepared by Shell
Oil Co., submitted by A.E. Staley Mfg. Co., Decatur, IL; CDL:
224018-A)

117382
A.E. Staley Mfg. Co. (1975) Summary of Consumption Data on
the Non-medicated Feed Product: Sweetlix 3-in-1 Mineral Block.
(Unpublished study received Sep 16, 1975 under 8450-11; CDL:
224018-B)

117383
Leslie Salt Co. (1975) Efficacy of Rabon on Cattle]. (Compilation;
unpublished study received Dec 30, 1975 under 7762-13;
CDL:224151-A)

117384
Hartz Mountain Corp. (1976) Chemical Stability of Hartz 2 in 1
Tick & Flea Collar. Rev. (Unpublished study received Jul 27,
1976 under 2596-62; CDL:225446-A)

117385
Hazleton Laboratories (1975) Rabon Flea Collar: Toxicity to
Dogs. (Unpublished study received Jul 7, 1976 under 2596-62;
submitted by Hartz Mountain Corp., Harrison, NJ;
CDL:225447-A)

117386
Schwartzman, R. (1976) To Evaluate Cholinesterase Depression in
Dogs by 14.5% Rabon Insecticide Flea Collars Submitted by the
Hartz Mountain Corporation. (Unpublished study received Jul
27, 1976 under 2596-62; prepared by Univ. of Pennsylvania,
School of Veterinary Medicine, submitted by Hartz Mountain
Corp., Harrison, NJ; CDL:225448-A)

117387
Zaret, E. (1976) To Evaluate Cholinesterase Depression in Dogs
by
14.5% Rabon Insecticide Flea Collars. (Unpublished study
received Jul 27, 1976 under 2596-62; submitted by Hartz
Mountain Corp., Harrison, NJ; CDL:225448-B)

117388
Shell Chemical Co. (1976) Rabon Insecticide Ear Tag:
Registration
Application: Chemistry]. (Compilation; unpublished study
received Mar 30, 1979 under 201-407; CDL:237920-A)

117389
Shell Chemical Co. (1978) Rabon: Residues in Tissue, Milk, and
Fat of Cattle. (Compilation; unpublished study received Mar 30,
117443 U.S. National Institutes of Health (1978) Bioassay of tetrachlorvinphos for possible carcinogenicity. By National Cancer Institute, Div. of Cancer Cause and Prevention, Carcinogenesis Program, Carcinogen Bioassay and Program Resources Branch. Bethesda, MD: USNIH. (NCI-CG-TR-33; CAS No. 961-11-5; DHEW publication no. (NIH)78-833; published study; CDL:238926-A)

118264 Shell Chemical Co. (1966?) Toxicity of Gardona and Carbaryl to Shrimp, Coho Salmon, and Phytoplankton. (Unpublished study received May 12, 1973 under unknown admin. no.; CDL:128376-A)

118265 Shell Oil Co. (1975) Residue Data in Support of the Use of Rabon Insecticide Cattle Ear Tags. (Compilation; unpublished study received Apr 12, 1979 under TN 79/1; CDL:238024-B)

Nebraska (1978) Summary of the Efficacy When Using Rabon Insecticide Cattle Ear Tags for the Control of Various Flies and Ticks of Cattle--1975-1978. (Compilation; unpublished study received Aug 10, 1979 under NB 79/11; CDL:238946-A)

Shell Chemical Co. (1973) Study: Efficacy of Shell Super Fly Bait and Other Baits to Flies. (Compilation; unpublished study received Oct 18, 1973 under 201-362; CDL:008842-A)

Shell Chemical Co. (1967) Performance Data To Support a Label Application for the Use of Shell Gardona Insecticide on Apple for the Control of Major Fruit Pests. (Compilation; unpublished study received May 23, 1967 under 8G0665; CDL:091167-A)

Shell Chemical Co. (1970) Performance Data To Support the Use of Rabon Insecticide in the Control of Certain Ectoparasites on Swine. (Compilation; unpublished study received Nov 17, 1970 under 1F1121; CDL:090896-A)

Shell Chemical Co. (1968) The Results of Tests on the Amount of Residues Remaining, Including a Description of the Analytical Method: óRabon|. (Compilation; unpublished study received Nov 17, 1970 under 1F1121; CDL:090896-B)

Shell Chemical Co. (1967) Determination of Gardona Residues in Various Products. (Compilation; unpublished study received Jun 12, 1968 under 9F0739; CDL:091275-A)

Shell Chemical Co. (1968) The Residue Data Developed from Test
Plots Including a Description of the Analytical Methods Used: Gardona Insecticide. (Compilation; unpublished study received Apr 27, 1969 under 9F0804; CDL:091388-B)

120204 Shell Chemical Co. (1969) Determination of Residues of SD 8447 and Rabon in Goats and Poultry. (Compilation; unpublished study received Apr 27, 1969 under 9F0804; CDL:091387-A)

120205 Shell Chemical Co. (1968) The Results of Tests on the Amount of Residues Remaining, Including a Description of the Analytical Methods Used: Rabon. (Compilation; unpublished study received Apr 26, 1969 under 9F0805; CDL:091389-A)

120206 Shell Chemical Co. (1969) The Results of Tests on the Amount of Residues Remaining, Including a Description of the Analytical Methods Used: Rabon. (Compilation; unpublished study received Apr 26, 1969 under 9F0805; CDL:091390-A)

120224 Sherman, M. (1964) Acute, Subacute and Chronic Toxicology Data on Rabon Insecticide to Chickens. (Unpublished study received Oct 4, 1969 under 9F0835; prepared by Univ. of Hawaii, submitted by Shell Chemical Co., Washington, DC; CDL:091439-B)

120226 Shell Oil Co. (1966) Residues of SD 8447 in Goats and Chickens. (Unpublished study received Oct 4, 1969 under 9F0835; CDL:091439-E)

120228 Shell Chemical Co. (1969) Toxicology Section: Rabon. (Unpublished study received Oct 5, 1969 under 9F0835; CDL:091440-A)

120231 Shell Chemical Co. (1969) The Results of Tests on the Amount of Residues Remaining, Including a Description of the Analytical Methods Used: Gardona Insecticide. (Compilation; unpublished study received Oct 23, 1969 under 9G0850; CDL:091471-A)
Shell Chemical Co. (1968) Reports on Gardona Insecticide. (Compilation; unpublished study received Oct 23, 1969 under 9G0850; CDL:091471-B)

Hazleton Laboratories America, Inc. (1980) 103-week Chronic Feeding Study in Mice: SD-8447 and Original SD-8447. Final rept. (Unpublished study received Jul 31, 1980 under unknown admin.no.; submitted by Shell Chemical Co., Washington, DC; CDL:242976-A; 242977)

Young, R. (1983) Hartz Test 81-7: The Efficacy of an Experimental Dog Collar in vivo as a Controlling Mechanism against Brown Dog Ticks (Rhipicephalus sanguineus), the American Dog Tick (Dermacentor variabilis) and the Common Cat Flea (Ctenocephalides felis). (Unpublished study received Apr 26, 1983 under 2596-84; submitted by Hartz Mountain Corp., Harrison, NJ; CDL:250034-A)

Ralston Purina Co. (1969) Residue Data Developed from the Use of Dairy Cattle. (Compilation; unpublished study received Jun 17, 1983 under 602-301; CDL:251028-A)

Zaret, E. (1976) To Evaluate Cholinesterase Depression in Dogs by 14.5% Rabon Insecticide Flea Collars. (Unpublished study received Mar 25, 1983 under 2596-50; submitted by Hartz Mountain Corp., Harrison, NJ; CDL:249798-B)

Johansen, C. (1972) Toxicity of field-weathered insecticide residues to four kinds of bees. Environmental Entomology 1(3):393-394. (Also In unpublished submission received Nov 2, 1983 under 239-2507; submitted by Chevron Chemical Co., Richmond, CA; CDL: 251760-C)

Shell Chemical Co. (1973) Performance Data To Support the Use of 3% Rabon Insecticide Dust for the Control of Lice on Cattle. (Compilation; unpublished study received Aug 30, 1973 under 201-319;CDL:008691-A)

Depression in Dogs by 14.5% Rabon Insecticide Flea Collars. (Un-published study received Nov 25, 1983 under 2596-62; prepared by Univ. of Pennsylvania, School of Veterinary Medicine, submitted by Hartz Mountain Corp., Harrison, NJ; CDL:251920-C)

Shell Chemical Co. (1973) Study--Chemical: Rabon and Gardona Insecticides. (Compilation; unpublished study received Dec 20, 1974, under 4H5047; CDL:223244-A)

Shell Chemical Co. (1973) Summary--Residues: Toxicity of SD 8447 in Cattle and Other Mammals. (Compilation; unpublished study received Dec 20, 1974 under 4H5047; CDL:223244-B)

Shell Chemical Co. (1972) Efficacy in Cattle: Stirofos as Fly Insecticide. (Unpublished study received Dec 20, 1974 under 4H5047; CDL:223244-C)

Shell Chemical Co. (1967) Safety in Cattle: Rabon Insecticide. (Unpublished study received Dec 20, 1974 under 4H5047; CDL:223244-D)

Shell Chemical Co. (19??) Safety in Domestic Animals: Stirofos. (Unpublished study received Dec 20, 1974 under 4H5047; CDL:223244-E)
Shell Chemical Co. (19??) Safety in Laboratory Animals: Toxicity of Stirofos. (Unpublished study received Dec 20, 1974 under 4H5047; CDL:223244-F)

Shell Chemical Co. (19??) Safety to Wildlife: Toxicity of Stirofos on Wild Bird and Fish Species. (Unpublished study received Dec 20, 1974 under 4H5047; CDL:223244-G)

Shell Chemical Co. (19??) Safety in Humans: Toxicity of Stirofos. (Unpublished study received Dec 20, 1974 under 4H5047; CDL:223244-H)

Shell Chemical Company (1973) Summary. (Unpublished study received Apr 9, 1973 under 201-345; CDL:008408-K)

Chevron Chemical Co. (1983) Chemistry of Ortho Liquid Sevin Spray. (Compilation; unpublished study received Jan 30, 1984 under 239-2506; CDL:252346-A)

31, 1984 under 602-301; submitted by Ralston Purina Co., St. Louis, MO; CDL:252343-D)

138937

138939

139002

139846

139847
Shell Chemical Company (1971) Performance: Tabular Summary: Horse Gel Insecticide/Repellent. (Reports by various sources; unpublished study including data found in 001042-C, received Jan 26, 1973 under 201-340; submitted by Shell Chemical Co., Washington, D.C.; CDL:001042-B)

139848
Shell Chemical Company (1972) Summary: Rabon-(R)µ. Summary of studies 001042-B and 001042-C. (Unpublished study received Jan 26, 1973 under 201-339; CDL:001042-A)

139849

139850
Shell Chemical Company (1971) Performance: Tabular Summary: Horse Wipe-on or Spray Insecticide/Repellent. (Reports by various sources; unpublished study including data found in 001043-B, received Jan 26, 1973 under 201-339; CDL:001042-C)
Shell Chemical Co. (1969) Residue Data from the Pesticide Chemical: Gardona Insecticide. (Compilation; unpublished study received Jan 20, 1971 under 1F1023; CDL:091074-A)

Shell Chemical Co. (1971) Summary of Information Relative to Residue Data Involved in the Certification of Usefulness of the Gardona Insecticide Label. (Compilation; unpublished study received Mar 17, 1971 under 1F1023; CDL:091076-A)

Young, R. (1986) Efficacy of a Rabon (Stirofos) Powder for Control of Fleas (Ctenocephalides felis) and Ticks (Rhipicephalus sanguineus) on Dogs: Final Report. Unpublished study prepared by

Gahan, J.B.; Smith, C.N.; Glancey, B.M. (1966) Resistance in

Study in Support of Application for Registration of Rabon Insecticide. Transmittal of 1 study.

40530100 Published study received from the RD PM for addition to the Tetrachlorvinphos Registration Standard. (Contains 1 published study).

Hartz Mountain Corp. (1988) Toxicity Data submitted to support the Registration of Hartz 2 in 1 Dip for Dogs and Cats. Transmittal of 5 studies.

2,3,7,8-Tetrachloro-p-dibenzo-dioxin and
2,3,7,8-Tetrachlorodibenzoofuran in Technical Tetrachlorvinphos:
Laboratory Project ID: Y2033.A. Unpublished study
prepared by Triangle Laboratories, Inc. 177 p.

40931700 A. H. Robins Co. (1988) Submission of Chemistry, Toxicity and
Efficacy Data in Support of Sergeant's Flea and Tick Killer and
Coat Conditioning Spray. Transmittal of 9 studies.

against Fleas and Ticks on Cats and Clinical Observations of the
Cats Prior to and after Treatment: P.A.C.E. No. 10-88-097-0488.

40933300 Studies Submitted Prior to PR Notice 86-5 but Never Previously
Added to PDMS. Transmittal of 5 studies.

40933302 Shell Chemical Co. (1973) Environmental Impact Analysis Report
115 p.

41034600 Fermenta Animal Health Co./Scientific Research Asso., Inc.
(1989)
Submission of Degradation Data to Support the Tetrachlorvinphos
Registration Standard. Transmittal of 1 study.

metabolite 2,4,5-trichlorophenacyl chloride in aqueous media.

Chemistry Data in Support of Tetrachlorvinphos Registration
Standard. Transmittal of 4 studies.

41117401 Shoup, R. (1989) Rabon Oral Larvicide Manufacturing Base:
Product Identity and Composition. Unpublished study prepared by

41117402 Shoup, R. (1989) Rabon Oral Larvicide Manufacturing Base:
Physical and Chemical Characteristics. Unpublished study
prepared by Fermenta Animal Health Company. 5 p.

41117403 Shoup, R. (1989) 75% Rabon Insecticide Wettable Powder:
Product Identity and Composition. Unpublished study prepared by

41117404 Shoup, R. (1989) 75% Rabon Insecticide Wettable Powder:
Physical and Chemical Characteristics. Unpublished study
prepared by Fermenta Animal Health Co. 5 p.

Purina Mill's, Inc. (1989) Submission of Product Chemistry Data to Support the a Me Too Product Registration. Transmittal of 1 study.

41314000

41314001

41314002

41342000

41342001

41342002

41371600

41371601

41377900

The Hartz Mountain Corp. (1990) Submission of Efficacy Data in Support of Label Amendment for Hartz 2 in 1 Flea and Tick Powder (for Cats and for Dogs). Transmittal of 1 study.

The Hartz Mountain Corp. (1990) Submission of Efficacy Data in Support of Label Amendment to include an efficacy claim versus Deer ticks on Hartz 90 Day brand Collar for Cats. Transmittal of 3 studies.

Hartz Mountain Corp. (1991) Submission of toxicity data to support the registration of Hartz 2 in 1 Flea & Tick Spray for Dogs and Cats III (rabon). Transmittal of 6 studies.

Dip for Dogs & Cats. Unpublished study prepared by The Hartz Mountain Corp. 6 p.

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>42175200</td>
<td>Hartz Mountain Corp. (1992) Submission of letter, under the provisions of 6(a)(2) of FIFRA, concerning a judicial award to a consumer in Waterloo, Iowa who experienced illness after the application of Hartz 2 in 1 Flea and Tick Spray for Dogs. Transmittal of 1 study.</td>
</tr>
<tr>
<td>42241300</td>
<td>Hartz Mountain Corp. (1992) Submission of Data To Support FIFRA Section 6(a)(2) Requirements for Hartz 2 in 1 Pesticide Products. Transmittal of 1 study.</td>
</tr>
<tr>
<td>42371700</td>
<td>Hartz Mtn. Corp. (1992) Submission of efficacy and chemistry studies to support the registration of Hartz 2 in 1 Flea and Tick Pump for Dogs II and ...Cats II. Transmittal of 2 studies.</td>
</tr>
<tr>
<td>42371900</td>
<td>Hartz Mtn. Corp. (1992) Submission of product chemistry and toxicity data to support the registration of Hartz 2 in 1 Flea and Tick Spray for Cats III and...Spray for Dogs III (Rabon). Transmittal of 3 studies.</td>
</tr>
</tbody>
</table>

The Hartz Mountain Corp. (1992) Submission of toxicity data in support of registration for Hartz 2 in 1 Dip for Dogs and Cats. Transmittal of 1 study.

42614103 Neunteufel, E. (1992) In Vitro Repellency of BSC# 2038 to Cat Fleas (Ctenocephalides felis) and Brown Dog Ticks (Rhipicephalus sanguineus)-Domestic Indoor Efficacy: Hartz 2 in 1 Flea & Tick Pump for Cats II and for Dogs II: Lab Project Number: RNB 1226/2. Unpublished study prepared by The Hartz Mountain Corp. 20 p.

42614104 Neunteufel, E. (1992) In Vitro Repellency of BSC# 1617 to Cat Fleas (Ctenocephalides felis) and Brown Dog Ticks (Rhipicephalus sanguineus)-Domestic Indoor Efficacy: Hartz 2 in 1 Flea & Tick Spray for Dogs III and Cats III: Lab Project Number: RNB 1099/8. Unpublished study prepared by The Hartz Mountain Corp. 20 p

42679201 Silveira, E. (1993) Technical Rabon Insecticide Analysis and

by Wil Research Labs., Inc. 1050 p.

43010800 The Hartz Mountain Corp. (1993) Submission of Acute Toxicology Data in Support of Conditional Registration of 2-in-1 Flea & Tick Spray for Cats II and III, and 2-in-1 Flea & Tick Spray for Dogs II and III. Transmittal of 1 Study.

The Hartz Mountain Corp. (1994) Submission of efficacy data in support of registration of Hartz 2 in 1 Collars. Transmittal of 1 study.

Hartz Mountain Corp. (1994) Submission of Product Chemistry Data in Support of Registration Amendment for Hartz 2-in-1 Longlasting Collar for Dogs. Transmittal of 1 Study.

Hartz Mountain Corp. (1994) Submission of Product Chemistry Data in Support of Registration Amendment for Hartz 2-in-1 Plus Seven Month Collar for Dogs. Transmittal of 1 Study.

Prepared by Hartz Mountain Corp. 10 p.

43318800 Hartz Mountain Corp. (1994) Submission of Product Chemistry Data in Support of Registration Amendment for Hartz 2-in-1 Plus Seven Month Collar for Cats. Transmittal of 1 Study.

43318900 Hartz Mountain Corp. (1994) Submission of Product Chemistry Data in Support of Registration Amendment for Hartz 2-in-1 Longlasting Collar for Cats. Transmittal of 1 Study.

Fermenta Animal Health Co. and Hartz Mountain Corp. (1996) Submission of Toxicity Data in Support of the Reregistration of
TCVP. Transmittal of 1 Study.

44295200 The Hartz Mountain Corp. (1997) Submission of Product Chemistry and Toxicity Data in Support of the RED for Tetrachlorvinphos Containing Products Hartz 2 in 1 Flea & Tick Powders. Transmittal of 2 Studies.

Vigortone Ag Products, Inc. (1997) Submission of Product Chemistry Data in Support of the Reregistration (RED) for Tetrachlorvinphos Containing Product Vigortone Bovotone FC "007" MG with Rabon Oral Larvicide. Transmittal of 1 Study.

Vigortone Ag Products, Inc. (1997) Submission of Product Chemistry Data in Support of the Reregistration (RED) for Tetrachlorvinphos Containing Product Vigortone Bovotone FC "007" with Rabon Oral Larvicide. Transmittal of 1 Study.

44342500 The Hartz Mountain Corp. (1997) Submission of Product Chemistry Data in Support of the RED for Tetrachlorvinphos (Hartz 2 in 1 Rabon Dip for Dogs and Cats). Transmittal of 1 Study.

44351600 Platte Chemical Co. (1997) Submission of Product Chemistry Data
in Support of the RED for tetrachlorvinphos Containing Product Agri-Bon Aqua 50. Transmittal of 2 Studies.

44356500 Platte Chemical Co. (1997) Submission of Product Chemistry Data in Support of the RED for Tetrachlorvinphos Containing Product Clean Crop Livestock 1% Rabon Dust. Transmittal of 1 Study.

44356600 Platte Chemical Co. (1997) Submission of Product Chemistry Data in Support of the RED of the Tetrachlorvinphos Containing Products Clean Crop All Purpose Livestock and Poultry Dust with Rabon. Transmittal of 1 Study.

The Hartz Mountain Corp. (1997) Submission of Product Chemistry and Toxicity Data in Support of the RED for Tetrachlorvinphos Containing Products Hartz 2 in 1 Collar Formulations. Transmittal of 2 Studies.

Free Choice Mineral with Rabon Oral Larvicide. Unpublished study prepared by PM Ag Products, Inc. 5 p.

44367900

44367901

44368000

44368001

44369500
The Hartz Mountain Corp. (1997) Submission of Product Chemistry Data in Support of the Reregistration for Tetrachlorvinphos Containing Products Hartz 2 in 1 Flea and Tick Pump for Dogs II, Cats II and Hartz 2 in 1 Flea and Tick Spray for Cats and Dogs. Transmittal of 1 Study.

44369501

44369700
The Hartz Mountain Co. (1997) Submission of Product Chemistry Data to Support the Reregistration for Tetrachlorvinphos Containing Products Hartz 2 in 1 Flea and Tick Spray with Deodorant for Dogs III and Cats III. Transmittal of 1 Study.

44369701

44408600

44408601
<table>
<thead>
<tr>
<th>Document ID</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>the Reregistration of the Tetrachlorvinphos Containing Product</td>
<td>D.</td>
<td></td>
<td>Project Number: 236-04: MB 97-6113.04. Unpublished study prepared by MB</td>
</tr>
<tr>
<td></td>
<td>Unpublished study prepared by MB Research Labs., Inc. 12 p.</td>
<td></td>
<td></td>
<td>Transmittal of 1 Study.</td>
</tr>
<tr>
<td></td>
<td>in Support of the RED for Tetrachlorvinphos Containing Product</td>
<td>(1997)</td>
<td></td>
<td>Collar with Methoprene: Lab Project Number: TM 0337-0: HARTZ RABON</td>
</tr>
<tr>
<td></td>
<td>Hartz Rabon Collar with Methoprene. Transmittal of 1 Study.</td>
<td>W.</td>
<td></td>
<td>COLLAR WITH METHOPRENE. Unpublished study prepared by The Hartz Mountain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corp. 14 p.</td>
</tr>
<tr>
<td></td>
<td>in Support of the Application for Registration of Fly Larvicide</td>
<td>(1997)</td>
<td></td>
<td>Larvicide (Feed Premix)" Lab Project Number:</td>
</tr>
<tr>
<td></td>
<td>Fly Larvicide (Feed Premix). Transmittal of 1 Study.</td>
<td>Rose, J.</td>
<td></td>
<td>PMR-PC-0009: FM-MV-19-1: P026R03A. Unpublished study prepared by PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.</td>
<td></td>
<td>Resources, Inc. 41 p.</td>
</tr>
<tr>
<td></td>
<td>Containing Product Hartz Rabon Spray with Methoprene Aerosol</td>
<td>W.</td>
<td></td>
<td>Formulation. Unpublished study prepared by The Hartz Mountain Corp. 18 p.</td>
</tr>
<tr>
<td></td>
<td>Formulation. Transmittal of 1 Study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larvicide (Feed Premix)" Lab Project Number: PMR-PC-0009: FM-MV-19-1</td>
<td>Corp. (1997)</td>
<td></td>
<td>of the Reregistration of the Tetrachlorvinphos Containing Product Fly</td>
</tr>
<tr>
<td></td>
<td>: P026R03A. Unpublished study prepared by PM Resources, Inc. 41 p.</td>
<td></td>
<td></td>
<td>Larvicide (Feed Premix). Transmittal of 1 Study.</td>
</tr>
<tr>
<td></td>
<td>Containing Product Hartz Rabon Spray with Methoprene Aerosol</td>
<td>W.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formulation. Transmittal of 1 Study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spray with Methoprene Aerosol Formulation: Lab Project Number:</td>
<td>Corp. (1997)</td>
<td></td>
<td>of the Reregistration of the Tetrachlorvinphos Containing Product Fly</td>
</tr>
<tr>
<td></td>
<td>332-02. Unpublished study prepared by The Hartz Mountain Corp. 18 p.</td>
<td></td>
<td></td>
<td>Larvicide (Feed Premix). Transmittal of 1 Study.</td>
</tr>
<tr>
<td></td>
<td>Support of the Reregistration of the Tetrachlorvinphos Containing</td>
<td>(1997)</td>
<td></td>
<td>Larvicide (Feed Premix)" Lab Project Number:</td>
</tr>
<tr>
<td></td>
<td>Product Fly Larvicide (Feed Premix). Transmittal of 1 Study.</td>
<td>Rose, J.</td>
<td></td>
<td>PMR-PC-0009: FM-MV-19-1: P026R03A. Unpublished study prepared by PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J.</td>
<td></td>
<td>Resources, Inc. 39 p.</td>
</tr>
<tr>
<td></td>
<td>Larvicide (Feed Premix)" Lab Project Number: PMR-PC-0009: FM-MV-19-1</td>
<td>Animal Health, Inc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Product Chemistry Data in Support of the Reregistration of Tetrachlorvinphos Containing Product Rabon Oral Larvicide. Transmittal of 1 Study.

44727300 The Hartz Mountain Corporation (1999) Submission of Spray
Drift Evaluation Data in Support of the Reregistration of the Tetrachlorvinphos Containing Product Hartz Rabon Flea and Tick Dip for Dogs and Cats. Transmittal of 1 Study.

44732500 Hartz Mountain Corporation (1999) Submission of Toxicity Data in Support of the Reregistration of the Tetrachlorvinphos Containing Products Hartz 2 in 1 Fast Acting Flea and Tick Spray for Cats and Dogs, Hartz 2 in 1 Flea and Tick Pump II for Dogs and Cats, and Hartz 2 in 1 Flea and Tick Spray for Cats and Dogs. Transmittal of 1 Study.

The Hartz Mountain Corporation (1999) Submission of Risk Assessment and Exposure Data in Support of the Registration of Hartz 2 in 1 Flea and Tick Pump for Dogs II and Hartz 2 in 1 Flea and Tick Pump for Cats II. Transmittal of 1 Study.

The Hartz Mountain Corporation (1999) Submission of Risk Assessment, Exposure and Product Chemistry Data in Support of the Reregistration of the Tetrachlorvinphos Containing Products Hartz 2 in 1 Collar for Cats and for Dogs, Hartz 2 in 1 Plus Long Lasting Collar for Cats and for Dogs, Hartz 2 in 1 Plus Seven Month Collar for Cats and for Dogs. Transmittal of 2 Studies.

The Hartz Mountain Corporation (2000) Submission of Efficacy
Data in Support of the Registration of Hartz 2 in 1 Flea and Tick Powder for Cats and Hartz 2 in 1 Flea and Tick Powder for Dogs. Transmittal of 2 Studies.

45485500 Hartz Mountain Co (20001) Submission of Risk Assessment Data in Support of the Reregistration of Tetrachlorvinphos. Transmittal of 1 Study.

The Hartz Mountain Corp (2001) Submission of Risk and Exposure Data in Support of the Reregistration of Tetrachlorvinphos. Transmittal of 1 Study.

