Final

Total Maximum Daily Loads

for the

Cedar Creek

WBID 1926

Dissolved Oxygen and Nutrients

March 2013
In compliance with the provisions of the Federal Clean Water Act, 33 U.S.C §1251 et. seq., as amended by the Water Quality Act of 1987, P.L. 400-4, the U.S. Environmental Protection Agency is hereby establishing the Total Maximum Daily Load (TMDL) for dissolved oxygen and nutrients in the Tampa Bay Tributaries Basin (WBID 1926). Subsequent actions must be consistent with this TMDL.

/s/ 3/25/2013

James D. Giattina, Director
Date

Water Protection Division
Table of Contents

1. INTRODUCTION .. 1

2. PROBLEM DEFINITION .. 1

3. WATERSHED DESCRIPTION .. 4

4. WATER QUALITY STANDARDS/TMDL TARGETS ... 4
 4.1. NUTRIENTS: .. 4
 4.1.1. Narrative Nutrient Criteria ... 5
 4.1.2. Florida's adopted numeric nutrient criteria for streams ... 5
 4.2. DISSOLVED OXYGEN CRITERIA: ... 6
 4.3. NATURAL CONDITIONS ... 6
 4.4. WATER QUALITY DATA ... 7
 4.4.1. Cedar Creek ... 7

5. SOURCE AND LOAD ASSESSMENT .. 11
 5.1. POINT SOURCES ... 12
 5.1.1. Municipal Separate Storm Sewer System Permits .. 12
 5.2. NON POINT SOURCES ... 13
 5.2.1. Urban Areas .. 14
 5.2.2. Agriculture ... 15
 5.2.3. Rangeland .. 15
 5.2.4. Upland Forests .. 15
 5.2.5. Water and Wetlands .. 15
 5.2.6. Barren Land ... 15
 5.2.7. Transportation, Communications and Utilities .. 15

6. ANALYTICAL APPROACH ... 16
 6.1. LOADING SIMULATION PROGRAM C++ (LSPC) ... 16
6.2. WATER QUALITY ANALYSIS SIMULATION PROGRAM (WASP) .. 16
6.3. SCENARIOS .. 17
 6.3.1. Current Condition .. 17
 6.3.2. Natural Condition ... 18
7. TMDL DETERMINATION ... 20
8. CRITICAL CONDITIONS AND SEASONAL VARIATION ... 21
 8.1. MARGIN OF SAFETY ... 22
 8.2. WASTE LOAD ALLOCATIONS .. 22
 8.2.1. NPDES Dischargers .. 22
 8.2.2. Municipal Separate Storm System Permits ... 22
 8.3. LOAD ALLOCATIONS .. 23
9. REFERENCES .. 24

Table of Figures

FIGURE 1 LOCATION MAP CEDAR CREEK ... 3
FIGURE 2 STATION LOCATIONS FOR WBID 1926: CEDAR CREEK .. 8
FIGURE 3 WBID 1926: CEDAR CREEK MEASURED DISSOLVED OXYGEN 9
FIGURE 4 WBID 1926: CEDAR CREEK MEASURED TOTAL NITROGEN 10
FIGURE 5 WBID 1926: CEDAR CREEK MEASURED TOTAL PHOSPHORUS 10
FIGURE 6 WBID 1926: CEDAR CREEK MEASURED CHLOROPHYLL A CONCENTRATIONS 11
FIGURE 7 LANDUSE DISTRIBUTION IN CEDAR CREEK WATERSHED 14
FIGURE 8 ESTIMATED NATURAL CONDITIONS LANDUSE DISTRIBUTION IN CEDAR CREEK WATERSHED 18
FIGURE 9 DISSOLVED OXYGEN CONCENTRATION TIME SERIES UNDER NATURAL CONDITION 20
FIGURE 10 DISSOLVED OXYGEN CONCENTRATION CUMULATIVE DISTRIBUTION FUNCTION UNDER NATURAL CONDITION ... 20
Table of Tables

TABLE 1 INLAND NUMERIC NUTRIENT CRITERIA... 6
TABLE 2 WATER QUALITY MONITORING STATIONS FOR WBID 1926: CEDAR CREEK 7
TABLE 3 MS4S IN CEDAR CREEK WATERSHED .. 13
TABLE 4 EXISTING CONDITION SIMULATED AND OBSERVED ANNUAL AVERAGE CONCENTRATIONS 17
TABLE 5 CEDAR CREEK EXISTING NUTRIENT LOADS (1/2002-7/2008) .. 18
TABLE 6 NATURAL CONDITION ANNUAL AVERAGE MODEL PREDICTIONS 19
TABLE 7 NATURAL CONDITION ANNUAL AVERAGE NUTRIENT LOADING 19
TABLE 8 TMDL LOAD ALLOCATIONS FOR CEDAR CREEK .. 21
SUMMARY SHEET
Total Maximum Daily Load (TMDL)

1 303(d) Listed Segment: WBID: 1926 Cedar Creek
 Major Basin: Tampa Bay Tributaries Basin
 State: Florida

2 TMDL Endpoints/Targets: Dissolved Oxygen, BOD and Nutrients

3 TMDL Technical Approach: Calibration of a watershed and water quality model to current conditions, natural conditions scenario modeling.

4 TMDL Waste Load and Load Allocation:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Current Condition</th>
<th>TMDL Condition</th>
<th>MS4</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WLA (kg/yr)</td>
<td>LA (kg/yr)</td>
<td>WLA (kg/yr)</td>
<td>LA (kg/yr)</td>
</tr>
<tr>
<td>BOD</td>
<td>NA</td>
<td>5,079</td>
<td>NA</td>
<td>2,787</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>NA</td>
<td>2,139</td>
<td>NA</td>
<td>1,682</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>NA</td>
<td>421</td>
<td>NA</td>
<td>101</td>
</tr>
</tbody>
</table>

5 Endangered Species Present (yes or blank): USEPA

6 USEPA Lead TMDL (USEPA or blank): USEPA

7 TMDL Considers Point Source, Non-point Source, or both: MS4 & Non-Point Source

<table>
<thead>
<tr>
<th>Permit Name</th>
<th>Permit Number</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manatee County</td>
<td>FLS000036</td>
<td>Manatee</td>
</tr>
</tbody>
</table>

8 Major NPDES Discharges to surface waters addressed in USEPA TMDL: None in Watershed
1. Introduction

Section 303(d) of the Clean Water Act requires each state to list those waters within its boundaries for which technology based effluent limitations are not stringent enough to protect any water quality standard applicable to such waters. Listed waters are prioritized with respect to designated use classifications and the severity of pollution. In accordance with this prioritization, states are required to develop Total Maximum Daily Loads (TMDLs) for those water bodies that are not meeting water quality standards. The TMDL process establishes the allowable loadings of pollutants or other quantifiable parameters for a waterbody based on the relationship between pollution sources and in-stream water quality conditions, so that states can establish water quality based controls to reduce pollution from both point and nonpoint sources and restore and maintain the quality of their water resources (USEPA, 1991).

The State of Florida Department of Environmental Protection (FDEP) developed a statewide, watershed-based approach to water resource management. Under the watershed management approach, water resources are managed on the basis of natural boundaries, such as river basins, rather than political boundaries. The watershed management approach is the framework FDEP uses for implementing TMDLs. The state’s 52 basins are divided into five groups. Water quality is assessed in each group on a rotating five-year cycle. Tampa Bay Tributaries Basin is a Group 2 basin; it was designated for TMDL development by a consent decree. FDEP established five water management districts (WMD) responsible for managing ground and surface water supplies in the counties encompassing the districts. Cedar Creek WBID 1926 is within the Southwest Florida Water Management District (SWFWMD).

For the purpose of planning and management, the WMDs divided the district into planning units defined as either an individual primary tributary basin or a group of adjacent primary tributary basins with similar characteristics. These planning units contain smaller, hydrological based units called drainage basins, which are further divided by FDEP into “water segments”. A water segment usually contains only one unique waterbody type (stream, lake, canal, etc.) and is about 5 square miles. Unique numbers or waterbody identification (WBIDs) numbers are assigned to each water segment.

2. Problem Definition

Florida’s final 1998 Section 303(d) list identified numerous Water Body Identifications. The TMDLs addressed in this document are being established pursuant to commitments made by the United States Environmental Protection Agency (EPA) in the 1998 Consent Decree in the Florida TMDL lawsuit (Florida Wildlife Federation, et al. v. Carol Browner, et al., Civil Action No. 4: 98CV356-WS, 1998). That Consent Decree established a schedule for TMDL development for waters listed on Florida’s EPA approved 1998 section 303(d) list. The 1998 section 303(d) list identified numerous Water Body Identifications (WBIDs) in the Tampa Bay Tributaries Basin as not supporting water quality standards (WQS). After assessing all readily available water
quality data, EPA is responsible for developing a TMDL in WBID 1926 Cedar Creek (Figure 1). The parameters addressed in these TMDLs are Dissolved Oxygen, BOD and Nutrients.

Many waters in this portion of the Tampa Bay Tributaries Group are designated as Class I waters having a designated use for potable water supply. The level of impairment is denoted as threatened, partially or not supporting designated uses. A waterbody that is classified as threatened currently meets WQS but trends indicate the designated use may not be met in the next listing cycle. A waterbody classified as partially supporting designated uses is defined as somewhat impacted by pollution and water quality criteria are exceeded on some frequency. For this category, water quality is considered moderately impacted. A waterbody that is categorized as not supporting is highly impacted by pollution and water quality criteria are exceeded on a regular or frequent basis. In such waterbodies, water quality is considered severely impacted.

To determine the status of surface water quality in the state, three categories of data – chemistry data, biological data, and fish consumption advisories – were evaluated to determine potential impairments. The level of impairment is defined in the Identification of Impaired Surface Waters Rule (IWR), Section 62-303 of the Florida Administrative Code (F.A.C.). The IWR is FDEP’s methodology for determining whether waters should be included on the state’s planning list and verified list. Potential impairments are determined by assessing whether a waterbody meets the criteria for inclusion on the planning list. Once a waterbody is on the planning list, additional data and information will be collected and examined to determine if the water should be included on the verified list.
Figure 1 Location Map Cedar Creek
3. Watershed Description

The 934-square-kilometer Manatee River Planning Unit, which lies within Manatee and Sarasota Counties, contains 61 WBIDs. Waterbodies in the planning unit include the Manatee River, Lake Manatee, the Braden River, and Ward Lake, as well as numerous residential canals and drainage ditches. The principal communities are portions of Bradenton, West Bradenton, Palmetto, and Ellenton.

4. Water Quality Standards/TMDL Targets

The waterbodies in the Cedar Creek WBID are Class III Freshwater with a designated use of Recreation, Propagation and Maintenance of a Healthy, Well-Balanced Population of Fish and Wildlife. Designated use classifications are described in Florida’s water quality standards. See Section 62-302.400, F.A.C. Water quality criteria for protection of all classes of waters are established in Section 62-302.530, F.A.C. Individual criteria should be considered in conjunction with other provisions in water quality standards, including Section 62-302.500 F.A.C., which established minimum criteria that apply to all waters unless alternative criteria are specified. Section 62-302.530, F.A.C. Several of the WBIDs addressed in this report were listed due to elevated concentrations of chlorophyll a. While FDEP does not have a streams water quality standard specifically for chlorophyll a, elevated levels of chlorophyll a are frequently associated with nonattainment of the narrative nutrient standard, which is described below.

4.1. Nutrients:

The designated use of Class III waters is recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife. In 1979, FDEP adopted a narrative criterion for nutrients. FDEP recently adopted numeric nutrient criteria (NNC) for many Class III waters in the state, including streams, which numerically interprets part of the state narrative criterion for nutrients. FDEP submitted its NNC to EPA for review pursuant to section 303(c) of the CWA. On November 30, 2012, EPA approved those criteria as consistent with the requirements of the CWA. The state criteria, however, are not yet effective for state law purposes.

Also, in November 2010, EPA promulgated numeric nutrient criteria for Class III inland waters in Florida, including streams. On February 18, 2012, the streams criteria were remanded back to EPA by the U.S. District Court for the Northern District of Florida for further explanation. On November 30, 2012, EPA re-proposed its stream NNC for those flowing waters not covered by Florida’s NNC rule.

Therefore, for streams in Florida, the applicable nutrient water quality standard for CWA purposes remains the Class III narrative criterion.
4.1.1. Narrative Nutrient Criteria

Florida's narrative nutrient criteria provide:

The discharge of nutrients shall continue to be limited as needed to prevent violations of other standards contained in this chapter. Man induced nutrient enrichment (total nitrogen and total phosphorus) shall be considered degradation in relation to the provisions of Sections 62-302.300, 62-302.700, and 62-4.242 F.A.C. See paragraph 62-302.530(47)(a), F.A.C.

In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna. See paragraph 62-302.530(47)(b), F.A.C.

Chlorophyll and DO levels are often used to indicate whether nutrients are present in excessive amounts. The target for this TMDL is based on levels of nutrients necessary to prevent violations of Florida's DO criterion pursuant to paragraph 62-302.530(47)(a), F.A.C., as set out more fully below.

4.1.2. Florida's adopted numeric nutrient criteria for streams

While not yet effective as water quality criteria, the FDEP’s numeric nutrient criteria represent the state’s most recent interpretation of the second part of Florida's narrative criteria, set out at paragraph 62-302.530(47)(b), F.A.C. See section 62-302.531(2). The first part of the narrative criteria, at paragraph 62-302.530(47)(b), F.A.C., also remains applicable to streams in Florida.

Florida's interpretation of its narrative nutrient criteria applies to streams, including (WBID 1926). For streams that do not have a site specific criteria, the interpretation provides for biological information to be considered together with nutrient thresholds to determine whether a waterbody is attaining See paragraph 62-302.531(2)(c), F.A.C. The rule provides that the nutrient criteria are attained in a stream segment where information on chlorophyll a levels, algal mats or blooms, nuisance macrophyte growth, and changes in algal species composition indicates there are no imbalances in flora and either the average score of at least two temporally independent SCIs performed at representative locations and times is 40 or higher, with neither of the two most recent SCI scores less than 35, or the nutrient thresholds set forth in Table 1 below are achieved. See paragraph 62-302.531(2)(c).

Florida's interpretation provides that nutrient levels should be expressed as a geometric mean, and concentrations are not to be exceeded more than once in any three calendar year period. Section 62-302.200 (25)(e), F.A.C.
Table 1 Inland numeric nutrient criteria

<table>
<thead>
<tr>
<th>Nutrient Watershed Region</th>
<th>Total Phosphorus Nutrient Threshold</th>
<th>Total Nitrogen Nutrient Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panhandle West</td>
<td>0.06 mg/L</td>
<td>0.67 mg/L</td>
</tr>
<tr>
<td>Panhandle East</td>
<td>0.18 mg/L</td>
<td>1.03 mg/L</td>
</tr>
<tr>
<td>North Central</td>
<td>0.30 mg/L</td>
<td>1.87 mg/L</td>
</tr>
<tr>
<td>Peninsular</td>
<td>0.12 mg/L</td>
<td>1.54 mg/L</td>
</tr>
<tr>
<td>West Central</td>
<td>0.49 mg/L</td>
<td>1.65 mg/L</td>
</tr>
</tbody>
</table>

4.2. Dissolved Oxygen Criteria:

Numeric criteria for DO are expressed in terms of minimum and daily average concentrations. Section 62-302(30), F.A.C., sets out the water quality criterion for the protection of Class III freshwater waters as:

Shall not be less than 5.0 mg/l. Normal daily and seasonal fluctuations above these levels shall be maintained.

4.3. Natural Conditions

In addition to the standards for nutrients, DO and BOD described above, Florida’s standards include provisions that address waterbodies which do not meet the standards due to natural background conditions.

Florida’s water quality standards provide a definition of natural background:

“Natural Background” shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody or on historical pre-alteration data. 62-302.200(15), FAC.

Florida’s water quality standards also provide that:
Pollution which causes or contributes to new violations of water quality standards or to continuation of existing violations is harmful to the waters of this State and shall not be allowed. Waters having water quality below the criteria established for them shall be protected and enhanced. However, the Department shall not strive to abate natural conditions. 62-302.300(15) FAC

Water Quality Assessment

Cedar Creek was de-listed during 303(d) Cycle 1 (1998) and relisted during Cycle 2 as not attaining its designated uses on Florida’s 303(d) list for Dissolved Oxygen.

To determine impairment an assessment of available data was conducted. The source for current ambient monitoring data for WBID 1926 Cedar Creek was the Impaired Waters Rule (IWR) data Run 44. Nitrogen is the limiting nutrient based on comparison of nitrogen to phosphorus concentrations within the watershed. Nutrient (chl-a) impairment is based on dissolved oxygen impairment and causative pollutant total phosphorus.

4.4. Water Quality Data

The tables and figures below present the station locations and time series data for dissolved oxygen, total nitrogen, total phosphorus, biochemical oxygen demand and chlorophyll a observations for Cedar Creek.

4.4.1. Cedar Creek

Table 2 provides a list of the water quality monitoring stations in the Cedar Creek WBID including the date range of the observations and the number of observations.

<table>
<thead>
<tr>
<th>Station</th>
<th>Station Name</th>
<th>First Date</th>
<th>Last Date</th>
<th>No. Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>21FLGJW 16911</td>
<td>SW2-SS-2001 UNKNOWN SMALL STREAM</td>
<td>09/22/2005 10:00</td>
<td>09/23/2005 10:00</td>
<td>12</td>
</tr>
<tr>
<td>21FLMANAT52</td>
<td>TS2</td>
<td>07/09/2003 13:00</td>
<td>12/07/2010 13:06</td>
<td>1358</td>
</tr>
</tbody>
</table>

Figure 2 illustrates where the IWR stations are located within the WBID.
Dissolved Oxygen

Figure 3 provides a time series plot for the measured dissolved oxygen concentrations in Cedar Creek. There were 2 monitoring stations used in the assessment that included a total of 97 observations of which 28 (29%) fell below the water quality standard of 5 mg/l dissolved oxygen. The minimum value was 2.4 mg/l, the maximum was 11.5 mg/l and the average was 5.8 mg/l.
Biochemical Oxygen Demand

There was no existing BOD data within the Cedar Creek WBID for this assessment.

Nutrients

For the nutrient assessment the monitoring data for total nitrogen, total phosphorus and chlorophyll a are presented. While Florida is currently working on the development and promulgation of numeric nutrient criteria, the current standards for nutrients are narrative criteria. The purpose of the nutrient assessment is to present the range, variability and average conditions for the WBID.

Total Nitrogen

Figure 4 provides a time series plot for the measured total nitrogen concentrations in Cedar Creek. There were 2 monitoring stations used in the assessment that included a total of 90 observations. The minimum value was 0.49 mg/l, the maximum was 4.98 mg/l and the average was 1.22 mg/l.
Figure 4 WBID 1926: Cedar Creek Measured Total Nitrogen

Total Phosphorus

Figure 5 provides a time series plot for the measured total phosphorus concentrations in Cedar Creek. There were 2 monitoring stations used in the assessment that included a total of 70 observations. The minimum value was 0.070 mg/l, the maximum was 0.56 mg/l and the average was 0.21 mg/l.

Figure 5 WBID 1926: Cedar Creek Measured Total Phosphorus

Chlorophyll a
Figure 6 provides a time series plot for corrected chlorophyll a and chlorophyll a concentrations in Cedar Creek. There were 2 monitoring stations used in the assessment that included a total of 80 observations. The minimum value was 1.00 µg/l, the maximum was 49.1 µg/l and the average was 10.2 µg/l.

![Figure 6 WBID 1926: Cedar Creek Measured Chlorophyll a Concentrations](image)

5. Source and Load Assessment

An important part of the TMDL analysis is the identification of source categories, source subcategories, or individual sources of pollutants in the watershed and the amount of loading contributed by each of these sources. Sources are broadly classified as either point or nonpoint sources. Nutrients can enter surface waters from both point and nonpoint sources. A point source is defined as a discernable, confined, and discrete conveyance from which pollutants are or may be discharged to surface waters. Point source discharges of industrial wastewater and treated sanitary wastewater must be authorized by National Pollutant Discharge Elimination System (NPDES) permits. NPDES permitted discharges include continuous discharges such as wastewater treatment facilities as well as some stormwater driven sources such as municipal separate storm sewer systems (MS4 areas), certain industrial facilities, and construction sites over one acre.

Nonpoint sources of pollution are diffuse sources that cannot be identified as entering a waterbody through a discrete conveyance at a single location. For nutrients, these sources include runoff of agricultural fields, golf courses, and lawns, septic tanks, and residential developments outside of MS4 areas. Nonpoint sources generally, but not always, involve accumulation of nutrients on land surfaces and wash-off as a result of rainfall events.
5.1. **Point Sources**

Point source facilities are permitted through the Clean Water Act National Pollutant Discharge Elimination System (NPDES) Program. There is no continuous discharge NPDES permitted point sources in the Cedar Creek Watershed.

5.1.1. **Municipal Separate Storm Sewer System Permits**

Municipal Separate Storm Sewer Systems (MS4s) are point sources also regulated by the NPDES program. According to 40 CFR 122.26(b)(8), a municipal separate storm sewer (MS4) is "a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains):

(i) Owned or operated by a State, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law)...including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the Clean Water Act that discharges into waters of the United States;

(ii) Designed or used for collecting or conveying storm water;

(iii) Which is not a combined sewer; and

(iv) Which is not part of a Publicly Owned Treatment Works.”

Municipal Separate Storm Sewer Systems (MS4s) may discharge nutrients and other pollutants to waterbodies in response to storm events. In 1990, USEPA developed rules establishing Phase I of the National Pollutant Discharge Elimination System (NPDES) stormwater program, designed to prevent harmful pollutants from being washed by stormwater runoff into Municipal Separate Storm Sewer Systems (MS4s) (or from being dumped directly into the MS4) and then discharged from the MS4 into local waterbodies. Phase I of the program required operators of “medium” and “large” MS4s (those generally serving populations of 100,000 or greater) to implement a stormwater management program as a means to control polluted discharges from MS4s. Approved stormwater management programs for medium and large MS4s are required to address a variety of water quality related issues including roadway runoff management, municipal owned operations, hazardous waste treatment, etc.

Phase II of the rule extends coverage of the NPDES stormwater program to certain “small” MS4s. Small MS4s are defined as any MS4 that is not a medium or large MS4 covered by Phase I of the NPDES stormwater program. Only a select subset of small MS4s, referred to as “regulated small MS4s”, requires an NPDES stormwater permit. Regulated small MS4s are defined as all small MS4s located in "urbanized areas" as
defined by the Bureau of the Census, and those small MS4s located outside of “urbanized areas” that are designated by NPDES permitting authorities.

There is one permitted MS4 in the Cedar Creek watershed (Table 3).

Table 3 MS4s in Cedar Creek Watershed

<table>
<thead>
<tr>
<th>Permit Name</th>
<th>Permit Number</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manatee County</td>
<td>FLS000036</td>
<td>Manatee</td>
</tr>
</tbody>
</table>

5.2. Non Point Sources

Nonpoint source pollution generally involves a buildup of pollutants on the land surface that wash off during rain events and as such, represent contributions from diffuse sources, rather than from a defined outlet. Potential nonpoint sources are commonly identified, and their loads estimated, based on land cover data. Most methods calculate nonpoint source loadings as the product of the water quality concentration and runoff water volume associated with certain land use practices. The mean concentration of pollutants in the runoff from a storm event is known as the Event Mean Concentration, or EMC.

Figure 7 provides the landuse distribution for the Cedar Creek watershed which contains WBID 1926. The latest landuse coverages were obtained from the Florida Department of Environmental Protection (FDEP) FTP site. The landuses are described using the Florida Landuse Cover Classification Code (FLUCC) Level 1. The predominant landuse draining directly to Cedar Creek is urban (76%).
5.2.1. **Urban Areas**

Urban areas include land uses such as residential, industrial, extractive and commercial. Land uses in this category typically have somewhat high total nitrogen event mean concentrations and average total phosphorus event mean concentrations. Nutrient loading from MS4 and non-MS4 urban areas is attributable to multiple sources including stormwater runoff, leaks and overflows from sanitary sewer systems, illicit discharges of sanitary waste, runoff from improper disposal of waste materials, leaking septic systems, and domestic animals.

In 1982, Florida became the first state in the country to implement statewide regulations to address the issue of nonpoint source pollution by requiring new development and redevelopment to treat stormwater before it is discharged. The Stormwater Rule, as outlined in Chapter 403 Florida Statutes (F.S.), was established as a technology-based program that relies upon the implementation of BMPs that are designed to achieve a specific level of treatment (i.e., performance standards) as set forth in Chapter 62-40, F.A.C.

Florida’s stormwater program is unique in having a performance standard for older stormwater systems that were built before the implementation of the Stormwater Rule in 1982. This rule states: “the pollutant loading from older stormwater management...
systems shall be reduced as needed to restore or maintain the beneficial uses of water” (Section 62-4-.432 (5)(c), F.A.C.).

Nonstructural and structural BMPs are an integral part of the State’s stormwater programs. Nonstructural BMPs, often referred to as “source controls”, are those that can be used to prevent the generation of nonpoint source pollutants or to limit their transport off-site. Typical nonstructural BMPs include public education, land use management, preservation of wetlands and floodplains, and minimization of impervious surfaces. Technology-based structural BMPs are used to mitigate the increased stormwater peak discharge rate, volume, and pollutant loadings that accompany urbanization.

5.2.2. Agriculture

Agricultural lands include improved and unimproved pasture, row and field crops, citrus, and specialty farms. The highest total nitrogen and total phosphorus event mean concentrations are associated with agricultural land uses.

5.2.3. Rangeland

Rangeland includes herbaceous, scrub, disturbed scrub and coastal scrub areas. Event mean concentrations for rangeland are about average for total nitrogen and low for total phosphorus.

5.2.4. Upland Forests

Upland forests include flatwoods, oak, various types of hardwoods, conifers and tree plantations. Event mean concentrations for upland forests are low for both total nitrogen and total phosphorus.

5.2.5. Water and Wetlands

These occur throughout the watershed and have very low event mean concentrations down to zero.

5.2.6. Barren Land

Barren land includes beaches, borrow pits, disturbed lands and fill areas. Barren lands comprise only a small portion of the watershed. Event mean concentrations for barren lands tend to be higher in total nitrogen.

5.2.7. Transportation, Communications and Utilities

Transportation uses include airports, roads and railroads. Event mean concentrations for these types of uses are in the mid-range for total nitrogen and total phosphorus.
6. Analytical Approach

In the development of a TMDL there needs to be a method for relating current loadings to the observed water quality problem. This relationship could be: statistical (regression for a cause and effect relationship), empirical (based on observations not necessarily from the waterbody in question) or mechanistic (physically and/or stochastically based) that inherently relate cause and effect using physical and biological relationships.

Two mechanistic models were used in the development of the TMDL for Cedar Creek. The first model is a dynamic watershed model that predicts the quantity of water and pollutants that are associated with runoff from rain events. The second model is a dynamic water quality model that is capable of integrating the loadings from the watershed model to predict the water quality in the receiving waterbody.

The period of simulation that was considered in the development of this TMDL is January 1, 2002 to July 31, 2008. The models were used to predict time series for total nitrogen, total phosphorus, BOD, dissolved oxygen, and chlorophyll a. The models were calibrated to current conditions and were then used to predict improvements in water quality as function of reductions in loadings.

More details on the model application in the development of the Cedar Creek TMDL are presented in Appendix A.

6.1. Loading Simulation Program C++ (LSPC)

LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality overland as well as a simplified stream fate and transport model. LSPC is derived from the Mining Data Analysis System (MDAS), which was originally developed by EPA Region 3 (under contract with Tetra Tech) and has been widely used for TMDLs. In 2003, the U.S. Environmental Protection Agency (EPA) Region 4 contracted with Tetra Tech to refine, streamline, and produce user documentation for the model for public distribution. LSPC was developed to serve as the primary watershed model for the EPA TMDL Modeling Toolbox.

LSPC will be used to simulate runoff (flow, total nitrogen, total phosphorus and BOD) from the land surface using a daily timestep for current and natural conditions of the Cedar Creek watershed. The predicted timeseries will be used as boundary conditions for the receiving waterbody model to predict in-stream water quality.

6.2. Water Quality Analysis Simulation Program (WASP)

The Water Quality Analysis Simulation Program (WASP7), is a dynamic compartment-modeling program for aquatic systems, including both the water column and the underlying benthos. The time-varying processes of advection, dispersion, point and
diffuse mass loading and boundary exchange are represented in the basic program. The conventional pollutant model within the WASP framework is capable of predicting time-varying concentrations for chlorophyll a, dissolved oxygen, nutrients (nitrogen, phosphorus) as function of loadings, flows, and environmental conditions.

WASP was calibrated to the current conditions of the Cedar Creek watershed using known meteorology, predicted loadings from the LSPC model and constrained by observed data in Cedar Creek. Furthermore, WASP was used in determining the load reductions that would be needed to achieve the water quality standards and nutrient targets for Cedar Creek.

6.3. Scenarios

Several modeling scenarios were developed and evaluated in this TMDL determination. A full description of each of these scenarios is presented in Appendix A.

6.3.1. Current Condition

The first scenario is to model the current conditions of the watershed. This included the development of a watershed and water quality model. The watershed model is parameterized using the current landuses and measured meteorological conditions to predict the current loadings of nitrogen, phosphorus and BOD. These predicted loadings and flow time series are passed on to the water quality model where the predicted algal, nitrogen, phosphorus, BOD and dissolved oxygen concentrations are predicted over time. The models (watershed and water quality) are calibrated to a 6.5 year period of time to take into account varying environmental, meteorological or hydrological conditions on water quality. The existing condition simulated and observed annual average concentrations are presented in Table 4.

Table 4 Existing Condition Simulated and Observed Annual Average Concentrations

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Simulated</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD5 (mg/L)</td>
<td>2.23</td>
<td>2.53</td>
</tr>
<tr>
<td>Chlorophyll a (ug/L)</td>
<td>2.79</td>
<td>8.05</td>
</tr>
<tr>
<td>DO (mg/L)</td>
<td>5.73</td>
<td>5.70</td>
</tr>
<tr>
<td>Total Nitrogen (mg/L)</td>
<td>1.34</td>
<td>1.25</td>
</tr>
<tr>
<td>Total Phosphorus (mg/L)</td>
<td>0.21</td>
<td>0.18</td>
</tr>
</tbody>
</table>

The current condition simulation will be used to determine the base loadings for the Cedar Creek watershed. These base loadings (Table 5) compared with the TMDL scenario will be used to determine the percent reduction in nutrient loads that will be needed to achieve water quality standards.
Table 5 Cedar Creek Existing Nutrient Loads (1/2002-7/2008)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Current Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WLA (kg/yr)</td>
</tr>
<tr>
<td></td>
<td>LA (kg/yr)</td>
</tr>
<tr>
<td>BOD</td>
<td>NA</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>NA</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>NA</td>
</tr>
</tbody>
</table>

6.3.2. Natural Condition

The natural condition scenario is developed to estimate what water quality conditions would exist if there were little to no impact from anthropogenic sources. There are no point source dischargers in the Cedar Creek watershed. For the purpose of this analysis any landuse that is associated with man induced activities (urban, agriculture, transportation, barren lands and rangeland) is converted to upland forests and wetlands, and their associated event mean concentration for nitrogen, phosphorus and BOD are used.

![Natural Condition](image)

Figure 8 Estimated Natural Conditions Landuse Distribution in Cedar Creek Watershed

These natural condition loadings from the watershed model are passed onto the water quality model where natural water quality conditions are predicted. The natural condition water quality predictions are presented in Table 6.
Table 6 Natural Condition Annual Average Model Predictions

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD (mg/L)</td>
<td>1.11</td>
</tr>
<tr>
<td>Chlorophyll a (µg/L)</td>
<td>2.89</td>
</tr>
<tr>
<td>DO (mg/L)</td>
<td>5.91</td>
</tr>
<tr>
<td>Total Nitrogen (mg/L)</td>
<td>1.10</td>
</tr>
<tr>
<td>Total Phosphorus (mg/L)</td>
<td>0.06</td>
</tr>
</tbody>
</table>

The purpose of the natural conditions scenario is to determine whether water quality standards can be achieved without abating the naturally occurring loads from the watershed. The dissolved oxygen standard is not achievable under natural conditions. Therefore the TMDL determination will set the allowable loads to the natural condition scenario.

Table 7 provides the annual average load predictions for total nitrogen, total phosphorus, and dissolved oxygen.

Table 7 Natural Condition Annual Average Nutrient Loading

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Natural Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WLA (kg/yr)</td>
</tr>
<tr>
<td></td>
<td>LA (kg/yr)</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>NA</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>NA</td>
</tr>
<tr>
<td>BOD</td>
<td>NA</td>
</tr>
</tbody>
</table>

Figure 9 provides a time series of dissolved oxygen concentrations under natural conditions at the downstream model segment (pour point). The model predicts approximately 29% exceedances of the dissolved oxygen criteria.
TMDL: WBID 1926 Cedar Creek for Dissolved Oxygen & Nutrients

Figure 9 Dissolved Oxygen Concentration Time Series under Natural Condition

Figure 10 provides a cumulative distribution function of the dissolved oxygen concentrations under natural conditions.

Figure 10 Dissolved Oxygen Concentration Cumulative Distribution Function under Natural Condition

7. TMDL Determination

A total maximum daily load (TMDL) for a given pollutant and waterbody is comprised of the sum of individual wasteload allocations (WLAs) for point sources, and load
allocations (LAs) for both nonpoint sources and natural background levels. In addition, the TMDL must include a margin of safety (MOS), either implicitly or explicitly, to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. Conceptually, this definition is represented by the equation:

$$\text{TMDL} = \sum \text{WLAs} + \sum \text{LAs} + \text{MOS}$$

The TMDL is the total amount of pollutant that can be assimilated by the receiving waterbody and still achieve water quality standards and the waterbody’s designated use. In TMDL development, allowable loadings from all pollutant sources that cumulatively amount to no more than the TMDL must be set and thereby provide the basis to establish water quality-based controls. These TMDLs are expressed as annual mass loads, since the approach used to determine the TMDL targets relied on annual loadings. The TMDLs targets were determined to be the conditions needed to restore and maintain a balanced aquatic system. Furthermore, it is important to consider nutrient loading over time, since nutrients can accumulate in waterbodies.

The TMDL determined that the natural condition scenario (removal of all anthropogenic sources and landuses) determined the State’s dissolved oxygen standard would not be met. The reductions prescribed in this TMDL reduce the current loadings to the natural condition.

The TMDL was determined for the loadings coming from the watershed that directly drains to Cedar Creek. The allocations are given in Table 8.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Current Condition</th>
<th>TMDL Condition</th>
<th>MS4</th>
<th>LA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WLA (kg/yr)</td>
<td>WLA (kg/yr)</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>BOD</td>
<td>NA</td>
<td>5,079</td>
<td>45%</td>
<td>45%</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>NA</td>
<td>2,139</td>
<td>21%</td>
<td>21%</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>NA</td>
<td>421</td>
<td>76%</td>
<td>76%</td>
</tr>
</tbody>
</table>

8. Critical Conditions and Seasonal Variation

EPA regulations at 40 CFR 130.7(c)(1) require TMDLs to take into account critical conditions for stream flow, loading, and water quality parameters. The critical condition is the combination of environmental factors creating the “worst case” scenario of water quality conditions in the waterbody. By achieving the water quality standards at critical conditions, it is expected that water quality standards should be achieved during all other times. Seasonal variation must also be considered to ensure that water quality standards will be met during all seasons of the year, and that the TMDLs account for any seasonal
change in flow or pollutant discharges, and any applicable water quality criteria or designated uses (such as swimming) that are expressed on a seasonal basis.

The critical condition for nonpoint source loadings and wet weather point source loadings is typically an extended dry period followed by a rainfall runoff event. During the dry weather period, nutrients build up on the land surface, and are washed off by rainfall. The critical condition for continuous point source loading typically occurs during periods of low stream flow when dilution is minimized. Although loading of nonpoint source pollutants contributing to a nutrient impairment may occur during a runoff event, the expression of that nutrient impairment is more likely to occur during warmer months, and at times when the waterbody is poorly flushed. Because of the 6.5 year simulation period used in the model development, the model encompasses both critical and seasonal variations to determine the annual average allowable load.

8.1. Margin of Safety

The Margin of Safety accounts for uncertainty in the relationship between a pollutant load and the resultant condition of the waterbody. There are two methods for incorporating an MOS into TMDLs (USEPA, 1991):

- Implicitly incorporate the MOS using conservative model assumptions to develop allocations
- Explicitly specify a portion of the total TMDL as the MOS and use the remainder for Allocations

This TMDL uses an implicit margin of safety as TMDL targets for nutrients were set to natural background conditions.

8.2. Waste Load Allocations

Only MS4s and NPDES facilities discharging directly into lake segments (or upstream tributaries of those segments) are assigned a WLA. The WLAs, if applicable, are expressed separately for continuous discharge facilities (e.g., WWTPs) and MS4 areas, as the former discharges during all weather conditions whereas the later discharges in response to storm events.

8.2.1. NPDES Dischargers

Point source facilities are permitted through the Clean Water Act National Pollutant Discharge Elimination System (NPDES) Program. There is no continuous discharge NPDES permitted point sources in the Cedar Creek Watershed.

8.2.2. Municipal Separate Storm Sewer System Permits

The WLA for MS4s are expressed in terms of percent reductions equivalent to the reductions required for nonpoint sources. Given the available data, it is not possible to
estimate loadings coming exclusively from the MS4 areas. Although the aggregate wasteload allocations for stormwater discharges are expressed in numeric form, i.e. percent reduction, based on the information available today, it is infeasible to calculate numeric WLAs for individual stormwater outfalls because discharges from these sources can be highly intermittent, are usually characterized by very high flows occurring over relatively short time intervals, and carry a variety of pollutants whose nature and extent varies according to geography and local land use. For example, municipal sources such as those covered by these TMDLs often include numerous individual outfalls spread over large areas. Water quality impacts, in turn, also depend on a wide range of factors, including the magnitude and duration of rainfall events, the time period between events, soil conditions, fraction of land that is impervious to rainfall, other land use activities, and the ratio of stormwater discharge to receiving water flow.

These TMDLs assume for the reasons stated above that it is infeasible to calculate numeric water quality-based effluent limitations for stormwater discharges. Therefore, in the absence of information presented to the permitting authority showing otherwise, these TMDLs assume that water quality-based effluent limitations for stormwater sources of nutrients derived from this TMDL can be expressed in narrative form (e.g., as best management practices), provided that: (1) the permitting authority explains in the permit fact sheet the reasons it expects the chosen BMPs to achieve the aggregate wasteload allocation for these stormwater discharges; and (2) the state will perform ambient water quality monitoring for nutrients for the purpose of determining whether the BMPs in fact are achieving such aggregate wasteload allocation.

The percent reduction calculated for nonpoint sources is assigned to the MS4 as loads from both sources as they typically occur in response to storm events. Permitted MS4s will be responsible for reducing only the loads associated with stormwater outfalls which it owns, manages, or otherwise has responsible control. MS4s are not responsible for reducing other nonpoint source loads within its jurisdiction. All future MS4s permitted in the area are automatically prescribed a WLA equivalent to the percent reduction assigned to the LA. The MS4 service areas described in (Table 3) are required to meet the load reduction prescribed in Table 8 through the implementation of best management practices.

8.3. Load Allocations

The load allocation for nonpoint sources was assigned a percent reduction from the current loadings coming into Cedar Creek.
9. References

