US ERA ARCHIVE DOCUMENT

Priority Setting: Using new predictive computer models and *in vitro* tools

Dr. Thomas Steeger
Environmental Fate and Effects Division
Office of Pesticide Programs

Case Study: Expert and *In Vitro* Predictive Systems for Hazard Potential

• Role: Use for priority setting

- Goal: Significantly accelerate screening and effectively determine whether higher tiered animal testing is needed to inform risk management decisions
- Benefit: Save resources, save time and maximally draw on all data to ensure those chemicals of greatest hazard potential are given priority for follow-up

Use new computational toxicology tools to enhance priority setting/screening

Current

Future

Some reduction in animal studies

Tailor data generation

Use understanding of toxicity pathways

Example: Future EPA Endocrine Screening Disruptor Program Prioritization

- Federal Food, Drug, and Cosmetic Act (FFDCA)
 - -Requires EPA to:
 - Develop screening using validated assays to identify pesticides that may have human effects similar to effect produced by naturally occurring estrogen
 - –Authorizes EPA to include:
 - Other endocrine effects, as designated by EPA Administrator
 - Other non-pesticide chemicals:
 - Have "an effect cumulative to that of a pesticide"
 - To which a substantial human population may be exposed safe
- Safe Drinking Water Act (SDWA) Amendments
 - Allows EPA to require chemical substances testing found in drinking water sources, if substantial human population may be exposed

Problem Assay Development Priority Setting Procedures Testing Assessment

- Problem Formulation: Define nature of stressor, receptor and attribute (assessment endpoints)
- Assay Development : Develop and validate test assays
- Priority Setting: Select chemicals to screen
- Procedures: Develop more policies and procedures for testing
- Testing: Tiers 1 and 2
- Assessment: Weight-of-evidence evaluation of results

Endocrine Disruptor Screening Program Basis

- Broad Chemical Universe Screening and Priority Setting Estrogen, androgen and thyroid
 - Human and ecological effects
- 2-Tiered Approach
 - Tier 1
 - In vitro and in vivo screens
 - Detect potential to interact with endocrine system
 - Tier 2
 - Multi-generation studies covering a broad range
 - Provide data for hazard assessment
- Hazard and Risk Assessment

Priority Setting: EDSP Tier 1 Screen

1000's of chemicals

Determine which chemicals should be evaluated early in EDSP program

Prioritizing Chemicals for Endocrine Disruptor Screening & Testing

- Chemicals without sufficient existing data:
 - Considered by the EDSTAC (USEPA 1998) to have largest number of chemicals and greatest prioritization need
 - -EDSTAC (USEPA, 1998) and the SAB/SAP (USEPA, 1999) strongly recommended prioritization that included effects & exposure

Prioritizing Chemicals for Endocrine Disruptor Tier 1 Screening: Effects

- EDSTAC (USEPA, 1998) recommends use of measured or predicted receptor binding and/or transcriptional activation data derived through *in vitro* assays/High Throughput Screening (HTS) and [Quantitative] Structure-Activity Relationships ([Q]SARs),
- SAB/SAP (USEPA, 1999) agreed but concluded HTS and [Q]SARs were not sufficiently developed at that time and encouraged continued research
- EPA's computational toxicology and endocrine disruptor research programs have been developing in vitro assays, HTS applications & [Q]SARs

Tools: [Q]SAR-Based Expert System to Predict Estrogen Receptor Binding and Thyroid Inhibition

- ORD/OPP collaborative effort
- Focused on chemicals without sufficient data to determine if Tier 2 testing required
- Model's applicability domain Structures associated with pesticide food use inert ingredients & antimicrobial pesticides

Adverse Outcome Pathway

Greater Toxicological Understanding

Greater Risk Relevance

Tools: [Q]SAR-Based Approach to Predict Thyroid disruption – TPO inhibition AOP

In Vitro TPO Inhibition Assay

Molecular Initiating Event
Chemical + Cellular Target

Develop [Q]SAR

Thyroid Gland Culture Assay:

Verify TH Synthesis Inhibition

Amphibian Metamorphosis Assay

In Vivo Verification of Adverse Outcome

Adverse Outcome Pathway for Thyroid Peroxidase (TPO) Inhibition

ToxCast- Predicting Hazard, Characterizing Toxicity Pathways, and Prioritizing Toxicity Testing of Environmental Chemicals

- Purpose: Develop a cost-effective approach for efficiently prioritizing the toxicity testing of thousands of chemicals
- Uses data from high-throughput screening (HTS) bioassays
- Builds statistical and computational models to forecast potential chemical toxicity [in humans]
- Screened over 300 chemicals (primarily pesticides) in over 500 endpoints
- Currently screening a more diverse group of 700 additional chemicals

Prioritization Index = ToxPi = f(In vitro assays + Chemical properties + Pathways)

- ToxPi calculated from weighted combination of all data sources for a chemical
- Slice size indicates relative rank or score for each chemical
- •Distance from origin is proportional to normalized value (e.g. assay potency or predicted permeability)
- •Width indicates the relative weight of slice in overall ToxPi calculation

Example ToxPi Rankings from ToxCast Phase I

Future Prioritization for EDSP Tier 1 Screening

- Inert ingredients & other chemicals
 - Develop in vitro & in silico tools that are integrated with exposure-based metrics
- Pesticide active ingredients
 - Plan is to use EPA's schedule for re-evaluating registered active ingredients in the Registration Review program
 - (http://www.epa.gov/oppsrrd1/registration_review/)
- Consistent with EDSTAC & SAB/SAP recommendations

Integrative Approaches to Testing and Assessment

Chemicals of Interest

