

Emory-Georgia Tech Predictive Health Initiative DOM Clinical Biomarkers Laboratory

Universal Exposure Surveillance as a Component of Personalized Medicine

Dean P. Jones, Ph.D. Department of Medicine/Division of Pulmonary, Allergy and Critical Care Medicine Emory University, Atlanta

No financial COI to disclose; the presenter has no affiliation with EPA <u>Acknowledgements</u>: NIEHS, NIA, NCI, NIDDK, Woodruff Foundation, Emory Dept of Medicine

THE EMORY/GEORGIA TECH PREDICTIVE HEALTH INSTITUTE THE END of DISEASE,

e BE

Exposome: the cumulative exposures of ones life

DP Jones

Personalized medicine will require thousands of measurements

Cost for metabolic profiling increases with number of measurements using traditional approaches, i.e., one at a time

1000 @ \$1 = \$1,000 1000 @ \$10 = \$10,000 1000 @ \$100 = \$100,000

Number of assays

Multiplexed assays are the only viable approach

DP Jones, unpublished

Metabolic profiling_{with hi} gh-resolution mass spectrometry can measure up to 10,000 chemicals in 20 min analysis of a drop of plasma

JM Johnson, Analyst 2010; Q Soltow, Metabolomics 2011

Comparison of MS profiling:

LC-MS or GC-MS requires separation of same nominal mass prior to MS:

LC-MS/MS

measures based upon fragmentation pattern; less separation requirement

High-resolution MS

minimizes separation or fragmentation needs; often can predict elemental composition

Metabolic profiling of human plasma: 20 min analysis >90% of known human metabolites have unique elemental compositions

Black dots represent *m*/*z* of human plasma matched in KEGG pathways

Y Park, K Lee et al, unpublished

Metabolic profiling using DC-FTMS (Dual chromatography-Fourier-transform mass spectrometry)

US EPA ARCHIVE DOCUMENT

Q Soltow et al, Metabolomics 2011

Personalized Medicine: Pathway Association with Disease Score

Q Soltow, N Kutner, A Quyyumi et al, unpublished

Only about half of the chemicals detected in plasma match chemicals in metabolomics databases

JM Johnson, DP Jones, unpublished

The other half of the chemicals detected in plasma are not present in human metabolite databases; these are an unidentified "exposome"

JM Johnson, DP Jones, unpublished

Do the "unknown" chemicals in human plasma provide information relevant to environmental exposures?

Data from 1960/70's: DDT metabolites accumulate in depot fat and are released upon weight loss.

Is there evidence for environmental chemicals in LC-FTMS of human plasma under catabolic conditions? Catabolic ICU patients have increased halogenated hydrocarbons in plasma based upon high-resolution m/z match to databases

m/z 🔽	Elemental composition	orIdentification					
200.8587	C2HCl5	pentachloroethane					
214.9419	C6H5Cl3O2	3,4,6-Trichloro-cis-1,2-dihydroxycyclohexa-3,5-diene					
316.987	C14H11Cl3O2	1,1,1-Trichloro-2,2-bis(4-hydroxyphenyl)ethane;HPTE;p,p'-Hydroxy- DDT					
358.9784	C7H5ClHgO2	p-Chloromercuribenzoate					
376.9285	C13H7Cl3N2O3S	2,5-DICHLORO-N-(5-CHLORO-1,3-BENZOXAZOL-2- YL)BENZENESULFONAMIDE					
386.9568	C9H12BrN2O8P	5-BROMO-2'-DEOXYURIDINE-5'-MONOPHOSPHATE					
388.9516	(+2) isotope						
456.9362	C16H13BrN2O3S3	5R-(4-BROMOPHENYLMETHYL)-3-(BENZENESULFONYLAMINO)-4-OXO-2- THIONOTHIAZOLIDINE					

JM Johnson, DP Jones, unpublished

LC-FTMS analysis of plasma from 7 species of mammals: a subset of chemicals is common among species

Y Park, et al manuscript submitted

High-performance metabolic profiling matches to <u>environmental agents</u>

Pirimicarb Rotenone Dioctyl adipate Tris(butoxyethyl)phosphate Chlorsulfuron Endosulfan Di-n-heptyl phthalate p-Methylaminophenol sulfate 1,6-Dimethoxypyrene

3-Hydroxycotinine glucuronide Benzyl sulfoxide Insecticide Insecticide Plasticizer Plasticizer Herbicide Insecticide Plastics Photography developing agent Environmental metabolite of PAH Cigarette smoke Metabolite of benzyl sulfide

Y Park, et al manuscript submitted

Co-elution and MS/MS studies verify identities of environmental chemicals in LC-FTMS analysis

Y Park, K Lee et al, submitted

Highlights: Universal Exposure Surveillance

PD and age-matched control samples contained *m/z* matching rotenone, a naturally occurring pesticide used in organic gardening, and related chemicals

395.1492355 m/z

(394.138 - 394.1459 daltons): 14 Metabolites [M+H]+

MetlinID	Mass	∆ppm	Name	Formula	CAS	MS/MS	
<u>43615</u>	394.1416	0	Dehydrodihydrorotenone	C23H22O6	6659-45-6	NO	
<u>43639</u>	394.1416	0	ISOROTENONE	C23H22O6			
<u>43722</u>	394.1416	0	DEGUELIN(-)	C23H22O6	522-17-8		
<u>43834</u>	394.1416	0	MACLUROXANTHONE	C23H22O6			
<u>43852</u>	394.1416	0	Rotenone	C23H22O6	83-79-4		
<u>44511</u>	394.1416	0	Robustic acid methyl ether	C23H22O6			
<u>47596</u>	394.1416	0	Barbigerone	C23H22O6		NO	
<u>48020</u>	394.1416	0	Rotenone	C23H22O6		NO	
<u>48030</u>	394.1416	0	Myriconol	C23H22O6		NO	
<u>48031</u>	394.1416	0	(-)-cis-Deguelin	C23H22O6		NO	
<u>49471</u>	394.1416	0	Muxiangrin I	C23H22O6		NO	
			8-C-Methylvellokaempferol 3,5-dimethyl				
<u>51093</u>	394.1416	0	ether	C23H22O6		NO	
<u>52497</u>	394.1416	0	Purpurin	C23H22O6		NO	
			3',4'-Dihydroxy-7-methoxy-8-prenyl-5''-(2-				
<u>53054</u>	394.1416	0	hydroxyisopropyl)-[2",3":5,6]furanoflavanone	C23H22O6		NO	

Highlights: Universal Exposure Surveillance

PD and age-matched control samples contain *m/z* matching rotenone, a naturally occurring pesticide used in organic gardening, and related chemicals

Rotenone

Diguelin

Macluraxanthone

Y Park et al, unpublished

Preliminary data suggest that >100 environmental chemicals are detected by LC-FTMS

<u>Flame Retardants</u> Triphenyl phosphate Dibromobisphenol A	326.071	<u>Herbicides</u> Desethylatrazine Diaminochlorotriazine (DACT)	187.630
<u>Plasticizers</u> Tetraethylene glycol N-Butyl-benzenesulfonamide Diethyl phthalate Di-n-propylphthalate Diethylhexylphthalate Di(2-ethylhexyl) adipate Diisononyl phthalate Diisodecyl phthalate	194.115 213.082 222.089 250.121 362.246 391.288 370.308 418.308	Mefenacet Chlorsulfuron Sulfentrazone <u>Fungicides</u> Carbendazim Benomyl Tridemorph Pencycuron Famoxadone	298.078 357.030 385.982 191.069 290.138 297.303 328.134 374.127
<u>Insecticides</u> Pirimicarb Metofluthrin Phosalone Endosulfan Benfuracarb Rotenone	238.143 360.135 366.987 403.817 410.188 394.142	<u>Other</u> 2,3-Benzofluorene	217.103

Universal Exposure Surveillance: Opportunities and Challenges

100,000 agents are registered with EPA; recognized hazards/risks are monitored by targeted analysis

Millions of tons of chemicals are used in commerce; little ability to track the ultimate fates of many

Targeted analysis of everything is impractical, unaffordable and unwarranted

Universal Exposure Surveillance: Opportunities and Challenges

High-resolution mass spectrometry is likely to be incorporated into personalized medicine

Opportunity for multiplexed biomonitoring of pesticides; more expanded coverage of environmental chemical space

With appropriate development, common environmental agents could be measured as components of the metabolic phenotype

Universal Exposure Surveillance: Opportunities and Challenges

De-identified sampling:

Military recruits Emergency room patients Newborn screening (bloodspots) ICU patients (catabolic state)

Component of annual physical examinations

THE EMORY/GEORGIA TECH PREDICTIVE HEALTH INSTITUTE THE END of DISEASE,

e BE

Universal surveillance strategy could support improved G x E research

DP Jones

Clinical Biomarkers Laboratory Metabolic Profiling

MS data processing to cumulative data library

apLCMS algorithm	-	Multiple extraction procedure	*	Feature mapping routine	-	Normalization protocol	→	Metabolite Data
Extracts m/z features		Optimizes integration of peaks		Matches features for normalizatio	n	Normalizes to reference plasma		Prototype cumulative data library
T Yu, 2009		K Uppal, submitted		S Le, unpublished		Q Soltow, unpublished		

High-performance Metabolic Profiling (LC-FTMS)

Needs: MS data processing to cumulative data library

apLCMS algorithm	→	Multiple extraction procedure	-*	Feature mapping routine	-	Normalization protocol	•	Metabolite Data
Extracts m/z features Reliabili for n =	ity 1	Optimizes integration of peaks		Matches features for normalizatio m/z pred MS/N verifica	n cisio /IS atio	Normalizes to reference plasma on, m/z specif algorithm	fic s	Cumulative data library

Summary: Universal Exposure Surveillance and Personalized Medicine

- 1. High-performance metabolic profiling can be costeffective for personalized medicine
- 2. "Routine" human metabolic profiles include pesticides
- 3. High-performance metabolic profiling provides opportunity to multiplex pesticide surveillance
- 4. With appropriate development, biomonitoring could become a component of personalized medicine

Acknowledgements: NIEHS, NIA, NCI, NIAAA, NIDDK

Redox circuitry Young-Mi Go James Roede **Bill Liang** Ward Kirlin Carolyn Accardi Walter Watson Jason Hansen Patrick Halvey Siobhan Craige Yvonne Nkabyo Yanci Mannery Smita lyer Yan Chen HongZhan g Corinna Anderson Lauren Miller

Metabolomics Youngja Park Quinlyn Soltow Tianwei Yu Kichen (Sky) Lee Jennifer Johnson Shuzhao Le

<u>Transgenic mice</u> Michael Orr Jiyang Cai David Martin

<u>Mass spectrometry</u> ViLinh Tran Jan Pohl Fred Strobel Junmin Peng Clinical Thomas R Ziegler Ken Brigham **Greg Martin** Paul Sternberg, Jr Lou Ann Brown David Guidot Jesse Roman Allan Ramirez Nana Gletsu **David Harrison** Arshed Quyyumi Nancy Kutner Sam Dudley Viola Vaccarino Michael Lynn